WO2023272894A1 - 一种准分子激光器及线宽压窄装置和方法 - Google Patents

一种准分子激光器及线宽压窄装置和方法 Download PDF

Info

Publication number
WO2023272894A1
WO2023272894A1 PCT/CN2021/112632 CN2021112632W WO2023272894A1 WO 2023272894 A1 WO2023272894 A1 WO 2023272894A1 CN 2021112632 W CN2021112632 W CN 2021112632W WO 2023272894 A1 WO2023272894 A1 WO 2023272894A1
Authority
WO
WIPO (PCT)
Prior art keywords
laser
shifter
excimer laser
incident
beam shifter
Prior art date
Application number
PCT/CN2021/112632
Other languages
English (en)
French (fr)
Inventor
刘广义
江锐
徐向宇
赵江山
刘斌
冯泽斌
刘稚萍
詹绍通
Original Assignee
北京科益虹源光电技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京科益虹源光电技术有限公司 filed Critical 北京科益虹源光电技术有限公司
Publication of WO2023272894A1 publication Critical patent/WO2023272894A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/005Optical devices external to the laser cavity, specially adapted for lasers, e.g. for homogenisation of the beam or for manipulating laser pulses, e.g. pulse shaping
    • H01S3/0085Modulating the output, i.e. the laser beam is modulated outside the laser cavity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/005Optical devices external to the laser cavity, specially adapted for lasers, e.g. for homogenisation of the beam or for manipulating laser pulses, e.g. pulse shaping
    • H01S3/0071Beam steering, e.g. whereby a mirror outside the cavity is present to change the beam direction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/101Lasers provided with means to change the location from which, or the direction in which, laser radiation is emitted
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/13Stabilisation of laser output parameters, e.g. frequency or amplitude

Definitions

  • the present application relates to the technical field of lasers, in particular to an excimer laser and a line width narrowing device and method.
  • the laser output by the excimer laser is widely used in the field of semiconductor chip processing because of its short wavelength, narrow line width, and high energy.
  • the laser output by the excimer laser is the most common light source in the field of lithography.
  • the requirements for the energy and spectrum of laser light sources are getting higher and higher. This requirement is particularly important in the field of lithography machines.
  • the laser needs to have greater energy and higher repetition rate, which requires a single pulse energy of 10-20mJ , the repetition rate reached 60kHz.
  • high-energy, high-repetition-frequency beams cause thermal deformation of the optical components inside the laser, which directly leads to the deterioration of the laser spectrum and reduces the service life of the laser itself, especially for excimer lasers.
  • Narrow devices have a greater impact.
  • the present application provides an excimer laser and a line width narrowing device and method to solve the above-mentioned problems existing in the prior art.
  • the present application provides a line width narrowing device 4 of an excimer laser, which device includes: a control device, and a beam shifter 5, a beam expander element 6 and a dispersion element 7 arranged in sequence along the light emitting direction of the laser;
  • the beam shifter 5 is used to shift the laser beam incident at Brewster's angle by a set distance after exiting;
  • the control device is connected with the beam shifter 5 and is used to control the beam shifter 5 to shift adjacent pulses emitted by the laser to different positions after emission.
  • control device is specifically used to control the beam shifter 5 to periodically be in the first position and the second position, so that the adjacent pulses after the laser is emitted are in the first position and the second position respectively. are incident on the beam shifter 5 at Brewster's angle.
  • the beam shifter 5 is a flat mirror including an incident surface and an outgoing surface parallel to each other;
  • the incident surface of the flat mirror faces the incoming direction of the laser beam, and the outgoing surface faces the beam expander;
  • the control device is a rotary control device.
  • the material of the flat mirror is fused silica or CaF2.
  • the beam shifter 5 is a prism including an incident inclined surface, an outgoing inclined surface and a bottom surface;
  • the incident inclined surface faces the incoming direction of the laser beam, and the outgoing inclined surface faces the beam expander element 6;
  • Each surface angle of the prism satisfies the light incident on the incident inclined surface at Brewster's angle, and will be totally reflected after reaching the bottom surface inside the prism and exit from the outgoing inclined surface at Brewster's angle;
  • the control device is a translation control device.
  • the incident surface of the beam shifter 5 is coated with an anti-reflection film for increasing light transmittance.
  • the present application also provides an excimer laser, which is characterized in that it includes: a line width narrowing device for an excimer laser as described in the above device;
  • the line width narrowing device includes: a control device, and a beam shifter 5, a beam expander element 6, and a dispersion element 7 arranged in sequence along the light emitting direction of the laser;
  • the beam shifter 5 is used to shift the laser beam incident at Brewster's angle by a set distance after exiting;
  • the control device is connected with the beam shifter 5 and is used to control the beam shifter 5 to shift adjacent pulses emitted by the laser to different positions after emission.
  • the laser includes: a discharge cavity 1, a working substance, a pumping device 2, and an output coupling mirror 3;
  • the discharge chamber 1 is connected to the pumping device 2 and installed between the output coupling mirror 3 and the line width narrowing device;
  • the pumping device 2 is used to generate electric pulses, so that the discharge cavity 1 generates laser light that enters the linewidth narrowing device;
  • the discharge cavity 1 is used to generate laser light incident into the line width narrowing device, and receive reflected light returned by the line width narrowing device;
  • the output coupling mirror 3 is used to oscillate and amplify the reflected light, and output the amplified reflected light as the output laser of the excimer laser.
  • the working substance is a mixed gas of an inert gas and a halogen gas.
  • the present application also provides a method for controlling the linewidth of an excimer laser, which method is applied to the above-mentioned linewidth narrowing device of an excimer laser, including:
  • the excimer laser If the excimer laser is in working condition, then in the time interval when the excimer laser stops emitting light, adjust the position of the beam shifter 5 built in the excimer laser, so that the beam shifter 5 is Adjusting from the first position to the second position, or from the second position to the first position;
  • the incident angles of the laser light emitted by the excimer laser on the beam shifter 5 are all Brewster angles.
  • the present application also provides an excimer laser, including: a discharge cavity 1, a beam shifter 5, and a line width narrowing device 4;
  • the line width narrowing device 4a includes: a control device, a beam expander element 6 and a dispersion element 7;
  • the beam shifter 5, the beam expander element 6 and the dispersion element 7 are arranged in sequence along the light emitting direction of the discharge chamber 1;
  • the beam shifter 5 is used to shift the laser beam incident at Brewster's angle by a set distance after exiting;
  • the control device is connected with the beam shifter 5 for controlling the beam shifter 5 to shift adjacent pulses emitted by the discharge chamber 1 to different positions after emission.
  • the excimer laser line width narrowing device includes: a control device, and a beam shifter 5, a beam expander element 6 and a dispersion element 7 arranged in sequence along the light emitting direction of the laser; the beam shifter 5 is used for The laser beam incident at the Brewster angle is offset by a set distance after exiting; the control device is connected with the beam shifter 5 for controlling the phase of the beam shifter 5 emitting the laser Adjacent pulses are shifted to different positions after emission.
  • the above-mentioned device dynamically changes the position of the laser light entering the beam expander 6 and the dispersion element 7 through the beam shifter 5, so that different parts of the beam expander 6 and the dispersion element 7 share the heat generated by the laser, avoiding the beam expander
  • the element 6 and the dispersive element 7 are deformed by thermal effects, which ensures the stability of the laser spectrum output by the excimer laser.
  • Figure 1a is a schematic front view of the excimer laser provided in the first embodiment of the present application.
  • Figure 1b is a schematic top view of the excimer laser provided in the first embodiment of the present application.
  • Fig. 2 is a schematic diagram of laser perspective using a beam shifter composed of flat mirrors provided by the first embodiment of the present application;
  • FIG. 3 is a schematic diagram of laser light perspective by using a beam shifter composed of trapezoidal prisms provided by the second embodiment of the present application;
  • FIG. 4 is a schematic diagram of a laser output mode provided by an embodiment of the present application.
  • FIG. 5 is a flow chart of the excimer laser linewidth narrowing method provided in the third embodiment of the present application.
  • FIG. 6 is a schematic front view of another excimer laser provided in the fourth embodiment of the present application.
  • the present application provides an excimer laser and a line width narrowing device and method.
  • the following implementations are described in detail one by one.
  • the linewidth narrowing device provided by this application is used in excimer lasers. By changing the irradiation position of the laser light in each optical element after entering the linewidth narrowing device, the light energy density on the optical element is reduced, and the impact of laser heat on the The influence of the laser spectral line width improves the stability of the spectrum of the excimer laser and the life of the excimer laser itself.
  • the first embodiment of the present application first introduces an excimer laser equipped with an excimer laser linewidth narrowing device.
  • FIG. 1 a and FIG. 1 b are respectively a schematic front view and a schematic top view of the excimer laser provided in the first embodiment of the present application.
  • the excimer laser includes: a discharge cavity 1 , a pumping device 2 , an output coupling mirror 3 and a line width narrowing device 4 .
  • the discharge chamber 1 is connected with the pumping device 2, and the discharge chamber 1 is filled with a working substance, and the working substance includes: a mixed gas of an inert gas and a halogen gas.
  • the discharge cavity 1 is a resonant cavity, and the resonance is realized through output coupling mirrors 8 arranged on both sides of the discharge cavity.
  • the mixed gas in the discharge cavity 1 generates laser light under the action of the electric pulse generated by the pump device 2, and the laser light is reflected back and forth in the discharge cavity 1 through the output coupling mirrors 8 on both sides to realize Resonant amplification. And emit laser light from one side of the discharge cavity to the line width narrowing device 4 .
  • the line width narrowing device 4 Since the natural spectral linewidth of the laser light generated under the action of the electric pulse of the pumping device 2 is on the order of hundreds of picometers at this time, it is also necessary to use the line width narrowing device 4 to carry out the spectral analysis of the laser light generated by the laser. Narrowing so that the spectrum of the laser light released from the other side of the laser meets the requirements.
  • the line width narrowing device 4 includes a control device, a beam shifter, a beam expander element 6 and a dispersion element 7 arranged in sequence along the light emitting direction of the laser.
  • the beam expanding element 6 is composed of several right-angled triangular prisms, which are used to expand the laser beam entering the line width narrowing control 4 to reduce the divergence angle of the laser light irradiated on the dispersion element 7 .
  • the beam expander element 6 is a key component in the linewidth narrowing device 4, and is also an important element for obtaining narrow linewidth laser light.
  • Each prism in the beam expander 6 widens the laser light before it is incident on the dispersive element 7, and the dispersion characteristic of the prism itself also has a certain divergence function on the incident spectrum, thus providing prerequisites for the subsequent light splitting of the dispersive element 7.
  • the surface of the prism is coated with an anti-reflection film to increase the transmittance of the prism.
  • the beam expansion magnification and angular dispersion of the beam expander 6 are the key factors affecting the final narrowing of the laser spectrum width. In order to achieve a larger angular dispersion, it is necessary to ensure The divergence angle ⁇ of the laser light is greater than 75°.
  • the echelle grating has the characteristics of small size, strong dispersion ability, and high diffraction efficiency.
  • the dispersing element 7 is specifically used to disperse the laser light irradiated on the dispersing element 7 through the beam expanding element 6, so that the light of different wavelengths spreads along the direction of the exit angle. After the laser light is dispersed by the dispersion element 7, the light of a specific wavelength and its vicinity can return to the discharge cavity 1 along the original path, and the discharge cavity oscillates and amplifies this part of the light and outputs it, thereby obtaining laser light with a narrow linewidth.
  • the excimer laser provided in the first embodiment of the present application further includes: a control device (not shown in FIGS. 1 and 2 ) and a beam shifter 5 .
  • the beam shifter 5 is installed between the discharge chamber 1 and the beam expander 6, and is used for shifting the laser beam incident at the Brewster angle by a set distance after exiting.
  • the beam shifter 5 is specifically a flat mirror
  • the control device is a rotation control device.
  • the rotation control device is used to control the flat mirror to rotate periodically.
  • the flat mirror is a flat mirror including: the incident surface and the exit surface parallel to each other, and its material can be fused silica or CaF2.
  • the incident angle of the laser light on the flat mirror is the Brewster angle .
  • FIG. 2 is a schematic diagram of deflecting laser light by a beam shifter using a flat mirror according to the first embodiment of the present application.
  • the positions of the flat mirror include position 1 and position 2.
  • the laser light enters the flat mirror at Brewster's angle, and at this time, the transmittance of the flat mirror for the laser light (P light) is 100%.
  • the laser and the flat mirror exit at a Brewster angle and enter the beam expander 6 shown in Figure 1a. At this time, the exit position of the exit laser from the flat mirror deviates upward from the incident position of the incident laser.
  • the flat mirror changes the incident position of the laser beam entering the beam expanding element 6, correspondingly, the incident position of the laser beam passing through the beam expanding element 6 and irradiating the dispersion element 7 also changes accordingly. That is to say, when the flat mirror is at position 1, the position where the laser beam is irradiated on the beam expander 6 and the dispersion element 7 will move up relative to the position where the laser is irradiated on the beam expander 6 and the dispersion element 7 when there is no flat mirror.
  • beam expander 6 and dispersion element 7 are irradiated by high-frequency laser for a long time, and the irradiated parts will be deformed due to continuous heating.
  • a rotary control connected to the flat mirror adjusts the flat mirror from position 1 to position 2.
  • the laser light still enters the flat mirror at Brewster's angle, and at this time, the transmittance of the flat mirror for the laser light (P light) is still 100%.
  • the laser light and the flat mirror exit at a Brewster angle, and enter the beam expander 6.
  • the exit position of the exit laser from the flat mirror deviates downward from the incident laser position. That is to say, when the flat mirror is at position 2, the position where the laser irradiates the beam expander 6 and the dispersive element 7 will move down relative to the positions where the laser irradiates on the beam expander 6 and the dispersive element 7 when there is no flat mirror.
  • the rotation control device controls the rotation of the flat mirror to position 1. Repeatedly switch the position of the flat mirror at position 1 and position 2 so that two different positions of the beam expander 6 and the dispersion element 7 respectively receive the laser beam, thereby avoiding the laser beam from continuously irradiating a specific position for a long time, thereby avoiding or
  • the thermal deformation of the beam expander 6 and the dispersion element 7 is improved, further, the influence of the laser line width caused by the thermal deformation of the beam expander 6 and the dispersion element 7 can be eliminated or improved, and a relatively stable laser spectrum output can be obtained.
  • the transmittance of the P light can be made 100%, which ensures the transmittance of the line width narrowing device, and can also increase the polarization degree of the laser.
  • high heat will reduce the service life of the optical components of the laser, and the above embodiments are beneficial to improve the spectral stability of the laser and the service life of the optical components.
  • the above embodiments of the present application can ensure or improve the thermal deformation of the optical elements in the laser line width narrowing device, which is conducive to the output of the laser with stable and high-quality spectra.
  • the laser is applied to the lithography machine (Scanner) in semiconductor manufacturing, it can Eliminating or reducing the influence of the exposure light source on the line width (CD) is beneficial to the improvement of the yield rate of the chip.
  • the beam shifter 5 can also be a prism including an incident inclined surface, an outgoing inclined surface and a bottom surface, and the angles of each surface of the prism satisfy the light incident on the incident inclined surface at Brewster's angle.
  • the control device is specifically a translation control device, and the translation control device is used to control the translation of the beam shifter along a certain direction.
  • FIG. 3 is a schematic diagram of the perspective view of laser light by using the beam shifter 5 composed of an incident inclined surface, an outgoing inclined surface and a bottom surface provided by the second embodiment of the present application.
  • Both the incident angle and the outgoing angle of the laser beam passing through the beam shifter 5 are Brewster's angles.
  • the positions of the beam shifter 5 include: position 1 and position 2.
  • the laser light When the beam shifter 5 is at position 1, the laser light enters the incident inclined surface of the beam shifter 5 at the Brewster angle, and at this time, the transmittance of the beam shifter 5 for the laser light is 100%. After being refracted by the beam shifter 5 , the laser light still exits along the inclined exit surface of the beam shifter 5 at Brewster's angle, and enters the beam expander 6 .
  • the translation control mechanism connected to the beam shifter 5 translates the beam shifter 5 from position 1 to position 2 along the height direction of the prism.
  • the laser light When the beam shifter 5 is at position 2, the laser light enters the incident inclined surface of the beam shifter 5 at Brewster's angle, and at this moment, the transmittance of the beam shifter 5 for the laser light is still 100%. After being refracted by the beam shifter 5 , the laser light still exits along the inclined exit surface of the beam shifter 5 at Brewster's angle, and enters the beam expander 6 . Since position 2 of the beam shifter 5 is higher than position 1. Therefore, when the beam shifter 5 is located at position 2, the emission position of the laser beam on the exit slope is higher than that of the laser beam on the exit slope when the beam shifter 5 is located at position 1.
  • the beam shifter 5 of the second embodiment of the present application has the same technical effect as that of the above-mentioned first embodiment, which will not be repeated here.
  • the beam shifters of the above-mentioned first embodiment and the second embodiment both change the setting position of the beam shifter 5 through mechanical control, and then realize the beam shift.
  • the beam shifter is controlled by the control device so that the position conversion occurs during the interval of the pulse of the excimer laser, so as to avoid the influence on the output of the spectrum.
  • the rotation of the beam shifter 5 and the excimer laser will be described below when the beam shifter 5 is a flat mirror as an example.
  • the relationship between the light emitting modes is introduced.
  • the light output mode of the excimer laser is specifically an intermittent (or pulsed) light output mode.
  • FIG. 4 is a schematic diagram of a laser output mode provided in an embodiment of the present application. As shown in Figure 4, at time T1, the excimer laser continuously emits a fixed number of pulses, and then stops emitting light at T2; further, at time T3, the excimer laser continues to continuously emit the same number of pulses, and so on. .
  • the flat mirror is driven by the rotation control device to rotate from position 1 to position 2, after which the excimer laser continues to emit light, and so on .
  • the vibration caused by the movement of the flat mirror and the rotating mechanism will not affect the stability of the laser spectrum.
  • the beam shifter 5 is the above-mentioned prism
  • the light emission spectrum shown in FIG. 4 is also applicable, and the principle is basically the same as above, and will not be repeated here.
  • the excimer laser provided by the present application dynamically changes the position of the laser beam entering the beam expander element 6 and the dispersion element 7 through the built-in beam shifter 5 in the linewidth narrowing device 4, so that the beam expander element 6 and the dispersion element Different parts of 7 share the heat generated by the laser, avoiding thermal deformation of the beam expander 6 and dispersion element 7, and ensuring the stability of the laser spectrum output by the excimer laser.
  • the position of the beam shifter is controlled by the control device to change the beam output position.
  • the physical state of the beam shifter can also be controlled, for example, the beam can be controlled by energizing
  • the beam position shift can be achieved by the position of the beam emitted, etc.; any technical solution that can realize the beam position shift and achieve the above-mentioned technical effects should be included in the protection scope of the present application.
  • an excimer laser is provided, and correspondingly, the present application also provides a line width narrowing device for an excimer laser, which is the line width narrowing device of the first embodiment and the second embodiment above , which will not be repeated here.
  • the present application also provides a method for narrowing the linewidth of an excimer laser, which is specifically applied to the excimer laser or the linewidth narrowing device for the excimer laser provided in the above embodiments.
  • FIG. 5 is a flow chart of the excimer laser linewidth narrowing method provided in the third embodiment of the present application.
  • the method includes:
  • Step S501 acquiring the working status information of the excimer laser
  • the working state information of the excimer laser refers to the information of whether the laser is in the working state. If the excimer laser stops working, the discharge cavity 1 will not release the laser light to the line width narrowing device 4, and the line width narrowing device 4 will not release the laser light. It does not need to be processed for line width reduction.
  • Step S502 if the excimer laser is in the working state, adjust the position of the beam shifter 5 built in the excimer laser during the time interval when the excimer laser stops emitting light, so that the beam shifter 5 changes from the first position Adjust to the second position, or adjust from the second position to the first position;
  • the incident angles of the laser light emitted by the excimer laser on the beam shifter 5 are all Brewster angles.
  • the first position is the position 1 mentioned in the first embodiment of the present application
  • the second position is the position 2 mentioned in the first embodiment of the present application.
  • the present application also provides another excimer laser, which is basically similar to the excimer laser provided in the first embodiment and the second embodiment of the present application. Please refer to FIG. 6, which is another excimer laser provided in the fourth embodiment of the present application. Schematic diagram of the front view of an excimer laser.
  • the excimer laser includes: a discharge cavity 1, a beam shifter 5 and a line width narrowing device 4a.
  • the line width narrowing device 4 a includes: a beam expander element 6 and a dispersion element 7 .
  • the beam shifter 5 in the excimer laser provided in the fourth embodiment of the present application is arranged outside the linewidth narrowing device 4a, and other parts are the same as those in the first embodiment of the present application.
  • the excimer lasers provided by the first embodiment and the second embodiment are basically the same, and will not be repeated here.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • Lasers (AREA)

Abstract

一种准分子激光器及线宽压窄装置和方法。其中,线宽压窄装置包括:控制装置,以及沿激光器出光方向依次设置的光束偏移器(5)、扩束元件(6)和色散元件(7);光束偏移器(5)用于将以布鲁斯特角入射的激光光束在出射后偏移设定距离;控制装置与光束偏移器(5)相连接,用于控制光束偏移器(5)将激光器出射的相邻脉冲在出射后偏移至不同位置。通过光束偏移器(5)动态的改变激光进入扩束元件(6)和色散元件(7)时的位置,使扩束元件(6)和色散元件(7)的不同部分共同承担激光产生的热,避免了扩束元件(6)和色散元件(7)产生热效应变形,确保了准分子激光器输出的激光光谱的稳定性。

Description

一种准分子激光器及线宽压窄装置和方法 技术领域
本申请涉及激光器技术领域,具体涉及一种准分子激光器及线宽压窄装置和方法。
背景技术
准分子激光器输出的激光因具有波长短、线宽窄、能量高的特点,被广泛应用于半导体的芯片加工领域,例如:准分子激光器输出的激光是光刻机领域最常见的光源。
随着半导体工艺的不断进步,对激光光源的能量以及光谱的要求越来越高。这一要求在光刻机领域体现的尤为重要,例如:为了提高光刻机曝光系统的产率,要求激光器需要具备较大的能量和更高的重复频率,其要求单脉冲能量达到10~20mJ,重复频率达到了60kHz。然而,不可避免的,高能量、高重频的光束引起激光器内部光学元件的热变形,进而直接导致激光器的光谱变差,降低激光器本身的可使用寿命,尤其是对于准分子激光器的线宽压窄装置影响更大。
因此,如何减少光束对准分子激光器内部光学元件,尤其是对准分子激光器的线宽压窄装置内部的光学元件的影响,成为本领域技术人员亟需解决的技术问题。
发明内容
本申请提供一种准分子激光器及线宽压窄装置和方法,以解决现有技术中存在的上述问题。
本申请提供一种准分子激光器的线宽压窄装置4,该装置包括:控制装置,以及沿激光器出光方向依次设置的光束偏移器5、扩束元件6和色散元件7;
所述光束偏移器5用于将以布鲁斯特角入射的激光光束在出射后偏移设定距离;
所述控制装置与所述光束偏移器5相连接,用于控制所述光束偏移器5将所述激光器出射的相邻脉冲在出射后偏移至不同位置。
可选的,所述控制装置具体用于控制所述光束偏移器5周期性的处于第一 位置和第二位置,使得所述激光器出射后的相邻脉冲分别在第一位置和第二位置均以布鲁斯特角入射至所述光束偏移器5。
可选的,所述光束偏移器5为包括相互平行的入射面和出射面的平板镜;
所述平板镜的入射面面向所述激光光束来光方向,所述出射面朝向所述扩束元件;
所述控制装置为旋转控制装置。
可选的,所述平板镜材质为熔石英或CaF2。
可选的,所述光束偏移器5为包括入射倾斜面、出射倾斜面和底面的棱镜;
所述入射倾斜面朝向所述激光光束来光方向,出射倾斜面朝向所述扩束元件6;
所述棱镜的各个面角度满足以布鲁斯特角入射至入射倾斜面的光线,在所述棱镜内部到达底面后会被全反射并由所述出射倾斜面以布鲁斯特角出射;
所述控制装置为平移控制装置。
可选的,所述光束偏移器5入射表面镀有增透膜,用于增加透光率。
本申请同时提供一种准分子激光器,其特征在于,包括:如上述装置中所述的用于准分子激光器的线宽压窄装置;
所述线宽压窄装置,包括:控制装置,以及沿激光器出光方向依次设置的光束偏移器5、扩束元件6和色散元件7;
所述光束偏移器5用于将以布鲁斯特角入射的激光光束在出射后偏移设定距离;
所述控制装置与所述光束偏移器5相连接,用于控制所述光束偏移器5将所述激光器出射的相邻脉冲在出射后偏移至不同位置。
可选的,所述激光器包括:放电腔1、工作物质、泵浦装置2、输出耦合镜3;
所述放电腔1与所述泵浦装置2相连,安装在所述输出耦合镜3与所述线宽压窄装置之间;
所述泵浦装置2,用于产生电脉冲,使所述放电腔1产生入射进入所述线宽压窄装置的激光;
所述放电腔1,用于产生入射进入所述线宽压窄装置的激光,接收所述线宽压窄装置返回的反射光;
所述输出耦合镜3,用于将所述反射光进行震荡放大,并输出所述震荡放大 后的反射光,作为所述准分子激光器的输出激光。
可选的,所述工作物质为惰性气体和卤素气体的混合气体。
本申请同时提供一种用于准分子激光器线宽的控制方法,该方法应用于上述准分子激光器的线宽压窄装置中,包括:
获取准分子激光器的工作状态信息;
若所述准分子激光器处于工作状态,则在所述准分子激光器处于停止出光的时间间隔内,调整内置在准分子激光器中的光束偏移器5的位置,使所述光束偏移器5由第一位置调整至第二位置,或由第二位置调整至第一位置;
其中,所述光束偏移器5处于第一位置或第二位置时,所述准分子激光器发出的激光照在所述光束偏移器5的入射角均为布鲁斯特角。
本申请同时提供一种准分子激光器,包括:放电腔1、光束偏移器5以及线宽压窄装置4;
所述线宽压窄装置4a包括:控制装置、扩束元件6以及色散元件7;
所述光束偏移器5、扩束元件6和色散元件7沿所述放电腔1出光方向依次排列;
所述光束偏移器5用于将以布鲁斯特角入射的激光光束在出射后偏移设定距离;
所述控制装置与所述光束偏移器5相连接,用于控制所述光束偏移器5将所述放电腔1出射的相邻脉冲在出射后偏移至不同位置。
与现有技术相比,本申请具有以下优点:
本申请提供的准分子激光器线宽压窄装置,包括:控制装置,以及沿激光器出光方向依次设置的光束偏移器5、扩束元件6和色散元件7;所述光束偏移器5用于将以布鲁斯特角入射的激光光束在出射后偏移设定距离;所述控制装置与所述光束偏移器5相连接,用于控制所述光束偏移器5将所述激光器出射的相邻脉冲在出射后偏移至不同位置。上述装置通过光束偏移器5动态的改变激光进入扩束元件6和色散元件7时的位置,使扩束元件6和色散元件7的不同部分共同承担激光产生的热,避免了所述扩束元件6和色散元件7产生热效应变形,确保了准分子激光器输出的激光光谱的稳定性。
附图说明
图1a为本申请第一实施例提供的准分子激光器的正视示意图;
图1b为本申请第一实施例提供的准分子激光器的俯视示意图;
图2为本申请第一实施例提供的利用由平板镜组成的光束偏移器对激光进行透视的示意图;
图3为本申请第二实施例提供的利用由梯形棱台组成的光束偏移器对激光进行透视的示意图;
图4为本申请实施例提供的激光器出光模式示意图;
图5为本申请第三实施例提供的准分子激光器线宽压窄方法流程图;
图6为本申请第四实施例提供的另一种准分子激光器的正视示意图。
具体实施方式
在下面的描述中阐述了很多具体细节以便于充分理解本申请。但是,本申请能够以很多不同于在此描述的其他方式来实施,本领域技术人员可以在不违背本申请内涵的情况下做类似推广,因此,本申请不受下面公开的具体实施例的限制。
本申请中使用的术语是仅仅出于对特定实施例描述的目的,而非旨在限制本申请。在本申请中和所附权利要求书中所使用的描述方式例如:“一种”、“第一”、和“第二”等,并非对数量上的限定或先后顺序上的限定,而是用来将同一类型的信息彼此区分。
本申请提供一种准分子激光器及线宽压窄装置和方法。在下面的实施逐一进行详细描述。
本申请提供的线宽压窄装置用于准分子激光器,通过改变激光进入线宽压窄装置后照射在各个光学元件中的照射位置,进而降低光学元件上的光能量密度,减小激光热量对激光光谱线宽的影响,提升准分子激光器的光谱的稳定性和准分子激光器本身的寿命。
为了便于理解本申请提供的用于准分子激光器的线宽压窄装置的工作原理,本申请第一实施例首先对安装了准分子激光器线宽压窄装置的准分子激光器进行介绍。
请参考图1a、图1b,其分别为本申请第一实施例提供的准分子激光器的正视示意图和俯视示意图。
准分子激光器包括:放电腔1、泵浦装置2、输出耦合镜3以及线宽压窄装置4。
放电腔1与泵浦装置2相连,放电腔1内充满工作物质,工作物质包括: 惰性气体和卤素气体的混合气体。放电腔1为谐振腔,通过设置于放电腔两侧的输出耦合镜8实现谐振。在准分子激光器工作的过程中,放电腔1内的混合气体在泵浦装置2产生的电脉冲的作用下,产生激光,激光在放电腔1内部通过两侧的输出耦合镜8来回反射,实现谐振放大。并由放电腔的一侧向线宽压窄装置4出激光。由于此时在泵浦装置2的电脉冲的作用下产生的激光的自然谱线宽度大约为几百皮米量级,因此,还需要利用线宽压窄装置4对激光器产生的激光的光谱进行压窄处理,以使激光器的另一侧释放的激光的光谱符合要求。
线宽压窄装置4包括控制装置,以及沿激光器出光方向依次设置的光束偏移器、扩束元件6和色散元件7组成。
其中,扩束元件6由若干直角三角棱镜组成,用于对进入线宽压窄控制4的激光进行扩束,以减少激光照射在色散元件7上的发散角。
扩束元件6是线宽压窄装置4中的关键部件,也是获得窄线宽激光的重要元件。扩束元件6中的各个棱镜对入射至色散元件7之前的激光进行展宽,同时棱镜本身的色散特性对入射光谱也具有一定的发散功能,从而为色散元件7的后续分光提供前提准备。另外,为了增加扩束元件6中各个棱镜的透过率,棱镜的表面还镀有增透膜,以增加棱镜的透过率。
在线宽压窄领域,扩束元件6的扩束倍率以及角色散是影响最终激光光谱宽窄化的关键因素,为了实现较大的角色散,需要保证透过扩束元件6照射在色散元件上的激光的发散角θ大于75°。
色散元件7,本实施例中采用中阶梯光栅,中阶梯光栅又称反射式阶梯光栅,中阶梯光栅具有体积小、色散能力强、衍射效率高的特点。色散元件7具体用于对透过扩束元件6照射在色散元件7上的激光进行色散,使其以不同波长的光沿出射角方向展开。在激光经过色散元件7的色散后出射,特定波长及附近的光能够沿原路返回至放电腔1,由放电腔将这一部分光进行震荡放大并输出,进而得到窄线宽的激光。
在激光器工作的过程中,伴随着能量和重频的不断提升,激光照射在扩束元件6和色散元件7上的能量也不断变大,扩束元件6和色散元件7对光的不断吸收,必然使扩束元件6和色散元件7的温度上升,进而引起光学面的变形,从而使光束的发散角进一步变大,使光谱变宽。为了解决以上问题,在本申请第一实施例提供的准分子激光器中,还包括:控制装置(图1、2中未示出)以及 光束偏移器5。
本实施例中,光束偏移器5安装在放电腔1和扩束元件6之间,用于将以布鲁斯特角入射的激光光束在出射后偏移设定距离。
在本申请的一个可选实施例中,光束偏移器5具体为平板镜,控制装置为旋转控制装置。旋转控制装置用于控制平板镜进行周期性旋转。
平板镜为包括:相互平行的入射面和出射面的平板镜,其材质可以是熔石英或CaF2,为了保证光束偏移器的透过率,激光照射在平板镜上的入射角为布鲁斯特角。
请参考图2,其为本申请第一实施例提供的利用平板镜的光束偏移器对激光进行偏移的示意图。
平板镜的位置包括位置1和位置2。
当平板镜处于位置1时,激光以布鲁斯特角入射进入平板镜,此时,平板镜对于激光(P光)的透射率为100%。经过平板镜的折射,激光与平板镜呈布鲁斯特角出射,并进入图1a所示的扩束元件6,此时,平板镜的出射激光的出射位置向上偏离入射激光的入射位置。
可以理解的是,由于平板镜改变了激光入射进入扩束元件6的入射位置,相应的,透过扩束元件6照射在色散元件7的激光的入射位置也随着相应改变。也就是说,当平板镜处于位置1时,激光照射在扩束元件6和色散元件7的位置,都会相对于不存在平板镜时激光照在扩束元件6和色散元件7的位置上移。
如前,扩束元件6和色散元件7长时间经高频激光照射,会由于被照射部位连续受热而发生形变,在扩束元件6和色散元件7的光学面还未发生变形之前,可以通过与平板镜相连的旋转控制装置将平板镜由位置1调整至位置2。
当平板镜处于位置2时,激光仍以布鲁斯特角入射进入平板镜,此时,平板镜对于激光(P光)的透射率仍为100%。经过平板镜的折射,激光与平板镜呈布鲁斯特角出射,并进入扩束元件6,此时,平板镜的出射激光的出射位置向下偏离入射激光的入射位置。也就是说,当平板镜处于位置2时,激光照射在扩束元件6和色散元件7的位置,都会相对于不存在平板镜时激光照射在扩束元件6和色散元件7的位置下移。
进一步的,在扩束元件6和色散元件7的光学面未发生变形之前,再使旋转控制装置控制平板镜旋转至位置1处。如此反复在位置1和位置2处切换平板镜的位置,让扩束元件6和色散元件7两个不同的位置分别接受激光光束, 从而避免了激光光束连续长时间照射特定位置,进而可避免或改善扩束元件6和色散元件7热效应变形,进一步的,可消除或改善由于扩束元件6和色散元件7的热效应变形引起的激光线宽的影响,进而得到了较为稳定的激光光谱输出。此外,以布鲁斯特角角对平板镜入射,可使得P光的透射率为100%,保障了线宽压窄装置的透过率,还可以提高激光器的偏振度。同时,大热量会减低激光器光学元件的寿命,上述实施例有利于提升激光器光谱稳定性和光学元件的寿命。
本申请上述实施例可保证或改善激光器线宽压窄装置中光学元件的热变形,有利于激光器的输出稳定高质量光谱,在该激光器应用于半导体制造中的光刻机(Scanner)时,能够消除或减轻由于曝光光源对线宽(CD)影响,有利于芯片的良率的提高。
在本申请的第二实施例中,光束偏移器5还可以为包括入射倾斜面、出射倾斜面和底面的棱镜,棱镜的各个面角度满足以布鲁斯特角入射至入射倾斜面的光线,在棱镜内部到达底面后会被全反射并由出射倾斜面以布鲁斯特角出射。控制装置具体为平移控制装置,平移控制装置用于控制光束偏移器沿某一方向平动。
请参考图3,其为本申请第二实施例提供的利用由入射倾斜面、出射倾斜面和底面组成的光束偏移器5对激光进行透视的示意图。
激光透过光束偏移器5的入射角和出射角均为布鲁斯特角。
光束偏移器5的位置包括:位置1和位置2。
当光束偏移器5处于位置1时,激光以布鲁斯特角入射进入光束偏移器5的入射倾斜面,此时,光束偏移器5对于激光的透射率为100%。经过光束偏移器5的折射,激光仍以布鲁斯特角沿光束偏移器5的出射倾斜面出射,并进入扩束元件6。
在扩束元件6和色散元件7的光学面未发生形变之前,使与光束偏移器5相连的平移控制机构将光束偏移器5沿棱镜的高的方向,由位置1平移至位置2。
当光束偏移器5处于位置2时,激光以布鲁斯特角入射进入光束偏移器5的入射倾斜面,此时,光束偏移器5对于激光的透射率仍然为100%。经过光束偏移器5的折射,激光仍以布鲁斯特角沿光束偏移器5的出射倾斜面出射,并进入扩束元件6。由于光束偏移器5的位置2高于位置1。因此,在当光束偏移 器5位于位置2时,激光在出射倾斜面的出射位置,高于光束偏移器5位于位置1时激光在出射倾斜面的出射位置。也就是说,在扩束元件6和色散元件7未发生变形之前,不断调整光束偏移器5在位置1和位置2变化,也能降低热效应对光学元件的影响,进而得到较为稳定的激光光谱的输出。本申请第二实施例的光束偏移器5具有与上述第一实施例相同的技术效果,在此不在赘述。
上述第一实施例和第二实施例的光束偏移器均通过机械控制得方式改变光束偏移器5设置位置,进而实现光束偏移,在光束偏移器的位置变化过程中,不可避免的会由于运动而带来额外的振动,该振动对整个激光器的光谱输出可能会产生影响;因此,还需要抑制这一运动对激光光谱带来的影响。本申请的实施例中,通过控制装置控制光束偏移器使其位置转换发生在准分子激光器脉冲发生的间歇,从而避免在光谱输出时产生影响。
为了便于理解本申请实施例提供的准分子激光器的出光模式以及光束偏移器5的偏转过程,以下以光束偏移器5为平板镜时为例对光束偏移器5的旋转与准分子激光器的出光模式之间的关系进行介绍。
由于准分子激光器的出光模式具体为一种间歇式(或者成为脉冲式)的出光模式。具体的,请参考图4,其为本申请实施例提供的激光器出光模式示意图。如图4所示,在T1时刻,准分子激光器连续出射固定数量的脉冲数,之后在T2时刻,停止出光;进一步的,在T3时刻,准分子激光器继续连续出射相同数量的脉冲数,如此反复。
在T1时刻,假设平板镜位于位置1,当准分子激光器处于停止出光的T2时刻时,平板镜在旋转控制装置的带动下,由位置1旋转至位置2,之后准分子激光器继续出光,如此反复。
由于平板镜的旋转动作发生在平板镜不出光的时刻,因此,平板镜和旋转机构运动带来的振动并不会对激光器光谱的稳定性带来影响。另外,在光束偏移器5为上述棱镜的情况下,图4所示的出光光谱也同样适用,其原理与上述基本相同,此处不再进行赘述。
综上,本申请提供的准分子激光器,通过在线宽压窄装置4中内置光束偏移器5动态的改变激光进入扩束元件6和色散元件7时的位置,使扩束元件6和色散元件7的不同部分共同承担激光产生的热,避免了扩束元件6和色散元件7产生热效应变形,确保了准分子激光器输出的激光光谱的稳定性。
上述的第一和第二实施例中通过控制装置控制光束偏移器的位置来改变光 束出射位置的,在其他实施例中,还可以通过控制光束偏移器的物理状态,例如通过通电控制光束出射的位置等来实现光束位置偏移;任何能够实现光束位置偏移并能够实现上述技术效果的技术方案均应包含在本申请的保护范围之内。
上述实施例中,提供一种准分子激光器,与之相应的,本申请还提供一种准分子激光器线宽压窄装置,即为上述第一实施例和第二实施例的线宽压窄装置,在此不再赘述。
本申请还提供一种准分子激光器线宽压窄方法,具体应用于上述实施例提供的准分子激光器或准分子激光器的线宽压窄装置中。
请参考图5,其为本申请第三实施例提供的准分子激光器线宽压窄方法流程图。该方法包括:
步骤S501,获取准分子激光器的工作状态信息;
准分子激光器的工作状态信息就是指,激光器是否处于工作状态的信息,如果准分子激光器停止工作,放电腔1也就不会在向线宽压窄装置4释放激光,线宽压窄装置4也无需对其进行线宽压窄处理。
步骤S502,若准分子激光器处于工作状态,则在准分子激光器处于停止出光的时间间隔内,调整内置在准分子激光器中的光束偏移器5的位置,使光束偏移器5由第一位置调整至第二位置,或由第二位置调整至第一位置;
其中,光束偏移器5处于第一位置或第二位置时,准分子激光器发出的激光照在光束偏移器5的入射角均为布鲁斯特角。
在本申请第三实施例中,第一位置就是本申请第一实施例提到的位置1,第二位置就是本申请第一实施例提到的位置2。
本申请同时还提供另一种准分子激光器,其基本相似与本申请第一实施例和第二实施例提供的准分子激光器,请参考图6,其为本申请第四实施例提供的另一种准分子激光器的正视示意图。
所述准分子激光器包括:放电腔1、光束偏移器5以及线宽压窄装置4a。
所述线宽压窄装置4a,包括:扩束元件6和色散元件7。
与本申请第一实施例中示出的准分子激光器不同的,本申请第四实施例提供的准分子激光器中的光束偏移器5设置在线宽压窄装置4a外部,其它部分与本申请第一实施例和第二实施例的提供的准分子激光器基本相同,在此不再赘 述。
本申请虽然以较佳实施例公开如上,但其并不是用来限定本申请,任何本领域技术人员在不脱离本申请的精神和范围内,都可以做出可能的变动和修改,因此本申请的保护范围应当以本申请权利要求所界定的范围为准。

Claims (9)

  1. 一种准分子激光器的线宽压窄装置,其特征在于,包括:控制装置,以及沿激光器出光方向依次设置的光束偏移器(5)、扩束元件(6)和色散元件(7);
    所述光束偏移器(5)用于将以布鲁斯特角入射的激光光束在出射后偏移设定距离;
    所述控制装置与所述光束偏移器(5)相连接,用于控制所述光束偏移器(5)将所述激光器出射的相邻脉冲在出射后偏移至不同位置。
  2. 根据权利要求1所述的装置,其特征在于,所述控制装置具体用于控制所述光束偏移器(5)周期性的处于第一位置和第二位置,使得所述激光器出射后的相邻脉冲分别在第一位置和第二位置均以布鲁斯特角入射至所述光束偏移器。
  3. 根据权利要求1或2所述的装置,其特征在于,所述光束偏移器(5)为包括相互平行的入射面和出射面的平板镜;
    所述平板镜的入射面面向所述激光光束来光方向,所述出射面朝向所述扩束元件;
    所述控制装置为旋转控制装置。
  4. 根据权利要求3所述的装置,其特征在于,所述平板镜材质为熔石英或CaF2。
  5. 根据权利要求1或2所述的装置,其特征在于,所述光束偏移器(5)为包括入射倾斜面、出射倾斜面和底面的棱镜;
    所述入射倾斜面朝向所述激光光束来光方向,出射倾斜面朝向所述扩束元件(6);
    所述棱镜的各个面角度满足以布鲁斯特角入射至入射倾斜面的光线,在所述棱镜内部到达底面后会被全反射并由所述出射倾斜面以布鲁斯特角出射;
    所述控制装置为平移控制装置。
  6. 根据权利要求1所述的装置,其特征在于,所述光束偏移器入射表面镀有增透膜,用于增加透光率。
  7. 一种准分子激光器,其特征在于,包括:如权利要求1至6任意所述的准分子激光器的线宽压窄装置。
  8. 一种用于准分子激光器的线宽压窄方法,其特征在于,应用于权利要求1至6任意一项所述的装置,包括:
    获取准分子激光器的工作状态信息;
    若所述准分子激光器处于工作状态,则在所述准分子激光器处于停止出光的时间间隔内,调整内置在线宽压窄装置中的的光束偏移器(5)的位置,使所述光束偏移器(5)由第一位置调整至第二位置,或由第二位置调整至第一位置;
    其中,所述光束偏移器(5)处于第一位置或第二位置时,所述准分子激光器发出的激光照在所述光束偏移器(5)的入射角均为布鲁斯特角。
  9. 一种准分子激光器,其特征在于,包括:放电腔(1)、光束偏移器(5)以及线宽压窄装置(4a);
    所述线宽压窄装置(4a)包括:控制装置、扩束元件(6)以及色散元件(7);
    所述光束偏移器(5)、扩束元件(6)和色散元件(7)沿所述放电腔(1)出光方向依次排列;
    所述光束偏移器(5)用于将以布鲁斯特角入射的激光光束在出射后偏移设定距离;
    所述控制装置与所述光束偏移器(5)相连接,用于控制所述光束偏移器(5)将所述放电腔(1)出射的相邻脉冲在出射后偏移至不同位置。
PCT/CN2021/112632 2021-06-28 2021-08-13 一种准分子激光器及线宽压窄装置和方法 WO2023272894A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110717595.2 2021-06-28
CN202110717595.2A CN113437631A (zh) 2021-06-28 2021-06-28 一种准分子激光器及线宽压窄装置和方法

Publications (1)

Publication Number Publication Date
WO2023272894A1 true WO2023272894A1 (zh) 2023-01-05

Family

ID=77754866

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/112632 WO2023272894A1 (zh) 2021-06-28 2021-08-13 一种准分子激光器及线宽压窄装置和方法

Country Status (2)

Country Link
CN (1) CN113437631A (zh)
WO (1) WO2023272894A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115616792A (zh) * 2022-11-29 2023-01-17 天津凯普林激光科技有限公司 一种光束整形方法、光束整形装置及紫外激光器

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5970082A (en) * 1997-06-04 1999-10-19 Cymer, Inc. Very narrow band laser
CN101329018A (zh) * 2008-07-30 2008-12-24 友达光电股份有限公司 发光装置
CN102969649A (zh) * 2012-12-20 2013-03-13 中国科学院光电研究院 准分子激光器复合腔
CN102981278A (zh) * 2012-12-19 2013-03-20 中国科学院光电研究院 基于等腰直角三角棱镜的激光线宽压窄扩束方法和系统
CN102983485A (zh) * 2012-11-30 2013-03-20 中国科学院上海光学精密机械研究所 窄线宽准分子激光器
CN108963727A (zh) * 2018-07-27 2018-12-07 北京科益虹源光电技术有限公司 带有对准装置的线宽压窄模块及准分子激光器
CN109411994A (zh) * 2018-12-03 2019-03-01 北京科益虹源光电技术有限公司 一种线宽压窄模块及其调整方法
CN111934183A (zh) * 2020-08-18 2020-11-13 北京科益虹源光电技术有限公司 一种准分子激光器线宽和e95主动控制装置及方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104162741B (zh) * 2014-07-31 2016-06-01 北京万恒镭特机电设备有限公司 激光加工装置及其方法
CN105911808A (zh) * 2016-06-30 2016-08-31 海信集团有限公司 一种激光光源及激光投影设备
CN110137785B (zh) * 2019-05-28 2024-03-19 北京科益虹源光电技术有限公司 一种窄线宽准分子激光系统和线宽压缩并整形的方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5970082A (en) * 1997-06-04 1999-10-19 Cymer, Inc. Very narrow band laser
CN101329018A (zh) * 2008-07-30 2008-12-24 友达光电股份有限公司 发光装置
CN102983485A (zh) * 2012-11-30 2013-03-20 中国科学院上海光学精密机械研究所 窄线宽准分子激光器
CN102981278A (zh) * 2012-12-19 2013-03-20 中国科学院光电研究院 基于等腰直角三角棱镜的激光线宽压窄扩束方法和系统
CN102969649A (zh) * 2012-12-20 2013-03-13 中国科学院光电研究院 准分子激光器复合腔
CN108963727A (zh) * 2018-07-27 2018-12-07 北京科益虹源光电技术有限公司 带有对准装置的线宽压窄模块及准分子激光器
CN109411994A (zh) * 2018-12-03 2019-03-01 北京科益虹源光电技术有限公司 一种线宽压窄模块及其调整方法
CN111934183A (zh) * 2020-08-18 2020-11-13 北京科益虹源光电技术有限公司 一种准分子激光器线宽和e95主动控制装置及方法

Also Published As

Publication number Publication date
CN113437631A (zh) 2021-09-24

Similar Documents

Publication Publication Date Title
JP5100990B2 (ja) 極端紫外光源装置用ドライバーレーザ及びlpp型極端紫外光源装置
US7184204B2 (en) Master-oscillator power-amplifier (MOPA) excimer or molecular fluorine laser system with long optics lifetime
US6999491B2 (en) High intensity and high power solid state laser amplifying system and method
TWI553978B (zh) 再生環型共振器
JP5666285B2 (ja) 再生増幅器、レーザ装置および極端紫外光生成装置
US20220006263A1 (en) Laser processing machine, processing method, and laser light source
JP5657139B2 (ja) Co2レーザ装置およびco2レーザ加工装置
WO2023272894A1 (zh) 一种准分子激光器及线宽压窄装置和方法
TW202135966A (zh) 波長變換雷射裝置及波長變換雷射加工機
TWI591918B (zh) 用於功率放大器之腔內損耗元件
JP2003092199A (ja) 光源装置及びそれを用いた露光装置
JP2004039767A (ja) Mopa式又は注入同期式レーザ装置
US20040156414A1 (en) Excimer or molecular fluorine laser with bandwidth of less than 0.2 pm
JP7395729B2 (ja) 複数のレーザビームを組み合わせるための装置及びその方法
US20210098958A1 (en) Optical assembly for reducing a spectral bandwidth of an output beam of a laser
USRE45957E1 (en) Regenerative ring resonator
JP2000105464A (ja) レーザ照射装置及び露光装置
JP5242758B2 (ja) 極端紫外光源装置用ドライバーレーザ及びlpp型極端紫外光源装置
WO2020121468A1 (ja) レーザ加工装置及び被加工物の加工方法
TW202414101A (zh) 脈衝雷射及操作方法
JP2022061443A (ja) レーザ装置
JPH07142367A (ja) 半導体露光装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21947832

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE