WO2023272969A1 - 风力发电机组叶片平衡的检测方法和装置 - Google Patents

风力发电机组叶片平衡的检测方法和装置 Download PDF

Info

Publication number
WO2023272969A1
WO2023272969A1 PCT/CN2021/119800 CN2021119800W WO2023272969A1 WO 2023272969 A1 WO2023272969 A1 WO 2023272969A1 CN 2021119800 W CN2021119800 W CN 2021119800W WO 2023272969 A1 WO2023272969 A1 WO 2023272969A1
Authority
WO
WIPO (PCT)
Prior art keywords
generating set
wind power
tower
power generating
pixel
Prior art date
Application number
PCT/CN2021/119800
Other languages
English (en)
French (fr)
Inventor
李新乐
Original Assignee
新疆金风科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新疆金风科技股份有限公司 filed Critical 新疆金风科技股份有限公司
Publication of WO2023272969A1 publication Critical patent/WO2023272969A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D13/00Assembly, mounting or commissioning of wind motors; Arrangements specially adapted for transporting wind motor components
    • F03D13/30Commissioning, e.g. inspection, testing or final adjustment before releasing for production
    • F03D13/35Balancing static or dynamic imbalances
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Definitions

  • the present application generally relates to the technical field of wind power generation, and more specifically, relates to a method and device for detecting blade balance of a wind power generating set.
  • unbalanced blades often cause large vibrations of wind turbines, including the vibration of the nacelle along the wind direction, the lateral vibration of the nacelle, and the torsional vibration of the nacelle. If the problem of unbalanced blades is serious or left untreated for a long time, it will affect the reliability of the wind turbine and reduce the life of the wind turbine.
  • the embodiments of the present application provide a method and device for detecting blade balance of a wind power generating set, so as to detect and check the unbalanced blade of the wind generating set in time, improve the reliability of the wind generating set and the life of the wind generating set .
  • a method for detecting blade balance of a wind power generating set includes: acquiring an image taken by a slide rail camera installed at the bottom of a wind power generating set tower, wherein the image includes at least The hub of the wind turbine and the tip of the vertically downward blade; based on the parameters of the image and the physical parameters of the wind turbine, the tower identification point of the wind turbine is determined in the captured image; based on the tower identification point , determine the static headroom distance of the wind power generating set, wherein the static headroom distance refers to the headroom distance when a certain blade of the wind power generating set is locked vertically downward; check whether the blades of the wind power generating set are balanced according to the static headroom distance .
  • a device for detecting blade balance of a wind power generating set includes: an image acquisition unit configured to: acquire an image taken by a slide rail camera installed at the bottom of a wind power generating set tower, wherein, The image includes at least the hub of the wind power generating set and the blade tips of the vertically downward blades; the identification point determination unit is configured to determine in the captured image based on the parameters of the image and the physical parameters of the wind generating set The tower identification point of the wind power generating set; the clearance determining unit configured to: determine the static clearance distance of the wind generating set based on the tower identification point, wherein the static clearance means that a certain blade of the wind generating set is locked is the clearance distance when going vertically downward; the balance detection unit is configured to: detect whether the blades of the wind power generating set are in a balanced state according to the static clearance distance.
  • a computer-readable storage medium storing a computer program
  • the method for detecting blade balance of a wind power generating set as described above is implemented.
  • a computing device comprising: a processor; and a memory storing a computer program which, when executed by the processor, implements a wind turbine blade as described above. Balanced detection method.
  • the tower identification point can be accurately determined, and Accurately calculate the static clearance distance based on the determined tower identification points, and detect whether the blades of the wind turbine are in a balanced state according to the static clearance distance, thereby reducing the impact of blade imbalance on the wind turbine and improving the reliability of the wind turbine. Improve the life of wind turbines.
  • the blade balance detection method and device of the embodiments of the present application by accurately determining the static clearance distance, the consistency of the blade installation can be determined after the blade hoisting is completed, thereby increasing the power generation, and can Confirm the wear of the blades to avoid safety accidents caused by unbalanced blades.
  • FIG. 1 is a schematic diagram of an application scenario showing a method for detecting blade balance of a wind power generating set according to an embodiment of the present application
  • Fig. 2 is a flowchart illustrating a method for detecting blade balance of a wind power generating set according to an embodiment of the present application
  • FIG. 3 is a schematic diagram illustrating a slide camera according to an embodiment of the present application.
  • FIG. 4 is a diagram illustrating an image captured by a skid camera according to an embodiment of the present application.
  • Fig. 5 is a flow chart showing a method for determining a tower identification point of a wind power generating set in a captured image according to an embodiment of the present application
  • Fig. 6 is a diagram showing an example of determining a tower identification point of a wind power generating set in a captured image according to an embodiment of the present application
  • Fig. 7 is a block diagram showing a detection device for wind turbine blade balance according to an embodiment of the present application.
  • FIG. 8 is a block diagram illustrating a computing device according to an embodiment of the application.
  • first means “first”, “second” and “third” may be used herein to describe various members, components, regions, layers or sections, these members, components, regions, layers or sections should not be referred to as These terms are limited. Rather, these terms are only used to distinguish one element, component, region, layer or section from another element, component, region, layer or section.
  • a first member, a first component, a first region, a first layer, or a first portion referred to in examples described herein could also be termed a second member, a second component, or a first portion without departing from the teachings of the examples.
  • the method and device for detecting blade balance of a wind power generating set can be used for hoisting and rechecking of a wind generating set.
  • the wind turbine blade balance detection method and device can be used to initially check the possible problems after the blades are installed, such as the unbalanced problem of the three blades, so as to increase the guarantee for the blade hoisting.
  • the detection method and device of the blade balance of the wind turbine can be used to check whether there are problems such as increased blade imbalance and abnormal changes in static clearance caused by uneven force after the blade is running, so as to facilitate timely detection of problems during blade operation. problems, so as to prevent major accidents in advance.
  • Fig. 1 shows a schematic diagram of an application scenario of a method for detecting blade balance of a wind power generating set according to an embodiment of the present application.
  • the application scenario includes a wind power generating set 100 , a photographing device 200 and a server 300 .
  • the wind power generating set 100 includes a nacelle 110 , a blade 120 , a tower 130 and so on.
  • the photographing device 200 is arranged at the bottom of the tower of the wind power generating set 100; the photographing device 200 may be any device capable of photographing images or videos.
  • the server 300 and the wind power generating set 100 and/or the photographing device 200 may be connected wirelessly or wired, which is not limited here.
  • the above-mentioned server 300 may be a device with computing functions, which may be a server, or a server cluster composed of several servers, or a cloud computing platform or a virtualization center, which is not limited in this application.
  • the aforementioned photographing device 200 may be a slide camera.
  • the slide camera will be introduced in detail in subsequent embodiments, and will not be repeated here.
  • the slide camera installed at the bottom of the tower of the wind power generating set 100 can take pictures of the wind power generating set 100 to obtain an image of the wind power generating set. Afterwards, the image of the wind power generating set can be sent to the server 300 through a wired or wireless network.
  • the server 300 can determine the tower marking point 140 of the wind power generating set 100 through the acquired physical parameters of the wind generating set and the received image of the wind generating set, and then determine the blade tip to the tower based on the determined tower marking point 400 130 of the static clearance distance; after that, it can be judged according to the determined static clearance distance whether the blades of the wind power generating set are balanced, and correction is performed when the blades are detected to be in an unbalanced state. Therefore, through the present application, it is possible to detect the unbalanced problem of the blades after determining the clearance distance, and correct it, thereby improving the reliability of the wind power generating set and increasing the service life of the wind generating set.
  • the application scenario may only include the wind power generating set 100 and the photographing device 200 .
  • the slide camera installed at the bottom of the tower of the wind power generating set 100 can take pictures of the wind power generating set 100 to obtain an image of the wind power generating set.
  • the image of the wind generating set can be sent to the wind generating set controller, such as the main controller of the wind generating set (not shown in the figure), through a wired or wireless network.
  • the main controller can determine the tower marking point 140 of the wind power generating set 100 through the obtained physical parameters of the wind generating set and the received image of the wind generating set, and then determine the distance between the tip of the blade and the tower based on the determined tower marking point 400.
  • the static clearance distance of the barrel 130 then, it can be judged according to the determined static clearance distance whether the blades of the wind power generating set are in a balanced state, and corrections can be made when the blades are detected to be in an unbalanced state. Therefore, through the present application, it is possible to detect the unbalanced problem of the blades after determining the clearance distance, and correct it, thereby improving the reliability of the wind power generating set and increasing the service life of the wind generating set.
  • Fig. 2 is a flowchart illustrating a method for detecting blade balance of a wind power generating set according to an embodiment of the present application.
  • the method for detecting blade balance of a wind power generating set according to an embodiment of the present application can be implemented in a computing device with sufficient computing power.
  • step S201 an image captured by a skid camera installed at the bottom of a tower of a wind power generating set may be obtained.
  • the images taken by the skid camera may at least include the hub of the wind power generating set and the tips of the vertically downward blades.
  • the composition and setting method of the slide camera are described below.
  • FIG. 3 is a schematic diagram illustrating a skid camera according to an embodiment of the present application.
  • the skid camera may include a camera 301 , a ground skid 302 , a skid magnet 303 , a level 304 , and legs 305 .
  • the camera 301 is slidably arranged on the ground rail 302 .
  • the slide rail magnet 303 is arranged on one end of the ground slide rail 302, and is used for being adsorbed to the tower of the wind power generating set.
  • the spirit level 304 is used to detect the levelness of the camera 301 . By adjusting the camera 301 based on the levelness detected by the level 304, the camera 301 can be kept level with the ground.
  • the image captured by the camera 301 can be used to determine the static clearance distance of the wind power generating set.
  • the outrigger 305 is disposed close to the other end of the ground rail 302 (ie, the end where the rail magnet 303 is not disposed) for supporting the ground rail 302 .
  • the outrigger 305 can be set in a telescopic form.
  • the slide rail camera can also include a magnet base 306 for installing the slide rail magnet 303, a camera base 307 for installing the camera 301 and a level 304, a lock 308 for fixing the camera base 307, and a bracket for adjusting A handle 309 for the position and/or length of the leg 305 .
  • FIG. 4 is a diagram illustrating an image captured by a skid camera according to an embodiment of the present application.
  • the hub is located at the center of the captured image.
  • the line extending vertically from the center point of the image is the center line of the tower, and the tower identification point is located in the tower on-line.
  • the center line of the tower can be accurately located, and then the identification point of the tower can be accurately determined, and finally the center line of the tower can be accurately determined. Determine the static headroom distance accurately.
  • the tower identification point of the wind generating set can be determined in the captured image.
  • the parameters of the image may include the pixel coordinates of the two endpoints of the first virtual scale arranged on the hub and the pixel coordinates of the two endpoints of the second virtual ruler arranged on the first tower weld, the first virtual
  • the actual length of the ruler is equal to the actual length of the second virtual ruler.
  • the actual length of the first virtual scale may be, for example, the hub width.
  • the physical parameters of the wind turbine may include the hub height (or tower height), the height of the first tower weld, and the tip height of the vertically downward blades.
  • the method for determining the tower identification point of the wind power generating set in the captured image will be described below with reference to FIG. 5 and FIG. 6 .
  • Fig. 5 is a flow chart illustrating a method for determining a tower identification point of a wind power generating set in a captured image according to an embodiment of the present application.
  • step S501 based on the pixel coordinates of the two end points of the first virtual scale, the pixel coordinates of the two end points of the second virtual scale, the hub height, the height of the first tower weld seam and the blade tip Height, determine the pixel coordinates of two points on the line where the tower identification point is located.
  • the line where the tower identification point is located is parallel to the first virtual scale and the second virtual scale, and the two points on the line where the tower identification point is located are the line where the tower identification point is located and the first virtual scale respectively.
  • An intersection point of a connection line between an end point (for example, the left end point) and the first end point (for example, the left end point) of the second virtual scale and the second end point (for example, the right end point) of the first virtual scale and the second end point (for example, the right end point) of the second virtual scale The intersection of the connecting lines of the second end points (for example, right end points) of the two virtual rulers.
  • the pixel length of the first virtual ruler can be determined based on the pixel coordinates of the two endpoints of the first virtual ruler, or the pixel length of the second virtual ruler can be determined based on the pixel coordinates of the two endpoints of the second virtual ruler . Then, based on the pixel length of the first virtual scale or the pixel length of the second virtual scale, the height of the hub or the height of the first tower weld, and the height of the blade tip, determine the two points on the line where the tower identification point is located. The pixel distance of the point.
  • step S502 based on the pixel coordinates of the two points on the line where the tower identification point is located, the pixel coordinates of the midpoint of the two points on the line where the tower identification point is located can be obtained.
  • step S503 the midpoint of two points on the line where the tower identification point is located may be determined as the tower identification point.
  • Fig. 6 is a diagram illustrating an example of determining a tower identification point of a wind power generating set in a captured image according to an embodiment of the present application. The method for determining the identification point of the tower of the wind power generating set in the captured image will be specifically described below with reference to FIG. 5 and FIG. 6 .
  • A'B' is the first virtual scale
  • C'D' is the second virtual scale
  • G'H' is the line where the tower identification point is located.
  • A'B' coincides with the hub edge
  • C'D' coincides with the first tower weld.
  • OE as the hub height
  • OF as the height of the first tower weld
  • OI as the blade tip height.
  • the pixel coordinates of the two endpoints of the first virtual scale and the two endpoints of the second virtual scale are A′(x a , y a ), B′(x b , y b ), C′(x c , y c ), D′(x d , y d ), the pixel length of the first virtual scale can be calculated by equation (1):
  • G'H' can be obtained based on the pixel coordinates of A'B'C'D' (equivalent to the relationship between the two ends of the line where the tower identification point is located), and then based on the expression of G'H' and The pixel distance of G'H' determines the pixel coordinates of G' and H'.
  • the first end point of the first virtual scale and the first end point of the second virtual scale can be determined.
  • G'H' obtained based on the pixel coordinates of A'B'C'D' can be realized in the following way:
  • the pixel coordinates of G' and H' can be determined as follows.
  • y g , x h , y h can be obtained in turn, so as to determine the pixel coordinates of G′ and H′.
  • the pixel length of the second virtual scale can also be calculated, and the pixel distance between two points on the line where the tower identification point is located can also be calculated.
  • the static headroom distance of the wind power generating set may be determined based on the identification points of the tower.
  • the static clearance distance refers to the clearance distance when a certain blade of the wind turbine is locked vertically downward.
  • the pixel distance between the tower identification point and the tip of the vertically downward blade can be determined first, then the actual distance corresponding to the unit pixel can be determined, and finally based on the distance between the tower identification point and the vertically downward blade
  • the pixel distance between blade tips and the actual distance corresponding to the unit pixel determine the static clearance distance of the wind turbine.
  • the actual distance corresponding to the unit pixel may be determined based on the hub width and its corresponding pixel width, hub height, and tip height of the vertically downward blade.
  • the actual distance corresponding to the unit pixel can be determined by the following equation:
  • L c represents the static clearance distance of the wind power generating set
  • L c' represents the pixel distance between the identification point of the tower and the tip of the vertically downward blade.
  • step S204 it is determined whether the blades of the wind power generating set are in a balanced state according to the static clearance distance.
  • the preset condition includes: the static headroom distance is greater than the first threshold; and/or the static headroom distance is smaller than the second threshold.
  • an alarm message may be sent to the server or the controller of the wind power generating set, so that the server or the controller of the wind generating set can judge the current specific work of the wind generating set according to the alarm information.
  • make corresponding adjustments such as derating protection for the wind turbine, so as to reduce the vibration caused by the unbalanced blades, improve the life of the wind turbine, and reduce the loss of power generation; in addition, you can also adjust the blade angle, adjust the blade Unbalance, etc., to reduce the damage caused by unbalanced blades to wind turbines.
  • the alarm information can also be used to notify the staff that the blades of the wind power generator are in an unbalanced state, so that the staff can take corresponding measures to reduce the damage caused by the unbalanced blades to the wind power generator.
  • the method for detecting blade balance of a wind power generator set provided by the embodiment of the present application can accurately determine the tower identification points in the image, and accurately calculate the static clearance distance based on the determined tower identification points, and further according to the static The clearance distance detects whether the blades of the wind turbine are in a balanced state, thereby reducing the impact of blade imbalance on the wind turbine, improving the reliability of the wind turbine, and increasing the life of the wind turbine.
  • the consistency of blade installation can be confirmed after the blade hoisting is completed, thereby increasing the power generation, and can be confirmed during the re-inspection of the wind turbine.
  • the wear of the blades can avoid safety accidents caused by the imbalance of the blades.
  • FIG. 7 is a block diagram illustrating a blade balance detection device according to an embodiment of the present application.
  • the blade balance detection device according to the embodiment of the present application can be implemented in a computing device with sufficient computing power.
  • a blade balance detection device 700 may include an image acquisition unit 710 , a marker point determination unit 720 , a headroom determination unit 730 and a balance detection unit 740 .
  • the image acquisition unit 710 may acquire images taken by a skid camera installed at the bottom of the tower of the wind power generating set. As mentioned above, the acquired images may include at least the hub of the wind turbine and the tips of the vertically downward blades.
  • the skid camera may include a camera, a ground skid, a skid magnet, a level, and legs.
  • the camera is slidably set on the ground slide rail, and the slide rail magnet is set at one end of the ground slide rail for adsorption to the tower of the wind turbine.
  • the spirit level is used to detect the level of the camera, and the outriggers are set close to the ground slide rail
  • the other end is used to support the ground rail.
  • the skid camera may be installed in such a manner that the hub is located at the center of the image captured by the skid camera.
  • the identification point determination unit 720 may determine the tower identification point of the wind power generation set in the captured image based on the parameters of the acquired image and the physical parameters of the wind power generation set.
  • the parameters of the image may include the pixel coordinates of the two endpoints of the first virtual scale arranged on the hub and the pixel coordinates of the two endpoints of the second virtual ruler arranged on the first tower weld, and the first The actual length of the virtual ruler is equal to the actual length of the second virtual ruler.
  • the physical parameters of the wind turbine may include the height of the hub, the height of the first tower weld and the tip height of the vertically downward blades.
  • the marker point determination unit 720 can determine the tower height based on the pixel coordinates of the two end points of the first virtual scale, the pixel coordinates of the two end points of the second virtual scale, the hub height, the height of the first tower weld seam, and the blade tip height.
  • the line where the tower marking point is located is parallel to the first virtual scale and the second virtual scale
  • the two points on the line where the tower marking point is located are the line where the tower marking point is located and the first virtual scale respectively.
  • the marker point determination unit 720 may obtain the pixel coordinates of the midpoint of the two points on the line where the tower marker point is located based on the pixel coordinates of the two points on the line where the tower marker point is located, and obtain The midpoint of is determined as the tower identification point.
  • the marker point determining unit 720 can also determine the pixel length of the first virtual scale based on the pixel coordinates of the two end points of the first virtual scale, or determine the pixel length of the second virtual scale based on the pixel coordinates of the two end points of the second virtual scale. Length, based on the pixel length of the first virtual scale or the pixel length of the second virtual scale, the height of the hub or the height of the first tower weld, and the height of the blade tip, determine two points on the line where the tower identification point is located and based on the pixel distance between two points on the line where the tower identification point is located and the relationship between the two points on the line where the tower identification point is located, determine the two points on the line where the tower identification point is located. The pixel coordinates of a point.
  • the marker point determining unit 720 can determine the distance between the first end point of the first virtual scale and the second virtual scale based on the pixel coordinates of the first end point of the first virtual scale and the first end point of the second virtual scale.
  • the relationship between the first end point can determine the relationship between the second end point of the first virtual scale and the second end point of the second virtual scale based on the pixel coordinates of the second end point of the first virtual scale and the second end point of the second virtual scale.
  • the tower identity can be determined according to the relationship between the first end point of the first virtual scale and the first end point of the second virtual scale and the relationship between the second end point of the first virtual scale and the second end point of the second virtual scale The relationship between two points on the line on which the points lie.
  • the clearance determination unit 730 may determine the static clearance distance of the wind power generating set based on the identification points of the tower. As mentioned above, the static clearance distance refers to the clearance distance when a certain blade of the wind turbine is locked vertically downward. Further, the headroom determination unit 730 can determine the pixel distance between the tower identification point and the tip of the vertically downward blade, determine the actual distance corresponding to the unit pixel, and based on the pixel distance and the actual distance corresponding to the unit pixel, determine The static clearance distance of the wind turbine. Optionally, the clearance determining unit 730 may determine the actual distance corresponding to the unit pixel based on the width of the hub and its corresponding pixel width, the height of the hub, and the height of the tip of the vertically downward blade.
  • the balance detection unit 740 is configured to: detect whether the blades of the wind power generating set are in a balanced state according to the static clearance distance. Further, the clearance determining unit 730 may determine that the blades of the wind power generating set are in an unbalanced state in response to the static clearance distance satisfying a preset condition.
  • the preset conditions include: the static headroom distance is greater than a first threshold; and/or, the static headroom distance is smaller than a second threshold.
  • FIG. 8 is a block diagram illustrating a computing device according to an embodiment of the application.
  • a computing device 800 may include a processor 810 and a memory 820 .
  • the processor 810 may include (but is not limited to) a central processing unit (CPU), a digital signal processor (DSP), a microcomputer, a field programmable gate array (FPGA), a system on a chip (SoC), a microprocessor, an application specific integrated circuit (ASIC) and so on.
  • the memory 820 may store computer programs to be executed by the processor 810 .
  • Memory 820 includes high-speed random access memory and/or non-volatile computer-readable storage media.
  • the method for detecting blade balance of a wind power generating set may be written as a computer program and stored on a computer-readable storage medium.
  • the computer program is executed by the processor, the method for detecting blade balance of a wind power generating set as described above can be realized.
  • Examples of computer-readable storage media include: Read Only Memory (ROM), Random Access Programmable Read Only Memory (PROM), Electrically Erasable Programmable Read Only Memory (EEPROM), Random Access Memory (RAM), Dynamic Random Access Memory (DRAM), Static Random Access Memory (SRAM), Flash Memory, Nonvolatile Memory, CD-ROM, CD-R, CD+R, CD-RW, CD+RW, DVD-ROM, DVD -R, DVD+R, DVD-RW, DVD+RW, DVD-RAM, BD-ROM, BD-R, BD-R LTH, BD-RE, Blu-ray or Disc storage, Hard Disk Drive (HDD), Solid State Drive ( SSD), memory cards (such as Multimedia Cards, Secure Digital (SD) or Extreme Digital (XD) cards), magnetic tapes, floppy disks, magneto-optical data storage devices, optical data storage devices, hard disks, solid-state disks, and any other device , said any other means configured to store in a non-transitory manner a computer program and any associated
  • the computer program and any associated data, data files and data structures are distributed over a networked computer system such that the computer program and any associated data, data files and data structures are processed by one or more processors or Computers store, access and execute in a distributed fashion.
  • the tower identification point can be accurately determined, and Accurately calculate the static clearance distance based on the determined tower identification points, and detect whether the blades of the wind turbine are in a balanced state according to the static clearance distance, so that the blade imbalance of the wind turbine can be detected and verified in time, and the reliability of the wind turbine can be improved. and the lifetime of wind turbines.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Wind Motors (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

一种风力发电机组叶片平衡的检测方法、检测装置、可读存储介质和计算装置,该检测方法包括:获取安装在风力发电机组塔底的滑轨相机拍摄的图像;基于所述图像的参数以及风力发电机组的物理参数,在拍摄的图像中确定风力发电机组的塔筒标识点;基于塔筒标识点,确定风力发电机组的静态净空距离;根据静态净空距离检测风力发电机组叶片是否处于平衡状态。该检测方法、检测装置、可读存储介质和计算装置通过精确地确定静态净空距离,能够在叶片吊装完成后确定叶片安装的一致性,能够在风机复检时确认叶片的磨损情况,避免由于叶片不平衡造成的安全事故。

Description

风力发电机组叶片平衡的检测方法和装置 技术领域
本申请总体说来涉及风力发电技术领域,更具体地讲,涉及一种风力发电机组叶片平衡的检测方法和装置。
背景技术
在风力发电机组的运行过程中,叶片不平衡往往会造成风力发电机组产生较大振动,包括机舱沿风向振动、机舱横向振动、机舱扭转方向振动等。如果叶片不平衡的问题严重或长期不处理,会影响风力发电机组的可靠性,降低风力发电机组的寿命。
发明内容
因此,本申请的实施例提供一种风力发电机组叶片平衡的检测方法和装置,以便能够及时发现并校验风力发电机组的叶片不平衡问题,提高风力发电机组的可靠性和风力发电机组的寿命。
在一个总的方面,提供一种风力发电机组叶片平衡的检测方法,所述叶片平衡的检测方法包括:获取安装在风力发电机组塔底的滑轨相机拍摄的图像,其中,所述图像至少包括风力发电机组的轮毂和竖直向下的叶片的叶尖;基于所述图像的参数以及风力发电机组的物理参数,在拍摄的图像中确定风力发电机组的塔筒标识点;基于塔筒标识点,确定风力发电机组的静态净空距离,其中,所述静态净空距离是指风力发电机组的某个叶片被锁定为竖直向下时的净空距离;根据静态净空距离检测风力发电机组的叶片是否平衡。
在另一总的方面,提供一种风力发电机组叶片平衡的检测装置,所述装置包括:图像获取单元,被配置为:获取安装在风力发电机组塔底的滑轨相机拍摄的图像,其中,所述图像至少包括风力发电机组的轮毂和竖直向下的叶片的叶尖;标识点确定单元,被配置为:基于所述图像的参数以及风力发电机组的物理参数,在拍摄的图像中确定风力发电机组的塔筒标识点;净空确定单元,被配置为:基于塔筒标识点,确定风力发电机组的静态净空距离, 其中,所述静态净空距离是指风力发电机组的某个叶片被锁定为竖直向下时的净空距离;平衡检测单元,被配置为:根据静态净空距离检测风力发电机组叶片是否处于平衡状态。
在另一总的方面,提供一种存储有计算机程序的计算机可读存储介质,当所述计算机程序被处理器执行时,实现如上所述的风力发电机组叶片平衡的检测方法。
在另一总的方面,提供一种计算装置,所述计算装置包括:处理器;和存储器,存储有计算机程序,当所述计算机程序被处理器执行时,实现如上所述的风力发电机组叶片平衡的检测方法。
根据本申请的实施例的风力发电机组叶片平衡的检测方法和装置,能够基于安装在风力发电机组塔底的相机拍摄的图像,结合风力发电机组的物理参数,准确地确定塔筒标识点,并且基于确定的塔筒标识点精确地计算静态净空距离,根据静态净空距离检测风力发电机组叶片是否处于平衡状态,从而减少叶片不平衡的问题对风力发电机组的影响,提高风力发电机组的可靠性,提高风力发电机组的寿命。此外,根据本申请的实施例的叶片平衡的检测方法和装置,通过精确地确定静态净空距离,能够在叶片吊装完成后确定叶片安装的一致性,进而提升发电量,并且能够在风机复检时确认叶片的磨损情况,避免由于叶片不平衡造成的安全事故。
附图说明
通过下面结合示出实施例的附图进行的描述,本申请的实施例的上述和其他目的和特点将会变得更加清楚,其中:
图1是示出根据本申请的实施例的风力发电机组叶片平衡的检测方法的应用场景示意图;
图2是示出根据本申请的实施例的风力发电机组叶片平衡的检测方法的流程图;
图3是示出根据本申请的实施例的滑轨相机的示意图;
图4是示出根据本申请的实施例的滑轨相机拍摄的图像的示图;
图5是示出根据本申请的实施例的在拍摄的图像中确定风力发电机组的塔筒标识点的方法的流程图;
图6是示出根据本申请的实施例的在拍摄的图像中确定风力发电机组的 塔筒标识点的示例的示图;
图7是示出根据本申请的实施例的风力发电机组叶片平衡的检测装置的框图;
图8是示出根据本申请的实施例的计算装置的框图。
具体实施方式
提供下面的具体实施方式以帮助读者获得对在此描述的方法、设备和/或系统的全面理解。然而,在理解本申请的公开之后,在此描述的方法、设备和/或系统的各种改变、修改和等同物将是清楚的。例如,在此描述的操作的顺序仅是示例,并且不限于在此阐述的那些顺序,而是除了必须以特定的顺序发生的操作之外,可如在理解本申请的公开之后将是清楚的那样被改变。此外,为了更加清楚和简明,本领域已知的特征的描述可被省略。
在此描述的特征可以以不同的形式来实现,而不应被解释为限于在此描述的示例。相反,已提供在此描述的示例,以仅示出实现在此描述的方法、设备和/或系统的许多可行方式中的一些可行方式,所述许多可行方式在理解本申请的公开之后将是清楚的。
如在此使用的,术语“和/或”包括相关联的所列项中的任何一个以及任何两个或更多个的任何组合。
尽管在此可使用诸如“第一”、“第二”和“第三”的术语来描述各种构件、组件、区域、层或部分,但是这些构件、组件、区域、层或部分不应被这些术语所限制。相反,这些术语仅用于将一个构件、组件、区域、层或部分与另一构件、组件、区域、层或部分进行区分。因此,在不脱离示例的教导的情况下,在此描述的示例中所称的第一构件、第一组件、第一区域、第一层或第一部分也可被称为第二构件、第二组件、第二区域、第二层或第二部分。
在说明书中,当元件(诸如,层、区域或基底)被描述为“在”另一元件上、“连接到”或“结合到”另一元件时,该元件可直接“在”另一元件上、直接“连接到”或“结合到”另一元件,或者可存在介于其间的一个或多个其他元件。相反,当元件被描述为“直接在”另一元件上、“直接连接到”或“直接结合到”另一元件时,可不存在介于其间的其他元件。
在此使用的术语仅用于描述各种示例,并不将用于限制公开。除非上下 文另外清楚地指示,否则单数形式也意在包括复数形式。术语“包含”、“包括”和“具有”说明存在叙述的特征、数量、操作、构件、元件和/或它们的组合,但不排除存在或添加一个或多个其他特征、数量、操作、构件、元件和/或它们的组合。
除非另有定义,否则在此使用的所有术语(包括技术术语和科学术语)具有与由本申请所属领域的普通技术人员在理解本申请之后通常理解的含义相同的含义。除非在此明确地如此定义,否则术语(诸如,在通用词典中定义的术语)应被解释为具有与它们在相关领域的上下文和本申请中的含义一致的含义,并且不应被理想化或过于形式化地解释。
此外,在示例的描述中,当认为公知的相关结构或功能的详细描述将引起对本申请的模糊解释时,将省略这样的详细描述。
根据本申请的实施例的风力发电机组的叶片平衡的检测方法和装置可以用于风力发电机组吊装和复检。在叶片吊装时,可以通过风力发电机组叶片平衡的检测方法和装置初步检查叶片安装后可能出现的问题,如三只叶片不平衡的问题,从而为叶片吊装增加保障。在风机复检时,可以通过风力发电机组叶片平衡的检测方法和装置检查叶片运行之后是否有受力不均而造成的叶片不平衡加剧、静态净空异常变化等问题,方便及时发现叶片运行时出现的问题,从而提前预防重大事故的发生。
图1示出本申请的实施例的风力发电机组叶片平衡的检测方法的应用场景示意图。该应用场景包括风力发电机组100、拍摄设备200和服务器300。其中,风力发电机组100包括机舱110、叶片120、塔筒130等等。拍摄设备200设置于风力发电机组100的塔底;该拍摄设备200可以是具有图像或视频拍摄功能的任意设备。上述服务器300与风力发电机组100和/或拍摄设备200可以通过无线连接,也可以通过有线连接,此处不做限定。可选地,上述服务器300可以是具有计算功能的设备,其可以是一个服务器,也可以是若干个服务器组成的服务器集群,还可以是云计算平台或虚拟化中心,本申请对比不做限定。
在本申请实施例中,上述拍摄设备200可以是滑轨相机。关于滑轨相机将在后续实施例中进行详细介绍,此处不做赘述。
在一个示例性实施例中,设置在风力发电机组100塔底的滑轨相机,可以对该风力发电机组100进行拍摄,得到风力发电机组的图像。之后,可以 将该风力发电机组的图像通过有线或者无线网络发送至服务器300。服务器300可以通过获取的风力发电机组的物理参数,以及接收到的风力发电机组的图像,确定风力发电机组100的塔筒标识点140,进而基于确定的塔筒标识点400确定叶尖到塔筒130的静态净空距离;之后,可以根据确定的静态净空距离判断风力发电机组的叶片是否平衡,并在检测到叶片处于不平衡状态时进行校正。因此,通过本申请能够在确定净空距离之后检测叶片不平衡问题,并进行校正,从而提高风力发电机组的可靠性,提高风力发电机组的寿命。
在另一个示例性实施例中,该应用场景可以只包括风力发电机组100和拍摄设备200。在这种情况下,设置在风力发电机组100塔底的滑轨相机,可以对该风力发电机组100进行拍摄,得到风力发电机组的图像。之后,可以将该风力发电机组的图像通过有线或者无线网络发送风力发电机组控制器,例如风力发电机组的主控制器(图中为示出)。主控制器可以通过获取的风力发电机组的物理参数,以及接收到的风力发电机组的图像,确定风力发电机组100的塔筒标识点140,进而基于确定的塔筒标识点400确定叶尖到塔筒130的静态净空距离;之后,可以根据确定的静态净空距离判断风力发电机组的叶片是否处于平衡状态,并在检测到叶片处于不平衡状态时进行校正。因此,通过本申请能够在确定净空距离之后检测叶片不平衡问题,并进行校正,从而提高风力发电机组的可靠性,提高风力发电机组的寿命。
下面参照图2至图8详细描述根据本申请的实施例的风力发电机组叶片平衡的检测方法和装置。
图2是示出根据本申请的实施例的风力发电机组叶片平衡的检测方法的流程图。根据本申请的实施例的风力发电机组叶片平衡的检测方法可以在具有足够运算能力的计算装置中实现。
参照图2,在步骤S201中,可获取安装在风力发电机组塔底的滑轨相机拍摄的图像。这里,为了精确地确定静态净空距离,滑轨相机拍摄的图像可至少包括风力发电机组的轮毂和竖直向下的叶片的叶尖。下面描述滑轨相机的构成及其设置方式。
图3是示出根据本申请的实施例的滑轨相机的示意图。
参照图3,滑轨相机可包括相机301、地面滑轨302、滑轨磁体303、水平仪304和支腿305。相机301可滑动地设置在地面滑轨302上。滑轨磁体 303设置在地面滑轨302的一端,用于吸附到风力发电机组的塔筒。水平仪304用于检测相机301的水平度。通过基于水平仪304检测的水平度调节相机301,可以保持相机301与地面水平。当相机301与地面水平时,相机301拍摄的图像可以用于确定风力发电机组的静态净空距离。支腿305设置为接近地面滑轨302的另一端(即,未设置滑轨磁体303的一端),用于支撑地面滑轨302。可选择地,支腿305可以设置为可伸缩形式。进一步讲,滑轨相机还可包括用于安装滑轨磁体303的磁铁座306,用于安装相机301和水平仪304的相机座307,用于固定相机座307的锁扣308,以及用于调节支腿305的位置和/或长度的手柄309。
为了基于相机301拍摄的图像来确定静态净空距离,需要以使滑轨相机拍摄的图像中轮毂位于图像的中心的方式来设置滑轨相机。图4是示出根据本申请的实施例的滑轨相机拍摄的图像的示图。在图4中,轮毂位于拍摄的图像的中心、这样,在滑轨相机拍摄的图像中,从图像中心点沿着垂直方向延伸的线即为塔筒中线,而塔筒标识点定位在塔筒中线上。根据本申请的实施例,通过使滑轨相机拍摄的图像中轮毂位于图像的中心的方式来设置滑轨相机,可以精确地定位塔筒中线,进而可以精确地确定塔筒标识点,最终能够精确地确定静态净空距离。
返回参照图2,在步骤S202中,可基于拍摄的图像的参数以及风力发电机组的物理参数,在拍摄的图像中确定风力发电机组的塔筒标识点。这里,图像的参数可包括布置在轮毂上的第一虚拟标尺的两个端点的像素坐标和布置在第一个塔筒焊缝上的第二虚拟标尺的两个端点的像素坐标,第一虚拟标尺的实际长度与第二虚拟标尺的实际长度相等。可选择地,第一虚拟标尺的实际长度可以为例如轮毂宽度。此外,风力发电机组的物理参数可包括轮毂高度(或塔筒高度)、第一个塔筒焊缝的高度和竖直向下的叶片的叶尖高度。下面参照图5和图6描述在拍摄的图像中确定风力发电机组的塔筒标识点的方法。
图5是示出根据本申请的实施例的在拍摄的图像中确定风力发电机组的塔筒标识点的方法的流程图。
参照图5,在步骤S501中,可基于第一虚拟标尺的两个端点的像素坐标、第二虚拟标尺的两个端点的像素坐标、轮毂高度、第一个塔筒焊缝的高度和叶尖高度,确定塔筒标识点所在的线上的两个点的像素坐标。这里,塔筒标 识点所在的线与第一虚拟标尺和第二虚拟标尺平行,并且塔筒标识点所在的线上的两个点为塔筒标识点所在的线分别与第一虚拟标尺的第一端点(例如,左侧端点)与第二虚拟标尺的第一端点(例如,左侧端点)的连接线的交点和第一虚拟标尺的第二端点(例如,右侧端点)与第二虚拟标尺的第二端点(例如,右侧端点)的连接线的交点。
具体地讲,可基于第一虚拟标尺的两个端点的像素坐标,确定第一虚拟标尺的像素长度,或者可基于第二虚拟标尺的两个端点的像素坐标,确定第二虚拟标尺的像素长度。然后,可基于第一虚拟标尺的像素长度或者第二虚拟标尺的像素长度、轮毂高度或第一个塔筒焊缝的高度、以及叶尖高度,确定塔筒标识点所在的线上的两个点的像素距离。最后,可基于塔筒标识点所在的线上的所述两个点的像素距离和塔筒标识点所在的线上的所述两个点的关系(即,塔筒标识点所在的线的表达式),确定塔筒标识点所在的线上的所述两个点的像素坐标。
接下来,在步骤S502中,可基于塔筒标识点所在的线上的所述两个点的像素坐标,得到塔筒标识点所在的线上的两个点的中点的像素坐标。
在步骤S503中,可将塔筒标识点所在的线上的两个点的中点确定为塔筒标识点。
图6是示出根据本申请的实施例的在拍摄的图像中确定风力发电机组的塔筒标识点的示例的示图。以下结合图5和图6具体描述在拍摄的图像中确定风力发电机组的塔筒标识点的方法。
如图6所示,在滑轨相机拍摄的图像中,以水平方向为x轴,以竖直方向为y轴。A′B′为第一虚拟标尺,C′D′为第二虚拟标尺,G′H′为塔筒标识点所在的线。根据本申请的实施例,A′B′与轮毂边缘重合,C′D′与第一个塔筒焊缝重合。此外,定义OE为轮毂高度,OF为第一个塔筒焊缝的高度,OI为叶尖高度。这样,已知第一虚拟标尺的两个端点以及第二虚拟标尺的两个端点的像素坐标为A′(x a,y a)、B′(x b,y b)、C′(x c,y c)、D′(x d,y d),可通过等式(1)计算第一虚拟标尺的像素长度:
Figure PCTCN2021119800-appb-000001
可通过等式(2)计算塔筒标识点所在的线上的两个点的像素距离:
Figure PCTCN2021119800-appb-000002
然后,可基于A′B′C′D′的像素坐标得到G′H′的表达式(相当于塔筒标识 点所在的线的两端点的关系),再基于G′H′的表达式以及G′H′的像素距离确定G′和H′的像素坐标。
根据本申请的实施例,可基于第一虚拟标尺的第一端点与第二虚拟标尺的第一端点的像素坐标,确定第一虚拟标尺的第一端点与第二虚拟标尺的第一端点的关系;基于第一虚拟标尺的第二端点与第二虚拟标尺的第二端点的像素坐标,确定第一虚拟标尺的第二端点与第二虚拟标尺的第二端点的关系;根据第一虚拟标尺的第一端点与第二虚拟标尺的第一端点的关系以及第一虚拟标尺的第二端点与第二虚拟标尺的第二端点的关系,确定塔筒标识点所在的线上的两个点的关系。
具体地讲,基于A′B′C′D′的像素坐标得到G′H′的表达式,可以通过如下方式实现:
基于A′C′的坐标A′(x a,y a)、C′(x c,y c)得到A′C′的表达式:
Figure PCTCN2021119800-appb-000003
基于B′D′的坐标B′(x b,y b)、D′(x d,y d)得到B′D′的表达式:
Figure PCTCN2021119800-appb-000004
由于A′B′斜率为
Figure PCTCN2021119800-appb-000005
因此结合等式(3)和等式(4),可以得到G′H′的表达式:
y=k ghx+b gh=k abx+b gh       (5)
在得到G′H′的表达式后,基于G′H′的表达式以及G′H′的像素距离,可以通过如下方式确定G′和H′的像素坐标。
设G′点(x g,y g)在直线A′C′上,y g=k acx g+b ac,则有b gh=y g-k ghx g=y g-k abx g=k acx g+b ac-k abx g=(k ac-k ab)x g+b ac
             (6)
因此,G′H′的表达式可以表示为:
y=k abx+b gh=k abx+y g-k ghx g=k abx+k acx g+b ac-k abx g  (7)
然后,基于B′D′的表达式和G′H′的表达式(17),可以得到B′D′和G′H′的 交点H′的像素坐标。
Figure PCTCN2021119800-appb-000006
Figure PCTCN2021119800-appb-000007
基于G′和H′的像素坐标以及G′H′的像素距离c,可以得到如下方程:
Figure PCTCN2021119800-appb-000008
其中,
Figure PCTCN2021119800-appb-000009
Figure PCTCN2021119800-appb-000010
通过上述方程可以得到x g
Figure PCTCN2021119800-appb-000011
基于得到x g和以上各个等式,可以依次得到y g,x h,y h,从而确定G′和H′的像素坐标。
与等式(1)和(2)类似,也可计算第二虚拟标尺的像素长度,并计算塔筒标识点所在的线上的两个点的像素距离。
返回参照图2,在步骤S203中,可基于塔筒标识点,确定风力发电机组的静态净空距离。如上所述,静态净空距离是指风力发电机组的某个叶片被锁定为竖直向下时的净空距离。具体地讲,可首先确定塔筒标识点与竖直向下的叶片的叶尖之间的像素距离,然后确定单位像素对应的实际距离,最后基于塔筒标识点与竖直向下的叶片的叶尖之间的像素距离以及单位像素对应的实际距离,确定风力发电机组的静态净空距离。根据本申请的实施例,可基于轮毂宽度及其相应的像素宽度、轮毂高度、竖直向下的叶片的叶尖高度, 确定单位像素对应的实际距离。
例如,假设轮毂宽度为L x,轮毂的像素宽度为L x',轮毂高度为OE,叶尖高度为OI,则可通过如下等式确定单位像素对应的实际距离:
Figure PCTCN2021119800-appb-000012
然后,可通过如下等式确定风力发电机组的静态净空距离:
Figure PCTCN2021119800-appb-000013
其中,L c表示风力发电机组的静态净空距离,L c'表示塔筒标识点与竖直向下的叶片的叶尖之间的像素距离。
返回参照图2,在步骤S204中,根据静态净空距离确定风力发电机组的叶片是否处于平衡状态。
在获取到上述静态净空距离之后,可以根据该静态净空距离判断风力发电机组的叶片是否处于平衡状态。
可选地,根据静态净空距离判断是否满足预设条件,响应于静态净空距离满足预设条件,确定风力发电机组叶片处于不平衡状态。其中,预设条件,包括:静态净空距离大于第一阈值;和/或,静态净空距离小于第二阈值。
可选地,在确定叶片处于不平衡状态时,可以向服务器或风力发电机组控制器发送警报信息,以便于服务器或风力发电机组控制器根据该警报信息判断当前风力发电机组的所处的特定工作状况,作出相应的调整,如对风力发电机组进行降容保护,从而减小因叶片不平衡引起的振动,提高风力发电机组的寿命,降低发电量损失;此外,还可以调整叶片角度、调整叶片不平衡度等等,以减少叶片不平衡对风力发电机组造成的伤害。
另外,还可以通过该警报信息通知工作工作人员风力发电机组叶片处于不平衡状态,以便于工作人员作出相应的措施,减少叶片不平衡对风力发电机组造成的伤害。
此外,当确定风力发电机组叶片处于平衡状态时,则停止后续操作。
综上所述,本申请实施例提供的风力发电机组叶片平衡的检测方法,能够在图像中准确地确定塔筒标识点,并且基于确定的塔筒标识点精确地计算静态净空距离,进一步根据静态净空距离检测风力发电机组叶片是否处于平衡状态,从而减少叶片不平衡的问题对风力发电机组的影响,提高风力发电 机组的可靠性,提高风力发电机组的寿命。
此外,根据如上所述的风力发电机组叶片平衡的检测方法,通过精确地确定静态净空距离,能够在叶片吊装完成后确定叶片安装的一致性,进而提升发电量,并且能够在风机复检时确认叶片的磨损情况,避免由于叶片不平衡造成的安全事故。
图7是示出根据本申请的实施例的叶片平衡的检测装置的框图。根据本申请的实施例的叶片平衡的检测装置可以在具有足够运算能力的计算装置中实现。
参照图7,根据本申请的实施例的叶片平衡的检测装置700可包括图像获取单元710、标识点确定单元720、净空确定单元730和平衡检测单元740。
图像获取单元710可获取安装在风力发电机组塔底的滑轨相机拍摄的图像。如上所述,获取的图像可至少包括风力发电机组的轮毂和竖直向下的叶片的叶尖。
可选择地,如上参照图3所描述,滑轨相机可包括相机、地面滑轨、滑轨磁体、水平仪和支腿。相机可滑动地设置在地面滑轨上,滑轨磁体设置在地面滑轨的一端,用于吸附到风力发电机组的塔筒,水平仪用于检测相机的水平度,支腿设置为接近地面滑轨的另一端,用于支撑地面滑轨。另一方面,可以以使滑轨相机拍摄的图像中轮毂位于图像的中心的方式来设置滑轨相机。
识点确定单元720可基于获取的图像的参数以及风力发电机组的物理参数,在拍摄的图像中确定风力发电机组的塔筒标识点。这里,图像的参数可包括布置在轮毂上的第一虚拟标尺的两个端点的像素坐标和布置在第一个塔筒焊缝上的第二虚拟标尺的两个端点的像素坐标,并且第一虚拟标尺的实际长度与第二虚拟标尺的实际长度相等。风力发电机组的物理参数可包括轮毂高度、第一个塔筒焊缝的高度和竖直向下的叶片的叶尖高度。
标识点确定单元720可基于第一虚拟标尺的两个端点的像素坐标、第二虚拟标尺的两个端点的像素坐标、轮毂高度、第一个塔筒焊缝的高度和叶尖高度,确定塔筒标识点所在的线上的两个点的像素坐标。这里,塔筒标识点所在的线与第一虚拟标尺和第二虚拟标尺平行,而塔筒标识点所在的线上的两个点为塔筒标识点所在的线分别与第一虚拟标尺的第一端点与第二虚拟标尺的第一端点的连接线的交点和第一虚拟标尺的第二端点与第二虚拟标尺的第二端点的连接线的交点。可选择地,标识点确定单元720可基于塔筒标识 点所在的线上的两个点的像素坐标,得到塔筒标识点所在的线上的两个点的中点的像素坐标,并将得到的中点确定为塔筒标识点。
标识点确定单元720还可基于第一虚拟标尺的两个端点的像素坐标,确定第一虚拟标尺的像素长度,或者基于第二虚拟标尺的两个端点的像素坐标,确定第二虚拟标尺的像素长度,基于第一虚拟标尺的像素长度或者第二虚拟标尺的像素长度、轮毂高度或第一个塔筒焊缝的高度、以及叶尖高度,确定塔筒标识点所在的线上的两个点的像素距离,并且基于塔筒标识点所在的线上的两个点的像素距离和塔筒标识点所在的线上的所述两个点的关系,确定塔筒标识点所在的线上的两个点的像素坐标。
如上所述,标识点确定单元720可基于第一虚拟标尺的第一端点与第二虚拟标尺的第一端点的像素坐标,确定第一虚拟标尺的第一端点与第二虚拟标尺的第一端点的关系,可基于第一虚拟标尺的第二端点与第二虚拟标尺的第二端点的像素坐标,确定第一虚拟标尺的第二端点与第二虚拟标尺的第二端点的关系,并且可根据第一虚拟标尺的第一端点与第二虚拟标尺的第一端点的关系以及第一虚拟标尺的第二端点与第二虚拟标尺的第二端点的关系,确定塔筒标识点所在的线上的两个点的关系。
净空确定单元730可基于塔筒标识点,确定风力发电机组的静态净空距离。如上所述,静态净空距离是指风力发电机组的某个叶片被锁定为竖直向下时的净空距离。进一步讲,净空确定单元730可确定塔筒标识点与竖直向下的叶片的叶尖之间的像素距离,确定单位像素对应的实际距离,并且基于像素距离以及单位像素对应的实际距离,确定风力发电机组的静态净空距离。可选择地,净空确定单元730可基于轮毂宽度及其相应的像素宽度、轮毂高度、竖直向下的叶片的叶尖高度,确定单位像素对应的实际距离。
平衡检测单元740被配置为:根据静态净空距离检测风力发电机组叶片是否处于平衡状态。进一步讲,净空确定单元730可响应于静态净空距离满足预设条件,确定风力发电机组叶片处于不平衡状态。预设条件包括:静态净空距离大于第一阈值;和/或,静态净空距离小于第二阈值。
图8是示出根据本申请的实施例的计算装置的框图。
参照图8,根据本申请的实施例的计算装置800可包括可处理器810和存储器820。处理器810可包括(但不限于)中央处理器(CPU)、数字信号处理器(DSP)、微型计算机、现场可编程门阵列(FPGA)、片上系统(SoC)、 微处理器、专用集成电路(ASIC)等。存储器820可存储将由处理器810执行的计算机程序。存储器820包括高速随机存取存储器和/或非易失性计算机可读存储介质。当处理器810执行存储器820中存储的计算机程序时,可实现如上所述的风力发电机组叶片平衡的检测方法。
根据本申请的实施例的风力发电机组叶片平衡的检测方法可被编写为计算机程序并被存储在计算机可读存储介质上。当所述计算机程序被处理器执行时,可实现如上所述的风力发电机组叶片平衡的检测方法。计算机可读存储介质的示例包括:只读存储器(ROM)、随机存取可编程只读存储器(PROM)、电可擦除可编程只读存储器(EEPROM)、随机存取存储器(RAM)、动态随机存取存储器(DRAM)、静态随机存取存储器(SRAM)、闪存、非易失性存储器、CD-ROM、CD-R、CD+R、CD-RW、CD+RW、DVD-ROM、DVD-R、DVD+R、DVD-RW、DVD+RW、DVD-RAM、BD-ROM、BD-R、BD-R LTH、BD-RE、蓝光或光盘存储器、硬盘驱动器(HDD)、固态硬盘(SSD)、卡式存储器(诸如,多媒体卡、安全数字(SD)卡或极速数字(XD)卡)、磁带、软盘、磁光数据存储装置、光学数据存储装置、硬盘、固态盘以及任何其他装置,所述任何其他装置被配置为以非暂时性方式存储计算机程序以及任何相关联的数据、数据文件和数据结构并将所述计算机程序以及任何相关联的数据、数据文件和数据结构提供给处理器或计算机使得处理器或计算机能执行所述计算机程序。在一个示例中,计算机程序以及任何相关联的数据、数据文件和数据结构分布在联网的计算机系统上,使得计算机程序以及任何相关联的数据、数据文件和数据结构通过一个或多个处理器或计算机以分布式方式存储、访问和执行。
根据本申请的实施例的风力发电机组叶片平衡的检测方法和装置,能够基于安装在风力发电机组塔底的相机拍摄的图像,结合风力发电机组的物理参数,准确地确定塔筒标识点,并且基于确定的塔筒标识点精确地计算静态净空距离,根据静态净空距离检测风力发电机组叶片是否处于平衡状态,从而能够及时发现并校验风力发电机组的叶片不平衡问题,提高风力发电机组的可靠性和风力发电机组的寿命。此外,根据本申请的实施例的风力发电机组叶片平衡的检测方法和装置,通过精确地确定静态净空距离,能够在叶片吊装完成后确定叶片安装的一致性,进而提升发电量,并且能够在风机复检时确认叶片的磨损情况,避免由于叶片不平衡造成的安全事故。
虽然已表示和描述了本申请的一些实施例,但本领域技术人员应该理解,在不脱离由权利要求及其等同物限定其范围的本申请的原理和精神的情况下,可以对这些实施例进行修改。

Claims (13)

  1. 一种风力发电机组叶片平衡的检测方法,其特征在于,包括:
    获取安装在风力发电机组塔底的滑轨相机拍摄的图像,其中,所述图像至少包括风力发电机组的轮毂和竖直向下的叶片的叶尖;
    基于所述图像的参数以及风力发电机组的物理参数,在拍摄的图像中确定风力发电机组的塔筒标识点;
    基于塔筒标识点,确定风力发电机组的静态净空距离,其中,所述静态净空距离是指风力发电机组的某个叶片被锁定为竖直向下时的净空距离;
    根据静态净空距离检测风力发电机组叶片是否处于平衡状态。
  2. 如权利要求1所述的风力发电机组叶片平衡的检测方法,其特征在于,所述滑轨相机以如下方式来设置:在所述滑轨相机拍摄的图像中轮毂位于图像的中心。
  3. 如权利要求1所述的风力发电机组叶片平衡的检测方法,其特征在于,所述滑轨相机包括:
    相机;
    地面滑轨,相机可滑动地设置在地面滑轨上;
    滑轨磁体,设置在地面滑轨的一端,用于吸附到风力发电机组的塔筒;
    水平仪,用于检测相机的水平度;
    支腿,设置为接近地面滑轨的另一端,用于支撑地面滑轨。
  4. 如权利要求1所述的风力发电机组叶片平衡的检测方法,其特征在于,基于所述图像的参数以及风力发电机组的物理参数,在拍摄的图像中确定风力发电机组的塔筒标识点的步骤包括:
    所述图像的参数包括布置在轮毂上的第一虚拟标尺的两个端点的像素坐标和布置在第一个塔筒焊缝上的第二虚拟标尺的两个端点的像素坐标,其中,第一虚拟标尺的实际长度与第二虚拟标尺的实际长度相等;
    所述物理参数包括轮毂高度、第一个塔筒焊缝的高度和竖直向下的叶片的叶尖高度。
  5. 如权利要求4所述的风力发电机组叶片平衡的检测方法,其特征在于,基于所述图像的参数以及风力发电机组的物理参数,在拍摄的图像中确定风力发电机组的塔筒标识点的步骤包括:
    基于第一虚拟标尺的两个端点的像素坐标、第二虚拟标尺的两个端点的像素坐标、轮毂高度、第一个塔筒焊缝的高度和叶尖高度,确定塔筒标识点所在的线上的两个点的像素坐标,其中,塔筒标识点所在的线与第一虚拟标尺和第二虚拟标尺平行,塔筒标识点所在的线上的所述两个点为塔筒标识点所在的线分别与第一虚拟标尺的第一端点与第二虚拟标尺的第一端点的连接线的交点和第一虚拟标尺的第二端点与第二虚拟标尺的第二端点的连接线的交点;
    基于塔筒标识点所在的线上的所述两个点的像素坐标,得到塔筒标识点所在的线上的两个点的中点的像素坐标;
    将所述中点确定为塔筒标识点。
  6. 如权利要求5所述的风力发电机组叶片平衡的检测方法,其特征在于,基于第一虚拟标尺的两个端点的像素坐标、第二虚拟标尺的两个端点的像素坐标、轮毂高度、第一个塔筒焊缝的高度和叶尖高度,确定塔筒标识点所在的线上的两个点的像素坐标的步骤包括:
    基于第一虚拟标尺的两个端点的像素坐标,确定第一虚拟标尺的像素长度,或者基于第二虚拟标尺的两个端点的像素坐标,确定第二虚拟标尺的像素长度;
    基于第一虚拟标尺的像素长度或者第二虚拟标尺的像素长度、轮毂高度或第一个塔筒焊缝的高度、以及叶尖高度,确定塔筒标识点所在的线上的所述两个点的像素距离;
    基于塔筒标识点所在的线上的所述两个点的像素距离和塔筒标识点所在的线上的所述两个点的关系,确定塔筒标识点所在的线上的所述两个点的像素坐标。
  7. 如权利要求6所述的风力发电机组叶片平衡的检测方法,其特征在于,基于第一虚拟标尺的第一端点与第二虚拟标尺的第一端点的像素坐标,确定第一虚拟标尺的第一端点与第二虚拟标尺的第一端点的关系;基于第一虚拟标尺的第二端点与第二虚拟标尺的第二端点的像素坐标,确定第一虚拟标尺的第二端点与第二虚拟标尺的第二端点的关系;根据第一虚拟标尺的第一端点与第二虚拟标尺的第一端点的关系以及第一虚拟标尺的第二端点与第二虚拟标尺的第二端点的关系,确定塔筒标识点所在的线上的所述两个点的关系。
  8. 如权利要求1-7中任意一项所述的风力发电机组叶片平衡的检测方法, 其特征在于,基于塔筒标识点,确定风力发电机组的静态净空距离的步骤包括:
    确定塔筒标识点与竖直向下的叶片的叶尖之间的像素距离;
    确定单位像素对应的实际距离;
    基于所述像素距离以及单位像素对应的实际距离,确定风力发电机组的静态净空距离。
  9. 如权利要求8所述的风力发电机组叶片平衡的检测方法,其特征在于,确定单位像素对应的实际距离的步骤包括:
    基于轮毂宽度及其相应的像素宽度、轮毂高度、竖直向下的叶片的叶尖高度,确定单位像素对应的实际距离。
  10. 如权利要求1-7中任意一项所述的风力发电机组叶片平衡的检测方法,其特征在于,根据静态净空距离检测风力发电机组叶片是否处于平衡状态的步骤包括:
    响应于静态净空距离满足预设条件,确定风力发电机组叶片处于不平衡状态;
    预设条件,包括:静态净空距离大于第一阈值;和/或,静态净空距离小于第二阈值。
  11. 一种风力发电机组叶片平衡的检测装置,其特征在于,所述装置包括:
    图像获取单元,被配置为:获取安装在风力发电机组塔底的滑轨相机拍摄的图像,其中,所述图像至少包括风力发电机组的轮毂和竖直向下的叶片的叶尖;
    标识点确定单元,被配置为:基于所述图像的参数以及风力发电机组的物理参数,在拍摄的图像中确定风力发电机组的塔筒标识点;
    净空确定单元,被配置为基于塔筒标识点,确定风力发电机组的静态净空距离,其中,所述静态净空距离是指风力发电机组的某个叶片被锁定为竖直向下时的净空距离;
    平衡检测单元,被配置为:根据静态净空距离检测风力发电机组叶片是否处于平衡状态。
  12. 一种存储有计算机程序的计算机可读存储介质,其特征在于,当所述计算机程序被处理器执行时,实现如权利要求1至10中任意一项所述的风 力发电机组叶片平衡的检测方法。
  13. 一种计算装置,其特征在于,所述计算装置包括:
    处理器;和
    存储器,存储有计算机程序,当所述计算机程序被处理器执行时,实现如权利要求1至10任意一项所述的风力发电机组叶片平衡的检测方法。
PCT/CN2021/119800 2021-06-29 2021-09-23 风力发电机组叶片平衡的检测方法和装置 WO2023272969A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110725287.4 2021-06-29
CN202110725287.4A CN113309673A (zh) 2021-06-29 2021-06-29 风力发电机组的静态净空距离确定方法和装置

Publications (1)

Publication Number Publication Date
WO2023272969A1 true WO2023272969A1 (zh) 2023-01-05

Family

ID=77380759

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/119800 WO2023272969A1 (zh) 2021-06-29 2021-09-23 风力发电机组叶片平衡的检测方法和装置

Country Status (2)

Country Link
CN (1) CN113309673A (zh)
WO (1) WO2023272969A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113309673A (zh) * 2021-06-29 2021-08-27 新疆金风科技股份有限公司 风力发电机组的静态净空距离确定方法和装置

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102192717A (zh) * 2010-02-24 2011-09-21 西门子公司 风力涡轮机和用于测量风力涡轮机转子叶片俯仰角的方法
CN102434403A (zh) * 2010-09-29 2012-05-02 通用电气公司 用于风力涡轮机检查的系统及方法
US20120200699A1 (en) * 2011-02-08 2012-08-09 Steffen Bunge Balancing of Wind Turbine Parts
US20130114088A1 (en) * 2011-06-30 2013-05-09 John W. Newman Method and apparatus for the remote nondestructive evaluation of an object
CN103982379A (zh) * 2014-05-29 2014-08-13 国电联合动力技术有限公司 一种风机叶片零度安装角标定方法
US20150043769A1 (en) * 2013-03-15 2015-02-12 Digital Wind Systems, Inc. Method and apparatus for remote feature measurement in distorted images
CN105201755A (zh) * 2015-10-14 2015-12-30 大唐(赤峰)新能源有限公司 一种风电浆叶表面故障的识别装置
US20190050679A1 (en) * 2014-08-26 2019-02-14 Digital Wind Systems, Inc. Method and apparatus for contrast enhanced photography of wind turbine blades
CN109958583A (zh) * 2017-12-22 2019-07-02 北京金风科创风电设备有限公司 一种测量风力发电机组的塔架净空的方法和设备
CN111255636A (zh) * 2018-11-30 2020-06-09 北京金风科创风电设备有限公司 确定风力发电机组的塔架净空的方法和装置
CN111336073A (zh) * 2020-03-04 2020-06-26 南京航空航天大学 一种风力发电机塔架净空视觉监测装置及方法
WO2020216596A1 (en) * 2019-04-24 2020-10-29 Siemens Gamesa Renewable Energy A/S Blade inspection device and a blade condition monitoring system
CN113309673A (zh) * 2021-06-29 2021-08-27 新疆金风科技股份有限公司 风力发电机组的静态净空距离确定方法和装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180283352A1 (en) * 2017-03-31 2018-10-04 General Electric Company Method for Preventing Wind Turbine Rotor Blade Tower Strikes
JP7175981B2 (ja) * 2017-12-04 2022-11-21 ニデック・エスエスベー・ウィンド・システムズ・ゲーエムベーハー 風力タービンタワーからブレードチップまでの測定システム
CN111246162A (zh) * 2019-12-09 2020-06-05 北京金风科创风电设备有限公司 风力发电机组的塔架净空监控设备的位置矫正方法及装置
CN112628075B (zh) * 2020-12-16 2021-10-15 浙江大学 一种风力发电机组叶片净空监测系统及方法
CN112926218B (zh) * 2021-03-23 2023-06-09 芜湖森思泰克智能科技有限公司 净空距离的获取方法、装置、设备和存储介质

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102192717A (zh) * 2010-02-24 2011-09-21 西门子公司 风力涡轮机和用于测量风力涡轮机转子叶片俯仰角的方法
CN102434403A (zh) * 2010-09-29 2012-05-02 通用电气公司 用于风力涡轮机检查的系统及方法
US20120200699A1 (en) * 2011-02-08 2012-08-09 Steffen Bunge Balancing of Wind Turbine Parts
US20130114088A1 (en) * 2011-06-30 2013-05-09 John W. Newman Method and apparatus for the remote nondestructive evaluation of an object
US20150043769A1 (en) * 2013-03-15 2015-02-12 Digital Wind Systems, Inc. Method and apparatus for remote feature measurement in distorted images
CN103982379A (zh) * 2014-05-29 2014-08-13 国电联合动力技术有限公司 一种风机叶片零度安装角标定方法
US20190050679A1 (en) * 2014-08-26 2019-02-14 Digital Wind Systems, Inc. Method and apparatus for contrast enhanced photography of wind turbine blades
CN105201755A (zh) * 2015-10-14 2015-12-30 大唐(赤峰)新能源有限公司 一种风电浆叶表面故障的识别装置
CN109958583A (zh) * 2017-12-22 2019-07-02 北京金风科创风电设备有限公司 一种测量风力发电机组的塔架净空的方法和设备
CN111255636A (zh) * 2018-11-30 2020-06-09 北京金风科创风电设备有限公司 确定风力发电机组的塔架净空的方法和装置
WO2020216596A1 (en) * 2019-04-24 2020-10-29 Siemens Gamesa Renewable Energy A/S Blade inspection device and a blade condition monitoring system
CN111336073A (zh) * 2020-03-04 2020-06-26 南京航空航天大学 一种风力发电机塔架净空视觉监测装置及方法
CN113309673A (zh) * 2021-06-29 2021-08-27 新疆金风科技股份有限公司 风力发电机组的静态净空距离确定方法和装置

Also Published As

Publication number Publication date
CN113309673A (zh) 2021-08-27

Similar Documents

Publication Publication Date Title
WO2023272969A1 (zh) 风力发电机组叶片平衡的检测方法和装置
RU2692290C2 (ru) Система для управления транспортным средством на основании предыдущих поездок
US8805015B2 (en) Electronic device and method for measuring point cloud of object
US9877219B2 (en) Wireless network site survey systems and methods
US20130314403A1 (en) Method for splicing point clouds together
WO2021082922A1 (zh) 一种检测屏幕显示断线的方法及设备
TWI475525B (zh) 測量裝置,測量方法及程式
BR112017013364B1 (pt) Processo para monitoramento da segurança de um guindaste e sistema para monitoramento da segurança de um guindaste
US10444010B2 (en) Method for detecting support surface variations during wheel alignment rolling compensation procedure
EP3306919B1 (en) Projection terminal keystone correction method and device, and projection terminal and storage medium
WO2022205805A1 (zh) 风力发电机组的净空距离确定方法及装置
JP2017223007A (ja) 軌道整正装置、軌道整正方法
US20130282329A1 (en) Computing device and method of compensating precision of measurements using probes of three-dimensional measurement machines
CN108038841A (zh) 一种硅片ld缺陷检测方法及装置
US11403816B2 (en) Three-dimensional map generation system, three-dimensional map generation method, and computer readable medium
US10353669B2 (en) Managing entries in a mark table of computer memory errors
WO2019015350A1 (zh) 一种电机控制模式故障检测方法及装置
JPWO2018211857A1 (ja) 保険料見積システム、保険料見積装置、コンピュータプログラム、及び保険料見積方法
RU2658882C2 (ru) Интеллектуальное распознавание смещений в моделях cad
US10760409B1 (en) Fluid outflow measurement system and method
TWI373765B (en) Te signal polarity determining system and related method thereof
TWM517329U (zh) 可偵測向上/向下傾斜道路的導航系統
CN115540823A (zh) 一种变截面超高墩竖直度测控方法
JP6862813B2 (ja) 多項式検量線による定量および補正方法
CN115393435A (zh) 用于识别转台回转角度的装置及方法、处理器及工程设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21947897

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE