WO2023272559A1 - 全球碳盘点卫星的轨道设计系统 - Google Patents

全球碳盘点卫星的轨道设计系统 Download PDF

Info

Publication number
WO2023272559A1
WO2023272559A1 PCT/CN2021/103428 CN2021103428W WO2023272559A1 WO 2023272559 A1 WO2023272559 A1 WO 2023272559A1 CN 2021103428 W CN2021103428 W CN 2021103428W WO 2023272559 A1 WO2023272559 A1 WO 2023272559A1
Authority
WO
WIPO (PCT)
Prior art keywords
orbit
satellite
orbital
apogee
global carbon
Prior art date
Application number
PCT/CN2021/103428
Other languages
English (en)
French (fr)
Inventor
田龙飞
尹增山
刘国华
胡登辉
董泽迎
顾文娟
高爽
万志强
刘洋
Original Assignee
中国科学院微小卫星创新研究院
上海微小卫星工程中心
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院微小卫星创新研究院, 上海微小卫星工程中心 filed Critical 中国科学院微小卫星创新研究院
Priority to CN202210628903.9A priority Critical patent/CN115982899A/zh
Priority to JP2023550562A priority patent/JP2024508796A/ja
Priority to EP21947513.4A priority patent/EP4365767A1/en
Priority to CA3223028A priority patent/CA3223028A1/en
Priority to PCT/CN2021/103428 priority patent/WO2023272559A1/zh
Priority to US18/285,856 priority patent/US20240184939A1/en
Priority to CN202180002120.3A priority patent/CN113632090B/zh
Publication of WO2023272559A1 publication Critical patent/WO2023272559A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/10Geometric CAD
    • G06F30/18Network design, e.g. design based on topological or interconnect aspects of utility systems, piping, heating ventilation air conditioning [HVAC] or cabling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64GCOSMONAUTICS; VEHICLES OR EQUIPMENT THEREFOR
    • B64G1/00Cosmonautic vehicles
    • B64G1/10Artificial satellites; Systems of such satellites; Interplanetary vehicles
    • B64G1/1085Swarms and constellations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64GCOSMONAUTICS; VEHICLES OR EQUIPMENT THEREFOR
    • B64G1/00Cosmonautic vehicles
    • B64G1/22Parts of, or equipment specially adapted for fitting in or to, cosmonautic vehicles
    • B64G1/24Guiding or controlling apparatus, e.g. for attitude control
    • B64G1/242Orbits and trajectories
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/10Geometric CAD
    • G06F30/15Vehicle, aircraft or watercraft design
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/80Management or planning
    • Y02P90/84Greenhouse gas [GHG] management systems

Definitions

  • the invention relates to the technical field of carbon emission, in particular to an orbit design system for a global carbon inventory satellite.
  • carbon monitoring satellites mainly use low-orbit sun-synchronous orbits. Although such satellites can achieve global coverage, they have low orbit positions, limited width, long target revisit cycles, and relatively uniform global coverage. Regional intensive observations cannot achieve the high-precision and high-time monitoring of human-intensive areas required by the global carbon inventory.
  • the high-orbit carbon monitoring satellite adopts a geosynchronous geostationary orbit and is fixed over a certain area, but a single satellite cannot achieve global coverage and does not have global coverage capabilities. It can only center on the fixed-point position and span ⁇ 50° in longitude and latitude observe inside.
  • the purpose of the present invention is to provide a global carbon inventory satellite orbit design system to solve the problem that the existing single carbon monitoring satellite orbit design is difficult to achieve high-precision and high-efficiency monitoring of global carbon inventory.
  • the present invention provides a global carbon inventory satellite orbit design system, including:
  • the long-dwelling unit in the northern hemisphere is configured to make the global carbon inventory satellite operate on the medium-orbit elliptical orbit, and when the global carbon inventory satellite operates to the apogee, it is located above the latitude of the intensive human activity area.
  • the orbit design system of the global carbon inventory satellite it also includes:
  • the frozen orbit unit is configured to set a special orbital inclination, so that the global carbon inventory satellite is still running on the frozen orbit, and the apogee of the frozen orbit is frozen above the latitude of the human activity-intensive area;
  • the sun-synchronous orbit unit is configured to set the synchronization parameters so that the global carbon inventory satellite is still running on the sun-synchronous orbit, so that when the global carbon inventory satellite moves to the apogee, it is always in the illuminated area;
  • the return orbit unit is configured to make the global carbon inventory satellite still operate on the return orbit to obtain the observation conditions consistent with the previous return cycle.
  • the latitude of the human activity-intensive area is between 20° north latitude and 45° north latitude;
  • the synchronization parameters include orbit inclination, orbit semi-major axis and orbit eccentricity
  • the observation conditions include the satellite elevation angle and the sun altitude angle of the observation point;
  • the orbital parameters of the Global Carbon Inventory Satellite include:
  • the range of perigee orbit height is 350km ⁇ 1000km, the range of apogee orbit height is 6800km ⁇ 8300km, the range of perigee argument is 215° ⁇ 235°, and the orbit period is 3h.
  • the mid-orbit elliptical orbit is divided into a prograde elliptical frozen orbit and a retrograde elliptical frozen orbit, and the orbital inclination of the prograde elliptical frozen orbit is 63.4°, and the inclination of the retrograde elliptical frozen orbit is 116.565°;
  • the orbital inclination of the global carbon inventory satellite is selected as 116.565°.
  • the orbit design system of the global carbon inventory satellite according to the value of the ascending node of the sun-synchronous orbit, the value of the orbit inclination, the first function and the second function, the relationship between the height of the perigee orbit and the height of the apogee orbit is obtained ;
  • the first function represents the relationship between the semi-major axis of the orbit and the height of the perigee orbit and the height of the apogee orbit;
  • the second function represents the relationship between the orbital eccentricity and the orbital height of perigee and apogee.
  • the precession angular rate of the orbital plane is
  • R e is the radius of the earth, a is the semi-major axis of the orbit, e is the orbital eccentricity, and i is the orbital inclination;
  • the orbital inclination is 116.565°
  • the second function is
  • h p is the height of the perigee orbit
  • h a is the height of the apogee orbit
  • RE is the radius of the earth
  • the sub-satellite point trajectory overlaps with the sub-satellite point trajectory of the previous return period:
  • N is the number of orbits that the satellite flies around the earth in a return cycle
  • D* is the number of ascending days in the return cycle
  • is the sway angle
  • the apogee of the global carbon inventory satellite is set above a specific latitude in the northern hemisphere, so that the global carbon inventory satellite is in the area where human activities are relatively dense in the northern hemisphere longer transit times for longer observations of the northern hemisphere;
  • the argument of perigee is determined, and 35° north latitude is selected as the apogee position, and the argument of perigee of the global carbon inventory satellite is selected as 220°.
  • the working arc of the global carbon inventory satellite load is at the apogee of the northern hemisphere. Therefore, the flight direction of the satellite in the illuminated area is orbit ascending , to achieve:
  • the satellite has no sunlight in the shadow area of the earth, which consumes battery power. After entering the illuminated area, the satellite is in the southern hemisphere, and the solar panels are charged while performing observation tasks, preparing for long-term observation in the northern hemisphere;
  • the external heat flow reaches temperature balance, and the satellite reaches a stable thermal balance state before concentrated observation in the northern hemisphere, so as to improve the data quality of the infrared channel.
  • the local time is afternoon, when it crosses the equator, it is 12:00 noon, and when it is observed in the northern hemisphere, the local time is morning, and the typical orbit is about 10:45 am when the apogee is near 35° north latitude;
  • the local time will be shifted accordingly.
  • the adjustment method is: for every 15° increase in the right ascension of the ascending node, the local time of the corresponding sub-satellite point will be increased by one hour.
  • the global carbon inventory satellite operates on the middle-orbit elliptical orbit, and when the global carbon inventory satellite moves to the apogee, it is located above the latitude of the human activity-intensive area, because the apogee height is relatively high , and the flight speed is relatively slow near the apogee, so the global carbon inventory satellite can realize long-term resident observations of areas with intensive human activities in northern latitudes (including Asia, North America, and Europe).
  • the apogee of the global carbon inventory satellite in the present invention is frozen above the latitude of the human-intensive area, which can ensure the maximization of the observation time of the northern hemisphere; it is always in the illuminated area at the apogee, thereby ensuring that the observed illumination conditions are relatively consistent. It is beneficial to achieve high-precision carbon dioxide column concentration inversion.
  • the present invention synchronously adjusts the perigee and apogee heights of the orbit through the coupling design, and at the same time ensures the sun-synchronous characteristics of the orbit, matches the orbital period, orbital precession, and the earth's rotation speed to find the return orbit.
  • the regression characteristics of the orbit can ensure the periodic repeatability of the ground trajectory, so as to obtain consistent observation conditions, such as the satellite elevation angle of the observation point, the sun altitude angle, etc., which is conducive to simplifying the design of the satellite working mode.
  • the global carbon inventory satellite in the present invention operates on the mid-orbit elliptical frozen solar synchronous return orbit, which can achieve global coverage, high orbital position, large width, and short target revisit period; it can focus on intensive human activities during the transit period Realize high-time-frequency scanning and intensive observation in the region.
  • Fig. 1 is a schematic diagram of the orbit of the global carbon inventory satellite in an embodiment of the present invention
  • Fig. 2 is a schematic diagram of the corresponding relationship between the perigee and the apogee of the elliptical frozen sun-synchronous orbit of the global carbon inventory satellite in an embodiment of the present invention
  • Fig. 3 is a schematic diagram of the sub-satellite point trajectory of the elliptical frozen sun-synchronous return orbit of the global carbon inventory satellite in an embodiment of the present invention
  • Fig. 4 is a schematic diagram of the corresponding relationship between the argument of perigee and the latitude of apogee of the global carbon inventory satellite in an embodiment of the present invention
  • Fig. 5 is a schematic diagram of local time differences of sub-satellite points at different latitudes of the global carbon inventory satellite in an embodiment of the present invention.
  • the purpose of the present invention is to provide a global carbon inventory satellite orbit design system to solve the problem that existing carbon monitoring satellites cannot realize high-precision and high-time monitoring of global carbon inventory.
  • the present invention provides an orbit design system for global carbon inventory satellites, including: a long-dwelling unit in the northern hemisphere, which is configured to make the global carbon inventory satellites run on the middle-orbit elliptical orbit, and make the global carbon inventory satellites When running to the apogee, it is located above the latitude of the intensive human activity area; the frozen orbit unit is configured to set a special orbital inclination, so that the global carbon inventory satellite is still running on the frozen orbit, and the apogee of the frozen orbit is frozen in the area where human activities are intensive The sky above the latitude of the region; the sun-synchronous orbit unit is configured to set the synchronization parameters so that the global carbon inventory satellite is also running on the sun-synchronous orbit, so that when the global carbon inventory satellite moves to the apogee, it is always in the illuminated area.
  • a long-dwelling unit in the northern hemisphere which is configured to make the global carbon inventory satellites run on the middle-orbit elliptical orbit, and make the global
  • An embodiment of the present invention provides an orbit design system for a global carbon inventory satellite, including: a long-dwelling unit in the northern hemisphere configured to enable the global carbon inventory satellite to operate on a mid-orbit elliptical orbit, and to enable the global carbon inventory satellite to operate to the apogee , located above the latitude of the human-intensive area.
  • Ordinary low-orbit sun-synchronous orbits generally adopt circular orbits, with an orbital altitude of 500km to 1000km, a flight speed of 7.3km/s to 7.6km/s, and a corresponding sub-satellite point ground speed of 6.4km/s to 7.1km/s.
  • the global carbon inventory satellite in this embodiment operates on the middle-orbit elliptical orbit, and its apogee height is relatively high, and its flight speed is relatively slow near the apogee. Conduct long-term resident observations in areas with intensive human activities in northern latitudes (including Asia, North America, and Europe).
  • the orbit design system of the global carbon inventory satellite also includes: a frozen orbit unit configured to set a special orbital inclination, so that the global carbon inventory satellite still operates on a frozen orbit,
  • the apogee of the frozen orbit is frozen above the latitude of the human-intensive area; the argument of perigee of the general elliptical orbit will change with time, that is, precession will occur, resulting in constant changes in the latitude of the perigee and apogee, which cannot guarantee the impact on land and population.
  • the carbon inventory track proposed by the present invention adopts a special inclination design, so that the apogee is frozen over the northern hemisphere, which can ensure the maximum observation time of the northern hemisphere.
  • the orbit design system of the global carbon inventory satellite also includes: a sun-synchronous orbit unit configured to set synchronization parameters so that the global carbon inventory satellite also operates on a sun-synchronous orbit , so that when the global carbon inventory satellite moves to the apogee, it is always in the illuminated area; through the joint design of the orbital inclination, orbital semi-major axis, and eccentricity, the precession rate of the ascending node right ascension (RAAN) of the orbital plane is The eastward precession is about 0.98°, realizing the synchronous "tracking" of the sun.
  • RAAN ascending node right ascension
  • This orbit can ensure that the apogee is always in the illuminated area, and the places where different orbits pass through the area remain consistent (note that there will be small changes in the sub-satellite point within one orbit), thus ensuring that the observed illumination conditions are relatively consistent , which is conducive to the realization of high-precision carbon dioxide column concentration inversion.
  • the orbit design system of the global carbon inventory satellite also includes: a return orbit unit, configured to make the global carbon inventory satellite also operate on the return orbit, and obtain the previous return orbit. Periodically consistent observation conditions.
  • a return orbit unit configured to make the global carbon inventory satellite also operate on the return orbit, and obtain the previous return orbit.
  • Periodically consistent observation conditions Through the coupling design, the height of the perigee and apogee of the orbit is adjusted synchronously. While ensuring the sun-synchronous characteristics of the orbit, the matching design of the orbital period, orbital precession, and the earth's rotation speed is carried out to find the return orbit.
  • the regression characteristics of the orbit can ensure the periodic repeatability of the ground trajectory, so as to obtain consistent observation conditions, such as the satellite elevation angle of the observation point, the sun altitude angle, etc., which is conducive to simplifying the design of the satellite working mode.
  • the latitude of the human activity-intensive area is between 20° north latitude and 45° north latitude;
  • the synchronization parameters include orbit inclination, Orbit semi-major axis and orbit eccentricity;
  • the observation conditions include the satellite elevation angle and solar altitude angle of the observation point;
  • the orbit parameters of the global carbon inventory satellite include: the range of perigee orbit height is 350km ⁇ 1000km, and the range of apogee orbit height is 6800km ⁇ 8300km, the range of the argument of perigee is 215° ⁇ 235°, and the orbital period is 3h.
  • the inclination of the elliptical frozen orbit is selected as follows: affected by the oblateness of the earth, the apex of the elliptical orbit will precess over time, known When the orbital inclination satisfies certain conditions, the precession rate of the apex can be made 0, that is, the orbital apex is "frozen". Such an orbit is called a frozen orbit, and the corresponding inclination is the critical inclination. According to the size of the critical inclination, the elliptical orbit of the middle orbit is divided into a prograde elliptical frozen orbit and a retrograde elliptical frozen orbit.
  • the ascending node of the prograde orbit advances westward by a certain angle every day
  • the ascending node of the retrograde orbit advances eastward by a certain angle every day
  • sun synchronization requires the ascending node to advance eastward by about 0.9856° every day, so according to the ascending node of the sun synchronous orbit
  • the orbital inclination angle of the global carbon inventory satellite is determined to be 116.565°.
  • the value of the orbit design system of the global carbon inventory satellite according to the value of the ascending node of the sun-synchronous orbit, the value of the orbit inclination, the first function and the second function, the perigee orbit height and The relationship between the height of the apogee orbit;
  • the first function represents the relationship between the semi-major axis of the orbit and the height of the perigee orbit and the height of the apogee orbit;
  • the second function represents the relationship between the orbit eccentricity and the height of the perigee orbit and the height of the apogee orbit.
  • the freezing characteristic of the elliptical orbit constrains the orbital inclination angle. rates for a joint design. Due to the influence of the earth's non-spherical gravitational perturbation, the orbital plane of the satellite is constantly precessing in the inertial space. Only the long - term perturbation of the harmonic term J2 is considered, and the precession angular rate of the orbital plane is
  • R e is the radius of the earth, a is the semi-major axis of the orbit, e is the orbital eccentricity, and i is the orbital inclination;
  • the orbital inclination is 116.565°
  • the second function is
  • h p is the height of the perigee orbit
  • h a is the height of the apogee orbit
  • RE is the radius of the earth
  • the return orbit design is more common in remote sensing satellites.
  • the track of the sub-satellite point of this orbit overlaps periodically, which can ensure that the satellite elevation angle conditions during the transit period are consistent. Cooperating with the sun-synchronous characteristics of the orbit, it can achieve a relatively consistent observation illumination angle. It can simplify the design of satellite working mode.
  • the sub-satellite point trajectory is the synthesis of the three motions of satellite flight, orbital plane precession, and earth rotation.
  • the sub-satellite point track overlaps with the sub-satellite point track of the previous return cycle:
  • N is the orbit number of the satellite flying around the earth in a return cycle
  • D* is the number of ascending days in the return cycle
  • is the longitude interval of consecutive adjacent tracks on the equator, that is, the sway angle
  • the eighth group of orbits in the table is selected as a typical carbon inventory orbit, with a return period of 5 days, and its sub-satellite point trajectory for more than 5 days is shown in Figure 3.
  • the adjustment of the argument of perigee will not affect the orbital period and the precession rate of the orbital plane, thus affecting the sun-synchronous and return characteristics of the orbit will have no effect.
  • the apogee of the global carbon inventory satellite is set above a specific latitude in the northern hemisphere, so that the transit time of the global carbon inventory satellite in areas with dense human activities in the northern hemisphere is longer, so as to observe the northern hemisphere for a longer period of time;
  • the apogee latitudes corresponding to different arguments of perigee are shown in Figure 4. It can be seen from Figure 4 that the larger the argument of perigee, the higher the corresponding apogee latitude.
  • the working arc section of the global carbon inventory satellite load is at the apogee of the northern hemisphere. Therefore, the illumination area satellite The flight direction is ascending orbit (flying from south to north) to achieve:
  • the satellite has no sunlight in the shadow area of the earth, which consumes battery power. After entering the illuminated area, the satellite is in the southern hemisphere, and there are fewer observation tasks. The solar panels are charged while the observation tasks are performed, preparing for long-term observation in the northern hemisphere;
  • the external heat flow changes, and it takes a period of time to reach temperature balance.
  • the orbital elevation of the illuminated area can ensure that the satellite reaches a stable thermal equilibrium state before concentrated observation in the northern hemisphere, so as to improve the data quality of the infrared channel.
  • the local time is afternoon, when it crosses the equator, it is 12:00 noon, and when it is observed in the northern hemisphere, the local time is morning, and the typical orbit is about 10:45 am when the apogee is near 35° north latitude;
  • the local time will be shifted accordingly.
  • the adjustment method is: for every 15° increase in the right ascension of the ascending node, the local time of the corresponding sub-satellite point will be increased by one hour.
  • Orbital Parameters & Properties value 1. Perigee altitude (km) 818.15 2. Apogee height (km) 7199.32 3. Eccentricity 0.307175 4. Orbit inclination (°) 116.565 5. Argument of perigee (°) 220 6. descending node time 00:00 in the morning 7. latitude of apogee 35° north latitude 8. apogee substellar time 10:45 am 9. orbital period (h) 2.92641 10. Return cycle (days) 5
  • the orbit design system of the global carbon inventory satellite provided by the present invention, the global carbon inventory satellite operates on the middle-orbit elliptical orbit, The global carbon inventory satellite is located above the latitude of the intensive human activity area when it reaches the apogee. Due to the high altitude of the apogee and the slow flight speed near the apogee, the global carbon inventory satellite can realize the human activity intensive area in northern latitudes (including Asia, North America, Europe) for long-term resident observations.
  • the apogee of the global carbon inventory satellite in the present invention is frozen above the latitude of the human-intensive area, which can ensure the maximization of the observation time of the northern hemisphere; it is always in the illuminated area at the apogee, thereby ensuring that the observed illumination conditions are relatively consistent. It is beneficial to achieve high-precision carbon dioxide column concentration inversion.
  • the present invention synchronously adjusts the perigee and apogee heights of the orbit through the coupling design, and at the same time ensures the sun-synchronous characteristics of the orbit, matches the orbital period, orbital precession, and the earth's rotation speed to find the return orbit.
  • the regression characteristics of the orbit can ensure the periodic repeatability of the ground trajectory, so as to obtain consistent observation conditions, such as the satellite elevation angle of the observation point, the sun altitude angle, etc., which is conducive to simplifying the design of the satellite working mode.
  • the global carbon inventory satellite in the present invention operates on the mid-orbit elliptical frozen solar synchronous return orbit, which can achieve global coverage, high orbital position, large width, and short target revisit period; it can focus on intensive human activities during the transit period Realize high-time-frequency scanning and intensive observation in the region.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Remote Sensing (AREA)
  • Geometry (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Theoretical Computer Science (AREA)
  • Astronomy & Astrophysics (AREA)
  • Mathematical Analysis (AREA)
  • Evolutionary Computation (AREA)
  • Computational Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Mathematical Optimization (AREA)
  • Pure & Applied Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Automation & Control Theory (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Radio Relay Systems (AREA)
  • Braking Arrangements (AREA)
  • Greenhouses (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

本发明提供了一种全球碳盘点卫星的轨道设计系统,包括:北半球长驻留单元,被配置为使全球碳盘点卫星运行在中轨椭圆轨道上,且使全球碳盘点卫星运行至远地点时,位于人类活动密集区域的纬度的上空。

Description

全球碳盘点卫星的轨道设计系统 技术领域
本发明涉及碳排放技术领域,特别涉及一种全球碳盘点卫星的轨道设计系统。
背景技术
碳排放定量化监测与评估是实现温室气体减排的重要基础。大气二氧化碳浓度变化可以反应人为碳排放和碳吸收双重信息。世界各国竞相发展天基温室气体监测体系,以满足全球碳盘点校核这一重大需求。现在对人为碳排放监测提出了更高的要求,需要对全球人类活动密集区域进行高时效的碳监测。
目前,碳监测卫星主要采用低轨太阳同步轨道,此类卫星虽然可实现全球覆盖,但轨位较低、幅宽受限,目标重访周期长,全球覆盖较为均匀,无法对重点人类活动密集区域加密观测,无法实现全球碳盘点所要求的对人类活动密集区域的高精度高时效监测。此外,高轨碳监测卫星采用地球同步静止轨道,定点在某区域上空,但单颗星无法实现全球覆盖,不具备全球覆盖能力,仅能以定点位置为中心,经度、纬度跨度±50°范围内进行观测。
发明内容
本发明的目的在于提供一种全球碳盘点卫星的轨道设计系统,以解决现有的单颗碳监测卫星轨道设计难以实现全球碳盘点的高精度高时效监测的问题。
为解决上述技术问题,本发明提供一种全球碳盘点卫星的轨道设计系统,包括:
北半球长驻留单元,被配置为使全球碳盘点卫星运行在中轨椭圆轨道 上,且使全球碳盘点卫星运行至远地点时,位于人类活动密集区域的纬度的上空。
可选的,在所述的全球碳盘点卫星的轨道设计系统中,还包括:
冻结轨道单元,被配置为设置特殊轨道倾角,使得全球碳盘点卫星还运行在冻结轨道上,所述冻结轨道的远地点冻结在人类活动密集区域的纬度的上空;
太阳同步轨道单元,被配置为设置同步参数,使全球碳盘点卫星还运行在太阳同步轨道上,以使全球碳盘点卫星运行至远地点时,始终处于光照区;
回归轨道单元,被配置为使全球碳盘点卫星还运行在回归轨道上,获得与前一个回归周期一致的观测条件。
可选的,在所述的全球碳盘点卫星的轨道设计系统中,所述人类活动密集区域的纬度为北纬20°~北纬45°之间;
所述同步参数包括轨道倾角、轨道半长轴和轨道偏心率;
所述观测条件包括观测点的卫星仰角和太阳高度角;
全球碳盘点卫星的轨道参数包括:
近地点轨道高度的范围为350km~1000km,远地点轨道高度的范围为6800km~8300km,近地点幅角的范围为215°~235°,轨道周期为3h。
可选的,在所述的全球碳盘点卫星的轨道设计系统中,根据临界倾角的大小,将中轨椭圆轨道划分为顺行椭圆冻结轨道和逆行椭圆冻结轨道,顺行椭圆冻结轨道的轨道倾角为63.4°,逆行椭圆冻结轨道的轨道倾角为116.565°;
根据太阳同步轨道升交点每天东进约0.9856°的要求,选取全球碳盘点卫星的轨道倾角为116.565°。
可选的,在所述的全球碳盘点卫星的轨道设计系统中,根据太阳同步轨道升交点的值,轨道倾角的值、第一函数和第二函数,获取近地点轨道高度和远地点轨道高度的关系;
第一函数表示轨道半长轴与近地点轨道高度和远地点轨道高度的关系;
第二函数表示轨道偏心率与近地点轨道高度和远地点轨道高度的关系。
可选的,在所述的全球碳盘点卫星的轨道设计系统中,轨道面的进动角速率为
Figure PCTCN2021103428-appb-000001
其中R e为地球半径,a为轨道半长轴,e为轨道偏心率,i为轨道倾角;
太阳同步轨道升交点的值满足如下条件:
Figure PCTCN2021103428-appb-000002
其中轨道倾角为116.565°;
第一函数为a=(h p+h a)/2+R E
第二函数为
Figure PCTCN2021103428-appb-000003
其中h p为近地点轨道高度,h a为远地点轨道高度,R E为地球半径;
将轨道倾角、第一函数和第二函数代入,得到近地点轨道高度h p和远地点轨道高度h a的组合方程;
根据组合方程得到轨道高度关系曲线。
可选的,在所述的全球碳盘点卫星的轨道设计系统中,所述回归轨道在经过一个回归周期后,星下点轨迹与前一个回归周期的星下点轨迹重叠:
D*·2π=N·Δλ
其中N为一个回归周期内卫星绕地飞行的轨数,D*为回归周期内的升交日数,Δλ为横移角;
同步调整近地点轨道高度和远地点轨道高度,在保证太阳同步轨道约束的同时,对轨道周期、轨道进动、地球自转速度进行匹配设计,得到回归轨道;
基于Q值选取轨道高度关系曲线上的点,在近地点轨道高度350km~1000km,远地点轨道高度6800km~8300km,轨道倾角116.565°的中轨椭圆轨道的范围内迭代计算回归轨道的参数。
可选的,在所述的全球碳盘点卫星的轨道设计系统中,通过调整近地点幅角,将全球碳盘点卫星的远地点设置于北半球特定纬度上空,使得全球碳盘点卫星在北半球人类活动较为密集区域的过境时间更长,以对北半 球更长时间的观测;
根据近地点幅角与远地点纬度成正比关系,确定近地点幅角,选取北纬35°为远地点位置,选取全球碳盘点卫星的近地点幅角为220°。
可选的,在所述的全球碳盘点卫星的轨道设计系统中,根据全球碳盘点卫星的工作特点,全球碳盘点卫星载荷的工作弧段在北半球远地点,因此,光照区卫星飞行方向为升轨,以实现:
卫星在地球阴影区无太阳光照,消耗蓄电池电量,进入光照区后卫星处于南半球,进行观测任务的同时太阳帆板充电,为北半球长时间观测准备;
卫星进入光照区后,外热流达到温度平衡,卫星在北半球集中观测之前达到稳定的热平衡状态,以提升红外通道的数据质量。
可选的,在所述的全球碳盘点卫星的轨道设计系统中,
卫星处于不同纬度时,星下点地方时发生变化,对应的太阳仰角相应变化;
当降交点地方时0点时,绘制不同纬度的星下点地方时曲线,其中横轴为纬度,南纬为负,北纬为正,从左到右即为一次升轨过程,纵轴为星下点地方时;
卫星处于南纬时,地方时为下午,过赤道时地方时为中午12点,到北半球观测时,地方时为上午,其中典型轨道在远地点北纬35°附近的地方时约为上午10:45;
实际根据需要平移升交点赤经,则地方时相应平移,调整方法为:升交点赤经每增加15°,对应的星下点地方时增加一个小时。
在本发明提供的全球碳盘点卫星的轨道设计系统中,全球碳盘点卫星运行在中轨椭圆轨道上,全球碳盘点卫星运行至远地点时位于人类活动密集区域的纬度的上空,由于远地点高度较高,且在远地点附近飞行速度较慢,因此全球碳盘点卫星能够实现对北纬人类活动密集区域(包括亚洲、北美、欧洲)进行长时间驻留观测。
本发明中的全球碳盘点卫星的远地点冻结在人类活动密集区域的纬度的上空,能够保证对北半球观测时长的最大化;在远地点时始终处于光照 区,从而保证了观测的光照条件相对一致,有利于实现高精度的二氧化碳柱浓度反演。
本发明通过耦合设计,同步调整轨道近地点、远地点高度,在保证轨道的太阳同步特性的同时,对轨道周期、轨道进动、地球自转速度等进行匹配设计,寻找回归轨道。轨道的回归特性能够保证地面轨迹的周期重复性,从而获得一致的观测条件,如观测点的卫星仰角、太阳高度角等,有利于简化卫星工作模式的设计。
本发明中的全球碳盘点卫星运行在中轨椭圆冻结太阳同步回归轨道上,可实现全球覆盖,轨位较高,幅宽较大,目标重访周期短;能够在过境期间对重点人类活动密集区域实现高时频扫描加密观测。
附图说明
图1是本发明一实施例中的全球碳盘点卫星的运行轨道示意图;
图2是本发明一实施例中的全球碳盘点卫星的椭圆冻结太阳同步轨道近地点与远地点对应关系示意图;
图3是本发明一实施例中的全球碳盘点卫星的椭圆冻结太阳同步回归轨道星下点轨迹示意图;
图4是本发明一实施例中的全球碳盘点卫星的近地点幅角与远地点纬度对应关系示意图;
图5是本发明一实施例中的全球碳盘点卫星的不同纬度星下点地方时差异示意图。
具体实施方式
在本发明中,各实施例仅仅旨在说明本发明的方案,而不应被理解为限制性的。
在此还应当指出,在本发明的范围内,“相同”、“相等”、“等于”等措辞并不意味着二者数值绝对相等,而是允许一定的合理误差,也就是说,所述措辞也涵盖了“基本上相同”、“基本上相等”、“基本上等于”。
另外,本发明的各方法的步骤的编号并未限定所述方法步骤的执行顺 序。除非特别指出,各方法步骤可以以不同顺序执行。
以下结合附图和具体实施例对本发明提出的全球碳盘点卫星的轨道设计系统作进一步详细说明。根据下面说明和权利要求书,本发明的优点和特征将更清楚。需说明的是,附图均采用非常简化的形式且均使用非精准的比例,仅用以方便、明晰地辅助说明本发明实施例的目的。
本发明的目的在于提供一种全球碳盘点卫星的轨道设计系统,以解决现有的碳监测卫星无法实现全球碳盘点的高精度高时效监测。
为实现上述目的,本发明提供了一种全球碳盘点卫星的轨道设计系统,包括:北半球长驻留单元,被配置为使全球碳盘点卫星运行在中轨椭圆轨道上,且使全球碳盘点卫星运行至远地点时,位于人类活动密集区域的纬度的上空;冻结轨道单元,被配置为设置特殊轨道倾角,使得全球碳盘点卫星还运行在冻结轨道上,所述冻结轨道的远地点冻结在人类活动密集区域的纬度的上空;太阳同步轨道单元,被配置为设置同步参数,使全球碳盘点卫星还运行在太阳同步轨道上,以使全球碳盘点卫星运行至远地点时,始终处于光照区。
本发明的实施例提供一种全球碳盘点卫星的轨道设计系统,包括:北半球长驻留单元,被配置为使全球碳盘点卫星运行在中轨椭圆轨道上,且使全球碳盘点卫星运行至远地点时,位于人类活动密集区域的纬度的上空。普通低轨太阳同步轨道一般采用圆轨道,轨道高度在500km~1000km,其飞行速度为7.3km/s~7.6km/s,对应的星下点地速为6.4km/s~7.1km/s,由于飞行高度低且速度较快,对地面特定区域的过境时间较短,无法进行大范围扫描监测。而本实施例中的全球碳盘点卫星运行在中轨椭圆轨道上,其远地点高度较高,且在远地点附近飞行速度较慢,通过将远地点设置在特定纬度(如北纬30°)上空,能够实现对北纬人类活动密集区域(包括亚洲、北美、欧洲)进行长时间驻留观测。
在本发明的一个实施例中,在所述的全球碳盘点卫星的轨道设计系统中,还包括:冻结轨道单元,被配置为设置特殊轨道倾角,使得全球碳盘点卫星还运行在冻结轨道上,所述冻结轨道的远地点冻结在人类活动密集 区域的纬度的上空;一般椭圆轨道的近地点幅角会随时间变化,即发生进动,导致近地点及远地点所处纬度不断变化,无法保证对陆地及人口较为集中的北半球区域的长时间驻留观测,本发明所提出的碳盘点轨道采用特殊倾角设计,使得远地点冻结在北半球上空,能够保证对北半球观测时长的最大化。
在本发明的一个实施例中,在所述的全球碳盘点卫星的轨道设计系统中,还包括:太阳同步轨道单元,被配置为设置同步参数,使全球碳盘点卫星还运行在太阳同步轨道上,以使全球碳盘点卫星运行至远地点时,始终处于光照区;通过对轨道倾角、轨道半长轴、偏心率进行联合设计,使得轨道面升交点赤经(RAAN)的进动速率为每天向东进动约0.98°,实现对太阳的同步“跟踪”。该轨道能够保证远地点一直处于光照区,且不同轨次所过境区域的地方时保持一致(注意一轨内的星下点地方时会有较小的变化),从而保证了观测的光照条件相对一致,有利于实现高精度的二氧化碳柱浓度反演。
在本发明的一个实施例中,在所述的全球碳盘点卫星的轨道设计系统中,还包括:回归轨道单元,被配置为使全球碳盘点卫星还运行在回归轨道上,获得与前一个回归周期一致的观测条件。通过耦合设计,同步调整轨道近地点、远地点高度,在保证轨道的太阳同步特性的同时,对轨道周期、轨道进动、地球自转速度等进行匹配设计,寻找回归轨道。轨道的回归特性能够保证地面轨迹的周期重复性,从而获得一致的观测条件,如观测点的卫星仰角、太阳高度角等,有利于简化卫星工作模式的设计。
在本发明的一个实施例中,在所述的全球碳盘点卫星的轨道设计系统中,所述人类活动密集区域的纬度为北纬20°~北纬45°之间;所述同步参数包括轨道倾角、轨道半长轴和轨道偏心率;所述观测条件包括观测点的卫星仰角和太阳高度角;全球碳盘点卫星的轨道参数包括:近地点轨道高度的范围为350km~1000km,远地点轨道高度的范围为6800km~8300km,近地点幅角的范围为215°~235°,轨道周期为3h。
在本发明的一个实施例中,在所述的全球碳盘点卫星的轨道设计系统中,椭圆冻结轨道倾角选取如下:受地球扁率影响,椭圆轨道的拱点会随 时间发生进动,已知轨道倾角满足特定的条件时,可使得拱点进动率为0,即实现轨道拱点“冻结”,这样的轨道称为冻结轨道,对应的倾角为临界倾角。根据临界倾角的大小,将中轨椭圆轨道划分为顺行椭圆冻结轨道和逆行椭圆冻结轨道,顺行椭圆冻结轨道的轨道倾角为63.4°,逆行椭圆冻结轨道的轨道倾角为116.565°;考虑升交点的进动情况,顺行轨道升交点每天向西进动一定角度,逆行轨道升交点每天向东进动一定角度,而太阳同步要求升交点每天东进约0.9856°,因此根据太阳同步轨道升交点的要求,确定全球碳盘点卫星的轨道倾角为116.565°。
在本发明的一个实施例中,在所述的全球碳盘点卫星的轨道设计系统中,根据太阳同步轨道升交点的值,轨道倾角的值、第一函数和第二函数,获取近地点轨道高度和远地点轨道高度的关系;第一函数表示轨道半长轴与近地点轨道高度和远地点轨道高度的关系;第二函数表示轨道偏心率与近地点轨道高度和远地点轨道高度的关系。
在本发明的一个实施例中,在所述的全球碳盘点卫星的轨道设计系统中,椭圆轨道的冻结特性约束了轨道倾角,在特定的轨道倾角条件下,需要对轨道半长轴和轨道偏心率进行联合设计。由于地球非球形引力摄动的影响,卫星轨道面在惯性空间不断进动,仅考虑带谐项J 2项的长期摄动,轨道面的进动角速率为
Figure PCTCN2021103428-appb-000004
其中R e为地球半径,a为轨道半长轴,e为轨道偏心率,i为轨道倾角;
太阳同步轨道升交点的值满足如下条件:
Figure PCTCN2021103428-appb-000005
其中轨道倾角为116.565°;
第一函数为a=(h p+h a)/2+R E
第二函数为
Figure PCTCN2021103428-appb-000006
其中h p为近地点轨道高度,h a为远地点轨道高度,R E为地球半径;
将轨道倾角、第一函数和第二函数代入,得到近地点轨道高度h p和远地点轨道高度h a的组合方程;根据组合方程得到轨道高度关系曲线,如图2所示。通过遍历近地点h p的高度范围350km~1000km,分别可得对应的远地点轨道高度,二者的关系如图2所示。此即为椭圆冻结太阳同步轨道的设计依据,可见近地点高度越高,远地点高度越低。
回归轨道设计在对地遥感卫星中较为常见,该轨道的卫星星下点轨迹周期性重叠,能够保证过境期间的卫星仰角条件一致,配合轨道的太阳同步特性,能够实现较为一致的观测光照角,可以简化卫星工作模式的设计。在本发明的一个实施例中,在所述的全球碳盘点卫星的轨道设计系统中,星下点轨迹是卫星飞行、轨道面进动、地球自转这三者运动的合成,对于回归轨道,所述回归轨道在经过一个回归周期后,星下点轨迹与前一个回归周期的星下点轨迹重叠:
D*·2π=N·Δλ
其中N为一个回归周期内卫星绕地飞行的轨数,D*为回归周期内的升交日数,Δλ为连续相邻轨迹在赤道上的经度间隔,即横移角;同步调整近地点轨道高度和远地点轨道高度,在保证太阳同步轨道约束的同时,对轨道周期、轨道进动、地球自转速度进行匹配设计,得到回归轨道;
基于Q值选取轨道高度关系曲线上的点,在近地点轨道高度350km~1000km,远地点轨道高度6800km~8300km,轨道倾角116.565°的中轨椭圆轨道的范围内迭代计算回归轨道的参数。经分析,该范围内满足椭圆+冻结+太阳同步+回归特性的轨道共计14组,如表1所示。
表1椭圆冻结太阳同步回归轨道设计
Figure PCTCN2021103428-appb-000007
Figure PCTCN2021103428-appb-000008
选取表中第8组轨道为典型碳盘点轨道,回归周期5天,其5天以上的星下点轨迹如图3所示。
在本发明的一个实施例中,在所述的全球碳盘点卫星的轨道设计系统中,近地点幅角的调整不会影响轨道周期与轨道面进动速率,因而对轨道的太阳同步特性和回归特性不会产生影响。通过调整近地点幅角,将全球碳盘点卫星的远地点设置于北半球特定纬度上空,使得全球碳盘点卫星在北半球人类活动较为密集区域的过境时间更长,以对北半球更长时间的观测;以近地点高度818.15km,远地点高度7199.32的5天回归椭圆冻结太阳同步轨道为例,不同的近地点幅角对应的远地点纬度如图4所示。由图4可见,近地点幅角越大,对应的远地点纬度越高。综合考虑中国、美国、欧洲、日本、印度等重点国家的纬度分布,选取北纬35°为远地点位置,可实现对这些重点国家较长时间的驻留观测。因此,选取全球碳盘点卫星的近地点幅角为220°。
在本发明的一个实施例中,在所述的全球碳盘点卫星的轨道设计系统中,根据全球碳盘点卫星的工作特点,全球碳盘点卫星载荷的工作弧段在北半球远地点,因此,光照区卫星飞行方向为升轨(自南向北飞行),以实现:
卫星在地球阴影区无太阳光照,消耗蓄电池电量,进入光照区后卫星处于南半球,观测任务较少,进行观测任务的同时太阳帆板充电,为北半球长时间观测准备;
卫星进入光照区后,外热流发生变化,需要一段时间达到温度平衡,光照区升轨可以保证卫星在北半球集中观测之前达到稳定的热平衡状态,以提升红外通道的数据质量。
可选的,在所述的全球碳盘点卫星的轨道设计系统中,
卫星处于不同纬度时,星下点地方时发生变化,对应的太阳仰角相应 变化;
当降交点地方时0点时,绘制不同纬度的星下点地方时曲线如图5所示,其中横轴为纬度,南纬为负,北纬为正,从左到右即为一次升轨过程,纵轴为星下点地方时(24h制);
卫星处于南纬时,地方时为下午,过赤道时地方时为中午12点,到北半球观测时,地方时为上午,其中典型轨道在远地点北纬35°附近的地方时约为上午10:45;
实际根据需要平移升交点赤经,则地方时相应平移,调整方法为:升交点赤经每增加15°,对应的星下点地方时增加一个小时。
经过上述设计步骤,得到一组适用于全球碳盘点的卫星轨道设计结果,其轨道参数及轨道特性如表2所示。
表2适用于碳盘点的卫星轨道设计
序号 轨道参数&特性
1. 近地点高度(km) 818.15
2. 远地点高度(km) 7199.32
3. 偏心率 0.307175
4. 轨道倾角(°) 116.565
5. 近地点幅角(°) 220
6. 降交点地方时 凌晨00:00
7. 远地点所处纬度 北纬35°
8. 远地点星下点地方时 上午10:45
9. 轨道周期(h) 2.92641
10. 回归周期(天) 5
分析轨道的重访与覆盖能力,与低轨太阳同步轨道卫星和地球同步静止轨道卫星进行比较,本发明提供的全球碳盘点卫星的轨道设计系统,全球碳盘点卫星运行在中轨椭圆轨道上,全球碳盘点卫星运行至远地点时位于人类活动密集区域的纬度的上空,由于远地点高度较高,且在远地点附 近飞行速度较慢,因此全球碳盘点卫星能够实现对北纬人类活动密集区域(包括亚洲、北美、欧洲)进行长时间驻留观测。
本发明中的全球碳盘点卫星的远地点冻结在人类活动密集区域的纬度的上空,能够保证对北半球观测时长的最大化;在远地点时始终处于光照区,从而保证了观测的光照条件相对一致,有利于实现高精度的二氧化碳柱浓度反演。
本发明通过耦合设计,同步调整轨道近地点、远地点高度,在保证轨道的太阳同步特性的同时,对轨道周期、轨道进动、地球自转速度等进行匹配设计,寻找回归轨道。轨道的回归特性能够保证地面轨迹的周期重复性,从而获得一致的观测条件,如观测点的卫星仰角、太阳高度角等,有利于简化卫星工作模式的设计。
本发明中的全球碳盘点卫星运行在中轨椭圆冻结太阳同步回归轨道上,可实现全球覆盖,轨位较高,幅宽较大,目标重访周期短;能够在过境期间对重点人类活动密集区域实现高时频扫描加密观测。
虽然本发明的一些实施方式已经在本申请文件中予以了描述,但是本领域技术人员能够理解,这些实施方式仅是作为示例示出的。本领域技术人员在本发明的教导下可以想到众多的变型方案、替代方案和改进方案而不超出本发明的范围。所附权利要求书旨在限定本发明的范围,并藉此涵盖这些权利要求本身及其等同电能变换的范围内的方法和结构。

Claims (10)

  1. 一种全球碳盘点卫星的轨道设计系统,其特征在于,包括:
    北半球长驻留单元,被配置为使全球碳盘点卫星运行在中轨椭圆轨道上,且使全球碳盘点卫星运行至远地点时,位于人类活动密集区域的纬度的上空。
  2. 如权利要求1所述的全球碳盘点卫星的轨道设计系统,其特征在于,还包括:
    冻结轨道单元,被配置为设置特殊轨道倾角,使得全球碳盘点卫星还运行在冻结轨道上,所述冻结轨道的远地点冻结在人类活动密集区域的纬度的上空;
    太阳同步轨道单元,被配置为设置同步参数,使全球碳盘点卫星还运行在太阳同步轨道上,以使全球碳盘点卫星运行至远地点时,始终处于光照区;
    回归轨道单元,被配置为使全球碳盘点卫星还运行在回归轨道上,获得与前一个回归周期一致的观测条件。
  3. 如权利要求2所述的全球碳盘点卫星的轨道设计系统,其特征在于,所述人类活动密集区域的纬度为北纬20°~北纬45°之间;
    所述同步参数包括轨道倾角、轨道半长轴和轨道偏心率;
    所述观测条件包括观测点的卫星仰角和太阳高度角;
    全球碳盘点卫星的轨道参数包括:
    近地点轨道高度的范围为350km~1000km,远地点轨道高度的范围为6800km~8300km,近地点幅角的范围为215°~235°。
  4. 如权利要求3所述的全球碳盘点卫星的轨道设计系统,其特征在于,根据临界倾角的大小,将中轨椭圆轨道划分为顺行椭圆冻结轨道和逆行椭圆冻结轨道,顺行椭圆冻结轨道的轨道倾角为63.4°,逆行椭圆冻结轨道的轨道倾角为116.565°;
    根据太阳同步轨道升交点每天东进约0.9856°的要求,选取全球碳盘点卫星的轨道倾角为116.565°。
  5. 如权利要求4所述的全球碳盘点卫星的轨道设计系统,其特征在于, 根据太阳同步轨道升交点的值,轨道倾角的值、第一函数和第二函数,获取近地点轨道高度和远地点轨道高度的关系;
    第一函数表示轨道半长轴与近地点轨道高度和远地点轨道高度的关系;
    第二函数表示轨道偏心率与近地点轨道高度和远地点轨道高度的关系。
  6. 如权利要求5所述的全球碳盘点卫星的轨道设计系统,其特征在于,轨道面的进动角速率为
    Figure PCTCN2021103428-appb-100001
    其中R e为地球半径,a为轨道半长轴,e为轨道偏心率,i为轨道倾角;
    太阳同步轨道升交点的值满足如下条件:
    Figure PCTCN2021103428-appb-100002
    其中轨道倾角为116.565°;
    第一函数为a=(h p+h a)/2+R E
    第二函数为
    Figure PCTCN2021103428-appb-100003
    其中h p为近地点轨道高度,h a为远地点轨道高度,R E为地球半径;
    将轨道倾角、第一函数和第二函数代入,得到近地点轨道高度h p和远地点轨道高度h a的组合方程;
    根据组合方程得到轨道高度关系曲线。
  7. 如权利要求6所述的全球碳盘点卫星的轨道设计系统,其特征在于,所述回归轨道在经过一个回归周期后,星下点轨迹与前一个回归周期的星下点轨迹重叠:
    D*·2π=N·Δλ
    其中N为一个回归周期内卫星绕地飞行的轨数,D*为回归周期内的升交日数,Δλ为横移角;
    同步调整近地点轨道高度和远地点轨道高度,在保证太阳同步轨道约束的同时,对轨道周期、轨道进动、地球自转速度进行匹配设计,得到回归轨道;
    基于Q值选取轨道高度关系曲线上的点,在近地点轨道高度 350km~1000km,远地点轨道高度6800km~8300km,轨道倾角116.565°的中轨椭圆轨道的范围内迭代计算回归轨道的参数。
  8. 如权利要求7所述的全球碳盘点卫星的轨道设计系统,其特征在于,
    通过调整近地点幅角,将全球碳盘点卫星的远地点设置于北半球特定纬度上空,使得全球碳盘点卫星在北半球人类活动较为密集区域的过境时间更长,以对北半球更长时间的观测;
    根据近地点幅角与远地点纬度成正比关系,确定近地点幅角,选取北纬35°为远地点位置,选取全球碳盘点卫星的近地点幅角为220°。
  9. 如权利要求8所述的全球碳盘点卫星的轨道设计系统,其特征在于,
    根据全球碳盘点卫星的工作特点,全球碳盘点卫星载荷的工作弧段在北半球远地点,因此,光照区卫星飞行方向为升轨,以实现:
    卫星在地球阴影区无太阳光照,消耗蓄电池电量,进入光照区后卫星处于南半球,进行观测任务的同时太阳帆板充电,为北半球长时间观测准备;
    卫星进入光照区后,外热流达到温度平衡,卫星在北半球集中观测之前达到稳定的热平衡状态,以提升红外通道的数据质量。
  10. 如权利要求5所述的全球碳盘点卫星的轨道设计系统,其特征在于,
    卫星处于不同纬度时,星下点地方时发生变化,对应的太阳仰角相应变化;
    当降交点地方时0点时,绘制不同纬度的星下点地方时曲线,其中横轴为纬度,南纬为负,北纬为正,从左到右即为一次升轨过程,纵轴为星下点地方时;
    卫星处于南纬时,地方时为下午,过赤道时地方时为中午12点,到北半球观测时,地方时为上午,其中典型轨道在远地点北纬35°附近的地方时约为上午10:45;
    实际根据需要平移升交点赤经,则地方时相应平移,调整方法为:升交点赤经每增加15°,对应的星下点地方时增加一个小时。
PCT/CN2021/103428 2021-06-30 2021-06-30 全球碳盘点卫星的轨道设计系统 WO2023272559A1 (zh)

Priority Applications (7)

Application Number Priority Date Filing Date Title
CN202210628903.9A CN115982899A (zh) 2021-06-30 2021-06-30 全球碳盘点卫星
JP2023550562A JP2024508796A (ja) 2021-06-30 2021-06-30 全地球炭素インベントリ衛星の軌道設計システム
EP21947513.4A EP4365767A1 (en) 2021-06-30 2021-06-30 Orbit design system for global greenhouse gas inventory satellite
CA3223028A CA3223028A1 (en) 2021-06-30 2021-06-30 Orbit design system for global greenhouse gas inventory satellite
PCT/CN2021/103428 WO2023272559A1 (zh) 2021-06-30 2021-06-30 全球碳盘点卫星的轨道设计系统
US18/285,856 US20240184939A1 (en) 2021-06-30 2021-06-30 Orbital design system for global carbon inventory satellite
CN202180002120.3A CN113632090B (zh) 2021-06-30 2021-06-30 全球碳盘点卫星的轨道设计系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/103428 WO2023272559A1 (zh) 2021-06-30 2021-06-30 全球碳盘点卫星的轨道设计系统

Publications (1)

Publication Number Publication Date
WO2023272559A1 true WO2023272559A1 (zh) 2023-01-05

Family

ID=78391350

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/103428 WO2023272559A1 (zh) 2021-06-30 2021-06-30 全球碳盘点卫星的轨道设计系统

Country Status (6)

Country Link
US (1) US20240184939A1 (zh)
EP (1) EP4365767A1 (zh)
JP (1) JP2024508796A (zh)
CN (2) CN113632090B (zh)
CA (1) CA3223028A1 (zh)
WO (1) WO2023272559A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115795927A (zh) * 2023-02-10 2023-03-14 北京英视睿达科技股份有限公司 基于多目标观测的卫星轨道设计方法、装置、设备及介质
CN116147573A (zh) * 2023-04-20 2023-05-23 国家卫星海洋应用中心 一种卫星轨道漂移监测方法、装置及设备
CN116861159A (zh) * 2023-08-24 2023-10-10 国家卫星气象中心(国家空间天气监测预警中心) 针对极轨卫星跨轨观测资料的客观临边订正方法及系统

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115149995B (zh) * 2022-05-16 2023-11-24 亚太卫星通信(深圳)有限公司 一种heo星座轨道设计方法
CN114720398B (zh) * 2022-05-24 2022-08-23 北京劢亚科技有限公司 一种测量碳值的空间分布的系统和方法
CN115586305A (zh) * 2022-10-09 2023-01-10 哈尔滨工业大学 一种基于载荷垂轨旋转扫描的超宽覆盖多模式碳监测卫星、构建方法和监测方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6102335A (en) * 1992-06-02 2000-08-15 Mobile Communications Holdings, Inc. Elliptical orbit satellite, system, and deployment with controllable coverage characteristics
CN103678787A (zh) * 2013-11-29 2014-03-26 中国空间技术研究院 一种星下点圆迹地球同步轨道设计方法
CN106209205A (zh) * 2016-07-05 2016-12-07 清华大学 一种重点区域按需覆盖的全球通信星座设计方法
CN111723482A (zh) * 2020-06-17 2020-09-29 南京大学 一种基于卫星co2柱浓度观测反演地表碳通量的方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT1261940B (it) * 1993-09-24 1996-06-04 Alenia Spazio Spa Sistema per telecomunicazioni e telerilevamento via satellite basato sull'uso di orbite eliosincrone ellittiche di breve periodo.
CN111680354B (zh) * 2020-04-20 2022-10-21 北京航空航天大学 近地回归轨道卫星星下点和摄影点轨迹自交点的计算方法
CN112230219B (zh) * 2020-08-31 2022-11-04 西安电子科技大学 基于全方位角观测的轨道参数及星座构型设计方法
CN112649006A (zh) * 2020-12-29 2021-04-13 中国人民解放军63921部队 一种太阳同步圆轨道的轨道规划方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6102335A (en) * 1992-06-02 2000-08-15 Mobile Communications Holdings, Inc. Elliptical orbit satellite, system, and deployment with controllable coverage characteristics
CN103678787A (zh) * 2013-11-29 2014-03-26 中国空间技术研究院 一种星下点圆迹地球同步轨道设计方法
CN106209205A (zh) * 2016-07-05 2016-12-07 清华大学 一种重点区域按需覆盖的全球通信星座设计方法
CN111723482A (zh) * 2020-06-17 2020-09-29 南京大学 一种基于卫星co2柱浓度观测反演地表碳通量的方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
MENG BO , HAN CHAO , HUANG WEIJUN: "Optimization of Special Elliptic Orbit Constellation for Regional Coverage", JOURNAL OF BEIJING UNIVERSITY OF AERONAUTICS AND ASTRONAUTICS, vol. 34, no. 2, 15 February 2008 (2008-02-15), pages 167 - 170, XP093020075, ISSN: 1001-5965, DOI: 10.13700/j.bh.1001-5965.2008.02.012 *
ZHENG JINGZHI , PANG HAO: "Analysis of Global Temporal and Spatial Distribution Characteristics of CO2 Based on GOSAT Satellite Data", JOURNAL OF GREEN SCIENCE AND TECHNOLOGY, no. 16, 30 August 2020 (2020-08-30), pages 88 - 89+95, XP093020083, ISSN: 1674-9944, DOI: 10.16663/j.cnki.lskj.2020.16.029 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115795927A (zh) * 2023-02-10 2023-03-14 北京英视睿达科技股份有限公司 基于多目标观测的卫星轨道设计方法、装置、设备及介质
CN115795927B (zh) * 2023-02-10 2023-04-18 北京英视睿达科技股份有限公司 基于多目标观测的卫星轨道设计方法、装置、设备及介质
CN116147573A (zh) * 2023-04-20 2023-05-23 国家卫星海洋应用中心 一种卫星轨道漂移监测方法、装置及设备
CN116861159A (zh) * 2023-08-24 2023-10-10 国家卫星气象中心(国家空间天气监测预警中心) 针对极轨卫星跨轨观测资料的客观临边订正方法及系统
CN116861159B (zh) * 2023-08-24 2024-02-02 国家卫星气象中心(国家空间天气监测预警中心) 针对极轨卫星跨轨观测资料的客观临边订正方法及系统

Also Published As

Publication number Publication date
EP4365767A1 (en) 2024-05-08
CA3223028A1 (en) 2023-01-05
JP2024508796A (ja) 2024-02-28
CN113632090A (zh) 2021-11-09
CN113632090B (zh) 2022-05-27
US20240184939A1 (en) 2024-06-06
CN115982899A (zh) 2023-04-18

Similar Documents

Publication Publication Date Title
WO2023272559A1 (zh) 全球碳盘点卫星的轨道设计系统
Canuto et al. Spacecraft dynamics and control: the embedded model control approach
CN104332707B (zh) 一种用于低轨星载天线跟踪地面站的方法
Van Patten et al. A possible experiment with two counter-orbiting drag-free satellites to obtain a new test of einstein's general theory of relativity and improved measurements in geodesy
CN106679674B (zh) 基于星历模型的地月L2点Halo轨道阴影分析方法
CN107609267B (zh) 一种月球有限推力多次捕获轨道实现方法
CN105631095A (zh) 一种等间隔发射的多约束地月转移轨道簇搜索方法
Witte et al. Kinetic parameters of interstellar neutral helium: updated results from the ULYSSES/GAS-instrument
CN107506893B (zh) 一种太阳同步轨道航天器安全管理方法
Rappaport et al. The 3U 0900-40 binary system-Orbital elements and masses
WO2022111230A1 (zh) 一种分布式无中心天基时间基准建立与保持系统
CN104038272A (zh) 一种光照约束下的中轨全球覆盖星座
CN109760854A (zh) 一种体积可控的充气天线
CN106777580B (zh) 近地倾斜轨道发射窗口快速设计方法
Fan et al. Ground track maintenance for BeiDou IGSO satellites subject to tesseral resonances and the luni-solar perturbations
Killeen et al. Neutral winds in the lower thermosphere from Dynamics Explorer 2
CN110595486A (zh) 基于双星在轨遥测数据的高精度半长轴偏差计算方法
CN111141278B (zh) 一种星下点定时回归的赤道轨道半长轴确定方法
CN109507909B (zh) 基于混合动力轨控技术的卫星共位分析建模方法及系统
Fantino et al. Analysis of perturbations and station-keeping requirements in highly-inclined geosynchronous orbits
Abdurrahman The Sun's Placement and Route for Hadejia, Jigawa State, Nigeria
Tao Space Optical Remote Sensing: Fundamentals and System Design
CN115688385B (zh) 一种单一观测平台星敏感器观测模型构建方法
Jing-shi et al. Analysis and Design of Starlink-like Satellite Constellation
Xin et al. Study on Evolution Analysis and Maintenance Technology of Co-location Configuration of Geostationary Satellites

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21947513

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023550562

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 18285856

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 3223028

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2021947513

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021947513

Country of ref document: EP

Effective date: 20240130