WO2023272509A1 - 用于pucch的通信方法、装置及存储介质 - Google Patents

用于pucch的通信方法、装置及存储介质 Download PDF

Info

Publication number
WO2023272509A1
WO2023272509A1 PCT/CN2021/103230 CN2021103230W WO2023272509A1 WO 2023272509 A1 WO2023272509 A1 WO 2023272509A1 CN 2021103230 W CN2021103230 W CN 2021103230W WO 2023272509 A1 WO2023272509 A1 WO 2023272509A1
Authority
WO
WIPO (PCT)
Prior art keywords
pucch
slot
repeated transmission
transmission scheme
sub
Prior art date
Application number
PCT/CN2021/103230
Other languages
English (en)
French (fr)
Inventor
刘洋
Original Assignee
北京小米移动软件有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京小米移动软件有限公司 filed Critical 北京小米移动软件有限公司
Priority to CN202180001935.XA priority Critical patent/CN115735341A/zh
Priority to PCT/CN2021/103230 priority patent/WO2023272509A1/zh
Priority to EP21947466.5A priority patent/EP4366209A1/en
Publication of WO2023272509A1 publication Critical patent/WO2023272509A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path

Definitions

  • the present disclosure relates to the field of communication technologies, and in particular to a communication method, device and storage medium for PUCCH.
  • a network device such as a base station
  • multiple TRP (Multi-TRP)/multi-panel (PANEL) can be used to provide services for the terminal.
  • TRP Transmission Reception Points
  • Multiple TRP (Multi-TRP)/multi-panel (PANEL) can be used to provide services for the terminal.
  • the application of multiple TRP/PANEL network equipment is mainly to improve the coverage at the edge of the cell, provide a more balanced service quality in the service area, and use different methods to cooperate and transmit data between multiple TRP/PANEL. From the perspective of network form, network deployment with a large number of distributed access points and centralized baseband processing will be more conducive to providing a balanced user experience rate and significantly reducing the delay and signaling overhead caused by handover .
  • the transmission/reception of channels from multiple beams from multiple angles can better overcome various occlusion/blocking effects, ensure the robustness of link connections, and are suitable for ultra-reliable Ultra Reliable Low Latency Communication (URLLC) services improve transmission quality and meet reliability requirements.
  • URLLC Ultra Reliable Low Latency Communication
  • the physical downlink shared channel (PDSCH) is enhanced for transmission. Since the data transmission includes the scheduling feedback of the uplink and downlink channels. Therefore, in the research of URLLC, only enhancing the downlink data channel cannot guarantee the service performance. Therefore, in the research of R17, the downlink control channel (physical downlink control channel, PDCCH), uplink control channel (physical uplink control channel, PUCCH) and uplink shared channel (physical uplink shared channel, PUSCH) are continued to be enhanced.
  • PDCCH physical downlink control channel
  • PUCCH physical uplink control channel
  • PUSCH uplink shared channel
  • the uplink enhancement scheme based on multi-TRP is mainly based on the PUCCH/PUSCH repeated transmission scheme.
  • the long PUCCH (corresponding to PUCCH format 1/3/4) introduces the mechanism of repeated transmission in multiple slots (slots). Different PUCCH resources are different in each slot.
  • the transmission is performed with the same transmission symbol length in the transmission occasion.
  • the uplink enhancement scheme based on multi-TRP in R17 is mainly based on the PUSCH repeated transmission scheme in R16.
  • PUCCH supports cooperative transmission of the same transport block (Transport Block, TB) to different TRP directions on different transmission occasions (Transmission Occasion, TO) to further apply spatial multiplexing transmission to improve transmission reliability .
  • inter-slot inter-slot
  • intra-slot intra-slot
  • the transmission mode in a time slot includes a repeated transmission scheme based on frequency hopping in a time slot (ie Scheme 2) and a repeated transmission scheme based on a sub-slot (ie Scheme 3) in a time slot.
  • the transmission schemes within the slot (including scheme 2&scheme 3) and between slots (scheme 1) included in the repetition enhancement schemes sent by different TRPs cannot meet the requirements of multi-TRP transmission. In order to meet the requirements of various scenarios, it is necessary to provide possible enhancement solutions to enhance transmission reliability.
  • the present disclosure provides a communication method, device and storage medium for PUCCH.
  • a communication method for PUCCH is provided, which is applied to a network device, and the communication method for PUCCH includes:
  • the terminal In response to determining that the terminal is cooperatively sending the PUCCH in multiple TRP directions, sending indication information; the indication information is used to instruct the terminal to dynamically switch the repeated transmission scheme to cooperatively transmit the PUCCH in the multiple TRP directions; the repeated transmission scheme includes Inter-slot repeated transmission schemes, intra-slot repeated transmission schemes based on beam hopping, and intra-slot repeated transmission schemes based on sub-slots.
  • the sending indication information includes: sending subslot transmission configuration parameters, the subslot transmission configuration parameters are used to indicate the resource information of subslots occupied by the coordinated repeated transmission of PUCCH in multiple TRP directions .
  • sending subslot transmission configuration parameters includes: configuring radio resource control RRC signaling, the RRC signaling includes PUCCH configuration information, and the PUCCH configuration information is configured at the PUCCH resource level or PUCCH resource set level Or sub-slot configuration length information at the PUCCH format level.
  • the communication method for PUCCH further includes: activating the sub-slot transmission configuration parameters, so as to realize switching from an inter-slot repeated transmission scheme to an intra-slot based sub-slot repeated transmission scheme, Or switch from a repeated transmission scheme based on beam hopping within a slot to a repeated transmission scheme based on sub-slots within a slot; or
  • the communication method for PUCCH further includes: reconfiguring the sub-slot transmission configuration parameters as invalid transmission configuration parameters, so as to realize the inter-slot repeated transmission scheme and the intra-slot sub-slot-based Dynamic switching of repeated transmission schemes.
  • the communication method for PUCCH further includes: modifying the sub-slot transmission configuration parameter to the resource size occupied by the sub-slot, so as to switch from the inter-slot repeated transmission scheme to the intra-slot based sub-slot Repeated transmission scheme for time slots.
  • the sending indication information includes: sending slot number configuration parameters, where the slot number configuration parameters are used to indicate the number of time slots occupied by cooperative sending of PUCCH for multiple TRP directions for repeated transmission.
  • the communication method for PUCCH further includes:
  • the communication method for PUCCH further includes:
  • the sending indication information includes:
  • PUCCH resource configuration information includes first PUCCH resource configuration information, or second PUCCH resource configuration information, or third PUCCH resource configuration information;
  • the first PUCCH resource configuration information corresponds to the inter-slot repeated transmission scheme
  • the second PUCCH resource configuration information corresponds to the repeated transmission scheme based on beam hopping in the time slot
  • the third PUCCH resource configuration information corresponds to the sub-based repeated transmission scheme in the time slot. Repeated transmission scheme for time slots.
  • a communication method for PUCCH is provided, which is applied to a terminal, and the communication method for PUCCH includes:
  • the instruction information is used to instruct the terminal to dynamically switch the repeated transmission scheme, so as to coordinate and repeat the transmission of PUCCH in the direction of the multiple TRPs, the repeated transmission scheme includes the repeated transmission scheme between slots, and the intra-slot based on beam hopping The repeated transmission scheme and the repeated transmission scheme based on sub-slots in the time slot; based on the indication information, the PUCCH is sent cooperatively for multiple TRP directions.
  • the receiving indication information includes: receiving sub-slot transmission configuration parameters, the sub-slot transmission configuration parameters are used to indicate the resource information of sub-slots occupied by coordinated repeated transmission of PUCCH in multiple TRP directions .
  • receiving sub-slot transmission configuration parameters includes:
  • Receive radio resource control RRC signaling includes PUCCH configuration information, and the PUCCH configuration information is configured as sub-slot configuration length information at the PUCCH resource level or PUCCH resource set level or PUCCH format level.
  • the coordinated transmission of PUCCH for multiple TRP directions includes:
  • the inter-slot repeated transmission scheme is switched to the sub-slot-based repeated transmission scheme within the slot, and the PUCCH is sent cooperatively for multiple TRP directions, or the intra-slot based
  • the repeated transmission scheme of hopping beams is switched to the repeated transmission scheme based on sub-slots in the slot, and the PUCCH is sent cooperatively for multiple TRP directions; or
  • the repeated transmission scheme based on sub-slots is switched to the repeated transmission scheme based on beam hopping within a slot, and the PUCCH is sent cooperatively in multiple TRP directions.
  • the coordinated transmission of PUCCH for multiple TRP directions includes:
  • the coordinated transmission of PUCCH for multiple TRP directions includes:
  • the receiving indication information includes:
  • the configuration parameter of the number of timeslots is used to indicate the number of time slots occupied by the repeated transmission of the PUCCH for coordinated transmission in multiple TRP directions.
  • the coordinated transmission of PUCCH for multiple TRP directions includes:
  • the intra-slot beam-hopping-based repeated transmission scheme is switched to the inter-slot repeated transmission scheme, and PUCCH is sent cooperatively for multiple TRP directions, or the intra-slot beam-hopping-based
  • the repeated transmission scheme of the time slot is switched to the repeated transmission scheme based on sub-slots in the slot, and the PUCCH is sent cooperatively for multiple TRP directions; or
  • the repeated transmission scheme between the time slots is switched to the repeated transmission scheme based on beam hopping within the time slot, and the PUCCH is sent cooperatively for multiple TRP directions, or the PUCCH is transmitted in a time slot based on
  • the repeated transmission scheme of the sub-slot is switched to the repeated transmission scheme based on beam hopping within the time slot, and the PUCCH is sent cooperatively for multiple TRP directions.
  • the coordinated transmission of PUCCH for multiple TRP directions includes:
  • the inter-slot repeated transmission scheme is switched to the intra-slot beam-hopping-based repeated transmission scheme, and the PUCCH is sent cooperatively for multiple TRP directions, or the sub-based intra-slot
  • the repeated transmission scheme of the time slot is switched to the repeated transmission scheme based on beam hopping within the time slot, and the PUCCH is sent cooperatively for multiple TRP directions.
  • the indication information includes PUCCH resource configuration information, and the PUCCH resource configuration information includes first PUCCH resource configuration information, or second PUCCH resource configuration information, or third PUCCH resource configuration information;
  • the cooperating sending of PUCCH towards multiple TRP directions based on the indication information includes:
  • a communication device for PUCCH which is applied to a network device, and the communication device for PUCCH includes:
  • a sending unit configured to send indication information when it is determined that the terminal is cooperatively transmitting PUCCH in multiple TRP directions; the indication information is used to instruct the terminal to dynamically switch the repeated transmission scheme to coordinate repeated transmission in the multiple TRP directions PUCCH; the repeated transmission scheme includes an inter-slot repeated transmission scheme, an intra-slot repeated transmission scheme based on beam hopping, and an intra-slot repeated transmission scheme based on sub-slots.
  • the sending unit sends a sub-slot transmission configuration parameter, and the sub-slot transmission configuration parameter is used to indicate the sub-slot resource information occupied by the coordinated repeated transmission of the PUCCH in multiple TRP directions.
  • the sending unit configures radio resource control RRC signaling, and the RRC signaling includes PUCCH configuration information, and the PUCCH configuration information is configured at the PUCCH resource level or the PUCCH resource set level or the PUCCH format level. Slot configuration length information.
  • the sending unit is further configured to activate the sub-slot transmission configuration parameters, so as to switch from the inter-slot repeated transmission scheme to the intra-slot repeated transmission scheme based on sub-slots, or by switching from the intra-slot beam-hopping based repetitive transmission scheme to the intra-slot sub-slot based repetitive transmission scheme; or
  • the sending unit is further configured to: reconfigure the sub-slot transmission configuration parameters as invalid transmission configuration parameters, so as to realize the inter-slot repeated transmission scheme and the intra-slot based sub-slot repeated transmission Dynamic switching of schemes.
  • the sending unit is further configured to: modify the sub-slot transmission configuration parameter to be the resource size occupied by the sub-slot, so as to realize switching from the inter-slot repeated transmission scheme to the intra-slot based sub-slot repeated transmission scheme.
  • the sending unit sends a time slot number configuration parameter, and the time slot number configuration parameter is used to indicate the number of time slots occupied by cooperatively sending PUCCHs in multiple TRP directions for repeated transmission.
  • the sending unit is further configured to: activate the configuration parameter of the number of time slots, so as to switch from the repeated transmission scheme based on beam hopping within a time slot to the repeated transmission scheme between time slots, or Switching from the intra-slot beam-hopping based repeated transmission scheme to the intra-slot sub-slot based repeated transmission scheme; or
  • the sending unit is further configured to: reconfigure the number of time slot configuration parameters, so as to switch from the repeated transmission scheme between time slots to the repeated transmission scheme based on beam hopping within the time slot, or by The intra-slot repeated transmission scheme based on sub-slots is switched to the intra-slot repeated transmission scheme based on beam hopping.
  • the sending unit sends PUCCH resource configuration information, where the PUCCH resource configuration information includes first PUCCH resource configuration information, or second PUCCH resource configuration information, or third PUCCH resource configuration information; the first The PUCCH resource configuration information corresponds to the inter-slot repeated transmission scheme, the second PUCCH resource configuration information corresponds to the repeated transmission scheme based on beam hopping in the time slot, and the third PUCCH resource configuration information corresponds to the sub-slot-based repetition in the time slot transfer scheme.
  • a communication device for PUCCH which is applied to a terminal, and the communication device for PUCCH includes:
  • the receiving unit is configured to receive indication information, the indication information is used to instruct the terminal to dynamically switch the repeated transmission scheme, so as to coordinate and repeat the transmission of PUCCH towards the multiple TRP directions, the repeated transmission scheme includes the inter-slot repeated transmission scheme, A repeated transmission scheme based on beam hopping within a slot and a repeated transmission scheme based on sub-slots within a slot;
  • the sending unit is configured to cooperatively send the PUCCH towards multiple TRP directions based on the indication information.
  • the receiving unit receives a sub-slot transmission configuration parameter, and the sub-slot transmission configuration parameter is used to indicate resource information of sub-slots occupied by the coordinated repeated transmission of the PUCCH in multiple TRP directions.
  • the receiving unit receives radio resource control RRC signaling, the RRC signaling includes PUCCH configuration information, and the PUCCH configuration information is configured as a subclass of PUCCH resource level or PUCCH resource set level or PUCCH format level. Slot configuration length information.
  • the sending unit in response to the activation of the sub-slot transmission configuration parameters, switches from an inter-slot repeated transmission scheme to an intra-slot repeated transmission scheme based on sub-slots, and faces multiple TRP directions Coordinated transmission of PUCCH, or switching from the repeated transmission scheme based on beam hopping in a slot to the repeated transmission scheme based on sub-slots in a slot, and cooperatively transmit PUCCH in multiple TRP directions; or
  • the sending unit switches from the intra-slot repeated transmission scheme based on sub-slots to the inter-slot repeated transmission scheme, and transmits the PUCCH cooperatively in multiple TRP directions, or
  • the sub-slot-based repeated transmission scheme within a slot is switched to the beam-hopping beam-hopping-based repeated transmission scheme within a slot, and the PUCCH is sent cooperatively in multiple TRP directions.
  • the sending unit in response to the sub-slot transmission configuration parameter being reconfigured as an invalid transmission configuration parameter, dynamically switches between the inter-slot repeated transmission scheme and the intra-slot based sub-slot repeated transmission scheme, And the PUCCH is sent cooperatively in multiple TRP directions.
  • the sending unit in response to the sub-slot transmission configuration parameter being modified to the resource size occupied by the sub-slot, switches from an inter-slot repeated transmission scheme to an intra-slot repeated transmission scheme based on sub-slots , and coordinately send the PUCCH for multiple TRP directions.
  • the receiving unit receives a configuration parameter of the number of slots, and the configuration parameter of the number of slots is used to indicate the number of slots occupied by the repeated transmission of the PUCCH coordinated for multiple TRP directions.
  • the sending unit in response to the activation of the time slot number configuration parameter, switches from the intra-slot repeated transmission scheme based on beam hopping to the inter-slot repeated transmission scheme, and coordinates transmission in multiple TRP directions.
  • PUCCH or switch from the repeated transmission scheme based on beam hopping in the slot to the repeated transmission scheme based on sub-slots in the slot, and send PUCCH cooperatively for multiple TRP directions; or
  • the sending unit switches from an inter-slot repeated transmission scheme to an intra-slot beam-hopping-based repeated transmission scheme, and transmits PUCCH cooperatively in multiple TRP directions, or by The intra-slot repeated transmission scheme based on sub-slots is switched to the intra-slot repeated transmission scheme based on beam hopping, and the PUCCH is sent cooperatively in multiple TRP directions.
  • the sending unit in response to the configuration parameter of the number of time slots being reconfigured, switches from the inter-slot repeated transmission scheme to the intra-slot beam-hopping-based repeated transmission scheme, and cooperates in multiple TRP directions Send the PUCCH, or switch from the repeated transmission scheme based on sub-slots in the slot to the repeated transmission scheme based on beam hopping in the slot, and send the PUCCH cooperatively in multiple TRP directions.
  • the indication information includes PUCCH resource configuration information, and the PUCCH resource configuration information includes first PUCCH resource configuration information, or second PUCCH resource configuration information, or third PUCCH resource configuration information;
  • the sending unit In response to the PUCCH resource configuration information including the first PUCCH resource configuration information, the sending unit adopts an inter-slot repeated transmission scheme to cooperatively send the PUCCH in multiple TRP directions; in response to the PUCCH resource configuration information including the second PUCCH resource Configuration information, the sending unit adopts a repeated transmission scheme based on hopping beams in a time slot, and transmits PUCCH cooperatively in multiple TRP directions; in response to the PUCCH resource configuration information including the third PUCCH resource configuration information, the sending unit adopts when The sub-slot-based repeated transmission scheme within the slot is used to cooperatively send the PUCCH in multiple TRP directions.
  • a communication device for PUCCH which is characterized in that it includes:
  • memory for storing processor-executable instructions
  • the processor is configured to: execute the communication method for PUCCH described in the first aspect or any implementation manner of the first aspect.
  • a communication device for PUCCH including:
  • memory for storing processor-executable instructions
  • the processor is configured to: execute the communication method for PUCCH described in the second aspect or any implementation manner of the second aspect.
  • a storage medium stores instructions, and when the instructions in the storage medium are executed by the processor of the network device, the network device can execute the first aspect or The communication method for PUCCH described in any implementation manner of the first aspect.
  • a storage medium stores instructions, and when the instructions in the storage medium are executed by the processor of the terminal, the terminal can execute the second aspect or the second aspect.
  • the network device sends indication information to instruct the terminal to dynamically switch the repeated transmission scheme.
  • the terminal receives the indication information, and dynamically switches the repeated transmission scheme in the case of cooperatively sending the PUCCH for multiple TRP directions, so as to cooperatively and repeatedly send the PUCCH for the multiple TRP directions.
  • the terminal dynamically switches the repeated transmission scheme to increase the flexibility and efficiency of system scheduling.
  • Fig. 1 is a structural diagram of a wireless communication system according to an exemplary embodiment.
  • Fig. 2 shows a schematic diagram of repeated transmission of PUCCH.
  • Fig. 3 shows a transmission schematic diagram of a repeated transmission scheme based on frequency hopping within a time slot.
  • Fig. 4 shows a transmission schematic diagram of a sub-slot-based repeated transmission scheme within a time slot.
  • Fig. 5 is a flowchart showing a communication method for PUCCH according to an exemplary embodiment.
  • Fig. 6 is a flowchart showing a communication method for PUCCH according to an exemplary embodiment.
  • Fig. 7 is a flow chart showing a communication method for PUCCH according to an exemplary embodiment.
  • Fig. 8 is a flowchart showing a communication method for PUCCH according to an exemplary embodiment.
  • Fig. 9 is a flow chart showing a communication method for PUCCH according to an exemplary embodiment.
  • Fig. 10 is a flowchart showing a communication method for PUCCH according to an exemplary embodiment.
  • Fig. 11 is a flowchart showing a communication method for PUCCH according to an exemplary embodiment.
  • Fig. 12 is a flow chart showing a communication method for PUCCH according to an exemplary embodiment.
  • Fig. 13 is a flowchart showing a communication method for PUCCH according to an exemplary embodiment.
  • Fig. 14 is a flow chart showing a communication method for PUCCH according to an exemplary embodiment.
  • Fig. 15 is a flow chart showing a communication method for PUCCH according to an exemplary embodiment.
  • Fig. 16 is a flow chart showing a communication method for PUCCH according to an exemplary embodiment.
  • Fig. 17 is a flow chart showing a communication method for PUCCH according to an exemplary embodiment.
  • Fig. 18 is a flow chart showing a communication method for PUCCH according to an exemplary embodiment.
  • Fig. 19 is a flowchart showing a communication method for PUCCH according to an exemplary embodiment.
  • Fig. 20 is a flowchart showing a communication method for PUCCH according to an exemplary embodiment.
  • Fig. 21 is a flowchart showing a communication method for PUCCH according to an exemplary embodiment.
  • Fig. 22 is a block diagram of a communication device used for PUCCH according to an exemplary embodiment.
  • Fig. 23 is a block diagram of a communication device used for PUCCH according to an exemplary embodiment.
  • Fig. 24 is a block diagram showing a communication device for PUCCH according to an exemplary embodiment.
  • Fig. 25 is a block diagram showing a communication device for PUCCH according to an exemplary embodiment.
  • the wireless communication system includes network devices and terminals.
  • the terminal is connected to the network equipment through wireless resources and performs data transmission.
  • data transmission is performed between the network device and the terminal based on beams.
  • the uplink transmission of PUSCH can be enhanced based on Multi-TRP between the network device and the terminal.
  • Fig. 1 in the process of downlink communication, multiple TRPs are sent towards the terminal. In the uplink communication process, the terminal sends to different TRPs.
  • the number of TRPs that the network device performs data transmission with the terminal based on the Multi-TRP may be one or more.
  • the data transmission between the network equipment and the terminal based on TRP(1), TRP(2), TRP(3) and TRP(4) in the wireless communication system shown in FIG. 1 is only for schematic illustration and not limited thereto.
  • the wireless communication system shown in FIG. 1 is only for schematic illustration, and the wireless communication system may also include other network devices, such as core network devices, wireless relay devices, and wireless backhaul devices, etc. Not shown in Figure 1.
  • the embodiment of the present disclosure does not limit the number of network devices and terminals included in the wireless communication system.
  • the wireless communication system in the embodiment of the present disclosure is a network that provides a wireless communication function.
  • Wireless communication systems can use different communication technologies, such as code division multiple access (CDMA), wideband code division multiple access (WCDMA), time division multiple access (TDMA) , frequency division multiple access (FDMA), orthogonal frequency-division multiple access (OFDMA), single carrier frequency-division multiple access (single Carrier FDMA, SC-FDMA), carrier sense Multiple Access/Conflict Avoidance (Carrier Sense Multiple Access with Collision Avoidance).
  • CDMA code division multiple access
  • WCDMA wideband code division multiple access
  • TDMA time division multiple access
  • FDMA frequency division multiple access
  • OFDMA orthogonal frequency-division multiple access
  • single Carrier FDMA single Carrier FDMA
  • SC-FDMA carrier sense Multiple Access/Conflict Avoidance
  • Carrier Sense Multiple Access with Collision Avoidance Carrier Sense Multiple Access with Collision Avoidance
  • the network can be divided into 2G (English: generation) network, 3G network, 4G network or future evolution network, such as 5G network, 5G network can also be called a new wireless network ( New Radio, NR).
  • 2G International: generation
  • 3G network 4G network or future evolution network, such as 5G network
  • 5G network can also be called a new wireless network ( New Radio, NR).
  • New Radio New Radio
  • the present disclosure sometimes simply refers to a wireless communication network as a network.
  • the wireless access network device may be: a base station, an evolved base station (evolved node B, base station), a home base station, an access point (access point, AP) in a wireless fidelity (wireless fidelity, WIFI) system, a wireless relay Node, wireless backhaul node, transmission point (transmission point, TP) or transmission and reception point (transmission and reception point, TRP), etc., can also be gNB in the NR system, or it can also be a component or a part of equipment that constitutes a base station Wait.
  • a network device can provide communication coverage for a specific geographical area, and can communicate with terminals located in the coverage area (cell).
  • the network device may also be a vehicle-mounted device.
  • terminals involved in this disclosure can also be referred to as terminal equipment, user equipment (User Equipment, UE), mobile station (Mobile Station, MS), mobile terminal (Mobile Terminal, MT), etc.
  • a device providing voice and/or data connectivity for example, a terminal may be a handheld device with a wireless connection function, a vehicle-mounted device, and the like.
  • examples of some terminals are: Smartphone (Mobile Phone), Customer Premise Equipment (CPE), Pocket Personal Computer (PPC), PDA, Personal Digital Assistant (PDA) , laptops, tablets, wearable devices, or vehicle-mounted devices, etc.
  • V2X vehicle-to-everything
  • the terminal device may also be a vehicle-mounted device. It should be understood that the embodiment of the present disclosure does not limit the specific technology and specific device form adopted by the terminal.
  • data transmission is performed between the network device and the terminal based on beams.
  • the network device and the terminal can enhance the PUCCH based on the multi-TRP/PANEL coordinated multi-point transmission technology.
  • An enhancement to PUCCH may be a mechanism for repeated transmission in multiple slots.
  • Fig. 2 shows a schematic diagram of repeated transmission of PUCCH. Referring to Fig. 2, different PUCCH resources are transmitted according to the same transmission symbol length at different transmission opportunities of each slot.
  • One PUCCH repeated transmission can only use one PUCCH resource, and the PUCCH resource is configured with a beam direction, that is, spatial information (spatialRelationInfo), and is applied to all transmission opportunities.
  • spatialRelationInfo spatial information
  • the network configures the corresponding number of repeated transmissions supported by the PUCCH format (PUCCH format) through radio resource control (Radio Resource Control, RRC) high-level signaling, and the indicated range is defined as ⁇ 1, 2, 4, 8 ⁇ .
  • RRC Radio Resource Control
  • Different PUCCH resources May correspond to different PUCCH formats.
  • R17 multi-TRP-based PUCCH enhancement PUCCH supports collaborative transmission of the same transport block TB in different TOs to different TRP directions, so as to further apply spatial multiplexing transmission to improve transmission reliability.
  • R17 enhancement the possible solutions for R17 enhancement are:
  • the number of repeated transmission time slots is the number of time slots occupied by the configured transmission.
  • Each The resource allocation of the time slots is the same, that is, the repeated version of the PUCCH is sent on the same time-frequency resource in each time slot.
  • Solution 2 Intra-slot repetition mode, which is not supported by existing protocols, that is, time-sharing joint transmission in one time slot in multiple beam directions facing multiple TRPs. However, for the repetition mode in the time slot, there are the following two repeated transmission schemes:
  • a transmission scheme based on intra-slot frequency hopping transmission (i.e. Scheme 2), that is, within a PUCCH resource, different symbol groups corresponding to two hops (hops) in a slot are sent in different beam directions;
  • the frequency hopping function (frequency hopping FH within a time slot) can be enabled or disabled.
  • Fig. 3 shows a transmission schematic diagram of a repeated transmission scheme based on frequency hopping within a time slot.
  • the first frequency hopping resource block occupies floor(N/2) time domain symbols in the time slot, and is mapped and sent in the beam direction corresponding to TRP1, and the second hopping resource block
  • the frequency resource block occupies N-floor (N/2) time-domain symbols, and is mapped and sent in a beam direction corresponding to TRP2.
  • beam 1 and beam 2 are mapped on different frequency hopping resources in the same time slot.
  • the repeated transmission scheme based on frequency hopping in the time slot in the embodiment of the present disclosure can also be understood as the repeated transmission scheme based on beam hopping in the time slot, so in the embodiment of the present disclosure, the repeated transmission scheme based on frequency hopping in the time slot and
  • the repeated transmission scheme based on beam hopping within a time slot is sometimes used interchangeably, but those skilled in the art should understand the consistency of their meanings.
  • Fig. 4 shows a transmission schematic diagram of a sub-slot-based repeated transmission scheme within a time slot.
  • the first sub-slot resource block occupies floor(N/2) time-domain symbols in the time slot, and is mapped to the beam direction corresponding to TRP1 for transmission, and the second The sub-slot resource blocks occupy N-floor (N/2) time-domain symbols, and are mapped and sent in the beam direction corresponding to TRP2.
  • beam 1 and beam 2 are mapped on different sub-slot resources of the same time slot.
  • mapping schemes for the mapping relationship between the beam transmission direction of the PUCCH sent by the terminal for different TRPs and different transmission opportunities.
  • the following three schemes can be used.
  • the high-level signaling will configure the beam mapping scheme used for this PUCCH transmission:
  • Option a periodic mapping.
  • the two beam directions are sequentially and cyclically mapped to multiple configured transmission opportunities. For example, when there are 4 transmissions, the beam direction mapping pattern is #1#2#1#2.
  • Option b continuous mapping.
  • the two beam directions are continuously mapped to multiple configured transmission opportunities. For example, when there are 4 transmissions, the beam direction mapping pattern is #1#1#2#2. For more than 4 transmissions, the pattern is repeated, such as For 8 transmissions, the TCI state mapping pattern is #1#1#2#2#1#1#2#2.
  • Scheme c Bihalf mapping.
  • the two beam directions are continuously mapped to multiple configured transmission opportunities, for example, for 8 transmissions, the beam direction mapping pattern is #1#1#1#1#2#2#2#2.
  • the enhancement schemes for different TRP transmissions mainly include intra-slot (including scheme 2&scheme 3) and inter-slot (scheme 1) transmission schemes.
  • most of the parameters of the different repeated transmission schemes mentioned above are semi-static parameters configured by the RRC.
  • different repeated transmission schemes may be aimed at different scenarios and service requirements. Then, when specific scenarios and services change, since most parameters are semi-static parameters configured by RRC, the configuration cannot be changed dynamically in time, and network reconfiguration is required to solve the problem, which will reduce the scheduling flexibility and efficiency of the system.
  • an embodiment of the present disclosure provides a communication method for PUCCH.
  • the terminal supports dynamic switching between different repeated transmission schemes when cooperatively sending PUCCH in multiple TRP directions. To improve system scheduling flexibility and efficiency.
  • Fig. 5 is a flow chart showing a communication method for PUCCH according to an exemplary embodiment, and the communication method for PUCCH may be executed alone or in combination with other embodiments of the present disclosure. As shown in Fig. 5, the communication method for PUCCH is used in network equipment, including the following steps.
  • step S11 in response to determining that the terminal is cooperatively sending PUCCHs in multiple TRP directions, sending indication information.
  • the indication information sent by the network device is used to instruct the terminal to dynamically switch the repeated transmission scheme, so as to cooperatively and repeatedly send the PUCCH in multiple TRP directions.
  • the repeated transmission scheme includes an inter-slot repeated transmission scheme, an intra-slot repeated transmission scheme based on beam hopping, and an intra-slot repeated transmission scheme based on sub-slots.
  • the indication information indicates the configuration and dynamic switching mode between different PUCCH transmission schemes, so that the terminal faces different TRP directions according to different The transmission schemes coordinated to send the PUCCH. For example, when the number of beam direction information (spatial relation info) of the corresponding PUCCH resource activated by the Media Access Control (Media Access Control, MAC)-control element (Control Element, CE) is 2, the corresponding multi-TRP transmission is oriented to Different TRP directions cooperate to send PUCCH according to different transmission schemes.
  • the network device can implement switching between different repeated transmission schemes by configuring sub-slot transmission configuration parameters. That is, the network device may send sub-slot transmission configuration parameters to indicate cooperative and repeated transmission of the sub-slot resource information occupied by the PUCCH in multiple TRP directions.
  • Fig. 6 is a flow chart showing a communication method for PUCCH according to an exemplary embodiment, and the communication method for PUCCH may be executed alone or in combination with other embodiments of the present disclosure. As shown in Figure 6, the communication method for PUCCH is used in network equipment, including the following steps.
  • step S21 in response to determining that the terminal is cooperatively sending PUCCHs in multiple TRP directions, sending sub-slot transmission configuration parameters.
  • the sub-slot transmission configuration parameter is used to indicate the sub-slot resource information occupied by the coordinated repeated transmission of the PUCCH in multiple TRP directions.
  • dynamic switching between different repeated transmission schemes can be realized by configuring sub-slot transmission configuration parameters.
  • the network device implements dynamic switching between scheme1 and scheme3 by configuring sub-slot transmission configuration parameters. And it is possible to dynamically switch between scheme2 and scheme3 by dynamically changing the subslot configuration of scheme3.
  • sub-slot transmission configuration parameters may be semi-statically configured through RRC signaling.
  • Fig. 7 is a flow chart showing a communication method for PUCCH according to an exemplary embodiment, and the communication method for PUCCH may be executed alone or in combination with other embodiments of the present disclosure. As shown in Fig. 7, the communication method for PUCCH is used in network equipment, including the following steps.
  • step S31 RRC signaling is configured in response to determining that the terminal is cooperatively sending the PUCCH in multiple TRP directions.
  • the RRC signaling includes PUCCH configuration information
  • the PUCCH configuration information is configured at the PUCCH resource level or the PUCCH resource set level or the sub-slot configuration length information at the PUCCH format level.
  • the subslotLengthForPUCCH parameter can be configured with subslots such as 2, 7 symbol lengths or other values.
  • the subslotLengthForPUCCH parameter in related protocols is not used to indicate the subslot resource size for repeated PUCCH transmission.
  • the subslotLengthForPUCCH parameter is used to indicate the subslot resource size of the PUCCH repeated transmission, so as to realize dynamic switching between different repeated transmission schemes.
  • dynamic switching between different repeated transmission schemes can be realized through MAC-CE configuration or modification of the subslot transmission configuration corresponding to the PUCCH resource.
  • the sub-slot transmission configuration parameter can be activated (enable) or deactivated (disable), so that the resource can be directly and dynamically switched between the configuration of the slot retransmission and sub-slot retransmission schemes, which is suitable for Subsequent scheduling needs.
  • sub-slot transmission configuration parameters can be activated to realize switching from an inter-slot repeated transmission scheme to an intra-slot repeated transmission scheme based on sub-slots, or to switch from an intra-slot based
  • the repeated transmission scheme of the beam is switched to the repeated transmission scheme based on sub-slots within the slot.
  • the sub-slot transmission configuration parameters are activated through MAC-CE, and the resource configuration mode can be changed from slot to slot while other transmission parameters remain unchanged.
  • the retransmission in between is dynamically switched to the sub-slot retransmission scheme of scheme3, that is, each sub-slot occupies 2 symbols and retransmits 4 times in the slot.
  • the current PUCCH configuration scheme is a scheme2 scheme that occupies 7 symbols in a time slot.
  • the resource configuration mode can be switched to the sub-slot retransmission scheme, that is, each sub-slot Occupies 7 symbols, and needs to modify the number of transmission parameters at the same time, which can realize dynamic switching to scheme3.
  • the sub-slot transmission configuration parameters can be deactivated, so as to switch from the sub-slot-based repeated transmission scheme within a time slot to the inter-slot repeated transmission scheme, or by The repeated transmission scheme based on the sub-slot is switched to the repeated transmission scheme based on the beam hopping within the slot.
  • the resource configuration mode will be changed from the sub-slot retransmission scheme of scheme3 (every sub-slot The slot occupies 2 symbols and retransmits 4 times in the slot), and dynamically switches to the inter-slot retransmission scheme of scheme1.
  • the current PUCCH configuration scheme is a scheme2 scheme that occupies 7 symbols in a time slot. If the sub-slot transmission configuration parameters are deactivated, the resource configuration method can be changed from the sub-slot retransmission scheme (each sub-slot occupies 7 symbols ) dynamically switches to the inter-slot repeated transmission scheme. And by modifying the number of transmission parameters, the dynamic switching between the scheme3 scheme and the scheme2 scheme can be realized.
  • the dynamic switching of the repeated transmission scheme may also be realized by reconfiguring the sub-slot transmission configuration parameters as invalid transmission configuration parameters. For example, by reconfiguring the sub-slot transmission configuration parameters as invalid transmission configuration parameters, dynamic switching between the inter-slot repeated transmission scheme and the sub-slot-based repeated transmission scheme within the time slot can be realized.
  • reconfiguring the sub-slot transmission configuration parameters as invalid transmission configuration parameters can also be understood as not using the sub-slot transmission configuration parameters in the currently used repeated transmission scheme.
  • the sub-slot transmission configuration parameter is reconfigured as an invalid transmission configuration parameter to indicate the repeated elaboration scheme of scheme1.
  • the size configuration of the sub-slots can also be directly changed to make it suitable for the current scheduling requirement.
  • the subslotLengthForPUCCH parameter can be configured with a value of "0" to indicate slot-level transmission. And, by reconfiguring this parameter under the scheme3 configuration, the dynamic switching between scheme1 and scheme3 is realized.
  • the sub-slot transmission configuration parameters can also be modified to occupy the resource size of the sub-slot, so as to switch from the inter-slot repeated transmission scheme to the intra-slot repeated transmission based on the sub-slot plan.
  • the resource size occupied by specific sub-slots under scheme 3 is realized by modifying specific values of sub-slot transmission configuration parameters. For example, the current transmission configuration with 7 sub-slots can be changed to a transmission configuration with 2 sub-slots, and directly used for this scheduled transmission.
  • dynamic switching between different repeated transmission schemes can also be realized through a time slot number configuration parameter (nrofslots parameter).
  • Fig. 8 is a flow chart showing a communication method for PUCCH according to an exemplary embodiment, and the communication method for PUCCH may be executed alone or in combination with other embodiments of the present disclosure. As shown in Fig. 8, the communication method for PUCCH is used in network equipment, including the following steps.
  • step S41 a time slot number configuration parameter is sent, and the time slot number configuration parameter is used to indicate the number of time slots occupied by the repeated transmission of the PUCCH coordinated to multiple TRP directions.
  • the network device configures and sends the configuration parameter of the number of time slots to indicate the number of time slots occupied by cooperative sending of PUCCH for repeated transmission in multiple TRP directions, so as to realize dynamic switching between scheme1 and scheme2, and Dynamic switching between scheme2 and scheme3.
  • the transmission times parameter (configuration parameter of the number of time slots) corresponding to the PUCCH resource can be modified through MAC-CE, so as to realize dynamic switching between different repeated transmission schemes.
  • the time slot number configuration parameter can be activated or deactivated to realize direct dynamic switching of resources between the configuration of time slot retransmission and beam hopping beam retransmission scheme, which is suitable for subsequent scheduling requirements .
  • the configuration parameters of the number of time slots can be activated, so as to switch from the intra-slot repeated transmission scheme based on hopping beams to the inter-slot repeated transmission scheme, or switch from the intra-slot repeated transmission scheme based on hopping beams To a sub-slot-based repeated transmission scheme within a slot.
  • the beam-hopping beam retransmission scheme of 4 symbols can be used (ie scheme2 scheme) is switched to the inter-slot repeated transmission scheme (ie scheme1 scheme). The same applies to switching between scheme2 and scheme3.
  • the configuration parameter of the number of time slots can be deactivated, so as to switch from the repeated transmission scheme between time slots to the repeated transmission scheme based on beam hopping within a time slot, or the repeated transmission scheme based on sub-slots within a time slot
  • the transmission scheme is switched to a repeated transmission scheme based on beam hopping within a slot.
  • the retransmission times parameter K is deactivated through MAC-CE, and the beam-hopping beam retransmission scheme of 4 symbols is switched to by default (ie the scheme2 scheme). The same applies to switching between scheme2 and scheme3.
  • the configuration parameters of the number of time slots can be reconfigured, so as to switch from the repeated transmission scheme between time slots to the repeated transmission scheme based on beam hopping within a time slot, or from the repeated transmission scheme based on sub-time within a time slot.
  • the repeated transmission scheme of the time slot is switched to the repeated transmission scheme based on beam hopping within the time slot.
  • the parameter configuration for scheme2 is changed to 1.
  • the frequent retransmission scheme is the scheme2 scheme. The same applies to switching between scheme2 and scheme3.
  • PUCCH resource configuration information For example, different PUCCH resource configurations corresponding to scheme1, scheme2, and scheme3 transmissions are respectively configured in the same PUCCH resource set.
  • the currently used scheduling transmission scheme is activated by indicating the PRI through the DCI.
  • the PRI can be understood as a PUCCH Resource Indicator (PUCCH Resource Indicator), which is used to indicate which PUCCH resource in the current PUCCH group is specifically used for transmission in this scheduling.
  • PUCCH Resource Indicator PUCCH Resource Indicator
  • the network device may configure the current PUCCH transmission scheme through RRC signaling.
  • Fig. 9 is a flow chart showing a communication method for PUCCH according to an exemplary embodiment.
  • the communication method for PUCCH may be executed alone or in combination with other embodiments of the present disclosure.
  • the communication method for PUCCH is used in network equipment, and includes the following steps.
  • step S51 PUCCH resource configuration information is sent, and the PUCCH resource configuration information includes first PUCCH resource configuration information, or second PUCCH resource configuration information, or third PUCCH resource configuration information.
  • the first PUCCH resource configuration information corresponds to the repeated transmission scheme between time slots
  • the second PUCCH resource configuration information corresponds to the repeated transmission scheme based on beam hopping in the time slot
  • the third PUCCH resource configuration information corresponds to the repeated transmission scheme based on sub-slots in the time slot. transfer scheme.
  • the network device sends the PUCCH resource configuration information to instruct the terminal to use the repeated transmission scheme corresponding to the PUCCH resource configuration information to perform coordinated transmission of the PUCCH in multiple TRP directions.
  • the current PUCCH transmission scheme is a repeated transmission scheme between timeslots corresponding to the first PUCCH resource configuration information. If the network device sends the third PUCCH resource configuration information, it may dynamically switch to the sub-slot-based repeated transmission scheme in the time slot corresponding to the third PUCCH resource configuration information.
  • the communication method for PUCCH implements switching between different PUCCH channel transmission schemes under multi-TRP transmission through different methods, which can improve the flexibility of scheduling and adapt to channel and service changes more quickly and flexibly , reduce delay, use system resources more effectively, and improve system performance.
  • an embodiment of the present disclosure provides a PUCCH communication method for a terminal.
  • Fig. 10 is a flow chart showing a communication method for PUCCH according to an exemplary embodiment.
  • the communication method for PUCCH may be executed alone or in combination with other embodiments of the present disclosure.
  • the communication method for PUCCH is used in a terminal, and includes the following steps.
  • step S61 indication information is received, and the indication information is used to instruct the terminal to dynamically switch the repeated transmission scheme, so as to coordinate and repeat the transmission of the PUCCH for multiple TRP directions.
  • the repeated transmission scheme includes a repeated transmission scheme between time slots, a repeated transmission scheme based on beam hopping within a time slot, and a repeated transmission scheme based on sub-slots within a time slot.
  • step S62 based on the indication information, the PUCCH is sent cooperatively for multiple TRP directions.
  • the indication information when the terminal coordinates to transmit PUCCH for multiple TRP directions, can dynamically switch between different PUCCH transmission schemes when performing data transmission for different TRP directions, so that the terminal can face different TRP directions
  • the PUCCH is sent cooperatively according to different transmission schemes.
  • the network device can implement switching between different repeated transmission schemes by configuring sub-slot transmission configuration parameters. That is, the network device may send sub-slot transmission configuration parameters to indicate cooperative and repeated transmission of the sub-slot resource information occupied by the PUCCH in multiple TRP directions.
  • Fig. 11 is a flow chart showing a communication method for PUCCH according to an exemplary embodiment, and the communication method for PUCCH may be executed alone or in combination with other embodiments of the present disclosure. As shown in FIG. 11 , the communication method for PUCCH is used in a terminal, and includes the following steps.
  • step S71 sub-slot transmission configuration parameters are received, and the sub-slot transmission configuration parameters are used to indicate resource information of sub-slots occupied by the coordinated repeated transmission of PUCCH in multiple TRP directions.
  • the terminal can transmit the configuration parameters through the received sub-slots to realize dynamic switching between different repeated transmission schemes.
  • the terminal implements dynamic switching between scheme1 and scheme3 based on sub-slot transmission configuration parameters.
  • the dynamic switching between scheme2 and scheme3 can be realized through the dynamically changing subslot configuration of scheme3.
  • Fig. 12 is a flow chart showing a communication method for PUCCH according to an exemplary embodiment.
  • the communication method for PUCCH may be executed alone or in combination with other embodiments of the present disclosure.
  • the communication method for PUCCH is used in a terminal, and includes the following steps.
  • step S81 RRC signaling is received, the RRC signaling includes PUCCH configuration information, and the PUCCH configuration information is configured as sub-slot configuration length information at the PUCCH resource level or PUCCH resource set level or PUCCH format level.
  • RRC signaling semi-statically configures sub-slot transmission configuration parameters.
  • the subslotLengthForPUCCH parameter can be configured with subslots such as 2, 7 symbol lengths or other values.
  • the subslotLengthForPUCCH parameter in related protocols is not used to indicate the subslot resource size for repeated PUCCH transmission.
  • the subslotLengthForPUCCH parameter is used to indicate the subslot resource size of the PUCCH repeated transmission, so as to realize dynamic switching between different repeated transmission schemes.
  • dynamic switching between different repeated transmission schemes can be realized through MAC-CE configuration or modification of the subslot transmission configuration corresponding to the PUCCH resource.
  • the sub-slot transmission configuration parameter can be activated or deactivated, so that the resource can be directly and dynamically switched between the configuration of the sub-slot retransmission scheme and the sub-slot retransmission scheme, which is suitable for subsequent scheduling requirements.
  • Fig. 13 is a flow chart showing a communication method for PUCCH according to an exemplary embodiment, and the communication method for PUCCH may be executed alone or in combination with other embodiments of the present disclosure. As shown in FIG. 13 , the communication method for PUCCH is used in a terminal, and includes the following steps.
  • step S91 in response to the activation of sub-slot transmission configuration parameters, the inter-slot repeated transmission scheme is switched to the intra-slot repeated transmission scheme based on sub-slots, and the PUCCH is sent cooperatively for multiple TRP directions, or the time slot
  • the repeated transmission scheme based on beam hopping in the slot is switched to the repeated transmission scheme based on sub-slots in the slot, and the PUCCH is sent cooperatively in multiple TRP directions.
  • Fig. 14 is a flow chart showing a communication method for PUCCH according to an exemplary embodiment, and the communication method for PUCCH may be executed alone or in combination with other embodiments of the present disclosure. As shown in Fig. 14, the communication method for PUCCH is used in a terminal, including the following steps.
  • step S101 in response to the deactivation of sub-slot transmission configuration parameters, the intra-slot repeated transmission scheme based on sub-slots is switched to the inter-slot repeated transmission scheme, and the PUCCH is sent cooperatively for multiple TRP directions, or by The repeated transmission scheme based on sub-slots in the slot is switched to the repeated transmission scheme based on beam hopping in the slot, and the PUCCH is sent cooperatively in multiple TRP directions.
  • the dynamic switching of the repeated transmission scheme may also be realized by reconfiguring the sub-slot transmission configuration parameters as invalid transmission configuration parameters. For example, by reconfiguring the sub-slot transmission configuration parameters as invalid transmission configuration parameters, dynamic switching between the inter-slot repeated transmission scheme and the sub-slot-based repeated transmission scheme within the time slot can be realized.
  • Fig. 15 is a flow chart showing a communication method for PUCCH according to an exemplary embodiment, and the communication method for PUCCH may be executed alone or in combination with other embodiments of the present disclosure. As shown in Fig. 15, the communication method for PUCCH is used in a terminal, including the following steps.
  • step S111 in response to the sub-slot transmission configuration parameters being reconfigured as invalid transmission configuration parameters, the inter-slot repeated transmission scheme and the sub-slot-based repeated transmission scheme within a time slot are dynamically switched, and coordinated in multiple TRP directions Send PUCCH.
  • dynamic switching between different repeated transmission schemes can also be realized through a time slot number configuration parameter (nrofslots parameter).
  • Fig. 16 is a flow chart showing a communication method for PUCCH according to an exemplary embodiment.
  • the communication method for PUCCH may be executed alone or in combination with other embodiments of the present disclosure.
  • the communication method for PUCCH is used in a terminal, and includes the following steps.
  • step S121 in response to the modification of sub-slot transmission configuration parameters to the resource size occupied by sub-slots, the inter-slot repeated transmission scheme is switched to the intra-slot repeated transmission scheme based on sub-slots, and faces multiple TRP directions Cooperate to send PUCCH.
  • the terminal can receive the time slot quantity configuration parameter configured and sent by the network device, so as to realize the dynamic switching between scheme1 and scheme2, and the dynamic switching between scheme2 and scheme3.
  • Fig. 17 is a flow chart showing a communication method for PUCCH according to an exemplary embodiment, and the communication method for PUCCH may be executed alone or in combination with other embodiments of the present disclosure. As shown in Fig. 17, the communication method for PUCCH is used in a terminal, including the following steps.
  • step S131 a time slot number configuration parameter is received, and the time slot number configuration parameter is used to indicate the number of time slots occupied by the repeated transmission of the PUCCH coordinated to multiple TRP directions.
  • the time slot number configuration parameter can be activated or deactivated to realize direct dynamic switching of resources between the configuration of time slot retransmission and beam hopping beam retransmission scheme, which is suitable for subsequent scheduling requirements .
  • Fig. 18 is a flow chart showing a communication method for PUCCH according to an exemplary embodiment.
  • the communication method for PUCCH may be executed alone or in combination with other embodiments of the present disclosure.
  • the communication method for PUCCH is used in a terminal, and includes the following steps.
  • step S141 in response to the activation of the configuration parameter of the number of slots, the intra-slot beam-hopping-based repeated transmission scheme is switched to the inter-slot repeated transmission scheme, and the PUCCH is sent cooperatively for multiple TRP directions, or the intra-slot
  • the repeated transmission scheme based on beam hopping is switched to the repeated transmission scheme based on sub-slots within a slot, and the PUCCH is sent cooperatively in multiple TRP directions.
  • Fig. 19 is a flow chart showing a communication method for PUCCH according to an exemplary embodiment.
  • the communication method for PUCCH may be executed alone or in combination with other embodiments of the present disclosure.
  • the communication method for PUCCH is used in a terminal, and includes the following steps.
  • step S151 in response to the deactivation of the time slot number configuration parameter, the repeated transmission scheme between the time slots is switched to the repeated transmission scheme based on beam hopping within the time slot, and the PUCCH is sent cooperatively for multiple TRP directions, or by time slot
  • the intra-slot repeated transmission scheme based on sub-slots is switched to the intra-slot repeated transmission scheme based on beam hopping, and the PUCCH is sent cooperatively in multiple TRP directions.
  • the configuration parameters of the number of time slots can be reconfigured, so as to switch from the repeated transmission scheme between time slots to the repeated transmission scheme based on beam hopping within a time slot, or from the repeated transmission scheme based on sub-time within a time slot.
  • the repeated transmission scheme of the time slot is switched to the repeated transmission scheme based on beam hopping within the time slot.
  • Fig. 20 is a flow chart showing a communication method for PUCCH according to an exemplary embodiment, and the communication method for PUCCH may be executed alone or in combination with other embodiments of the present disclosure. As shown in FIG. 20, the communication method for PUCCH is used in a terminal, and includes the following steps.
  • step S161 in response to the configuration parameters of the number of slots being reconfigured, the repeated transmission scheme between slots is switched to the repeated transmission scheme based on beam hopping within a slot, and the PUCCH is sent cooperatively for multiple TRP directions, or the time slot
  • the intra-slot-based repeated transmission scheme is switched to the intra-slot beam-hopping-based repeated transmission scheme, and the PUCCH is sent cooperatively in multiple TRP directions.
  • the indication information includes PUCCH resource configuration information
  • the PUCCH resource configuration information includes first PUCCH resource configuration information, or second PUCCH resource configuration information, or third PUCCH resource configuration information.
  • dynamic switching between different repeated transmission schemes can also be realized through PUCCH resource configuration information.
  • different PUCCH resource configurations corresponding to scheme1, scheme2, and scheme3 transmissions are respectively configured in the same PUCCH resource set.
  • the PRI indicated by the DCI is used to determine and activate the currently adopted scheduling transmission scheme. It can be understood that the terminal can determine the current PUCCH transmission scheme through RRC signaling.
  • Fig. 21 is a flow chart showing a communication method for PUCCH according to an exemplary embodiment.
  • the communication method for PUCCH may be executed alone or in combination with other embodiments of the present disclosure.
  • the communication method for PUCCH is used in a terminal, and includes the following steps.
  • step S171 in response to the fact that the PUCCH resource configuration information includes the first PUCCH resource configuration information, an inter-slot repeated transmission scheme is adopted to cooperatively transmit the PUCCH towards multiple TRP directions.
  • a repeated transmission scheme based on beam hopping within a time slot is used to cooperatively transmit the PUCCH in multiple TRP directions.
  • a repeated transmission scheme based on sub-slots within a time slot is used to cooperatively send the PUCCH towards multiple TRP directions.
  • switching between different PUCCH channel transmission schemes under multi-TRP transmission is realized by different methods, which can improve the flexibility of scheduling, adapt to channel and service changes more quickly and flexibly, reduce delay, and be more efficient. Effective use of system resources to improve system performance.
  • the PUCCH communication method applied to the terminal provided by the embodiment of the present disclosure is similar to the PUCCH communication method of the network device, and the similarities will not be repeated here.
  • the communication method for PUCCH provided by the embodiments of the present disclosure can be applied to an implementation process in which a terminal and a network device interact to implement multi-TRP transmission.
  • the terminal and the network device each have relevant functions for implementing the foregoing embodiments, which will not be repeated here.
  • the embodiment of the present disclosure also provides a communication device for PUCCH.
  • the communication device for PUCCH provided by the embodiments of the present disclosure includes corresponding hardware structures and/or software modules for performing various functions.
  • the embodiments of the present disclosure can be implemented in the form of hardware or a combination of hardware and computer software. Whether a certain function is executed by hardware or computer software drives hardware depends on the specific application and design constraints of the technical solution. Those skilled in the art may use different methods to implement the described functions for each specific application, but such implementation should not be regarded as exceeding the scope of the technical solutions of the embodiments of the present disclosure.
  • Fig. 22 is a block diagram of a communication device used for PUCCH according to an exemplary embodiment.
  • the communication device 100 for PUCCH is applied to network equipment and includes a sending unit 101 .
  • the sending unit 101 is configured to send indication information when it is determined that the terminal is cooperatively sending the PUCCH in multiple TRP directions.
  • the indication information is used to instruct the terminal to dynamically switch the repeated transmission scheme, so as to coordinate and repeat the transmission of the PUCCH for multiple TRP directions.
  • the repeated transmission scheme includes an inter-slot repeated transmission scheme, an intra-slot repeated transmission scheme based on beam hopping, and an intra-slot repeated transmission scheme based on sub-slots.
  • the sending unit 101 sends sub-slot transmission configuration parameters, and the sub-slot transmission configuration parameters are used to indicate resource information of sub-slots occupied by cooperative and repeated transmission of PUCCH in multiple TRP directions.
  • the sending unit 101 configures RRC signaling, the RRC signaling includes PUCCH configuration information, and the PUCCH configuration information configures subslot configuration length information at the PUCCH resource level or PUCCH resource set level or PUCCH format level.
  • the sending unit 101 is further configured to activate sub-slot transmission configuration parameters, so as to switch from the inter-slot repeated transmission scheme to the intra-slot repeated transmission scheme based on sub-slots, or to switch from the intra-slot based
  • the repeated transmission scheme of beam hopping is switched to the repeated transmission scheme based on sub-slots within a slot.
  • the sending unit 101 is also configured to deactivate the sub-slot transmission configuration parameters, so as to realize switching from the sub-slot-based repeated transmission scheme within the time slot to the inter-slot repeated transmission scheme, or to switch from the sub-slot-based repeated transmission scheme within the time slot
  • the transmission scheme is switched to a repeated transmission scheme based on beam hopping within a slot.
  • the sending unit 101 is further configured to: reconfigure the sub-slot transmission configuration parameters as invalid transmission configuration parameters, so as to realize the dynamics of the inter-slot repeated transmission scheme and the intra-slot repeated transmission scheme based on sub-slots. switch.
  • the sending unit 101 is further configured to: modify the sub-slot transmission configuration parameter to the resource size occupied by the sub-slot, so as to switch from the inter-slot repeated transmission scheme to the intra-slot repeated transmission based on the sub-slot plan.
  • the sending unit 101 sends a configuration parameter of the number of slots, which is used to indicate the number of slots occupied by the repeated transmission of the PUCCH for coordinated transmission in multiple TRP directions.
  • the sending unit 101 is further configured to: activate the configuration parameter of the number of time slots, so as to switch from the intra-slot repeated transmission scheme based on hopping beams to the inter-slot repeated transmission scheme, or to switch from the intra-slot beam-hopping based repeated transmission scheme
  • the repeated transmission scheme of the beam is switched to the repeated transmission scheme based on sub-slots within the slot.
  • the sending unit 101 is also configured to: deactivate the configuration parameter of the number of time slots, so as to switch from the inter-slot repeated transmission scheme to the intra-slot repeated transmission scheme based on beam hopping, or the intra-slot repeated transmission based on sub-slots The scheme is switched to a repeated transmission scheme based on beam hopping within a time slot.
  • the sending unit 101 is further configured to: reconfigure the configuration parameter of the number of time slots, so as to switch from the inter-slot repeated transmission scheme to the intra-slot beam-hopping-based repeated transmission scheme, or the intra-slot based
  • the repeated transmission scheme of the sub-slot is switched to the repeated transmission scheme based on beam hopping within the time slot.
  • the sending unit 101 sends PUCCH resource configuration information
  • the PUCCH resource configuration information includes first PUCCH resource configuration information, or second PUCCH resource configuration information, or third PUCCH resource configuration information.
  • the first PUCCH resource configuration information corresponds to the repeated transmission scheme between time slots
  • the second PUCCH resource configuration information corresponds to the repeated transmission scheme based on beam hopping in the time slot
  • the third PUCCH resource configuration information corresponds to the repeated transmission scheme based on sub-slots in the time slot .
  • Fig. 23 is a block diagram of a communication device used for PUCCH according to an exemplary embodiment.
  • the communication device 200 for PUCCH is applied to a terminal and includes a receiving unit 201 and a sending unit 202 .
  • the receiving unit 201 is configured to receive indication information, and the indication information is used to instruct the terminal to dynamically switch the repeated transmission scheme to coordinate and repeat the transmission of PUCCH for multiple TRP directions. Repeated transmission scheme for beams and repeated transmission scheme based on sub-slots within a slot;
  • the sending unit 202 is configured to send the PUCCH cooperatively in multiple TRP directions based on the indication information.
  • the receiving unit 201 receives sub-slot transmission configuration parameters, and the sub-slot transmission configuration parameters are used to indicate resource information of sub-slots occupied by cooperative and repeated transmission of PUCCHs in multiple TRP directions.
  • the receiving unit 201 receives RRC signaling, which includes PUCCH configuration information, and the PUCCH configuration information is configured as subslot configuration length information at the PUCCH resource level, PUCCH resource set level, or PUCCH format level.
  • the sending unit 202 in response to the activation of sub-slot transmission configuration parameters, switches from the inter-slot repeated transmission scheme to the intra-slot repeated transmission scheme based on sub-slots, and transmits the PUCCH cooperatively in multiple TRP directions , or switch from the repeated transmission scheme based on beam hopping in the slot to the repeated transmission scheme based on sub-slots in the slot, and send PUCCH cooperatively for multiple TRP directions; or
  • the sending unit 202 switches from the intra-slot repeated transmission scheme based on sub-slots to the inter-slot repeated transmission scheme, and transmits the PUCCH cooperatively for multiple TRP directions, or by the time slot
  • the intra-slot-based repeated transmission scheme is switched to the intra-slot beam-hopping-based repeated transmission scheme, and the PUCCH is sent cooperatively in multiple TRP directions.
  • the sending unit 202 in response to the sub-slot transmission configuration parameters being reconfigured as invalid transmission configuration parameters, dynamically switches between the repeated transmission scheme between slots and the repeated transmission scheme based on sub-slots within a slot, and is oriented to multiple The two TRP directions cooperate to send the PUCCH.
  • the sending unit 202 in response to the modification of sub-slot transmission configuration parameters to the resource size occupied by sub-slots, switches from an inter-slot repeated transmission scheme to an intra-slot based sub-slot repeated transmission scheme, and faces Multiple TRP directions cooperate to send the PUCCH.
  • the receiving unit 201 receives a time slot number configuration parameter, and the time slot number configuration parameter is used to indicate the number of time slots occupied by cooperative transmission of PUCCHs for multiple TRP directions for repeated transmission.
  • the sending unit 202 in response to the activation of the configuration parameter of the number of slots, switches from the intra-slot repeated transmission scheme based on beam hopping to the inter-slot repeated transmission scheme, and transmits the PUCCH cooperatively in multiple TRP directions, or Switch from the repeated transmission scheme based on beam hopping in a slot to the repeated transmission scheme based on sub-slots in a slot, and send PUCCH cooperatively for multiple TRP directions; or
  • the sending unit 202 switches from the inter-slot repeated transmission scheme to the intra-slot repeated transmission scheme based on beam hopping, and transmits the PUCCH cooperatively for multiple TRP directions, or transmits the PUCCH by the intra-slot
  • the repeated transmission scheme based on sub-slots is switched to the repeated transmission scheme based on beam hopping within a slot, and the PUCCH is sent cooperatively in multiple TRP directions.
  • the sending unit 202 in response to the reconfiguration of the number of slots configuration parameters, switches from the inter-slot repeated transmission scheme to the intra-slot beam-hopping based repeated transmission scheme, and coordinates the transmission of PUCCH in multiple TRP directions, Or switch from the intra-slot repeated transmission scheme based on sub-slots to the intra-slot repeated transmission scheme based on beam hopping, and coordinately send the PUCCH in multiple TRP directions.
  • the indication information includes PUCCH resource configuration information, and the PUCCH resource configuration information includes first PUCCH resource configuration information, or second PUCCH resource configuration information, or third PUCCH resource configuration information;
  • the sending unit 202 uses an inter-slot repeated transmission scheme to cooperatively send the PUCCH in multiple TRP directions; in response to the PUCCH resource configuration information including the second PUCCH resource configuration information, the sending unit 202 adopts the repeated transmission scheme based on beam hopping in the time slot, and transmits the PUCCH cooperatively in multiple TRP directions; in response to the PUCCH resource configuration information including the third PUCCH resource configuration information, the sending unit 202 adopts the repeated transmission based on sub-slots in the time slot
  • the solution is to cooperatively send PUCCHs in multiple TRP directions.
  • Fig. 24 is a block diagram showing a communication device for PUCCH according to an exemplary embodiment.
  • the apparatus 300 may be a mobile phone, a computer, a digital broadcast terminal, a messaging device, a game console, a tablet device, a medical device, a fitness device, a personal digital assistant, and the like.
  • device 300 may include one or more of the following components: processing component 302, memory 304, power component 306, multimedia component 308, audio component 310, input/output (I/O) interface 312, sensor component 314, and communication component 316 .
  • the processing component 302 generally controls the overall operations of the device 300, such as those associated with display, telephone calls, data communications, camera operations, and recording operations.
  • the processing component 302 may include one or more processors 320 to execute instructions to complete all or part of the steps of the above method. Additionally, processing component 302 may include one or more modules that facilitate interaction between processing component 302 and other components. For example, processing component 302 may include a multimedia module to facilitate interaction between multimedia component 308 and processing component 302 .
  • the memory 304 is configured to store various types of data to support operations at the device 300 . Examples of such data include instructions for any application or method operating on device 300, contact data, phonebook data, messages, pictures, videos, and the like.
  • the memory 304 can be implemented by any type of volatile or non-volatile storage device or their combination, such as static random access memory (SRAM), electrically erasable programmable read-only memory (EEPROM), erasable Programmable Read Only Memory (EPROM), Programmable Read Only Memory (PROM), Read Only Memory (ROM), Magnetic Memory, Flash Memory, Magnetic or Optical Disk.
  • SRAM static random access memory
  • EEPROM electrically erasable programmable read-only memory
  • EPROM erasable Programmable Read Only Memory
  • PROM Programmable Read Only Memory
  • ROM Read Only Memory
  • Magnetic Memory Flash Memory
  • Magnetic or Optical Disk Magnetic Disk
  • Power component 306 provides power to various components of device 300 .
  • Power components 306 may include a power management system, one or more power supplies, and other components associated with generating, managing, and distributing power for device 300 .
  • the multimedia component 308 includes a screen that provides an output interface between the device 300 and the user.
  • the screen may include a liquid crystal display (LCD) and a touch panel (TP). If the screen includes a touch panel, the screen may be implemented as a touch screen to receive input signals from a user.
  • the touch panel includes one or more touch sensors to sense touches, swipes, and gestures on the touch panel. The touch sensor may not only sense a boundary of a touch or swipe action, but also detect duration and pressure associated with the touch or swipe action.
  • the multimedia component 308 includes a front camera and/or a rear camera. When the device 300 is in an operation mode, such as a shooting mode or a video mode, the front camera and/or the rear camera can receive external multimedia data. Each front camera and rear camera can be a fixed optical lens system or have focal length and optical zoom capability.
  • the audio component 310 is configured to output and/or input audio signals.
  • the audio component 310 includes a microphone (MIC), which is configured to receive external audio signals when the device 300 is in operation modes, such as call mode, recording mode and voice recognition mode. Received audio signals may be further stored in memory 304 or sent via communication component 316 .
  • the audio component 310 also includes a speaker for outputting audio signals.
  • the I/O interface 312 provides an interface between the processing component 302 and a peripheral interface module, which may be a keyboard, a click wheel, a button, and the like. These buttons may include, but are not limited to: a home button, volume buttons, start button, and lock button.
  • Sensor assembly 314 includes one or more sensors for providing various aspects of status assessment for device 300 .
  • the sensor component 314 can detect the open/closed state of the device 300, the relative positioning of components, such as the display and keypad of the device 300, and the sensor component 314 can also detect a change in the position of the device 300 or a component of the device 300 , the presence or absence of user contact with the device 300 , the device 300 orientation or acceleration/deceleration and the temperature change of the device 300 .
  • the sensor assembly 314 may include a proximity sensor configured to detect the presence of nearby objects in the absence of any physical contact.
  • Sensor assembly 314 may also include an optical sensor, such as a CMOS or CCD image sensor, for use in imaging applications.
  • the sensor component 314 may also include an acceleration sensor, a gyroscope sensor, a magnetic sensor, a pressure sensor or a temperature sensor.
  • the communication component 316 is configured to facilitate wired or wireless communication between the apparatus 300 and other devices.
  • the device 300 can access wireless networks based on communication standards, such as WiFi, 2G or 3G, or a combination thereof.
  • the communication component 316 receives broadcast signals or broadcast related information from an external broadcast management system via a broadcast channel.
  • the communication component 316 also includes a near field communication (NFC) module to facilitate short-range communication.
  • NFC near field communication
  • the NFC module may be implemented based on Radio Frequency Identification (RFID) technology, Infrared Data Association (IrDA) technology, Ultra Wide Band (UWB) technology, Bluetooth (BT) technology and other technologies.
  • RFID Radio Frequency Identification
  • IrDA Infrared Data Association
  • UWB Ultra Wide Band
  • Bluetooth Bluetooth
  • apparatus 300 may be programmed by one or more application specific integrated circuits (ASICs), digital signal processors (DSPs), digital signal processing devices (DSPDs), programmable logic devices (PLDs), field programmable A gate array (FPGA), controller, microcontroller, microprocessor or other electronic component implementation for performing the methods described above.
  • ASICs application specific integrated circuits
  • DSPs digital signal processors
  • DSPDs digital signal processing devices
  • PLDs programmable logic devices
  • FPGA field programmable A gate array
  • controller microcontroller, microprocessor or other electronic component implementation for performing the methods described above.
  • non-transitory computer-readable storage medium including instructions, such as the memory 304 including instructions, which can be executed by the processor 320 of the device 300 to implement the above method.
  • the non-transitory computer readable storage medium may be ROM, random access memory (RAM), CD-ROM, magnetic tape, floppy disk, optical data storage device, and the like.
  • Fig. 25 is a block diagram showing a communication device 400 for PUCCH according to an exemplary embodiment.
  • the apparatus 400 may be provided as a server.
  • apparatus 400 includes processing component 422, which further includes one or more processors, and a memory resource represented by memory 432 for storing instructions executable by processing component 422, such as application programs.
  • the application program stored in memory 432 may include one or more modules each corresponding to a set of instructions.
  • the processing component 422 is configured to execute instructions to perform the above method.
  • Device 400 may also include a power component 426 configured to perform power management of device 400 , a wired or wireless network interface 450 configured to connect device 400 to a network, and an input-output (I/O) interface 458 .
  • the device 400 can operate based on an operating system stored in the memory 432, such as Windows ServerTM, Mac OS XTM, UnixTM, LinuxTM, FreeBSDTM or the like.
  • apparatus 400 may be programmed by one or more application specific integrated circuits (ASICs), digital signal processors (DSPs), digital signal processing devices (DSPDs), programmable logic devices (PLDs), field programmable A gate array (FPGA), controller, microcontroller, microprocessor or other electronic component implementation for performing the methods described above.
  • ASICs application specific integrated circuits
  • DSPs digital signal processors
  • DSPDs digital signal processing devices
  • PLDs programmable logic devices
  • FPGA field programmable A gate array
  • controller microcontroller, microprocessor or other electronic component implementation for performing the methods described above.
  • non-transitory computer-readable storage medium including instructions, such as the memory 432 including instructions, which can be executed by the processing component 422 of the apparatus 400 to implement the above method.
  • the non-transitory computer readable storage medium may be ROM, random access memory (RAM), CD-ROM, magnetic tape, floppy disk, optical data storage device, and the like.
  • “plurality” in the present disclosure refers to two or more, and other quantifiers are similar thereto.
  • “And/or” describes the association relationship of associated objects, indicating that there may be three types of relationships, for example, A and/or B may indicate: A exists alone, A and B exist simultaneously, and B exists independently.
  • the character “/” generally indicates that the contextual objects are an “or” relationship.
  • the singular forms “a”, “said” and “the” are also intended to include the plural unless the context clearly dictates otherwise.
  • first, second, etc. are used to describe various information, but the information should not be limited to these terms. These terms are only used to distinguish information of the same type from one another, and do not imply a specific order or degree of importance. In fact, expressions such as “first” and “second” can be used interchangeably.
  • first information may also be called second information, and similarly, second information may also be called first information.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开是关于一种用于PUCCH的通信方法、装置及存储介质。用于PUCCH的通信方法,应用于网络设备,包括:响应于确定终端面向多个TRP方向协作发送PUCCH,发送指示信息;用于PUCCH的通信方法,应用于终端,包括:接收指示信息,基于所述指示信息,面向多个TRP方向协作发送PUCCH。其中,所述指示信息用于指示终端动态切换重复传输方案,以面向所述多个TRP方向协作重复发送PUCCH;所述重复传输方案包括时隙间重复传输方案、时隙内基于跳波束的重复传输方案以及时隙内基于子时隙的重复传输方案。通过本公开可以实现重复传输方案的动态切换,提高系统调度灵活性以及效率。

Description

用于PUCCH的通信方法、装置及存储介质 技术领域
本公开涉及通信技术领域,尤其涉及一种用于PUCCH的通信方法、装置及存储介质。
背景技术
随着通信技术的发展,为了保证覆盖范围,需要使用基于波束(beam)的发送和接收。当网络设备(例如基站)有多个发送接收点(Transmission Reception Point,TRP)时,可以使用多个TRP(Multi-TRP)/多面板(PANEL)为终端提供服务。网络设备多TRP/PANEL的应用主要为了改善小区边缘的覆盖,在服务区内提供更为均衡的服务质量,用不同的方式在多个TRP/PANEL间协作传输数据。从网络形态角度考虑,以大量的分布式接入点加基带集中处理的方式进行网络部署将更加有利于提供均衡的用户体验速率,并且显著的降低越区切换带来的时延和信令开销。利用多个TRP/PANEL之间的协作,从多个角度的多个波束进行信道的传输/接收,可以更好的克服各种遮挡/阻挡效应,保障链路连接的鲁棒性,适合超可靠低延时通信(Ultra Reliable Low Latency Communication,URLLC)业务提升传输质量和满足可靠性要求。
在R16研究阶段,基于下行多TRP/PANEL间的多点协作传输技术的应用,对物理下行共享信道(physical downlink shared channel,PDSCH)进行了传输增强。由于数据传输包括上下行信道的调度反馈。因此在URLLC的研究中,只对下行数据信道增强不能保证业务性能。因此在R17的研究中,继续对下行控制信道(physical downlink control channel,PDCCH)以及上行控制信道(physical uplink control channel,PUCCH)和上行共享信道(physical uplink shared channel,PUSCH)进行增强。
基于multi-TRP的上行增强方案,主要基于PUCCH/PUSCH重复传输方案。在R15/16考虑上行覆盖问题,对长PUCCH(对应PUCCH格式1/3/4)引入了在多个时隙(slot)中进行repetition重复传输的机制,不同的PUCCH资源在每个slot的不同传输时机中按照相同的传输符号长度进行传输。R17基于multi-TRP的上行增强方案,主要基于R16的PUSCH重复传输方案。在R17multi-TRP增强中,PUCCH支持在不同的传输时机(Transmission Occasion,TO)上向不同的TRP方向上协作发送同一传输块(Transport Block,TB),以进一步应用空间复用传输提高传输可靠性。
对于PUCCH信道传输,可以有时隙间(inter-slot)的重复方式(即Scheme1)以及时隙内(intra-slot)的重复方式。时隙内的传输方式包括时隙内基于跳频的重复传输方案(即Scheme 2)以及时隙内基于子时隙(sub-slot)的重复传输方案(即Scheme3)。然而,在 R17基于multi-TRP的PUCCH增强中,对于不同TRP发送的重复增强方案包括的时隙内(包括scheme 2&scheme 3)和时隙间(scheme 1)的传输方案并不能满足multi-TRP传输下的各种场景需求,故需要提供可能增强方案用来增强传输可靠性。
发明内容
为克服相关技术中存在的问题,本公开提供一种用于PUCCH的通信方法、装置及存储介质。
根据本公开实施例的第一方面,提供一种用于PUCCH的通信方法,应用于网络设备,所述用于PUCCH的通信方法包括:
响应于确定终端面向多个TRP方向协作发送PUCCH,发送指示信息;所述指示信息用于指示终端动态切换重复传输方案,以面向所述多个TRP方向协作重复发送PUCCH;所述重复传输方案包括时隙间重复传输方案、时隙内基于跳波束的重复传输方案以及时隙内基于子时隙的重复传输方案。
一种实施方式中,所述发送指示信息,包括:发送子时隙传输配置参数,所述子时隙传输配置参数用于指示面向多个TRP方向协作重复发送PUCCH所占用的子时隙资源信息。
一种实施方式中,发送子时隙传输配置参数,包括:配置无线资源控制RRC信令,所述RRC信令中包括PUCCH配置信息,所述PUCCH配置信息配置在PUCCH资源级别或PUCCH资源集合级别或PUCCH格式级别的子时隙配置长度信息。
一种实施方式中,所述用于PUCCH的通信方法还包括:激活所述子时隙传输配置参数,以实现由时隙间重复传输方案切换至时隙内基于子时隙的重复传输方案,或者由时隙内基于跳波束的重复传输方案切换至时隙内基于子时隙的重复传输方案;或者
去激活所述子时隙传输配置参数,以实现由时隙内基于子时隙的重复传输方案切换至时隙间重复传输方案,或者由时隙内基于子时隙的重复传输方案切换至时隙内基于跳波束的重复传输方案。
一种实施方式中,所述用于PUCCH的通信方法还包括:重配置所述子时隙传输配置参数为无效传输配置参数,以实现时隙间重复传输方案与时隙内基于子时隙的重复传输方案的动态切换。
一种实施方式中,所述用于PUCCH的通信方法还包括:修改所述子时隙传输配置参数为子时隙占用资源大小,以实现由时隙间重复传输方案切换至时隙内基于子时隙的重复传输方案。
一种实施方式中,所述发送指示信息,包括:发送时隙数量配置参数,所述时隙数量 配置参数用于指示面向多个TRP方向协作发送PUCCH进行重复传输所占用的时隙数量。
一种实施方式中,所述用于PUCCH的通信方法还包括:
激活所述时隙数量配置参数,以实现由时隙内基于跳波束的重复传输方案切换至时隙间重复传输方案,或者由时隙内基于跳波束的重复传输方案切换至时隙内基于子时隙的重复传输方案;或者
去激活所述时隙数量配置参数,以实现由时隙间重复传输方案切换至时隙内基于跳波束的重复传输方案,或者由时隙内基于子时隙的重复传输方案切换至时隙内基于跳波束的重复传输方案。
一种实施方式中,所述用于PUCCH的通信方法还包括:
重配置所述时隙数量配置参数,以实现由时隙间重复传输方案切换至时隙内基于跳波束的重复传输方案,或者由时隙内基于子时隙的重复传输方案切换至时隙内基于跳波束的重复传输方案。
一种实施方式中,所述发送指示信息,包括:
发送PUCCH资源配置信息,所述PUCCH资源配置信息包括第一PUCCH资源配置信息,或者第二PUCCH资源配置信息,或者第三PUCCH资源配置信息;
所述第一PUCCH资源配置信息对应时隙间重复传输方案,所述第二PUCCH资源配置信息对应时隙内基于跳波束的重复传输方案,所述第三PUCCH资源配置信息对应时隙内基于子时隙的重复传输方案。
根据本公开实施例第二方面,提供一种用于PUCCH的通信方法,应用于终端,所述用于PUCCH的通信方法包括:
接收指示信息,所述指示信息用于指示终端动态切换重复传输方案,以面向所述多个TRP方向协作重复发送PUCCH,所述重复传输方案包括时隙间重复传输方案、时隙内基于跳波束的重复传输方案以及时隙内基于子时隙的重复传输方案;基于所述指示信息,面向多个TRP方向协作发送PUCCH。
一种实施方式中,所述接收指示信息,包括:接收子时隙传输配置参数,所述子时隙传输配置参数用于指示面向多个TRP方向协作重复发送PUCCH所占用的子时隙资源信息。
一种实施方式中,接收子时隙传输配置参数,包括:
接收无线资源控制RRC信令,所述RRC信令中包括PUCCH配置信息,所述PUCCH配置信息配置为PUCCH资源级别或PUCCH资源集合级别或PUCCH格式级别的子时隙 配置长度信息。
一种实施方式中,所述面向多个TRP方向协作发送PUCCH,包括:
响应于所述子时隙传输配置参数被激活,由时隙间重复传输方案切换至时隙内基于子时隙的重复传输方案,并面向多个TRP方向协作发送PUCCH,或者由时隙内基于跳波束的重复传输方案切换至时隙内基于子时隙的重复传输方案,面向多个TRP方向协作发送PUCCH;或者
响应于所述子时隙传输配置参数被去激活,由时隙内基于子时隙的重复传输方案切换至时隙间重复传输方案,并面向多个TRP方向协作发送PUCCH,或者由时隙内基于子时隙的重复传输方案切换至时隙内基于跳波束的重复传输方案,并面向多个TRP方向协作发送PUCCH。
一种实施方式中,所述面向多个TRP方向协作发送PUCCH,包括:
响应于所述子时隙传输配置参数被重配置为无效传输配置参数,动态切换时隙间重复传输方案与时隙内基于子时隙的重复传输方案,并面向多个TRP方向协作发送PUCCH。
一种实施方式中,所述面向多个TRP方向协作发送PUCCH,包括:
响应于所述子时隙传输配置参数被修改为子时隙占用资源大小,由时隙间重复传输方案切换至时隙内基于子时隙的重复传输方案,并面向多个TRP方向协作发送PUCCH。
一种实施方式中,所述接收指示信息,包括:
接收时隙数量配置参数,所述时隙数量配置参数用于指示面向多个TRP方向协作发送PUCCH进行重复传输所占用的时隙数量。
一种实施方式中,所述面向多个TRP方向协作发送PUCCH,包括:
响应于所述时隙数量配置参数被激活,由时隙内基于跳波束的重复传输方案切换至时隙间重复传输方案,并面向多个TRP方向协作发送PUCCH,或者由时隙内基于跳波束的重复传输方案切换至时隙内基于子时隙的重复传输方案,并面向多个TRP方向协作发送PUCCH;或者
响应于所述时隙数量配置参数被去激活,以由时隙间重复传输方案切换至时隙内基于跳波束的重复传输方案,并面向多个TRP方向协作发送PUCCH,或者由时隙内基于子时隙的重复传输方案切换至时隙内基于跳波束的重复传输方案,并面向多个TRP方向协作发送PUCCH。
一种实施方式中,所述面向多个TRP方向协作发送PUCCH,包括:
响应于所述时隙数量配置参数被重配置,由时隙间重复传输方案切换至时隙内基于跳波束的重复传输方案,并面向多个TRP方向协作发送PUCCH,或者由时隙内基于子时隙 的重复传输方案切换至时隙内基于跳波束的重复传输方案,并面向多个TRP方向协作发送PUCCH。
一种实施方式中,所述指示信息包括PUCCH资源配置信息,所述PUCCH资源配置信息包括第一PUCCH资源配置信息,或者第二PUCCH资源配置信息,或者第三PUCCH资源配置信息;
所述基于所述指示信息,面向多个TRP方向协作发送PUCCH,包括:
响应于所述PUCCH资源配置信息包括第一PUCCH资源配置信息,采用时隙间重复传输方案,面向多个TRP方向协作发送PUCCH;响应于所述PUCCH资源配置信息包括第二PUCCH资源配置信息,采用时隙内基于跳波束的重复传输方案,面向多个TRP方向协作发送PUCCH;响应于所述PUCCH资源配置信息包括第三PUCCH资源配置信息,采用时隙内基于子时隙的重复传输方案,面向多个TRP方向协作发送PUCCH。
根据本公开实施例第三方面,提供一种用于PUCCH的通信装置,应用于网络设备,所述用于PUCCH的通信装置包括:
发送单元,被配置为在确定终端面向多个TRP方向协作发送PUCCH的情况下,发送指示信息;所述指示信息用于指示终端动态切换重复传输方案,以面向所述多个TRP方向协作重复发送PUCCH;所述重复传输方案包括时隙间重复传输方案、时隙内基于跳波束的重复传输方案以及时隙内基于子时隙的重复传输方案。
一种实施方式中,所述发送单元发送子时隙传输配置参数,所述子时隙传输配置参数用于指示面向多个TRP方向协作重复发送PUCCH所占用的子时隙资源信息。
一种实施方式中,所述发送单元配置无线资源控制RRC信令,所述RRC信令中包括PUCCH配置信息,所述PUCCH配置信息配置在PUCCH资源级别或PUCCH资源集合级别或PUCCH格式级别的子时隙配置长度信息。
一种实施方式中,所述发送单元还被配置为激活所述子时隙传输配置参数,以实现由时隙间重复传输方案切换至时隙内基于子时隙的重复传输方案,或者由时隙内基于跳波束的重复传输方案切换至时隙内基于子时隙的重复传输方案;或者
去激活所述子时隙传输配置参数,以实现由时隙内基于子时隙的重复传输方案切换至时隙间重复传输方案,或者由时隙内基于子时隙的重复传输方案切换至时隙内基于跳波束的重复传输方案。
一种实施方式中,所述发送单元还被配置为:重配置所述子时隙传输配置参数为无效传输配置参数,以实现时隙间重复传输方案与时隙内基于子时隙的重复传输方案的动态切 换。
一种实施方式中,所述发送单元还被配置为:修改所述子时隙传输配置参数为子时隙占用资源大小,以实现由时隙间重复传输方案切换至时隙内基于子时隙的重复传输方案。
一种实施方式中,所述发送单元发送时隙数量配置参数,所述时隙数量配置参数用于指示面向多个TRP方向协作发送PUCCH进行重复传输所占用的时隙数量。
一种实施方式中,所述发送单元还被配置为:激活所述时隙数量配置参数,以实现由时隙内基于跳波束的重复传输方案切换至时隙间重复传输方案,或者由时隙内基于跳波束的重复传输方案切换至时隙内基于子时隙的重复传输方案;或者
去激活所述时隙数量配置参数,以实现由时隙间重复传输方案切换至时隙内基于跳波束的重复传输方案,或者由时隙内基于子时隙的重复传输方案切换至时隙内基于跳波束的重复传输方案。
一种实施方式中,所述发送单元还被配置为:重配置所述时隙数量配置参数,以实现由时隙间重复传输方案切换至时隙内基于跳波束的重复传输方案,或者由时隙内基于子时隙的重复传输方案切换至时隙内基于跳波束的重复传输方案。
一种实施方式中,所述发送单元发送PUCCH资源配置信息,所述PUCCH资源配置信息包括第一PUCCH资源配置信息,或者第二PUCCH资源配置信息,或者第三PUCCH资源配置信息;所述第一PUCCH资源配置信息对应时隙间重复传输方案,所述第二PUCCH资源配置信息对应时隙内基于跳波束的重复传输方案,所述第三PUCCH资源配置信息对应时隙内基于子时隙的重复传输方案。
根据本公开实施例第四方面,提供一种用于PUCCH的通信装置,应用于终端,所述用于PUCCH的通信装置包括:
接收单元,被配置为接收指示信息,所述指示信息用于指示终端动态切换重复传输方案,以面向所述多个TRP方向协作重复发送PUCCH,所述重复传输方案包括时隙间重复传输方案、时隙内基于跳波束的重复传输方案以及时隙内基于子时隙的重复传输方案;
发送单元,被配置为基于所述指示信息,面向多个TRP方向协作发送PUCCH。
一种实施方式中,所述接收单元接收子时隙传输配置参数,所述子时隙传输配置参数用于指示面向多个TRP方向协作重复发送PUCCH所占用的子时隙资源信息。
一种实施方式中,所述接收单元接收无线资源控制RRC信令,所述RRC信令中包括PUCCH配置信息,所述PUCCH配置信息配置为PUCCH资源级别或PUCCH资源集合级别或PUCCH格式级别的子时隙配置长度信息。
一种实施方式中,响应于所述子时隙传输配置参数被激活,所述发送单元由时隙间重 复传输方案切换至时隙内基于子时隙的重复传输方案,并面向多个TRP方向协作发送PUCCH,或者由时隙内基于跳波束的重复传输方案切换至时隙内基于子时隙的重复传输方案,面向多个TRP方向协作发送PUCCH;或者
响应于所述子时隙传输配置参数被去激活,所述发送单元由时隙内基于子时隙的重复传输方案切换至时隙间重复传输方案,并面向多个TRP方向协作发送PUCCH,或者由时隙内基于子时隙的重复传输方案切换至时隙内基于跳波束的重复传输方案,并面向多个TRP方向协作发送PUCCH。
一种实施方式中,响应于所述子时隙传输配置参数被重配置为无效传输配置参数,所述发送单元动态切换时隙间重复传输方案与时隙内基于子时隙的重复传输方案,并面向多个TRP方向协作发送PUCCH。
一种实施方式中,响应于所述子时隙传输配置参数被修改为子时隙占用资源大小,所述发送单元由时隙间重复传输方案切换至时隙内基于子时隙的重复传输方案,并面向多个TRP方向协作发送PUCCH。
一种实施方式中,所述接收单元接收时隙数量配置参数,所述时隙数量配置参数用于指示面向多个TRP方向协作发送PUCCH进行重复传输所占用的时隙数量。
一种实施方式中,响应于所述时隙数量配置参数被激活,所述发送单元由时隙内基于跳波束的重复传输方案切换至时隙间重复传输方案,并面向多个TRP方向协作发送PUCCH,或者由时隙内基于跳波束的重复传输方案切换至时隙内基于子时隙的重复传输方案,并面向多个TRP方向协作发送PUCCH;或者
响应于所述时隙数量配置参数被去激活,所述发送单元以由时隙间重复传输方案切换至时隙内基于跳波束的重复传输方案,并面向多个TRP方向协作发送PUCCH,或者由时隙内基于子时隙的重复传输方案切换至时隙内基于跳波束的重复传输方案,并面向多个TRP方向协作发送PUCCH。
一种实施方式中,响应于所述时隙数量配置参数被重配置,所述发送单元由时隙间重复传输方案切换至时隙内基于跳波束的重复传输方案,并面向多个TRP方向协作发送PUCCH,或者由时隙内基于子时隙的重复传输方案切换至时隙内基于跳波束的重复传输方案,并面向多个TRP方向协作发送PUCCH。
一种实施方式中,所述指示信息包括PUCCH资源配置信息,所述PUCCH资源配置信息包括第一PUCCH资源配置信息,或者第二PUCCH资源配置信息,或者第三PUCCH资源配置信息;
响应于所述PUCCH资源配置信息包括第一PUCCH资源配置信息,所述发送单元采 用时隙间重复传输方案,面向多个TRP方向协作发送PUCCH;响应于所述PUCCH资源配置信息包括第二PUCCH资源配置信息,所述发送单元采用时隙内基于跳波束的重复传输方案,面向多个TRP方向协作发送PUCCH;响应于所述PUCCH资源配置信息包括第三PUCCH资源配置信息,所述发送单元采用时隙内基于子时隙的重复传输方案,面向多个TRP方向协作发送PUCCH。
根据本公开实施例第五方面,提供一种用于PUCCH的通信装置,其特征在于,包括:
处理器;
用于存储处理器可执行指令的存储器;
其中,所述处理器被配置为:执行第一方面或者第一方面任意一种实施方式中所述的用于PUCCH的通信方法。
根据本公开实施例第六方面,提供一种用于PUCCH的通信装置,包括:
处理器;
用于存储处理器可执行指令的存储器;
其中,所述处理器被配置为:执行第二方面或者第二方面任意一种实施方式中所述的用于PUCCH的通信方法。
根据本公开实施例第七方面,提供一种存储介质,所述存储介质中存储有指令,当所述存储介质中的指令由网络设备的处理器执行时,使得网络设备能够执行第一方面或者第一方面任意一种实施方式中所述的用于PUCCH的通信方法。
根据本公开实施例第八方面,提供一种存储介质,所述存储介质中存储有指令,当所述存储介质中的指令由终端的处理器执行时,使得终端能够执行第二方面或者第二方面任意一种实施方式中所述的用于PUCCH的通信方法。
本公开的实施例提供的技术方案可以包括以下有益效果:网络设备发送指示信息,以指示终端动态切换重复传输方案。终端接收指示信息,在面向多个TRP方向协作发送PUCCH的情况下,动态切换重复传输方案,以面向所述多个TRP方向协作重复发送PUCCH。终端动态切换重复传输方案增加了系统调度灵活性以及效率。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本公开。
附图说明
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本公开的实施例,并与说明书一起用于解释本公开的原理。
图1是根据一示例性实施例示出的一种无线通信系统架构图。
图2示出了一种PUCCH重复传输示意图。
图3示出了一种时隙内基于跳频的重复传输方案传输示意图。
图4示出了一种时隙内基于sub-slot的重复传输方案传输示意图。
图5是根据一示例性实施例示出的一种用于PUCCH的通信方法的流程图。
图6是根据一示例性实施例示出的一种用于PUCCH的通信方法的流程图。
图7是根据一示例性实施例示出的一种用于PUCCH的通信方法的流程图。
图8是根据一示例性实施例示出的一种用于PUCCH的通信方法的流程图。
图9是根据一示例性实施例示出的一种用于PUCCH的通信方法的流程图。
图10是根据一示例性实施例示出的一种用于PUCCH的通信方法的流程图。
图11是根据一示例性实施例示出的一种用于PUCCH的通信方法的流程图。
图12是根据一示例性实施例示出的一种用于PUCCH的通信方法的流程图。
图13是根据一示例性实施例示出的一种用于PUCCH的通信方法的流程图。
图14是根据一示例性实施例示出的一种用于PUCCH的通信方法的流程图。
图15是根据一示例性实施例示出的一种用于PUCCH的通信方法的流程图。
图16是根据一示例性实施例示出的一种用于PUCCH的通信方法的流程图。
图17是根据一示例性实施例示出的一种用于PUCCH的通信方法的流程图。
图18是根据一示例性实施例示出的一种用于PUCCH的通信方法的流程图。
图19是根据一示例性实施例示出的一种用于PUCCH的通信方法的流程图。
图20是根据一示例性实施例示出的一种用于PUCCH的通信方法的流程图。
图21是根据一示例性实施例示出的一种用于PUCCH的通信方法的流程图。
图22是根据一示例性实施例示出的一种用于PUCCH的通信装置框图。
图23是根据一示例性实施例示出的一种用于PUCCH的通信装置框图。
图24是根据一示例性实施例示出的一种用于PUCCH的通信装置的框图。
图25是根据一示例性实施例示出的一种用于PUCCH的通信装置的框图。
具体实施方式
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本公开相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本公开的一些方面相一致的装置和方法的例子。
本公开实施例提供的用于PUCCH的通信方法可应用于图1所示的无线通信系统中。参阅图1所示,该无线通信系统中包括网络设备和终端。终端通过无线资源与网络设备相 连接,并进行数据传输。其中,网络设备与终端之间基于波束进行数据传输。其中,网络设备与终端之间可以基于Multi-TRP进行PUSCH上行传输的增强。参阅图1所示,在下行通信过程中,多个TRP面向终端发送。在上行通信过程中,终端面向不同TRP发送。
可以理解的是,网络设备基于Multi-TRP与终端进行数据传输的TRP数量可以为一个或多个。图1所示的无线通信系统中网络设备基于TRP(1)、TRP(2)、TRP(3)和TRP(4)与终端进行数据传输仅是进行示意性说明,并不引以为限。
可以理解的是,图1所示的无线通信系统仅是进行示意性说明,无线通信系统中还可包括其它网络设备,例如还可以包括核心网设备、无线中继设备和无线回传设备等,在图1中未画出。本公开实施例对该无线通信系统中包括网络设备数量和终端数量不做限定。
进一步可以理解的是,本公开实施例无线通信系统,是一种提供无线通信功能的网络。无线通信系统可以采用不同的通信技术,例如码分多址(code division multiple access,CDMA)、宽带码分多址(wideband code division multiple access,WCDMA)、时分多址(time division multiple access,TDMA)、频分多址(frequency division multiple access,FDMA)、正交频分多址(orthogonal frequency-division multiple access,OFDMA)、单载波频分多址(single Carrier FDMA,SC-FDMA)、载波侦听多路访问/冲突避免(Carrier Sense Multiple Access with Collision Avoidance)。根据不同网络的容量、速率、时延等因素可以将网络分为2G(英文:generation)网络、3G网络、4G网络或者未来演进网络,如5G网络,5G网络也可称为是新无线网络(New Radio,NR)。为了方便描述,本公开有时会将无线通信网络简称为网络。
进一步的,本公开中涉及的网络设备也可以称为无线接入网设备。该无线接入网设备可以是:基站、演进型基站(evolved node B,基站)、家庭基站、无线保真(wireless fidelity,WIFI)系统中的接入点(access point,AP)、无线中继节点、无线回传节点、传输点(transmission point,TP)或者发送接收点(transmission and reception point,TRP)等,还可以为NR系统中的gNB,或者,还可以是构成基站的组件或一部分设备等。应理解,本公开的实施例中,对网络设备所采用的具体技术和具体设备形态不做限定。在本公开中,网络设备可以为特定的地理区域提供通信覆盖,并且可以与位于该覆盖区域(小区)内的终端进行通信。此外,当为车联网(V2X)通信系统时,网络设备还可以是车载设备。
进一步的,本公开中涉及的终端,也可以称为终端设备、用户设备(User Equipment,UE)、移动台(Mobile Station,MS)、移动终端(Mobile Terminal,MT)等,是一种向用户提供语音和/或数据连通性的设备,例如,终端可以是具有无线连接功能的手持式设备、车载设备等。目前,一些终端的举例为:智能手机(Mobile Phone)、客户前置设备(Customer  Premise Equipment,CPE),口袋计算机(Pocket Personal Computer,PPC)、掌上电脑、个人数字助理(Personal Digital Assistant,PDA)、笔记本电脑、平板电脑、可穿戴设备、或者车载设备等。此外,当为车联网(V2X)通信系统时,终端设备还可以是车载设备。应理解,本公开实施例对终端所采用的具体技术和具体设备形态不做限定。
本公开实施例中网络设备与终端之间基于波束进行数据传输。其中,网络设备和终端可以基于多TRP/PANEL间的多点协作传输技术对PUCCH进行增强。对PUCCH的增强可以是在多个slot中进行重复传输的机制。图2示出了一种PUCCH重复传输示意图。参阅图2所示,不同的PUCCH资源在每个slot的不同传输时机中按照相同的传输符号长度进行传输。一个PUCCH重复传输只能使用一个PUCCH资源,该PUCCH资源配置一个beam方向即空间信息(spatialRelationInfo),并且应用于所有的传输时机上。网络通过无线资源控制(Radio Resource Control,RRC)高层信令为PUCCH格式(PUCCH format)配置支持的相应的重复传输次数,指示的范围定义为{1,2,4,8},不同的PUCCH资源可能对应不同的PUCCH格式。
在R17基于multi-TRP的PUCCH增强中,PUCCH支持在不同的TO上向不同的TRP方向上协作发送同一传输块TB,以进一步应用空间复用传输提高传输可靠性。对于PUCCH信道传输,R17增强的可能方案为:
方案1:时隙间(inter-slot)的重复方式(即Scheme1)
同R15/16的TDM重复传输方式,实现在面向多个TRP的多个beam方向上在多个时隙上分时协作发送,重复传输时隙数目即配置的传输占用的时隙数目,每个时隙的资源分配都相同,即使用每个时隙上相同的时频资源上发送PUCCH的重复版本。
方案二:时隙内(intra-slot)的重复方式,现有协议不支持,即面向多个TRP的多个beam方向上在一个时隙内分时联合传输。但对于时隙内的重复方式可以存在如下两种重复传输方案:
A:基于时隙内跳频发送为基础的传输方案(即Scheme 2),即在一个PUCCH资源内,时隙内前后两跳(hop)对应的不同符号组上分别按照不同的beam方向发送;跳频功能(时隙内跳频FH)可以开启,也可以关闭。图3示出了一种时隙内基于跳频的重复传输方案传输示意图。参阅图3所示,包括PUCCH资源占用N个符号,在时隙内第一跳频资源块占用floor(N/2)个时域符号,映射在面向TRP1对应的波束方向上发送,第二跳频资源块占用N-floor(N/2)个时域符号,映射在面向TRP2对应的波束方向上发送。其中,波束1和波束2映射在同一时隙的不同跳频资源上,在时隙内跳频开启时,同一时隙内的不同跳频资源起始的频率位置相差网络配置的频率偏差,在时隙内跳频关闭时,同一时隙内的不同跳 频资源起始频率相同。
其中,本公开实施例中时隙内基于跳频的重复传输方案也可以理解为是时隙内基于跳波束的重复传输方案,故本公开实施例中时隙内基于跳频的重复传输方案和时隙内基于跳波束的重复传输方案有时会交替使用,但本领域技术人员应理解其含义的一致性。
B:基于时隙内子时隙(sub-slot)的传输方案(即Scheme3):即在时隙内以sub-slot为单位进行PUCCH的重复发送,定义为时隙多次发送(即重复传输次数K>=2),每次重复发送的TO中分别按照不同的beam方向发送。图4示出了一种时隙内基于sub-slot的重复传输方案传输示意图。参阅图4所示,包括PUCCH资源占用N个符号,在时隙内第一子时隙资源块占用floor(N/2)个时域符号,映射在面向TRP1对应的波束方向上发送,第二子时隙资源块占用N-floor(N/2)个时域符号,映射在面向TRP2对应的波束方向上发送。其中,波束1和波束2映射在同一时隙的不同子时隙资源上。
其中,终端面向不同TRP发送的PUCCH的波束发送方向和不同的传输时机之间的映射关系有多种映射方案可以如下三种方案,高层信令会配置本次PUCCH发送使用的波束映射方案:
方案a:周期映射。两个波束方向依次循环映射到配置的多个传输时机上,例如4次传输时,波束方向映射的图样是#1#2#1#2。
方案b:连续映射。两个波束方向连续循环映射到配置的多个传输时机上,例如4次传输时,波束方向映射的图样是#1#1#2#2,对于4次以上的传输,则重复该图样,如对于8次传输,则TCI state映射的图样是#1#1#2#2#1#1#2#2。
方案c:对半映射。两个波束方向连续映射到配置的多个传输时机上,例如8次传输时,波束方向映射的图样是#1#1#1#1#2#2#2#2。
基于以上描述可知,在R17基于multi-TRP的PUCCH增强中,对于不同TRP发送的增强方案主要包括时隙内(包括scheme 2&scheme 3)和时隙间(scheme 1)的传输方案。并且,上述涉及的不同重复传输方案大部分参数都是RRC配置的半静态参数。然而,不同的重复传输方案可以针对不同的场景和业务要求。那么当具体场景和业务变化时,由于大部分参数都是RRC配置的半静态参数,不能及时动态改变配置,就需要网络重配置来解决,这样会降低系统的调度灵活性和效率。
有鉴于此,本公开实施例提供一种用于PUCCH的通信方法,在该用于PUCCH的通信方法中,终端面向多个TRP方向协作发送PUCCH时,支持不同重复传输方案之间的动态切换,以提高系统调度灵活性以及效率。
图5是根据一示例性实施例示出的一种用于PUCCH的通信方法的流程图,该用于 PUCCH的通信方法可以单独被执行,也可以结合本公开的其他实施例一起被执行。如图5所示,用于PUCCH的通信方法用于网络设备中,包括以下步骤。
在步骤S11中,响应于确定终端面向多个TRP方向协作发送PUCCH,发送指示信息。
其中,本公开实施例中,网络设备发送的指示信息用于指示终端动态切换重复传输方案,以面向多个TRP方向协作重复发送PUCCH。
进一步的,重复传输方案包括时隙间重复传输方案、时隙内基于跳波束的重复传输方案以及时隙内基于子时隙的重复传输方案。
本公开实施例中,网络设备确定终端面向多个TRP方向协作发送PUCCH的情况下,通过指示信息指示不同的PUCCH传输方案之间的配置及动态切换方式,可以使终端面向不同的TRP方向按照不同的传输方案协作发送PUCCH。例如,当媒体接入控制(Media Access Control,MAC)-控制单元(Control Element,CE)激活对应的PUCCH资源的波束方向信息(spatial relation info)个数为2时,对应multi-TRP传输,面向不同的TRP方向按照不同的传输方案协作发送PUCCH。
本公开实施例提供的一种实施方式中,网络设备可以通过配置子时隙传输配置参数,实现不同重复传输方案的切换。即,网络设备可以通过发送子时隙传输配置参数,指示面向多个TRP方向协作重复发送PUCCH所占用的子时隙资源信息。
图6是根据一示例性实施例示出的一种用于PUCCH的通信方法的流程图,该用于PUCCH的通信方法可以单独被执行,也可以结合本公开的其他实施例一起被执行。如图6所示,用于PUCCH的通信方法用于网络设备中,包括以下步骤。
在步骤S21中,响应于确定终端面向多个TRP方向协作发送PUCCH,发送子时隙传输配置参数。
本公开实施例中,子时隙传输配置参数用于指示面向多个TRP方向协作重复发送PUCCH所占用的子时隙资源信息。
本公开实施例中可以通过配置子时隙传输配置参数,实现不同重复传输方案之间的动态切换。例如,网络设备通过配置子时隙传输配置参数实现scheme1和scheme3之间的动态切换。并且可以通过动态改变scheme3的subslot配置,实现scheme2和scheme3之间的动态切换。
本公开实施例中可以通过RRC信令半静态配置子时隙传输配置参数。
图7是根据一示例性实施例示出的一种用于PUCCH的通信方法的流程图,该用于PUCCH的通信方法可以单独被执行,也可以结合本公开的其他实施例一起被执行。如图7所示,用于PUCCH的通信方法用于网络设备中,包括以下步骤。
在步骤S31中,响应于确定终端面向多个TRP方向协作发送PUCCH,配置RRC信令。其中,RRC信令中包括PUCCH配置信息,PUCCH配置信息配置在PUCCH资源级别或PUCCH资源集合级别或PUCCH格式级别的子时隙配置长度信息。
例如,在RRC参数PUCCH_config中添加PUCCH资源(即resource)级别或者PUCCH格式(即PUCCH format)级别的subslotLengthForPUCCH参数,进行subslot传输配置。例如该subslotLengthForPUCCH参数可以配置子时隙例如为2,7符号长度或其他取值。
可以理解的是,相关协议中subslotLengthForPUCCH参数不用于指示PUCCH重复传输的子时隙资源大小。本公开实施例中通过subslotLengthForPUCCH参数指示PUCCH重复传输的子时隙资源大小,实现不同重复传输方案之间的动态切换。
本公开实施例中可以通过MAC-CE配置或修改该PUCCH资源对应的subslot传输配置,实现不同重复传输方案之间的动态切换。
其中,本公开实施例中可以激活(enable)或者去激活(disable)该子时隙传输配置参数,使该资源在时隙重传和子时隙重传方案的配置之间直接动态切换,适用于后续的调度需求。
一种实施方式中,本公开实施例中可以激活子时隙传输配置参数,以实现由时隙间重复传输方案切换至时隙内基于子时隙的重复传输方案,或者由时隙内基于跳波束的重复传输方案切换至时隙内基于子时隙的重复传输方案。
例如,当前PUCCH配置方案为每时隙占用2个符号重传4次的scheme1时,通过MAC-CE激活子时隙传输配置参数,其他传输参数可以不变的情况下将资源配置方式从时隙间的重传动态切换到scheme3的子时隙重传方案即每个子时隙占用2个符号在时隙内重传4次。
再例如,当前PUCCH配置方案为时隙内占用7个符号的scheme2方案,通过MAC-CE激活子时隙传输配置参数后,可以将资源配置方式切换到子时隙重传方案即每个子时隙占用7个符号,同时需要修改传输次数参数,可以实现到scheme3方案的动态切换。
另一种实施方式中,本公开实施例中可以去激活子时隙传输配置参数,以实现由时隙内基于子时隙的重复传输方案切换至时隙间重复传输方案,或者由时隙内基于子时隙的重复传输方案切换至时隙内基于跳波束的重复传输方案。
例如,当前PUCCH配置方案为每时隙占用2个符号重传4次的scheme1时,若去激活子时隙传输配置参数,则将资源配置方式从scheme3的子时隙重传方案(每个子时隙占用2个符号在时隙内重传4次),动态切换到scheme1的时隙间重传方案。
再例如,当前PUCCH配置方案为时隙内占用7个符号的scheme2方案,若去激活子 时隙传输配置参数后,可以将资源配置方式由子时隙重传方案(每个子时隙占用7个符号)动态切换到时隙间重复传输方案。并且可以通过修改传输次数参数,可以实现scheme3方案与scheme2方案的动态切换。
本公开实施例中也可以通过重配置子时隙传输配置参数为无效传输配置参数,实现重复传输方案的动态切换。例如,通过重配置子时隙传输配置参数为无效传输配置参数,以实现时隙间重复传输方案与时隙内基于子时隙的重复传输方案的动态切换。
本公开实施例中将重配置子时隙传输配置参数为无效传输配置参数,也可以理解为是在当前使用的重复传输方案上不使用该子时隙传输配置参数。
一示例中,通过重配置子时隙传输配置参数为无效传输配置参数以指示使用scheme1的重复阐述方案。或者,也可以直接改变子时隙的大小配置,使其适用于当前的调度需求。例如,subslotLengthForPUCCH参数可以配置数值“0”用来指示时隙级别的传输。并且,通过在scheme3配置下,通过重新配置该参数,实现scheme1和scheme3的动态切换。
一种实施方式中,本公开实施例中也可以通过修改子时隙传输配置参数为子时隙占用资源大小,以实现由时隙间重复传输方案切换至时隙内基于子时隙的重复传输方案。
例如,通过修改子时隙传输配置参数的具体数值来实现scheme3下的具体子时隙占用资源大小。例如,当前配置子时隙为7个符号的传输可以改变为子时隙为2个符号的传输配置,并直接用于本次调度传输。
本公开实施例提供的用于PUCCH的通信方法中,也可以通过时隙数量配置参数(nrofslots参数),实现不同重复传输方案之间的动态切换。
图8是根据一示例性实施例示出的一种用于PUCCH的通信方法的流程图,该用于PUCCH的通信方法可以单独被执行,也可以结合本公开的其他实施例一起被执行。如图8所示,用于PUCCH的通信方法用于网络设备中,包括以下步骤。
在步骤S41中,发送时隙数量配置参数,时隙数量配置参数用于指示面向多个TRP方向协作发送PUCCH进行重复传输所占用的时隙数量。
本公开实施例中,网络设备配置并发送时隙数量配置参数,以指示面向多个TRP方向协作发送PUCCH进行重复传输所占用的时隙数量,进而可以实现scheme1和scheme2之间的动态切换,以及scheme2和scheme3之间的动态切换。
一种实施方式中,本公开实施例中可以通过MAC-CE修改该PUCCH资源对应的传输次数参数(时隙数量配置参数),实现不同重复传输方案之间的动态切换。
本公开实施例一种实施方式中,可以激活或者去激活该时隙数量配置参数,实现资源在时隙重传和波束跳波束重传方案的配置之间直接动态切换,适用于后续的调度需求。
例如,本公开实施例中可以激活时隙数量配置参数,以实现由时隙内基于跳波束的重复传输方案切换至时隙间重复传输方案,或者由时隙内基于跳波束的重复传输方案切换至时隙内基于子时隙的重复传输方案。
一示例中,当配置了4个符号4次时隙间重传的scheme1方案的PUCCH资源,通过MAC-CE激活重传次数参数K,则可以由4个符号的波束跳波束重传方案(即scheme2方案)切换至时隙间重复传输方案(即scheme1方案)。同理适用于scheme2和scheme3之间的切换情况。
再例如,本公开实施例中可以去激活时隙数量配置参数,以实现由时隙间重复传输方案切换至时隙内基于跳波束的重复传输方案,或者由时隙内基于子时隙的重复传输方案切换至时隙内基于跳波束的重复传输方案。
一示例中,当配置了4个符号4次时隙间重传的scheme1方案的PUCCH资源,通过MAC-CE去激活重传次数参数K,则默认切换到4个符号的波束跳波束重传方案(即scheme2方案)上。同理适用于scheme2和scheme3之间的切换情况。
本公开实施例另一种实施方式中,可以重配置时隙数量配置参数,以实现由时隙间重复传输方案切换至时隙内基于跳波束的重复传输方案,或者由时隙内基于子时隙的重复传输方案切换至时隙内基于跳波束的重复传输方案。
一示例中,对于scheme2参数配置修改为1。当配置了4个符号4次时隙间重传的scheme1方案的PUCCH资源,通过MAC-CE修改时隙数量配置参数(重传次数参数K=1),则默认切换到4个符号的波束跳频重传方案即scheme2方案上。同理适用于scheme2和scheme3之间的切换情况。
本公开实施例提供的用于PUCCH的通信方法中,也可以通过PUCCH资源配置信息,实现不同重复传输方案之间的动态切换。例如,在同一个PUCCH resource set中分别配置对应scheme1,scheme2,sheme3传输的不同PUCCH资源配置。通过DCI指示PRI来激活当前采用的调度传输方案。其中,PRI可以理解为是PUCCH资源指示(PUCCH Resource Indicator),用来指示本次调度具体使用当前PUCCH组中的哪个PUCCH资源传输。进一步可以理解的是,网络设备可以通过RRC信令配置当前PUCCH的传输方案。
图9是根据一示例性实施例示出的一种用于PUCCH的通信方法的流程图,该用于PUCCH的通信方法可以单独被执行,也可以结合本公开的其他实施例一起被执行。如图9所示,用于PUCCH的通信方法用于网络设备中,包括以下步骤。
在步骤S51中,发送PUCCH资源配置信息,PUCCH资源配置信息包括第一PUCCH资源配置信息,或者第二PUCCH资源配置信息,或者第三PUCCH资源配置信息。
其中,第一PUCCH资源配置信息对应时隙间重复传输方案,第二PUCCH资源配置信息对应时隙内基于跳波束的重复传输方案,第三PUCCH资源配置信息对应时隙内基于子时隙的重复传输方案。
本公开实施例中,网络设备发送PUCCH资源配置信息,以指示终端使用PUCCH资源配置信息对应的重复传输方案,进行面向多个TRP方向协作发送PUCCH。
一示例中,当前PUCCH的传输方案为使用第一PUCCH资源配置信息对应时隙间重复传输方案。若网络设备发送第三PUCCH资源配置信息,则可以动态切换至第三PUCCH资源配置信息对应时隙内基于子时隙的重复传输方案。
本公开实施例提供的用于PUCCH的通信方法,通过不同的方法实现multi-TRP传输下的不同PUCCH信道传输方案之间的切换,可以提高调度的灵活性,更加快速灵活的适应信道和业务变化,减少时延,更为有效的利用系统资源,提高系统性能。
基于相同的构思,本公开实施例提供一种用于终端的PUCCH通信方法。
图10是根据一示例性实施例示出的一种用于PUCCH的通信方法的流程图,该用于PUCCH的通信方法可以单独被执行,也可以结合本公开的其他实施例一起被执行。如图10所示,用于PUCCH的通信方法用于终端中,包括以下步骤。
在步骤S61中,接收指示信息,指示信息用于指示终端动态切换重复传输方案,以面向多个TRP方向协作重复发送PUCCH。
其中,重复传输方案包括时隙间重复传输方案、时隙内基于跳波束的重复传输方案以及时隙内基于子时隙的重复传输方案。
在步骤S62中,基于指示信息,面向多个TRP方向协作发送PUCCH。
本公开实施例中,终端面向多个TRP方向协作发送PUCCH的情况下,通过指示信息可以在面向不同的TRP方向进行数据传输时,动态切换不同的PUCCH传输方案,可以使终端面向不同的TRP方向按照不同的传输方案协作发送PUCCH。
本公开实施例提供的一种实施方式中,网络设备可以通过配置子时隙传输配置参数,实现不同重复传输方案的切换。即,网络设备可以通过发送子时隙传输配置参数,指示面向多个TRP方向协作重复发送PUCCH所占用的子时隙资源信息。
图11是根据一示例性实施例示出的一种用于PUCCH的通信方法的流程图,该用于PUCCH的通信方法可以单独被执行,也可以结合本公开的其他实施例一起被执行。如图11所示,用于PUCCH的通信方法用于终端中,包括以下步骤。
在步骤S71中,接收子时隙传输配置参数,子时隙传输配置参数用于指示面向多个TRP方向协作重复发送PUCCH所占用的子时隙资源信息。
本公开实施例中终端可以通过接收的子时隙传输配置参数,实现不同重复传输方案之间的动态切换。例如,终端基于子时隙传输配置参数实现scheme1和scheme3之间的动态切换。并且可以通过动态改变的scheme3的subslot配置,实现scheme2和scheme3之间的动态切换。
图12是根据一示例性实施例示出的一种用于PUCCH的通信方法的流程图,该用于PUCCH的通信方法可以单独被执行,也可以结合本公开的其他实施例一起被执行。如图12所示,用于PUCCH的通信方法用于终端中,包括以下步骤。
在步骤S81中,接收RRC信令,RRC信令中包括PUCCH配置信息,PUCCH配置信息配置为PUCCH资源级别或PUCCH资源集合级别或PUCCH格式级别的子时隙配置长度信息。
其中,RRC信令半静态配置子时隙传输配置参数。
例如,在RRC参数PUCCH_config中添加PUCCH资源(即resource)级别或者PUCCH格式(即PUCCH format)级别的subslotLengthForPUCCH参数,进行subslot传输配置。例如该subslotLengthForPUCCH参数可以配置子时隙例如为2,7符号长度或其他取值。
可以理解的是,相关协议中subslotLengthForPUCCH参数不用于指示PUCCH重复传输的子时隙资源大小。本公开实施例中通过subslotLengthForPUCCH参数指示PUCCH重复传输的子时隙资源大小,实现不同重复传输方案之间的动态切换。
本公开实施例中可以通过MAC-CE配置或修改该PUCCH资源对应的subslot传输配置,实现不同重复传输方案之间的动态切换。
其中,本公开实施例中可以激活或者去激活该子时隙传输配置参数,使该资源在时隙重传和子时隙重传方案的配置之间直接动态切换,适用于后续的调度需求。
图13是根据一示例性实施例示出的一种用于PUCCH的通信方法的流程图,该用于PUCCH的通信方法可以单独被执行,也可以结合本公开的其他实施例一起被执行。如图13所示,用于PUCCH的通信方法用于终端中,包括以下步骤。
在步骤S91中,响应于子时隙传输配置参数被激活,由时隙间重复传输方案切换至时隙内基于子时隙的重复传输方案,并面向多个TRP方向协作发送PUCCH,或者由时隙内基于跳波束的重复传输方案切换至时隙内基于子时隙的重复传输方案,面向多个TRP方向协作发送PUCCH。
图14是根据一示例性实施例示出的一种用于PUCCH的通信方法的流程图,该用于PUCCH的通信方法可以单独被执行,也可以结合本公开的其他实施例一起被执行。如图14所示,用于PUCCH的通信方法用于终端中,包括以下步骤。
在步骤S101中,响应于子时隙传输配置参数被去激活,由时隙内基于子时隙的重复传输方案切换至时隙间重复传输方案,并面向多个TRP方向协作发送PUCCH,或者由时隙内基于子时隙的重复传输方案切换至时隙内基于跳波束的重复传输方案,并面向多个TRP方向协作发送PUCCH。
本公开实施例中也可以通过重配置子时隙传输配置参数为无效传输配置参数,实现重复传输方案的动态切换。例如,通过重配置子时隙传输配置参数为无效传输配置参数,以实现时隙间重复传输方案与时隙内基于子时隙的重复传输方案的动态切换。
图15是根据一示例性实施例示出的一种用于PUCCH的通信方法的流程图,该用于PUCCH的通信方法可以单独被执行,也可以结合本公开的其他实施例一起被执行。如图15所示,用于PUCCH的通信方法用于终端中,包括以下步骤。
在步骤S111中,响应于子时隙传输配置参数被重配置为无效传输配置参数,动态切换时隙间重复传输方案与时隙内基于子时隙的重复传输方案,并面向多个TRP方向协作发送PUCCH。
本公开实施例提供的用于PUCCH的通信方法中,也可以通过时隙数量配置参数(nrofslots参数),实现不同重复传输方案之间的动态切换。
图16是根据一示例性实施例示出的一种用于PUCCH的通信方法的流程图,该用于PUCCH的通信方法可以单独被执行,也可以结合本公开的其他实施例一起被执行。如图16所示,用于PUCCH的通信方法用于终端中,包括以下步骤。
在步骤S121中,响应于子时隙传输配置参数被修改为子时隙占用资源大小,由时隙间重复传输方案切换至时隙内基于子时隙的重复传输方案,并面向多个TRP方向协作发送PUCCH。
本公开实施例中,终端可以接收网络设备配置并发送的时隙数量配置参数,以实现scheme1和scheme2之间的动态切换,以及scheme2和scheme3之间的动态切换。
图17是根据一示例性实施例示出的一种用于PUCCH的通信方法的流程图,该用于PUCCH的通信方法可以单独被执行,也可以结合本公开的其他实施例一起被执行。如图17所示,用于PUCCH的通信方法用于终端中,包括以下步骤。
在步骤S131中,接收时隙数量配置参数,时隙数量配置参数用于指示面向多个TRP方向协作发送PUCCH进行重复传输所占用的时隙数量。
本公开实施例一种实施方式中,可以激活或者去激活该时隙数量配置参数,实现资源在时隙重传和波束跳波束重传方案的配置之间直接动态切换,适用于后续的调度需求。
图18是根据一示例性实施例示出的一种用于PUCCH的通信方法的流程图,该用于 PUCCH的通信方法可以单独被执行,也可以结合本公开的其他实施例一起被执行。如图18所示,用于PUCCH的通信方法用于终端中,包括以下步骤。
在步骤S141中,响应于时隙数量配置参数被激活,由时隙内基于跳波束的重复传输方案切换至时隙间重复传输方案,并面向多个TRP方向协作发送PUCCH,或者由时隙内基于跳波束的重复传输方案切换至时隙内基于子时隙的重复传输方案,并面向多个TRP方向协作发送PUCCH。
图19是根据一示例性实施例示出的一种用于PUCCH的通信方法的流程图,该用于PUCCH的通信方法可以单独被执行,也可以结合本公开的其他实施例一起被执行。如图19所示,用于PUCCH的通信方法用于终端中,包括以下步骤。
在步骤S151中,响应于时隙数量配置参数被去激活,以由时隙间重复传输方案切换至时隙内基于跳波束的重复传输方案,并面向多个TRP方向协作发送PUCCH,或者由时隙内基于子时隙的重复传输方案切换至时隙内基于跳波束的重复传输方案,并面向多个TRP方向协作发送PUCCH。
本公开实施例另一种实施方式中,可以重配置时隙数量配置参数,以实现由时隙间重复传输方案切换至时隙内基于跳波束的重复传输方案,或者由时隙内基于子时隙的重复传输方案切换至时隙内基于跳波束的重复传输方案。
图20是根据一示例性实施例示出的一种用于PUCCH的通信方法的流程图,该用于PUCCH的通信方法可以单独被执行,也可以结合本公开的其他实施例一起被执行。如图20所示,用于PUCCH的通信方法用于终端中,包括以下步骤。
在步骤S161中,响应于时隙数量配置参数被重配置,由时隙间重复传输方案切换至时隙内基于跳波束的重复传输方案,并面向多个TRP方向协作发送PUCCH,或者由时隙内基于子时隙的重复传输方案切换至时隙内基于跳波束的重复传输方案,并面向多个TRP方向协作发送PUCCH。
一种实施方式中,指示信息包括PUCCH资源配置信息,PUCCH资源配置信息包括第一PUCCH资源配置信息,或者第二PUCCH资源配置信息,或者第三PUCCH资源配置信息。
本公开实施例提供的用于PUCCH的通信方法中,也可以通过PUCCH资源配置信息,实现不同重复传输方案之间的动态切换。例如,在同一个PUCCH resource set中分别配置对应scheme1,scheme2,sheme3传输的不同PUCCH资源配置。通过DCI指示的PRI来确定激活当前采用的调度传输方案。可以理解的是,终端可以通过RRC信令确定当前PUCCH的传输方案。
图21是根据一示例性实施例示出的一种用于PUCCH的通信方法的流程图,该用于PUCCH的通信方法可以单独被执行,也可以结合本公开的其他实施例一起被执行。如图21所示,用于PUCCH的通信方法用于终端中,包括以下步骤。
在步骤S171中,响应于PUCCH资源配置信息包括第一PUCCH资源配置信息,采用时隙间重复传输方案,面向多个TRP方向协作发送PUCCH。
响应于PUCCH资源配置信息包括第二PUCCH资源配置信息,采用时隙内基于跳波束的重复传输方案,面向多个TRP方向协作发送PUCCH。
响应于PUCCH资源配置信息包括第三PUCCH资源配置信息,采用时隙内基于子时隙的重复传输方案,面向多个TRP方向协作发送PUCCH。
本公开实施例中,通过不同的方法实现multi-TRP传输下的不同PUCCH信道传输方案之间的切换,可以提高调度的灵活性,更加快速灵活的适应信道和业务变化,减少时延,更为有效的利用系统资源,提高系统性能。
可以理解的是,本公开实施例提供的应用于终端的用于PUCCH的通信方法,与网络设备进行PUCCH的通信方法相类似,相同之处在此不再赘述。
进一步可以理解的是,本公开实施例提供的用于PUCCH的通信方法可以应用于终端和网络设备交互实现multi-TRP传输的实施过程。对于终端和网络设备交互实现multi-TRP传输传输方法中,终端和网络设备各自具备实现上述实施例中的相关功能,在此不再赘述。
需要说明的是,本领域内技术人员可以理解,本公开实施例上述涉及的各种实施方式/实施例中可以配合前述的实施例使用,也可以是独立使用。无论是单独使用还是配合前述的实施例一起使用,其实现原理类似。本公开实施中,部分实施例中是以一起使用的实施方式进行说明的。当然,本领域内技术人员可以理解,这样的举例说明并非对本公开实施例的限定。
基于相同的构思,本公开实施例还提供一种用于PUCCH的通信装置。
可以理解的是,本公开实施例提供的用于PUCCH的通信装置为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。结合本公开实施例中所公开的各示例的单元及算法步骤,本公开实施例能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。本领域技术人员可以对每个特定的应用来使用不同的方法来实现所描述的功能,但是这种实现不应认为超出本公开实施例的技术方案的范围。
图22是根据一示例性实施例示出的一种用于PUCCH的通信装置框图。参照图22,该用于PUCCH的通信装置100,应用于网络设备,包括发送单元101。
发送单元101,被配置为在确定终端面向多个TRP方向协作发送PUCCH的情况下,发送指示信息。指示信息用于指示终端动态切换重复传输方案,以面向多个TRP方向协作重复发送PUCCH。重复传输方案包括时隙间重复传输方案、时隙内基于跳波束的重复传输方案以及时隙内基于子时隙的重复传输方案。
一种实施方式中,发送单元101发送子时隙传输配置参数,子时隙传输配置参数用于指示面向多个TRP方向协作重复发送PUCCH所占用的子时隙资源信息。
一种实施方式中,发送单元101配置RRC信令,RRC信令中包括PUCCH配置信息,PUCCH配置信息配置在PUCCH资源级别或PUCCH资源集合级别或PUCCH格式级别的子时隙配置长度信息。
一种实施方式中,发送单元101还被配置为激活子时隙传输配置参数,以实现由时隙间重复传输方案切换至时隙内基于子时隙的重复传输方案,或者由时隙内基于跳波束的重复传输方案切换至时隙内基于子时隙的重复传输方案。或者
发送单元101还被配置为去激活子时隙传输配置参数,以实现由时隙内基于子时隙的重复传输方案切换至时隙间重复传输方案,或者由时隙内基于子时隙的重复传输方案切换至时隙内基于跳波束的重复传输方案。
一种实施方式中,发送单元101还被配置为:重配置子时隙传输配置参数为无效传输配置参数,以实现时隙间重复传输方案与时隙内基于子时隙的重复传输方案的动态切换。
一种实施方式中,发送单元101还被配置为:修改子时隙传输配置参数为子时隙占用资源大小,以实现由时隙间重复传输方案切换至时隙内基于子时隙的重复传输方案。
一种实施方式中,发送单元101发送时隙数量配置参数,时隙数量配置参数用于指示面向多个TRP方向协作发送PUCCH进行重复传输所占用的时隙数量。
一种实施方式中,发送单元101还被配置为:激活时隙数量配置参数,以实现由时隙内基于跳波束的重复传输方案切换至时隙间重复传输方案,或者由时隙内基于跳波束的重复传输方案切换至时隙内基于子时隙的重复传输方案。或者
发送单元101还被配置为:去激活时隙数量配置参数,以实现由时隙间重复传输方案切换至时隙内基于跳波束的重复传输方案,或者由时隙内基于子时隙的重复传输方案切换至时隙内基于跳波束的重复传输方案。
一种实施方式中,发送单元101还被配置为:重配置时隙数量配置参数,以实现由时隙间重复传输方案切换至时隙内基于跳波束的重复传输方案,或者由时隙内基于子时隙的重复传输方案切换至时隙内基于跳波束的重复传输方案。
一种实施方式中,发送单元101发送PUCCH资源配置信息,PUCCH资源配置信息包 括第一PUCCH资源配置信息,或者第二PUCCH资源配置信息,或者第三PUCCH资源配置信息。第一PUCCH资源配置信息对应时隙间重复传输方案,第二PUCCH资源配置信息对应时隙内基于跳波束的重复传输方案,第三PUCCH资源配置信息对应时隙内基于子时隙的重复传输方案。
图23是根据一示例性实施例示出的一种用于PUCCH的通信装置框图。参照图23,该用于PUCCH的通信装置200,应用于终端,包括接收单元201和发送单元202。
接收单元201,被配置为接收指示信息,指示信息用于指示终端动态切换重复传输方案,以面向多个TRP方向协作重复发送PUCCH,重复传输方案包括时隙间重复传输方案、时隙内基于跳波束的重复传输方案以及时隙内基于子时隙的重复传输方案;
发送单元202,被配置为基于指示信息,面向多个TRP方向协作发送PUCCH。
一种实施方式中,接收单元201接收子时隙传输配置参数,子时隙传输配置参数用于指示面向多个TRP方向协作重复发送PUCCH所占用的子时隙资源信息。
一种实施方式中,接收单元201接收RRC信令,RRC信令中包括PUCCH配置信息,PUCCH配置信息配置为PUCCH资源级别或PUCCH资源集合级别或PUCCH格式级别的子时隙配置长度信息。
一种实施方式中,响应于子时隙传输配置参数被激活,发送单元202由时隙间重复传输方案切换至时隙内基于子时隙的重复传输方案,并面向多个TRP方向协作发送PUCCH,或者由时隙内基于跳波束的重复传输方案切换至时隙内基于子时隙的重复传输方案,面向多个TRP方向协作发送PUCCH;或者
响应于子时隙传输配置参数被去激活,发送单元202由时隙内基于子时隙的重复传输方案切换至时隙间重复传输方案,并面向多个TRP方向协作发送PUCCH,或者由时隙内基于子时隙的重复传输方案切换至时隙内基于跳波束的重复传输方案,并面向多个TRP方向协作发送PUCCH。
一种实施方式中,响应于子时隙传输配置参数被重配置为无效传输配置参数,发送单元202动态切换时隙间重复传输方案与时隙内基于子时隙的重复传输方案,并面向多个TRP方向协作发送PUCCH。
一种实施方式中,响应于子时隙传输配置参数被修改为子时隙占用资源大小,发送单元202由时隙间重复传输方案切换至时隙内基于子时隙的重复传输方案,并面向多个TRP方向协作发送PUCCH。
一种实施方式中,接收单元201接收时隙数量配置参数,时隙数量配置参数用于指示面向多个TRP方向协作发送PUCCH进行重复传输所占用的时隙数量。
一种实施方式中,响应于时隙数量配置参数被激活,发送单元202由时隙内基于跳波束的重复传输方案切换至时隙间重复传输方案,并面向多个TRP方向协作发送PUCCH,或者由时隙内基于跳波束的重复传输方案切换至时隙内基于子时隙的重复传输方案,并面向多个TRP方向协作发送PUCCH;或者
响应于时隙数量配置参数被去激活,发送单元202以由时隙间重复传输方案切换至时隙内基于跳波束的重复传输方案,并面向多个TRP方向协作发送PUCCH,或者由时隙内基于子时隙的重复传输方案切换至时隙内基于跳波束的重复传输方案,并面向多个TRP方向协作发送PUCCH。
一种实施方式中,响应于时隙数量配置参数被重配置,发送单元202由时隙间重复传输方案切换至时隙内基于跳波束的重复传输方案,并面向多个TRP方向协作发送PUCCH,或者由时隙内基于子时隙的重复传输方案切换至时隙内基于跳波束的重复传输方案,并面向多个TRP方向协作发送PUCCH。
一种实施方式中,指示信息包括PUCCH资源配置信息,PUCCH资源配置信息包括第一PUCCH资源配置信息,或者第二PUCCH资源配置信息,或者第三PUCCH资源配置信息;
响应于PUCCH资源配置信息包括第一PUCCH资源配置信息,发送单元202采用时隙间重复传输方案,面向多个TRP方向协作发送PUCCH;响应于PUCCH资源配置信息包括第二PUCCH资源配置信息,发送单元202采用时隙内基于跳波束的重复传输方案,面向多个TRP方向协作发送PUCCH;响应于PUCCH资源配置信息包括第三PUCCH资源配置信息,发送单元202采用时隙内基于子时隙的重复传输方案,面向多个TRP方向协作发送PUCCH。
关于上述实施例中的装置,其中各个模块执行操作的具体方式已经在有关该方法的实施例中进行了详细描述,此处将不做详细阐述说明。
图24是根据一示例性实施例示出的一种用于PUCCH的通信装置的框图。例如,装置300可以是移动电话,计算机,数字广播终端,消息收发设备,游戏控制台,平板设备,医疗设备,健身设备,个人数字助理等。
参照图24,装置300可以包括以下一个或多个组件:处理组件302,存储器304,电力组件306,多媒体组件308,音频组件310,输入/输出(I/O)接口312,传感器组件314,以及通信组件316。
处理组件302通常控制装置300的整体操作,诸如与显示,电话呼叫,数据通信,相机操作和记录操作相关联的操作。处理组件302可以包括一个或多个处理器320来执行指 令,以完成上述的方法的全部或部分步骤。此外,处理组件302可以包括一个或多个模块,便于处理组件302和其他组件之间的交互。例如,处理组件302可以包括多媒体模块,以方便多媒体组件308和处理组件302之间的交互。
存储器304被配置为存储各种类型的数据以支持在装置300的操作。这些数据的示例包括用于在装置300上操作的任何应用程序或方法的指令,联系人数据,电话簿数据,消息,图片,视频等。存储器304可以由任何类型的易失性或非易失性存储设备或者它们的组合实现,如静态随机存取存储器(SRAM),电可擦除可编程只读存储器(EEPROM),可擦除可编程只读存储器(EPROM),可编程只读存储器(PROM),只读存储器(ROM),磁存储器,快闪存储器,磁盘或光盘。
电力组件306为装置300的各种组件提供电力。电力组件306可以包括电源管理系统,一个或多个电源,及其他与为装置300生成、管理和分配电力相关联的组件。
多媒体组件308包括在所述装置300和用户之间的提供一个输出接口的屏幕。在一些实施例中,屏幕可以包括液晶显示器(LCD)和触摸面板(TP)。如果屏幕包括触摸面板,屏幕可以被实现为触摸屏,以接收来自用户的输入信号。触摸面板包括一个或多个触摸传感器以感测触摸、滑动和触摸面板上的手势。所述触摸传感器可以不仅感测触摸或滑动动作的边界,而且还检测与所述触摸或滑动操作相关的持续时间和压力。在一些实施例中,多媒体组件308包括一个前置摄像头和/或后置摄像头。当装置300处于操作模式,如拍摄模式或视频模式时,前置摄像头和/或后置摄像头可以接收外部的多媒体数据。每个前置摄像头和后置摄像头可以是一个固定的光学透镜系统或具有焦距和光学变焦能力。
音频组件310被配置为输出和/或输入音频信号。例如,音频组件310包括一个麦克风(MIC),当装置300处于操作模式,如呼叫模式、记录模式和语音识别模式时,麦克风被配置为接收外部音频信号。所接收的音频信号可以被进一步存储在存储器304或经由通信组件316发送。在一些实施例中,音频组件310还包括一个扬声器,用于输出音频信号。
I/O接口312为处理组件302和外围接口模块之间提供接口,上述外围接口模块可以是键盘,点击轮,按钮等。这些按钮可包括但不限于:主页按钮、音量按钮、启动按钮和锁定按钮。
传感器组件314包括一个或多个传感器,用于为装置300提供各个方面的状态评估。例如,传感器组件314可以检测到装置300的打开/关闭状态,组件的相对定位,例如所述组件为装置300的显示器和小键盘,传感器组件314还可以检测装置300或装置300一个组件的位置改变,用户与装置300接触的存在或不存在,装置300方位或加速/减速和装置300的温度变化。传感器组件314可以包括接近传感器,被配置用来在没有任何的物理接 触时检测附近物体的存在。传感器组件314还可以包括光传感器,如CMOS或CCD图像传感器,用于在成像应用中使用。在一些实施例中,该传感器组件314还可以包括加速度传感器,陀螺仪传感器,磁传感器,压力传感器或温度传感器。
通信组件316被配置为便于装置300和其他设备之间有线或无线方式的通信。装置300可以接入基于通信标准的无线网络,如WiFi,2G或3G,或它们的组合。在一个示例性实施例中,通信组件316经由广播信道接收来自外部广播管理系统的广播信号或广播相关信息。在一个示例性实施例中,所述通信组件316还包括近场通信(NFC)模块,以促进短程通信。例如,在NFC模块可基于射频识别(RFID)技术,红外数据协会(IrDA)技术,超宽带(UWB)技术,蓝牙(BT)技术和其他技术来实现。
在示例性实施例中,装置300可以被一个或多个应用专用集成电路(ASIC)、数字信号处理器(DSP)、数字信号处理设备(DSPD)、可编程逻辑器件(PLD)、现场可编程门阵列(FPGA)、控制器、微控制器、微处理器或其他电子元件实现,用于执行上述方法。
在示例性实施例中,还提供了一种包括指令的非临时性计算机可读存储介质,例如包括指令的存储器304,上述指令可由装置300的处理器320执行以完成上述方法。例如,所述非临时性计算机可读存储介质可以是ROM、随机存取存储器(RAM)、CD-ROM、磁带、软盘和光数据存储设备等。
图25是根据一示例性实施例示出的一种用于PUCCH的通信装置400的框图。例如,装置400可以被提供为一服务器。参照图25,装置400包括处理组件422,其进一步包括一个或多个处理器,以及由存储器432所代表的存储器资源,用于存储可由处理组件422的执行的指令,例如应用程序。存储器432中存储的应用程序可以包括一个或一个以上的每一个对应于一组指令的模块。此外,处理组件422被配置为执行指令,以执行上述方法。
装置400还可以包括一个电源组件426被配置为执行装置400的电源管理,一个有线或无线网络接口450被配置为将装置400连接到网络,和一个输入输出(I/O)接口458。装置400可以操作基于存储在存储器432的操作系统,例如Windows ServerTM,Mac OS XTM,UnixTM,LinuxTM,FreeBSDTM或类似。
在示例性实施例中,装置400可以被一个或多个应用专用集成电路(ASIC)、数字信号处理器(DSP)、数字信号处理设备(DSPD)、可编程逻辑器件(PLD)、现场可编程门阵列(FPGA)、控制器、微控制器、微处理器或其他电子元件实现,用于执行上述方法。
在示例性实施例中,还提供了一种包括指令的非临时性计算机可读存储介质,例如包括指令的存储器432,上述指令可由装置400的处理组件422执行以完成上述方法。例如,所述非临时性计算机可读存储介质可以是ROM、随机存取存储器(RAM)、CD-ROM、磁 带、软盘和光数据存储设备等。
进一步可以理解的是,本公开中“多个”是指两个或两个以上,其它量词与之类似。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。字符“/”一般表示前后关联对象是一种“或”的关系。单数形式的“一种”、“所述”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。
进一步可以理解的是,术语“第一”、“第二”等用于描述各种信息,但这些信息不应限于这些术语。这些术语仅用来将同一类型的信息彼此区分开,并不表示特定的顺序或者重要程度。实际上,“第一”、“第二”等表述完全可以互换使用。例如,在不脱离本公开范围的情况下,第一信息也可以被称为第二信息,类似地,第二信息也可以被称为第一信息。
进一步可以理解的是,本公开实施例中尽管在附图中以特定的顺序描述操作,但是不应将其理解为要求按照所示的特定顺序或是串行顺序来执行这些操作,或是要求执行全部所示的操作以得到期望的结果。在特定环境中,多任务和并行处理可能是有利的。
本领域技术人员在考虑说明书及实践这里公开的发明后,将容易想到本公开的其它实施方案。本申请旨在涵盖本公开的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本公开的一般性原理并包括本公开未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本公开的真正范围和精神由下面的权利要求指出。
应当理解的是,本公开并不局限于上面已经描述并在附图中示出的精确结构,并且可以在不脱离其范围进行各种修改和改变。本公开的范围仅由所附的权利要求来限制。

Claims (26)

  1. 一种用于PUCCH的通信方法,其特征在于,应用于网络设备,所述用于PUCCH的通信方法包括:
    响应于确定终端面向多个TRP方向协作发送PUCCH,发送指示信息;
    所述指示信息用于指示终端动态切换重复传输方案,以面向所述多个TRP方向协作重复发送PUCCH;
    所述重复传输方案包括时隙间重复传输方案、时隙内基于跳波束的重复传输方案以及时隙内基于子时隙的重复传输方案。
  2. 根据权利要求1所述的用于PUCCH的通信方法,其特征在于,所述发送指示信息,包括:
    发送子时隙传输配置参数,所述子时隙传输配置参数用于指示面向多个TRP方向协作重复发送PUCCH所占用的子时隙资源信息。
  3. 根据权利要求2所述的用于PUCCH的通信方法,其特征在于,发送子时隙传输配置参数,包括:
    配置无线资源控制RRC信令,所述RRC信令中包括PUCCH配置信息,所述PUCCH配置信息配置在PUCCH资源级别或PUCCH资源集合级别或PUCCH格式级别的子时隙配置长度信息。
  4. 根据权利要求2或3所述的用于PUCCH的通信方法,其特征在于,所述用于PUCCH的通信方法还包括:
    激活所述子时隙传输配置参数,以实现由时隙间重复传输方案切换至时隙内基于子时隙的重复传输方案,或者由时隙内基于跳波束的重复传输方案切换至时隙内基于子时隙的重复传输方案;或者
    去激活所述子时隙传输配置参数,以实现由时隙内基于子时隙的重复传输方案切换至时隙间重复传输方案,或者由时隙内基于子时隙的重复传输方案切换至时隙内基于跳波束的重复传输方案。
  5. 根据权利要求2或3所述的用于PUCCH的通信方法,其特征在于,所述用于PUCCH的通信方法还包括:
    重配置所述子时隙传输配置参数为无效传输配置参数,以实现时隙间重复传输方案与时隙内基于子时隙的重复传输方案的动态切换。
  6. 根据权利要求2或3所述的用于PUCCH的通信方法,其特征在于,所述用于PUCCH 的通信方法还包括:
    修改所述子时隙传输配置参数为子时隙占用资源大小,以实现由时隙间重复传输方案切换至时隙内基于子时隙的重复传输方案。
  7. 根据权利要求1所述的用于PUCCH的通信方法,其特征在于,所述发送指示信息,包括:
    发送时隙数量配置参数,所述时隙数量配置参数用于指示面向多个TRP方向协作发送PUCCH进行重复传输所占用的时隙数量。
  8. 根据权利要求7所述的用于PUCCH的通信方法,其特征在于,所述用于PUCCH的通信方法还包括:
    激活所述时隙数量配置参数,以实现由时隙内基于跳波束的重复传输方案切换至时隙间重复传输方案,或者由时隙内基于跳波束的重复传输方案切换至时隙内基于子时隙的重复传输方案;或者
    去激活所述时隙数量配置参数,以实现由时隙间重复传输方案切换至时隙内基于跳波束的重复传输方案,或者由时隙内基于子时隙的重复传输方案切换至时隙内基于跳波束的重复传输方案。
  9. 根据权利要求8所述的用于PUCCH的通信方法,其特征在于,所述用于PUCCH的通信方法还包括:
    重配置所述时隙数量配置参数,以实现由时隙间重复传输方案切换至时隙内基于跳波束的重复传输方案,或者由时隙内基于子时隙的重复传输方案切换至时隙内基于跳波束的重复传输方案。
  10. 根据权利要求1所述的用于PUCCH的通信方法,其特征在于,所述发送指示信息,包括:
    发送PUCCH资源配置信息,所述PUCCH资源配置信息包括第一PUCCH资源配置信息,或者第二PUCCH资源配置信息,或者第三PUCCH资源配置信息;
    所述第一PUCCH资源配置信息对应时隙间重复传输方案,所述第二PUCCH资源配置信息对应时隙内基于跳波束的重复传输方案,所述第三PUCCH资源配置信息对应时隙内基于子时隙的重复传输方案。
  11. 一种用于PUCCH的通信方法,其特征在于,应用于终端,所述用于PUCCH的通信方法包括:
    接收指示信息,所述指示信息用于指示终端动态切换重复传输方案,以面向多个TRP 方向协作重复发送PUCCH,所述重复传输方案包括时隙间重复传输方案、时隙内基于跳波束的重复传输方案以及时隙内基于子时隙的重复传输方案;
    基于所述指示信息,面向多个TRP方向协作发送PUCCH。
  12. 根据权利要求11所述的用于PUCCH的通信方法,其特征在于,所述接收指示信息,包括:
    接收子时隙传输配置参数,所述子时隙传输配置参数用于指示面向多个TRP方向协作重复发送PUCCH所占用的子时隙资源信息。
  13. 根据权利要求12所述的用于PUCCH的通信方法,其特征在于,接收子时隙传输配置参数,包括:
    接收无线资源控制RRC信令,所述RRC信令中包括PUCCH配置信息,所述PUCCH配置信息配置为PUCCH资源级别或PUCCH资源集合级别或PUCCH格式级别的子时隙配置长度信息。
  14. 根据权利要求12或13所述的用于PUCCH的通信方法,其特征在于,所述面向多个TRP方向协作发送PUCCH,包括:
    响应于所述子时隙传输配置参数被激活,由时隙间重复传输方案切换至时隙内基于子时隙的重复传输方案,并面向多个TRP方向协作发送PUCCH,或者由时隙内基于跳波束的重复传输方案切换至时隙内基于子时隙的重复传输方案,面向多个TRP方向协作发送PUCCH;或者
    响应于所述子时隙传输配置参数被去激活,由时隙内基于子时隙的重复传输方案切换至时隙间重复传输方案,并面向多个TRP方向协作发送PUCCH,或者由时隙内基于子时隙的重复传输方案切换至时隙内基于跳波束的重复传输方案,并面向多个TRP方向协作发送PUCCH。
  15. 根据权利要求12或13所述的用于PUCCH的通信方法,其特征在于,所述面向多个TRP方向协作发送PUCCH,包括:
    响应于所述子时隙传输配置参数被重配置为无效传输配置参数,动态切换时隙间重复传输方案与时隙内基于子时隙的重复传输方案,并面向多个TRP方向协作发送PUCCH。
  16. 根据权利要求12或13所述的用于PUCCH的通信方法,其特征在于,所述面向多个TRP方向协作发送PUCCH,包括:
    响应于所述子时隙传输配置参数被修改为子时隙占用资源大小,由时隙间重复传输方案切换至时隙内基于子时隙的重复传输方案,并面向多个TRP方向协作发送PUCCH。
  17. 根据权利要求11所述的用于PUCCH的通信方法,其特征在于,所述接收指示信 息,包括:
    接收时隙数量配置参数,所述时隙数量配置参数用于指示面向多个TRP方向协作发送PUCCH进行重复传输所占用的时隙数量。
  18. 根据权利要求17所述的用于PUCCH的通信方法,其特征在于,所述面向多个TRP方向协作发送PUCCH,包括:
    响应于所述时隙数量配置参数被激活,由时隙内基于跳波束的重复传输方案切换至时隙间重复传输方案,并面向多个TRP方向协作发送PUCCH,或者由时隙内基于跳波束的重复传输方案切换至时隙内基于子时隙的重复传输方案,并面向多个TRP方向协作发送PUCCH;或者
    响应于所述时隙数量配置参数被去激活,以由时隙间重复传输方案切换至时隙内基于跳波束的重复传输方案,并面向多个TRP方向协作发送PUCCH,或者由时隙内基于子时隙的重复传输方案切换至时隙内基于跳波束的重复传输方案,并面向多个TRP方向协作发送PUCCH。
  19. 根据权利要求18所述的用于PUCCH的通信方法,其特征在于,所述面向多个TRP方向协作发送PUCCH,包括:
    响应于所述时隙数量配置参数被重配置,由时隙间重复传输方案切换至时隙内基于跳波束的重复传输方案,并面向多个TRP方向协作发送PUCCH,或者由时隙内基于子时隙的重复传输方案切换至时隙内基于跳波束的重复传输方案,并面向多个TRP方向协作发送PUCCH。
  20. 根据权利要求11所述的用于PUCCH的通信方法,其特征在于,所述指示信息包括PUCCH资源配置信息,所述PUCCH资源配置信息包括第一PUCCH资源配置信息,或者第二PUCCH资源配置信息,或者第三PUCCH资源配置信息;
    所述基于所述指示信息,面向多个TRP方向协作发送PUCCH,包括:
    响应于所述PUCCH资源配置信息包括第一PUCCH资源配置信息,采用时隙间重复传输方案,面向多个TRP方向协作发送PUCCH;
    响应于所述PUCCH资源配置信息包括第二PUCCH资源配置信息,采用时隙内基于跳波束的重复传输方案,面向多个TRP方向协作发送PUCCH;
    响应于所述PUCCH资源配置信息包括第三PUCCH资源配置信息,采用时隙内基于子时隙的重复传输方案,面向多个TRP方向协作发送PUCCH。
  21. 一种用于PUCCH的通信装置,其特征在于,应用于网络设备,所述用于PUCCH 的通信装置包括:
    发送单元,被配置为在确定终端面向多个TRP方向协作发送PUCCH的情况下,发送指示信息;
    所述指示信息用于指示终端动态切换重复传输方案,以面向所述多个TRP方向协作重复发送PUCCH;
    所述重复传输方案包括时隙间重复传输方案、时隙内基于跳波束的重复传输方案以及时隙内基于子时隙的重复传输方案。
  22. 一种用于PUCCH的通信装置,其特征在于,应用于终端,所述用于PUCCH的通信装置包括:
    接收单元,被配置为接收指示信息,所述指示信息用于指示终端动态切换重复传输方案,以面向多个TRP方向协作重复发送PUCCH,所述重复传输方案包括时隙间重复传输方案、时隙内基于跳波束的重复传输方案以及时隙内基于子时隙的重复传输方案;
    发送单元,被配置为基于所述指示信息,面向多个TRP方向协作发送PUCCH。
  23. 一种用于PUCCH的通信装置,其特征在于,包括:
    处理器;
    用于存储处理器可执行指令的存储器;
    其中,所述处理器被配置为:执行权利要求1至10中任意一项所述的用于PUCCH的通信方法。
  24. 一种用于PUCCH的通信装置,其特征在于,包括:
    处理器;
    用于存储处理器可执行指令的存储器;
    其中,所述处理器被配置为:执行权利要求11至20中任意一项所述的用于PUCCH的通信方法。
  25. 一种存储介质,其特征在于,所述存储介质中存储有指令,当所述存储介质中的指令由网络设备的处理器执行时,使得网络设备能够执行权利要求1至10中任意一项所述的用于PUCCH的通信方法。
  26. 一种存储介质,其特征在于,所述存储介质中存储有指令,当所述存储介质中的指令由终端的处理器执行时,使得终端能够执行权利要求11至20中任意一项所述的用 于PUCCH的通信方法。
PCT/CN2021/103230 2021-06-29 2021-06-29 用于pucch的通信方法、装置及存储介质 WO2023272509A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202180001935.XA CN115735341A (zh) 2021-06-29 2021-06-29 用于pucch的通信方法、装置及存储介质
PCT/CN2021/103230 WO2023272509A1 (zh) 2021-06-29 2021-06-29 用于pucch的通信方法、装置及存储介质
EP21947466.5A EP4366209A1 (en) 2021-06-29 2021-06-29 Communication method and apparatus for pucch, and storage medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/103230 WO2023272509A1 (zh) 2021-06-29 2021-06-29 用于pucch的通信方法、装置及存储介质

Publications (1)

Publication Number Publication Date
WO2023272509A1 true WO2023272509A1 (zh) 2023-01-05

Family

ID=84689832

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/103230 WO2023272509A1 (zh) 2021-06-29 2021-06-29 用于pucch的通信方法、装置及存储介质

Country Status (3)

Country Link
EP (1) EP4366209A1 (zh)
CN (1) CN115735341A (zh)
WO (1) WO2023272509A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110536450A (zh) * 2019-09-03 2019-12-03 中兴通讯股份有限公司 一种数据传输方法、装置、传输接收节点、终端及介质
CN111901870A (zh) * 2020-03-25 2020-11-06 中兴通讯股份有限公司 一种传输方法、装置、设备及存储介质
US20200383105A1 (en) * 2019-05-24 2020-12-03 Samsung Electronics Co., Ltd. Method and device for transmitting control information in wireless communication system
CN113014360A (zh) * 2019-12-19 2021-06-22 中国移动通信有限公司研究院 上行控制信道的传输方法、终端及基站

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200383105A1 (en) * 2019-05-24 2020-12-03 Samsung Electronics Co., Ltd. Method and device for transmitting control information in wireless communication system
CN110536450A (zh) * 2019-09-03 2019-12-03 中兴通讯股份有限公司 一种数据传输方法、装置、传输接收节点、终端及介质
CN113014360A (zh) * 2019-12-19 2021-06-22 中国移动通信有限公司研究院 上行控制信道的传输方法、终端及基站
CN111901870A (zh) * 2020-03-25 2020-11-06 中兴通讯股份有限公司 一种传输方法、装置、设备及存储介质

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MODERATOR (NOKIA, NOKIA SHANGHAI BELL): "Summary of Multi-TRP URLLC for PUCCH and PUSCH", 3GPP DRAFT; R1-2009480, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. e-Meeting; 20201026 - 20201113, 3 November 2020 (2020-11-03), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051950302 *

Also Published As

Publication number Publication date
CN115735341A (zh) 2023-03-03
EP4366209A1 (en) 2024-05-08

Similar Documents

Publication Publication Date Title
JP6703180B2 (ja) データ伝送方法、装置、コンピュータプログラム、および、記録媒体
JP7337201B2 (ja) データ伝送方法、装置、システム及び記憶媒体
WO2021007787A1 (zh) 资源分配方法、装置及存储介质
WO2022193149A1 (zh) 波束确定方法、波束确定装置及存储介质
WO2022165646A1 (zh) 带宽部分切换方法、装置及通信设备
WO2023272509A1 (zh) 用于pucch的通信方法、装置及存储介质
WO2023044684A1 (zh) 一种用于天线切换配置的srs发送方法、装置及存储介质
WO2023272508A1 (zh) 用于pucch的通信方法、装置及存储介质
WO2023272493A1 (zh) 上行免调度pusch的通信方法、装置及存储介质
WO2023010465A1 (zh) 上行pusch的开环功率控制方法、装置及存储介质
WO2022205233A1 (zh) 用于pusch的通信方法、用于pusch的通信装置及存储介质
WO2022205229A1 (zh) 用于pusch的通信方法、装置及存储介质
WO2023044686A1 (zh) 一种用于天线切换配置的srs发送方法、装置及存储介质
WO2023122984A1 (zh) 一种srs触发方法、装置及存储介质
WO2022205213A1 (zh) 上行免调度pusch的开环功率控制方法、装置及存储介质
WO2023010548A1 (zh) 功率余量报告上报方法、装置及存储介质
WO2024031455A1 (zh) 一种预编码指示方法、装置及存储介质
WO2023010358A1 (zh) 上行协作trp确定方法、装置及存储介质
WO2024031454A1 (zh) 一种预编码指示方法、装置及存储介质
WO2022237895A1 (zh) 资源处理方法、装置、通信设备及可读存储介质
US20240178901A1 (en) Method and apparatus for determining default beam, and communication device
WO2023097699A1 (zh) 一种srs触发方法、装置及存储介质
WO2024020816A1 (zh) 信息处理方法及装置、通信设备及存储介质
WO2022237896A1 (zh) 传输处理方法、装置、通信设备及可读存储介质
WO2023245503A1 (zh) 一种监听方法、发送方法、装置、设备以及可读存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21947466

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2021947466

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021947466

Country of ref document: EP

Effective date: 20240129