WO2023272809A1 - 一种用于铁路信号电源屏的acac交流电源模块 - Google Patents

一种用于铁路信号电源屏的acac交流电源模块 Download PDF

Info

Publication number
WO2023272809A1
WO2023272809A1 PCT/CN2021/107341 CN2021107341W WO2023272809A1 WO 2023272809 A1 WO2023272809 A1 WO 2023272809A1 CN 2021107341 W CN2021107341 W CN 2021107341W WO 2023272809 A1 WO2023272809 A1 WO 2023272809A1
Authority
WO
WIPO (PCT)
Prior art keywords
field effect
module
power supply
diode
effect transistor
Prior art date
Application number
PCT/CN2021/107341
Other languages
English (en)
French (fr)
Inventor
朱光辉
储仁杰
吴庆丰
李同丽
张平
郑朝央
Original Assignee
天津铁路信号有限责任公司
通号(西安)轨道交通工业集团有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 天津铁路信号有限责任公司, 通号(西安)轨道交通工业集团有限公司 filed Critical 天津铁路信号有限责任公司
Publication of WO2023272809A1 publication Critical patent/WO2023272809A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/3353Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having at least two simultaneously operating switches on the input side, e.g. "double forward" or "double (switched) flyback" converter
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/08Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
    • H02M1/088Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters for the simultaneous control of series or parallel connected semiconductor devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/12Arrangements for reducing harmonics from ac input or output
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/42Circuits or arrangements for compensating for or adjusting power factor in converters or inverters
    • H02M1/4208Arrangements for improving power factor of AC input
    • H02M1/4225Arrangements for improving power factor of AC input using a non-isolated boost converter
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M5/00Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases
    • H02M5/40Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc
    • H02M5/42Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters
    • H02M5/44Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac
    • H02M5/453Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M5/458Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
    • H02M7/53871Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Definitions

  • the invention relates to the technical field of circuit design for a railway signal power panel, in particular to an ACAC (ACAC means AC to AC conversion) AC power module used for a railway signal power panel.
  • ACAC AC to AC conversion
  • the railway signal power supply panel is a device used in the railway industry to supply power to station signal equipment. According to the railway signal power system equipment series standard requirements stipulated in the railway industry standard TB/T 1528 of the People's Republic of China, the power supply panel should ensure that the input voltage is in single-phase AC In the range of AC176V ⁇ single-phase AC AC 253V, the frequency can be stably supplied within the range of 50Hz ⁇ 0.5Hz.
  • the power module in the existing railway signal power panel needs to use a power frequency transformer (also called a low frequency transformer) for isolated power supply.
  • a power frequency transformer also called a low frequency transformer
  • the existing power frequency transformer has the following technical defects:
  • the power frequency transformer is heavy, which leads to the heavy weight of the entire railway signal screen system
  • the power density of the power module using a power frequency transformer is low.
  • the object of the present invention is to provide an ACAC AC power supply module for railway signal power supply panels aiming at the technical defects in the prior art.
  • the present invention provides a kind of ACAC AC power supply module that is used for railway signal power screen, and it comprises PFC module, DCDC module and inverter module, wherein:
  • the PFC module is used to receive the preset single-phase AC input voltage input by the external single-phase AC input power supply, and output the preset first DC voltage to the DCDC module after boost processing;
  • the DCDC module is connected to the PFC module, and is used to receive the preset first DC voltage output by the PFC module, and output it to the inverter module after high-frequency isolation and transformation into a preset second DC voltage;
  • the inverter module is connected with the DCDC module, and is used for receiving the preset second DC voltage output by the DCDC module, and then outputting the preset single-phase AC output voltage after inversion processing.
  • the PFC module specifically includes live wire L and neutral wire N;
  • One end of the live line L and one end of the neutral line N are respectively connected to both ends of the external single-phase AC input power supply; wherein, one end of the live line L is used as the first voltage input terminal Vin1 of the PFC module;
  • the other end of the live wire L is respectively connected to the anode of the diode D11 and the cathode of the diode D12;
  • the other end of the neutral line N is respectively connected to the anode of the diode D13 and the cathode of the diode D14;
  • the cathode of the diode D11 and the cathode of the diode D13 converge at the terminal M;
  • the terminal M is respectively connected to one end of the inductor L1 and one end of the inductor L2;
  • the anode of the diode D12 and the anode of the diode D14 are converging at the terminal N;
  • the terminal N is respectively connected to the source S of the field effect transistor S1, the source S of the field effect transistor S2, one end of the capacitor C1, and one end of the resistor R1;
  • the other end of the inductor L1 is respectively connected to the drain D of the field effect transistor S1 and the anode of the diode D1;
  • the cathode of the diode D1 is respectively connected to the other end of the capacitor C1, the other end of the resistor R1 and the first voltage output terminal Vout1.
  • the field effect transistors S1 and S2 are both NMOS field effect transistors.
  • the DCDC module specifically includes a second voltage input terminal Vin2;
  • the second voltage input terminal Vin2 is connected to the first voltage output terminal Vout1 in the PFC module;
  • the second voltage input terminal Vin2 is respectively connected to one end of the capacitor C20, the drain D of the field effect transistor Q21, the drain D of the field effect transistor Q23, and the drain D of the field effect transistor Q25;
  • the other end of the capacitor C20 is also respectively connected to the source S of the field effect transistor Q22, the source S of the field effect transistor Q24 and the source S of the field effect transistor Q26;
  • the source S of the field effect transistor Q21 and the drain D of the field effect transistor Q22 are both connected to one end of the inductor L21;
  • the other end of the inductor L21 is connected to one end of the capacitor C21;
  • the other end of the capacitor C21 is connected to the A terminal of the primary coil in the transformer T1;
  • the source S of the field effect transistor Q23 and the drain D of the field effect transistor Q24 are both connected to one end of the inductor L22;
  • the other end of the inductor L22 is connected to one end of the capacitor C22;
  • the other end of the capacitor C22 is connected to the A terminal of the primary coil in the transformer T2;
  • the source S of the field effect transistor Q25 and the drain D of the field effect transistor Q26 are both connected to one end of the inductor L23;
  • the other end of the inductor L23 is connected to one end of the capacitor C23;
  • the other end of the capacitor C23 is connected to the A terminal of the primary coil in the transformer T3;
  • the B terminal of the primary coil in the transformer T1 the B terminal of the primary coil in the transformer T2 and the B terminal of the primary coil in the transformer T3 are intersected together;
  • the D terminal of the secondary coil in the transformer T1, the D terminal of the secondary coil in the transformer T2 and the D terminal of the secondary coil in the transformer T3 intersect together;
  • the C terminal of the secondary coil in the transformer T1 is respectively connected to the anode of the diode D25 and the cathode of the diode D26;
  • Terminal C of the secondary coil in the transformer T2 is respectively connected to the anode of the diode D23 and the cathode of the diode D24;
  • Terminal C of the secondary coil in the transformer T3 is respectively connected to the anode of the diode D21 and the cathode of the diode D22;
  • the cathode of the diode D21, the cathode of the diode D23 and the cathode of the diode D25 are respectively connected to the second voltage output terminal Vout2, one end of the capacitor C24 and one end of the resistor R20 after the converging intersection;
  • the anode of the diode D22, the anode of the diode D24 and the anode of the diode D26, and the other end of the capacitor C24 and the other end of the resistor R20 are all grounded.
  • the field effect transistors Q21 to Q26 are all NMOS field effect transistors.
  • the inverter module specifically includes a third voltage input terminal Vin3;
  • the third voltage input terminal Vin3 is connected to the second voltage output terminal Vout2 in the DCDC module;
  • the third voltage input terminal Vin3 is respectively connected to one end of the capacitor C30, the drain D of the field effect transistor Q31 and the drain D of the field effect transistor Q33;
  • the other end of the capacitor C30 is also respectively connected to the source S of the field effect transistor Q32 and the source S of the field effect transistor Q34;
  • the source S of the field effect transistor Q31 and the drain D of the field effect transistor Q32 are both connected to one end of the inductor L31;
  • the source S of the field effect transistor Q33 and the drain D of the field effect transistor Q34 are both connected to one end of the inductor L32;
  • the other end of the inductor L31 is respectively connected to one end of the capacitor C31, one end of the resistor R30 and one end of the third voltage output terminal Vout3;
  • the other end of the inductor L32 is respectively connected to the other end of the capacitor C31 and one end of the resistor R30;
  • the other end of the inductor L32 is connected to one end of the third voltage output end Vout3.
  • the field effect transistors Q31 to Q34 are all NMOS field effect transistors.
  • the present invention provides an inverter power supply module for railway signal power panels, which has a scientific design and can meet a wide range of single-phase AC voltage input requirements , stable voltage and stable frequency output, strong applicability, can better meet the user's use needs, improve the user's product use experience, and has great practical significance in production.
  • the present invention adopts a high-frequency transformer, which is light in weight, which is beneficial to reduce the weight of the entire railway signal screen system.
  • the present invention outputs a stable and adjustable AC output power by sequentially performing PFC control boosting, DCDC isolation and inversion on the single-phase AC power input in a wide range, and finally improves the power density of the AC power module and various technical index.
  • Fig. 1 is the overall structure schematic diagram of a kind of ACAC alternating current power supply module that is used for railway signal power panel provided by the present invention
  • Fig. 2 is a kind of ACAC AC power supply module that is used for railway signal power panel provided by the present invention, the circuit schematic diagram of PFC module;
  • Fig. 3 is the schematic circuit diagram of the DCDC module in a kind of ACAC AC power supply module used in the railway signal power panel provided by the present invention
  • Fig. 4 is a schematic circuit diagram of an inverter module in an ACAC AC power supply module used in a railway signal power panel provided by the present invention.
  • the present invention provides an ACAC AC power supply module for railway signal power screens, which uses high-frequency transformer isolation to replace traditional power-frequency transformer isolation, specifically including a PFC module 100, a DCDC (DCDC That is, DC to DC isolation conversion) module 200 and inverter module 300, wherein:
  • the PFC module 100 is configured to receive a preset single-phase AC input voltage (such as a single-phase AC input voltage of 220V) input by an external single-phase AC input power supply, and output a preset first DC voltage (ie Bus voltage, such as 400V DC voltage) to the DCDC module 200;
  • a preset single-phase AC input voltage such as a single-phase AC input voltage of 220V
  • a preset first DC voltage ie Bus voltage, such as 400V DC voltage
  • DCDC direct current to direct current conversion
  • module 200 connected with the PFC module 100, used to receive the preset first DC voltage output by the PFC module 100, and convert it into a preset second DC voltage at high frequency isolation (such as a DC voltage of 400V), output to the inverter module 300;
  • the inverter module 300 is connected with the DCDC module 200, and is used to receive the preset second DC voltage output by the DCDC module 200, and then output the preset single-phase AC output voltage (that is, to the External electrical equipment output, such as output 220V single-phase AC voltage).
  • the preset single-phase AC input voltage input by the external single-phase AC input power supply can be a rated 220V single-phase AC input voltage, or an AC input voltage varying within the range of AC176V ⁇ AC253V (such as the rated 110V single-phase AC input voltage), and even wider voltage range AC input power supply.
  • the frequency of the input power is allowed to change within 45Hz ⁇ 65Hz, even the AC input power in a wider frequency range.
  • the PFC module 100 can be a PFC functional unit composed of a two-phase interleaved parallel BOOST structure as shown in Figure 2, or a PFC functional unit composed of a single BOOST structure or a multi-phase BOOST structure;
  • the DCDC module 200 may be a DCDC isolation conversion unit composed of a three-phase interleaved parallel LLC topology as shown in FIG. 3 , or a DCDC isolation conversion unit composed of a single LLC topology or other multi-phase LLC topologies;
  • the inverter module 300 may be a two-level inverter topology as shown in FIG. 4 , or a three-level or multi-level inverter topology.
  • the voltage value marked in this circuit structure is one of the embodiments, and other voltage levels can be applied, such as the rated grid voltage of 110V, DC200V intermediate bus voltage and so on.
  • the ACAC AC power supply module provided by the present invention is a high-frequency isolation module, which is divided into three stages: the front-stage PFC part, the intermediate DCDC isolation conversion and the rear-stage single-phase inverter output part.
  • the PFC module 100 has the function of: the external 220V single-phase AC input voltage passes through the PFC circuit to realize power factor correction, the power factor reaches 0.99, and the boosted output 400Vdc bus voltage , thereby supplying power to the DCDC isolation converter (that is, the DCDC module 200);
  • the DCDC module 200 has the following functions: it mainly plays the role of high-frequency isolation, and converts the 400Vdc output by the PFC module 100 into an isolated 400Vdc at a high frequency for the subsequent stage
  • the inverter module 300 supplies power.
  • the isolation voltage of the primary and secondary sides of the DCDC isolation converter (that is, the DCDC module 200 ) can reach above 2000Vac.
  • the inverter module 300 has the function of outputting the 400Vdc isolated and outputted by the DCDC module 200 through a full-bridge inverting process, and outputting a single-phase rated 220Vac voltage.
  • the frequency and output voltage of the preset single-phase AC output power output by the inverter module 300 are adjustable, for example, it can be adjusted to 110Vac, and the frequency can be adjusted to different frequencies such as 25Hz, 50Hz, 75Hz or 175Hz.
  • the PFC module 100 specifically includes a live wire L and a neutral wire N;
  • One end of the live line L and one end of the neutral line N are respectively connected to both ends of an external single-phase AC input power supply (such as a 220V single-phase AC input power supply);
  • an external single-phase AC input power supply such as a 220V single-phase AC input power supply
  • one end of the live line L is used as the first voltage input terminal Vin1 of the PFC module 100;
  • the other end of the live wire L is respectively connected to the anode of the diode D11 and the cathode of the diode D12;
  • the other end of the neutral line N is respectively connected to the anode of the diode D13 and the cathode of the diode D14;
  • the cathode of the diode D11 and the cathode of the diode D13 converge at the terminal M;
  • the terminal M is respectively connected to one end of the inductor L1 and one end of the inductor L2;
  • the anode of the diode D12 and the anode of the diode D14 are converging at the terminal N;
  • the terminal N is respectively connected to the source S of the field effect transistor S1, the source S of the field effect transistor S2, one end of the capacitor C1, and one end of the resistor R1;
  • the terminal N is also grounded (that is, connected to GND);
  • the other end of the inductor L1 is respectively connected to the drain D of the field effect transistor S1 and the anode of the diode D1;
  • the cathode of the diode D1 is respectively connected to the other end of the capacitor C1, the other end of the resistor R1 and the first voltage output terminal Vout1.
  • the first voltage output terminal Vout1 in the PFC module 100 is used to output a preset first DC voltage (that is, the bus voltage, such as a DC voltage of 400V) to the DCDC module 200;
  • the other end of the inductor L2 is respectively connected to the drain D of the field effect transistor S2 and the anode of the diode D2;
  • the grid G of the field effect transistor S1 and the grid G of the field effect transistor S2 are used to receive the PWM ( pulse width modulation) drive signal.
  • the drive signal can be output by a microcontroller such as a single-chip microcomputer in the existing power module (that is, as a PFC control unit), and after being isolated and amplified by the driver chip, it drives the field effect transistors S1 and S2 to drive the field effect transistors S1 and The turn-on and turn-off of the field effect transistor S2.
  • It can also be an existing, dedicated interleaved parallel control integrated circuit to realize the output control of the driver, such as NCP1631 of ON Semiconductor, UCC28060 series of integrated circuits of TI, and similar integrated circuits of other companies.
  • the field effect transistors S1 and S2 are both insulated gate field effect transistors (MOS transistors), specifically NMOS field effect transistors.
  • the main power topology circuit of the PFC module 100 is shown in Figure 2.
  • the AC input voltage is rectified by an uncontrollable rectifier bridge, and the rectified voltage is boosted to 400Vdc through two parallel boost circuits interleaved at 180°. , due to the use of interleaved parallel boost circuit, it has the following characteristics:
  • the PFC inductor works in the continuous state of the inductor, and the inductor current ripple is small;
  • the voltage loop and current loop are used for power factor correction.
  • the voltage loop obtains the corresponding duty cycle output V1 according to the target voltage and the actual voltage.
  • the current is given to ensure that the input current tracks the input voltage to achieve power factor correction.
  • Two boost circuits are used to interleave and connect in parallel, which can effectively reduce the size of the PFC inductance, which is calculated by reducing it by half.
  • the use of two-way interleaving can reduce the input current harmonics, and can evenly distribute the heat source, which is conducive to heat dissipation design;
  • Two boost circuits are interleaved and connected in parallel to realize redundancy function, that is, if one of them is abnormal, the other can output normally, but the power needs to be halved.
  • the DCDC module 200 specifically includes a second voltage input terminal Vin2;
  • the second voltage input terminal Vin2 is used to receive the preset first DC voltage (ie bus voltage, eg 400V DC voltage) output by the first voltage output terminal Vout1 in the PFC module 100 .
  • first DC voltage ie bus voltage, eg 400V DC voltage
  • the second voltage input terminal Vin2 is connected to the first voltage output terminal Vout1 in the PFC module 100;
  • the second voltage input terminal Vin2 is respectively connected to one end of the capacitor C20, the drain D of the field effect transistor Q21, the drain D of the field effect transistor Q23, and the drain D of the field effect transistor Q25;
  • the other end of the capacitor C20 is grounded (that is, connected to GND2);
  • the other end of the capacitor C20 is also respectively connected to the source S of the field effect transistor Q22, the source S of the field effect transistor Q24 and the source S of the field effect transistor Q26;
  • the source S of the field effect transistor Q21 and the drain D of the field effect transistor Q22 are both connected to one end of the inductor L21;
  • the other end of the inductor L21 is connected to one end of the capacitor C21;
  • the other end of the capacitor C21 is connected to the A terminal of the primary coil in the transformer T1;
  • the source S of the field effect transistor Q23 and the drain D of the field effect transistor Q24 are both connected to one end of the inductor L22;
  • the other end of the inductor L22 is connected to one end of the capacitor C22;
  • the other end of the capacitor C22 is connected to the A terminal of the primary coil in the transformer T2;
  • the source S of the field effect transistor Q25 and the drain D of the field effect transistor Q26 are both connected to one end of the inductor L23;
  • the other end of the inductor L23 is connected to one end of the capacitor C23;
  • the other end of the capacitor C23 is connected to the A terminal of the primary coil in the transformer T3;
  • the B terminal of the primary coil in the transformer T1 the B terminal of the primary coil in the transformer T2 and the B terminal of the primary coil in the transformer T3 are intersected together;
  • the D terminal of the secondary coil in the transformer T1, the D terminal of the secondary coil in the transformer T2 and the D terminal of the secondary coil in the transformer T3 intersect together;
  • the C terminal of the secondary coil in the transformer T1 is respectively connected to the anode of the diode D25 and the cathode of the diode D26;
  • Terminal C of the secondary coil in the transformer T2 is respectively connected to the anode of the diode D23 and the cathode of the diode D24;
  • Terminal C of the secondary coil in the transformer T3 is respectively connected to the anode of the diode D21 and the cathode of the diode D22;
  • the cathode of the diode D21, the cathode of the diode D23 and the cathode of the diode D25 are respectively connected to the second voltage output terminal Vout2, one end of the capacitor C24 and one end of the resistor R20 after the converging intersection;
  • the anode of the diode D22, the anode of the diode D24 and the anode of the diode D26, and the other end of the capacitor C24 and the other end of the resistor R20 are all grounded (that is, connected to GND2).
  • the second voltage output terminal Vout2 in the DCDC module 200 is used to output the preset second DC voltage to the inverter module 300 .
  • the gates G of the field effect transistors Q21-Q26 are used to receive the PWM (pulse width modulation) driving signal output by the DC/DC control unit in the existing power module.
  • the driving signal can be output by a microcontroller such as a single chip microcomputer in the existing power module (that is, as a DC/DC control unit), and after being isolated and amplified by the driving chip, it drives the field effect transistors Q21-Q26.
  • transformers T1-T3 are high-frequency transformers (for example, transformers whose working frequency exceeds intermediate frequency 10kHz), high-frequency transformers T1-T3 can adopt existing known and common high-frequency transformers in switching power supplies, three transformers Forming a Y/Y connection structure mainly plays a role of high-frequency isolation in the present invention.
  • the field effect transistors Q21 to Q26 are all insulated gate field effect transistors (MOS transistors), specifically NMOS field effect transistors.
  • the DCDC module 200 mainly plays an isolation role, 400Vdc is input, and 400Vdc is output after isolation. Therefore, under the premise of satisfying the isolation, it is necessary to ensure the highest efficiency of the DCDC converter (that is, the DCDC module 200).
  • the LLC topology can realize the ZVS of the MOS tube on the primary side, and the ZCS of the rectifier diode on the secondary side to achieve the highest efficiency of the topology;
  • the three-phase LLC (resonant circuit) is staggered by 120°, which can effectively reduce the size of the input and output filter capacitors, but because the signal power supply has a hold time limit, this advantage cannot be exerted;
  • the switching frequency can be increased, and the size and weight of the module can be further reduced.
  • the inverter module 300 specifically includes a third voltage input terminal Vin3;
  • the third voltage input terminal Vin3 is used to receive the preset second DC voltage (ie bus voltage, eg 400V DC voltage) output by the second voltage output terminal Vout2 in the DCDC module 200 .
  • the preset second DC voltage ie bus voltage, eg 400V DC voltage
  • the third voltage input terminal Vin3 is connected to the second voltage output terminal Vout2 in the DCDC module 200;
  • the third voltage input terminal Vin3 is respectively connected to one end of the capacitor C30, the drain D of the field effect transistor Q31 and the drain D of the field effect transistor Q33;
  • the other end of the capacitor C30 is grounded (that is, connected to GND2);
  • the other end of the capacitor C30 is also respectively connected to the source S of the field effect transistor Q32 and the source S of the field effect transistor Q34;
  • the source S of the field effect transistor Q31 and the drain D of the field effect transistor Q32 are both connected to one end of the inductor L31;
  • the source S of the field effect transistor Q33 and the drain D of the field effect transistor Q34 are both connected to one end of the inductor L32;
  • the other end of the inductor L31 is respectively connected to one end of the capacitor C31, one end of the resistor R30 and one end of the third voltage output terminal Vout3 (namely, the AC-L terminal);
  • the third voltage output terminal Vout3 in the inverter module 300 outputs a preset single-phase AC output voltage to the outside (that is, to an external electric device).
  • the other end of the inductor L32 is respectively connected to the other end of the capacitor C31 and one end of the resistor R30;
  • the other end of the inductor L32 is connected to the other end of the third voltage output end Vout3 (namely, the AC-N end).
  • the gates G of the field effect transistors Q31-Q34 are used to receive the PWM (pulse width modulation) driving signal output by the inverter control unit in the existing power module.
  • the driving signal can be output by microcontrollers such as single-chip microcomputers in the existing power module (that is, as an inverter control unit), and after being isolated and amplified by the driving chip, the field effect transistors Q31 ⁇ Q34 can be driven, or it can be a dedicated inverter
  • the control integrated circuit realizes the output control of the drive, such as the SG3525 of ON Semiconductor, the EG8010 series of integrated circuits of Yijing Microelectronics, and similar integrated circuits of other companies.
  • output 4 channels of PWM drive signals from a microcontroller such as a single chip microcomputer (that is, as an inverter control unit), and then be isolated and amplified by the drive chip, and then respectively connected to the gate G poles of the field effect transistors Q31 ⁇ Q34 to drive Q31 ⁇ Q34 on and off.
  • a microcontroller such as a single chip microcomputer (that is, as an inverter control unit)
  • the third voltage output terminal Vout3 can be used to output voltage to various AC signal equipment in the station, and provide working power for these AC signal equipment, such as signal lighting equipment, turnout display equipment, etc. It can provide stable and reliable AC power supply of specific voltage and frequency for these signaling devices.
  • the field effect transistors Q31 to Q34 are all insulated gate field effect transistors (MOS transistors), specifically NMOS field effect transistors.
  • the topology circuit of the inverter module 300 is shown in Figure 4.
  • the inverter module 300 passes the input 400Vdc through the inverter bridge, and can output 220Vac or 110Vac.
  • the above-mentioned inverter topology has the following characteristics:
  • Q31 and Q32 are used as high-frequency bridge arms, Q33 and Q34 are power frequency bridge arms, in the positive half cycle, Q31 is turned on at high frequency, Q32 is turned off, Q34 is normally open, and Q33 is turned off state; in the negative half cycle, Q32 is on at high frequency, Q31 is off, Q33 is normally on, and Q34 is off;
  • the inverter bridge has only one high-frequency tube at any time, so the switching loss is small and the efficiency is high;
  • the high-frequency bridge arm may further reduce the possibility of bridge arm direct connection, and the reliability of the inverter circuit is high.
  • the DCDC DCDC is DC to DC conversion
  • the inverter module 300 a wide range of AC voltage input can be realized, and The parameters such as the output voltage and frequency of the AC power supply can be adjusted.
  • the invention is a new type of high-frequency isolated power supply, which can reliably replace the traditional low-frequency transformer.
  • the inverter power supply module provided by the present invention, starting from canceling the power frequency transformer, through PFC boosting, DCDC high-frequency isolation and inverter output, the high frequency of the traditional inverter power supply is realized, and the power density of the AC power supply module is improved. .
  • the voltage output by the AC power module of the railway signal power supply screen specifically includes two power forms such as single-phase voltage 110Vac/220Vac, frequency 25Hz, and single-phase voltage 220Vac, frequency 50Hz; among them, the 25Hz
  • the AC power supply is a phase-sensitive track circuit power supply, which is divided into track and local.
  • the track power supply is 220Vac, 25Hz
  • the local power supply is 110Vac, 25Hz.
  • the phase angle of the local power supply ahead of the track power supply should be 90° ⁇ 5°.
  • the signal screen The phases between the sub-beams of the internal track power supply are consistent, and the phases between the sub-beams of the local power supply are consistent.
  • the 220Vac, 50Hz AC power supply is used to supply power for loads such as microcomputer interlocking, signal lighting, and turnout display. Due to the increased power requirements of the load on the power supply, in order to facilitate power expansion, the AC power supply modules need to be connected in parallel in the power panel to achieve capacity expansion, and the control current sharing accuracy is within ⁇ 5%. After testing, the AC power supply module provided by the present invention can fully meet the above requirements.
  • the AC power supply module used in the railway signal power panel provided by the present invention has the following beneficial effects:
  • Adopt advanced PFC Power Factor Correction
  • Adopt LLC reactive circuit
  • the present invention provides an inverter power supply module for railway signal power panels, which has a scientific design and can meet a wide range of single-phase AC voltage input requirements, and the output realizes voltage stabilization Frequency stabilization, strong applicability, can better meet the needs of users, improve users' product experience, and has great practical significance in production.
  • the present invention adopts a high-frequency transformer, which is light in weight, which is beneficial to reduce the weight of the entire railway signal screen system.
  • the present invention outputs a stable and adjustable AC output power by sequentially performing PFC control boosting, DCDC isolation and inversion on the single-phase AC power input in a wide range, and finally improves the power density of the AC power module and various technical index.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)

Abstract

本发明公开了一种用于铁路信号电源屏的ACAC交流电源模块,包括PFC模块、DCDC模块和逆变器模块,其中:PFC模块,用于接收外部单相交流输入电源所输入的预设单相交流输入电压,在进行升压处理后,输出预设第一直流电压给DCDC模块;DCDC模块,与PFC模块相连接,用于接收所述PFC模块输出的预设第一直流电压,并在高频隔离变换为预设第二直流电压后,输出给逆变器模块;逆变器模块,与DCDC模块相连接,用于接收所述DCDC模块输出的预设第二直流电压,然后在逆变处理后,向外输出预设单相交流输出电压。本发明能够满足宽范围的单相交流电压输入需求,适用性强,可以更好地满足用户的使用需求,提升用户的产品使用感受。

Description

一种用于铁路信号电源屏的ACAC交流电源模块 技术领域
本发明涉及铁路信号电源屏的电路设计技术领域,特别是涉及一种用于铁路信号电源屏的ACAC(ACAC即交流转交流变换)交流电源模块。
背景技术
铁路信号电源屏是应用在铁路行业的为车站信号设备供电的设备,根据中华人民共和国铁道行业标准TB/T 1528规定的铁路信号电源系统设备系列标准要求,电源屏应保证输入电压在单相交流AC176V~单相交流AC 253V的范围内,频率在50Hz±0.5Hz范围内能够稳定地供电。
目前,现有的铁路信号电源屏中的电源模块,需要采用工频变压器(也称为低频变压器)进行隔离供电。
但是,现有的工频变压器,其具有以下的技术缺陷:
1、无法满足宽范围的单相交流电压输入需求,输出电压和频率随输入电压和频率变化而变化,不能稳压稳频输出,适用性差,影响用户的产品使用感受;
2、工频变压器重量较大,导致整个铁路信号屏系统的重量较重;
3、采用工频变压器的电源模块的功率密度较低。
发明内容
本发明的目的是针对现有技术存在的技术缺陷,提供一种用于铁路信号电源屏的ACAC交流电源模块。
为此,本发明提供了一种用于铁路信号电源屏的ACAC交流电源模块,其包括PFC模块、DCDC模块和逆变器模块,其中:
PFC模块,用于接收外部单相交流输入电源所输入的预设单相交流输入电压,在进行升压处理后,输出预设第一直流电压给DCDC模块;
DCDC模块,与PFC模块相连接,用于接收所述PFC模块输出的预设第一直流电压,并在高频隔离变换为预设第二直流电压后,输出给逆变器模 块;
逆变器模块,与DCDC模块相连接,用于接收所述DCDC模块输出的预设第二直流电压,然后在逆变处理后,向外输出预设单相交流输出电压。
优选地,PFC模块,具体包括火线L和零线N;
火线L的一端和零线N的一端,分别与外部单相交流输入电源的两端相连接;其中,该火线L的一端,作为PFC模块的第一电压输入端Vin1;
火线L的另一端,分别与二极管D11的阳极和二极管D12的阴极相接;
零线N的另一端,分别与二极管D13的阳极和二极管D14的阴极相接;
其中,二极管D11的阴极和二极管D13的阴极,汇流相交于端点M;
端点M,分别与电感L1的一端和电感L2的一端相接;
二极管D12的阳极和二极管D14的阳极,汇流相交于端点N;
端点N,分别与场效应管S1的源极S、场效应管S2的源极S、电容C1的一端和电阻R1的一端相接;
端点N,还接地;
其中,电感L1的另一端,分别接场效应管S1的漏极D和二极管D1的阳极;
二极管D1的阴极,分别与电容C1的另一端、电阻R1的另一端和第一电压输出端Vout1相接。
优选地,场效应管S1和S2,均为NMOS场效应管。
优选地,DCDC模块,具体包括第二电压输入端Vin2;
第二电压输入端Vin2,与所述PFC模块中的第一电压输出端Vout1相接;
第二电压输入端Vin2,分别接电容C20的一端、场效应管Q21的漏极D、场效应管Q23的漏极D和场效应管Q25的漏极D;
电容C20的另一端接地;
电容C20的另一端,还分别接场效应管Q22的源极S、场效应管Q24的源极S和场效应管Q26的源极S;
其中,场效应管Q21的源极S与场效应管Q22的漏极D,均与电感L21的一端相接;
电感L21的另一端,与电容C21的一端相接;
电容C21的另一端,与变压器T1中的初级线圈的A端相接;
其中,场效应管Q23的源极S与场效应管Q24的漏极D,均与电感L22的一端相接;
电感L22的另一端,与电容C22的一端相接;
电容C22的另一端,与变压器T2中的初级线圈的A端相接;
其中,场效应管Q25的源极S与场效应管Q26的漏极D,均与电感L23的一端相接;
电感L23的另一端,与电容C23的一端相接;
电容C23的另一端,与变压器T3中的初级线圈的A端相接;
其中,变压器T1中的初级线圈的B端、变压器T2中的初级线圈的B端和变压器T3中的初级线圈的B端相交在一起;
其中,变压器T1中的次级线圈的D端、变压器T2中的次级线圈的D端和变压器T3中的次级线圈的D端相交在一起;
其中,变压器T1中的次级线圈的C端,分别与二极管D25的阳极和二极管D26的阴极相接;
变压器T2中的次级线圈的C端,分别与二极管D23的阳极和二极管D24的阴极相接;
变压器T3中的次级线圈的C端,分别与二极管D21的阳极和二极管D22的阴极相接;
其中,二极管D21的阴极、二极管D23的阴极和二极管D25的阴极在汇流相交后,分别与第二电压输出端Vout2、电容C24的一端和电阻R20的一端相接;
其中,二极管D22的阳极、二极管D24的阳极和二极管D26的阳极,以及电容C24的另一端和电阻R20的另一端均接地。
优选地,场效应管Q21~Q26,均为NMOS场效应管。
优选地,逆变器模块,具体包括第三电压输入端Vin3;
第三电压输入端Vin3,与所述DCDC模块中的第二电压输出端Vout2 相接;
第三电压输入端Vin3,分别接电容C30的一端、场效应管Q31的漏极D和场效应管Q33的漏极D;
电容C30的另一端接地;
电容C30的另一端,还分别接场效应管Q32的源极S和场效应管Q34的源极S;
其中,场效应管Q31的源极S与场效应管Q32的漏极D,均与电感L31的一端相接;
场效应管Q33的源极S与场效应管Q34的漏极D,均与电感L32的一端相接;
电感L31的另一端,分别接电容C31的一端和电阻R30的一端以及第三电压输出端Vout3的一端相接;
其中,电感L32的另一端,分别接电容C31的另一端和电阻R30的一端;
电感L32的另一端与第三电压输出端Vout3的一端相接。
优选地,场效应管Q31~Q34,均为NMOS场效应管。
由以上本发明提供的技术方案可见,与现有技术相比较,本发明提供了一种用于铁路信号电源屏的逆变电源模块,其设计科学,能够满足宽范围的单相交流电压输入需求,稳压稳频输出,适用性强,可以更好地满足用户的使用需求,提升用户的产品使用感受,具有重大的生产实践意义。
此外,本发明采用了高频变压器,重量较轻,有利于降低整个铁路信号屏系统的重量。
另外,本发明通过对宽范围输入的单相交流电源先后进行PFC控制升压、DCDC隔离和逆变后,输出稳定可调的交流输出电源,最终提高了交流电源模块的功率密度和各项技术指标。
附图说明
图1为本发明提供的一种用于铁路信号电源屏的ACAC交流电源模块的整体结构示意图;
图2为本发明提供的一种用于铁路信号电源屏的ACAC交流电源模块 中,PFC模块的电路原理图;
图3为本发明提供的一种用于铁路信号电源屏的ACAC交流电源模块中,DCDC模块的电路原理图;
图4为本发明提供的一种用于铁路信号电源屏的ACAC交流电源模块中,逆变器模块的电路原理图。
具体实施方式
下面将结合本发明的实施例,对本发明的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
下面将参考附图并结合实施例来详细说明本发明。
参见图1至图4,本发明提供了一种用于铁路信号电源屏的ACAC交流电源模块,其采用高频变压器隔离的方式替代传统的工频变压器隔离,具体包括PFC模块100、DCDC(DCDC即为直流转直流隔离变换)模块200和逆变器模块300,其中:
PFC模块100,用于接收外部单相交流输入电源所输入的预设单相交流输入电压(例如220V的单相交流输入电压),在进行升压处理后,输出预设第一直流电压(即母线电压,例如400V的直流电压)给DCDC模块200;
DCDC(DCDC即为直流转直流变换)模块200,与PFC模块100相连接,用于接收所述PFC模块100输出的预设第一直流电压,并在高频隔离变换为预设第二直流电压(例如400V的直流电压)后,输出给逆变器模块300;
逆变器模块300,与DCDC模块200相连接,用于接收所述DCDC模块200输出的预设第二直流电压,然后在逆变处理后,向外输出预设单相交流输出电压(即向外部的用电设备输出,例如输出220V的单相交流电压)。
需要说明的是,外部单相交流输入电源所输入的预设单相交流输入电压,可以是额定220V的单相交流输入电压,也可以是在AC176V~AC253V范围内变化的交流输入电压(例如额定110V的单相交流输入电压),甚至更宽电压范围的交流输入电源。输入电源的频率允许在45Hz~65Hz内变化,甚至是更宽的频率范围内的交流输入电源。
在本发明中,需要说明的是,PFC模块100可以是如图2所示两相交错并联BOOST结构构成的PFC功能单元,也可以是单BOOST结构或多相BOOST结构构成的PFC功能单元;
需要说明的是,DCDC模块200可以是如图3所示三相交错并联LLC拓扑构成的DCDC隔离变换单元,也可以是单LLC拓扑或其他多相LLC拓扑构成的DCDC隔离变换单元;
需要说明的是,逆变器模块300可以是如图4所示的两电平逆变拓扑,也可以是三电平或多电平逆变拓扑。
需要说明的是,本电路结构中所标电压值均为实施例中一种,其他电压等级的变换均可适用,例如额定110V的电网电压,DC200V中间母线电压等。
需要说明的是,本发明提供的ACAC交流电源模块,是高频隔离模块,总共分为三级:前级PFC部分、中间DCDC隔离变换以及后级单相逆变输出部分。
在本发明中,一种具体实施例一中,PFC模块100,其作用为:外部的220V的单相交流输入电压经过PFC电路,实现功率因数校正,功率因数达到0.99,升压输出400Vdc母线电压,从而给DCDC隔离变换器(即DCDC模块200)供电;
在本发明中,一种具体实施例一中,DCDC模块200,其作用为:主要起到高频隔离的作用,将PFC模块100输出的400Vdc高频变换为隔离后的400Vdc,给后级的逆变器模块300供电。此外,DCDC隔离变换器(即DCDC模块200)的原副边隔离电压,可以达到2000Vac以上。
在本发明中,一种具体实施例一中,逆变器模块300,其作用为:将由DCDC模块200隔离后输出的400Vdc,再经过全桥逆变处理,输出额定220Vac的单相电压。需要说明的是,逆变器模块300输出的预设单相交流输出电源的频率以及输出电压值可调,例如,可以调整为110Vac,频率可以调整为25Hz、50Hz、75Hz或175Hz等不同频率。
在本发明中,具体实现上,参见图2,PFC模块100,具体包括火线L和零线N;
火线L的一端和零线N的一端,分别与外部单相交流输入电源(例如 220V的单相交流输入电源)的两端相连接;
其中,该火线L的一端,作为PFC模块100的第一电压输入端Vin1;
火线L的另一端,分别与二极管D11的阳极和二极管D12的阴极相接;
零线N的另一端,分别与二极管D13的阳极和二极管D14的阴极相接;
其中,二极管D11的阴极和二极管D13的阴极,汇流相交于端点M;
端点M,分别与电感L1的一端和电感L2的一端相接;
二极管D12的阳极和二极管D14的阳极,汇流相交于端点N;
端点N,分别与场效应管S1的源极S、场效应管S2的源极S、电容C1的一端和电阻R1的一端相接;
端点N,还接地(即连接GND);
其中,电感L1的另一端,分别接场效应管S1的漏极D和二极管D1的阳极;
二极管D1的阴极,分别与电容C1的另一端、电阻R1的另一端和第一电压输出端Vout1相接。
需要说明的是,PFC模块100中的第一电压输出端Vout1,用于输出预设第一直流电压(即母线电压,例如400V的直流电压)给DCDC模块200;
电感L2的另一端,分别接场效应管S2的漏极D和二极管D2的阳极;
在本发明中,需要说明的是,场效应管S1的栅极G、场效应管S2的栅极G,用于接收现有的电源模块中的PFC(功率因数校正)单元所输出的PWM(脉冲宽度调制)驱动信号。驱动信号可以是现有的电源模块中的单片机等微控制器(即作为PFC控制单元)输出,并经过驱动芯片隔离放大后,再驱动场效应管S1和S2,用于驱动场效应管S1和场效应管S2的导通和关断。也可以是现有的、专用的交错并联控制集成电路实现驱动的输出控制,例如安森美半导体公司的NCP1631,TI公司的UCC28060系列集成电路,以及其他公司的同类集成电路。
具体实现上,场效应管S1和S2,均为绝缘栅场效应管(MOS管),具体为NMOS场效应管。
为了更加清楚地理解本发明的技术方案,下面说明PFC模块100的工作原理。
PFC模块100的主功率拓扑电路如图2所示,采用不可控整流桥将交流输入电压进行整流,在整流后的电压经过两路交错180°的并联升压(boost)电路,升压到400Vdc,由于采用交错并联的boost升压电路,具有以下特点:
1、采用平均电流控制,PFC电感工作在电感连续状态,电感电流纹波较小;
2、采用电压环和电流环进行功率因数校正,电压环根据目标电压和实际电压得到相应的占空比输出V1,该值和输入电压前馈的乘积Vc作为两路升压(boost)电路的电流给定,确保输入电流跟踪输入电压,从而实现功率因数校正。
3、采用两路升压(boost)电路交错并联,可以有效减小PFC电感的大小,按照减小一半计算。此外,采用两路交错,可以减小输入电流谐波,可以发热源均匀分布,有利于散热设计;
4、采用两路升压(boost)电路交错并联,可以实现冗余功能,即其中一路异常的情况下,另一路可以正常输出,但是功率需要减半。
在本发明中,具体实现上,参见图3,DCDC模块200,具体包括第二电压输入端Vin2;
需要说明的是,第二电压输入端Vin2,用于接收所述PFC模块100中的第一电压输出端Vout1所输出的预设第一直流电压(即母线电压,例如400V的直流电压)。
第二电压输入端Vin2,与所述PFC模块100中的第一电压输出端Vout1相接;
第二电压输入端Vin2,分别接电容C20的一端、场效应管Q21的漏极D、场效应管Q23的漏极D和场效应管Q25的漏极D;
电容C20的另一端接地(即连接GND2);
电容C20的另一端,还分别接场效应管Q22的源极S、场效应管Q24的源极S和场效应管Q26的源极S;
其中,场效应管Q21的源极S与场效应管Q22的漏极D,均与电感L21的一端相接;
电感L21的另一端,与电容C21的一端相接;
电容C21的另一端,与变压器T1中的初级线圈的A端相接;
其中,场效应管Q23的源极S与场效应管Q24的漏极D,均与电感L22的一端相接;
电感L22的另一端,与电容C22的一端相接;
电容C22的另一端,与变压器T2中的初级线圈的A端相接;
其中,场效应管Q25的源极S与场效应管Q26的漏极D,均与电感L23的一端相接;
电感L23的另一端,与电容C23的一端相接;
电容C23的另一端,与变压器T3中的初级线圈的A端相接;
其中,变压器T1中的初级线圈的B端、变压器T2中的初级线圈的B端和变压器T3中的初级线圈的B端相交在一起;
其中,变压器T1中的次级线圈的D端、变压器T2中的次级线圈的D端和变压器T3中的次级线圈的D端相交在一起;
其中,变压器T1中的次级线圈的C端,分别与二极管D25的阳极和二极管D26的阴极相接;
变压器T2中的次级线圈的C端,分别与二极管D23的阳极和二极管D24的阴极相接;
变压器T3中的次级线圈的C端,分别与二极管D21的阳极和二极管D22的阴极相接;
其中,二极管D21的阴极、二极管D23的阴极和二极管D25的阴极在汇流相交后,分别与第二电压输出端Vout2、电容C24的一端和电阻R20的一端相接;
其中,二极管D22的阳极、二极管D24的阳极和二极管D26的阳极,以及电容C24的另一端和电阻R20的另一端均接地(即连接GND2)。
需要说明的是,DCDC模块200中的第二电压输出端Vout2,用于输出预设第二直流电压给逆变器模块300。
在本发明中,需要说明的是,场效应管Q21~Q26的栅极G,用于接收现有的电源模块中的DC/DC控制单元所输出的PWM(脉冲宽度调制)驱动信号。驱动信号可以是现有的电源模块中的单片机等微控制器(即作为 DC/DC控制单元)输出,并经过驱动芯片隔离放大后,再驱动场效应管Q21~Q26。
在本发明中,变压器T1~T3为高频变压器(例如是工作频率超过中频10kHz的变压器),高频变压器T1~T3可以采用开关电源中现有公知的、常见的高频变压器,三个变压器组成Y/Y联结结构,在本发明中主要起高频隔离作用。
具体实现上,场效应管Q21~Q26,均为绝缘栅场效应管(MOS管),具体为NMOS场效应管。
为了更加清楚地理解本发明的技术方案,下面说明DCDC模块200的工作原理。
在本发明,DCDC模块200主要起到隔离作用,将400Vdc输入,隔离后输出400Vdc,所以在满足隔离的前提下,需要确保DCDC变换器(即DCDC模块200)的效率最高,采用如图3所示的三相LLC(谐振电路)
交错并联。具有如下的特点:
1、将工作频率设计在谐振频率处,LLC拓扑可以实现原边MOS管的ZVS,副边整流二极管ZCS,实现该拓扑的最高效率;
2、三相LLC(谐振电路)交错120°,可以有效减小输入输出滤波电容的大小,但是由于信号电源有保持时间限制,所以该优势得不到发挥;
3、由于没有输出滤波电感,DCDC变换器(即DCDC模块200)的成本以及重量都较低;
4、由于软开关效率较高,可以提高开关频率,进一步减小模块的尺寸以及重量。
在本发明中,具体实现上,参见图4,逆变器模块300,具体包括第三电压输入端Vin3;
需要说明的是,第三电压输入端Vin3,用于接收所述DCDC模块200中的第二电压输出端Vout2所输出的预设第二直流电压(即母线电压,例如400V的直流电压)。
第三电压输入端Vin3,与所述DCDC模块200中的第二电压输出端 Vout2相接;
第三电压输入端Vin3,分别接电容C30的一端、场效应管Q31的漏极D和场效应管Q33的漏极D;
电容C30的另一端接地(即连接GND2);
电容C30的另一端,还分别接场效应管Q32的源极S和场效应管Q34的源极S;
其中,场效应管Q31的源极S与场效应管Q32的漏极D,均与电感L31的一端相接;
场效应管Q33的源极S与场效应管Q34的漏极D,均与电感L32的一端相接;
电感L31的另一端,分别接电容C31的一端和电阻R30的一端以及第三电压输出端Vout3的一端(即AC-L端)相接;
需要说明的是,逆变器模块300中的第三电压输出端Vout3,向外输出预设单相交流输出电压(即向外部的用电设备输出)。
其中,电感L32的另一端,分别接电容C31的另一端和电阻R30的一端;
电感L32的另一端,连接第三电压输出端Vout3的另一端(即AC-N端)。
在本发明中,需要说明的是,场效应管Q31~Q34的栅极G,用于接收现有的电源模块中的逆变控制单元所输出的PWM(脉冲宽度调制)驱动信号。驱动信号可以是现有的电源模块中的单片机等微控制器(即作为逆变控制单元)输出,并经过驱动芯片隔离放大后,再驱动场效应管Q31~Q34,也可以是专用的逆变控制集成电路实现驱动的输出控制,例如安森美半导体公司的SG3525,屹晶微电子公司的EG8010系列集成电路,以及其他公司的同类集成电路。具体为:由单片机等微控制器(即作为逆变控制单元)输出4路PWM驱动信号,经过驱动芯片的隔离放大,然后分别接到场效应管Q31~Q34的栅极G极,驱动Q31~Q34的导通和关断。
在本发明中,具体实现上,第三电压输出端Vout3,可以用于输出电压到车站的各种交流信号设备,为这些交流信号设备提供工作用电,例如信号点灯设备、道岔表示设备等,能够为这些信号设备提供特定电压和频率的稳定可靠的交流电源。
具体实现上,场效应管Q31~Q34,均为绝缘栅场效应管(MOS管),具体为NMOS场效应管。
为了更加清楚地理解本发明的技术方案,下面说明逆变器模块300的工作原理。
在本发明中,逆变器模块300的拓扑电路如图4所示,逆变器模块300将输入的400Vdc经过逆变桥,可以输出220Vac或者110Vac,采用上述逆变器拓扑,具有以下特点:
1、采用普通单极性调制控制方式,Q31、Q32作为高频桥臂,Q33、Q34为工频桥臂,在正半周,Q31高频开通,Q32关断,Q34常开状态,Q33关断状态;在负半周,Q32高频开通,Q31关断,Q33常开状态,Q34关断状态;
2、逆变桥在任何时间,只有一个高频管,开关损耗较小,效率较高;
3、由于Q31、Q32只有一个工作在高频模式下,该高频桥臂,存在桥臂直通的可能性进一步减小,逆变电路可靠性高。
因此,基于以上的技术方案设计,对于本发明,通过PFC模块100、DCDC(DCDC即为直流转直流变换)模块200和逆变器模块300的相互配合,可以实现宽范围的交流电压输入,并且实现交流电源输出电压、频率等参数可调,本发明是一种新型的高频隔离电源,能够可靠地替换传统的低频变压器。
需要说明的是,对于本发明,其采用新型高频变压器,在隔离供电时,采用前沿电力电子技术,对宽范围输入的单相交流电源先后进行PFC控制升压、DCDC隔离和逆变后,输出稳定可调的交流输出电源,具有智能、轻量化、便于扩展的功能。
对于本发明提供的逆变电源模块,从取消工频变压器出发,通过PFC升压、DCDC高频隔离以及逆变输出,从而实现传统逆变电源的高频化,提高了交流电源模块的功率密度。
为了更加清楚地理解本发明的技术方案,下面结合具体的应用实施例,来说明本发明的应用场景。
一种实施例中,目前,铁路信号电源屏的交流电源模块输出的电压,具体包括单相电压110Vac/220Vac、频率25Hz,以及单相电压220Vac、频率50Hz等两种电源形式;其中,25Hz的交流电源为相敏轨道电路电源,分为轨道和局部两种,轨道电源为220Vac、25Hz,局部电源为110Vac、25Hz,局部电源超前轨道电源相位角度应为90°±5°,此外,信号屏内的轨道电源各分束之间的相位一致,局部电源各分束之间的相位一致。而220Vac、50Hz的交流电源,用于为微机联锁、信号点灯、道岔表示等负载供电。由于负载对电源的功率要求增大,为便于扩展功率,交流电源模块需要在电源屏内进行并联,从而实现容量的扩展,且控制均流精度在±5%以内。经过检验,基于本发明提供的交流电源模块,可以充分满足上述需求。
与现有技术相比较,本发明提供的用于铁路信号电源屏的交流电源模块,具有如下有益效果:
1、采用先进的PFC(Power Factor Correction,功率因数校正)控制技术,精确控制电流相位,实现高功率因数;
2、采用LLC(谐振电路)高频隔离,替代传统低频变压器;
3、采用全数字逆变控制,输出参数灵活可调;
4、提供RS485通信接口,实现全面的状态监控和在线参数修改等。
综上所述,与现有技术相比较,本发明提供的一种用于铁路信号电源屏的逆变电源模块,其设计科学,能够满足宽范围的单相交流电压输入需求,输出实现稳压稳频,适用性强,可以更好地满足用户的使用需求,提升用户的产品使用感受,具有重大的生产实践意义。
此外,本发明采用了高频变压器,重量较轻,有利于降低整个铁路信号屏系统的重量。
另外,本发明通过对宽范围输入的单相交流电源先后进行PFC控制升压、DCDC隔离和逆变后,输出稳定可调的交流输出电源,最终提高了交流电源模块的功率密度和各项技术指标。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (7)

  1. 一种用于铁路信号电源屏的ACAC交流电源模块,其特征在于,包括PFC模块(100)、DCDC模块(200)和逆变器模块(300),其中:
    PFC模块(100),用于接收外部单相交流输入电源所输入的预设单相交流输入电压,在进行升压处理后,输出预设第一直流电压给DCDC模块(200);
    DCDC模块(200),与PFC模块(100)相连接,用于接收所述PFC模块(100)输出的预设第一直流电压,并在高频隔离变换为预设第二直流电压后,输出给逆变器模块(300);
    逆变器模块(300),与DCDC模块(200)相连接,用于接收所述DCDC模块(200)输出的预设第二直流电压,然后在逆变处理后,向外输出预设单相交流输出电压。
  2. 如权利要求1所述的用于铁路信号电源屏的ACAC交流电源模块,其特征在于,PFC模块(100),具体包括火线L和零线N;
    火线L的一端和零线N的一端,分别与外部单相交流输入电源的两端相连接;其中,该火线L的一端,作为PFC模块(100)的第一电压输入端Vin1;
    火线L的另一端,分别与二极管D11的阳极和二极管D12的阴极相接;
    零线N的另一端,分别与二极管D13的阳极和二极管D14的阴极相接;
    其中,二极管D11的阴极和二极管D13的阴极,汇流相交于端点M;
    端点M,分别与电感L1的一端和电感L2的一端相接;
    二极管D12的阳极和二极管D14的阳极,汇流相交于端点N;
    端点N,分别与场效应管S1的源极S、场效应管S2的源极S、电容C1的一端和电阻R1的一端相接;
    端点N,还接地;
    其中,电感L1的另一端,分别接场效应管S1的漏极D和二极管D1的阳极;
    二极管D1的阴极,分别与电容C1的另一端、电阻R1的另一端和第一电压输出端Vout1相接。
  3. 如权利要求2所述的用于铁路信号电源屏的ACAC交流电源模块,其特征在于,场效应管S1和S2,均为NMOS场效应管。
  4. 如权利要求2所述的用于铁路信号电源屏的ACAC交流电源模块,其特征在于,DCDC模块(200),具体包括第二电压输入端Vin2;
    第二电压输入端Vin2,与所述PFC模块(100)中的第一电压输出端Vout1相接;
    第二电压输入端Vin2,分别接电容C20的一端、场效应管Q21的漏极D、场效应管Q23的漏极D和场效应管Q25的漏极D;
    电容C20的另一端接地;
    电容C20的另一端,还分别接场效应管Q22的源极S、场效应管Q24的源极S和场效应管Q26的源极S;
    其中,场效应管Q21的源极S与场效应管Q22的漏极D,均与电感L21的一端相接;
    电感L21的另一端,与电容C21的一端相接;
    电容C21的另一端,与变压器T1中的初级线圈的A端相接;
    其中,场效应管Q23的源极S与场效应管Q24的漏极D,均与电感L22的一端相接;
    电感L22的另一端,与电容C22的一端相接;
    电容C22的另一端,与变压器T2中的初级线圈的A端相接;
    其中,场效应管Q25的源极S与场效应管Q26的漏极D,均与电感L23的一端相接;
    电感L23的另一端,与电容C23的一端相接;
    电容C23的另一端,与变压器T3中的初级线圈的A端相接;
    其中,变压器T1中的初级线圈的B端、变压器T2中的初级线圈的B端和变压器T3中的初级线圈的B端相交在一起;
    其中,变压器T1中的次级线圈的D端、变压器T2中的次级线圈的D端和变压器T3中的次级线圈的D端相交在一起;
    其中,变压器T1中的次级线圈的C端,分别与二极管D25的阳极和二极管D26的阴极相接;
    变压器T2中的次级线圈的C端,分别与二极管D23的阳极和二极管D24的阴极相接;
    变压器T3中的次级线圈的C端,分别与二极管D21的阳极和二极管 D22的阴极相接;
    其中,二极管D21的阴极、二极管D23的阴极和二极管D25的阴极在汇流相交后,分别与第二电压输出端Vout2、电容C24的一端和电阻R20的一端相接;
    其中,二极管D22的阳极、二极管D24的阳极和二极管D26的阳极,以及电容C24的另一端和电阻R20的另一端均接地。
  5. 如权利要求4所述的用于铁路信号电源屏的ACAC交流电源模块,其特征在于,场效应管Q21~Q26,均为NMOS场效应管。
  6. 如权利要求4所述的用于铁路信号电源屏的ACAC交流电源模块,其特征在于,逆变器模块(300),具体包括第三电压输入端Vin3;
    第三电压输入端Vin3,与所述DCDC模块(200)中的第二电压输出端Vout2相接;
    第三电压输入端Vin3,分别接电容C30的一端、场效应管Q31的漏极D和场效应管Q33的漏极D;
    电容C30的另一端接地;
    电容C30的另一端,还分别接场效应管Q32的源极S和场效应管Q34的源极S;
    其中,场效应管Q31的源极S与场效应管Q32的漏极D,均与电感L31的一端相接;
    场效应管Q33的源极S与场效应管Q34的漏极D,均与电感L32的一端相接;
    电感L31的另一端,分别接电容C31的一端和电阻R30的一端以及第三电压输出端Vout3的一端相接;
    其中,电感L32的另一端,分别接电容C31的另一端和电阻R30的一端;
    电感L32的另一端与第三电压输出端Vout3的一端相接。
  7. 如权利要求6所述的用于铁路信号电源屏的ACAC交流电源模块,其特征在于,场效应管Q31~Q34,均为NMOS场效应管。
PCT/CN2021/107341 2021-06-28 2021-07-20 一种用于铁路信号电源屏的acac交流电源模块 WO2023272809A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110721064.0 2021-06-28
CN202110721064.0A CN113346759A (zh) 2021-06-28 2021-06-28 一种用于铁路信号电源屏的acac交流电源模块

Publications (1)

Publication Number Publication Date
WO2023272809A1 true WO2023272809A1 (zh) 2023-01-05

Family

ID=77479239

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/107341 WO2023272809A1 (zh) 2021-06-28 2021-07-20 一种用于铁路信号电源屏的acac交流电源模块

Country Status (2)

Country Link
CN (1) CN113346759A (zh)
WO (1) WO2023272809A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106533195A (zh) * 2016-12-15 2017-03-22 广东百事泰电子商务股份有限公司 基于pfc与llc谐振的智能全桥正弦波电压转换电路
US20180152115A1 (en) * 2016-11-25 2018-05-31 Delta Electronics, Inc. Power conversion device and power converting method
CN110212802A (zh) * 2019-05-29 2019-09-06 南京航空航天大学无锡研究院 一种高压、宽电压输入范围回馈式直流电子负载电路
CN211701855U (zh) * 2020-03-04 2020-10-16 合肥容杰电子技术有限责任公司 用于超薄高功率密度模块电源的输入级升压两级变换器
CN212969455U (zh) * 2020-10-09 2021-04-13 阳光电源股份有限公司 一种并联交错全桥llc电路
CN215222025U (zh) * 2021-06-28 2021-12-17 天津铁路信号有限责任公司 一种用于铁路信号电源屏的acac交流电源模块

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180152115A1 (en) * 2016-11-25 2018-05-31 Delta Electronics, Inc. Power conversion device and power converting method
CN106533195A (zh) * 2016-12-15 2017-03-22 广东百事泰电子商务股份有限公司 基于pfc与llc谐振的智能全桥正弦波电压转换电路
CN110212802A (zh) * 2019-05-29 2019-09-06 南京航空航天大学无锡研究院 一种高压、宽电压输入范围回馈式直流电子负载电路
CN211701855U (zh) * 2020-03-04 2020-10-16 合肥容杰电子技术有限责任公司 用于超薄高功率密度模块电源的输入级升压两级变换器
CN212969455U (zh) * 2020-10-09 2021-04-13 阳光电源股份有限公司 一种并联交错全桥llc电路
CN215222025U (zh) * 2021-06-28 2021-12-17 天津铁路信号有限责任公司 一种用于铁路信号电源屏的acac交流电源模块

Also Published As

Publication number Publication date
CN113346759A (zh) 2021-09-03

Similar Documents

Publication Publication Date Title
CN109167524B (zh) 一种三相交直流升降压变换电路及其控制方法
CN109067219B (zh) 一种三相交直流变换器及其控制方法
CN101685980B (zh) 一种用于ups的基于llc的全桥零电压开关升压谐振变换器
US20150138850A1 (en) Power conversion circuit and method for controlling direct current-alternating current circuit
CN111953198B (zh) 图腾柱pfc变换器的全范围zvs实现方法
CN206195631U (zh) 一种高效的半桥谐振ac‑dc变换器
CN102594152B (zh) 一种串联型半桥dc-dc变换器
WO2015106643A1 (zh) 无桥降压apfc电路
WO2020237864A1 (zh) 运行控制方法、电路、家电设备及计算机可读存储介质
CN110920422B (zh) 一种基于电流源的大功率电动汽车充电装置及控制方法
WO2019075837A1 (zh) 一种单级隔离型三相pfc变换器及其控制方法
CN212726850U (zh) 一种交错并联图腾柱无桥pfc电路及电源转换装置
Lan et al. High-frequency link matrix rectifier in discontinuous conduction mode with reduced input current distortion
CN209134309U (zh) 一种三相交直流升降压变换电路
CN103825475A (zh) 提高车载充电机功率因数的电路及控制方法
CN205051573U (zh) 一种全桥单相功率因数校正电路
CN215222025U (zh) 一种用于铁路信号电源屏的acac交流电源模块
CN113507226A (zh) 一种三相整流变换器及其控制方法
CN202444423U (zh) 一种串联型半桥dc-dc变换器
WO2023272809A1 (zh) 一种用于铁路信号电源屏的acac交流电源模块
CN201985763U (zh) 一种电除尘用调幅高频高压电源电路
TWI794329B (zh) Dc轉ac功率轉換器及適合被使用在dc轉ac功率轉換器之隔絕dc轉dc轉換器
CN105429452A (zh) 一种共模抑制双Boost无桥PFC变换器
WO2017186030A1 (zh) 一种三相电路装置及其实现整流的方法、计算机存储介质
WO2023193914A1 (en) Charger for wide input/output voltage regulation

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21947752

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE