WO2023272928A1 - 离心风机及空调器 - Google Patents

离心风机及空调器 Download PDF

Info

Publication number
WO2023272928A1
WO2023272928A1 PCT/CN2021/116026 CN2021116026W WO2023272928A1 WO 2023272928 A1 WO2023272928 A1 WO 2023272928A1 CN 2021116026 W CN2021116026 W CN 2021116026W WO 2023272928 A1 WO2023272928 A1 WO 2023272928A1
Authority
WO
WIPO (PCT)
Prior art keywords
volute
sound
centrifugal fan
pipe
absorbing
Prior art date
Application number
PCT/CN2021/116026
Other languages
English (en)
French (fr)
Inventor
凌敬
Original Assignee
广东美的制冷设备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202121475052.6U external-priority patent/CN216950913U/zh
Priority claimed from CN202110740003.9A external-priority patent/CN115539410A/zh
Application filed by 广东美的制冷设备有限公司 filed Critical 广东美的制冷设备有限公司
Publication of WO2023272928A1 publication Critical patent/WO2023272928A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/42Casings; Connections of working fluid for radial or helico-centrifugal pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/66Combating cavitation, whirls, noise, vibration or the like; Balancing

Definitions

  • the present application relates to the field of air conditioning, in particular to a centrifugal fan and an air conditioner.
  • the existing centrifugal fan used in air conditioners includes a centrifugal wind wheel and a volute wrapped outside the wind wheel.
  • the wind wheel rotates at a high speed and sucks the gas into the wind wheel along the axial direction, and turns 90° inside the wind wheel.
  • the air flows out of the wind wheel radially, and finally the gas is decelerated and pressurized through the volute and flows out of the centrifugal fan from the volute outlet.
  • the minimum distance from the centrifugal fan volute to the centrifugal fan wheel is generally near the volute tongue.
  • the flow near the volute tongue is complex and the pressure fluctuates greatly. Therefore, the aerodynamic noise at the volute tongue is one of the main sources of centrifugal fan noise. This is also an important reason why the noise of the centrifugal fan of the existing air conditioner is higher.
  • the main purpose of this application is to propose a centrifugal fan and an air conditioner, aiming to solve the problem of high noise at the volute tongue of the existing centrifugal fan.
  • the centrifugal fan proposed by this application includes:
  • a sound-absorbing pipe is arranged outside the volute, the sound-absorbing pipe has a first end and a second end opposite to each other, the first end of the sound-absorbing pipe penetrates to the inner surface of the volute tongue, and is connected with the The inside of the volute is communicated, the first end of the sound-absorbing pipe is open, and the second end of the sound-absorbing pipe is closed.
  • the volute has a wheel cavity and an air outlet connected to the wheel cavity
  • the volute tongue has a front side close to the wheel cavity and a rear side close to the air outlet
  • the The first end of the muffler pipe is arranged closer to the front side of the volute tongue than the rear side of the volute tongue.
  • the centrifugal fan also includes:
  • the wind wheel is arranged in the volute, and the diameter of the wind wheel is D;
  • the length of the silencer pipe is not less than 0.05D and not more than 0.15D.
  • the radial cross-section of the inner wall of the muffler pipe is circular or polygonal or a combination of circular and polygonal.
  • the inner diameters of the sound-absorbing pipes are equal, or the inner diameters of the sound-absorbing pipes are tapered.
  • the centrifugal fan also includes:
  • a reinforcing rib is arranged on the outside of the volute, and the reinforcing rib is respectively connected to the outer wall of the muffler pipe and the volute.
  • the sound-absorbing pipes are arranged along the axial direction of the centrifugal fan.
  • two adjacent sound-absorbing pipes are parallel; and/or, the lengths of two adjacent sound-absorbing pipes are equal.
  • the present application also proposes an air conditioner, which includes the centrifugal fan as described above.
  • the technical scheme of the present application adopts the silencer tube arranged outside the volute, the first end of the silencer tube is opened and the second end is closed through the pipe, and the phase difference between the incident sound wave entering the silencer tube and the reflected sound wave in the silencer tube is used to realize Reduce the amplitude of the sound wave, thereby reducing the energy of the sound wave, and achieve the effect of noise reduction.
  • Fig. 1 is the structural representation of an embodiment of the centrifugal fan of the present application
  • FIG. 2 is a schematic structural view of an embodiment of the first housing of the present application
  • FIG. 3 is a schematic structural view of an embodiment of the outer direction of the first housing of the present application.
  • Fig. 4 is the superposition schematic diagram of incident sound wave and reflected sound wave of the present application.
  • Fig. 5 is the right view of Fig. 2;
  • Fig. 6 is the sectional view of A-A direction in Fig. 4;
  • Fig. 7 is the top view of Fig. 2;
  • Fig. 8 is the left view of Fig. 2;
  • FIG. 9 is a schematic structural diagram of an embodiment of the second casing of the present application.
  • This application proposes a centrifugal fan, which can be used in air conditioners, such as air duct machines, and can also be used in other electrical equipment with centrifugal fans.
  • air conditioners such as air duct machines
  • centrifugal fan for the convenience of description, an example of using the centrifugal fan in an air conditioner will be described below.
  • 1 to 9 are drawings corresponding to the embodiments of the present application.
  • the centrifugal fan includes:
  • volute 100 the volute 100 has a volute tongue 11 ; the volute 100 has an air inlet 31 and an air outlet 32 .
  • the silencing pipe 50 is arranged outside the volute 100 , the silencing pipe 50 has a first end and a second end opposite to each other, and the first end of the silencing pipe 50 penetrates to the inner surface of the volute tongue 11 , and communicate with the inside of the volute 100 , the first end of the muffler pipe 50 is open, and the second end of the muffler pipe 50 is closed.
  • a first end of the muffler pipe 50 communicates with the inside of the volute 100 , and a second end extends out of the volute 100 .
  • the sound-absorbing pipe 50 passes through the position of the volute tongue 11 and communicates with the interior of the volute 100 , so that the sound wave at the volute tongue 11 can enter the sound-absorbing pipe 50 through the first end of the sound-absorbing pipe 50 .
  • a wheel cavity 30 for installing the wind wheel 40 is formed inside the volute 100 , and the centrifugal fan can also be provided with a motor for driving the wind wheel 40 to rotate.
  • An air outlet passage connecting the air outlet 32 and the wheel chamber 30 is formed on the volute 100, and the volute tongue 11 is the connection position between the wheel chamber 30 and the air outlet passage.
  • a cavity is formed inside the silencing pipe 50.
  • the sound wave enters the silencing pipe 50 through the opening of the first end of the silencing pipe 50, it is reflected in the silencing pipe 50 to form a reflected sound wave.
  • There is a phase difference between the reflected sound waves so that the incident sound waves and the reflected sound waves are superimposed on each other, thereby reducing the amplitude of the sound waves and achieving the effect of noise reduction.
  • the noise generated at the volute tongue 11 is the main noise source of the centrifugal fan, by reducing the noise at the volute tongue 11, the effect of reducing the overall noise of the centrifugal fan can be achieved.
  • the noise evaluation standard of a household air conditioner is A-weighted.
  • the frequency range that has the greatest impact on the noise of the duct unit is 800 to 1250 Hz.
  • a described sound-absorbing pipe 50 is designed on the volute tongue 11, in order to be able to form the reflected wave opposite to the phase of the incident wave at the second end of the sound-absorbing pipe 50, that is, the closed end, the sound-absorbing pipe
  • the length of 50 can be selected as 1/4, 3/4, 5/4, 7/4, etc. of the wavelength of the sound wave. Further, the length of the silencer pipe 50 is set to 1/4 of the wavelength of the sound wave as an example.
  • the length of the silencer pipe 50 is :
  • u is the speed of sound
  • f is the frequency
  • the length of the muffler pipe 50 is 85mm.
  • W2 is the incident sound wave
  • W1 is the reflected sound wave
  • W is the total sound wave formed after the incident sound wave and the reflected sound wave are superimposed on each other. It can be seen from Figure 3 that the sound wave after the incident sound wave and the reflected sound wave are superimposed on each other The amplitude of the incident sound wave is significantly weakened compared to the incident sound wave, which in turn can reduce the overall noise value.
  • the noise value generated in this embodiment is compared with the noise of the existing air duct machine as shown in Table 1:
  • the centrifugal fan in this embodiment is used in the air duct machine, the noise of the air duct machine can be reduced by 5-10dB in the 1000Hz frequency band, and the A-weighted total noise value can be reduced by about 1dB. It can be seen that, by setting the structure of the sound-absorbing pipe 50 , the noise at the volute tongue 11 can be reduced, and the running noise of the centrifugal fan can be significantly reduced.
  • the noise reduction cavity is formed inside the silencer pipe 50, and sound waves enter the interior cavity of the silencer pipe 50. During the flow of sound waves, the reflected sound waves generated by the inner wall of the silencer pipe 50 and the incident sound waves superimpose each other, reducing the noise of the sound waves.
  • the silencing tube 50 is arranged outside the volute 100 and extends to the inner surface of the volute tongue 11, under the action of the silencing tube 50, the airflow noise at the volute tongue 11 can be effectively reduced, thereby reducing The overall noise of the centrifugal fan.
  • the centrifugal fan described in this embodiment is used in an air duct machine, the overall noise of the air duct machine can be reduced.
  • the volute 100 has a first housing 10 and a second housing 20, wherein the volute tongue 11 is arranged on the first housing 10, and the first housing 10 and the second housing 20 form Wheel cavity 30 and air outlet channel.
  • the muffler pipe 50 can be directly molded with the first housing 10 .
  • the silencing pipe 50 is located outside the first casing 10 , and the silencing pipe 50 will not affect the inside of the first casing 10 during the forming process, which helps to improve the quality of the volute 100 .
  • a positioning assembly 60 for connecting the first housing 10 and the second housing 20 can be provided at both axial ends of the centrifugal fan,
  • the positioning assembly 60 is used to fix the first casing 10 and the second casing 20 to each other to form a stable volute 100 structure.
  • the positioning assembly 60 includes a limit buckle 61 disposed on one of the first shell 10 and the second shell 20 and a limit block 62 disposed on the other. , the limiting block 62 and the limiting buckle 61 are engaged with each other, so that the first housing 10 and the second housing 20 are fixed to each other.
  • the radial cross-section of the inner wall of the muffler tube 50 is circular, and the inner surface of the muffler tube 50 may be a regular cylindrical surface to facilitate processing and shaping.
  • the inner surface of the muffler pipe 50 may also form a tapered surface.
  • the radial cross-section of the inner wall of the muffler pipe 50 may also be polygonal, such as quadrilateral, hexagonal and so on.
  • the radial section of the sound deadening pipe 50 is partially circular, and partly polygonal, so as to expand the shape formed by the sound deadening pipe 50.
  • the muffler band of the cavity is not limited to the shape formed by the sound deadening pipe 50.
  • the inner diameters of the sound-absorbing pipe 50 are equal, such as the cylindrical surface described in the previous embodiment, or the diameter
  • the inner surface has a polygonal cross-section to facilitate the ejection of the sound-absorbing pipe 50 .
  • the inner diameter of the muffler pipe 50 is tapered, such as the tapered surface structure described in the foregoing embodiments, or a polygonal surface with a gradually reduced inner diameter.
  • the centrifugal fan further includes a reinforcing rib 51 , and the reinforcing rib 51 is arranged on the outside of the volute 100 , and is used to strengthen the noise reduction pipe 50 . play a strengthening role.
  • the reinforcing ribs 51 respectively connect the outer wall of the muffler pipe 50 and the volute 100 .
  • the rib 51 has a first surface connected to the outer surface of the volute 100 and a second surface connected to the muffler pipe 50 , so that the rib 51 can act on the outer wall of the muffler pipe 50 Strengthen the effect and prevent the noise reduction pipe 50 from vibrating. Taking the example shown in FIG.
  • the reinforcing rib 51 may extend from the outer surface of the volute tongue 11 to the middle of the muffler tube 50 to enhance the stability of the muffler tube 50 .
  • the number of the reinforcing rib 51 may be one, or at least two of the reinforcing ribs 51 may be provided at the same time, so as to support and strengthen the muffler pipe 50 from different positions. Since the first surface of the reinforcing rib 51 can be abutted on the volute 100, the sound-absorbing pipe 50 penetrates to the volute tongue 11, and the reinforcing rib 51 can face the volute tongue from the outer surface of the volute tongue 11. The 11 position plays a supporting role. Since the volute tongue 11 is relatively closer to the wind wheel, the strength of the volute tongue 11 is enhanced through the reinforcing ribs 51 , thereby preventing the volute tongue 11 from vibrating and helping to further reduce noise.
  • the volute 100 has a wheel cavity 30 and an air outlet 32 communicating with the wheel cavity 30, the wheel cavity 30 is used to install the wind wheel 40, the wind
  • the wheel 40 can be arranged coaxially with the centrifugal fan in the wheel cavity 30, the volute tongue 11 has a front side close to the wheel cavity 30 and a rear side close to the air outlet 32, the sound-absorbing
  • the first end of the tube 50 is arranged closer to the front side of the volute tongue 11 relative to the rear side of the volute tongue 11 . Under the rotation of the wind wheel 40 , the air flows from the wheel cavity 30 to the air outlet 32 .
  • volute tongue 11 is a section area with a width arranged between the wheel cavity 30 and the air outlet channel, the front side of the volute tongue 11 is close to the inside of the wheel cavity 30 of the volute 100, and the rear side of the volute tongue 11 is close to Air outlet 32.
  • the front side of the volute tongue 11 is close to the inside of the wheel cavity 30, and the distance between the front side of the volute tongue 11 and the wind wheel 40 is relatively closer, and the airflow is on the front side of the volute tongue 11.
  • the flow path at the side is relatively complicated, which makes the airflow close to the front side panel more prone to turbulence, which in turn is prone to noise.
  • the opening of the first end of the silencing tube 50 is arranged closer to the front side plate of the volute tongue 11, so that the sound waves at the front side of the volute tongue 11 can enter the interior of the silencing tube 50 through the opening of the silencing tube 50, and pass through the silencing tube 50.
  • the inner wall surface of the tube 50 is reflected to form a reflected sound wave and an incident sound wave superimposed on each other, thereby playing a role of noise reduction. Since the noise reduction effect can be achieved on the front and side positions where the noise is louder, it has a better noise reduction effect.
  • the centrifugal fan further includes a wind wheel 40, the wind wheel 40 is arranged in the volute 100, a wheel cavity 30 is formed in the volute 100, and the wind wheel 40 is installed in the volute 100.
  • the diameter of the wind wheel 40 is D; the length of the muffler pipe 50 is no less than 0.05D and no more than 0.15D.
  • a motor for driving the wind wheel 40 may also be provided on the volute 100 .
  • the length of the muffler pipe 50 may be 0.05D, 0.07D, 0.09D, 0.11D, 0.13D or 0.15D, or other lengths between 0.05D and 0.15D.
  • the length of the silencer pipe 50 can be any length between 0.05D and 0.15D, and the length of the silencer pipe 50 is 1/4 of the wavelength of the sound wave.
  • the number of the silencer pipes 50 is at least two, and two adjacent silencer pipes 50 are arranged at intervals.
  • the adjacent sound-absorbing pipes 50 can be distributed at intervals along the axial direction of the centrifugal fan, so that the adjacent sound-absorbing pipes 50 can respectively be used to reduce noise at the position of the volute tongue 11 .
  • Reinforcing ribs 51 can be provided on each of the sound-absorbing pipes 50 , so that each of the sound-absorbing pipes 50 can maintain a preset state.
  • the extension directions of the adjacent sound-absorbing pipes 50 can be different, so that the incident sound waves can enter the cavity formed inside the sound-absorbing pipes 50 along different directions, and by superimposing the incident sound waves and the reflected sound waves, the total sound wave can be reduced. amplitude, thereby improving the noise reduction effect of the muffler pipe 50 .
  • two adjacent sound-absorbing pipes 50 are arranged in parallel to facilitate the ejection of the first shell 10 .
  • the cross-sectional shapes of the inner surfaces of adjacent mufflers 50 may be the same or different.
  • the adjacent silencing pipes 50 can form cavities with different surface shapes, which can then be used for noise reduction of noise in different frequency bands, which helps to improve noise reduction. Effect.
  • the lengths of adjacent silencer pipes 50 may be equal.
  • the length of the corresponding silencing pipes 50 can be adjusted to change the volume and effective sound transmission depth of the cavities formed by different silencing pipes 50, thereby expanding the silencing Tube 50 for noise reduction bands.
  • each of the silencing tubes 50 can be respectively arranged close to the front side of the volute tongue 11, or part of the first ends of the silencing tubes 50 can be set close to the front side of the volute tongue 11, so as to realize Noise reduction in different frequency bands.
  • the radial cross-sectional shape of the inner surface of the sound-absorbing pipe 50 and the depth of the cavity formed by the sound-absorbing pipe 50 can be adjusted according to the position of the sound-absorbing pipe 50 to form a variety of different noise-reducing chambers body, further expand the noise reduction frequency band, and improve the noise reduction effect on centrifugal fans.
  • the present application also proposes an embodiment of an air conditioner on the basis of the centrifugal fan described above.
  • the air conditioner includes the centrifugal fan described in any one of the above embodiments.
  • the air conditioner may also include other functional components. Taking the air conditioner as an example of an air duct machine, when the centrifugal fan is running, the air flow enters the wheel cavity 30 of the centrifugal fan from the air inlet 31 in the axial direction, and under the action of the wind wheel 40, the air flow turns 90°, Blow out radially. The air flow generates a vortex at the position of the volute tongue 11, and the sound wave enters the described sound-absorbing pipe 50 from the first end of the sound-absorbing pipe 50, and the reflected sound wave and the incident sound wave in the described sound-absorbing pipe 50 superimpose each other, so that the amplitude of the total sound wave to reduce the noise.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

一种离心风机及空调器,其中,离心风机包括:蜗壳(100),蜗壳(100)具有蜗舌(11);以及消音管(50),消音管(50)设于蜗壳(100)的外部,消音管(50)具有相对设置的第一端和第二端,消音管(50)的第一端贯穿至所述蜗舌(11)的内表面,并与蜗壳(100)的内部连通,消音管(50)的第一端敞口,消音管(50)的第二端封闭。该离心风机的消音管的第一端敞口,第二端封闭,利用进入消音管的入射声波和消音管内的反射声波的相位差,实现降低声波的振幅,进而降低声波能量,起到降噪的效果。

Description

离心风机及空调器
本申请要求于2021年6月29日提交中国专利局、申请号为202110740003.9、申请名称为“离心风机及空调器”的中国专利申请的优先权,以及于2021年6月29日提交中国专利局、申请号为202121475052.6、申请名称为“离心风机及空调器”的中国专利申请的优先权,其全部内容通过引用结合在申请中。
技术领域
本申请涉及空调领域,特别涉及一种离心风机及空调器。
背景技术
现有应用于空调器的离心风机,包含离心风轮和包在风轮外面的蜗壳,风轮高速旋转将气体沿着轴向吸入风轮,并在风轮内折转90°,沿着径向流出风轮,最后通过蜗壳将气体减速增压并从蜗壳出口流出离心风机。离心风机蜗壳到离心风轮最小距离一般在蜗舌附近,蜗舌附近流动复杂,压力波动大,因此蜗舌处的气动噪声是离心风机噪声的主要来源之一。这也是现有空调器离心风机噪音较高的一个重要原因。
申请内容
本申请的主要目的是提出一种离心风机及空调器,旨在解决现有的离心风机的蜗舌处噪声大的问题。
为实现上述目的,本申请提出的离心风机,包括:
蜗壳,所述蜗壳具有蜗舌;以及
消音管,设于所述蜗壳的外部,所述消音管具有相对设置的第一端和第二端,所述消音管的第一端贯穿至所述蜗舌的内表面,并与所述蜗壳的内部连通,所述消音管的第一端敞口,所述消音管的第二端封闭。
在一实施例中,所述蜗壳具有轮腔以及连通所述轮腔的出风口,所述蜗舌具有靠近所述轮腔的前侧边和靠近所述出风口的后侧边,所述消音管的第一端相对所述蜗舌的后侧边更靠近所述蜗舌的前侧边设置。
在一实施例中,所述离心风机还包括:
风轮,设于所述蜗壳内,所述风轮的直径为D;
所述消音管的长度不小于0.05D,且不超过0.15D。
在一实施例中,所述消音管的内壁的径向截面呈圆形或多边形或圆形与多边形的组合。
在一实施例中,自所述消音管的第一端向第二端方向,所述消音管的内径相等,或者,所述消音管的内径呈渐缩设置。
在一实施例中,所述离心风机还包括:
加强筋,设置在所述蜗壳的外部,所述加强筋分别连接所述消音管的外壁和所述蜗壳。
在一实施例中,所述消音管的数量为至少两个,相邻的两所述消音管间隔设置。
在一实施例中,所述消音管沿所述离心风机的轴向排布。
在一实施例中,相邻的两所述消音管平行;和/或,相邻的两所述消音管的长度相等。
本申请还提出一种空调器,所述空调器包括如上述所述的离心风机。
本申请技术方案通过采用设置在蜗壳外部的消音管,通管使消音管的第一端敞口,第二端封闭,利用进入消音管的入射声波和消音管内的反射声波的相位差,实现降低声波的振幅,进而降低声波能量,起到降噪的效果。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图示出的结构获得其他的附图。
图1为本申请离心风机一实施例的结构示意图;
图2为本申请第一壳体一实施例的结构示意图;
图3为本申请第一壳体的外侧方向一实施例的结构示意图;
图4为本申请入射声波与反射声波叠加示意图;
图5为图2的右视图;
图6为图4中A-A向的剖视图;
图7为图2的俯视图;
图8为图2的左视图;
图9为本申请第二壳体一实施例的结构示意图。
附图标号说明:
标号 名称 标号 名称
100 蜗壳 10 第一壳体
11 蜗舌 20 第二壳体
30 轮腔 31 进风口
32 出风口 40 风轮
50 消音管 51 加强筋
60 定位组件 61 限位扣
62 限位块    
本申请目的的实现、功能特点及优点将结合实施例,参照附图做进一步说明。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请的一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
需要说明,若本申请实施例中有涉及方向性指示诸如上、下、左、右、前、后……,则该方向性指示仅用于解释在某一特定姿态如附图所示下各部件之间的相对位置关系、运动情况等,如果该特定姿态发生改变时,则该方向性指示也相应地随之改变。
另外,若本申请实施例中有涉及“第一”、“第二”等的描述,则该“第一”、“第二”等的描述仅用于描述目的,而不能理解为指示或暗示其相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。另外,各个实施例之间的技术方案可以相互结合,但是必须是以本领域普通技术人员能够实现为基础,当技术方案的结合出现相互矛盾或无法实现时应当认为这种技术方案的结合不存在,也不在本申请要求的保护范围之内。
本申请提出一种离心风机,所述离心风机可以用于空调器,如风管机等,也可以用于其他具有离心风机的电器设备。为方便描述,以下以所述离心风机用于空调器为例进行阐述。图1至9为本申请的实施例所对应的附图。
请参阅图1和图2,在一实施例中,所述离心风机包括:
蜗壳100,所述蜗壳100具有蜗舌11;所述蜗壳100具有进风口31和出风口32。
消音管50,设于所述蜗壳100的外部,所述消音管50具有相对设置的第一端和第二端,所述消音管50的第一端贯穿至所述蜗舌11的内表面,并与所述蜗壳100的内部连通,所述消音管50的第一端敞口,所述消音管50的第二端封闭。所述消音管50的第一端连通所述蜗壳100内部,第二端伸出蜗壳100的外部。并且消音管50通过蜗舌11所在位置并连通蜗壳100内部,以使蜗舌11处的声波能够经由消音管50的第一端进入消音管50内。
所述蜗壳100内部形成有用于安装风轮40的轮腔30,所述离心风机还可以设置电机,以用于驱动所述风轮40转动。所述蜗壳100上形成有连通所述出风口32和所述轮腔30的出风通道,所述蜗舌11为所述轮腔30和所述出风通道的连接处位置,当所述风轮40转动时,气流自所述进风口31沿着离心风机的轴向吸入轮腔30内,在风轮40的作用下,气流产生90°转折,沿着径向吹出,气流自轮腔30向出风通道方向流动,在达到蜗舌11位置时,由于在蜗壳100内 部,蜗舌11处连通轮腔30和出风通道,蜗舌11位置距离风轮40的距离较短,在蜗舌11附近的气流流动复杂。
请参阅图2和图3,所述消音管50内部形成腔体,当声波经由消音管50的第一端敞口进入消音管50内,在消音管50内反射形成反射声波,由于入射声波与反射声波之间存在相位差,使得入射声波与反射声波相互叠加,进而降低声波的振幅,实现降噪的效果。由于蜗舌11处所产生的噪音为离心风机的主要噪音来源,通过降低蜗舌11处的噪音,能够实现降低离心风机的整体噪音的效果。
请参阅图4,以家用空调为例,家用空调的噪声评价标准是A计权,通过对风管机噪音频谱分析可知,对风管机噪音影响最大的频率段是800至1250Hz。
本实施例中:针对1000Hz附近的噪音,在蜗舌11上设计一个所述消音管50,为了能够在消音管50的第二端,即封闭端形成于入射波相位相反的反射波,消音管50长度可以选择声波波长的1/4、3/4、5/4、7/4等,进一步地,以将消音管50长度设置为声波波长的1/4为例,消音管50的长度为:
Figure PCTCN2021116026-appb-000001
其中:u,为声速,f为频率。消音管50的长度为85mm。
如图3中所示,W2为入射声波,W1为反射声波,W为入射声波与反射声波相互叠加之后形成的总声波,由图3中可以看出,入射声波与反射声波相互叠加之后的声波相比入射声波的振幅明显减弱,进而可以降低总噪音值。
以下继续以所述离心风机用于家用空调为例,本实施例中所产生的噪音值与现有风管机的噪音对比如下表1:
Figure PCTCN2021116026-appb-000002
表1
由表1可以看出,本实施例离心风机用于风管机中,风管机的噪声在1000Hz频段能够降低5~10dB,A计权总噪音值能降低1dB左右。由此可知,通过设置所述消音管50结构,能够降低蜗舌11处的噪音,进而明显降低离心风机的运行噪音。请参阅图6,所述消音管50内部形成降噪腔体,声波进入消音管50内部腔体,声波流动过程中,消音管50的内壁产生的反射声波与入射声波相互叠加,降低了声波的振幅,实现降低特定频段的噪音的效果。由于所 述消音管50设置在所述蜗壳100的外部,并延伸至蜗舌11的内表面,在所述消音管50的作用下,蜗舌11处的气流噪音能够有效降低,进而可以降低离心风机的整体噪音。当本实施例中所述离心风机用于风管机时,能够降低风管机的整体噪音。
请参阅图7、图8和图9,在制作所述蜗壳100时,由于所述消音管50设置在所述蜗壳100的外部,对蜗壳100内部结构不产生影响,进而可以降低蜗壳100的加工难度,方便蜗壳100出模。如图1所示结构中,蜗壳100具有第一壳体10和第二壳体20,其中,蜗舌11设置在第一壳体10上,第一壳体10和第二壳体20形成轮腔30和出风通道。所述消音管50可以直接与所述第一壳体10成型加工。由于不需要在所述蜗壳100内部设置复杂的降噪结构,有助于降低所述壳体的成型难度。所述消音管50位于所述第一壳体10的外部,消音管50成型过程中,不会对第一壳体10内部产生影响,有助于提高蜗壳100的质量。
所述第一壳体10与第二壳体20相互配合时,可以在所述离心风机的轴向两端设置用于连接所述第一壳体10和第二壳体20的定位组件60,所述定位组件60用于将所述第一壳体10和第二壳体20相互固定,以形成稳定的蜗壳100结构。在一实施例中,所述定位组件60包括设于所述第一壳体10和所述第二壳体20的其中之一的限位扣61以及设于其中之另一的限位块62,所述限位块62与限位扣61相互卡接,以使第一壳体10和第二壳体20相互固定。
请继续参阅图6,在一实施例中,所述消音管50的内壁的径向截面呈圆形,所述消音管50的内表面可以呈规则的圆柱状表面,以方便加工成型。所述消音管50的内表面也可以形成锥面。在另一实施例中,所述消音管50的内壁的径向截面也可以呈多边形,如四边形、六边形等。在又一实施例中,自所述消音管50的第一端向第二端方向,所述消音管50的径向截面部分呈圆形,部分呈多边形,以扩大所述消音管50所形成的腔体的消音频段。
请继续参阅图6,在一实施例中,自所述消音管50的第一端向第二端方向,所述消音管50的内径相等,如前述实施例所述的圆柱状表面,或者径向截面呈多边形的内表面,以方便所述消音管50的出模。在另一实施例中,所述消音管50的内径呈渐缩设置,如前述实施例所述的锥面结构,或者内径逐渐缩小的多边形表面等。
请参阅图3、图6和图8,在一实施例中,所述离心风机还包括加强筋51,所述加强筋51设置在所述蜗壳100的外部,用于对所述消音管50起到加强作用。所述加强筋51分别连接所述消音管50的外壁和所述蜗壳100。所述加强筋51具有与所述蜗壳100的外表面相连接的第一表面和与所述消音管50相连接的第二表面,以使所述加强筋51能够对消音管50的外壁起到加强效果,防止消音管50产生振动。以如图6中所示为例,加强筋51可以自蜗舌11的外表面延伸至消音管50的中部位置,以提升所述消音管50的稳定性。所述加强筋51的数量可以为一个,也可以同时设置至少两个所述加强筋51,以从不同位置对所述消音管50起到支撑和加强作用。由于所述加强筋51的第一表面可以抵接在蜗壳100上,所述消音管50贯穿至所述蜗舌11,所述加强筋51能够从所述蜗 舌11的外表面对蜗舌11位置起到支撑作用。由于蜗舌11相对更靠近风轮,通过所述加强筋51提升蜗舌11的强度,进而起到防止蜗舌11抖动的效果,有助于进一步降低噪音。
请参阅图3和图5,在一实施例中,所述蜗壳100具有轮腔30以及连通所述轮腔30的出风口32,所述轮腔30用于安装风轮40,所述风轮40可以在所述轮腔30内与所述离心风机同轴设置,所述蜗舌11具有靠近所述轮腔30的前侧边和靠近所述出风口32的后侧边,所述消音管50的第一端相对所述蜗舌11的后侧边更靠近所述蜗舌11的前侧边设置。在风轮40的转动下,气流自轮腔30向出风口32方向流动。由于蜗舌11为设置在轮腔30和出风通道之间的具有宽度的一段区域,所述蜗舌11的前侧边靠近蜗壳100的轮腔30内部,蜗舌11的后侧边靠近出风口32。
由于气流在蜗舌11的位置容易产生涡流,蜗舌11的前侧边靠近轮腔30内部,蜗舌11的前侧边距离风轮40的距离相对更近,气流在蜗舌11的前侧边位置的流动路径相对复杂,使得靠近前侧板的气流更容易产生乱流,进而容易产生噪音。所述消音管50的第一端的敞口更靠近蜗舌11的前侧板设置,使得蜗舌11的前侧边处的声波能够通过消音管50的敞口进入消音管50内部,经过消音管50内壁面反射形成反射声波与入射声波相互叠加,进而起到降噪作用。由于可以对噪音更大的前侧边位置起到降噪效果,进而具有更好的降噪效果。
在一实施例中,所述离心风机还包括风轮40,所述风轮40设于所述蜗壳100内,所述蜗壳100内形成有轮腔30,所述风轮40安装在所述轮腔30内。所述风轮40的直径为D;所述消音管50的长度不小于0.05D,且不超过0.15D。所述蜗壳100上还可以设置用于驱动所述风轮40转动的电机。所述消音管50的长度可以为0.05D、0.07D、0.09D、0.11D、0.13D或者0.15D,也可以为0.05D至0.15D之间的其他长度。以风管机的噪声在1000Hz频段为例,所述消音管50的长度可以为0.05D至0.15D之间的任意长度,并且消音管50的长度为声波波长的1/4。
请参阅图3和图6,在一实施例中,所述消音管50的数量为至少两个,相邻的两所述消音管50间隔设置。相邻的所述消音管50能沿所述离心风机的轴向间隔分布,以使相邻的消音管50能够分别用于对所述蜗舌11部位进行降噪。每一所述消音管50上分别可以设置所述加强筋51,以使每一所述消音管50能够保持预设状态。相邻所述消音管50的延伸方向可以不同,以使入射声波能够沿着不同方向进入所述消音管50内部所形成的腔室,通过将入射声波与反射声波相叠加,以降低总声波的振幅,进而提升所述消音管50的降噪效果。可选地,相邻的两所述消音管50平行设置,以方便所述第一壳体10出模。
相邻所述消音管50的内表面的截面形状可以相同,也可以不同。当相邻的消音管50的内表面的径向界面形状不同时,相邻的消音管50能够形成不同表面形状的腔体,进而可以用于不同频段噪音的降噪,有助于提升降噪效果。在选取所述消音管50的长度时,相邻的消音管50的长度可以相等。当相邻的消音管50的内表面的截面形状不同时,对应相应消音管50的长度可以进行调 整,以改变不同消音管50所形成的腔体的体积和有效传声深度,进而可以扩大消音管50的降噪频段。各所述消音管50的第一端可以分别靠近所述蜗舌11的前侧边设置,也可以部分所述消音管50的第一端靠近所述蜗舌11的前侧边设置,以实现不同频段的降噪。在一实施例中,可以根据所述消音管50的位置调整所述消音管50的内表面的径向截面形状以及消音管50所形成的腔体的深度,以形成多种不同的降噪腔体,进一步扩大降噪频段,提升对离心风机的降噪效果。
本申请在上述离心风机的基础上,还提出一种空调器的实施例。所述空调器包括如上述任一实施例所述的离心风机。
所述空调器还可以包括其他功能部件。以所述空调器为风管机为例,所述离心风机运行时,气流自进风口31沿轴向进入离心风机的轮腔30内,在风轮40的作用下,气流产生90°转折,沿着径向吹出。气流在蜗舌11位置产生涡流,声波自所述消音管50的第一端进入所述消音管50内,在所述消音管50内的反射声波与入射声波相互叠加,以使总声波的振幅降低,进而起到降噪的效果。
以上所述仅为本申请的可选实施例,并非因此限制本申请的专利范围,凡是在本申请的申请构思下,利用本申请说明书及附图内容所作的等效结构变换,或直接/间接运用在其他相关的技术领域均包括在本申请的专利保护范围内。

Claims (10)

  1. 一种离心风机,其中,包括:
    蜗壳,所述蜗壳具有蜗舌;以及
    消音管,设于所述蜗壳的外部,所述消音管具有相对设置的第一端和第二端,所述消音管的第一端贯穿至所述蜗舌的内表面,并与所述蜗壳的内部连通,所述消音管的第一端敞口,所述消音管的第二端封闭。
  2. 如权利要求1所述的离心风机,其中,所述蜗壳具有轮腔以及连通所述轮腔的出风口,所述蜗舌具有靠近所述轮腔的前侧边和靠近所述出风口的后侧边,所述消音管的第一端相对所述蜗舌的后侧边更靠近所述蜗舌的前侧边设置。
  3. 如权利要求1所述的离心风机,其中,所述离心风机还包括:
    风轮,设于所述蜗壳内,所述风轮的直径为D;
    所述消音管的长度不小于0.05D,且不超过0.15D。
  4. 如权利要求1所述的离心风机,其中,所述消音管的内壁的径向截面呈圆形或多边形或圆形与多边形的组合。
  5. 如权利要求1所述的离心风机,其中,自所述消音管的第一端向第二端方向,所述消音管的内径相等,或者,所述消音管的内径呈渐缩设置。
  6. 如权利要求1所述的离心风机,其中,所述离心风机还包括:
    加强筋,设置在所述蜗壳的外部,所述加强筋分别连接所述消音管的外壁和所述蜗壳。
  7. 如权利要求1至6任一项所述的离心风机,其中,所述消音管的数量为至少两个,相邻的两所述消音管间隔设置。
  8. 如权利要求7所述的离心风机,其中,所述消音管沿所述离心风机的轴向排布。
  9. 如权利要求7所述的离心风机,其中,相邻的两所述消音管平行;和/或,相邻的两所述消音管的长度相等。
  10. 一种空调器,其中,所述空调器包括如权利要求1至9任一项所述的离心风机。
PCT/CN2021/116026 2021-06-29 2021-09-01 离心风机及空调器 WO2023272928A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202121475052.6U CN216950913U (zh) 2021-06-29 2021-06-29 离心风机及空调器
CN202121475052.6 2021-06-29
CN202110740003.9A CN115539410A (zh) 2021-06-29 2021-06-29 离心风机及空调器
CN202110740003.9 2021-06-29

Publications (1)

Publication Number Publication Date
WO2023272928A1 true WO2023272928A1 (zh) 2023-01-05

Family

ID=84692423

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/116026 WO2023272928A1 (zh) 2021-06-29 2021-09-01 离心风机及空调器

Country Status (1)

Country Link
WO (1) WO2023272928A1 (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102042264A (zh) * 2009-10-10 2011-05-04 珠海格力电器股份有限公司 具有仿生结构的蜗舌及使用该蜗舌的蜗壳
CN202451317U (zh) * 2011-08-25 2012-09-26 力帆实业(集团)股份有限公司 一种降噪波长管
CN203594628U (zh) * 2013-09-18 2014-05-14 广东美的厨房电器制造有限公司 用于吸油烟机的风机和具有其的吸油烟机
CN106122098A (zh) * 2016-08-03 2016-11-16 广东美的制冷设备有限公司 蜗壳、风机和空调设备
CN108240357A (zh) * 2017-12-27 2018-07-03 宁波方太厨具有限公司 一种风机降噪蜗舌
JP2019019805A (ja) * 2017-07-21 2019-02-07 キヤノン株式会社 ファン及びファンユニット
US20200132080A1 (en) * 2018-10-26 2020-04-30 Yen Sun Technology Corp. Fan device
CN111102247A (zh) * 2018-10-25 2020-05-05 广东美的白色家电技术创新中心有限公司 消音组件、离心式风机的蜗壳组件、离心式风机及油烟机

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102042264A (zh) * 2009-10-10 2011-05-04 珠海格力电器股份有限公司 具有仿生结构的蜗舌及使用该蜗舌的蜗壳
CN202451317U (zh) * 2011-08-25 2012-09-26 力帆实业(集团)股份有限公司 一种降噪波长管
CN203594628U (zh) * 2013-09-18 2014-05-14 广东美的厨房电器制造有限公司 用于吸油烟机的风机和具有其的吸油烟机
CN106122098A (zh) * 2016-08-03 2016-11-16 广东美的制冷设备有限公司 蜗壳、风机和空调设备
JP2019019805A (ja) * 2017-07-21 2019-02-07 キヤノン株式会社 ファン及びファンユニット
CN108240357A (zh) * 2017-12-27 2018-07-03 宁波方太厨具有限公司 一种风机降噪蜗舌
CN111102247A (zh) * 2018-10-25 2020-05-05 广东美的白色家电技术创新中心有限公司 消音组件、离心式风机的蜗壳组件、离心式风机及油烟机
US20200132080A1 (en) * 2018-10-26 2020-04-30 Yen Sun Technology Corp. Fan device

Similar Documents

Publication Publication Date Title
WO2011113184A1 (zh) 降低换气扇噪音的结构
CN110410365B (zh) 蜗壳、风机及油烟机
NZ569987A (en) Improved impeller for a ventilation fan that has an aerofoil section and a centrifugal accelerator portion
CN2468788Y (zh) 汽车空调系统的制冷剂管道消音器
CN104632714A (zh) 一种高效低噪轴流通风机
CN110541842B (zh) 风机及风管机
CN203430857U (zh) 一种具有消声功能的新型压气机蜗壳
CN211423009U (zh) 一种可调频降噪的离心通风机及其蜗壳
JP2008138660A (ja) 遠心送風機
CN108087342A (zh) 一种具有亥姆霍兹共振消声结构的离心风机扩压器
CN107120165A (zh) 一种双排气管消声器
CN110410366B (zh) 蜗壳、风机及油烟机
WO2023272928A1 (zh) 离心风机及空调器
US10935049B2 (en) Axial outlet centrifugal-type blower device with noise reducing space
WO2008014659A1 (fr) Atténuateur d'impulsions pour climatiseur
CN110925240A (zh) 一种可调频降噪的离心通风机及其蜗壳
CN111075768A (zh) 一种具有辅助消音结构的离心压气机蜗壳
CN105927594A (zh) 涡轮增压器的消声器
CN206397686U (zh) 消声器、压缩机及空调器
CN212003736U (zh) 蜗壳及具有其的离心风机
CN216950913U (zh) 离心风机及空调器
CN213981101U (zh) 一种吸气消声器
JP5151631B2 (ja) 遠心送風機
CN115539410A (zh) 离心风机及空调器
CN207989400U (zh) 一种具有亥姆霍兹共振消声结构的离心风机扩压器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21947864

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE