WO2023272980A1 - 风力发电机组的控制方法、装置、系统、设备及介质 - Google Patents

风力发电机组的控制方法、装置、系统、设备及介质 Download PDF

Info

Publication number
WO2023272980A1
WO2023272980A1 PCT/CN2021/120625 CN2021120625W WO2023272980A1 WO 2023272980 A1 WO2023272980 A1 WO 2023272980A1 CN 2021120625 W CN2021120625 W CN 2021120625W WO 2023272980 A1 WO2023272980 A1 WO 2023272980A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
yaw
slip ring
generating set
ring
Prior art date
Application number
PCT/CN2021/120625
Other languages
English (en)
French (fr)
Inventor
曹景冲
岑先富
褚建坤
单秀清
顾伟峰
Original Assignee
北京金风科创风电设备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京金风科创风电设备有限公司 filed Critical 北京金风科创风电设备有限公司
Publication of WO2023272980A1 publication Critical patent/WO2023272980A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/02Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor
    • F03D7/0264Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor for stopping; controlling in emergency situations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Definitions

  • the present application belongs to the field of wind power, and in particular relates to a control method, device, system, equipment and medium of a wind power generating set.
  • torsion-resistant cables are often used for power transmission in the yaw section.
  • a scheme of using yaw collector rings to realize power transmission in yaw section is proposed.
  • the safe and reliable operation of yaw collector ring is very important, so it is necessary to invent a control method to ensure its safe operation.
  • the wind turbine is often controlled to stop running immediately, and the power generation efficiency of the wind turbine is low.
  • the present application provides a control method, device, system, equipment and medium of a wind power generating set, which can take into account both the power generation efficiency of the wind generating set and the operation safety of the yaw collector ring.
  • an embodiment of the present application provides a control method for a wind power generating set, the wind generating set includes a yaw collector ring, and the method includes:
  • the running state of the wind power generating set is controlled.
  • an embodiment of the present application provides a control device for a wind power generating set, which is used to implement the control method for a wind generating set provided in the first aspect or any optional implementation manner of the first aspect.
  • the embodiment of the present application provides a control system for a wind power generating set, including:
  • the detection device is used to detect the operating state parameters of the yaw slip ring
  • control device provided in the first aspect or any optional implementation manner of the first aspect.
  • a control device for a wind power generating set including:
  • the processor reads and executes computer program instructions, so as to realize the control method of the wind power generating set provided in the first aspect or any optional implementation manner of the first aspect.
  • a computer storage medium is provided.
  • Computer program instructions are stored on the computer storage medium.
  • the computer program instructions are executed by a processor, the wind power generating set provided in the first aspect or any optional implementation manner of the first aspect is realized. control method.
  • the yaw collector ring control method, device, system, equipment and medium of the wind turbine in the embodiment of the present application can determine at least A type of failure. And control the running state of the wind power generating set according to the wind turbine control strategy corresponding to at least one type of fault. Since the solution provided by the embodiment of the present application can adopt the corresponding wind turbine control strategy to ensure the operation safety of the yaw slip ring when at least one type of yaw slip ring fault is diagnosed, in addition, because it can be used according to different types of faults Different wind turbine control strategies control the operating status of wind turbines differently. Compared with the scheme of immediately controlling the wind turbine to stop running when the yaw electromechanical loop fails, the power generation efficiency of the wind turbine is guaranteed. Therefore, the yaw slip ring control scheme provided by the embodiment of the present application can take into account both the power generation efficiency of the wind power generating set and the operation safety of the yaw slip ring.
  • Fig. 1 is a schematic structural diagram of a yaw slip ring provided by an embodiment of the present application
  • Fig. 2 is a schematic diagram of the connection relationship between a drive plate, a shift fork and a monitoring switch provided by the embodiment of the present application;
  • Fig. 3 is a schematic flow chart of the first control method for a wind power generating set provided by an embodiment of the present application
  • Fig. 4 is a schematic flowchart of a second control method for a wind power generating set provided in an embodiment of the present application
  • Fig. 5 is a schematic flowchart of a third control method for a wind power generating set provided in an embodiment of the present application
  • Fig. 6 is a schematic flowchart of a fourth control method for a wind power generating set provided in an embodiment of the present application
  • Fig. 7 is a schematic flowchart of a fifth control method for a wind power generating set provided in an embodiment of the present application.
  • Fig. 8 is a schematic flowchart of a sixth control method for a wind power generating set provided by an embodiment of the present application.
  • Fig. 9 is a schematic flowchart of a seventh wind power generating set control method provided by an embodiment of the present application.
  • Fig. 10 is a schematic flowchart of an eighth wind power generating set control method provided by an embodiment of the present application.
  • Fig. 11 is a schematic flowchart of an exemplary control method for a wind power generating set provided by an embodiment of the present application
  • Fig. 12 is a schematic flowchart of a ninth control method for a wind power generating set provided by an embodiment of the present application.
  • Fig. 13 is a schematic flowchart of a tenth wind power generating set control method provided by an embodiment of the present application.
  • Fig. 14 is a schematic flow chart of an eleventh wind power generating set control method provided by an embodiment of the present application.
  • Fig. 15 is a schematic flowchart of a first exemplary control method for a wind power generating set provided by an embodiment of the present application
  • Fig. 16 is a schematic structural diagram of a control device for a wind power generating set provided in an embodiment of the present application.
  • Fig. 17 is a system architecture diagram of a control system of a wind power generating set provided by an embodiment of the present application.
  • Fig. 18 shows a schematic diagram of the hardware structure of the control device of the wind power generating set provided by the embodiment of the present application
  • Fig. 19 shows a detailed structural diagram of the control system of the wind power generating set provided by the embodiment of the present application.
  • torsion-resistant cables are often used for power transmission in the yaw section.
  • a scheme of using yaw collector rings to realize power transmission in yaw section is proposed.
  • the safe and reliable operation of yaw collector ring is very important, so it is necessary to invent a control method to ensure its safe operation.
  • the wind power generating set when it is determined that the yaw collector ring is faulty, the wind power generating set is usually controlled to stop running immediately, and the power generation efficiency of the wind power generating set is low.
  • the embodiments of the present application provide a control method, device, system, device and medium for a wind power generating set, which can be applied to an application scenario of yaw collector ring fault detection.
  • the solution provided by the embodiment of the present application can take into account both the power generation efficiency of the wind power generating set and the operation safety of the yaw collector ring.
  • the yaw collector ring is a power transmission mechanism that reliably transmits the electric energy generated by the generator on the top of the tower to the bottom of the tower and connected to the power grid when the wind turbine is running under load.
  • the yaw slip ring can drive the rotor to rotate synchronously with the wind turbine when the unit is in the yaw state, or control the stator and rotor in the slip ring to be relatively stationary when in the non-yaw state.
  • Fig. 1 is a schematic structural diagram of a yaw slip ring provided by an embodiment of the present application.
  • the yaw collector ring may include: a box body 1 , a drive plate 2 , a junction box 3 at the rotor side, a junction box 4 at the stator side, and a cooling module 5 .
  • the box body 1 includes components such as a stator and a rotor.
  • one of the rotor and the stator may include a plurality of conductive rings, and the other of the rotor and the stator may include brushes used in conjunction with the plurality of conductive rings, and the electric energy may be transmitted from the rotor to the stator, and then from the stator to the power grid.
  • the box may further include temperature sensors, monitoring switches and other sensing devices for monitoring the operating state parameters of the yaw slip ring.
  • a heating module may also be included in the box.
  • the drive disc 2 is used to drive the rotor to rotate synchronously with the fan.
  • the rotor-side junction box 3 can be connected to the generator located in the nacelle through a wire harness.
  • the junction box 4 on the stator side can be connected to the grid through a wire harness.
  • the heat dissipation module 5 can dissipate heat for the inside of the yaw collector ring.
  • the heat dissipation module 5 may include heat dissipation holes and heat dissipation fans, or may also be other components with heat dissipation functions, such as semiconductor heat dissipation plates, such as water cooling piping systems, etc., which are not specifically limited in this application.
  • the yaw slip ring may also include a control box.
  • a control box there may be a built-in temperature monitoring board inside the yaw collector ring, which is not limited.
  • the reference temperature value is used to assist in judging the temperature change rate of the yaw collector ring temperature before reaching the high temperature alarm value T setfault of the cooling module failure.
  • the reference temperature value T setthreshold may be determined according to the high temperature alarm value T setfault of a heat dissipation module failure .
  • the preset temperature value can be set according to actual scenarios and specific needs, for example, it can be a preset value such as 5 degrees Celsius (°C) or 3°C. For example, if the high temperature alarm value T setfault of a cooling module fault is 30°C, the base temperature value may be 25°C.
  • the first temperature threshold T setfault is a temperature value used to judge whether there is a probability of heat dissipation module failure in the heat dissipation module. If the temperature of the yaw collector ring is greater than the first temperature threshold T setfault , it indicates that the heat dissipation module of the yaw collector ring has a certain The failure probability of the cooling module can be judged based on the heating rate at this time.
  • the first temperature threshold T setfault may be a value observed according to experimental data, or may be an empirical value, or may be a calculated theoretical value, which is not limited thereto.
  • the fourth temperature threshold T setrecover is used to determine whether to control the temperature reference value of the fan control strategy corresponding to the fan over-temperature fault. That is to say, if the temperature of the yaw collector ring is less than the fourth temperature threshold T setrecover , it proves that the yaw collector ring meets one of the conditions for ending the execution of the fan control strategy corresponding to the over-temperature fault.
  • the fourth temperature threshold T setrecover may be a value observed according to experimental data, or may be an empirical value, or may be a calculated theoretical value, which is not limited thereto.
  • the second temperature threshold T setlimit is the critical temperature value for whether the yaw collector ring has an over-temperature fault. If the temperature of the yaw collector ring is greater than the second temperature threshold T setlimit , it indicates that the yaw collector ring has an over-temperature fault. .
  • the second temperature threshold T setlimit may be a value observed according to experimental data, or may be an empirical value, or may be a calculated theoretical value, which is not limited thereto.
  • the third temperature threshold T setstop is the critical temperature value for whether the yaw collector ring has an over-temperature fault. If the temperature of the yaw collector ring is greater than the third temperature threshold T setstop , it indicates that the yaw collector ring has an over-temperature fault. .
  • the third temperature threshold T setstop may be a value observed according to experimental data, or may be an empirical value, or may be a calculated theoretical value, which is not limited thereto.
  • the third temperature threshold may be a temperature upper limit for safe operation of the yaw slip ring.
  • the yaw collector ring cannot effectively dissipate heat, or the accumulation between the brush and the slideway causes the contact resistance of the yaw collector ring to be too large.
  • Reasons such as the temperature rise of the yaw collector ring may lead to an abnormal increase in the temperature of the yaw collector ring. Therefore, the yaw collector ring may have abnormal temperature rise faults such as heat dissipation module failure, collector ring overtemperature fault, collector ring overtemperature fault, etc.
  • abnormal temperature rise faults and their fault judgment conditions will be explained one by one.
  • the heat dissipation module may include that the temperature of the yaw collector ring is greater than the first temperature threshold, and the temperature rise rate k1 of the yaw collector ring temperature is greater than the first temperature rise rate threshold ⁇ 1.
  • the temperature rise rate k1 of the yaw collector ring temperature satisfies the following formula (1):
  • t(T setfault ) and t(T setthreshold ) are the time when the temperature reaches T setfault and T setthreshold respectively.
  • the first temperature rise rate threshold ⁇ 1 may be greater than the temperature rise rate when the yaw collector ring transmits a current greater than the rated current of the yaw collector ring, and less than the value of the temperature rise rate when the heat dissipation module fails.
  • the first The temperature rise rate threshold ⁇ 1 can be set according to actual scenarios and specific requirements. For example, it can be obtained through observation of experimental data, or can be an empirical value, or can be a calculated theoretical value, which is not limited.
  • the abnormal increase in temperature caused by the failure of the heat dissipation module will not cause the internal structure loss of the yaw collector ring.
  • the sampling temperature of the yaw collector ring caused by the failure of the heat dissipation module increases.
  • the sampling temperature value will not reach the temperature that can cause the carbon brush or conductive ring structure to wear out. Therefore, in order to ensure the operating efficiency of the fan, the operating state of the fan may not be changed. That is to say, the control fan continues to run in the running state before the cooling module fails.
  • the yaw collector ring will generate an over-temperature fault.
  • the yaw slip ring over-temperature fault occurs, it means that the yaw slip ring exceeds its proper operating temperature range.
  • the second temperature threshold T setlimit please refer to the relevant description of the above-mentioned embodiments of the present application, which will not be repeated here.
  • the output power of the generator can be reduced by controlling the fan to reduce power, thereby reducing the yaw collector ring temperature.
  • the transmission current between the rotor and the stator of the electric ring realizes the regulation of the temperature of the yaw collector ring.
  • the fan adjustment strategy for an over-temperature fault includes: controlling the fan to run at a first power, where the first power may be a fixed value lower than the operating power of the fan before the over-temperature fault occurs.
  • the first power may be a value observed according to experimental data, or may be an empirical value, or may be a calculated theoretical value, which is not limited.
  • it can be the power value obtained by multiplying the power before the over-temperature fault occurs by a ratio, or a preset value, for example, when the fan is running at the first power, the stator and rotor of the yaw collector ring The heat generated between them is small, which can reduce the temperature of the yaw collector ring.
  • the fan adjustment strategy for an over-temperature fault may be an iterative adjustment strategy, and accordingly, the fan adjustment strategy for an over-temperature fault includes:
  • the control fan continues to operate in the original operating mode before the over-temperature fault occurs.
  • the temperature of the yaw collector ring is less than or equal to the third temperature threshold T setstop within the first preset time period t1 from the fan over-temperature fault, and the yaw collector ring after the end of the first preset time period t1 If the temperature is greater than the second temperature threshold T setlimit , the operating power of the fan is reduced by a preset ratio (for example, 10%) for the first time.
  • a preset ratio for example, 10%
  • the operating power of the fan is reduced by a preset ratio for the ith time. Until the temperature of the yaw slip ring drops below the second temperature threshold T setlimit , or the temperature of the yaw slip ring is greater than the third temperature threshold T setstop within the preset time period t1 .
  • i is an integer greater than or equal to 2.
  • the yaw slip ring temperature is less than or equal to the second temperature threshold T setlimit after the preset time period t1 , it is determined whether the duration of the yaw slip ring temperature being lower than the fourth temperature threshold T setrecover is longer than the preset time length t2 . If it is longer than the preset duration t2, the fan control strategy corresponding to the over-temperature fault will be stopped, and the fan control will continue to operate in the operating state before the over-temperature fault occurs. If it is less than the preset time length t2, the fan is controlled to continue to run at the adjusted operating power.
  • the fan adjustment strategy for an overtemperature fault includes:
  • the fan is controlled to run at the first power.
  • the first power may be the operating power before the overtemperature fault occurs, that is, the normal operating power is reduced by 10%.
  • the operating power before the over-temperature fault occurs is P 1 , then the first power may be 90% of P 1 .
  • the temperature of the yaw collector ring is less than or the third temperature threshold T setstop within the first preset time period t1 after the overtemperature fault of the wind turbine is determined, and the yaw collector ring after the end of the first preset time period t1 If the temperature is greater than the second temperature threshold T setlimit , the operating power of the fan is reduced by a preset ratio for the second time.
  • the control fan stops executing the fan control strategy corresponding to the over-temperature fault, and the control fan continues to operate in the operating state before the over-temperature fault occurs. If it is less than the preset duration, the fan is controlled to continue to operate at the modulated operating power.
  • the yaw collector ring when the temperature of the yaw collector ring exceeds the upper safe temperature limit (corresponding to the third temperature threshold T setstop ), that is, the yaw collector ring generates an over-temperature fault.
  • the yaw collector ring overheats and fails, it means that the yaw collector ring exceeds its safe temperature range.
  • the third temperature threshold T setstop please refer to the relevant description of the above-mentioned embodiments of the present application, which will not be repeated here.
  • the fan may be controlled to stop when an over-temperature fault is determined to occur. Since the transmission current of the stator rotor of the yaw collector ring is zero when the fan is stopped, no heat will be generated between the stator and rotor, so that the temperature of the yaw collector ring can be quickly reduced. In one example, since the yaw action of the wind turbine generates less heat inside the yaw collector ring, the wind turbine can be allowed to yaw while controlling the shutdown of the wind turbine. In one example, in order to ensure safety, after the fan is controlled to stop, remote start-up of the fan may be prohibited until the over-temperature fault is resolved.
  • the embodiment of the present application can also diagnose the fault of the heating module and provide corresponding fault countermeasures.
  • Heating module failure its judgment conditions and corresponding fan control strategy.
  • the heating module does not work, that is, the yaw collector ring causes a heating module failure.
  • the heating module of the yaw collector ring fails, it means that there are safety risks such as icing inside the yaw collector ring.
  • the conditions for judging the failure of the heating module include: the ambient temperature of the wind power generating set is lower than the temperature critical value of the low-temperature environment, and the difference between the temperature of the yaw collector ring and the external ambient temperature T nacelle of the yaw collector ring smaller than the first temperature difference threshold T setmin .
  • the temperature critical value of the low temperature environment may be obtained through observation of experimental data, or may be an empirical value, or may be a calculated theoretical value, which is not limited.
  • the temperature critical value of the low-temperature environment may be a temperature value at which the yaw collector ring of the wind turbine under the temperature critical value has a risk of icing. For example, it may be a value less than 0°C.
  • the conditions for judging the failure of the heating module include: the temperature of the yaw slip ring is less than the second temperature threshold, and the difference between the temperature of the yaw slip ring and the external ambient temperature T nacelle of the yaw slip ring is less than the second temperature threshold A temperature difference threshold T setmin .
  • the second temperature threshold may be a temperature critical value for whether the yaw slip ring is in a low-temperature operation state.
  • the second temperature threshold may be observed through experimental data, or may be an empirical value, or may be a calculated theoretical value, which is not limited.
  • the second temperature threshold may be a temperature value at which the yaw slip rings below the temperature threshold have a risk of icing or water condensation. For example, it may be a value less than or equal to 0°C. In one example, the second temperature threshold may be less than or equal to a temperature value enabling the heating module to start heating.
  • the first temperature difference threshold may be determined according to the heating capacity of the heating module failure, or may be obtained through observation of experimental data, or may be an empirical value, or may be a calculated theoretical value, which is not limited. For example, during the experiment, the first difference ⁇ T a between the temperature of the yaw collector ring not heated by the heating module and the external ambient temperature of the yaw collector ring can be obtained, and the temperature of the yaw collector ring heated by the heating module can be obtained. The second difference ⁇ T b between the ring temperature and the external ambient temperature of the yaw collector ring, and then determine the first temperature difference threshold according to the difference between the second difference ⁇ T b and the first difference ⁇ T a .
  • it may be the difference between the second difference ⁇ T b and the first difference ⁇ T a minus an error tolerance.
  • it may be a result obtained by multiplying the difference between the second difference ⁇ T b and the first difference ⁇ T a by a preset ratio less than 1.
  • the yaw collector ring with internal ice is used to continue to transmit electric energy between the generator and the grid, there will be This could result in a safety risk to the yaw slip ring or damage to the structure.
  • the wind turbine can be controlled to stop yaw and the wind turbine to stop yaw.
  • the remote starting of the wind turbine and the remote start of yaw can be prohibited before the failure of the heating module is resolved.
  • the shift fork can drive the rotor to rotate synchronously with the fan yaw through the cooperation of the drive plate and the shift fork.
  • the drive disc and the shift fork cannot be used together due to the failure of the shift fork or the breakage of the drive disc, etc., it will cause the rotor and the fan yaw to be unable to rotate synchronously, resulting in the yaw collector ring and the generator The cables between them are twisted, affecting the safe operation of the fan.
  • the embodiment of the present application can also diagnose the failure of cooperation between the drive plate and the shift fork, and provide corresponding failure countermeasures.
  • a failure detection switch can be set to detect a cooperation failure between the two.
  • Fig. 2 is a schematic diagram of a connection relationship among a drive plate, a shift fork and a monitoring switch provided by an embodiment of the present application.
  • the yaw slip ring includes a shift fork 17 , a drive disc 11 and a monitoring switch 18 .
  • the first connection end of the monitoring switch 18 is connected to the shift fork 17
  • the second connection end of the monitoring switch 18 is connected to the driving disc 11 .
  • the first connection end and the second connection end of the monitoring switch 18 are conducting, and the monitoring switch 18 is in a conducting state.
  • a certain displacement occurs between the shift fork 17 and the drive plate 11, and accordingly, the distance between the first connection end and the second connection end of the monitoring switch 18 becomes farther, so that the two cannot is turned on, and the monitoring switch 18 is in an off state.
  • monitoring switch may be a mechanical switch or an electromagnetic switch, and the application does not limit its specific type.
  • the judging condition for the cooperation failure of the shift fork and the driving disc includes: determining that the monitoring switch is in an off state according to the on-off state parameter of the monitoring switch. That is to say, when it is detected that the detection switch is in the disconnected state, it is determined that a cooperation failure between the shift fork and the drive disc occurs.
  • the blower control strategy for the cooperation failure of the shift fork and the drive plate may include:
  • It can control the shutdown of the wind turbine and stop the yaw of the wind turbine.
  • the remote starting of the wind turbine and the remote start of yaw can be prohibited before the failure of the heating module is resolved.
  • Fig. 3 is a schematic flowchart of a first control method for a wind power generating set provided in an embodiment of the present application.
  • the execution body of each step of the method for controlling a wind power generating set in the embodiment of the present application may be a control module provided in the nacelle such as a main controller.
  • a control module provided in the nacelle such as a main controller.
  • it can be a programmable logic controller in the main controller.
  • it may be a control module of the yaw slip ring, such as a temperature monitoring board disposed on the yaw slip ring, and the temperature monitoring board may be disposed in a controller of the yaw slip ring.
  • it may also be other control modules, which is not limited.
  • the control method of the wind power generating set includes S310 to S330.
  • the operating state parameters of the yaw slip ring may be parameters that affect its operation safety, such as the temperature of the yaw slip ring, the status of the monitoring switch that can reflect the cooperation between the shift fork and the drive disc. off state parameters, etc.
  • one connection terminal of the monitoring switch can be connected to the execution subject of the control method of the wind power generating set, such as the main controller, and correspondingly, the on-off state parameter of the monitoring switch can be the voltage of the connection terminal of the monitoring switch or Electrical signal parameters such as current.
  • the on-off status parameters of the monitoring switch can also be collected through other devices with the on-off detection function, and then transmitted to the execution subject of the control method of the wind power generating set. This embodiment of the present application does not limit it.
  • the yaw slip ring temperature may be a temperature value capable of reflecting the yaw slip ring temperature.
  • a temperature detection unit can be set on the conductive ring of the yaw collector ring, and then based on multiple temperature detection units to collect The value of temperature determines the yaw slip ring temperature, and the yaw slip ring temperature can be a real-time acquired temperature.
  • the yaw collector ring may include a plurality of conductive rings, and at least one temperature detection unit corresponding to at least one conductive ring in the plurality of conductive rings. Each temperature detection unit is used to collect the temperature of its corresponding conductive ring.
  • the temperature detection unit may be set on the side of the conductive ring close to the rotor.
  • the temperature detection unit can be a device with temperature acquisition function.
  • a temperature sensor with a certain withstand voltage performance can be selected. Such as PT temperature sensor and so on.
  • temperature detection units can be provided on all the conductive rings. Alternatively, a temperature detection unit may be provided on part of the conductive ring. Alternatively, a temperature detection unit may be provided on a conductive ring.
  • the temperature detection unit can be set on the conductive ring with a large heat generation. For example, if the yaw collector ring includes 6 conductive rings, it can be set in A temperature detection unit is set on the two conductive rings in the middle.
  • the temperature detection unit can transmit the detected temperature value to the control module located in the nacelle through the wiring harness, and when the rotor includes a conductive ring, the temperature sensor on the conductive ring can yaw synchronously according to the nacelle, avoiding The wiring harness between the temperature detection unit and the control module in the cabin is twisted.
  • the temperature detection unit can also be arranged at other positions outside the yaw collector ring inside the yaw collector ring, for example, the inner wall of the box of the yaw collector ring, etc., and for example, when the rotor When the brushes are included and the stator includes a conductive ring, the temperature detection unit can be arranged on the brushes.
  • the embodiment of the present application does not limit the specific location of the temperature detection unit.
  • the operating state parameters of the yaw slip ring include the temperature of the yaw slip ring
  • the yaw slip ring may include a plurality of conductive rings, and have a one-to-one correspondence with at least one conductive ring in the plurality of conductive rings
  • Fig. 4 is a schematic flowchart of a second control method for a wind power generating set provided by an embodiment of the present application. The difference between FIG. 4 and FIG. 3 is that S310 may specifically include S311 and S312.
  • the acquired temperatures of the m conductive rings may be T1, . . . , Tm.
  • m can be greater than or equal to 1 and less than or equal to the total number of conductive rings in the yaw collector ring.
  • S312. Determine the temperature of the yaw collector ring according to the temperature of at least one conductive ring.
  • a yaw collector ring temperature may be calculated according to at least one conductive ring temperature, or a conductive ring temperature may be selected from it as the yaw collector ring temperature, which is not limited.
  • the execution subject of S311 and S312 may be a temperature monitor of the yaw slip ring. Or it may be the main controller of the fan, which is not limited.
  • the main control or temperature monitoring board can compare the temperature of each conductive ring, take the highest temperature data Tmax and send it to the main control system as an analog signal.
  • S320 Determine at least one type of fault among the multiple types of faults occurring in the yaw collector ring according to the operating state parameters and the judgment conditions of the multiple types of faults.
  • the multi-type faults in the embodiments of the present application may include: at least two types of heat dissipation module faults, over-temperature faults, over-temperature faults, heating module faults, and cooperation between the shift fork and the drive plate.
  • the multi-type faults can also include other faults of the yaw slip ring according to actual scenarios and specific needs.
  • the embodiment of the present application does not limit the over-temperature fault and other abnormal temperature rise faults other than the over-temperature fault.
  • the wind turbine control strategy in the embodiment of the present application may include a control strategy for the output power of the wind turbine.
  • the multi-type faults may include multi-level temperature faults, wherein the higher the temperature fault level, the higher the corresponding temperature threshold for diagnosing whether it is a fault, and correspondingly, its fan control strategy The corresponding fan output power is lower.
  • it may also include a control instruction on whether to allow the wind turbine to perform yaw operation.
  • the operation of the fan may be controlled according to the fan control strategy for this type of fault.
  • one control strategy may be selected from the wind turbine control strategies for at least two types of faults to control the operation of the wind turbine.
  • S330 may specifically include: among the wind turbine control strategies corresponding to at least two types of faults, determining the wind turbine control strategy with the highest safety level, and controlling the operating state of the wind turbine according to the wind turbine control strategy with the highest safety level .
  • the lower the operating power of the wind turbine corresponding to the wind turbine control strategy the higher the safety level of the wind turbine control strategy.
  • the safety level of the wind turbine control strategy that controls the shutdown of the wind turbine is higher than the security level of the wind turbine control strategy that controls the power reduction of the wind turbine.
  • the safety level of the wind turbine control strategy for controlling the wind turbine to reduce power is higher than that of the wind turbine control strategy for controlling the wind turbine to keep the operating power constant or to control the wind turbine to operate under normal operation control.
  • the safety level of the wind turbine control strategy that controls the wind turbine to stop yaw is higher than the wind turbine control strategy that does not control the wind turbine to stop yaw.
  • the safety level of the fan control strategy corresponding to the failure of the heating module is equal to the safety level of the fan control strategy corresponding to the cooperation failure of the shift fork and the drive plate.
  • the safety level of the fan control strategy corresponding to the heating module fault is higher than that of the fan control strategy corresponding to the over-temperature fault
  • the safety level of the fan control strategy corresponding to the over-temperature fault is higher than that of the fan control strategy corresponding to the over-temperature fault.
  • the safety level of the fan control strategy corresponding to the overtemperature fault is higher than the safety level of the fan control strategy corresponding to the cooling module fault.
  • S330 may specifically include: determining the type of fault with the highest fault level among at least two types of faults, and controlling the operation of the wind turbine according to the wind turbine control strategy corresponding to the type of fault with the highest fault level state.
  • a fault that creates a greater safety risk has a higher rating. For example, for faults such as abnormal temperature rise, the higher the corresponding temperature, the higher the fault level.
  • the failure level of the heating module failure is equal to the failure level of the coordination failure of the shift fork and the drive plate.
  • the failure level of the heating module fault is higher than that of the collector ring over-temperature fault
  • the fault level of the fan control strategy corresponding to the over-temperature fault is higher than that of the over-temperature fault
  • the fault level of the over-temperature fault is higher than that of the cooling module failure level.
  • the yaw slip ring control method of the wind turbine in the embodiment of the present application can determine at least one type of fault corresponding to the yaw slip ring from multiple types of faults according to the operating state parameters of the yaw slip ring. And control the running state of the wind power generating set according to the wind turbine control strategy corresponding to at least one type of fault. Since the solution provided by the embodiment of the present application can adopt the corresponding wind turbine control strategy to ensure the operation safety of the yaw slip ring when at least one type of yaw slip ring fault is diagnosed, in addition, because it can be used according to different types of faults Different wind turbine control strategies control the operating status of wind turbines differently.
  • the yaw slip ring control scheme provided by the embodiment of the present application can take into account both the power generation efficiency of the wind power generating set and the operation safety of the yaw slip ring.
  • the output power of the wind turbine can be controlled to deal with different types of yaw collector ring faults, thereby solving the problem of the yaw collector ring. Risks to the safe operation of electric rings.
  • the first type of faults that have little impact on the safety of the yaw collector ring in the embodiment of the application can control its normal operation to ensure power generation
  • the second type that has a certain impact on safety Faults such as over-temperature faults
  • safety Faults can reduce the safety risk by controlling the power reduction of the wind turbine generator set, so as to take into account the power generation of the wind turbine generator set and the operation safety of the yaw collector ring
  • Three types of faults such as over-temperature faults, heating module faults, and coordination faults between the drive plate and the shift fork, can control the shutdown of the wind turbine to ensure the operational safety of the yaw collector ring.
  • it can take into account the power generation of the wind turbine and the operation safety of the yaw collector ring as a whole.
  • the unit can effectively judge and respond to various faults of the yaw collector ring.
  • each step of the control method of the wind power generating set in the embodiment of the present application can be realized by the cooperation of the control module of the yaw slip ring (such as a temperature monitoring board) and the main controller of the wind power generating set.
  • S310 may be executed by the control module, and the running state parameters may be sent to the main controller.
  • S310 and S320 may be executed by the control module of the yaw slip ring, and a corresponding fault alarm signal may be generated and sent to the main controller.
  • the two in order to avoid the risk of cable twisting between the control module of the yaw slip ring (such as the temperature monitoring board) and the main controller of the wind turbine, the two can communicate using wireless communication methods such as Bluetooth .
  • the multi-type faults may include a cooling module failure.
  • FIG. 5 is a schematic flowchart of a second control method for a wind power generating set provided in an embodiment of the present application.
  • S320 may specifically include:
  • the time t(T setfault ) when the temperature of the yaw slip ring rises to a reference temperature value, and the time t(T setthreshold ) when the temperature of the yaw slip ring rises to a first temperature threshold can be obtained .
  • the ratio of the temperature difference between the first temperature threshold T setfault and the reference temperature T setfault to the time difference between t(T setthreshold ) and t(T setfault ) is used to obtain the temperature rise rate k1.
  • S330 may specifically include S331:
  • the wind power generating set is controlled to continue to operate in the original operation mode without changing its operation state.
  • the fan is controlled to continue to operate in the original operating state, which can avoid the loss of power generation caused by immediate shutdown due to failure, and take into account the yaw power collection The safety of the ring and the power generation efficiency of the fan.
  • the operating state parameter includes yaw slip ring temperature
  • the multi-category fault includes an over-temperature fault.
  • FIG. 6 is a schematic flowchart of a fourth control method for a wind power generating set provided in an embodiment of the present application.
  • S320 may specifically include:
  • S330 specifically includes S332.
  • the over-temperature fault can be effectively judged, and considering that the over-temperature fault has a certain risk, when the over-temperature fault occurs, the power reduction operation of the fan can be controlled in time, and the power generation caused by the immediate shutdown due to the fault can be avoided. Loss, taking into account the safety of the yaw collector ring and the power generation efficiency of the fan.
  • FIG. 7 is a schematic flowchart of a fifth control method for a wind power generating set provided in an embodiment of the present application.
  • S320 may specifically include S323:
  • S330 may specifically include S3331-S3333.
  • the preset time period when S3331 is executed for the first time, the preset time period may be the preset time period t1 since it is determined that the yaw slip ring has an overtemperature fault. Thereafter, when S3331 is executed for the i time, the preset time period is the preset time period starting from the end moment of the i-1th time period. i is an integer greater than or equal to 2.
  • the temperature of the yaw slip ring in S3331 which may be the real-time temperature of the yaw slip ring.
  • the temperature of the yaw slip ring can be collected multiple times within each preset time period, and it is judged whether the temperature of the yaw slip ring collected each time is less than or equal to the third temperature Threshold T setstop .
  • the execution of the wind turbine control strategy for over-temperature fault is immediately stopped.
  • the fan can control the wind turbine to keep the running state unchanged, or it can reduce the power, for example, it can be adjusted to the first power, or it can be adjusted according to the preset power adjustment factor , which is not specifically limited.
  • S3333 in the case of greater than the second temperature threshold, use the preset power adjustment factor to adjust the operating power of the fan to obtain the adjusted operating power, control the wind turbine to operate at the adjusted operating power, and return to S3331 until the yaw collector the ring temperature is greater than the third temperature threshold within the preset time period or the yaw slip ring temperature is not greater than the second temperature threshold at the end of the preset time period;
  • the preset power adjustment factor is less than 1, and the adjusted operating power is a power smaller than the operating power before the over-temperature fault of the wind generating set occurs.
  • the preset power adjustment factor may be a fixed value, or a value that changes continuously with the number of iterations, for example, may increase with the number of iterations.
  • the value of the preset power adjustment factor in the embodiment of the present application can be set according to actual scenarios or specific needs, or can be an empirical value, and the setting method is not limited.
  • the power can be reduced proportionally.
  • the operating power of the fan before adjustment can be multiplied by a preset power adjustment factor to obtain the adjusted operating power of the fan.
  • the adjusted power may be obtained by subtracting the product of the preset power adjustment factor and the fan operating power before adjustment from the operating power of the fan before adjustment.
  • equal reduction of power can be achieved.
  • the operating power of the fan before adjustment can be subtracted from the product of the preset power adjustment factor and the operating power before the fault. For example, if the preset power adjustment factor is 10%, the operating power before the over-temperature fault is P 1 , then starting from the first power adjustment, the adjusted power is 90% P 1 , 80% P 1 , . . .
  • the over-temperature fault can be effectively judged, and considering that the over-temperature fault has a certain risk, after the over-temperature fault occurs, the power reduction operation of the fan can be controlled by iteratively reducing the output power step by step, which can avoid The loss of power generation caused by immediate shutdown due to failure takes into account the safety of the yaw collector ring and the power generation efficiency of the wind turbine.
  • FIG. 8 is a schematic flowchart of a sixth control method for a wind power generating set provided by an embodiment of the present application. The difference between Figure 8 and Figure 7 is that,
  • the method also includes:
  • the temperature of the yaw slip ring can be continuously detected in real time to determine whether the duration of the yaw slip ring temperature being less than the fourth temperature threshold is greater than Default duration.
  • the wind turbine is controlled to operate in the operating state before the overtemperature fault occurs. That is, to keep the wind turbine running normally.
  • Fig. 9 is a schematic flow chart of a seventh wind power generating set control method provided by an embodiment of the present application. The difference between FIG. 9 and FIG. 8 is that S320 may specifically include:
  • the method also includes:
  • the wind turbine is controlled to keep the operating power constant.
  • controlling the wind generating set to keep the operating power constant may mean that the wind generating set continues to operate in the operating power mode adjusted through S3331-S3333 until the duration of the yaw collector ring being less than the fourth temperature threshold is less than or equal to the preset duration.
  • the operating state parameter of the yaw slip ring includes the temperature of the yaw slip ring
  • the multi-type fault includes an over-temperature fault
  • FIG. 10 is a schematic flow chart of an eighth wind power generating set control method provided by an embodiment of the present application.
  • S320 may specifically include:
  • S330 may specifically include: S334, controlling the wind power generating set to stop.
  • the main controller can send a shutdown control command to the pitch controller, and the pitch controller performs pitch retraction, and can also send a shutdown control command to the generator controller, so that the generator controller gradually reduces the power generation. engine speed, and send a stop control command to the braking system, so that the controller of the braking system controls the braking of the brake disc.
  • the transmission current of the stator rotor of the yaw collector ring is zero when the wind turbine is stopped, no heat is generated between the stator and rotor, so that the temperature of the yaw collector ring can be rapidly reduced.
  • the wind turbine since the yaw action of the wind turbine generates less heat inside the yaw collector ring, the wind turbine can be allowed to yaw while controlling the shutdown of the wind turbine.
  • the yaw system can continue to yaw according to the actual situation.
  • the over-temperature fault can be effectively judged, and the fan can be controlled to stop in time considering the over-temperature risk, which improves the safety and reliability of the control method.
  • Fig. 11 is a schematic flow chart of an exemplary control method for a wind power generating set provided in an embodiment of the present application,
  • Fig. 11 The difference between Fig. 11 and Fig. 10 is that in the power reduction adjustment process of over-temperature control, if it is judged through step S3331 that the yaw collector ring temperature within the preset time period is greater than or equal to the third temperature threshold, it will Determine that the fan has an overtemperature fault, and control the fan to stop.
  • the operating state parameter of the yaw slip ring includes the temperature of the yaw slip ring
  • the yaw slip ring includes a heating module
  • the multi-type fault includes a failure of the heating module
  • FIG. 12 is a schematic flowchart of a ninth control method for a wind power generating set provided by an embodiment of the present application.
  • S320 may specifically include:
  • S320 specifically includes S3251 to S3254.
  • the wind turbine can obtain the ambient temperature of the wind turbine at a position above a certain height.
  • the ambient temperature of the wind turbine can be collected through a temperature sensor installed in the nacelle.
  • the temperature sensor on the top of the nacelle collects the ambient temperature of the wind turbine.
  • the ambient temperature of the wind power generation unit may be collected through an external or internal temperature sensor disposed at one end of the tower close to the nacelle.
  • the ambient temperature of the wind turbine is used to determine whether the wind turbine is in a low-temperature environment, it can also be set at other locations, and use the corresponding low-temperature environment value at this location to determine whether the wind turbine is in a low-temperature environment. In a low temperature environment.
  • the critical temperature value of the low-temperature environment can be set according to actual scenarios and specific requirements, which is not limited. For example, it can be 0°.
  • the external ambient temperature of the yaw slip ring may be an external ambient temperature close to the yaw slip ring housing.
  • a temperature sensor can be installed on the platform to measure the external ambient temperature of the yaw collector ring.
  • a temperature sensor may be directly arranged outside the yaw collector ring box to measure the external ambient temperature of the yaw collector ring. This embodiment of the present application does not specifically limit it.
  • the external ambient temperature based on the yaw collector ring is used as a reference group for judging the heating capability of the heating module on the yaw collector ring, and different first temperature difference thresholds can be selected based on different setting positions.
  • the external ambient temperature of the yaw collector ring and the ambient temperature of the wind power generating set may be the same temperature value, or different temperature values collected by the same temperature detection unit, or temperature values collected at different locations, for This will not be repeated here.
  • S330 specifically includes: S335, controlling the stop of the wind power generating set and stopping the yaw of the wind power generating set.
  • the failure of the heating module can be effectively judged, and the fan can be controlled to stop in time considering the risk of failure of the heating module, which improves the safety and reliability of the control method.
  • Fig. 13 is a schematic flow chart of a tenth wind power generating set control method provided by an embodiment of the present application.
  • the difference between Figure 13 and Figure 12 is that between S310 and S3253 may specifically include:
  • the on-off state parameters of the monitoring switch, the multi-type faults include the coordination fault between the shift fork and the drive disc.
  • the specific content of the shift fork, the driving disc, and the monitoring switch can refer to the relevant content of the above-mentioned embodiment of the present application in conjunction with FIG. 2 , and will not be repeated here.
  • FIG. 14 is a schematic flowchart of an eleventh control method for a wind power generating set provided by an embodiment of the present application.
  • S320 may specifically include:
  • Control the running status of wind turbines including:
  • the cooperation fault between the shift fork and the drive plate, its judging conditions and the related content of the fan control strategy can refer to the specific description of the above-mentioned embodiments of the present application, and will not be repeated here.
  • FIG. 15 is a schematic flowchart of an exemplary wind power generation set operation method provided by the embodiment of the present application.
  • the operation method of the wind power generating set includes S1501 to S1515.
  • S1502. Determine whether the yaw collector ring temperature Ta is greater than a first temperature threshold T setfault . If the judgment result is no, continue to monitor the real-time temperature of each conductive ring and obtain the temperature Ta of the yaw collector ring. If the judgment result is no, continue to execute S1502.
  • S1514 Determine whether the ambient temperature Tb of the unit is greater than 0, and the yaw collector ring temperature Ta and Tnacelle ⁇ are less than the first temperature difference threshold T setmin . If the judgment result is yes, continue to execute S1515. If the judgment result is no, continue to monitor the real-time temperature of each conductive ring and obtain the temperature Ta of the yaw collector ring.
  • the faults of the sub-components of the yaw collector ring can be classified and judged and shielded step by step to reduce the frequency of troubleshooting.
  • the embodiments of the present application provide not only a control method for a wind power generating set, but also a corresponding control device for a wind power generating set.
  • Fig. 16 is a schematic structural diagram of a control device for a wind power generating set provided in an embodiment of the present application. As shown in Fig. 16, the control device 1600 of the wind power generating set includes:
  • a state parameter acquisition module 1610 configured to acquire operating state parameters of the yaw slip ring
  • the fault judgment module 1620 is used to determine at least one type of fault among the multiple types of faults in the yaw slip ring according to the operating state parameters and the judgment conditions of multiple types of faults;
  • the wind turbine control module 1630 is configured to control the running state of the wind power generating set according to the wind turbine control strategy corresponding to at least one type of fault.
  • the yaw slip ring includes a heat dissipation module
  • the operating state parameters include the temperature of the yaw slip ring
  • the multi-type faults include a heat dissipation module failure
  • the fault judgment module 1620 is specifically used for:
  • the fan control module 1630 is specifically used for:
  • the wind turbine is controlled to operate in the operating state before the cooling module failure occurs.
  • the operating state parameters include yaw slip ring temperature, and the multi-type faults include over-temperature faults;
  • the fault judgment module 1620 is specifically used for:
  • the fan control module 1630 is specifically used for:
  • the wind power generator is controlled to run at the first power, and the first power is a power lower than the operating power before the wind power generator set has an overtemperature fault.
  • the operating state parameters include yaw slip ring temperature, and the multi-type faults include over-temperature faults;
  • the fault judgment module 1620 is specifically used for:
  • the fan control module 1630 specifically includes:
  • the first judging unit is configured to judge that the temperature of the yaw collector ring within a preset time period is less than or equal to a third temperature threshold, and the third temperature threshold is greater than the second temperature threshold;
  • the second judging unit is used for judging whether the yaw slip ring temperature at the end of the preset time period is greater than the second temperature threshold when the temperature is less than or equal to the third temperature threshold;
  • the first power adjustment unit is used to adjust the operating power of the wind turbine by using the preset power adjustment factor to obtain the adjusted operating power when the temperature is greater than the second temperature threshold, and control the wind turbine to operate at the adjusted operating power, and return to the first step A judging step, until the temperature of the yaw slip ring is greater than the third temperature threshold within the preset time period or the temperature of the yaw slip ring is not greater than the second temperature threshold at the end of the preset time period;
  • the preset power adjustment factor is less than 1, and the adjusted operating power is a power smaller than the operating power before the over-temperature fault of the wind generating set occurs.
  • the fan control module 1630 also includes:
  • the third judging unit is used to determine whether the duration of the yaw slip ring temperature being less than the fourth temperature threshold is greater than a preset time length when the temperature of the yaw slip ring is less than or equal to the second temperature threshold, the fourth temperature threshold less than or equal to the second temperature threshold;
  • the second power adjustment unit is configured to control the wind power generating set to operate in the operating state before the overtemperature fault occurs when the duration is longer than the preset duration.
  • the fan control module 1630 also includes:
  • the third power adjustment unit is configured to control the wind power generating set to keep the operating power constant when the duration is less than or equal to the preset duration.
  • the operating state parameters include yaw slip ring temperature, and the multiple types of faults include over-temperature faults;
  • the fault judgment module 1620 is specifically used for:
  • the fan control module 1630 is specifically used for:
  • the yaw slip ring includes a heating module
  • the operating state parameters include the temperature of the yaw slip ring
  • the multi-type fault includes a heating module fault
  • the fault judgment module 1620 is specifically used for:
  • the heating module When the heating module meets the preset starting heating conditions, calculate the difference between the temperature of the yaw collector ring and the external ambient temperature of the yaw collector ring, where the preset starting heating condition is the ambient temperature of the wind turbine is less than the critical temperature value of the low temperature environment, and/or, the temperature of the yaw collector ring is less than the fifth temperature threshold, and the fifth temperature threshold is the temperature critical value for judging whether the yaw collector ring is in a low temperature operating state;
  • the heating module is faulty among the multi-type faults of the yaw slip ring
  • the fan control module 1630 is specifically used for:
  • the yaw collector ring includes a plurality of conductive rings, and at least one temperature detection unit corresponding to at least one conductive ring, each temperature detection unit is used to collect the temperature of the corresponding conductive ring,
  • the state parameter acquisition module 1610 specifically includes:
  • a temperature acquisition unit configured to acquire the temperature of at least one conductive ring collected by at least one temperature detection unit
  • the temperature processing unit is configured to determine the temperature of the yaw collector ring according to the temperature of at least one conductive ring.
  • the yaw slip ring includes a shift fork, a drive plate and a monitoring switch, the first connection end of the monitoring switch is connected to the shift fork, and the second connection end of the monitoring switch is connected to the drive plate;
  • the operating state parameters include the on-off state parameters of the monitoring switch, and the multi-type faults include the coordination fault between the shift fork and the drive plate,
  • the fault judgment module 1620 is specifically used for:
  • the monitoring switch is determined to be in the off state according to the on-off state parameters of the monitoring switch, it is determined that the coordination failure between the shift fork and the drive plate occurs in the yaw collector ring;
  • the fan control module 1630 is specifically used for:
  • control device of the wind power generating set according to the embodiment of the present application are similar to the control method of the wind generating set described above in conjunction with the examples shown in Fig. 3 to Fig. 15, and can achieve corresponding technical effects. I won't repeat them here.
  • the yaw slip ring control device for wind turbines in the embodiments of the present application can determine at least one type of fault corresponding to the yaw slip ring from multiple types of faults according to the operating state parameters of the yaw slip ring. Since the solution provided by the embodiment of the present application can adopt the corresponding wind turbine control strategy to ensure the operation safety of the yaw slip ring when at least one type of yaw slip ring fault is diagnosed, in addition, because it can be used according to different types of faults Different wind turbine control strategies control the operating status of wind turbines differently. Compared with the scheme of immediately controlling the wind turbine to stop running when the yaw electromechanical loop fails, the power generation efficiency of the wind turbine is guaranteed. Therefore, the yaw slip ring control scheme provided by the embodiment of the present application can take into account both the power generation efficiency of the wind power generating set and the operation safety of the yaw slip ring.
  • FIG. 17 is a system architecture diagram of a control system for a wind generating set provided in an embodiment of the present application.
  • the control system 100 of the wind power generating set includes: a detection device 1700 and a control device 1600 .
  • the detection device 1700 is used to detect the running state parameters of the yaw slip ring.
  • a control device 1600 for a wind power generating set is provided.
  • the detected device 1700 includes a temperature detection module and/or a monitoring switch
  • the temperature detection module includes at least one temperature detection unit corresponding to at least one conductive ring of the yaw slip ring, and each temperature detection unit is used to collect the temperature of its corresponding conductive ring.
  • the first connection end of the failure monitoring switch is connected to the shift fork of the yaw slip ring, and the second connection end of the failure detection switch is connected to the drive plate of the yaw slip ring.
  • the yaw slip ring control system of the wind turbine in the embodiment of the present application can determine at least one type of fault corresponding to the yaw slip ring from multiple types of faults according to the operating state parameters of the yaw slip ring. Since the solution provided by the embodiment of the present application can adopt the corresponding wind turbine control strategy to ensure the operation safety of the yaw slip ring when at least one type of yaw slip ring fault is diagnosed, in addition, because it can be used according to different types of faults Different wind turbine control strategies control the operating status of wind turbines differently. Compared with the scheme of immediately controlling the wind turbine to stop running when the yaw electromechanical loop fails, the power generation efficiency of the wind turbine is guaranteed. Therefore, the yaw slip ring control scheme provided by the embodiment of the present application can take into account both the power generation efficiency of the wind power generating set and the operation safety of the yaw slip ring.
  • Fig. 18 shows a schematic diagram of the hardware structure of the control device of the wind power generating set provided by the embodiment of the present application.
  • the control device at the wind power generating set may include a processor 1801 and a memory 1802 storing computer program instructions.
  • the above-mentioned processor 1801 may include a central processing unit (Central Processing Unit, CPU), or a specific integrated circuit (Application Specific Integrated Circuit, ASIC), or may be configured to implement one or more integrated circuits of the embodiments of the present application .
  • CPU Central Processing Unit
  • ASIC Application Specific Integrated Circuit
  • Memory 1802 may include mass storage for data or instructions.
  • memory 1802 may include a hard disk drive (Hard Disk Drive, HDD), a floppy disk drive, a flash memory, an optical disk, a magneto-optical disk, a magnetic tape, or a Universal Serial Bus (Universal Serial Bus, USB) drive or two or more Combinations of multiple of the above.
  • storage 1802 may include removable or non-removable (or fixed) media, or storage 1802 may be a non-volatile solid-state memory.
  • the memory 1802 may be internal or external to the control device of the wind park.
  • the memory 1802 may be a read only memory (Read Only Memory, ROM).
  • ROM Read Only Memory
  • the ROM can be mask programmed ROM, programmable ROM (PROM), erasable PROM (EPROM), electrically erasable PROM (EEPROM), electrically rewritable ROM (EAROM), or flash memory or both. A combination of one or more of the above.
  • Memory 1802 may include read only memory (ROM), random access memory (RAM), magnetic disk storage media devices, optical storage media devices, flash memory devices, electrical, optical, or other physical/tangible memory storage devices.
  • ROM read only memory
  • RAM random access memory
  • magnetic disk storage media devices magnetic disk storage media devices
  • optical storage media devices flash memory devices
  • electrical, optical, or other physical/tangible memory storage devices include one or more tangible (non-transitory) computer-readable storage media (e.g., memory devices) encoded with software comprising computer-executable instructions, and when the software is executed (e.g., by one or multiple processors) operable to perform the operations described with reference to the method according to an aspect of the present disclosure.
  • the processor 1801 reads and executes the computer program instructions stored in the memory 1802 to implement the methods/steps in the above-mentioned embodiments shown in Figures 3-15, and achieve the examples shown in Figures 3-15 to execute the methods/steps
  • the corresponding technical effects achieved are not repeated here for brevity.
  • control device of the wind power generator may further include a communication interface 1803 and a bus 1810 .
  • a processor 1801 a memory 1802 , and a communication interface 1803 are connected through a bus 1810 to complete mutual communication.
  • the communication interface 1803 is mainly used to realize the communication between various modules, devices, units and/or devices in the embodiments of the present application.
  • the bus 1810 includes hardware, software or both, and couples the components of the online data traffic charging device to each other.
  • a bus may include an Accelerated Graphics Port (AGP) or other graphics bus, an Enhanced Industry Standard Architecture (EISA) bus, a Front Side Bus (FSB), a Super Transmission (Hyper Transport, HT) interconnect, Industry Standard Architecture (Industry Standard Architecture, ISA) bus, InfiniBand interconnect, Low Pin Count (LPC) bus, memory bus, Micro Channel Architecture (MCA) bus, peripheral component interconnect PCI bus, PCI-Express (PCI-X) bus, Serial Advanced Technology Attachment (SATA) bus, Video Electronics Standards Association Local (VLB) bus, or other suitable bus or a combination of two or more of these combination.
  • Bus 1810 may comprise one or more buses, where appropriate. Although the embodiments of this application describe and illustrate a particular bus, this application contemplates any suitable bus or interconnect.
  • the control device of the wind power generating set can execute the control method of the wind generating set in the embodiment of the present application, so as to realize the control method and device of the wind generating set described in conjunction with FIG. 3 to FIG. 16 .
  • the embodiment of the present application further provides a computer storage medium.
  • Computer program instructions are stored on the computer storage medium; when the computer program instructions are executed by the processor, the operation of any embodiment of the control method for the above-mentioned wind power generating set is realized.
  • Examples of computer storage media include tangible (non-transitory) computer-readable storage media such as electronic circuits, semiconductor memory devices, ROM, flash memory, erasable ROM (EROM), floppy disks, CD-ROMs, optical disks, hard disks, and the like.
  • the functional blocks shown in the structural block diagrams described above may be implemented as hardware, software, firmware, or a combination thereof.
  • hardware When implemented in hardware, it may be, for example, an electronic circuit, an Application Specific Integrated Circuit (ASIC), appropriate firmware, a plug-in, a function card, and the like.
  • ASIC Application Specific Integrated Circuit
  • the elements of the present application are the programs or code segments employed to perform the required tasks.
  • Programs or code segments can be stored in machine-readable media, or transmitted over transmission media or communication links by data signals carried in carrier waves.
  • "Machine-readable medium" may include any medium that can store or transmit information.
  • machine-readable media examples include electronic circuits, semiconductor memory devices, ROM, flash memory, erasable ROM (EROM), floppy disks, CD-ROMs, optical disks, hard disks, fiber optic media, Radio Frequency (RF) links, etc. Wait. Code segments may be downloaded via a computer network such as the Internet, an Intranet, or the like.
  • Fig. 19 shows a detailed structure diagram of a control system for a wind power generating set provided by an embodiment of the present application, and the system includes a detection device and a control device.
  • the detection device is used to detect the running state parameters of the yaw slip ring.
  • the control device is used to obtain the operating state parameters of the yaw slip ring; according to the judgment of the operating state parameters of the yaw slip ring, it is determined that at least one of the multiple types of faults occurs in the yaw slip ring One type of fault; according to the wind turbine control strategy corresponding to the at least one type of fault, control the operation state of the wind power generating set.
  • the control device includes an acquisition module, a judgment module and a control module.
  • the obtaining module obtains the operating state parameters of the yaw slip ring.
  • the judging module judges according to the operating state parameters of the yaw slip ring, and determines that at least one type of fault among the multiple types of faults occurs in the yaw slip ring.
  • the control module controls the running state of the wind power generating set according to the wind turbine control strategy corresponding to the at least one type of fault.
  • the yaw collector ring includes at least one conductive ring
  • the detection device includes at least one temperature detection unit corresponding to the at least one conductive ring, and each temperature detection unit is used to collect the temperature of the corresponding conductive ring .
  • the yaw collector ring also includes a temperature monitoring board, which is arranged on the box of the yaw collector ring and electrically connected to the temperature detection unit;
  • the temperature monitoring board is used to obtain the temperature of the at least one conductive ring from the temperature detection unit, and transmit the temperature of the at least one conductive ring to the control device.
  • the temperature detection unit is a temperature sensor that monitors the operating state parameters of the yaw collector ring in real time.
  • the temperature detection unit can also be a thermocouple, thermal resistance, thermistor and the like.
  • the yaw collector ring also includes a shift fork and a drive plate, and the detection device also includes a monitoring switch;
  • the first connection end of the monitoring switch is connected to the shift fork of the yaw collector ring, and the second connection end of the monitoring switch is connected to the drive plate of the yaw collector ring; the drive plate is controlled by PLC drive.
  • the acquisition module, judgment module and control module can be combined into one, which can save space.
  • the on-off state parameter of the monitoring switch is used to determine that when the monitoring switch is in the off state, it is determined that a cooperation failure between the shift fork and the driving disc occurs in the yaw slip ring.
  • processors may be, but are not limited to, general purpose processors, special purpose processors, application specific processors, or field programmable logic circuits. It can also be understood that each block in the block diagrams and/or flowcharts and combinations of blocks in the block diagrams and/or flowcharts can also be realized by dedicated hardware for performing specified functions or actions, or can be implemented by dedicated hardware and combination of computer instructions.

Abstract

一种风力发电机组的控制方法、装置、系统、设备及介质。风力发电机组包括偏航集电环,该方法包括:获取偏航集电环的运行状态参数;根据运行状态参数以及多类故障的判断条件,确定偏航集电环发生多类故障中的至少一类故障;按照至少一类故障对应的风机控制策略,控制风力发电机组的运行状态。该控制方法能够兼顾风力发电机组的发电效率以及偏航集电环的运行安全性。

Description

风力发电机组的控制方法、装置、系统、设备及介质
相关申请的交叉引用
本申请要求享有于2021年06月30日提交的名称为“风力发电机组的控制方法、装置、系统、设备及介质”的中国专利申请202110742476.2的优先权,该申请的全部内容通过引用并入本文中。
技术领域
本申请属于风电领域,尤其涉及风力发电机组的控制方法、装置、系统、设备及介质。
背景技术
现阶段,风电领域往往采用耐扭电缆传输来进行偏航段的电能传输。然而由于解决扭缆存在的种种问题,提出了一种利用偏航集电环来实现偏航段电能传输的方案。作为风力发电机组电能传输的主要部件,偏航集电环的安全可靠运行是至关重要的,故需发明一种控制方法以保证其安全运行。
在现阶段,为了保证偏航集电环安全运行,当确定偏航集电环故障时,往往控制风力发电机组立即停止运行,风力发电机组的发电效率较低。
发明内容
本申请提供一种风力发电机组的控制方法、装置、系统、设备及介质,能够兼顾风力发电机组的发电效率以及偏航集电环的运行安全性。
第一方面,本申请实施例提供一种风力发电机组的控制方法,风力发电机组包括偏航集电环,方法包括:
获取偏航集电环的运行状态参数;
根据运行状态参数以及多类故障的判断条件,确定偏航集电环发生多类故障中的至少一类故障;
按照至少一类故障对应的风机控制策略,控制风力发电机组的运行状态。
第二方面,本申请实施例提供了一种风力发电机组的控制装置,用于实现第一方面或第一方面的任一可选的实施方式提供的风力发电机组的控制方法。
第三方面,本申请实施例提供一种风力发电机组的控制系统,包括:
检测装置,用于检测偏航集电环的运行状态参数;
如第一方面或第一方面的任一可选的实施方式提供的控制装置。
第四方面,提供一种风力发电机组的控制设备,包括:
处理器以及存储有计算机程序指令的存储器;
处理器读取并执行计算机程序指令,以实现第一方面或第一方面的任一可选的实施方式提供的风力发电机组的控制方法。
第五方面,提供一种计算机存储介质,计算机存储介质上存储有计算机程序指令,计算机程序指令被处理器执行时实现第一方面或第一方面的任一可选的实施方式提供的风力发电机组的控制方法。
本申请实施例的风机的偏航集电环控制控制方法、装置、系统、设备及介质,能够根据偏航集电环的运行状态参数,从多类故障中确定偏航集电环对应的至少一类故障。并根据至少一类故障对应的风机控制策略控制风力发电机组的运行状态。由于本申请实施例提供的方案能够在诊断出至少一类偏航集电环故障时,采用相应地风机控制策略来保证偏航集电环的运行安全性,另外,由于可以根据不同类故障采用不同的风机控制策略对风机运行状态进行不同的控制,相较于偏航机电环故障时立即控制风力发电机组停止运行的方案,保证了风力发电机组的发电效率。因此,本申请实施例提供的偏航集电环控制方案,能够兼顾风力发电机组的发电效率以及偏航集电环的运行安全性。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对本申请实施例中所需要使用的附图作简单的介绍,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本申请实施例提供的一种偏航集电环的结构示意图;
图2是本申请实施例提供的一种驱动盘、拨叉以及监测开关之间连接关系的示意图;
图3是本申请实施例提供的第一种风力发电机组的控制方法的流程示意图;
图4是本申请实施例提供的第二种风力发电机组的控制方法的流程示意图;
图5是本申请实施例提供的第三种风力发电机组的控制方法的流程示意图;
图6是本申请实施例提供的第四种风力发电机组的控制方法的流程示意图;
图7是本申请实施例提供的第五种风力发电机组的控制方法的流程示意图;
图8是本申请实施例提供的第六种风力发电机组的控制方法的流程示意图;
图9是本申请实施例提供的第七种风力发电机组的控制方法的流程示意图;
图10是本申请实施例提供的第八种风力发电机组的控制方法的流程示意图;
图11是本申请实施例提供的一种示例性地风力发电机组的控制方法的流程示意图;
图12是本申请实施例提供的第九种风力发电机组的控制方法的流程示意图;
图13是本申请实施例提供的第十种风力发电机组的控制方法的流程示意图;
图14是本申请实施例提供的第十一种风力发电机组的控制方法的流程示意图;
图15是本申请实施例提供的第一种示例性地风力发电机组的控制方法的流程示意图;
图16是本申请实施例提供的一种风力发电机组的控制装置的结构示意图;
图17是本申请实施例提供的一种风力发电机组的控制系统的系统构架图;
图18示出了本申请实施例提供的风力发电机组的控制设备的硬件结构示意图;
图19示出了本申请实施例提供的风力发电机组控制系统的详细结构图。
具体实施方式
下面将详细描述本申请的各个方面的特征和示例性实施例,为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及具体实施例,对本申请进行进一步详细描述。应理解,此处所描述的具体实施例仅意在解释本申请,而不是限定本申请。对于本领域技术人员来说,本申请可以在不需要这些具体细节中的一些细节的情况下实施。下面对实施例的描述仅仅是为了通过示出本申请的示例来提供对本申请更好的理解。
需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存 在另外的相同要素。
现阶段,风电领域往往采用耐扭电缆传输来进行偏航段的电能传输。然而由于解决扭缆存在的种种问题,提出了一种利用偏航集电环来实现偏航段电能传输的方案。作为风力发电机组电能传输的主要部件,偏航集电环的安全可靠运行是至关重要的,故需发明一种控制方法以保证其安全运行。
在一种相关技术中,当确定偏航集电环故障时,往往控制风力发电机组立即停止运行,风力发电机组的发电效率较低。
基于此,本申请实施例提供了风力发电机组的控制方法、装置、系统、设备和介质,可以应用到偏航集电环故障检测的应用场景中。与上述相关技术相比,本申请实施例提供的方案,能够兼顾风力发电机组的发电效率以及偏航集电环的运行安全性。
为了更好的理解本申请,本申请实施例先对偏航集电环进行具体说明。
偏航集电环是在风电机组负载运行时可靠的将塔顶发电机发出的电能传输至塔底接入电网的一种电能传输机构。具体地,偏航集电环可以在机组处于偏航状态时,驱动转子与风机同步转动,或者在非偏航状态时,控制集电环内的定子和转子相对静止。
图1是本申请实施例提供的一种偏航集电环的结构示意图。如图1所示,偏航集电环可以包括:箱体1、驱动盘2、转子侧接线箱3、定子侧接线箱4、散热模块5。
其中,箱体1内包括定子、转子等部件。其中,转子和定子中的一者可以包括多个导电环,转子和定子中的另一者可以包括与多个导电环配合使用的电刷,电能可以由转子传输至定子,再由定子传输至电网。在本申请实施例,箱体内还可以包括温度传感器以及监测开关等用于监测偏航集电环运行状态参数的传感装置。在一些实施例中,为了防止偏航集电环内部温度过低,箱体内还可以包括加热模块。
驱动盘2,其用于驱动转子与风机保持同步转动。
转子侧接线箱3可以通过线束连接位于机舱内的发电机。
定子侧接线箱4可以通过线束连接电网。
散热模块5,其可以为偏航集电环内部散热。具体地,散热模块5可以包括散热孔以及散热风扇,又或者还可以是其他具有散热功能的部件,比如半导体散热板、比如水冷管道系统等,本申请对此不作具体限定。
在一些实施例中,偏航集电环还可以包括控制箱。比如,可以偏航集电环内部可 以内置有温度监控板,对此不作限定。
在充分介绍了偏航集电环后,由于本申请实施例可能涉及到多个温度限值,当偏航集电环温度达到各温度限值时,可能触发不同的故障告警以及机组运行状态切换。因此,本申请实施例先对可能涉及到的多个温度限值作具体说明。
(1)基准温度值T setthreshold
基准温度值为用于辅助判断偏航集电环温度在达到散热模块故障的温度高告警值T setfault前的温度变化速率。在一个实施例中,基准温度值T setthreshold可以根据散热模块故障的温度高告警值T setfault确定的,示例性地,基准温度值T setthreshold可以是比散热模块故障的温度高告警值T setfault小预设温度值的值。其中,预设温度值可以根据实际场景和具体需求设置,比如说可以是5摄氏度(℃)或者3℃等预设值。比如,若散热模块故障的温度高告警值T setfault为30℃,则基准温度值可以是25℃。
(2)第一温度阈值T setfault
第一温度阈值T setfault为用于判断散热模块是否存在散热模块故障概率的温度值,若偏航集电环温度大于该第一温度阈值T setfault,则表征偏航集电环的散热模块具有一定的故障概率,此时可以继续结合升温速率来判断散热模块是否发生故障。
在一些实施例中,第一温度阈值T setfault可以是根据实验数据观测得到的一个值,或者可以是一个经验值,又或者可以是一个计算得到的理论值,对此不作限定。
(3)第四温度阈值T setrecover
第四温度阈值T setrecover用于判断是否控制风机结束执行过温故障对应的风机控制策略的温度参考值。也就是说,若偏航集电环温度小于第四温度阈值T setrecover,则证明偏航集电环具备了结束执行过温故障对应的风机控制策略的条件之一。
在一些实施例中,第四温度阈值T setrecover可以是根据实验数据观测得到的一个值,或者可以是一个经验值,又或者可以是一个计算得到的理论值,对此不作限定。
(4)第二温度阈值T setlimit
第二温度阈值T setlimit,即偏航集电环是否发生过温故障的临界温度值,若偏航集电环温度大于第二温度阈值T setlimit,则表征偏航集电环发生了过温故障。
在一些实施例中,第二温度阈值T setlimit可以是根据实验数据观测得到的一个值,或者可以是一个经验值,又或者可以是一个计算得到的理论值,对此不作限定。
(5)第三温度阈值T setstop
第三温度阈值T setstop,即偏航集电环是否发生超温故障的临界温度值,若偏航集电环温度大于第三温度阈值T setstop,则表征偏航集电环发生了过温故障。
在一些实施例中,第三温度阈值T setstop可以是根据实验数据观测得到的一个值,或者可以是一个经验值,又或者可以是一个计算得到的理论值,对此不作限定。示例性地,第三温度阈值可以是偏航集电环的安全运行的温度上限值。
其中,基准温度值T setthreshold<第一温度阈值T setfault<第四温度阈值T setrecover≤第二温度阈值T setlimit<第三温度阈值T setstop
本申请涉及多类故障,本申请实施例接下来将对多类故障展开具体说明。
首先,由于当偏航集电环内的散热模块故障导致偏航集电环无法有效散热,或者在电刷与滑道之间的堆积物等原因导致偏航集电环的接触电阻过大从而导致偏航集电环温度升高等原因,将可能导致偏航集电环温度异常升高。因此,偏航集电环可能会产生诸如散热模块故障、集电环过温故障、集电环超温故障等异常升温类故障。接下来,将分别对异常升温类故障及其故障判断条件逐一说明。
(1)散热模块故障、及其判断条件以及对应的风机控制策略。
首先,对于散热模块故障,当偏航集电环的散热模块异常停止运行,即偏航集电环产生散热模块故障。
其次,对于散热模块故障的判断条件。
在一个实施例中,散热模块可以包括偏航集电环温度大于所述第一温度阈值,偏航集电环温度的温升速率k1大于第一温升速率阈值ξ1。
其中,偏航集电环温度的温升速率k1满足下述公式(1):
Figure PCTCN2021120625-appb-000001
其中,t(T setfault)、t(T setthreshold)分别为温度达到T setfault、T setthreshold的时间。
第一温升速率阈值ξ1可以大于偏航集电环传输一个大于偏航集电环额定电流的电流时的温升速率、且小于散热模块故障时的温升速率的数值,具体地,第一温升速率阈值ξ1可以根据实际场景和具体需求设置,比如可以通过实验数据观测得到、或者可以是一个经验值,又或者可以是一个计算得到的理论值,对此不作限定。
再其次,对于散热模块故障对应的风机运行策略。
在一些实施例中,由于散热模块故障所导致的温度异常升高程度不会导致偏航集电环内部结构损耗,比如散热模块故障所导致的偏航集电环采样温度升高,升高后的 采样温度值不会达到能够使碳刷或者导电环结构损耗的温度。因此,为了保证风机运行效率,可以不对风机运行状态进行改变。也就是说,控制风机继续以散热模块故障前的运行状态运行。
(2)过温故障、及其判断条件以及对应的风机控制策略。
首先,对于过温故障,当偏航集电环的温度过高,即偏航集电环产生过温故障。当偏航集电环过温故障时,即表示偏航集电环超出其合适运行温度区间。
其次,对于过温模块故障的判断条件。
在一些实施例中,可以根据偏航集电环温度是否大于第二温度阈值T setlimit,来判断是否发生过温模块故障。其中,第二温度阈值T setlimit的具体内容请参见本申请上述实施例的相关说明,在此不再赘述。
再其次,对于风机控制策略。
在一些实施例中,由于转子和定子间的传输电流过大将导致偏航集电环温度过高,因此可以通过控制风机降功率运行,可以减小发电机的输出功率,进而能够降低偏航集电环转子和定子间的传输电流,从而实现了对偏航集电环温度的调控。
在一个示例中,过温故障的风机调整策略包括:控制风机以第一功率运行,其中,第一功率可以是小于过温故障发生前风机运行功率的一个固定值。
其中,第一功率可以是根据实验数据观测得到的一个值,或者可以是一个经验值,又或者可以是一个计算得到的理论值,对此不作限定。比如,可以是将过温故障发生前的功率乘以一个比例得到的功率值,或者是一个预设的值,比如说,当风机以第一功率运行时,偏航集电环的定子和转子之间产生的热量较小,能够使偏航集电环温度降低。
在另一个示例中,过温故障的风机调整策略可以是一个迭代调整策略,相应地,过温故障的风机调整策略包括:
控制风机继续以过温故障发生前的原有运行模式运行。
若在风机发生过温故障起的第1个预设时间段t1内偏航集电环温度小于或等于第三温度阈值T setstop,且第1个预设时间段t1结束后偏航集电环温度大于第二温度阈值T setlimit,则将风机的运行功率第1次降低预设比例(比如可以是10%)。……,在对偏航集电环温度监控的第i个预设时间段t1,若在第i个预设时间段t1内偏航集电环温度小于或等于第三温度阈值T setstop且预设时长t1结束后偏航集电环温度大于第二温度阈 值T setlimit,则将风机的运行功率第i次降低预设比例。直到偏航集电环温度降低至第二温度阈值T setlimit以下,或者是偏航集电环温度在预设时间段t1内大于第三温度阈值T setstop。其中,i为大于或等于2的整数。
若预设时长t1结束后偏航集电环温度小于或等于第二温度阈值T setlimit,则判断偏航集电环温度小于第四温度阈值T setrecover的持续时长是否大于预设时长t2。若大于预设时长t2,则控制风机停止执行过温故障对应的风机控制策略,且控制风机继续以过温故障发生前的运行状态运行。若小于预设时长t2,则控制风机继续以调整后的运行功率运行。
在又一个示例中,过温故障的风机调整策略包括:
控制风机以第一功率运行。示例性地,第一功率可以是过温故障发生前的运行功率,即正常运行功率降低10%。示例性地,过温故障发生前的运行功率时P 1,则第一功率可以是90%P 1
若在确定风机发生过温故障起的第1个预设时间段t1内偏航集电环温度小于或第三温度阈值T setstop,且第1个预设时间段t1结束后偏航集电环温度大于第二温度阈值T setlimit,则将风机的运行功率第2次降低预设比例。………,在对偏航集电环温度监控的第i个预设时间段t1,若在第i个预设时间段t1内偏航集电环温度小于或等于第三温度阈值T setstop且预设时长t1结束后偏航集电环温度大于第二温度阈值T setlimit,则将风机的运行功率第i+1次降低预设比例。直到偏航集电环温度降低至第二温度阈值T setlimit以下,或者是偏航集电环温度在预设时间段t1内大于第三温度阈值T setstop
若预设时长t1结束后偏航集电环温度小于或等于第二温度阈值T setlimit,则确定偏航集电环温度小于第四温度阈值T setrecover的持续时长是否大于预设时长,若大于预设时长,则控制风机停止执行过温故障对应的风机控制策略,且控制风机继续以过温故障发生前的运行状态运行。若小于预设时长,则控制风机继续以调制后的运行功率运行。
(3)超温故障、及其判断条件以及对应的风机控制策略。
首先,对于超温故障,当偏航集电环的温度超出安全温度上限(对应第三温度阈值T setstop),即偏航集电环产生超温故障。当偏航集电环超温故障时,即表示偏航集电环超出其安全温度区间。
其次,对于超温模块故障的判断条件。
在一些实施例中,可以根据偏航集电环温度是否大于第三温度阈值T setstop,来判断是否发生超温模块故障。其中,第三温度阈值T setstop的具体内容请参见本申请上述实施例的相关说明,在此不再赘述。
再其次,对于风机控制策略。
在一些实施例中,由于当发生超温故障后会对诸如偏航集电环诸如碳刷等部件造成损坏且影响运行安全性,因此,当确定发生超温故障后,可以控制风机停机。由于当风机停机后偏航集电环的定子转子的传输电流为零,定子转子间不会产生热量,从而能够快速降低偏航集电环的温度。在一个示例中,由于风机偏航动作在偏航集电环内部产生的热量较小,因此,在控制风机停机的同时可以允许风机偏航。在一个示例中,为了保证安全性,在控制风机停止之后,在超温故障解决之前可以禁止风机远程启机。
在介绍了上述三种温度异常升高类的故障之后,由于当偏航集电环处于低温环境时,若加热模块故障将可能导致偏航集电环内部部件结冰从而影响偏航集电环的安全运行,本申请实施例还可以对加热模块故障进行诊断,并提供相应的故障应对措施。
(4)加热模块故障、及其判断条件以及对应的风机控制策略。
首先,对于加热模块故障,当偏航集电环温度处于低温运行环境或者风机处于低温环境时,加热模块却未工作,即偏航集电环产生加热模块故障。当偏航集电环发生加热模块故障时,即表示偏航集电环内部存在结冰等安全风险。
其次,对于加热模块故障的判断条件。
在一些实施例中,加热模块故障的判断条件包括:风力发电机组的环境温度小于低温环境的温度临界值,且偏航集电环温度与偏航集电环的外部环境温度T nacelle的差值小于第一温差阈值T setmin
其中,低温环境的温度临界值可以是通过实验数据观测得到、或者可以是一个经验值,又或者可以是一个计算得到的理论值,对此不作限定。具体地,低温环境的温度临界值可以是使处于该温度临界值下的风机的偏航集电环存在结冰风险的温度值。比如,可以是一个小于0℃的值。
在一些实施例中,加热模块故障的判断条件包括:偏航集电环温度小于第二温度阈值,且偏航集电环温度与偏航集电环的外部环境温度T nacelle的差值小于第一温差阈值T setmin
其中,第二温度阈值可以是偏航集电环是否处于低温运行状态的温度临界值。第二温度阈值可以是通过实验数据观测得到、或者可以是一个经验值,又或者可以是一个计算得到的理论值,对此不作限定。具体地,第二温度阈值可以是使处于该温度临界值下的偏航集电环存在结冰或者凝水风险的温度值。比如,可以是小于或等于0℃的值。在一个示例中,第二温度阈值可以是小于或等于能够使得加热模块启动加热的温度值。
其中,第一温差阈值可以根据加热模块故障的加热能力确定,又可以是通过实验数据观测得到、或者可以是一个经验值,又或者可以是一个计算得到的理论值,对此不作限定。比如,在实验过程中,可以获取未利用加热模块加热的偏航集电环温度与偏航集电环的外部环境温度的第一差值ΔT a,以及获取采用加热模块加热的偏航集电环温度与偏航集电环的外部环境温度的第二差值ΔT b,然后根据第二差值ΔT b与第一差值ΔT a的差值确定第一温差阈值。比如,可以是第二差值ΔT b与第一差值ΔT a的差值减去一个容错量。又或者,可以是第二差值ΔT b与第一差值ΔT a的差值乘上小于1的预设比例后得到的结果。
再其次,对于风机控制策略。
在一些实施例中,由于当发生加热模块故障后会使得偏航集电环内部存在结冰等风险,若利用内部结冰的偏航集电环继续在发电机和电网间传输电能,则有可能导致偏航集电环产生安全风险或者是结构遭到破坏。
因此,当确定加热模块故障之后,可以控制风机停止偏航以及停止风机偏航。在一些示例中,为了进一步保证安全性,可以在控制风机停机以及停止偏航之后,在加热模块故障解决之前可以禁止风机远程启机以及禁止远程启动偏航。
在介绍了上述与偏航集电环温度相关的四种温度类故障之后,由于拨叉可以通过驱动盘与拨叉的配合使用带动转子与风机偏航同步转动。当驱动盘与拨叉之间因拨叉失效或者驱动盘断裂等原因导致驱动盘与拨叉无法配合使用时,将导致转子与风机偏航无法同步转动,从而造成偏航集电环与发电机之间的线缆扭转,影响风机运行安全。基于此,本申请实施例还可以对驱动盘与拨叉的配合故障进行诊断,并提供相应的故障应对措施。
(5)拨叉与驱动盘的配合故障、及其判断条件以及对应的风机控制策略。
首先,对于拨叉与驱动盘的配合故障,当驱动盘与拨叉之间因拨叉失效或者驱动 盘断裂等原因导致驱动盘与拨叉无法配合使用时,即发生了二者之间的配合故障。在一些实施例中,可以设置失效检测开关来检测二者之间的配合故障。
图2是本申请实施例提供的一种驱动盘、拨叉以及监测开关之间连接关系的示意图。
如图2所示,偏航集电环包括拨叉17、驱动盘11和监测开关18。其中,监测开关18的第一连接端与拨叉17连接,监测开关18的第二连接端与驱动盘11连接。
其中,在正常状态下,监测开关18的第一连接端和第二连接端导通,监测开关18处于导通状态。在发生拨叉与驱动盘的配合故障时,拨叉17与驱动盘11之间产生一定位移,相应地,监测开关18的第一连接端和第二连接端之间距离变远导致二者无法导通,监测开关18处于断开状态。
需要说明的是,监测开关可以是机械开关,又或者电磁开关等,本申请对其具体种类不作限定。
其次,对于拨叉与驱动盘的配合故障的判断条件。
拨叉与驱动盘的配合故障的判断条件包括:根据监测开关的通断状态参数确定监测开关处于断开状态。也就是说,当监测到检测开关处于断开状态时,确定发生拨叉与驱动盘的配合故障。
再其次,对于拨叉与驱动盘的配合故障的风机控制策略。
由于当驱动盘与拨叉之间因拨叉失效或者驱动盘断裂等原因导致驱动盘与拨叉无法配合使用时会产生扭缆等安全风险。因此,为了避免安全风险,拨叉与驱动盘的配合故障的风机控制策略可以包括:
可以控制风机停机以及停止风机偏航。在一些示例中,为了进一步保证安全性,可以在控制风机停机以及停止偏航之后,在加热模块故障解决之前可以禁止风机远程启机以及禁止远程启动偏航。
为了更好的理解本申请,下面将结合附图,详细描述根据本申请实施例的风力发电机组的控制方法、装置、设备和介质,应注意,这些实施例并不用来限制本申请公开的范围。
图3是本申请实施例提供的第一种风力发电机组的控制方法的流程示意图。需要说明的是,本申请实施例的风力发电机组的控制方法各步骤的执行主体可以是诸如主控制器等设置于机舱内的控制模块。示例性地,可以由主控制器中的可编程逻辑控制 器。又或者,可以是偏航集电环的控制模块,比如设置于偏航集电环的温度监控板,该温度监控板可以设置于偏航集电环的控制器内。又或者,还可以是其他控制模块,对此不作限定。
如图3所示,风力发电机组的控制方法包括S310至S330。
S310,获取偏航集电环的运行状态参数。
在一些实施例中,偏航集电环的运行状态参数可以是其运行安全性存在影响的参数,比如偏航集电环温度、能够反映拨叉与驱动盘之间配合情况的监测开关的通断状态参数等。
其中,监测开关的通断状态参数可以参见本申请上述实施例的相关说明,对此不再赘述。在一些实施例中,可以将监测开关的一个连接端连接至风力发电机组的控制方法的执行主体,比如主控制器,相应地,监测开关的通断状态参数可以是监测开关的连接端的电压或者电流等电信号参数。又比如,还可以通过其他具备检测开关通断功能的装置采集监测开关的通断状态参数,然后传递至风力发电机组的控制方法的执行主体。本申请实施例对此不作限定。
接下来将结合偏航集电环温度对本申请展开具体说明。
在一些实施例中,偏航集电环温度可以是能够反映偏航集电环温度的温度值。
在一个实施例中,由于偏航集电环的定子与转子之间的摩擦产生大量热量,因此,可以在偏航集电环的导电环上设置温度检测单元,然后基于多个温度检测单元采集的温度值确定偏航集电环温度,偏航集电环温度可以是一个实时获取的温度。
相应地,偏航集电环可以包括多个导电环、以及与多个导电环中至少一个导电环一一对应的至少一个温度检测单元。每一温度检测单元用于采集与其对应的导电环的温度。
对于温度检测单元。
在设置位置上,在一些实施例中,温度检测单元可以设置在导电环上靠近转子的一侧。
在类型上,温度检测单元可以是具备温度采集功能的设备。在一些实施例中,考虑到导电环与电刷之间的输电电压一般为高压,因此可以选用具有一定耐压性能的温度传感器。比如PT温度传感器等。
在分布方式上,可以在全部导电环上均设置温度检测单元。又或者,可以在部分 导电环上设置温度检测单元。又或者,可以在一个导电环上设置温度检测单元。
在一种实施方式中,若在部分或者一个导电环上设置温度检测单元,可以在发热量较大的导电环上设置温度检测单元,比如若偏航集电环包括6个导电环,可以在中间的2个导电环上设置温度检测单元。
需要说明的是,当温度检测单元可以通过线束将检测得到的温度值传输至位于机舱内的控制模块时,当转子包括导电环时,导电环上的温度传感器可以根据机舱同步偏航,避免了温度检测单元与机舱内的控制模块之间的线束扭转。
在另一些实施例中,温度检测单元还可以设置在偏航集电环内部处偏航集电环之外的其他位置处,比如,偏航集电环的箱体内壁等,又比如当转子包括电刷、定子包括导电环时,可以将温度检测单元设置在电刷上,本申请实施例对温度检测单元的具体设置位置不作限定。
在介绍了温度检测单元之后,接下来,本申请实施例对S310的具体实施方式展开说明。
在一些实施例中,在偏航集电环的运行状态参数包括偏航集电环温度、偏航集电环可以包括多个导电环、以及与多个导电环中至少一个导电环一一对应的至少一个温度检测单元的情况下,图4是本申请实施例提供的第二种风力发电机组的控制方法的流程示意图。图4与图3的不同之处在于,S310可以具体包括S311和S312。
S311,获取至少一个温度检测单元采集得到的至少一个导电环温度。
示例性地,若温度检测单元共包括m个,则获取的m个导电环温度可以为T1、…、Tm。其中,m可以大于或等于1且小于或等于偏航集电环中导电环总数。
S312,根据至少一个导电环温度,确定偏航集电环温度。
在S312中可以根据至少一个导电环温度,计算得到一个偏航集电环温度,又或者可以从中选取出一个导电环温度,作为偏航集电环温度,对此不作限定。
在一个实施例中,可以选取至少一个导电环温度中的最大值作为偏航集电环温度,则偏航集电环温度Tmax=max(T1,….,Tm)。
在一些实施例中,S311与S312的执行主体可以是偏航集电环的温度监控器。又或者可以是风机的主控制器,对此不作限定。示例性地,主控或温度监控板可以比较各个导电环温度,取最高温度数据Tmax以模拟量信号送入主控系统。
S320,根据运行状态参数以及多类故障的判断条件,确定偏航集电环发生多类故 障中的至少一类故障。
首先,对于多类故障。
在一些实施例中,本申请实施例中的多类故障可以包括:散热模块故障、过温故障、超温故障、加热模块故障、拨叉与驱动盘的配合中的至少两类。
上述多类故障及其判断条件的具体内容可参见本申请上述实施例的相关说明,在此不再赘述。
需要说明的是,本申请实施例除了上述故障之外,多类故障还可以根据实际场景和具体需求包括偏航集电环的其他故障,比如还可以根据新的温度阈值,确定除了散热故障、过温故障、超温故障之外的其他温度异常上升类的故障,本申请实施例对此不作限定。
S330,按照至少一类故障对应的风机控制策略,控制风力发电机组的运行状态。
首先,对于风机控制策略。
在一些实施例中,针对于偏航集电环的故障,本申请实施例的风机控制策略可以包括针对风机输出功率的控制策略。比如,保持原有输出功率不变、降功率输出、停机(输出功率为0)的控制策略。示例性地,在一些实施例中,多类故障可以包括多级温度故障,其中,温度故障等级越高,其对应的用于诊断是否故障的温度阈值就越高,相应地,其风机控制策略中对应的风机输出功率越低。
在另一些实施例中,还可以包括针对是否允许风机执行偏航操作的控制指令。
具体地,上述五类故障的具体风机控制策略可以参见本申请实施例上述部分的相关内容,在此不再赘述。
在一些实施例中,若通过S320确定满足多类故障中的某一类故障,则在S330中,可以按照该类故障的风机控制策略控制风机运行。
在另一些实施例中,若通过S320确定满足多类故障中的至少两类故障,则在S330中,可以在至少两类故障的风机控制策略中选择一个控制策略控制风机运行。
在一个实施例中,S330可以具体包括:在至少两类故障对应的风机控制策略中,确定安全等级最高的风机控制策略,以及按照所述安全等级最高的风机控制策略控制风力发电机组的运行状态。
在一个实施例中,风机控制策略对应的风机运行功率越低,则风机控制策略的安全等级越高。比如,控制风力发电机组停机的风机控制策略的安全等级高于控制风力 发电机组降低功率的风机控制策略的安全等级。控制风力发电机组降低功率的风机控制策略的安全等级高于控制风力发电机组以保持运行功率不变或者控制风力发电机组以正常状态下的运行控制运行的风机控制策略的安全等级。又比如,控制风力发电机组停止偏航的风机控制策略的安全等级大于不控制风力发电机组停止偏航的风机控制策略。
在一个示例中,从安全等级上来讲,加热模块故障对应的风机控制策略的安全等级与拨叉与驱动盘的配合故障对应的风机控制策略的安全等级相等。加热模块故障对应的风机控制策略的安全等级高于超温故障对应的风机控制策略的安全等级,超温故障对应的风机控制策略的安全等级高于过温故障对应的风机控制策略的安全等级,过温故障对应的风机控制策略的安全等级高于散热模块故障对应的风机控制策略的安全等级。
在另一个实施例中,S330可以具体包括:在至少两类故障中确定故障等级最高的一类故障,以及按照故障等级最高的一类故障对应的风机控制策略,控制所述风力发电机组的运行状态。在一个示例中,产生的安全风险越大的故障,其等级越高。比如,对于温度异常升高类故障,其对应的温度越高,则故障等级越高。
在一个示例中,从故障等级上来讲,加热模块故障的故障等级与拨叉与驱动盘的配合故障的故障等级相等。加热模块故障的故障等级高于集电环超温故障的故障等级,超温故障对应的风机控制策略的故障等级高于过温故障的故障等级,过温故障的故障等级高于散热模块故障的故障等级。
本申请实施例的风机的偏航集电环控制控制方法,能够根据偏航集电环的运行状态参数,从多类故障中确定偏航集电环对应的至少一类故障。并根据至少一类故障对应的风机控制策略控制风力发电机组的运行状态。由于本申请实施例提供的方案能够在诊断出至少一类偏航集电环故障时,采用相应地风机控制策略来保证偏航集电环的运行安全性,另外,由于可以根据不同类故障采用不同的风机控制策略对风机运行状态进行不同的控制,相较于偏航机电环故障时立即控制风力发电机组停止运行的方案,保证了风力发电机组的发电效率。因此,本申请实施例提供的偏航集电环控制方案,能够兼顾风力发电机组的发电效率以及偏航集电环的运行安全性。
在一些实施例中,因为各类故障对偏航集电环的安全性造成的影响不同,可以通过控制风力发电机的输出功率来应对不同类型的偏航集电环故障,从而解决偏航集电 环的安全运行风险。具体地,本申请实施例对偏航集电环的安全性影响较小的第一类故障,比如散热故障等,可以控制其正常运行来保证发电功率;对安全性存在一定影响的第二类故障,比如过温故障,可以通过控制风力发电机组降功率运行来降低其安全风险,从而兼顾风力大电机组的发电功率与偏航集电环的运行安全性;对安全性影响较大的第三类故障,比如超温故障、加热模块故障、驱动盘与拨叉的配合故障等,可以控制风力发电机组停机来保证偏航集电环的运行安全性。相较于单一确定偏航集电环故障即控制风力发电机组停机的方案相比,能够从整体上兼顾风力发电机组的发电功率以及与偏航集电环的运行安全性。
此外,可解决偏航集电环的故障报出引起机组立即停机进而发电量损失的问题,机组可以针对偏航集电环的各类故障进行有效判断和响应需要。
在一些实施例中,本申请实施例风力发电机组的控制方法各步骤可以由偏航集电环的控制模块(比如温度监控板)与风力发电机组的主控制器配合实现。比如,可以由控制模块执行S310,并将运行状态参数发送至主控制器。又比如,可以由偏航集电环的控制模块执行S310和S320,并生成对应的故障告警信号发送至主控制器。在一个示例中,为了避免偏航集电环的控制模块(比如温度监控板)与风力发电机组的主控制器之间的扭缆风险,二者之间可以采用诸如蓝牙等无线通信方式进行通信。
接下来,为了充分理解风力发电机组的控制方法针对不同故障的具体控制方案,本申请实施例的下述部分将结合附图对各种故障的具体控制方案展开具体说明。
在一些实施例中,在偏航集电环包括散热模块、运行状态参数包括偏航集电环温度的情况下,多类故障可以包括散热模块故障。
具体地,针对散热模块故障,图5是本申请实施例提供的第二种风力发电机组的控制方法的流程示意图。图5与图3的不同之处在于,S320可以具体包括:
S3211,在偏航集电环温度大于第一温度阈值T setfault的情况下,计算偏航集电环温度由基准温度值T setfault增大至第一温度阈值T setfault的温升速率k1。
具体地,可以获取偏航集电环温度上升至基准温度值的时刻t(T setfault),以及偏航集电环温度上升至第一温度阈值的时刻t(T setthreshold)。
然后将第一温度阈值T setfault与基准温度值T setfault的温度差值与t(T setthreshold)与t(T setfault)的时间差的比值,得到温升速率k1。
需要说明的是,温升速率k1的具体计算公式可参见上述公式(1)的相关内容,在 此不再赘述。
S3212,在温升速率大于第一温升速率阈值ξ1的情况下,确定偏航集电环发生散热模块故障。
需要说明的是,第一温升速率阈值ξ1的具体内容可参见本申请上述实施例的相关内容,在此不再赘述。
相应地,针对散热模块故障,S330可以具体包括S331:
S331,控制风力发电机组以发生散热模块故障前的运行状态运行。
也就是说,控制风力发电机组继续以原有的运行模式运行,无需对其运行状态进行改变。
通过本实施例,可以有效判断出散热模块故障,以及考虑到散热模块风险较低控制风机继续以原有运行状态运行,能够避免因故障立即停机所造成的发电量损失,兼顾了偏航集电环的安全性与风机的发电效率。
在一些实施例中,运行状态参数包括偏航集电环温度,多类故障包括过温故障。接下来将分为两个实施例对过温故障的两种具体的控制方法展开说明。
在第一个实施例中,针对过温故障,图6是本申请实施例提供的第四种风力发电机组的控制方法的流程示意图。图6与图3的不同之处在于,S320可以具体包括:
S322,在偏航集电环温度大于第二温度阈值的情况下,确定偏航集电环发生过温故障。
其中,第二温度阈值的具体内容可以参见本申请上述实施例的相关内容,在此不再赘述。
S330具体包括S332。
S332,控制风力发电机以第一功率运行,第一功率为低于风力发电机组发生过温故障前的运行功率的功率。
其中,第一功率的具体内容可以参见本申请上述实施例的相关内容,在此不再赘述。
通过本实施例,可以有效判断出过温故障,以及考虑到过温故障具有一定风险性,当过温故障产生之后,可以及时控制风机降功率运行,能够避免因故障立即停机所造成的发电量损失,兼顾了偏航集电环的安全性与风机的发电效率。
在第二个实施例中,针对过温故障,图7是本申请实施例提供的第五种风力发电 机组的控制方法的流程示意图。图7与图3的不同之处在于,S320可以具体包括S323:
S323,在偏航集电环温度大于第二温度阈值的情况下,确定偏航集电环发生过温故障。
以及,S330可以具体包括S3331-S3333。
S3331,判断预设时间段内的偏航集电环温度小于或等于第三温度阈值T setstop
首先,针对预设时间段,在第1次执行S3331时,预设时间段可以为自确定偏航集电环发生过温故障开始的预设时间段t1。此后,在第i次执行S3331时,预设时间段为第i-1个时间段的结束时刻开始的预设时长。i为大于或等于2的整数。
其次,S3331中的偏航集电环温度,其可以是偏航集电环的实时温度。相应地,为了能够对故障及时控制,在S3331中可以在每一预设时间段内多次采集偏航集电环温度,判断每次采集的偏航集电环温度是否小于或等于第三温度阈值T setstop
在一个实施例中,若采集的偏航集电环温度小于或等于第三温度阈值T setstop,则立即停止执行过温故障的风机控制策略。示例性地,可以确定其发生超温故障,并执行超温故障的风机控制策略。
此外还需要说明的是,在确定过温故障之后风机可以控制风力发电机组保持运行状态不变,又或者可以降低功率,比如可以调整成第一功率,又或者可以按照预设功率调整因子进行调整,对此不作具体限定。
S3332,在小于或等于超温故障的告警阈值的情况下,判断在预设时间段结束时的偏航集电环温度是否大于第二温度阈值。
S3333,在大于第二温度阈值的情况下,利用预设功率调整因子调整风机运行功率,得到调整后的运行功率,控制风力发电机组以调整后的运行功率运行,返回S3331,直到偏航集电环温度在预设时间段内大于第三温度阈值或者偏航集电环温度在预设时间段结束时不大于第二温度阈值;
其中,预设功率调整因子小于1,调整后的运行功率为小于风力发电机组发生过温故障前的运行功率的功率。
在一些实施例中,预设功率调整因子可以是一个固定值,或者是随着循环次数不断变化的一个值,比如可以随着迭代次数增大。本申请实施例中预设功率调整因子的取值可以根据实际场景或者具体需求设置,或者可以是一个经验值,对其设置方式不 作限定。
在一些实施例中,可以实现功率的等比例降低,比如可以将调整前的风机运行功率乘上预设功率调整因子,得到调整后的风机运行功率。又比如,可以将调整前的风机运行功率减去预设功率调整因子与调整前的风机运行功率的乘积,得到调整后的功率。
在又一些实施例中,可以实现功率的等额降低,比如可以将调整前的风机运行功率减去预设功率调整因子与故障前的运行功率的乘积,示例性地,若预设功率调整因子为10%,过温故障前的运行功率为P 1,则从第一次功率调整开始,调整后的功率依次为90%P 1、80%P 1、……。
通过本实施例,可以有效判断出过温故障,以及考虑到过温故障具有一定风险性,当过温故障产生之后,可以通过迭代逐级降低输出功率的方式控制风机降功率运行,能够避免因故障立即停机所造成的发电量损失,兼顾了偏航集电环的安全性与风机的发电效率。
图8是本申请实施例提供的第六种风力发电机组的控制方法的流程示意图。图8与图7的不同之处在于,
S3332之后,方法还包括:
S3334,在偏航集电环温度小于或等于第二温度阈值的情况下,判断偏航集电环温度小于第四温度阈值的持续时长是否大于预设时长。
具体地,可以在偏航集电环温度小于或等于第二温度阈值之后,继续对偏航集电环温度进行实时检测,来判断偏航集电环温度小于第四温度阈值的持续时长是否大于预设时长。
S3335,在持续时长大于预设时长的情况下,控制风力发电机组以发生过温故障前的运行状态运行。
具体地,若偏航集电环温度在一段时长内的温度值均小于第四温度阈值,且该段时长长于预设时长,控制风力发电机组以发生过温故障前的运行状态运行。也就是说,让风力发电机组正常运行。
通过本实施例,可以有效降低偏航集电环的问题,提高其控制精度。
图9是本申请实施例提供的第七种风力发电机组的控制方法的流程示意图。图9与图8的不同之处在于,S320可以具体包括:
S3334之后,方法还包括:
S3336,在持续时长小于或等于预设时长的情况下,控制风力发电机组保持运行功率不变。
也就是说,在偏航集电环温度大于或等于第四阈值且小于或等于第二温度阈值的情况下,或者,在偏航集电环温度小于第四阈值的持续时长小于或等于预设时长,则控制风力发电机组保持运行功率不变。
其中,控制风力发电机组保持运行功率不变可以是指风力发电机组继续以通过S3331-S3333调整后的运行功率模式运行,直到偏航集电环小于第四温度阈值的持续时长小于或等于预设时长。
通过本实施例,可以在偏航集电环温度稳定在第四温度阈值之下的情况下,恢复风机正常运行,有效降低偏航集电环的问题,提高其控制精度。
在一些实施例中,偏航集电环的运行状态参数包括偏航集电环温度,多类故障包括超温故障。
针对超温故障,图10是本申请实施例提供的第八种风力发电机组的控制方法的流程示意图。图10与图3的不同之处在于,S320可以具体包括:
S324,在偏航集电环温度大于第三温度阈值的情况下,确定偏航集电环发生超温故障。
其中,第三温度阈值的具体内容可以参见本申请上述实施例的相关说明。
S330可以具体包括:S334,控制风力发电机组停机。
在一些实施例中,主控制器可以向变桨控制器发送停机控制指令,变桨控制器进行收桨,以及还可以向发电机控制器发送停机控制指令,以使发电机控制器逐渐降低发电机转速,以及向制动系统发送停机控制指令,以使制动系统的控制器控制刹车盘刹车。
在一些实施例中,由于当风机停机后偏航集电环的定子转子的传输电流为零,定子转子间不会产生热量,从而能够快速降低偏航集电环的温度。在一个示例中,由于风机偏航动作在偏航集电环内部产生的热量较小,因此,在控制风机停机的同时可以允许风机偏航。
也就是说,在因超温故障停机之后,偏航系统可以继续根据实际情况进行偏航。
通过本实施例,可以有效判断出超温故障,以及考虑到超温风险可以控制风机及 时停机,提高了控制方法的安全性和可靠性。
在一个具体的示例中,由于温度升高至第三温度阈值的过程中,会被判断为过温故障以及执行过温故障的控制方法。相应地,图11是本申请实施例提供的一种示例性地风力发电机组的控制方法的流程示意图,
图11与图10的不同之处在于,在过温控制的降功率调整过程中,若通过步骤S3331判断预设时间段内的偏航集电环温度大于或等于第三温度阈值的话,将会确定风机发生超温故障,并控制风机停机。
在一些实施例中,偏航集电环的运行状态参数包括偏航集电环温度,偏航集电环包括加热模块,多类故障包括加热模块故障。
针对加热模块故障,图12是本申请实施例提供的第九种风力发电机组的控制方法的流程示意图。图12与图3的不同之处在于,S320可以具体包括:
S320,具体包括S3251至S3254。
S3251,获取风力发电机组所处环境温度,以及偏航集电环的外部环境温度。
在一些实施例中,可以风机在一定高度以上的位置获取风力发电机组的所处环境温度,比如可以通过设置于机舱内的温度传感器采集风力发电机组所处环境温度,又比如,可以通过设置于机舱顶部的温度传感器采集风力发电机组所处环境温度。又比如,可以通过设置在塔筒靠近机舱一端的外部或者内部的温度传感器采集风力发电机组所处环境温度。
需要说明的是,由于风力发电机组所处环境温度用于判断风力发电机组是否处于低温环境,因此,还可以设置在其他位置处,并使用该位置处对应的低温环境值来判断风力发电机组是否处于低温环境。
S3252,判断风力发电机组所处环境温度是否小于低温环境的临界温度值。
在一些实施例中,低温环境的临界温度值可以根据实际场景和具体需求设置,对此不作限定。比如,可以是0°。
S3253,在风力发电机组所处环境温度小于低温环境的临界温度值的情况下,计算偏航集电环温度与偏航集电环的外部环境温度的差值;
在一些实施例中,偏航集电环的外部环境温度可以是靠近于航集电环壳体的外部环境温度。比如,若偏航集电环放置于塔筒内靠近机舱的平台上,则可以在该平台商设置温度传感器来测量偏航集电环的外部环境温度。
在另一些实施例中,可以直接在偏航集电环箱体的外侧设置温度传感器来测量偏航集电环的外部环境温度。本申请实施例对此不作具体限定。
需要说明的是,基于偏航集电环的外部环境温度是作为判断加热模块对偏航集电环的加热能力的参照组,可以基于其设置位置不同,选取不同的第一温差阈值。
在一些实施例中,偏航集电环的外部环境温度和风力发电机组所处环境温度可以是同一温度值,或者,同一温度检测单元采集的不同温度值,或者不同位置采集的温度值,对此不再赘述。
S3254,在差值小于第一温差阈值的情况下,确定偏航集电环发生加热模块故障。
其中,第一温差阈值的具体内容可以参见本申请上述实施例的相关内容,对此不再赘述。
S330具体包括:S335,控制风力发电机组停机且停止风力发电机组偏航。
其中,加热模块故障的风机控制策略的具体内容可以参见本申请上述实施例的相关内容,对此不再赘述。
通过本实施例,可以有效判断出加热模块故障,以及考虑到加热模块故障的风险可以控制风机及时停机,提高了控制方法的安全性和可靠性。
此外,本申请实施例还提供了另一种针对加热模块故障的控制方法。图13是本申请实施例提供的第十种风力发电机组的控制方法的流程示意图。图13与图12的不同之处在于,S310与S3253之间可以具体包括:
S3256,判断偏航集电环温度小于第五温度阈值,其中第五温度阈值为判断偏航集电环是否处于低温运行状态的温度临界值。
第五温度阈值的具体内容可以参见本申请实施例上述内容,在此不再赘述。
在一些实施例中,所述监测开关的通断状态参数,多类故障包括拨叉与驱动盘的配合故障。其中,拨叉、驱动盘、监测开关的具体内容可以参见本申请上述实施例结合图2的相关内容,在此不再赘述。
针对拨叉与驱动盘的配合故障,图14是本申请实施例提供的第十一种风力发电机组的控制方法的流程示意图。图13与图3的不同之处在于,S320可以具体包括:
S326在根据监测开关的通断状态参数确定监测开关处于断开状态的情况下,确定偏航集电环发生拨叉与驱动盘的配合故障。
控制风力发电机组的运行状态,具体包括:
S336,控制风力发电机组停机且停止风力发电机组偏航。
其中,拨叉与驱动盘的配合故障及其判断条件以及风机控制策略的相关内容可参见本申请上述实施例的具体描述,在此不再赘述。
通过本实施例,可以有效判断出拨叉与驱动盘的配合故障,以及考虑到拨叉与驱动盘的配合故障的扭缆风险可以控制风机及时停机,提高了控制方法的安全性和可靠性。
为了充分理解本申请实施提供的风力发电机组的运行方法,图15是本申请实施例提供的一种示例性地风力发电机组的运行方法的流程示意图。
如图15所示,风力发电机组的运行方法包括S1501至S1515。
S1501,通过温度传感器对偏航集电环各导电环的实时温度进行监测,温度监控板根据各导电环的温度数据得到偏航集电环温度Ta。
S1502,判断偏航集电环温度Ta是否大于第一温度阈值T setfault。若判断结果为否,则继续监控各导电环的实时温度并得到偏航集电环温度Ta。若判断结果为否,则继续执行S1502。
S1503,计算偏航集电环温度的温升速率k1,以及判断偏航集电环温度的温升速率k1是否大于第一温升速率阈值ξ1。若判断结果为否,则继续执行S1505。若判断结果为是,则继续执行S1504。
S1504,确定偏航集电环发生散热故障,并控制风力发电机组正常运行。也就是说不改变风力发电机组的运行状态。
S1505,判断偏航集电环温度Ta是否大于第二温度阈值T setlimit,若判断结果为否,则继续监控各导电环的实时温度并得到偏航集电环温度Ta,若判断结果为是,则继续执行S1506。
S1506,确定偏航集电环发生过温故障,机组正常运行。也就是说不改变风力发电机组的运行状态。
S1507,判断偏航集电环温度Ta在预设时间段t1内是否上升至第三温度阈值T setstop。若判断结果为是,则执行S1510。若判断结果为否,则执行S1508。
S1508,判断偏航集电环温度Ta在预设时间段t1结束后是否大于第二温度阈值T setlimit。若判断结果为是,则继续执行S1509。若判断结果为否,则继续执行S1511。
S1509,控制风力发电机组降功率运行。其中,具体降功率运行方法可以参见上述 实施例结合图6至图9的相关说明,对此不再赘述。
S1510,确定偏航集电环发生超温故障,控制风力发电机组停机且不允许复位。
S1511,判断偏航集电环温度Ta小于第四温度阈值T setrecover的持续时长是否大于预设时长t2。若判断结果为是,则继续执行S1512,若判断结果为否,则继续执行S1513。
S1512,控制风力发电机组正常运行。可以是风力发电机恢复故障前的运行状态。
S1513,机组保持原运行状态。
S1514,判断机组环境温度Tb是否大于0,且偏航集电环温度Ta与Tnacelle<小于第一温差阈值T setmin。若判断结果为是,则继续执行S1515。若判断结果为否,则继续监控各导电环的实时温度并得到偏航集电环温度Ta。
S1515,确定偏航集电环加热系统故障,机组停机且不允许偏航、启机。
通过本实施例,可以对各项故障有效诊断,且能够在温度变化过程中对温度灵活调整,解决偏航集电环的故障报出引起机组立即停机进而发电量损失的问题。兼顾了偏航集电环的安全性以及发电量。
此外,采用该控制方法后,可对其偏航集电环的子部件的故障进行分类判断并采取逐级屏蔽,降低故障排查的频次。
基于相同的申请构思,本申请实施例除了提供了风力发电机组的控制方法之外,还提供了与之对应的风力发电机组的控制装置。
下面结合附图,详细介绍根据本申请实施例风力发电机组的控制装置。
图16是本申请实施例提供的一种风力发电机组的控制装置的结构示意图。如图16所示,风力发电机组的控制装置1600包括:
状态参数获取模块1610,用于获取偏航集电环的运行状态参数;
故障判断模块1620,用于根据运行状态参数以及多类故障的判断条件,确定偏航集电环发生多类故障中的至少一类故障;
风机控制模块1630,用于按照至少一类故障对应的风机控制策略,控制风力发电机组的运行状态。
在一些实施例中,偏航集电环包括散热模块,运行状态参数包括偏航集电环温度,多类故障包括散热模块故障;
故障判断模块1620,具体用于:
在偏航集电环温度大于第一温度阈值的情况下,计算偏航集电环温度由基准温度值增大至第一温度阈值的温升速率;
在温升速率大于第一温升速率阈值的情况下,确定偏航集电环发生散热模块故障;
风机控制模块1630,具体用于:
控制风力发电机组以发生散热模块故障前的运行状态运行。
在一些实施例中,运行状态参数包括偏航集电环温度,多类故障包括过温故障;
故障判断模块1620,具体用于:
在偏航集电环温度大于第二温度阈值的情况下,确定偏航集电环发生过温故障;
风机控制模块1630,具体用于:
控制风力发电机以第一功率运行,第一功率为低于风力发电机组发生过温故障前的运行功率的功率。
在一些实施例中,运行状态参数包括偏航集电环温度,多类故障包括过温故障;
故障判断模块1620,具体用于:
在偏航集电环温度大于第二温度阈值的情况下,确定偏航集电环发生过温故障;
风机控制模块1630,具体包括:
第一判断单元,用于判断预设时间段内的偏航集电环温度小于或等于第三温度阈值,第三温度阈值大于第二温度阈值;
第二判断单元,用于在小于或等于第三温度阈值的情况下,判断在预设时间段结束时的偏航集电环温度是否大于第二温度阈值;
第一功率调整单元,用于在大于第二温度阈值的情况下,利用预设功率调整因子调整风机运行功率,得到调整后的运行功率,控制风力发电机组以调整后的运行功率运行,返回第一判断步骤,直到偏航集电环温度在预设时间段内大于第三温度阈值或者偏航集电环温度在预设时间段结束时不大于第二温度阈值;
其中,预设功率调整因子小于1,调整后的运行功率为小于风力发电机组发生过温故障前的运行功率的功率。
在一些实施例中,风机控制模块1630还包括:
第三判断单元,用于在偏航集电环温度小于或等于第二温度阈值的情况下,判断偏航集电环温度小于第四温度阈值的持续时长是否大于预设时长,第四温度阈值小于 或等于第二温度阈值;
第二功率调整单元,用于在持续时长大于预设时长的情况下,控制风力发电机组以发生过温故障前的运行状态运行。
在一些实施例中,风机控制模块1630还包括:
第三功率调整单元,用于在持续时长小于或等于预设时长的情况下,控制风力发电机组保持运行功率不变。
在一些实施例中,运行状态参数包括偏航集电环温度,多类故障包括超温故障;
故障判断模块1620,具体用于:
在偏航集电环温度大于第三温度阈值的情况下,确定偏航集电环发生超温故障;
风机控制模块1630,具体用于:
控制风力发电机组停机。
在一些实施例中,偏航集电环包括加热模块,运行状态参数包括偏航集电环温度,多类故障包括加热模块故障;
故障判断模块1620,具体用于:
获取偏航集电环的外部环境温度;
在加热模块符合预设启动加热条件下的情况下,计算偏航集电环温度与偏航集电环的外部环境温度的差值,其中,预设启动加热条件为风力发电机组所处环境温度小于低温环境的临界温度值,和/或,偏航集电环温度小于第五温度阈值,第五温度阈值为判断偏航集电环是否处于低温运行状态的温度临界值;
在差值小于第一温差阈值的情况下,确定偏航集电环发生多类故障中的加热模块故障;
风机控制模块1630,具体用于:
控制风力发电机组停机且停止风力发电机组偏航。
在一些实施例中,偏航集电环包括多个导电环、以及与至少一个导电环一一对应的至少一个温度检测单元,每一温度检测单元用于采集与其对应的导电环的温度,
状态参数获取模块1610,具体包括:
温度获取单元,用于获取至少一个温度检测单元采集得到的至少一个导电环温度;
温度处理单元,用于根据至少一个导电环温度,确定偏航集电环温度。
在一些实施例中,偏航集电环包括拨叉、驱动盘和监测开关,监测开关的第一连接端与拨叉连接,监测开关的第二连接端与驱动盘连接;
运行状态参数包括监测开关的通断状态参数,多类故障包括拨叉与驱动盘的配合故障,
故障判断模块1620,具体用于:
在根据监测开关的通断状态参数确定监测开关处于断开状态的情况下,确定偏航集电环发生拨叉与驱动盘的配合故障;
风机控制模块1630,具体用于:
控制风力发电机组停机且停止风力发电机组偏航。
根据本申请实施例的风力发电机组的控制装置的其他细节,与以上结合图3至图15所示实例描述的风力发电机组的控制方法类似,并能达到其相应的技术效果,为简洁描述,在此不再赘述。
本申请实施例的风机的偏航集电环控制控制装置,能够根据偏航集电环的运行状态参数,从多类故障中确定偏航集电环对应的至少一类故障。由于本申请实施例提供的方案能够在诊断出至少一类偏航集电环故障时,采用相应地风机控制策略来保证偏航集电环的运行安全性,另外,由于可以根据不同类故障采用不同的风机控制策略对风机运行状态进行不同的控制,相较于偏航机电环故障时立即控制风力发电机组停止运行的方案,保证了风力发电机组的发电效率。因此,本申请实施例提供的偏航集电环控制方案,能够兼顾风力发电机组的发电效率以及偏航集电环的运行安全性。
基于相同的发明构思,本申请实施例还提供了一种风力发电机组的控制系统,图17是本申请实施例提供的一种风力发电机组的控制系统的系统构架图,如图17所示,风力发电机组的控制系统100包括:检测装置1700以及控制装置1600。
检测装置1700,用于检测所述偏航集电环的运行状态参数。
风力发电机组的控制装置1600。
在一些实施例中,所检测装置1700包括温度检测模块和/或监测开关;
其中,所述温度检测模块包括与偏航集电环的至少一个导电环一一对应的至少一个温度检测单元,每一温度检测单元用于采集与其对应的导电环的温度。
所述失效监测开关的第一连接端与所述偏航集电环的拨叉连接,所述失效监测开关的第二连接端与所述偏航集电环的驱动盘连接。
本申请实施例的风机的偏航集电环控制控制系统,能够根据偏航集电环的运行状态参数,从多类故障中确定偏航集电环对应的至少一类故障。由于本申请实施例提供的方案能够在诊断出至少一类偏航集电环故障时,采用相应地风机控制策略来保证偏航集电环的运行安全性,另外,由于可以根据不同类故障采用不同的风机控制策略对风机运行状态进行不同的控制,相较于偏航机电环故障时立即控制风力发电机组停止运行的方案,保证了风力发电机组的发电效率。因此,本申请实施例提供的偏航集电环控制方案,能够兼顾风力发电机组的发电效率以及偏航集电环的运行安全性。
根据本申请实施例的风力发电机组的控制系统的其他细节,与以上结合图3至图15所示实例描述的风力发电机组的控制方法类似,并能达到其相应的技术效果,为简洁描述,在此不再赘述。
图18示出了本申请实施例提供的风力发电机组的控制设备的硬件结构示意图。
在风力发电机组的控制设备可以包括处理器1801以及存储有计算机程序指令的存储器1802。
具体地,上述处理器1801可以包括中央处理器(Central Processing Unit,CPU),或者特定集成电路(Application Specific Integrated Circuit,ASIC),或者可以被配置成实施本申请实施例的一个或多个集成电路。
存储器1802可以包括用于数据或指令的大容量存储器。举例来说而非限制,存储器1802可包括硬盘驱动器(Hard Disk Drive,HDD)、软盘驱动器、闪存、光盘、磁光盘、磁带或通用串行总线(Universal Serial Bus,USB)驱动器或者两个或更多个以上这些的组合。在一些实例中,存储器1802可以包括可移除或不可移除(或固定)的介质,或者存储器1802是非易失性固态存储器。在一些实施例中,存储器1802可在风力发电机组的控制设备的内部或外部。
在一些实例中,存储器1802可以是只读存储器(Read Only Memory,ROM)。在一个实例中,该ROM可以是掩模编程的ROM、可编程ROM(PROM)、可擦除PROM(EPROM)、电可擦除PROM(EEPROM)、电可改写ROM(EAROM)或闪存或者两个或更多个以上这些的组合。
存储器1802可以包括只读存储器(ROM),随机存取存储器(RAM),磁盘存储介质设备,光存储介质设备,闪存设备,电气、光学或其他物理/有形的存储器存储设备。因此,通常,存储器包括一个或多个编码有包括计算机可执行指令的软件的有 形(非暂态)计算机可读存储介质(例如,存储器设备),并且当该软件被执行(例如,由一个或多个处理器)时,其可操作来执行参考根据本公开的一方面的方法所描述的操作。
处理器1801通过读取并执行存储器1802中存储的计算机程序指令,以实现上述图3-图15所示实施例中的方法/步骤,并达到图3-图15所示实例执行其方法/步骤达到的相应技术效果,为简洁描述在此不再赘述。
在一个示例中,风力发电机组的控制设备还可包括通信接口1803和总线1810。其中,如图18所示,处理器1801、存储器1802、通信接口1803通过总线1810连接并完成相互间的通信。
通信接口1803,主要用于实现本申请实施例中各模块、装置、单元和/或设备之间的通信。
总线1810包括硬件、软件或两者,将在线数据流量计费设备的部件彼此耦接在一起。举例来说而非限制,总线可包括加速图形端口(Accelerated Graphics Port,AGP)或其他图形总线、增强工业标准架构(Extended Industry Standard Architecture,EISA)总线、前端总线(Front Side Bus,FSB)、超传输(Hyper Transport,HT)互连、工业标准架构(Industry Standard Architecture,ISA)总线、无限带宽互连、低引脚数(LPC)总线、存储器总线、微信道架构(MCA)总线、外围组件互连(PCI)总线、PCI-Express(PCI-X)总线、串行高级技术附件(SATA)总线、视频电子标准协会局部(VLB)总线或其他合适的总线或者两个或更多个以上这些的组合。在合适的情况下,总线1810可包括一个或多个总线。尽管本申请实施例描述和示出了特定的总线,但本申请考虑任何合适的总线或互连。
该风力发电机组的控制设备可以执行本申请实施例中的风力发电机组的控制方法,从而实现结合图3至图16描述的风力发电机组的控制方法和装置。
另外,本申请实施例还提供一种计算机存储介质。该计算机存储介质上存储有计算机程序指令;该计算机程序指令被处理器执行时实现上述风力发电机组的控制方法的任意一种实施例的操作。计算机存储介质的示例包括有形(非暂态)计算机可读存储介质,如电子电路、半导体存储器设备、ROM、闪存、可擦除ROM(EROM)、软盘、CD-ROM、光盘、硬盘等。
需要明确的是,本申请并不局限于上文所描述并在图中示出的特定配置和处理。 为了简明起见,这里省略了对已知方法的详细描述。在上述实施例中,描述和示出了若干具体的步骤作为示例。但是,本申请的方法过程并不限于所描述和示出的具体步骤,本领域的技术人员可以在领会本申请的精神后,作出各种改变、修改和添加,或者改变步骤之间的顺序。
以上所述的结构框图中所示的功能块可以实现为硬件、软件、固件或者它们的组合。当以硬件方式实现时,其可以例如是电子电路、专用集成电路(Application Specific Integrated Circuit,ASIC)、适当的固件、插件、功能卡等等。当以软件方式实现时,本申请的元素是被用于执行所需任务的程序或者代码段。程序或者代码段可以存储在机器可读介质中,或者通过载波中携带的数据信号在传输介质或者通信链路上传送。“机器可读介质”可以包括能够存储或传输信息的任何介质。机器可读介质的例子包括电子电路、半导体存储器设备、ROM、闪存、可擦除ROM(EROM)、软盘、CD-ROM、光盘、硬盘、光纤介质、射频(Radio Frequency,RF)链路,等等。代码段可以经由诸如因特网、内联网等的计算机网络被下载。
图19示出了本申请实施例提供的风力发电机组控制系统的详细结构图,所述系统包括检测装置以及控制装置。
所述检测装置用于检测偏航集电环的运行状态参数。
所述控制装置用于获取所述偏航集电环的运行状态参数;根据所述偏航集电环的运行状态参数判断,确定所述偏航集电环发生所述多类故障中的至少一类故障;按照所述至,少一类故障对应的风机控制策略,控制所述风力发电机组的运行状态。
控制装置包括获取模块、判断模块及控制模块。获取模块获取偏航集电环的运行状态参数。判断模块根据所述偏航集电环的运行状态参数判断,确定所述偏航集电环发生所述多类故障中的至少一类故障。控制模块按照所述至少一类故障对应的风机控制策略,控制所述风力发电机组的运行状态。
所述偏航集电环包括至少一个导电环,所述检测装置包括与所述至少一个导电环一一对应的至少一个温度检测单元,每一温度检测单元用于采集与其对应的导电环的温度。
所述偏航集电环还包括温度监控板,所述温度监控板设置于所述偏航集电环的箱体上,与所述温度检测单元电连接;
所述温度监控板,用于从所述温度检测单元获取所述至少一个导电环的温度,并 将所述至少一个导电环的温度传输给所述控制装置。
所述温度检测单元为温度传感器实时监测偏航集电环的运行状态参数。温度检测单元还可以是热电偶、热电阻、热敏电阻等。
所述偏航集电环还包括拨叉和驱动盘,所述检测装置还包括监测开关;
所述监测开关的第一连接端与所述偏航集电环的拨叉连接,所述监测开关的第二连接端与所述偏航集电环的驱动盘连接;该驱动盘通过PLC控制驱动。可以将获取模块、判断模块及控制模块三合一,能够节约空间。
所述监测开关的通断状态参数用于确定在所述监测开关处于断开状态的情况下,确定所述偏航集电环发生拨叉与驱动盘的配合故障。
还需要说明的是,本申请中提及的示例性实施例,基于一系列的步骤或者装置描述一些方法或系统。但是,本申请不局限于上述步骤的顺序,也就是说,可以按照实施例中提及的顺序执行步骤,也可以不同于实施例中的顺序,或者若干步骤同时执行。
上面参考根据本公开的实施例的方法、装置、设备及和计算机程序产品的流程图和/或框图描述了本公开的各方面。应当理解,流程图和/或框图中的每个方框以及流程图和/或框图中各方框的组合可以由计算机程序指令实现。这些计算机程序指令可被提供给通用计算机、专用计算机、或其它可编程数据处理装置的处理器,以产生一种机器,使得经由计算机或其它可编程数据处理装置的处理器执行的这些指令使能对流程图和/或框图的一个或多个方框中指定的功能/动作的实现。这种处理器可以是但不限于是通用处理器、专用处理器、特殊应用处理器或者现场可编程逻辑电路。还可理解,框图和/或流程图中的每个方框以及框图和/或流程图中的方框的组合,也可以由执行指定的功能或动作的专用硬件来实现,或可由专用硬件和计算机指令的组合来实现。
以上所述,仅为本申请的具体实施方式,所属领域的技术人员可以清楚地了解到,为了描述的方便和简洁,上述描述的系统、模块和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。应理解,本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到各种等效的修改或替换,这些修改或替换都应涵盖在本申请的保护范围之内。

Claims (19)

  1. 一种风力发电机组的控制方法,所述风力发电机组包括偏航集电环,所述方法包括:
    获取所述偏航集电环的运行状态参数;
    根据所述运行状态参数以及多类故障的判断条件,确定所述偏航集电环发生所述多类故障中的至少一类故障;
    按照所述至少一类故障对应的风机控制策略,控制所述风力发电机组的运行状态。
  2. 根据权利要求1所述的方法,其中,所述偏航集电环包括散热模块,所述运行状态参数包括偏航集电环温度,所述多类故障包括散热模块故障;
    所述确定所述偏航集电环发生所述多类故障中的至少一类故障,具体包括:
    在所述偏航集电环温度大于第一温度阈值的情况下,计算所述偏航集电环温度由基准温度值增大至所述第一温度阈值的温升速率;
    在所述温升速率大于第一温升速率阈值的情况下,确定所述偏航集电环发生所述散热模块故障;
    所述控制所述风力发电机组的运行状态,具体包括:
    控制所述风力发电机组以发生所述散热模块故障前的运行状态运行。
  3. 根据权利要求1所述的方法,其中,所述运行状态参数包括偏航集电环温度,所述多类故障包括过温故障;
    所述确定所述偏航集电环发生所述多类故障中的至少一类故障,具体包括:
    在所述偏航集电环温度大于第二温度阈值的情况下,确定所述偏航集电环发生所述过温故障;
    所述控制所述风力发电机组的运行状态,具体包括:
    控制所述风力发电机以第一功率运行,所述第一功率为低于所述风力发电机组发生过温故障前的运行功率的功率。
  4. 根据权利要求1-3任一项所述的方法,其中,所述运行状态参数包括偏航集电环温度,所述多类故障包括过温故障;
    所述确定所述偏航集电环发生所述多类故障中的至少一类故障,具体包括:
    在所述偏航集电环温度大于第二温度阈值的情况下,确定所述偏航集电环发生所 述过温故障;
    所述控制所述风力发电机组的运行状态,具体包括:
    第一判断步骤:判断预设时间段内的偏航集电环温度小于或等于第三温度阈值,所述第三温度阈值大于所述第二温度阈值;
    第二判断步骤:在小于或等于所述第三温度阈值的情况下,判断在预设时间段结束时的偏航集电环温度是否大于所述第二温度阈值;
    第一功率调整步骤:在大于所述第二温度阈值的情况下,利用预设功率调整因子调整风机运行功率,得到调整后的运行功率,控制所述风力发电机组以所述调整后的运行功率运行,返回所述第一判断步骤,直到所述偏航集电环温度在预设时间段内大于所述第三温度阈值或者所述偏航集电环温度在预设时间段结束时不大于所述第二温度阈值;
    其中,所述预设功率调整因子小于1,所述调整后的运行功率为小于所述风力发电机组发生过温故障前的运行功率的功率。
  5. 根据权利要求4所述的方法,其中,
    所述第二判断步骤之后,所述方法还包括:
    第三判断步骤:在所述偏航集电环温度小于或等于所述第二温度阈值的情况下,判断所述偏航集电环温度小于第四温度阈值的持续时长是否大于预设时长,所述第四温度阈值小于或等于所述第二温度阈值;
    第二功率调整步骤:在所述持续时长大于预设时长的情况下,控制所述风力发电机组以发生过温故障前的运行状态运行。
  6. 根据权利要求5所述的方法,其中,
    所述第三判断步骤之后,所述方法还包括:
    在所述持续时长小于或等于所述预设时长的情况下,控制所述风力发电机组保持运行功率不变。
  7. 根据权利要求1或4所述的方法,其中,所述运行状态参数包括所述偏航集电环温度,所述多类故障包括超温故障;
    所述确定所述偏航集电环发生所述多类故障中的至少一类故障,具体包括:
    在所述偏航集电环温度大于第三温度阈值的情况下,确定所述偏航集电环发生所述超温故障;
    所述控制所述风力发电机组的运行状态,具体包括:
    控制所述风力发电机组停机。
  8. 根据权利要求1所述的方法,其中,所述偏航集电环包括加热模块,所述运行状态参数包括所述偏航集电环温度,所述多类故障包括加热模块故障;
    所述确定所述偏航集电环发生所述多类故障中的至少一类故障,具体包括:
    获取所述偏航集电环的外部环境温度;
    在加热模块符合预设启动加热条件下的情况下,计算所述偏航集电环温度与所述偏航集电环的外部环境温度的差值,其中,所述预设启动加热条件为所述风力发电机组所处环境温度小于低温环境的临界温度值,和/或,所述偏航集电环温度小于第五温度阈值,所述第五温度阈值为判断所述偏航集电环是否处于低温运行状态的温度临界值;
    在所述差值小于第一温差阈值的情况下,确定所述偏航集电环发生所述多类故障中的加热模块故障;
    所述控制所述风力发电机组的运行状态,具体包括:
    控制所述风力发电机组停机且停止所述风力发电机组偏航。
  9. 根据权利要求1-8任一项所述的方法,其中,
    所述偏航集电环包括多个导电环、以及与至少一个所述导电环一一对应的至少一个温度检测单元,每一温度检测单元用于采集与其对应的导电环的温度,
    所述获取所述偏航集电环的运行状态参数,具体包括:
    获取所述至少一个温度检测单元采集得到的至少一个导电环温度;
    根据所述至少一个导电环温度,确定所述偏航集电环温度。
  10. 根据权利要求1所述的方法,其中,所述偏航集电环包括拨叉、驱动盘和监测开关,所述监测开关的第一连接端与所述拨叉连接,所述监测开关的第二连接端与所述驱动盘连接;
    所述运行状态参数包括所述监测开关的通断状态参数,所述多类故障包括拨叉与驱动盘的配合故障,
    所述确定所述偏航集电环发生所述多类故障中的至少一类故障,具体包括:
    在根据监测开关的通断状态参数确定所述监测开关处于断开状态的情况下,确定所述偏航集电环发生拨叉与驱动盘的配合故障;
    所述控制所述风力发电机组的运行状态,具体包括:
    控制所述风力发电机组停机且停止所述风力发电机组偏航。
  11. 根据权利要求1所述的方法,其中,
    在确定所述偏航集电环发生所述多类故障中的至少两类故障的情况下,所述按照所述至少一类故障对应的风机控制策略,控制所述风力发电机组的运行状态,具体包括:
    在所述至少两类故障对应的风机控制策略中,确定安全等级最高的风机控制策略,以及按照所述安全等级最高的风机控制策略控制所述风力发电机组的运行状态;或者
    在所述至少两类故障中确定故障等级最高的一类故障,以及按照所述故障等级最高的一类故障对应的风机控制策略,控制所述风力发电机组的运行状态。
  12. 一种风力发电机组的控制装置,其中,所述风力发电机组包括偏航集电环,所述控制装置包括获取模块、判断模块及控制模块,
    获取模块,获取偏航集电环的运行状态参数,
    判断模块,根据所述偏航集电环的运行状态参数判断,确定所述偏航集电环发生所述多类故障中的至少一类故障,
    控制模块,按照所述至少一类故障对应的风机控制策略,控制所述风力发电机组的运行状态。
  13. 一种风力发电机组的控制系统,其中,所述系统包括检测装置、以及如权利要求12所述的控制装置;其中,
    所述检测装置,用于检测偏航集电环的运行状态参数;
    所述控制装置,用于获取所述偏航集电环的运行状态参数;根据所述偏航集电环的运行状态参数判断,确定所述偏航集电环发生所述多类故障中的至少一类故障;按照所述至少一类故障对应的风机控制策略,控制所述风力发电机组的运行状态。
  14. 根据权利要求13所述的系统,其中,所述偏航集电环包括至少一个导电环,所述检测装置包括与所述至少一个导电环一一对应的至少一个温度检测单元,每一温度检测单元用于采集与其对应的导电环的温度。
  15. 根据权利要求14所述的系统,其中,所述偏航集电环还包括温度监控板,所述温度监控板设置于所述偏航集电环的箱体上,与所述温度检测单元电连接;
    所述温度监控板,用于从所述温度检测单元获取所述至少一个导电环的温度,并将所述至少一个导电环的温度传输给所述控制装置。
  16. 根据权利要求15所述的系统,其中,所述温度检测单元为温度传感器。
  17. 根据权利要求13所述的系统,其中,所述偏航集电环还包括拨叉和驱动盘,所述检测装置还包括监测开关;
    所述监测开关的第一连接端与所述偏航集电环的拨叉连接,所述监测开关的第二连接端与所述偏航集电环的驱动盘连接;
    所述监测开关的通断状态参数用于确定在所述监测开关处于断开状态的情况下,确定所述偏航集电环发生拨叉与驱动盘的配合故障。
  18. 一种风力发电机组的控制设备,其中,所述设备包括:处理器以及存储有计算机程序指令的存储器;
    所述处理器读取并执行所述计算机程序指令,以实现如权利要求1-11任意一项所述的风力发电机组的控制方法。
  19. 一种计算机存储介质,其中,所述计算机存储介质上存储有计算机程序指令,所述计算机程序指令被处理器执行时实现如权利要求1-11任意一项所述的风力发电机组的控制方法。
PCT/CN2021/120625 2021-06-30 2021-09-26 风力发电机组的控制方法、装置、系统、设备及介质 WO2023272980A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110742476.2 2021-06-30
CN202110742476.2A CN113294292B (zh) 2021-06-30 2021-06-30 风力发电机组的控制方法、装置、系统、设备及介质

Publications (1)

Publication Number Publication Date
WO2023272980A1 true WO2023272980A1 (zh) 2023-01-05

Family

ID=77330246

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/120625 WO2023272980A1 (zh) 2021-06-30 2021-09-26 风力发电机组的控制方法、装置、系统、设备及介质

Country Status (2)

Country Link
CN (1) CN113294292B (zh)
WO (1) WO2023272980A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116447089A (zh) * 2023-06-19 2023-07-18 华电电力科学研究院有限公司 一种风电机组的运行状态检测方法、装置及介质
CN116753114A (zh) * 2023-07-28 2023-09-15 扬州宇安电子科技有限公司 一种基于大数据的风电场数据管控方法及系统
CN117336923A (zh) * 2023-07-18 2024-01-02 国能(肇庆)热电有限公司 一种智能灯光控制系统

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113294292B (zh) * 2021-06-30 2022-07-05 北京金风科创风电设备有限公司 风力发电机组的控制方法、装置、系统、设备及介质

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103835882A (zh) * 2014-03-18 2014-06-04 上海电机学院 大型风力发电机组状态监测与故障诊断系统
CN106286129A (zh) * 2016-10-12 2017-01-04 北京金风科创风电设备有限公司 风力发电机组及其控制方法
CN106574606A (zh) * 2014-07-29 2017-04-19 Ntn株式会社 状态监视系统和具有该状态监视系统的风力发电系统
CN108204336A (zh) * 2018-01-30 2018-06-26 北京金风科创风电设备有限公司 风力发电机组的停机方法和装置、存储介质及计算装置
CN108335019A (zh) * 2018-01-12 2018-07-27 天津瑞源电气有限公司 风机偏航系统的故障诊断识别方法
US20180347542A1 (en) * 2017-05-30 2018-12-06 General Electric Company System and method for reducing loads during an idling or parked state of a wind turbine via yaw offset
CN109139370A (zh) * 2017-06-27 2019-01-04 北京金风科创风电设备有限公司 风力发电机组偏航解缆控制方法及装置
US20200088171A1 (en) * 2018-09-17 2020-03-19 American Superconductor Corporation Yaw auto-calibration for a wind turbine generator
CN111181324A (zh) * 2020-03-02 2020-05-19 大连宜顺机电有限公司 一种电刷导电结构
CN111193355A (zh) * 2020-03-02 2020-05-22 大连宜顺机电有限公司 一种偏航集电环散热系统
CN112583193A (zh) * 2020-11-25 2021-03-30 沧州宇航电机电气有限公司 一种风力发电机偏航集电环
CN113294292A (zh) * 2021-06-30 2021-08-24 北京金风科创风电设备有限公司 风力发电机组的控制方法、装置、系统、设备及介质

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2461533A (en) * 2008-07-01 2010-01-06 Vestas Wind Sys As Estimation and control of wear in wind turbine slip ring brushes
ITMI20120688A1 (it) * 2012-04-24 2013-10-25 Ansaldo Energia Spa Alternatore, preferibilmente per un impianto per la produzione di energia elettrica, e metodo per monitorare le condizioni di almeno un contatto strisciante di un alternatore
DK2843778T3 (da) * 2013-09-02 2018-10-01 Ltn Servotechnik Gmbh Kontaktringenhed og fremgangsmåde til overvågning af en kontaktring
US20160248304A1 (en) * 2015-02-24 2016-08-25 General Electric Company System and method for cooling or cleaning a slip ring assembly of a generator
CN108953072A (zh) * 2018-06-26 2018-12-07 明阳智慧能源集团股份公司 一种兆瓦级双馈风力发电机组发电机主碳刷烧毁预警方法
CN208924049U (zh) * 2018-09-13 2019-05-31 江苏神州新能源电力有限公司 一种小型风力发电精密集电环安装结构
CN208847348U (zh) * 2018-10-17 2019-05-10 东方电气集团东方电机有限公司 热电发电机集电环温度在线监测装置

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103835882A (zh) * 2014-03-18 2014-06-04 上海电机学院 大型风力发电机组状态监测与故障诊断系统
CN106574606A (zh) * 2014-07-29 2017-04-19 Ntn株式会社 状态监视系统和具有该状态监视系统的风力发电系统
CN106286129A (zh) * 2016-10-12 2017-01-04 北京金风科创风电设备有限公司 风力发电机组及其控制方法
US20180347542A1 (en) * 2017-05-30 2018-12-06 General Electric Company System and method for reducing loads during an idling or parked state of a wind turbine via yaw offset
CN109139370A (zh) * 2017-06-27 2019-01-04 北京金风科创风电设备有限公司 风力发电机组偏航解缆控制方法及装置
CN108335019A (zh) * 2018-01-12 2018-07-27 天津瑞源电气有限公司 风机偏航系统的故障诊断识别方法
CN108204336A (zh) * 2018-01-30 2018-06-26 北京金风科创风电设备有限公司 风力发电机组的停机方法和装置、存储介质及计算装置
US20200088171A1 (en) * 2018-09-17 2020-03-19 American Superconductor Corporation Yaw auto-calibration for a wind turbine generator
CN111181324A (zh) * 2020-03-02 2020-05-19 大连宜顺机电有限公司 一种电刷导电结构
CN111193355A (zh) * 2020-03-02 2020-05-22 大连宜顺机电有限公司 一种偏航集电环散热系统
CN112583193A (zh) * 2020-11-25 2021-03-30 沧州宇航电机电气有限公司 一种风力发电机偏航集电环
CN113294292A (zh) * 2021-06-30 2021-08-24 北京金风科创风电设备有限公司 风力发电机组的控制方法、装置、系统、设备及介质

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116447089A (zh) * 2023-06-19 2023-07-18 华电电力科学研究院有限公司 一种风电机组的运行状态检测方法、装置及介质
CN116447089B (zh) * 2023-06-19 2023-08-25 华电电力科学研究院有限公司 一种风电机组的运行状态检测方法、装置及介质
CN117336923A (zh) * 2023-07-18 2024-01-02 国能(肇庆)热电有限公司 一种智能灯光控制系统
CN116753114A (zh) * 2023-07-28 2023-09-15 扬州宇安电子科技有限公司 一种基于大数据的风电场数据管控方法及系统
CN116753114B (zh) * 2023-07-28 2023-12-26 扬州宇安电子科技有限公司 一种基于大数据的风电场数据管控方法及系统

Also Published As

Publication number Publication date
CN113294292B (zh) 2022-07-05
CN113294292A (zh) 2021-08-24

Similar Documents

Publication Publication Date Title
WO2023272980A1 (zh) 风力发电机组的控制方法、装置、系统、设备及介质
JP5117677B2 (ja) ウィンドファームならびにその制御方法
EP2264315B1 (en) Operating a wind turbine at motor over-temperature conditions
CA2930462C (en) System and method for de-rating power of a wind turbine as a function of temperature
US10823142B2 (en) Method and system for controlling wind turbine shutdown
WO2012129721A1 (en) Method for adjusting power output of wind turbine
CA2514085A1 (en) Method and apparatus for cooling system failure detection
US10788538B2 (en) Predictive battery test systems and methods
CN103728998A (zh) 用于高压变频器的智能调节散热方法及系统
CN105674561A (zh) 热泵热水器及其控制方法
US10024305B2 (en) System and method for stabilizing a wind farm during one or more contingency events
US10215156B2 (en) Autonomous yaw control for a wind turbine
EP3263894B1 (en) System and method for adjusting environmental operating conditions associated with heat generating components of a wind turbine
CN107078540B (zh) 用于准备应急能量存储装置来用于操作的方法
CN104199484A (zh) 基于整体温度监测的油浸变压器智能冷却控制温度测定方法及装置
US11629701B2 (en) System and method for estimating motor temperature of a pitch system of a wind turbine
CN110018696A (zh) 电芯加热控制装置及方法、电芯烘烤设备和计算机可读存储介质
EP3722596B1 (en) System and method for mitigating damage in a rotor blade of a wind turbine
CN113775484A (zh) 基于扭转滑环温度变化与机组功率的联合控制方法及装置
CN112796944B (zh) 一种用于风力发电机组的降温方法、系统及设备
US20230275532A1 (en) Wind turbine having an electrical power generation assembly and method for detecting a fault condition in such a wind turbine
JP5798189B2 (ja) 発電機用ブレーキ装置
CN105736255A (zh) 一种海上风电场水冷机组超温停机的判定方法
CN111987866A (zh) 永磁电机的温度监测方法及装置、计算机可读存储介质及风力发电机组
CN220154814U (zh) 全智能型坝顶发电机自动控制系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21947908

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE