WO2024031455A1 - 一种预编码指示方法、装置及存储介质 - Google Patents
一种预编码指示方法、装置及存储介质 Download PDFInfo
- Publication number
- WO2024031455A1 WO2024031455A1 PCT/CN2022/111524 CN2022111524W WO2024031455A1 WO 2024031455 A1 WO2024031455 A1 WO 2024031455A1 CN 2022111524 W CN2022111524 W CN 2022111524W WO 2024031455 A1 WO2024031455 A1 WO 2024031455A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- sri
- pusch
- srs resource
- different
- indication field
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 92
- 230000005540 biological transmission Effects 0.000 claims abstract description 176
- 238000004891 communication Methods 0.000 abstract description 30
- 230000000875 corresponding effect Effects 0.000 description 127
- 238000005516 engineering process Methods 0.000 description 18
- 238000012545 processing Methods 0.000 description 14
- LKKMLIBUAXYLOY-UHFFFAOYSA-N 3-Amino-1-methyl-5H-pyrido[4,3-b]indole Chemical compound N1C2=CC=CC=C2C2=C1C=C(N)N=C2C LKKMLIBUAXYLOY-UHFFFAOYSA-N 0.000 description 11
- 102100031413 L-dopachrome tautomerase Human genes 0.000 description 11
- 101710093778 L-dopachrome tautomerase Proteins 0.000 description 11
- 238000010586 diagram Methods 0.000 description 11
- 238000001914 filtration Methods 0.000 description 8
- 239000010410 layer Substances 0.000 description 8
- 239000011159 matrix material Substances 0.000 description 7
- 230000006870 function Effects 0.000 description 6
- 230000003287 optical effect Effects 0.000 description 5
- 230000003993 interaction Effects 0.000 description 4
- 230000005236 sound signal Effects 0.000 description 4
- 238000013461 design Methods 0.000 description 3
- 238000007726 management method Methods 0.000 description 3
- NJLAGDPRCAPJIF-MHSJTTIKSA-N (8S)-1',3',9-trihydroxy-6'-methoxy-3-[(1E,3E)-penta-1,3-dienyl]spiro[6,7-dihydro-2H-cyclopenta[g]isoquinoline-8,2'-cyclopenta[b]naphthalene]-1,4',5',8',9'-pentone Chemical compound COc1cc(=O)c2c(c1=O)c(=O)c1=C(O)[C@]3(CCc4cc5cc(\C=C\C=C\C)[nH]c(=O)c5c(O)c34)C(O)=c1c2=O NJLAGDPRCAPJIF-MHSJTTIKSA-N 0.000 description 2
- 230000001133 acceleration Effects 0.000 description 2
- 230000009471 action Effects 0.000 description 2
- 230000001427 coherent effect Effects 0.000 description 2
- 238000013500 data storage Methods 0.000 description 2
- 229920001690 polydopamine Polymers 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 238000001774 stimulated Raman spectroscopy Methods 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- 102000010498 Receptor Activator of Nuclear Factor-kappa B Human genes 0.000 description 1
- 108010038036 Receptor Activator of Nuclear Factor-kappa B Proteins 0.000 description 1
- 230000006978 adaptation Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 230000002596 correlated effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 230000014509 gene expression Effects 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 230000001360 synchronised effect Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L27/00—Modulated-carrier systems
Definitions
- the present disclosure relates to the field of communication technology, and in particular, to a precoding indication method, device and storage medium.
- TRP Transmission Reception Point
- Multi-TRP Multi-panel
- Panel Panel
- CoMP Coordinated Multiple Point transmission
- codebook-based simultaneous uplink transmission of multiple terminal panels is supported.
- the terminal needs to configure at most one sounding reference signal (Sounding Reference Signal, SRS) resource set for codebook-based uplink transmission.
- SRS Sounding Reference Signal
- the SRS resource set can be configured with multiple SRS resources, and the network device will provide feedback based on the number of SRS resources (N SRS ) in the SRS resource set.
- the SRS resource indicator Sounding Reference Signal resource indicator, SRI
- SRI Sounding Reference Signal resource indicator
- the network equipment determines the precoding matrix (Transmission Precoding Matrix Indicator, TPMI) and the number of transmission layers (Rank Indicator, RI) actually used by the terminal for transmission and notifies the terminal.
- the data in the next uplink transmission of the terminal needs to be precoded using the TPMI and RI specified by the network equipment.
- the precoded data is mapped to the corresponding antenna according to the spatial filtering (Spatial Relation Info) corresponding to the SRS resource indicated by the SRI. on the port.
- the physical downlink control channel (PDCCH), physical uplink control channel (PUCCH) and physical uplink shared channel (PUSCH) are enhanced.
- Multi-TRP-based PUSCH enhancement can schedule panel/TRP/TCI transmission based on a single PDCCH, such as single downlink control information (S-DCI).
- S-DCI single downlink control information
- the present disclosure provides a precoding indication method, device and storage medium.
- a precoding indication method is provided, which is applied to a network device, including: sending a single downlink control information S-DCI, where the S-DCI is used to schedule a terminal to orient from multiple antenna panels to Multiple transmitting and receiving points TRP codebook-based PUSCH transmission; the DCI under the S-DCI scheduling carries an SRI indication field, and the SRI indication field is used to indicate the SRS resource set corresponding to the PUSCH used for PUSCH transmission.
- the SRS resource combination is used to indicate the spatial filter used by the terminal when transmitting PUSCH corresponding to different panel/TRP/TCI/PUSCH transmission opportunities TO.
- the SRI indication field includes a single SRI indication field.
- the single SRI indication field includes code points, and the code points are used to indicate the transmission opportunities TO of different panel/TRP/TCI/PUSCH corresponding to the spatial filters used respectively when transmitting PUSCH. SRS resource index.
- the single SRI indication field includes a first code point, and the first code point is used to indicate a single SRS resource set, the single SRS resource set or different SRS resource sets in the single SRS resource set.
- SRS resource subsets are associated with different panel/TRP/TCI/PUSCH TO.
- the single SRI indication field includes a second code point, the second code point is used to indicate multiple SRS resource sets, and the multiple SRS resource sets are associated with different panel/TRP/TCI/ PUSCH TO.
- the number of bits in the single SRI indication field is determined based on the number of code points contained in the single SRI indication field; there is a corresponding relationship between the number of code points and the combination information of different SRIs, and the correspondence Relationships are predefined or configured by the network device.
- the SRI indication field includes multiple SRI indication fields, and different SRI indication fields in the multiple SRI indication fields are respectively associated with different panel/TRP/TCI/PUSCH TO directions.
- the PUSCH is transmitted from a single antenna panel to a single TRP; the same SRI indication field in the multiple SRI indication fields is associated with different SRS resource sets based on the indication information of the SRS resource set indication field; wherein, the association The number of effective bits of the same SRI indication field in different SRS resource sets is determined based on the number of SRS resources included in the SRS resource set associated with the same SRI indication field.
- the same number of resources is configured in the SRS resource sets associated with different TRP directions, and the number of bits corresponding to different SRI indication fields is the same.
- the number of bits corresponding to different SRI indication fields among the multiple SRI indication fields is different.
- the number of bits corresponding to the different SRI indication fields is determined based on the number of SRS resources included in the SRS resource sets of different panels/TRP/TCI/PUSCH TOs respectively associated with the multiple SRI indication fields.
- the number of SRI code points corresponding to the panel/TRP/TCI/PUSCH associated with the multiple SRI indication fields is determined based on the SRS resource index indicated in the corresponding relationship between different SRIs and SRS resource indexes.
- the plurality of SRI indication fields include a first SRI indication field and a second SRI indication field; the first SRI indication field is used for corresponding SRS resources indicated by the indication information of the SRS resource set indication field.
- the number of SRS resources in the SRS resource set is determined; the second SRI indication field is used to indicate the spatial filter used for PUSCH transmission of the second panel/TRP/TCI/PUSCH TO, and the bits corresponding to the second SRI indication field The number is determined based on the number of SRS resources in the SRS resource set associated with the second SRI indication domain.
- a precoding indication method is provided, which is applied to a terminal.
- the method includes: receiving a single downlink control information S-DCI, where the S-DCI is used to schedule the terminal to receive data from multiple The antenna panel panel is oriented to multiple transmitting and receiving points TRP codebook-based PUSCH transmission; the DCI under the S-DCI scheduling carries an SRI indication field, and the SRI indication field is used to indicate the SRS resource set corresponding to the PUSCH.
- the SRS resource combination for PUSCH transmission is used to indicate the spatial filter used by the terminal when transmitting PUSCH corresponding to different panel/TRP/TCI/PUSCH transmission opportunities TO.
- the SRI indication field includes a single SRI indication field.
- the single SRI indication field includes code points, and the code points are used to indicate the transmission opportunities TO of different panel/TRP/TCI/PUSCH corresponding to the spatial filters used respectively when transmitting PUSCH. SRS resource index.
- the single SRI indication field includes a first code point, and the first code point is used to indicate a single SRS resource set, the single SRS resource set or different SRS resource sets in the single SRS resource set.
- SRS resource subsets are associated with different panel/TRP/TCI/PUSCH TO.
- the single SRI indication field includes a second code point, the second code point is used to indicate multiple SRS resource sets, and the multiple SRS resource sets are associated with different panel/TRP/TCI/ PUSCH TO.
- the number of bits in the single SRI indication field is determined based on the number of code points contained in the single SRI indication field; there is a corresponding relationship between the number of code points and the combination information of different SRIs, and the correspondence Relationships are predefined or configured by the network device.
- the SRI indication field includes multiple SRI indication fields, and different SRI indication fields in the multiple SRI indication fields are respectively associated with different panel/TRP/TCI/PUSCH TO directions.
- the PUSCH is transmitted from a single antenna panel to a single TRP; the same SRI indication field in the multiple SRI indication fields is associated with different SRS resource sets based on the indication information of the SRS resource set indication field; wherein, the association The number of effective bits of the same SRI indication field in different SRS resource sets is determined based on the number of SRS resources included in the SRS resource set associated with the same SRI indication field.
- the same number of resources is configured in the SRS resource sets associated with different TRP directions, and the number of bits corresponding to different SRI indication fields is the same.
- the number of bits corresponding to different SRI indication fields among the multiple SRI indication fields is different.
- the number of bits corresponding to the different SRI indication fields is determined based on the number of SRS resources included in the SRS resource sets of different panels/TRP/TCI/PUSCH TOs respectively associated with the multiple SRI indication fields.
- the number of SRI code points corresponding to the panel/TRP/TCI/PUSCH associated with the multiple SRI indication fields is determined based on the SRS resource index indicated in the corresponding relationship between different SRIs and SRS resource indexes.
- the plurality of SRI indication fields include a first SRI indication field and a second SRI indication field; the first SRI indication field is used for corresponding SRS resources indicated by the indication information of the SRS resource set indication field.
- the number of SRS resources in the SRS resource set is determined; the second SRI indication field is used to indicate the spatial filter used for PUSCH transmission of the second panel/TRP/TCI/PUSCH TO, and the bits corresponding to the second SRI indication field The number is determined based on the number of SRS resources in the SRS resource set associated with the second SRI indication domain.
- a precoding indication device which is applied to network equipment.
- the device includes: a sending module for sending a single downlink control information S-DCI, where the S-DCI is used for scheduling.
- the terminal performs codebook-based PUSCH transmission from multiple antenna panel panels to multiple transmitting and receiving points; the DCI under the S-DCI scheduling carries an SRI indication field, and the SRI indication field is used to indicate the SRS corresponding to the PUSCH.
- the SRS resource combination used for PUSCH transmission in the resource set is used to indicate the spatial filter used by the terminal when transmitting PUSCH corresponding to different panel/TRP/TCI/PUSCH transmission opportunities.
- the SRI indication field includes a single SRI indication field.
- the single SRI indication field includes code points, and the code points are used to indicate the transmission timing TO of different panel/TRP/TCI/PUSCH corresponding to the SRS corresponding to the spatial filtering used when transmitting PUSCH. Resource index.
- the single SRI indication field includes a first code point, and the first code point is used to indicate a single SRS resource set, the single SRS resource set or different SRS resource sets in the single SRS resource set.
- SRS resource subsets are associated with different panel/TRP/TCI/PUSCH TO.
- the single SRI indication field includes a second code point, the second code point is used to indicate multiple SRS resource sets, and the multiple SRS resource sets are associated with different panel/TRP/TCI/ PUSCH TO.
- the number of bits in the single SRI indication field is determined based on the number of code points contained in the single SRI indication field; there is a corresponding relationship between the number of code points and the combination information of different SRIs, and the correspondence Relationships are predefined or configured by the network device.
- the SRI indication field includes multiple SRI indication fields, and different SRI indication fields in the multiple SRI indication fields are respectively associated with different panel/TRP/TCI/PUSCH TO directions.
- the PUSCH is transmitted from a single antenna panel to a single TRP; the same SRI indication field in the multiple SRI indication fields is associated with different SRS resource sets based on the indication information of the SRS resource set indication field; wherein, the association The number of effective bits of the same SRI indication field in different SRS resource sets is determined based on the number of SRS resources included in the SRS resource set associated with the same SRI indication field.
- the same number of resources is configured in the SRS resource sets associated with different TRP directions, and the number of bits corresponding to different SRI indication fields is the same.
- the number of bits corresponding to different SRI indication fields among the multiple SRI indication fields is different.
- the number of bits corresponding to the different SRI indication fields is determined based on the number of SRS resources included in the SRS resource sets of different panels/TRP/TCI/PUSCH TOs respectively associated with the multiple SRI indication fields.
- the number of SRI code points corresponding to the panel/TRP/TCI/PUSCH associated with the multiple SRI indication fields is determined based on the SRS resource index indicated in the corresponding relationship between different SRIs and SRS resource indexes.
- the plurality of SRI indication fields include a first SRI indication field and a second SRI indication field; the first SRI indication field is used for corresponding SRS resources indicated by the indication information of the SRS resource set indication field.
- the number of SRS resources in the SRS resource set is determined; the second SRI indication field is used to indicate the spatial filter used for PUSCH transmission of the second panel/TRP/TCI/PUSCH TO, and the bits corresponding to the second SRI indication field The number is determined based on the number of SRS resources in the SRS resource set associated with the second SRI indication domain.
- a precoding indication device which is applied to a terminal.
- the device includes: a receiving module configured to receive a single downlink control information S-DCI, where the S-DCI is used to schedule all
- the terminal performs codebook-based PUSCH transmission from multiple antenna panel panels to multiple transmitting and receiving points; the DCI under the S-DCI scheduling carries an SRI indication field, and the SRI indication field is used to indicate the PUSCH corresponding to the
- the SRS resource combination used for PUSCH transmission in the SRS resource set is used to indicate the spatial filter used by the terminal when transmitting PUSCH corresponding to different panel/TRP/TCI/PUSCH transmission opportunities TO.
- the SRI indication field includes a single SRI indication field.
- the single SRI indication field includes code points, and the code points are used to indicate the transmission timing TO of different panel/TRP/TCI/PUSCH corresponding to the SRS corresponding to the spatial filtering used when transmitting PUSCH. Resource index.
- the single SRI indication field includes a first code point, and the first code point is used to indicate a single SRS resource set, the single SRS resource set or different SRS resource sets in the single SRS resource set.
- SRS resource subsets are associated with different panel/TRP/TCI/PUSCH TO.
- the single SRI indication field includes a second code point, the second code point is used to indicate multiple SRS resource sets, and the multiple SRS resource sets are associated with different panel/TRP/TCI/ PUSCH TO.
- the number of bits in the single SRI indication field is determined based on the number of code points contained in the single SRI indication field; there is a corresponding relationship between the number of code points and the combination information of different SRIs, and the correspondence Relationships are predefined or configured by the network device.
- the SRI indication field includes multiple SRI indication fields, and different SRI indication fields in the multiple SRI indication fields are respectively associated with different panel/TRP/TCI/PUSCH TO directions.
- the PUSCH is transmitted from a single antenna panel to a single TRP; the same SRI indication field in the multiple SRI indication fields is associated with different SRS resource sets based on the indication information of the SRS resource set indication field; wherein, the association The number of effective bits of the same SRI indication field in different SRS resource sets is determined based on the number of SRS resources included in the SRS resource set associated with the same SRI indication field.
- the same number of resources is configured in the SRS resource sets associated with different TRP directions, and the number of bits corresponding to different SRI indication fields is the same.
- the number of bits corresponding to different SRI indication fields among the multiple SRI indication fields is different.
- the number of bits corresponding to the different SRI indication fields is determined based on the number of SRS resources included in the SRS resource sets of different panels/TRP/TCI/PUSCH TOs respectively associated with the multiple SRI indication fields.
- the number of SRI code points corresponding to the panel/TRP/TCI/PUSCH associated with the multiple SRI indication fields is determined based on the SRS resource index indicated in the corresponding relationship between different SRIs and SRS resource indexes.
- the plurality of SRI indication fields include a first SRI indication field and a second SRI indication field; the first SRI indication field is used for corresponding SRS resources indicated by the indication information of the SRS resource set indication field.
- the number of SRS resources in the SRS resource set is determined; the second SRI indication field is used to indicate the spatial filter used for PUSCH transmission of the second panel/TRP/TCI/PUSCH TO, and the bits corresponding to the second SRI indication field The number is determined based on the number of SRS resources in the SRS resource set associated with the second SRI indication domain.
- the technical solution provided by the embodiments of the present disclosure may include the following beneficial effects: network equipment sends S-DCI, S-DCI is used to schedule codebook-based PUSCH transmission of terminals from multiple panels to multiple TRPs, DCI scheduled by S-DCI
- the SRI indication field is carried in the SRI indication field.
- the SRI indication field is used to indicate the SRS resource combination used for PUSCH transmission in the SRS resource set corresponding to PUSCH, and is used to indicate the space used by the terminal when sending PUSCH corresponding to different panel/TRP/TCI/PUSCH TO filter.
- the terminal when it receives S-DCI, it can determine the spatial filter for transmitting PUSCH based on the SRS resource combination used for PUSCH transmission in the SRS resource set corresponding to PUSCH indicated by the SRI indication field, thereby realizing S-DCI scheduling multi-panel/
- precoding information is indicated, which realizes the enhancement of precoding indication.
- Figure 1 is a schematic diagram of a wireless communication system according to an exemplary embodiment.
- Figure 2 is a schematic diagram of an MP-MTRP transmission scenario under S-DCI scheduling according to an exemplary embodiment.
- Figure 3 is a flowchart of a precoding indication method according to an exemplary embodiment.
- Figure 4 is a flowchart of a precoding indication method according to an exemplary embodiment.
- Figure 5 is a block diagram of a precoding indication device according to an exemplary embodiment.
- Figure 6 is a block diagram of a precoding indication device according to an exemplary embodiment.
- Figure 7 is a block diagram of a device for precoding indication according to an exemplary embodiment.
- Figure 8 is a block diagram of a device for precoding indication according to an exemplary embodiment.
- the precoding indication method provided by the embodiment of the present disclosure can be applied to the wireless communication system shown in Figure 1.
- the wireless communication system includes network equipment and terminals.
- the terminal is connected to the network device through wireless resources and transmits data.
- data transmission is carried out between network equipment and terminals based on beams.
- PUSCH uplink transmission can be enhanced based on Multi-TRP/Multi-panel between the network equipment and the terminal.
- the number of TRPs used by the network device to transmit data to the terminal based on Multi-TRP/Multi-panel can be one or more.
- the data transmission between the network device and the terminal based on TRP1 and TRP2 in the wireless communication system shown in Figure 1 is only a schematic illustration and is not limiting.
- the wireless communication system shown in Figure 1 is only a schematic illustration, and the wireless communication system may also include other network equipment, such as core network equipment, wireless relay equipment, wireless backhaul equipment, etc. Not shown in Figure 1.
- the embodiment of the present disclosure does not limit the number of network devices and terminals included in the wireless communication system.
- the wireless communication system in the embodiment of the present disclosure is a network that provides wireless communication functions.
- Wireless communication systems can use different communication technologies, such as code division multiple access (CDMA), wideband code division multiple access (WCDMA), time division multiple access (TDMA) , frequency division multiple access (FDMA), orthogonal frequency-division multiple access (OFDMA), single carrier frequency division multiple access (single Carrier FDMA, SC-FDMA), carrier sensing Multiple Access/Conflict Avoidance (Carrier Sense Multiple Access with Collision Avoidance).
- CDMA code division multiple access
- WCDMA wideband code division multiple access
- TDMA time division multiple access
- FDMA frequency division multiple access
- OFDMA orthogonal frequency-division multiple access
- single carrier frequency division multiple access single Carrier FDMA
- SC-FDMA single carrier sensing Multiple Access/Conflict Avoidance
- 5G networks can also be called new wireless networks ( New Radio, NR).
- this disclosure sometimes refers to the wireless communication network as simply a network
- the network equipment involved in this disclosure may also be called a wireless access network equipment.
- the wireless access network equipment can be: a base station, an evolved base station (evolved node B, base station), a home base station, an access point (AP) in a wireless fidelity (wireless fidelity, WIFI) system, or a wireless relay Node, wireless backhaul node, transmission point (TP) or transmission and reception point (TRP), etc., can also be a gNB in the NR system, or can also be a component or part of the equipment that constitutes the base station wait. It should be understood that in the embodiments of the present disclosure, there are no limitations on the specific technology and specific equipment form used by the network equipment.
- a network device can provide communication coverage for a specific geographical area and can communicate with terminals located within the coverage area (cell).
- the network device may also be a vehicle-mounted device.
- the terminal involved in this disclosure may also be called terminal equipment, user equipment (User Equipment, UE), mobile station (Mobile Station, MS), mobile terminal (Mobile Terminal, MT), etc., and is a kind of user equipment.
- a device that provides voice and/or data connectivity may be a handheld device, a vehicle-mounted device, etc. with wireless connectivity capabilities.
- some examples of terminals are: smartphones (Mobile Phone), Customer Premise Equipment (CPE), Pocket Personal Computer (PPC), PDAs, and Personal Digital Assistants (Personal Digital Assistant, PDA) , laptops, tablets, wearable devices, or vehicle-mounted devices, etc.
- V2X vehicle-to-everything
- the terminal device may also be a vehicle-mounted device. It should be understood that the embodiments of the present disclosure do not limit the specific technology and specific equipment form used by the terminal.
- data transmission is performed between the network device and the terminal based on beams.
- PUSCH uplink transmission can be enhanced based on Multi-TRP/Multi-panel between the network equipment and the terminal.
- the uplink transmission scheme of PUSCH includes codebook-based uplink transmission and non-codebook-based uplink transmission scheme.
- codebook-based simultaneous uplink transmission of multiple terminal panels is supported.
- the terminal needs to configure at most one sounding reference signal (Sounding Reference Signal, SRS) resource set for codebook-based uplink transmission.
- SRS Sounding Reference Signal
- the SRS resource set can be configured with multiple SRS resources, and the network device will provide feedback based on the number of SRS resources (N SRS ) in the SRS resource set.
- the SRS resource indicator Sounding Reference Signal resource indicator, SRI
- SRI Sounding Reference Signal resource indicator
- SRI(s) in Table 1 to Table 3 indicates the number of SRI indications
- N SRS is the number of SRS resources.
- the code point of the SRI indication field is 00, it is used to instruct the terminal to use the s-TRP mode to transmit PUSCH to TRP1 and associate the first SRS resource set.
- the codebook-based transmission mode use the first SRI/TPMI field in the DCI to obtain the SRI and TPMI used in this transmission; in the non-codebook-based transmission mode, use the first SRI field in the DCI Get the SRI used for this transfer.
- the second SRI/TPMI domain is not used.
- the code point of the SRI indication field is 01, it is used to instruct the terminal to use the s-TRP mode to transmit PUSCH to TRP2 and associate the second SRS resource set.
- the codebook-based transmission mode use the first SRI/TPMI field in the DCI to obtain the SRI and TPMI used in this transmission; in the non-codebook-based transmission mode, use the first SRI field in the DCI Get the SRI used for this transfer. At this time, the second SRI/TPMI domain is not used.
- the code point of the SRI indication field is 10
- it is used to instruct the terminal to use m-TRP mode to first transmit PUSCH to TRP1 in the first TO, associated with the first SRS resource set; and then transmit PUSCH to TRP2 in the second TO.
- the codebook-based transmission mode use the first SRI/TPMI field in the DCI to obtain the SRI and TPMI used when transmitting to TRP1, and use the second SRI/TPMI field in the DCI to obtain the SRI and TPMI used when transmitting to TRP2.
- SRI and TPMI in non-codebook-based transmission mode, use the first SRI/TPMI field in the DCI to obtain the SRI used when transmitting to TRP1, and use the second SRI/TPMI field in the DCI to obtain the SRI used when transmitting to TRP2 The SRI used during transmission.
- the code point of the SRI indication field When the code point of the SRI indication field is 11, it is used to instruct the terminal to use m-TRP mode to first transmit PUSCH to TRP2 in the first TO and associate it with the second SRS resource set; and then transmit PUSCH to TRP1 in the second TO.
- the codebook-based transmission mode use the second SRI/TPMI field in the DCI to obtain the SRI and TPMI used when transmitting to TRP2, and use the first SRI/TPMI field in the DCI to obtain the SRI and TPMI used when transmitting to TRP1.
- SRI and TPMI in non-codebook-based transmission mode, use the second SRI/TPMI field in the DCI to obtain the SRI used when transmitting to TRP2, and use the first SRI/TPMI field in the DCI to obtain the SRI used to transmit to TRP1 The SRI used during transmission.
- the network equipment determines the precoding matrix (Transmission Precoding matrix indicator, TPMI) and the number of transmission layers (Rank Indicator, RI) used by the terminal for actual transmission and notifies the terminal.
- TPMI Transmission Precoding matrix indicator
- RI Rank Indicator
- the data in the subsequent uplink transmission of the terminal needs to be precoded using the TPMI and RI specified by the network equipment.
- the precoded data is mapped to the corresponding SRS resource according to the spatial filter (Spatial Relation Info) indicated by the SRI. on the antenna port.
- Table 5 to Table 13 below are TPMI tables used to indicate TPMI and RI.
- Bit field mapped to index represents the bit field mapped to the index
- codebookSubset represents the codebook subset.
- the transmission capabilities of the codebook subset include: fullyAndPartialAndNonCoherent (fully coherent transmission), partialAndNonCoherent (partially coherent transmission) and nonCoherent (non-correlated) transmission).
- Table 5 shows the precoding information and the number of layers in the corresponding codebook subset when 4 antenna ports are used and the maximum rank Rank is 2, 3, or 4.
- each TPMI is used to indicate a precoding
- the following Table 14 is the codeword corresponding to the single-layer transmission of 4 antenna ports.
- the physical downlink control channel (PDCCH), physical uplink control channel (PUCCH) and physical uplink shared channel (PUSCH) are enhanced.
- Multi-TRP-based PUSCH enhancement can schedule multiple panel/TRP/TCI transmissions based on a single PDCCH, such as a single downlink control information (S-DCI).
- Figure 2 shows a schematic diagram of MP-MTRP transmission scenario under S-DCI scheduling. Referring to Figure 2, the terminal UE sends TPMI1 to TRP1 on panel1, and sends TPMI2 to TRP2 on panel2.
- the SRI field in DCI indicates the SRS resource in the SRS resource set. Since R17 supports two SRS resource sets, in M-TRP based on non-codebook In TRP PUSCH repeated transmission, DCI format 0_1/0_2 contains two SRI fields associated with two SRS resource sets. Each SRI field is a TRP indicating SRI. The design of the first SRI field is based on the R15/16 framework. And all repeated transmissions use the same number of layers.
- the first SRI field is used to determine the elements in the second SRI field, and the second SRI field only contains the SRI combination associated with the number of layers indicated by the first SRI field.
- the number of bits N2 of the second SRI domain is determined by the maximum number of code points for each transport layer among all transport layer numbers associated with the first SRI domain.
- the SRI indication field is defined as shown in Table 15 below:
- Table 15 fixes that under s-TRP and m-TRP transmission, the first SRI/TPMI is associated with the first SRS resource set, and the second SRI/TPMI is associated with the second SRS. Resource collection association.
- one or several of them will be defined as scheduling optional transmission schemes for simultaneous uplink transmission of PUSCH.
- terminals under S-DCI scheduling are supported to use different beams in different TRP transmission directions, that is, corresponding to TCI state (transmission configuration indication state) for PUSCH channel repeated transmission mode TDM ( Time-division multiplexing technology, time-division multiplexing) time-division transmission scheme.
- TCI state transmission configuration indication state
- TDM Time-division multiplexing technology, time-division multiplexing
- the network can configure different SRS resource sets associated with different TRP sending directions, but it requires that different transmission opportunities TO correspond to the same number of RANKs.
- different SRS resource sets correspond to the same number of SRS resources and the same number of SRS ports, corresponding to different TRPs.
- the number of RANK actually allocated in each direction is also the same, resulting in insufficient flexibility of the terminal.
- this disclosure needs to consider the precoding indication enhancement scheme corresponding to different transmission schemes under S-DCI scheduling on the basis of ensuring the flexibility of terminal implementation.
- the cooperative transmission scheduling for one TB (Transport Block) of PUSCH based on a single DCI includes a variety of different transmission schemes. Each transmission scheme is briefly explained below.
- One solution is the SDM (Space DivisionMultiplexing, space division) multiplexing solution: one TB of PUSCH is sent to two different TRPs on the same time-frequency resources through the corresponding DMRS ports or port combinations allocated on different Panels. , different panels/TRPs/transmission opportunities TO are associated with different TCI (transmission configuration indicator) states, that is, beams.
- the SDM solution is specifically divided into two types: SDM-A and SDM-B. Among them, different parts of a TB of SDM-A:PUSCH are allocated through their corresponding DMRS ports or port combinations on different Panels.
- different panels/TRPs/transmission opportunities TO are associated with different TCIstates or beams; SDM-B:PUSCH corresponds to the same TB of different RV versions. Repeatedly transmitting on the same time and frequency resources to two different TRPs through the corresponding DMRS ports or port combinations allocated on different Panels.
- Different Pane/TRP/transmission timing TO are associated with different TCIstate, that is, beams. .
- FDM Frequency DivisionMultiplexing
- one TB of PUSCH faces two different TRPs on the same time domain resources through the same DMRS port or port combination allocated on different panels. Transmit on overlapping frequency domain resources, and different Panel/TRP/transmission timing TO are associated with different TCI states, that is, beams.
- the FDM solution is specifically divided into two types: FDM-A and FDM-B. Among them, different parts of one TB of FDM-A:PUSCH are respectively oriented to the two through the same DMRS port or port combination allocated on different Panels. Different TRPs are transmitted on non-overlapping frequency domain resources on the same time domain resource.
- Different Pane/TRP/transmission timing TO are associated with different TCIstate, that is, beams; FDM-B:PUSCH corresponds to different RV versions. Repeats of the same TB are sent to two different TRPs on non-overlapping frequency domain resources on the same time domain resources through the same DMRS ports or port combinations allocated on different Panels, with different Pane/TRP/transmission timing TO respectively. Associated with different TCIstate or beams.
- Another solution is the SFN (Single Frequency Network) multiplexing solution: one TB of PUSCH is directed to two different TRPs on the same time-frequency resources through the same DMRS port or port combination allocated on different Panels. Transmission, different Pane/TRP/transmission timing TO are associated with different TCIstate, that is, beams.
- SFN Single Frequency Network
- the SRI indication field is carried in the DCI scheduled by S-DCI, and the precoding indication is enhanced based on the SRI indication field.
- FIG 3 is a flowchart showing a precoding indication method according to an exemplary embodiment. As shown in Figure 3, the precoding indication method is used in network equipment and includes the following steps.
- step S11 S-DCI is sent, and the S-DCI is used to schedule the codebook-based PUSCH transmission of the terminal from multiple panels to multiple TRPs.
- the SRI indication field is carried in the DCI scheduled by S-DCI.
- the SRI indication field is used to indicate the SRS resource combination used for PUSCH transmission in the SRS resource set corresponding to PUSCH, and is used to indicate that the terminal corresponds to different panel/TRP/TCI/ PUSCH transmission opportunity (Transmission Occasion, TO)
- the spatial filter used when sending PUSCH is used to indicate the SRS resource combination used for PUSCH transmission in the SRS resource set corresponding to PUSCH.
- uplink PUSCH transmission is oriented to the TRP direction of multiple base stations.
- cooperative transmission under TDM transmission mode uses different transmission opportunities (Transmission Occasion, TO) in the time domain to send the same information on PUSCH to different TRPs of the base station in a time-sharing manner.
- TO Transmission Occasion
- Different repetitions (repetition) this method has relatively low requirements on terminal capabilities, does not require the ability to support simultaneous transmission of beams, and has a large transmission delay.
- Transmission opportunities are associated with different panel/TRP/TCI/PUSCH directions according to different TRP sending directions.
- the SRI indication field indicates the multi-TRP transmission status and corresponds to TRP1&TRP2. Then the first set of PUSCH transmission opportunities is sent to TRP1 (the first SRS resource set), and the second set of PUSCH transmission opportunities is sent to TRP2 (the second SRS resource collection).
- the spatial characteristics of the actual channels may be very different, so it is considered that the QCL-D of PUSCH channels in different sending directions is different.
- the network equipment determines the precoding matrix (Transmission Precoding matrix indicator, TPMI) and the number of transmission layers (Rank Indicator, RI) used by the terminal for actual transmission and notifies the terminal.
- the data in the next uplink transmission of the terminal needs to be precoded using the TPMI and RI specified by the network equipment.
- the precoded data is mapped to the corresponding antenna port according to the spatial filter corresponding to the SRS resource indicated by the SRI. Different The SRS resources will be transmitted using different spatial filters, so the precoded data of the terminal needs to be filtered by the spatial filter used by the SRS resources indicated by the SRI.
- the spatial filter indication for the S-DCI scheduled terminal corresponding to different panel/TRP/TCI/PUSCH TOs is implemented for simultaneous uplink transmission, thereby realizing the predetermined Instructions for encoding information.
- the SRI indication field included in the DCI scheduled by S-DCI is a single SRI indication field.
- the SRI indication fields included in the DCI scheduled by S-DCI are multiple SRI indication fields.
- the SRS resource combinations used for PUSCH transmission in the SRS resource set corresponding to the PUSCH indicated by the SRI indication field are different, and different panel/TRP/TCI are associated with different SRS resource combinations. /PUSCH TO is different.
- the SRI indication field included in the DCI scheduled by S-DCI includes a single SRI indication field.
- the single SRI indication field is used to indicate the SRS resource combination used for PUSCH transmission in the SRS resource set corresponding to PUSCH, and is used to indicate the spatial filter used by the terminal when transmitting PUSCH corresponding to different panel/TRP/TCI/PUSCH TO.
- the number of TPMI (Transmission Precoding Matrix) indication fields may be one or multiple.
- TRP/TCI/PUSCH TO corresponds to the SRS resource index corresponding to the spatial filter used when sending PUSCH.
- the single SRI indication field includes code points, and the code points are used to indicate the SRS resource indexes corresponding to the spatial filters used by different panel/TRP/TCI/PUSCH TOs when transmitting PUSCH.
- the SRS resource index is used to determine the SRS resource corresponding to the SRS resource index.
- the network device configures two SRS resource sets for codebook transmission for the terminal, and two SRS resources are configured in each SRS resource set. Then the code point indication table of the SRI indication field is as shown in Table 16 below:
- the code points included in the single SRI indication field included in the DCI scheduled by S-DCI can be used to indicate a single SRS resource set or multiple SRSs. Resource collection.
- a single SRI indication field includes a first code point.
- the first code point is used to indicate a single SRS resource set.
- a single SRS resource set or different SRS resource sub-sets in a single SRS resource set have different associations.
- a single SRS resource set is associated with the first panel/TRP/TCI/PUSCH TO and the second panel/TRP/TCI/PUSCH TO.
- a single SRS resource subset includes a first SRS resource subset and a second SRS resource subset, the first SRS resource subset is associated with the first panel/TRP/TCI/PUSCH TO, and the second SRS resource subset is associated with the second panel/TRP/TCI/PUSCH TO.
- a single SRI indication field includes a second code point, and the second code point is used to indicate multiple SRS resource sets, and the multiple SRS resource sets are associated with different panel/TRP/TCI/PUSCH TOs.
- multiple SRS resource sets include a first SRS resource set and a second SRS resource set
- the first SRS resource set is associated with the first panel/TRP/TCI/PUSCH TO
- the second SRS resource set is associated with the second panel/TRP/ TCI/PUSCH TO.
- the number of bits in a single SRI indication field is determined based on the number of code points included in the single SRI indication field. There is a corresponding relationship between the number of code points and the combined information of different SRIs.
- the corresponding relationship between the number of code points and the combination information of different SRIs is predefined or configured by the network device.
- the code points in the SRI indication field included in the DCI scheduled by S-DCI are used to indicate the number of SRS resources in the SRS resource set.
- the code points included in the DCI scheduled by S-DCI The number of bits in the SRI indication field is determined according to the number of SRS resources included in the SRS resource set.
- the network device may determine the number of SRS resources in the SRS resource set used for the uplink transmission parameter, and determine the number of bits in the SRI indication field based on the determined number of SRS resources.
- the number of valid code points in the SRI indication field is 5
- the number of bits in the SRI indication field can be at least 3 bits
- the value range of the SRI indication field can be expressed as 000 to 111, which corresponds to 0 to 7
- the number of valid code points in the SRI indication field is 4, then the number of bits in the SRI indication field can be at least 2 bits, and the value range of the SRI indication field can be expressed as 00 to 11, which corresponds to 0 to 3.
- the predefined correspondence relationship for example, the protocol agreement method, includes the correspondence relationship between code points and SRS resource sets and/or SRS resources agreed in advance, and the special processing method for invalid code points.
- the corresponding relationship configured by the network side device. For example, when the number of SRS resources configured in a certain SRS resource set is less than the maximum number of supported code points, the network side device is supported to configure the above corresponding relationship.
- the combination of SRIs on a panel can be a combination of 2 and 2, 3 and 3, or 3 and 4.
- the combination of SRIs on a panel can be a combination of 2 and 3, and the corresponding relationship between code points and SRIs can be as shown in Table 17 below.
- the terminal by configuring a single SRI indication field and jointly indicating SRS resource sets based on code points to associate different panel/TRP/TCI/PUSCH TOs, the terminal has multiple different solutions when transmitting PUSCH, and the terminal can Flexible options.
- a beam pair is indicated by jointly indicating 1 SRS resource set through SRI codepoints in a single SRI indication domain. It can be understood that the number of bits in the single SRI indication field needs to be redefined.
- a beam pair is indicated by jointly indicating two SRS resource sets through the SRI codepoint in a single SRI indication domain.
- the SRI contained in the SRI codepoint can be the specific SRS index in different tables or the codepoint corresponding to the SRI field in different tables. The overall number of SRI bits needs to be redefined.
- the SRI indication field included in the DCI scheduled by S-DCI includes multiple SRI indication fields, and different SRI indication fields in the multiple SRI indication fields are respectively Associated with different panel/TRP/TCI/PUSCH TO directions.
- any two different SRI indication domains among the multiple SRI indication domains included in the DCI scheduled by S-DCI are called the first SRI indication domain and the second SRI indication domain.
- the first SRI indication field is used to indicate the first SRS resource set for scheduling PUSCH.
- the second SRI indication field is used to indicate the second SRS resource set for scheduling PUSCH.
- the first SRI indication field can be understood as corresponding to the first TRP direction, and the second SRI indication field corresponds to the second TRP direction. That is, the first SRI indication field is associated with the first panel/TRP/TCI/PUSCH TO direction, and the second SRI indication field is associated with the second panel/TRP/TCI/PUSCH TO direction.
- the same SRI indication field in multiple SRI indication fields is associated with different SRS resources based on the indication information of the SRS resource set indication field. gather.
- the first SRI indication field can be associated with the first TRP direction or the second TRP direction, that is, different SRSs can be associated with different indication information. Resource collection.
- the number of effective bits of the same SRI indication field associated with different SRS resource sets is determined based on the number of SRS resources included in the SRS resource set associated with the same SRI indication field.
- the same number of resources is configured in the SRS resource sets associated with different TRP directions, and the number of bits corresponding to different multiple SRI indication fields is the same.
- the same number of ports and SRS resources are configured in the SRS resource sets associated with different TRP directions.
- the number of bits corresponding to different SRI indication fields in the multiple SRI indication fields is different.
- the number of bits corresponding to different SRI indication fields is based on the number of SRS resources included in the SRS resource sets of different panels/TRP/TCI/PUSCH TOs respectively associated with multiple SRI indication fields.
- the number of bits corresponding to the first SRI indication field is determined based on the number of SRS resources included in the SRS resource set of the first panel/TRP/TCI/PUSCH TO associated with the first SRI indication field, which exemplarily corresponds to the above Table 1;
- the number of bits corresponding to the second SRI indication field is determined based on the number of SRS resources included in the SRS resource set of the second panel/TRP/TCI/PUSCH TO associated with the second SRI indication field, which exemplarily corresponds to the above Table 2.
- the number of SRI code points corresponding to the panel/TRP/TCI/PUSCH associated with multiple SRI indication fields is determined based on the indicated SRS resource index in the corresponding relationship between different SRIs and SRS resource indexes. .
- the first SRI indication field is used to indicate the indication information of the SRS resource set indication field.
- the spatial filter used for PUSCH transmission of the panel/TRP/TCI/PUSCH TO corresponding to the SRS resource set, and the first SRI indication field corresponds to the maximum bit bandwidth, and the maximum bit bandwidth is based on the SRS resources indicated by multiple SRI indication fields. The number of SRS resources in the collection is determined.
- the second SRI indication field is used to indicate the spatial filter used for PUSCH transmission of the second panel/TRP/TCI/PUSCH TO, and the number of bits corresponding to the second SRI indication field is based on the SRS resource set associated with the second SRI indication field. The number of SRS resources is determined.
- the first SRS resource set is configured with 2 resources
- the number of bits of the first SRI domain is 1 bit
- the second SRS resource set is configured with 4 resources
- the number of bits of the second SRI domain is 2 bits
- the number of bits of the first SRI domain is 2 bits.
- the first panel is associated
- the second SRI domain is associated with the second panel.
- the first TRP direction or the second TRP direction is fixedly indicated through the first SRI field. If the first TRP direction is indicated, the first SRS resource set is associated. If the second TRP direction is indicated, the second SRS resource is associated. Set, 1 bit cannot be used for transmission at this time, so the bits of the first SRI indication field should be 2 bits to support transmission in a single TRP scenario.
- the enhancement of the SRI indication field is achieved, and at the same time, by obtaining different panel/TRP/TCI/PUSCH transmission opportunities when sending PUSCH
- the spatial filter used enables the terminal to transmit PUSCH more flexibly. Furthermore, because the precoded data of the terminal needs to be filtered by the spatial filter used by the SRS resource indicated by the SRI, precoding indication enhancement is also implemented.
- FIG 4 is a flowchart showing a precoding indication method according to an exemplary embodiment. As shown in Figure 4, the precoding indication method is used in a terminal and includes the following steps.
- step S21 S-DCI is received, and the S-DCI is used to schedule the codebook-based PUSCH transmission of the terminal from multiple panels to multiple TRPs.
- the SRI indication field is carried in the DCI scheduled by S-DCI.
- the SRI indication field is used to indicate the SRS resource combination used for PUSCH transmission in the SRS resource set corresponding to PUSCH, and is used to indicate that the terminal corresponds to different panel/TRP/TCI/ The spatial filter used when sending PUSCH at the PUSCH transmission opportunity.
- the SRI indication field included in the DCI scheduled by S-DCI is a single SRI indication field.
- the SRI indication fields included in the DCI scheduled by S-DCI are multiple SRI indication fields.
- TRP/TCI/PUSCH TO corresponds to the SRS resource index corresponding to the spatial filter used when sending PUSCH.
- the single SRI indication field includes code points, and the code points are used to indicate the SRS resource indexes corresponding to the spatial filters used by different panel/TRP/TCI/PUSCH TOs when transmitting PUSCH.
- a single SRI indication field includes a first code point.
- the first code point is used to indicate a single SRS resource set.
- a single SRS resource set or different SRS resource sub-sets in a single SRS resource set have different associations.
- a single SRI indication field includes a second code point, and the second code point is used to indicate multiple SRS resource sets, and the multiple SRS resource sets are associated with different panel/TRP/TCI/PUSCH TOs.
- the number of bits in a single SRI indication field is determined based on the number of code points included in the single SRI indication field. There is a corresponding relationship between the number of code points and the combined information of different SRIs.
- the corresponding relationship between the number of code points and the combination information of different SRIs is predefined or configured by the network device.
- the code points in the SRI indication field included in the DCI scheduled by S-DCI are used to indicate the number of SRS resources in the SRS resource set.
- the code points included in the DCI scheduled by S-DCI The number of bits in the SRI indication field is determined according to the number of SRS resources included in the SRS resource set.
- the network device may determine the number of SRS resources in the SRS resource set used for the uplink transmission parameter, and determine the number of bits in the SRI indication field based on the determined number of SRS resources.
- the SRI indication field included in the DCI scheduled by S-DCI includes multiple SRI indication fields, and different SRI indication fields in the multiple SRI indication fields are respectively Associated with different panel/TRP/TCI/PUSCH TO directions.
- the same SRI indication field in multiple SRI indication fields is associated with different SRS resources based on the indication information of the SRS resource set indication field. gather.
- the number of effective bits of the same SRI indication field associated with different SRS resource sets is determined based on the number of SRS resources included in the SRS resource set associated with the same SRI indication field.
- the same number of resources is configured in the SRS resource sets associated with different TRP directions, and the number of bits corresponding to different multiple SRI indication fields is the same.
- the number of bits corresponding to different SRI indication fields in the multiple SRI indication fields is different.
- the number of bits corresponding to different SRI indication fields is based on the number of SRS resources included in the SRS resource sets of different panels/TRP/TCI/PUSCH TOs respectively associated with multiple SRI indication fields.
- the number of SRI code points corresponding to the panel/TRP/TCI/PUSCH associated with multiple SRI indication fields is determined based on the indicated SRS resource index in the corresponding relationship between different SRI and SRS resource indexes. .
- the first SRI indication field is used to indicate the indication information of the SRS resource set indication field.
- the spatial filter used for PUSCH transmission of the panel/TRP/TCI/PUSCH TO corresponding to the SRS resource set, and the first SRI indication field corresponds to the maximum bit bandwidth, and the maximum bit bandwidth is based on the SRS resources indicated by multiple SRI indication fields The number of SRS resources in the collection is determined.
- the second SRI indication field is used to indicate the spatial filter used for PUSCH transmission of the second panel/TRP/TCI/PUSCH TO, and the number of bits corresponding to the second SRI indication field is based on the SRS resource set associated with the second SRI indication field. The number of SRS resources is determined.
- the precoding indication method provided by the present disclosure is suitable for the process of interaction between the terminal and the network device to realize the precoding information indication.
- the terminal and the network device respectively have the capabilities to implement the steps involved in the above embodiments.
- the relevant functions in the precoding indication information method are not repeated here.
- the SRI indication field included in the DCI scheduled by S-DCI indicates that the terminal corresponds to the spatial filter used when transmitting PUSCH by different panel/TRP/TCI/PUSCH TO, realizing the implementation of the S-DCI scheduled terminal Corresponds to the indication of spatial filters when different panel/TRP/TCI/PUSCH TO are transmitted simultaneously in uplink, thereby realizing the indication of precoding information.
- an embodiment of the present disclosure also provides a precoding indication device.
- the precoding instruction device provided by the embodiments of the present disclosure includes corresponding hardware structures and/or software modules for performing each function.
- the embodiments of the present disclosure can be implemented in the form of hardware or a combination of hardware and computer software. Whether a function is performed by hardware or computer software driving the hardware depends on the specific application and design constraints of the technical solution. Those skilled in the art can use different methods to implement the described functions for each specific application, but such implementation should not be considered to go beyond the scope of the technical solutions of the embodiments of the present disclosure.
- FIG. 5 is a block diagram of a precoding indication device according to an exemplary embodiment.
- the precoding instruction device 100 includes a sending module 101 .
- the precoding instruction device 100 can be applied to network equipment.
- the sending module 101 is configured to send a single downlink control information S-DCI.
- the S-DCI is used to schedule the codebook-based PUSCH transmission of TRP from multiple panels to multiple sending and receiving points by the terminal; the DCI scheduled by the S-DCI carries SRI indication field.
- the SRI indication field is used to indicate the SRS resource combination used for PUSCH transmission in the SRS resource set corresponding to PUSCH, and is used to indicate the spatial filter used by the terminal when transmitting PUSCH corresponding to different panel/TRP/TCI/PUSCH TO.
- the SRI indication field includes a single SRI indication field.
- the single SRI indication field includes code points, and the code points are used to indicate the SRS resource indexes corresponding to the spatial filters used by different panel/TRP/TCI/PUSCH TOs when transmitting PUSCH.
- the single SRI indication field includes a first code point.
- the first code point is used to indicate a single SRS resource set.
- a single SRS resource set or different SRS resource sub-sets in a single SRS resource set are associated with different panels/ TRP/TCI/PUSCH TO.
- a single SRI indication field includes a second code point, and the second code point is used to indicate multiple SRS resource sets, and the multiple SRS resource sets are associated with different panel/TRP/TCI/PUSCH TOs.
- the number of bits in a single SRI indication field is determined based on the number of code points contained in the single SRI indication field; there is a corresponding relationship between the number of code points and the combined information of different SRIs, and the corresponding relationship is predefined or determined by Network device configuration.
- the SRI indication field includes multiple SRI indication fields, and different SRI indication fields in the multiple SRI indication fields are respectively associated with different panel/TRP/TCI/PUSCH TO directions.
- PUSCH is transmitted from a single panel to a single TRP; the same SRI indication field in multiple SRI indication fields is associated with different SRS resource sets based on the indication information of the SRS resource set indication field; wherein, the ones associated with different SRS resource sets are The number of effective bits in the same SRI indication field is determined based on the number of SRS resources included in the SRS resource set associated with the same SRI indication field.
- the same number of resources is configured in the SRS resource sets associated with different TRP directions, and the number of bits corresponding to different SRI indication fields is the same.
- the number of bits corresponding to different SRI indication fields among the multiple SRI indication fields is different.
- the number of bits corresponding to different SRI indication fields is determined based on the number of SRS resources included in the SRS resource sets of different panels/TRP/TCI/PUSCH TOs respectively associated with multiple SRI indication fields.
- the number of SRI code points corresponding to the panel/TRP/TCI/PUSCH associated with multiple SRI indication fields is determined based on the indicated SRS resource index in the corresponding relationship between different SRIs and SRS resource indexes.
- the multiple SRI indication fields include a first SRI indication field and a second SRI indication field; the first SRI indication field is used for the panel associated with the corresponding SRS resource set indicated by the indication information of the SRS resource set indication field.
- /TRP/TCI/PUSCH TO uses spatial filtering for PUSCH transmission, and the first SRI indication field corresponds to the maximum bit bandwidth, and the maximum bit bandwidth is determined based on the number of SRS resources in the SRS resource set indicated by multiple SRI indication fields;
- the second SRI indication field is used to indicate the spatial filtering used for PUSCH transmission of the second panel/TRP/TCI/PUSCH TO, and the number of bits corresponding to the second SRI indication field is based on the SRS resources in the SRS resource set associated with the second SRI indication field. The number is determined.
- FIG. 6 is a block diagram of a precoding indication device according to an exemplary embodiment.
- the precoding instruction device 200 includes a receiving module 201 . Among them, the precoding instruction device 200 can be applied to the terminal.
- the receiving module 201 is configured to receive a single downlink control information S-DCI.
- the S-DCI is used to schedule the codebook-based PUSCH transmission of TRP from multiple panels to multiple sending and receiving points by the terminal; the DCI scheduled by the S-DCI carries SRI indication field.
- the SRI indication field is used to indicate the SRS resource combination used for PUSCH transmission in the SRS resource set corresponding to PUSCH, and is used to indicate the spatial filter used by the terminal when transmitting PUSCH corresponding to different panel/TRP/TCI/PUSCH TO.
- the SRI indication field includes a single SRI indication field.
- the single SRI indication field includes code points, and the code points are used to indicate the SRS resource index corresponding to the spatial filtering used by different panel/TRP/TCI/PUSCH TOs when transmitting PUSCH.
- the single SRI indication field includes a first code point, and the first code point is used to indicate a single SRS resource set.
- a single SRS resource set or different SRS resource subsets in the single SRS resource set have different associations.
- a single SRI indication field includes a second code point, and the second code point is used to indicate multiple SRS resource sets, and the multiple SRS resource sets are associated with different panel/TRP/TCI/PUSCH TOs.
- the number of bits in a single SRI indication field is determined based on the number of code points contained in the single SRI indication field; there is a corresponding relationship between the number of code points and the combined information of different SRIs, and the corresponding relationship is predefined or determined by the network device. configuration.
- the SRI indication field includes multiple SRI indication fields, and different SRI indication fields in the multiple SRI indication fields are respectively associated with different panel/TRP/TCI/PUSCH TO directions.
- PUSCH is transmitted from a single panel to a single TRP; the same SRI indication field in multiple SRI indication fields is associated with different SRS resource sets based on the indication information of the SRS resource set indication field; wherein, the ones associated with different SRS resource sets are The number of effective bits in the same SRI indication field is determined based on the number of SRS resources included in the SRS resource set associated with the same SRI indication field.
- the same number of resources is configured in the SRS resource sets associated with different TRP directions, and the number of bits corresponding to different SRI indication fields is the same.
- the number of bits corresponding to different SRI indication fields among the multiple SRI indication fields is different.
- the number of bits corresponding to different SRI indication fields is determined based on the number of SRS resources included in the SRS resource sets of different panels/TRP/TCI/PUSCH TOs respectively associated with multiple SRI indication fields.
- the number of SRI code points corresponding to the panel/TRP/TCI/PUSCH associated with multiple SRI indication fields is determined based on the indicated SRS resource index in the corresponding relationship between different SRIs and SRS resource indexes.
- the multiple SRI indication fields include a first SRI indication field and a second SRI indication field; the first SRI indication field is used for the panel associated with the corresponding SRS resource set indicated by the indication information of the SRS resource set indication field.
- /TRP/TCI/PUSCH TO uses spatial filtering for PUSCH transmission, and the first SRI indication field corresponds to the maximum bit bandwidth, and the maximum bit bandwidth is determined based on the number of SRS resources in the SRS resource set indicated by multiple SRI indication fields;
- the second SRI indication field is used to indicate the spatial filtering used for PUSCH transmission of the second panel/TRP/TCI/PUSCH TO, and the number of bits corresponding to the second SRI indication field is based on the SRS resources in the SRS resource set associated with the second SRI indication field. The number is determined.
- Figure 7 is a block diagram of a precoding indication device according to an exemplary embodiment.
- the device 300 may be a mobile phone, a computer, a digital broadcast terminal, a messaging device, a game console, a tablet device, a medical device, a fitness device, a personal digital assistant, or the like.
- device 300 may include one or more of the following components: processing component 302, memory 304, power component 306, multimedia component 308, audio component 310, input/output (I/O) interface 312, sensor component 314, and Communication component 316.
- Processing component 302 generally controls the overall operations of device 300, such as operations associated with display, phone calls, data communications, camera operations, and recording operations.
- the processing component 302 may include one or more processors 320 to execute instructions to complete all or part of the steps of the above method.
- processing component 302 may include one or more modules that facilitate interaction between processing component 302 and other components.
- processing component 302 may include a multimedia module to facilitate interaction between multimedia component 308 and processing component 302.
- Memory 304 is configured to store various types of data to support operations at device 300 . Examples of such data include instructions for any application or method operating on device 300, contact data, phonebook data, messages, pictures, videos, etc.
- Memory 304 may be implemented by any type of volatile or non-volatile storage device, or a combination thereof, such as static random access memory (SRAM), electrically erasable programmable read-only memory (EEPROM), erasable programmable read-only memory (EEPROM), Programmable read-only memory (EPROM), programmable read-only memory (PROM), read-only memory (ROM), magnetic memory, flash memory, magnetic or optical disk.
- SRAM static random access memory
- EEPROM electrically erasable programmable read-only memory
- EEPROM erasable programmable read-only memory
- EPROM Programmable read-only memory
- PROM programmable read-only memory
- ROM read-only memory
- magnetic memory flash memory, magnetic or optical disk.
- Power component 306 provides power to the various components of device 300 .
- Power components 306 may include a power management system, one or more power supplies, and other components associated with generating, managing, and distributing power to device 300 .
- Multimedia component 308 includes a screen that provides an output interface between the device 300 and the user.
- the screen may include a liquid crystal display (LCD) and a touch panel (TP). If the screen includes a touch panel, the screen may be implemented as a touch screen to receive input signals from the user.
- the touch panel includes one or more touch sensors to sense touches, swipes, and gestures on the touch panel. The touch sensor may not only sense the boundary of a touch or slide action, but also detect the duration and pressure associated with the touch or slide action.
- multimedia component 308 includes a front-facing camera and/or a rear-facing camera.
- the front camera and/or the rear camera may receive external multimedia data.
- Each front-facing camera and rear-facing camera can be a fixed optical lens system or have a focal length and optical zoom capabilities.
- Audio component 310 is configured to output and/or input audio signals.
- audio component 310 includes a microphone (MIC) configured to receive external audio signals when device 300 is in operating modes, such as call mode, recording mode, and voice recognition mode. The received audio signals may be further stored in memory 304 or sent via communication component 316 .
- audio component 310 also includes a speaker for outputting audio signals.
- the I/O interface 312 provides an interface between the processing component 302 and a peripheral interface module, which may be a keyboard, a click wheel, a button, etc. These buttons may include, but are not limited to: Home button, Volume buttons, Start button, and Lock button.
- Sensor component 314 includes one or more sensors for providing various aspects of status assessment for device 300 .
- the sensor component 314 can detect the open/closed state of the device 300, the relative positioning of components, such as the display and keypad of the device 300, and the sensor component 314 can also detect a change in position of the device 300 or a component of the device 300. , the presence or absence of user contact with device 300 , device 300 orientation or acceleration/deceleration and temperature changes of device 300 .
- Sensor assembly 314 may include a proximity sensor configured to detect the presence of nearby objects without any physical contact.
- Sensor assembly 314 may also include a light sensor, such as a CMOS or CCD image sensor, for use in imaging applications.
- the sensor component 314 may also include an acceleration sensor, a gyroscope sensor, a magnetic sensor, a pressure sensor, or a temperature sensor.
- Communication component 316 is configured to facilitate wired or wireless communication between apparatus 300 and other devices.
- Device 300 may access a wireless network based on a communication standard, such as WiFi, 2G or 3G, or a combination thereof.
- the communication component 316 receives broadcast signals or broadcast related information from an external broadcast management system via a broadcast channel.
- the communication component 316 also includes a near field communication (NFC) module to facilitate short-range communications.
- NFC near field communication
- the NFC module can be implemented based on radio frequency identification (RFID) technology, infrared data association (IrDA) technology, ultra-wideband (UWB) technology, Bluetooth (BT) technology and other technologies.
- RFID radio frequency identification
- IrDA infrared data association
- UWB ultra-wideband
- Bluetooth Bluetooth
- apparatus 300 may be implemented by one or more application specific integrated circuits (ASICs), digital signal processors (DSPs), digital signal processing devices (DSPDs), programmable logic devices (PLDs), field programmable Gate array (FPGA), controller, microcontroller, microprocessor or other electronic components are implemented for executing the above method.
- ASICs application specific integrated circuits
- DSPs digital signal processors
- DSPDs digital signal processing devices
- PLDs programmable logic devices
- FPGA field programmable Gate array
- controller microcontroller, microprocessor or other electronic components are implemented for executing the above method.
- a non-transitory computer-readable storage medium including instructions such as a memory 304 including instructions, which can be executed by the processor 320 of the device 300 to complete the above method is also provided.
- the non-transitory computer-readable storage medium may be ROM, random access memory (RAM), CD-ROM, magnetic tape, floppy disk, optical data storage device, etc.
- FIG. 8 is a block diagram of a precoding indication device according to an exemplary embodiment.
- apparatus 400 may be provided as a network device.
- apparatus 400 includes a processing component 422, which further includes one or more processors, and memory resources represented by memory 432 for storing instructions, such as application programs, executable by processing component 422.
- the application program stored in memory 432 may include one or more modules, each corresponding to a set of instructions.
- the processing component 422 is configured to execute instructions to perform the above-described method.
- Device 400 may also include a power supply component 426 configured to perform power management of device 400, a wired or wireless network interface 450 configured to connect device 400 to a network, and an input-output (I/O) interface 458.
- Device 400 may operate based on an operating system stored in memory 432, such as Windows ServerTM, Mac OS XTM, UnixTM, LinuxTM, FreeBSDTM or the like.
- a non-transitory computer-readable storage medium including instructions such as a memory 432 including instructions, which are executable by the processing component 422 of the apparatus 400 to complete the above method is also provided.
- the non-transitory computer-readable storage medium may be ROM, random access memory (RAM), CD-ROM, magnetic tape, floppy disk, optical data storage device, etc.
- “plurality” in this disclosure refers to two or more, and other quantifiers are similar.
- “And/or” describes the relationship between related objects, indicating that there can be three relationships.
- a and/or B can mean: A exists alone, A and B exist simultaneously, and B exists alone.
- the character “/” generally indicates that the related objects are in an “or” relationship.
- the singular forms “a”, “the” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise.
- first, second, etc. are used to describe various information, but such information should not be limited to these terms. These terms are only used to distinguish information of the same type from each other and do not imply a specific order or importance. In fact, expressions such as “first” and “second” can be used interchangeably.
- first information may also be called second information, and similarly, the second information may also be called first information.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
本公开是关于一种预编码指示方法、装置及存储介质,涉及通信技术领域,用于在保证终端实现灵活性的基础上进行预编码指示增强,该方法包括:发送单个下行控制信息S-DCI,所述S-DCI用于调度终端从多个天线面板panel面向多个发送接收点TRP基于码本的PUSCH传输;所述S-DCI调度的DCI中承载有SRI指示域,所述SRI指示域用于指示所述PUSCH对应的SRS资源集合中用于PUSCH传输的SRS资源组合,并用于指示所述终端对应于不同panel/TRP/TCI/PUSCH的传输时机TO发送PUSCH时使用的空间滤波器。
Description
本公开涉及通信技术领域,尤其涉及一种预编码指示方法、装置及存储介质。
随着通信技术的发展,为了保证覆盖范围,当网络设备(例如基站)有多个发送接收点(Transmission Reception Point,TRP)时,可以使用多个TRP(Multi-TRP)/多面板(panel)为终端提供服务。并且,为了在服务区内提供更为均衡的服务质量,引入多点协作传输(Coordinated Multiple Point transmission,CoMP)技术。
相关技术中,支持终端多panel基于码本的上行同时传输(STxMP)。其中,基于码本的上行同时传输中,终端需要配置最多一个探测参考信号(Sounding Reference Signal,SRS)资源集用于基于码本的上行传输。其中,SRS资源集可配置多个SRS资源,网络设备会根据SRS资源集合中SRS资源数量(N
SRS)反馈
比特的SRS资源指示(Sounding Reference Signal resource indicator,SRI),以通过SRI指示选择SRS资源。并且,由网络设备决定终端实际传输使用的预编码矩阵(Transmission Precoding matrix indicator,TPMI)和传输层数(Rank Indicator,RI)并通知终端。终端在接下来的上行传输中的数据需要使用网络设备指定的TPMI和RI进行预编码,同时对于预编码后的数据按照SRI指示的SRS资源对应的空间滤波(Spatial Relation Info)映射到相应的天线端口上。
在相关通信协议研究中,对物理下行控制信道(physical downlink control channel,PDCCH)以及物理上行控制信道(physical uplink control channel,PUCCH)和物理上行共享信道(physical uplink shared channel,PUSCH)进行增强。
基于Multi-TRP的PUSCH增强,可以基于单个PDCCH,比如单个下行控制信令(single downlink control information,S-DCI)调度panel/TRP/TCI传输。其中,为了支持终端多panel基于码本的上行同时传输,需要在保证终端实现灵活性的基础上,考虑S-DCI调度下的不同传输方案对应的预编码指示增强方案。
发明内容
为克服相关技术中存在的问题,本公开提供一种预编码指示方法、装置及存储介质。
根据本公开实施例的第一方面,提供一种预编码指示方法,应用于网络设备,包括:发送单个下行控制信息S-DCI,所述S-DCI用于调度终端从多个天线面板panel面向多个发送接收点TRP基于码本的PUSCH传输;所述S-DCI调度下DCI中承载有SRI指示域, 所述SRI指示域用于指示所述PUSCH对应的SRS资源集合中用于PUSCH传输的SRS资源组合,并用于指示所述终端对应于不同panel/TRP/TCI/PUSCH的传输时机TO发送PUSCH时使用的空间滤波器。
一种实施方式中,所述SRI指示域包括单一SRI指示域。
一种实施方式中,所述单一SRI指示域中包括有码点,所述码点用于指示不同panel/TRP/TCI/PUSCH的传输时机TO对应发送PUSCH时分别使用的空间滤波器所对应的SRS资源索引。
一种实施方式中,所述单一SRI指示域中包括有第一码点,所述第一码点用于指示单个SRS资源集合,所述单个SRS资源集合或所述单个SRS资源集合中不同的SRS资源子集合关联不同panel/TRP/TCI/PUSCH TO。
一种实施方式中,所述单一SRI指示域中包括有第二码点,所述第二码点用于指示多个SRS资源集合,所述多个SRS资源集合关联不同panel/TRP/TCI/PUSCH TO。
一种实施方式中,所述单一SRI指示域的比特数基于所述单一SRI指示域中包含的码点数量确定;所述码点数量与不同SRI的组合信息之间具有对应关系,所述对应关系为预定义或由网络设备配置。
一种实施方式中,所述SRI指示域包括多个SRI指示域,所述多个SRI指示域中的不同SRI指示域分别关联不同panel/TRP/TCI/PUSCH TO方向。
一种实施方式中,所述PUSCH为从单个天线面板面向单个TRP传输;所述多个SRI指示域中同一SRI指示域基于SRS资源集合指示域的指示信息关联不同的SRS资源集合;其中,关联不同SRS资源集合的同一SRI指示域的有效比特数基于所述同一SRI指示域关联的SRS资源集合中包含的SRS资源数目确定。
一种实施方式中,不同的TRP方向所关联的SRS资源集合中配置有相同的资源数,且不同多个SRI指示域对应的比特数相同。
一种实施方式中,多个SRI指示域中不同SRI指示域对应的比特数不同。
一种实施方式中,所述不同SRI指示域对应的比特数基于所述多个SRI指示域分别关联的不同panel/TRP/TCI/PUSCH TO的SRS资源集合中包含的SRS资源个数确定。
一种实施方式中,所述多个SRI指示域关联的panel/TRP/TCI/PUSCH的对应的SRI码点个数基于不同SRI与SRS资源索引对应关系中指示SRS资源索引确定。
一种实施方式中,所述多个SRI指示域中包括有第一SRI指示域和第二SRI指示域;所述第一SRI指示域用于SRS资源集合指示域的指示信息指示的对应SRS资源集合关联的panel/TRP/TCI/PUSCH TO的PUSCH发送使用的空间滤波器,且所述第一SRI指示域 对应有最大比特带宽,所述最大比特带宽基于所述多个SRI指示域所指示的SRS资源集合中的SRS资源数确定;所述第二SRI指示域用于指示第二panel/TRP/TCI/PUSCH TO的PUSCH发送使用的空间滤波器,且所述第二SRI指示域对应的比特数基于所述第二SRI指示域所关联SRS资源集合中的SRS资源数确定。
根据本公开实施例的第二方面,提供一种预编码指示方法,应用于终端,所述方法包括:接收单个下行控制信息S-DCI,所述S-DCI用于调度所述终端从多个天线面板panel面向多个发送接收点TRP基于码本的PUSCH传输;所述S-DCI调度下DCI中承载有SRI指示域,所述SRI指示域用于指示所述PUSCH对应的SRS资源集合中用于PUSCH传输的SRS资源组合,并用于指示所述终端对应于不同panel/TRP/TCI/PUSCH的传输时机TO发送PUSCH时使用的空间滤波器。
一种实施方式中,所述SRI指示域包括单一SRI指示域。
一种实施方式中,所述单一SRI指示域中包括有码点,所述码点用于指示不同panel/TRP/TCI/PUSCH的传输时机TO对应发送PUSCH时分别使用的空间滤波器所对应的SRS资源索引。
一种实施方式中,所述单一SRI指示域中包括有第一码点,所述第一码点用于指示单个SRS资源集合,所述单个SRS资源集合或所述单个SRS资源集合中不同的SRS资源子集合关联不同panel/TRP/TCI/PUSCH TO。
一种实施方式中,所述单一SRI指示域中包括有第二码点,所述第二码点用于指示多个SRS资源集合,所述多个SRS资源集合关联不同panel/TRP/TCI/PUSCH TO。
一种实施方式中,所述单一SRI指示域的比特数基于所述单一SRI指示域中包含的码点数量确定;所述码点数量与不同SRI的组合信息之间具有对应关系,所述对应关系为预定义或由网络设备配置。
一种实施方式中,所述SRI指示域包括多个SRI指示域,所述多个SRI指示域中的不同SRI指示域分别关联不同panel/TRP/TCI/PUSCH TO方向。
一种实施方式中,所述PUSCH为从单个天线面板面向单个TRP传输;所述多个SRI指示域中同一SRI指示域基于SRS资源集合指示域的指示信息关联不同的SRS资源集合;其中,关联不同SRS资源集合的同一SRI指示域的有效比特数基于所述同一SRI指示域关联的SRS资源集合中包含的SRS资源数目确定。
一种实施方式中,不同的TRP方向所关联的SRS资源集合中配置有相同的资源数,且不同多个SRI指示域对应的比特数相同。
一种实施方式中,多个SRI指示域中不同SRI指示域对应的比特数不同。
一种实施方式中,所述不同SRI指示域对应的比特数基于所述多个SRI指示域分别关联的不同panel/TRP/TCI/PUSCH TO的SRS资源集合中包含的SRS资源个数确定。
一种实施方式中,所述多个SRI指示域关联的panel/TRP/TCI/PUSCH的对应的SRI码点个数基于不同SRI与SRS资源索引对应关系中指示SRS资源索引确定。
一种实施方式中,所述多个SRI指示域中包括有第一SRI指示域和第二SRI指示域;所述第一SRI指示域用于SRS资源集合指示域的指示信息指示的对应SRS资源集合关联的panel/TRP/TCI/PUSCH TO的PUSCH发送使用的空间滤波器,且所述第一SRI指示域对应有最大比特带宽,所述最大比特带宽基于所述多个SRI指示域所指示的SRS资源集合中的SRS资源数确定;所述第二SRI指示域用于指示第二panel/TRP/TCI/PUSCH TO的PUSCH发送使用的空间滤波器,且所述第二SRI指示域对应的比特数基于所述第二SRI指示域所关联SRS资源集合中的SRS资源数确定。
根据本公开实施例的第三方面,提供一种预编码指示装置,应用于网络设备,所述装置包括:发送模块,用于发送单个下行控制信息S-DCI,所述S-DCI用于调度终端从多个天线面板panel面向多个发送接收点TRP基于码本的PUSCH传输;所述S-DCI调度下DCI中承载有SRI指示域,所述SRI指示域用于指示所述PUSCH对应的SRS资源集合中用于PUSCH传输的SRS资源组合,并用于指示所述终端对应于不同panel/TRP/TCI/PUSCH的传输时机TO发送PUSCH时使用的空间滤波器。
一种实施方式中,所述SRI指示域包括单一SRI指示域。
一种实施方式中,所述单一SRI指示域中包括有码点,所述码点用于指示不同panel/TRP/TCI/PUSCH的传输时机TO对应发送PUSCH时分别使用的空间滤波所对应的SRS资源索引。
一种实施方式中,所述单一SRI指示域中包括有第一码点,所述第一码点用于指示单个SRS资源集合,所述单个SRS资源集合或所述单个SRS资源集合中不同的SRS资源子集合关联不同panel/TRP/TCI/PUSCH TO。
一种实施方式中,所述单一SRI指示域中包括有第二码点,所述第二码点用于指示多个SRS资源集合,所述多个SRS资源集合关联不同panel/TRP/TCI/PUSCH TO。
一种实施方式中,所述单一SRI指示域的比特数基于所述单一SRI指示域中包含的码点数量确定;所述码点数量与不同SRI的组合信息之间具有对应关系,所述对应关系为预定义或由网络设备配置。
一种实施方式中,所述SRI指示域包括多个SRI指示域,所述多个SRI指示域中的不同SRI指示域分别关联不同panel/TRP/TCI/PUSCH TO方向。
一种实施方式中,所述PUSCH为从单个天线面板面向单个TRP传输;所述多个SRI指示域中同一SRI指示域基于SRS资源集合指示域的指示信息关联不同的SRS资源集合;其中,关联不同SRS资源集合的同一SRI指示域的有效比特数基于所述同一SRI指示域关联的SRS资源集合中包含的SRS资源数目确定。
一种实施方式中,不同的TRP方向所关联的SRS资源集合中配置有相同的资源数,且不同多个SRI指示域对应的比特数相同。
一种实施方式中,多个SRI指示域中不同SRI指示域对应的比特数不同。
一种实施方式中,所述不同SRI指示域对应的比特数基于所述多个SRI指示域分别关联的不同panel/TRP/TCI/PUSCH TO的SRS资源集合中包含的SRS资源个数确定。
一种实施方式中,所述多个SRI指示域关联的panel/TRP/TCI/PUSCH的对应的SRI码点个数基于不同SRI与SRS资源索引对应关系中指示SRS资源索引确定。
一种实施方式中,所述多个SRI指示域中包括有第一SRI指示域和第二SRI指示域;所述第一SRI指示域用于SRS资源集合指示域的指示信息指示的对应SRS资源集合关联的panel/TRP/TCI/PUSCH TO的PUSCH发送使用的空间滤波器,且所述第一SRI指示域对应有最大比特带宽,所述最大比特带宽基于所述多个SRI指示域所指示的SRS资源集合中的SRS资源数确定;所述第二SRI指示域用于指示第二panel/TRP/TCI/PUSCH TO的PUSCH发送使用的空间滤波器,且所述第二SRI指示域对应的比特数基于所述第二SRI指示域所关联SRS资源集合中的SRS资源数确定。
根据本公开实施例的第四方面,提供一种预编码指示装置,应用于终端,所述装置包括:接收模块,用于接收单个下行控制信息S-DCI,所述S-DCI用于调度所述终端从多个天线面板panel面向多个发送接收点TRP基于码本的PUSCH传输;所述S-DCI调度下DCI中承载有SRI指示域,所述SRI指示域用于指示所述PUSCH对应的SRS资源集合中用于PUSCH传输的SRS资源组合,并用于指示所述终端对应于不同panel/TRP/TCI/PUSCH的传输时机TO发送PUSCH时使用的空间滤波器。
一种实施方式中,所述SRI指示域包括单一SRI指示域。
一种实施方式中,所述单一SRI指示域中包括有码点,所述码点用于指示不同panel/TRP/TCI/PUSCH的传输时机TO对应发送PUSCH时分别使用的空间滤波所对应的SRS资源索引。
一种实施方式中,所述单一SRI指示域中包括有第一码点,所述第一码点用于指示单个SRS资源集合,所述单个SRS资源集合或所述单个SRS资源集合中不同的SRS资源子集合关联不同panel/TRP/TCI/PUSCH TO。
一种实施方式中,所述单一SRI指示域中包括有第二码点,所述第二码点用于指示多个SRS资源集合,所述多个SRS资源集合关联不同panel/TRP/TCI/PUSCH TO。
一种实施方式中,所述单一SRI指示域的比特数基于所述单一SRI指示域中包含的码点数量确定;所述码点数量与不同SRI的组合信息之间具有对应关系,所述对应关系为预定义或由网络设备配置。
一种实施方式中,所述SRI指示域包括多个SRI指示域,所述多个SRI指示域中的不同SRI指示域分别关联不同panel/TRP/TCI/PUSCH TO方向。
一种实施方式中,所述PUSCH为从单个天线面板面向单个TRP传输;所述多个SRI指示域中同一SRI指示域基于SRS资源集合指示域的指示信息关联不同的SRS资源集合;其中,关联不同SRS资源集合的同一SRI指示域的有效比特数基于所述同一SRI指示域关联的SRS资源集合中包含的SRS资源数目确定。
一种实施方式中,不同的TRP方向所关联的SRS资源集合中配置有相同的资源数,且不同多个SRI指示域对应的比特数相同。
一种实施方式中,多个SRI指示域中不同SRI指示域对应的比特数不同。
一种实施方式中,所述不同SRI指示域对应的比特数基于所述多个SRI指示域分别关联的不同panel/TRP/TCI/PUSCH TO的SRS资源集合中包含的SRS资源个数确定。
一种实施方式中,所述多个SRI指示域关联的panel/TRP/TCI/PUSCH的对应的SRI码点个数基于不同SRI与SRS资源索引对应关系中指示SRS资源索引确定。
一种实施方式中,所述多个SRI指示域中包括有第一SRI指示域和第二SRI指示域;所述第一SRI指示域用于SRS资源集合指示域的指示信息指示的对应SRS资源集合关联的panel/TRP/TCI/PUSCH TO的PUSCH发送使用的空间滤波器,且所述第一SRI指示域对应有最大比特带宽,所述最大比特带宽基于所述多个SRI指示域所指示的SRS资源集合中的SRS资源数确定;所述第二SRI指示域用于指示第二panel/TRP/TCI/PUSCH TO的PUSCH发送使用的空间滤波器,且所述第二SRI指示域对应的比特数基于所述第二SRI指示域所关联SRS资源集合中的SRS资源数确定。
本公开的实施例提供的技术方案可以包括以下有益效果:网络设备发送S-DCI,S-DCI用于调度终端从多个panel面向多个TRP基于码本的PUSCH传输,S-DCI调度的DCI中承载有SRI指示域,SRI指示域用于指示PUSCH对应的SRS资源集合中用于PUSCH传输的SRS资源组合,并用于指示终端对应于不同panel/TRP/TCI/PUSCH TO发送PUSCH时使用的空间滤波器。因此,终端接收到S-DCI,可以根据SRI指示域指示的PUSCH对应的SRS资源集合中用于PUSCH传输的SRS资源组合确定进行传输PUSCH的空间滤波 器,从而实现了S-DCI调度多panel/TRP/TCI传输下进行基于码本的上行同时传输时,指示预编码信息,实现了预编码指示的增强。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本公开。
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本公开的实施例,并与说明书一起用于解释本公开的原理。
图1是根据一示例性实施例示出的一种无线通信系统示意图。
图2是根据一示例性实施例示出的一种S-DCI调度下的MP-MTRP传输场景示意图。
图3是根据一示例性实施例示出的一种预编码指示方法的流程图。
图4是根据一示例性实施例示出的一种预编码指示方法的流程图。
图5是根据一示例性实施例示出的一种预编码指示装置的框图。
图6是根据一示例性实施例示出的一种预编码指示装置的框图。
图7是根据一示例性实施例示出的一种用于预编码指示的装置的框图。
图8是根据一示例性实施例示出的一种用于预编码指示的装置的框图。
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本公开相一致的所有实施方式。
本公开实施例提供的一种预编码指示方法可应用于图1所示的无线通信系统中。如图1所示,该无线通信系统中包括网络设备和终端。终端通过无线资源与网络设备相连接,并进行数据传输。其中,网络设备与终端之间基于波束进行数据传输。其中,网络设备与终端之间可以基于Multi-TRP/Multi-panel进行PUSCH上行传输的增强。
可以理解的是,网络设备基于Multi-TRP/Multi-panel与终端进行数据传输的TRP数量可以为一个或多个。图1所示的无线通信系统中网络设备基于TRP1和TRP2与终端进行数据传输仅是进行示意性说明,并不引以为限。
可以理解的是,图1所示的无线通信系统仅是进行示意性说明,无线通信系统中还可包括其它网络设备,例如还可以包括核心网设备、无线中继设备和无线回传设备等,在图1中未画出。本公开实施例对该无线通信系统中包括网络设备数量和终端数量不做限定。
进一步可以理解的是,本公开实施例无线通信系统,是一种提供无线通信功能的网络。 无线通信系统可以采用不同的通信技术,例如码分多址(code division multiple access,CDMA)、宽带码分多址(wideband code division multiple access,WCDMA)、时分多址(time division multiple access,TDMA)、频分多址(frequency division multiple access,FDMA)、正交频分多址(orthogonal frequency-division multiple access,OFDMA)、单载波频分多址(single Carrier FDMA,SC-FDMA)、载波侦听多路访问/冲突避免(Carrier Sense Multiple Access with Collision Avoidance)。根据不同网络的容量、速率、时延等因素可以将网络分为2G(英文:generation)网络、3G网络、4G网络或者未来演进网络,如5G网络,5G网络也可称为是新无线网络(New Radio,NR)。为了方便描述,本公开有时会将无线通信网络简称为网络。
进一步的,本公开中涉及的网络设备也可以称为无线接入网设备。该无线接入网设备可以是:基站、演进型基站(evolved node B,基站)、家庭基站、无线保真(wireless fidelity,WIFI)系统中的接入点(access point,AP)、无线中继节点、无线回传节点、传输点(transmission point,TP)或者发送接收点(transmission and reception point,TRP)等,还可以为NR系统中的gNB,或者,还可以是构成基站的组件或一部分设备等。应理解,本公开的实施例中,对网络设备所采用的具体技术和具体设备形态不做限定。在本公开中,网络设备可以为特定的地理区域提供通信覆盖,并且可以与位于该覆盖区域(小区)内的终端进行通信。此外,当为车联网(V2X)通信系统时,网络设备还可以是车载设备。
进一步的,本公开中涉及的终端,也可以称为终端设备、用户设备(User Equipment,UE)、移动台(Mobile Station,MS)、移动终端(Mobile Terminal,MT)等,是一种向用户提供语音和/或数据连通性的设备,例如,终端可以是具有无线连接功能的手持式设备、车载设备等。目前,一些终端的举例为:智能手机(Mobile Phone)、客户前置设备(Customer Premise Equipment,CPE),口袋计算机(Pocket Personal Computer,PPC)、掌上电脑、个人数字助理(Personal Digital Assistant,PDA)、笔记本电脑、平板电脑、可穿戴设备、或者车载设备等。此外,当为车联网(V2X)通信系统时,终端设备还可以是车载设备。应理解,本公开实施例对终端所采用的具体技术和具体设备形态不做限定。
本公开中网络设备与终端之间基于波束进行数据传输。其中,网络设备与终端之间可以基于Multi-TRP/Multi-panel进行PUSCH上行传输的增强。具体的,PUSCH的上行传输方案包括基于码本的上行传输和基于非码本的上行传输方案。
相关技术中,支持终端多panel基于码本的上行同时传输(STxMP)。其中,基于码本的上行同时传输中,终端需要配置最多一个探测参考信号(Sounding Reference Signal,SRS)资源集用于基于码本的上行传输。其中,SRS资源集可配置多个SRS资源,网络设备会根 据SRS资源集合中SRS资源数量(N
SRS)反馈
比特的SRS资源指示(Sounding Reference Signal resource indicator,SRI),以通过SRI指示选择SRS资源。
以下,以表1-表3为例给出了SRI对于多个SRS资源的指示方法。其中,表1-表3中SRI(s)表示SRI指示的数量,N
SRS为SRS资源数量。
表1
表2
表3
在相关技术中,SRI指示域的定义如下表4所示:
表4
其中,在SRI指示域的码点为00时,用于指示终端采用s-TRP模式向TRP1传输PUSCH,关联第一个SRS资源集。在基于码本的传输模式下,使用DCI中的第一个SRI/TPMI域获得本次传输所使用的SRI和TPMI;在基于非码本的传输模式下,使用DCI中的第一个SRI域获得本次传输所使用的SRI。此时,不使用第二个SRI/TPMI域。
在SRI指示域的码点为01时,用于指示终端采用s-TRP模式向TRP2传输PUSCH,关联第二个SRS资源集。在基于码本的传输模式下,使用DCI中的第一个SRI/TPMI域获得本次传输所使用的SRI和TPMI;在基于非码本的传输模式下,使用DCI中的第一个SRI域获得本次传输所使用的SRI。此时,不使用第二个SRI/TPMI域。
在SRI指示域的码点为10时,用于指示终端采用m-TRP模式在第一TO先向TRP1传输PUSCH,关联第一个SRS资源集;再在第二TO向TRP2传输PUSCH。在基于码本的传输模式下,使用DCI中的第一个SRI/TPMI域获得向TRP1传输时所使用的SRI和TPMI,使用DCI中的第二个SRI/TPMI域获得向TRP2传输时所使用的SRI和TPMI;在基于非码本的传输模式下,使用DCI中的第一个SRI/TPMI域获得向TRP1传输时所使用的SRI,使用DCI中的第二个SRI/TPMI域获得向TRP2传输时所使用的SRI。
在SRI指示域的码点为11时,用于指示终端采用m-TRP模式在第一TO先向TRP2传输PUSCH,关联第二个SRS资源集;再在第二TO向TRP1传输PUSCH。在基于码本的传输模式下,使用DCI中的第二个SRI/TPMI域获得向TRP2传输时所使用的SRI和TPMI,使用DCI中的第一个SRI/TPMI域获得向TRP1传输时所使用的SRI和TPMI;在基于非码本的传输模式下,使用DCI中的第二个SRI/TPMI域获得向TRP2传输时所使用的SRI,使用DCI中的第一个SRI/TPMI域获得向TRP1传输时所使用的SRI。
基于码本的PUSCH传输中,由网络设备决定终端实际传输使用的预编码矩阵(Transmission Precoding matrix indicator,TPMI)和传输层数(Rank Indicator,RI)并通知终端。终端在接下来的上行传输中的数据需要使用网络设备指定的TPMI和RI进行预编码,同时对于预编码后的数据按照SRI指示的SRS资源对应的空间滤波器(Spatial Relation Info)映射到相应的天线端口上。
其中,以下表5至表13为用于指示TPMI和RI的TPMI表格。
表5
表6
表7
表8
表9
表10
表11
表12
表13
其中,Bit field mapped to index表示被映射到索引的比特字段,codebookSubset表示码本子集,码本子集的传输能力包括:fullyAndPartialAndNonCoherent(全相干传输)、 partialAndNonCoherent(部分相干传输)以及nonCoherent(非相关传输)。以上述表5为例,表5示出了以4天线端口,最大秩数Rank为2或3或4时对应的码本子集中的预编码信息和层数。
其中,上述表5至表13中,每个TPMI均用于指示一个预编码,下表14为对应4天线端口单层传输的码字。
表14
在相关通信协议研究中,对物理下行控制信道(physical downlink control channel,PDCCH)以及物理上行控制信道(physical uplink control channel,PUCCH)和物理上行共享信道(physical uplink shared channel,PUSCH)进行增强。
基于Multi-TRP的PUSCH增强,可以基于单个PDCCH,比如单个下行控制信令(single downlink control information,S-DCI)调度多panel/TRP/TCI传输。其中图2示出了一种S-DCI调度下的MP-MTRP传输场景示意图。参阅图2所示,终端UE在panel1上向TRP1发送TPMI1,在panel2上向TRP2发送TPMI2。
在相关技术中的基于非码本和码本的M-TRP传输中,DCI中的SRI域指示SRS资源集中的SRS资源,由于R17支持两个SRS资源集,因此在基于非码本的M-TRP PUSCH重复传输中,DCI格式0_1/0_2中包含与两个SRS资源集关联的两个SRI域,每个SRI域为一个TRP指示SRI,第一个SRI域的设计基于R15/16的框架,且所有重复传输均采用相同的层数。
其中对于基于非码本的传输,第一个SRI域用来确定第二个SRI域中的元素,且第二个SRI域仅包含与第一个SRI域指示的层数关联的SRI组合。第二个SRI域的比特数N2是由与第一个SRI域关联的所有传输层数中每个传输层的最大码点数量决定的。
在另一种相关技术中,SRI指示域的定义如下表15所示:
表15
表15与表4的区别点在于,表15固定了在s-TRP和m-TRP传输下第一个SRI/TPMI与第一个SRS资源集合关联,第二个SRI/TPMI与第二个SRS资源集合关联。
目前,上述不同复用方式下对应的可能传输方案,会为PUSCH的上行同时传输定义其中的一种或几种作为调度可选的传输方案。
在相关技术中的m-TRP上行PUSCH增强中,支持S-DCI调度下的终端面向不同TRP发送方向上使用不同的波束即对应TCI state(transmission configuration indication state)进行PUSCH信道重复发送方式的TDM(时分复用技术,time-division multiplexing)方式的分时传输方案。网络可以为不同的TRP发送方向配置关联的不同SRS资源集合,但是要求不同的传输时机TO对应的RANK数目相同,同时不同的SRS资源集合对应的SRS资 源数目相同且SRS端口数相等,对应不同TRP方向实际分配的RANK数也相同,从而导致终端灵活性不够。
因此,本公开为了支持终端多panel基于码本的上行同时传输,需要在保证终端实现灵活性的基础上,考虑S-DCI调度下的不同传输方案对应的预编码指示增强方案。
对于多panel的上行同步传输,基于单DCI的对于PUSCH的一个TB(传输块,Transport Block)的协作传输调度包括多种不同的传输方案,下面对每种传输方案进行简单说明。
一种方案是SDM(Space DivisionMultiplexing,空分)复用方案:PUSCH的一个TB通过不同Panel上分配的各自对应的DMRS端口或端口组合分别面向两个不同的TRP在相同的时频资源上进行发送,不同的panel/TRP/传输时机TO分别和不同的TCI(transmissionconfiguration indicator,传输配置指示)state(状态)即波束相关联。在此基础上,SDM方案又具体分为两种SDM-A和SDM-B,其中,SDM-A:PUSCH的一个TB的不同部分分别通过不同Panel上分配的各自对应的DMRS端口或端口组合分别面向两个不同的TRP在相同的时频资源上进行发送,不同的panel/TRP/传输时机TO分别和不同的TCIstate即波束相关联;SDM-B:PUSCH的对应不同RV版本的同一个TB的重复通过不同Panel上分配的各自对应的DMRS端口或端口组合分别面向两个不同的TRP在相同的时频资源上进行发送,不同的Pane/TRP/传输时机TO分别和不同的TCIstate即波束相关联。
另一种方案是FDM(Frequency DivisionMultiplexing,频分)频分复用方案:PUSCH的一个TB通过不同panel上分配的相同DMRS端口或端口组合分别面向两个不同的TRP在相同时域资源上的不重叠频域资源上进行发送,不同的Panel/TRP/传输时机TO分别和不同的TCI state即波束相关联。在此基础上,FDM方案又具体分为两种FDM-A和FDM-B,其中,FDM-A:PUSCH的一个TB的不同部分分别通过不同Panel上分配的相同DMRS端口或端口组合分别面向两个不同的TRP在相同时域资源上的不重叠频域资源上进行发送,不同的Pane/TRP/传输时机TO分别和不同的TCIstate即波束相关联;FDM-B:PUSCH的对应不同RV版本的同一个TB的重复通过不同Panel上分配的相同DMRS端口或端口组合分别面向两个不同的TRP在相同时域资源上的不重叠频域资源上进行发送,不同的Pane/TRP/传输时机TO分别和不同的TCIstate即波束相关联。
又一种方案是SFN(Single Frequency Network,单频网)复用方案:PUSCH的一个TB通过不同Panel上分配的相同DMRS端口或端口组合分别面向两个不同的TRP在相同的时频资源上进行发送,不同的Pane/TRP/传输时机TO分别和不同的TCIstate即波束相关联。
对于基于终端多panel的上行PUSCH同时传输,会支持上述方案中的一种或多种。
本公开实施例提供的预编码指示方法中,S-DCI调度的DCI中承载有SRI指示域,基 于SRI指示域进行预编码指示增强。
图3根据一示例性实施例示出的一种预编码指示方法的流程图,如图3所示,预编码指示方法用于网络设备中,包括以下步骤。
在步骤S11中,发送S-DCI,S-DCI用于调度终端从多个panel面向多个TRP基于码本的PUSCH传输。
其中,S-DCI调度的DCI中承载有SRI指示域,SRI指示域用于指示PUSCH对应的SRS资源集合中用于PUSCH传输的SRS资源组合,并用于指示终端对应于不同panel/TRP/TCI/PUSCH传输时机(Transmission Occasion,TO)发送PUSCH时使用的空间滤波器。
其中,上行PUSCH传输面向多个基站的TRP方向传输,例如,TDM传输方式下的协作传输,通过时域的不同传输时机(Transmission Occasion,TO)分时向基站的不同TRP发送PUSCH上同一信息的不同重复(repetition),这种方法对终端能力的要求比较低,不要求支持同时发送波束的能力,而且传输时延较大。
传输时机按照不同的TRP发送方向与不同的panel/TRP/TCI/PUSCH方向相关联。一示例中,SRI指示域指示多TRP发送状态,且对应TRP1&TRP2,则第一组PUSCH传输时机面向TRP1发送(第一个SRS资源集合),第二组PUSCH传输时机面向TRP2发送(第二个SRS资源集合)。
对于上行来讲,面向不同panel/TRP/TCI的PUSCH信道,实际经过的信道可能空间特性差别很大,因此认为不同的发送方向PUSCH信道的QCL-D不同。
在基于码本的PUSCH传输中,由网络设备决定终端实际传输使用的预编码矩阵(Transmission Precoding matrix indicator,TPMI)和传输层数(Rank Indicator,RI)并通知终端。终端在接下来的上行传输中的数据需要使用网络设备指定的TPMI和RI进行预编码,同时对于预编码后的数据按照SRI指示的SRS资源对应的空间滤波器映射到相应的天线端口上,不同的SRS资源会使用不同的空间滤波器传输,因此终端经过预编码的数据需要经过SRI指示的SRS资源所使用的空间滤波器进行滤波。在本公开实施例中,通过对SRI指示域进行增强设计,实现了对于S-DCI调度的终端对应于不同panel/TRP/TCI/PUSCH TO进行上行同时传输时空间滤波器的指示,进而实现预编码信息的指示。
在本公开实施例提供的一种预编码指示方法中,S-DCI调度的DCI中所包括的SRI指示域为单一SRI指示域。
在本公开实施例提供的一种预编码指示方法中,S-DCI调度的DCI中所包括的SRI指示域为多个SRI指示域。
本公开实施例中,当SRI指示域的数量不同时,SRI指示域指示的PUSCH对应的SRS资源集合中用于PUSCH传输的SRS资源组合不同,与不同SRS资源组合关联的不同panel/TRP/TCI/PUSCH TO不同。
在本公开实施例提供的预编码指示方法的一种实施方式中,S-DCI调度的DCI中所包括的SRI指示域包括单一SRI指示域。该单一SRI指示域用于指示PUSCH对应的SRS资源集合中用于PUSCH传输的SRS资源组合,并用于指示终端对应于不同panel/TRP/TCI/PUSCH TO发送PUSCH时使用的空间滤波器。
其中,S-DCI调度的DCI中所包括的SRI指示域包括单一SRI指示域的情况下,TPMI(传输预编码矩阵)指示域的数量可以是一个也可以是多个。
本公开实施例提供的预编码指示方法中,S-DCI调度的DCI中所包括的SRI指示域包括单一SRI指示域的情况下,可以基于该单一SRI指示域中包括的码点指示不同panel/TRP/TCI/PUSCH TO对应发送PUSCH时分别使用的空间滤波器所对应的SRS资源索引。
一示例中,单一SRI指示域中包括有码点,码点用于指示不同panel/TRP/TCI/PUSCH TO对应发送PUSCH时分别使用的空间滤波器所对应的SRS资源索引。
其中,SRS资源索引用于确定SRS资源索引对应的SRS资源。
示例性的,网络设备为终端配置两个用于码本传输的SRS资源集合,每个SRS资源集合中配置两个SRS资源,则SRI指示域的码点指示表如下表16所示:
表16
本公开实施例提供的预编码指示方法中,S-DCI调度的DCI中所包括的单一SRI指示域中所包括的码点,可以用于指示单个SRS资源集合,也可以用于指示多个SRS资源集合。
作为一种可能的实现方式,单一SRI指示域中包括有第一码点,第一码点用于指示单个SRS资源集合,单个SRS资源集合或单个SRS资源集合中不同的SRS资源子集合关联 不同panel/TRP/TCI/PUSCH TO。
例如,单个SRS资源集合关联第一panel/TRP/TCI/PUSCH TO和第二panel/TRP/TCI/PUSCH TO。或者,单个SRS资源子集合中包括第一SRS资源子集合和第二SRS资源子集合,第一SRS资源子集合关联第一panel/TRP/TCI/PUSCH TO,第二SRS资源子集合关联第二panel/TRP/TCI/PUSCH TO。
作为另一种可能的实现方式,单一SRI指示域中包括有第二码点,第二码点用于指示多个SRS资源集合,多个SRS资源集合关联不同panel/TRP/TCI/PUSCH TO。
例如,多个SRS资源集合包括第一SRS资源集合和第二SRS资源集合,则第一SRS资源集合关联第一panel/TRP/TCI/PUSCH TO,第二SRS资源集合关联第二panel/TRP/TCI/PUSCH TO。
在本公开实施例提供的预编码指示方法中,单一SRI指示域的比特数基于单一SRI指示域中包含的码点数量确定。其中,码点数量与不同SRI的组合信息之间具有对应关系。
其中,本公开实施例中,码点数量与不同SRI的组合信息之间具有的对应关系为预定义的或由网络设备配置的。
本公开实施例提供的预编码指示方法中,S-DCI调度的DCI中所包括的SRI指示域中的码点用于指示SRS资源集合中SRS资源的数目,S-DCI调度的DCI中所包括的SRI指示域的比特数根据SRS资源集合包括的SRS资源数目确定。一示例中,网络设备可以确定用于上行传输参数的SRS资源集合内的SRS资源数目,并根据确定的SRS资源数目确定SRI指示域的比特数。
例如,若SRI指示域的有效码点数量为5个,则SRI指示域的比特数至少可以是3bit,SRI指示域的取值范围则可以表示为000~111,即对应为0~7;又例如,SRI指示域的有效码点数量为4个,则SRI指示域的比特数至少可以是2bit,SRI指示域的取值范围则可以表示为00~11,即对应为0~3。
其中,预定义的对应关系,例如,协议约定方式,包括提前约定码点与SRS资源集合和/或SRS资源的对应关系,以及无效码点对应特殊处理方式等。网络侧设备配置的对应关系,例如,某一个SRS资源集合内配置的SRS资源数量小于可支持的最大码点的数量时,支持网络侧设备配置上述对应关系。
可选的,一个panel上SRI的组合可以为2和2、3和3或3和4的组合。
一示例中,一个panel上SRI的组合可以为2和3的组合,则码点与SRI的对应关系可以如下表17所示。
表17
在本公开实施例中,通过配置单个SRI指示域,并基于码点联合指示SRS资源集合来关联不同panel/TRP/TCI/PUSCH TO,使得终端在传输PUSCH时具有多种不同的方案,终端可以灵活选择。
示例性实施例中,通过单一SRI指示域中的SRI codepoint联合指示1个SRS resource set来指示一个beam pair。可以理解的是,该单一SRI指示域的比特数目需要重新定义。
示例性实施例中,通过单一SRI指示域中的SRI codepoint联合指示2个SRS resource set来指示一个beam pair。SRI codepoint中包含的SRI可以是不同表格中具体的SRS index或对应不同表格中的SRI域的codepoint,整体SRI比特数目需要重新定义。
本公开实施例提供的预编码指示方法的另一种实施方式中,S-DCI调度的DCI中所包括的SRI指示域包括多个SRI指示域,多个SRI指示域中的不同SRI指示域分别关联不同panel/TRP/TCI/PUSCH TO方向。
本公开实施例以下为描述方便,将S-DCI调度的DCI中所包括的多个SRI指示域中任意两个不同的SRI指示域称为第一SRI指示域和第二SRI指示域。
示例性的,第一SRI指示域用于指示调度PUSCH的第一SRS资源集合。第二SRI指示域用于指示调度PUSCH的第二SRS资源集合。其中,第一SRI指示域可以理解为是对应第一TRP方向,第二SRI指示域对应第二TRP方向。也即,第一SRI指示域关联第一panel/TRP/TCI/PUSCH TO方向,第二SRI指示域关联第二panel/TRP/TCI/PUSCH TO方向。
在本公开实施例提供的预编码指示方法中,在从单个panel面向单个TRP传输PUSCH的情况下,多个SRI指示域中同一SRI指示域基于SRS资源集合指示域的指示信息关联不同的SRS资源集合。
示例性的,若在单个TRP方向使用第一个SRI指示域,则第一SRI指示域可以关联第一个TRP方向也可以关联第二个TRP方向,也即根据指示信息不同可以关联不同的SRS资源集合。
在本公开实施例提供的预编码指示方法中,关联不同SRS资源集合的同一SRI指示域 的有效比特数基于同一SRI指示域关联的SRS资源集合中包含的SRS资源数目确定。
在本公开实施例提供的预编码指示方法中,不同的TRP方向所关联的SRS资源集合中配置有相同的资源数,且不同多个SRI指示域对应的比特数相同。
示例性的,不同的TRP方向所关联的SRS资源集合中配置有相同的端口数和SRS资源数目。
在本公开实施例提供的预编码指示方法中,多个SRI指示域中不同SRI指示域对应的比特数不同。
在本公开实施例提供的预编码指示方法中,不同SRI指示域对应的比特数基于多个SRI指示域分别关联的不同panel/TRP/TCI/PUSCH TO的SRS资源集合中包含的SRS资源个数确定。
进一步的,SRS资源个数不同对应的SRI指示表格不同。
例如,第一SRI指示域对应的比特数基于第一SRI指示域关联的第一panel/TRP/TCI/PUSCH TO的SRS资源集合中包含的SRS资源个数确定,示例性的对应上述表1;第二SRI指示域对应的比特数基于第二SRI指示域关联的第二panel/TRP/TCI/PUSCH TO的SRS资源集合中包含的SRS资源个数确定,示例性的对应上述表2。
在本公开实施例提供的预编码指示方法中,多个SRI指示域关联的panel/TRP/TCI/PUSCH的对应的SRI码点个数基于不同SRI与SRS资源索引对应关系中指示SRS资源索引确定。
在本公开实施例提供的预编码指示方法中,若多个SRI指示域中包括有第一SRI指示域和第二SRI指示域,第一SRI指示域用于SRS资源集合指示域的指示信息指示的对应SRS资源集合关联的panel/TRP/TCI/PUSCH TO的PUSCH发送使用的空间滤波器,且第一SRI指示域对应有最大比特带宽,最大比特带宽基于多个SRI指示域所指示的SRS资源集合中的SRS资源数确定。第二SRI指示域用于指示第二panel/TRP/TCI/PUSCH TO的PUSCH发送使用的空间滤波器,且第二SRI指示域对应的比特数基于第二SRI指示域所关联SRS资源集合中的SRS资源数确定。
示例性的,第一SRS资源集合配置2个资源,则第一SRI域的比特数为1bit,第二SRS资源集合配置4个资源,则第二SRI域的比特数为2bit,第一SRI域关联第一panel,第二SRI域关联第二panel。对于单TRP场景下,固定通过第一个SRI域指示第一TRP方向或第二TRP方向,若指示第一TRP方向则关联第一SRS资源集合,若指示第二TRP方向则关联第二SRS资源集合,此时1bit不能用于传输,因此第一SRI指示域的比特应该为2bit 才能够支持单TRP场景下的传输。
在本公开实施例中,通过配置SRI指示域的数目以及不同数目下SRI指示域对应的比特数据,实现了SRI指示域的增强,同时通过获取不同panel/TRP/TCI/PUSCH传输时机发送PUSCH时使用的空间滤波器,使终端实现更加灵活的传输PUSCH,进一步的由于终端经过预编码的数据需要经过SRI指示的SRS资源所使用的空间滤波器进行滤波,因此还实现了预编码指示增强。
图4根据一示例性实施例示出的一种预编码指示方法的流程图,如图4所示,预编码指示方法用于终端中,包括以下步骤。
在步骤S21中,接收S-DCI,S-DCI用于调度终端从多个panel面向多个TRP基于码本的PUSCH传输。
其中,S-DCI调度的DCI中承载有SRI指示域,SRI指示域用于指示PUSCH对应的SRS资源集合中用于PUSCH传输的SRS资源组合,并用于指示终端对应于不同panel/TRP/TCI/PUSCH传输时机发送PUSCH时使用的空间滤波器。
在本公开实施例提供的一种预编码指示方法中,S-DCI调度的DCI中所包括的SRI指示域为单一SRI指示域。
在本公开实施例提供的一种预编码指示方法中,S-DCI调度的DCI中所包括的SRI指示域为多个SRI指示域。
本公开实施例提供的预编码指示方法中,S-DCI调度的DCI中所包括的SRI指示域包括单一SRI指示域的情况下,可以基于该单一SRI指示域中包括的码点指示不同panel/TRP/TCI/PUSCH TO对应发送PUSCH时分别使用的空间滤波器所对应的SRS资源索引。
一示例中,单一SRI指示域中包括有码点,码点用于指示不同panel/TRP/TCI/PUSCH TO对应发送PUSCH时分别使用的空间滤波器所对应的SRS资源索引。
作为一种可能的实现方式,单一SRI指示域中包括有第一码点,第一码点用于指示单个SRS资源集合,单个SRS资源集合或单个SRS资源集合中不同的SRS资源子集合关联不同panel/TRP/TCI/PUSCH TO。
作为另一种可能的实现方式,单一SRI指示域中包括有第二码点,第二码点用于指示多个SRS资源集合,多个SRS资源集合关联不同panel/TRP/TCI/PUSCH TO。
在本公开实施例提供的预编码指示方法中,单一SRI指示域的比特数基于单一SRI指示域中包含的码点数量确定。其中,码点数量与不同SRI的组合信息之间具有对应关系。
其中,本公开实施例中,码点数量与不同SRI的组合信息之间具有的对应关系为预定 义的或由网络设备配置的。
本公开实施例提供的预编码指示方法中,S-DCI调度的DCI中所包括的SRI指示域中的码点用于指示SRS资源集合中SRS资源的数目,S-DCI调度的DCI中所包括的SRI指示域的比特数根据SRS资源集合包括的SRS资源数目确定。一示例中,网络设备可以确定用于上行传输参数的SRS资源集合内的SRS资源数目,并根据确定的SRS资源数目确定SRI指示域的比特数。
本公开实施例提供的预编码指示方法的另一种实施方式中,S-DCI调度的DCI中所包括的SRI指示域包括多个SRI指示域,多个SRI指示域中的不同SRI指示域分别关联不同panel/TRP/TCI/PUSCH TO方向。
在本公开实施例提供的预编码指示方法中,在从单个panel面向单个TRP传输PUSCH的情况下,多个SRI指示域中同一SRI指示域基于SRS资源集合指示域的指示信息关联不同的SRS资源集合。
在本公开实施例提供的预编码指示方法中,关联不同SRS资源集合的同一SRI指示域的有效比特数基于同一SRI指示域关联的SRS资源集合中包含的SRS资源数目确定。
在本公开实施例提供的预编码指示方法中,不同的TRP方向所关联的SRS资源集合中配置有相同的资源数,且不同多个SRI指示域对应的比特数相同。
在本公开实施例提供的预编码指示方法中,多个SRI指示域中不同SRI指示域对应的比特数不同。
在本公开实施例提供的预编码指示方法中,不同SRI指示域对应的比特数基于多个SRI指示域分别关联的不同panel/TRP/TCI/PUSCH TO的SRS资源集合中包含的SRS资源个数确定。
在本公开实施例提供的预编码指示方法中,多个SRI指示域关联的panel/TRP/TCI/PUSCH的对应的SRI码点个数基于不同SRI与SRS资源索引对应关系中指示SRS资源索引确定。
在本公开实施例提供的预编码指示方法中,若多个SRI指示域中包括有第一SRI指示域和第二SRI指示域,第一SRI指示域用于SRS资源集合指示域的指示信息指示的对应SRS资源集合关联的panel/TRP/TCI/PUSCH TO的PUSCH发送使用的空间滤波器,且第一SRI指示域对应有最大比特带宽,最大比特带宽基于多个SRI指示域所指示的SRS资源集合中的SRS资源数确定。第二SRI指示域用于指示第二panel/TRP/TCI/PUSCH TO的PUSCH发送使用的空间滤波器,且第二SRI指示域对应的比特数基于第二SRI指示域所关联SRS资源集合中的SRS资源数确定。
本公开提供的预编码指示方法适用于终端与网络设备交互实现预编码信息指示的过程,对于终端与网络设备交互实现预编码信息指示的方法中,终端和网络设备分别具备实施上述实施例中涉及的预编码指示信息方法中的相关功能,故在此不再赘述。
本公开实施例中,S-DCI调度的DCI中所包括的SRI指示域指示终端对应于不同panel/TRP/TCI/PUSCH TO发送PUSCH时使用的空间滤波器,实现了对于S-DCI调度的终端对应于不同panel/TRP/TCI/PUSCH TO进行上行同时传输时空间滤波器的指示,进而实现预编码信息的指示。
需要说明的是,本领域内技术人员可以理解,本公开实施例上述涉及的各种实施方式/实施例中可以配合前述的实施例使用,也可以是独立使用。无论是单独使用还是配合前述的实施例一起使用,其实现原理类似。本公开实施中,部分实施例中是以一起使用的实施方式进行说明的。当然,本领域内技术人员可以理解,这样的举例说明并非对本公开实施例的限定。
基于相同的构思,本公开实施例还提供一种预编码指示装置。
可以理解的是,本公开实施例提供的预编码指示装置为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。结合本公开实施例中所公开的各示例的单元及算法步骤,本公开实施例能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。本领域技术人员可以对每个特定的应用来使用不同的方法来实现所描述的功能,但是这种实现不应认为超出本公开实施例的技术方案的范围。
图5是根据一示例性实施例示出的一种预编码指示装置框图。参照图5,该预编码指示装置100包括发送模块101。其中,预编码指示装置100可以应用于网络设备。
发送模块101,被配置为发送单个下行控制信息S-DCI,S-DCI用于调度终端从多个panel面向多个发送接收点TRP基于码本的PUSCH传输;S-DCI调度的DCI中承载有SRI指示域,SRI指示域用于指示PUSCH对应的SRS资源集合中用于PUSCH传输的SRS资源组合,并用于指示终端对应于不同panel/TRP/TCI/PUSCH TO发送PUSCH时使用的空间滤波器。
一种实施方式中,SRI指示域包括单一SRI指示域。
一种实施方式中,单一SRI指示域中包括有码点,码点用于指示不同panel/TRP/TCI/PUSCH TO对应发送PUSCH时分别使用的空间滤波器所对应的SRS资源索引。
一种实施方式中,单一SRI指示域中包括有第一码点,第一码点用于指示单个SRS资 源集合,单个SRS资源集合或单个SRS资源集合中不同的SRS资源子集合关联不同panel/TRP/TCI/PUSCH TO。
一种实施方式中,单一SRI指示域中包括有第二码点,第二码点用于指示多个SRS资源集合,多个SRS资源集合关联不同panel/TRP/TCI/PUSCH TO。
一种实施方式中,单一SRI指示域的比特数基于所述单一SRI指示域中包含的码点数量确定;码点数量与不同SRI的组合信息之间具有对应关系,对应关系为预定义或由网络设备配置。
一种实施方式中,SRI指示域包括多个SRI指示域,多个SRI指示域中的不同SRI指示域分别关联不同panel/TRP/TCI/PUSCH TO方向。
一种实施方式中,PUSCH为从单个panel面向单个TRP传输;多个SRI指示域中同一SRI指示域基于SRS资源集合指示域的指示信息关联不同的SRS资源集合;其中,关联不同SRS资源集合的同一SRI指示域的有效比特数基于所述同一SRI指示域关联的SRS资源集合中包含的SRS资源数目确定。
一种实施方式中,不同的TRP方向所关联的SRS资源集合中配置有相同的资源数,且不同多个SRI指示域对应的比特数相同。
一种实施方式中,多个SRI指示域中不同SRI指示域对应的比特数不同。
一种实施方式中,不同SRI指示域对应的比特数基于多个SRI指示域分别关联的不同panel/TRP/TCI/PUSCH TO的SRS资源集合中包含的SRS资源个数确定。
一种实施方式中,多个SRI指示域关联的panel/TRP/TCI/PUSCH的对应的SRI码点个数基于不同SRI与SRS资源索引对应关系中指示SRS资源索引确定。
一种实施方式中,多个SRI指示域中包括有第一SRI指示域和第二SRI指示域;第一SRI指示域用于SRS资源集合指示域的指示信息指示的对应SRS资源集合关联的panel/TRP/TCI/PUSCH TO的PUSCH发送使用的空间滤波,且第一SRI指示域对应有最大比特带宽,最大比特带宽基于多个SRI指示域所指示的SRS资源集合中的SRS资源数确定;第二SRI指示域用于指示第二panel/TRP/TCI/PUSCH TO的PUSCH发送使用的空间滤波,且第二SRI指示域对应的比特数基于第二SRI指示域所关联SRS资源集合中的SRS资源数确定。
图6是根据一示例性实施例示出的一种预编码指示装置框图。参照图6,该预编码指示装置200包括接收模块201。其中,预编码指示装置200可以应用于终端。
接收模块201,被配置为接收单个下行控制信息S-DCI,S-DCI用于调度终端从多个panel面向多个发送接收点TRP基于码本的PUSCH传输;S-DCI调度的DCI中承载有SRI 指示域,SRI指示域用于指示PUSCH对应的SRS资源集合中用于PUSCH传输的SRS资源组合,并用于指示终端对应于不同panel/TRP/TCI/PUSCH TO发送PUSCH时使用的空间滤波器。
一种实施方式中,SRI指示域包括单一SRI指示域。
一种实施方式中,单一SRI指示域中包括有码点,码点用于指示不同panel/TRP/TCI/PUSCH TO对应发送PUSCH时分别使用的空间滤波所对应的SRS资源索引。
一种实施方式中,单一SRI指示域中包括有第一码点,第一码点用于指示单个SRS资源集合,单个SRS资源集合或所述单个SRS资源集合中不同的SRS资源子集合关联不同panel/TRP/TCI/PUSCH TO。
一种实施方式中,单一SRI指示域中包括有第二码点,第二码点用于指示多个SRS资源集合,多个SRS资源集合关联不同panel/TRP/TCI/PUSCH TO。
一种实施方式中,单一SRI指示域的比特数基于单一SRI指示域中包含的码点数量确定;码点数量与不同SRI的组合信息之间具有对应关系,对应关系为预定义或由网络设备配置。
一种实施方式中,SRI指示域包括多个SRI指示域,多个SRI指示域中的不同SRI指示域分别关联不同panel/TRP/TCI/PUSCH TO方向。
一种实施方式中,PUSCH为从单个panel面向单个TRP传输;多个SRI指示域中同一SRI指示域基于SRS资源集合指示域的指示信息关联不同的SRS资源集合;其中,关联不同SRS资源集合的同一SRI指示域的有效比特数基于同一SRI指示域关联的SRS资源集合中包含的SRS资源数目确定。
一种实施方式中,不同的TRP方向所关联的SRS资源集合中配置有相同的资源数,且不同多个SRI指示域对应的比特数相同。
一种实施方式中,多个SRI指示域中不同SRI指示域对应的比特数不同。
一种实施方式中,不同SRI指示域对应的比特数基于多个SRI指示域分别关联的不同panel/TRP/TCI/PUSCH TO的SRS资源集合中包含的SRS资源个数确定。
一种实施方式中,多个SRI指示域关联的panel/TRP/TCI/PUSCH的对应的SRI码点个数基于不同SRI与SRS资源索引对应关系中指示SRS资源索引确定。
一种实施方式中,多个SRI指示域中包括有第一SRI指示域和第二SRI指示域;第一SRI指示域用于SRS资源集合指示域的指示信息指示的对应SRS资源集合关联的panel/TRP/TCI/PUSCH TO的PUSCH发送使用的空间滤波,且第一SRI指示域对应有最大 比特带宽,最大比特带宽基于多个SRI指示域所指示的SRS资源集合中的SRS资源数确定;第二SRI指示域用于指示第二panel/TRP/TCI/PUSCH TO的PUSCH发送使用的空间滤波,且第二SRI指示域对应的比特数基于第二SRI指示域所关联SRS资源集合中的SRS资源数确定。
关于上述实施例中的装置,其中各个模块执行操作的具体方式已经在有关该方法的实施例中进行了详细描述,此处将不做详细阐述说明。
图7是根据一示例性实施例示出的一种预编码指示装置的框图。例如,装置300可以是移动电话,计算机,数字广播终端,消息收发设备,游戏控制台,平板设备,医疗设备,健身设备,个人数字助理等。
参照图7,装置300可以包括以下一个或多个组件:处理组件302,存储器304,电力组件306,多媒体组件308,音频组件310,输入/输出(I/O)接口312,传感器组件314,以及通信组件316。
处理组件302通常控制装置300的整体操作,诸如与显示,电话呼叫,数据通信,相机操作和记录操作相关联的操作。处理组件302可以包括一个或多个处理器320来执行指令,以完成上述的方法的全部或部分步骤。此外,处理组件302可以包括一个或多个模块,便于处理组件302和其他组件之间的交互。例如,处理组件302可以包括多媒体模块,以方便多媒体组件308和处理组件302之间的交互。
存储器304被配置为存储各种类型的数据以支持在装置300的操作。这些数据的示例包括用于在装置300上操作的任何应用程序或方法的指令,联系人数据,电话簿数据,消息,图片,视频等。存储器304可以由任何类型的易失性或非易失性存储设备或者它们的组合实现,如静态随机存取存储器(SRAM),电可擦除可编程只读存储器(EEPROM),可擦除可编程只读存储器(EPROM),可编程只读存储器(PROM),只读存储器(ROM),磁存储器,快闪存储器,磁盘或光盘。
电力组件306为装置300的各种组件提供电力。电力组件306可以包括电源管理系统,一个或多个电源,及其他与为装置300生成、管理和分配电力相关联的组件。
多媒体组件308包括在所述装置300和用户之间的提供一个输出接口的屏幕。在一些实施例中,屏幕可以包括液晶显示器(LCD)和触摸面板(TP)。如果屏幕包括触摸面板,屏幕可以被实现为触摸屏,以接收来自用户的输入信号。触摸面板包括一个或多个触摸传感器以感测触摸、滑动和触摸面板上的手势。所述触摸传感器可以不仅感测触摸或滑动动作的边界,而且还检测与所述触摸或滑动操作相关的持续时间和压力。在一些实施例中,多媒体组件308包括一个前置摄像头和/或后置摄像头。当装置300处于操作模式,如拍摄 模式或视频模式时,前置摄像头和/或后置摄像头可以接收外部的多媒体数据。每个前置摄像头和后置摄像头可以是一个固定的光学透镜系统或具有焦距和光学变焦能力。
音频组件310被配置为输出和/或输入音频信号。例如,音频组件310包括一个麦克风(MIC),当装置300处于操作模式,如呼叫模式、记录模式和语音识别模式时,麦克风被配置为接收外部音频信号。所接收的音频信号可以被进一步存储在存储器304或经由通信组件316发送。在一些实施例中,音频组件310还包括一个扬声器,用于输出音频信号。
I/O接口312为处理组件302和外围接口模块之间提供接口,上述外围接口模块可以是键盘,点击轮,按钮等。这些按钮可包括但不限于:主页按钮、音量按钮、启动按钮和锁定按钮。
传感器组件314包括一个或多个传感器,用于为装置300提供各个方面的状态评估。例如,传感器组件314可以检测到装置300的打开/关闭状态,组件的相对定位,例如所述组件为装置300的显示器和小键盘,传感器组件314还可以检测装置300或装置300一个组件的位置改变,用户与装置300接触的存在或不存在,装置300方位或加速/减速和装置300的温度变化。传感器组件314可以包括接近传感器,被配置用来在没有任何的物理接触时检测附近物体的存在。传感器组件314还可以包括光传感器,如CMOS或CCD图像传感器,用于在成像应用中使用。在一些实施例中,该传感器组件314还可以包括加速度传感器,陀螺仪传感器,磁传感器,压力传感器或温度传感器。
通信组件316被配置为便于装置300和其他设备之间有线或无线方式的通信。装置300可以接入基于通信标准的无线网络,如WiFi,2G或3G,或它们的组合。在一个示例性实施例中,通信组件316经由广播信道接收来自外部广播管理系统的广播信号或广播相关信息。在一个示例性实施例中,所述通信组件316还包括近场通信(NFC)模块,以促进短程通信。例如,在NFC模块可基于射频识别(RFID)技术,红外数据协会(IrDA)技术,超宽带(UWB)技术,蓝牙(BT)技术和其他技术来实现。
在示例性实施例中,装置300可以被一个或多个应用专用集成电路(ASIC)、数字信号处理器(DSP)、数字信号处理设备(DSPD)、可编程逻辑器件(PLD)、现场可编程门阵列(FPGA)、控制器、微控制器、微处理器或其他电子元件实现,用于执行上述方法。
在示例性实施例中,还提供了一种包括指令的非临时性计算机可读存储介质,例如包括指令的存储器304,上述指令可由装置300的处理器320执行以完成上述方法。例如,所述非临时性计算机可读存储介质可以是ROM、随机存取存储器(RAM)、CD-ROM、磁带、软盘和光数据存储设备等。
图8是根据一示例性实施例示出的一种预编码指示装置的框图。例如,装置400可以 被提供为一网络设备。参照图8,装置400包括处理组件422,其进一步包括一个或多个处理器,以及由存储器432所代表的存储器资源,用于存储可由处理组件422的执行的指令,例如应用程序。存储器432中存储的应用程序可以包括一个或一个以上的每一个对应于一组指令的模块。此外,处理组件422被配置为执行指令,以执行上述方法。
装置400还可以包括一个电源组件426被配置为执行装置400的电源管理,一个有线或无线网络接口450被配置为将装置400连接到网络,和一个输入输出(I/O)接口458。装置400可以操作基于存储在存储器432的操作系统,例如Windows ServerTM,Mac OS XTM,UnixTM,LinuxTM,FreeBSDTM或类似。
在示例性实施例中,还提供了一种包括指令的非临时性计算机可读存储介质,例如包括指令的存储器432,上述指令可由装置400的处理组件422执行以完成上述方法。例如,所述非临时性计算机可读存储介质可以是ROM、随机存取存储器(RAM)、CD-ROM、磁带、软盘和光数据存储设备等。
进一步可以理解的是,本公开中“多个”是指两个或两个以上,其它量词与之类似。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。字符“/”一般表示前后关联对象是一种“或”的关系。单数形式的“一种”、“所述”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。
进一步可以理解的是,术语“第一”、“第二”等用于描述各种信息,但这些信息不应限于这些术语。这些术语仅用来将同一类型的信息彼此区分开,并不表示特定的顺序或者重要程度。实际上,“第一”、“第二”等表述完全可以互换使用。例如,在不脱离本公开范围的情况下,第一信息也可以被称为第二信息,类似地,第二信息也可以被称为第一信息。
进一步可以理解的是,本公开实施例中尽管在附图中以特定的顺序描述操作,但是不应将其理解为要求按照所示的特定顺序或是串行顺序来执行这些操作,或是要求执行全部所示的操作以得到期望的结果。在特定环境中,多任务和并行处理可能是有利的。
本领域技术人员在考虑说明书及实践这里公开的发明后,将容易想到本公开的其它实施方案。本申请旨在涵盖本公开的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本公开的一般性原理并包括本公开未公开的本技术领域中的公知常识或惯用技术手段。
应当理解的是,本公开并不局限于上面已经描述并在附图中示出的精确结构,并且可以在不脱离其范围进行各种修改和改变。本公开的范围仅由所附的权利范围来限制。
Claims (32)
- 一种预编码指示方法,其特征在于,应用于网络设备,所述方法包括:发送单个下行控制信息S-DCI,所述S-DCI用于调度终端从多个天线面板panel面向多个发送接收点TRP基于码本的PUSCH传输;所述S-DCI调度的DCI中承载有SRI指示域,所述SRI指示域用于指示所述PUSCH对应的SRS资源集合中用于PUSCH传输的SRS资源组合,并用于指示所述终端对应于不同panel/TRP/TCI/PUSCH的传输时机TO发送PUSCH时使用的空间滤波器。
- 根据权利要求1所述的方法,其特征在于,所述SRI指示域包括单一SRI指示域。
- 根据权利要求2所述的方法,其特征在于,所述单一SRI指示域中包括有码点,所述码点用于指示不同panel/TRP/TCI/PUSCH的传输时机TO对应发送PUSCH时分别使用的空间滤波器对应的SRS资源索引。
- 根据权利要求2或3所述的方法,其特征在于,所述单一SRI指示域中包括有第一码点,所述第一码点用于指示单个SRS资源集合,所述单个SRS资源集合或所述单个SRS资源集合中不同的SRS资源子集合关联不同panel/TRP/TCI/PUSCH TO。
- 根据权利要求2或3所述的方法,其特征在于,所述单一SRI指示域中包括有第二码点,所述第二码点用于指示多个SRS资源集合,所述多个SRS资源集合关联不同panel/TRP/TCI/PUSCH TO。
- 根据权利要求3所述的方法,其特征在于,所述单一SRI指示域的比特数基于所述单一SRI指示域中包含的码点数量确定;所述码点数量与不同SRI的组合信息之间具有对应关系,所述对应关系为预定义或由网络设备配置。
- 根据权利要求1所述的方法,其特征在于,所述SRI指示域包括多个SRI指示域,所述多个SRI指示域中的不同SRI指示域分别关联不同panel/TRP/TCI/PUSCH TO方向。
- 根据权利要求7所述的方法,其特征在于,所述PUSCH为从单个天线面板面向单个TRP传输;所述多个SRI指示域中同一SRI指示域基于SRS资源集合指示域的指示信息关联不同的SRS资源集合;其中,关联不同SRS资源集合的同一SRI指示域的有效比特数基于所述同一SRI指示域关联的SRS资源集合中包含的SRS资源数目确定。
- 根据权利要求7至8中任意一项所述的方法,其特征在于,不同的TRP方向所关 联的SRS资源集合中配置有相同的资源数,且不同多个SRI指示域对应的比特数相同。
- 根据权利要求7至8中任意一项所述的方法,其特征在于,多个SRI指示域中不同SRI指示域对应的比特数不同。
- 根据权利要求10所述的方法,其特征在于,所述不同SRI指示域对应的比特数基于所述多个SRI指示域分别关联的不同panel/TRP/TCI/PUSCH TO的SRS资源集合中包含的SRS资源个数确定。
- 根据权利要求11所述的方法,其特征在于,所述多个SRI指示域关联的panel/TRP/TCI/PUSCH的对应的SRI码点个数基于不同SRI与SRS资源索引对应关系中指示SRS资源索引确定。
- 根据权利要求9至12中任意一项所述的方法,其特征在于,所述多个SRI指示域中包括有第一SRI指示域和第二SRI指示域;所述第一SRI指示域用于SRS资源集合指示域的指示信息指示的对应SRS资源集合关联的panel/TRP/TCI/PUSCH TO的PUSCH发送使用的空间滤波器,且所述第一SRI指示域对应有最大比特带宽,所述最大比特带宽基于所述多个SRI指示域所指示的SRS资源集合中的SRS资源数确定;所述第二SRI指示域用于指示第二panel/TRP/TCI/PUSCH TO的PUSCH发送使用的空间滤波器,且所述第二SRI指示域对应的比特数基于所述第二SRI指示域所关联SRS资源集合中的SRS资源数确定。
- 一种预编码指示方法,其特征在于,应用于终端,所述方法包括:接收单个下行控制信息S-DCI,所述S-DCI用于调度所述终端从多个天线面板panel面向多个发送接收点TRP基于码本的PUSCH传输;所述S-DCI调度的DCI中承载有SRI指示域,所述SRI指示域用于指示所述PUSCH对应的SRS资源集合中用于PUSCH传输的SRS资源组合,并用于指示所述终端对应于不同panel/TRP/TCI/PUSCH的传输时机TO发送PUSCH时使用的空间滤波器。
- 根据权利要求14所述的方法,其特征在于,所述SRI指示域包括单一SRI指示域。
- 根据权利要求15所述的方法,其特征在于,所述单一SRI指示域中包括有码点,所述码点用于指示不同panel/TRP/TCI/PUSCH的传输时机TO对应发送PUSCH时分别使用的空间滤波器所对应的SRS资源索引。
- 根据权利要求15或16所述的方法,其特征在于,所述单一SRI指示域中包括有第一码点,所述第一码点用于指示单个SRS资源集合,所述单个SRS资源集合或所述单个SRS资源集合中不同的SRS资源子集合关联不同panel/TRP/TCI/PUSCH TO。
- 根据权利要求15或16所述的方法,其特征在于,所述单一SRI指示域中包括有第二码点,所述第二码点用于指示多个SRS资源集合,所述多个SRS资源集合关联不同panel/TRP/TCI/PUSCH TO。
- 根据权利要求16所述的方法,其特征在于,所述单一SRI指示域的比特数基于所述单一SRI指示域中包含的码点数量确定;所述码点数量与不同SRI的组合信息之间具有对应关系,所述对应关系为预定义或由网络设备配置。
- 根据权利要求14所述的方法,其特征在于,所述SRI指示域包括多个SRI指示域,所述多个SRI指示域中的不同SRI指示域分别关联不同panel/TRP/TCI/PUSCH TO方向。
- 根据权利要求20所述的方法,其特征在于,所述PUSCH为从单个天线面板面向单个TRP传输;所述多个SRI指示域中同一SRI指示域基于SRS资源集合指示域的指示信息关联不同的SRS资源集合;其中,关联不同SRS资源集合的同一SRI指示域的有效比特数基于所述同一SRI指示域关联的SRS资源集合中包含的SRS资源数目确定。
- 根据权利要求20至21中任意一项所述的方法,其特征在于,不同的TRP方向所关联的SRS资源集合中配置有相同的资源数,且不同多个SRI指示域对应的比特数相同。
- 根据权利要求20至21中任意一项所述的方法,其特征在于,多个SRI指示域中不同SRI指示域对应的比特数不同。
- 根据权利要求23所述的方法,其特征在于,所述不同SRI指示域对应的比特数基于所述多个SRI指示域分别关联的不同panel/TRP/TCI/PUSCH TO的SRS资源集合中包含的SRS资源个数确定。
- 根据权利要求24所述的方法,其特征在于,所述多个SRI指示域关联的panel/TRP/TCI/PUSCH的对应的SRI码点个数基于不同SRI与SRS资源索引对应关系中指示SRS资源索引确定。
- 根据权利要求22至25中任意一项所述的方法,其特征在于,所述多个SRI指示域中包括有第一SRI指示域和第二SRI指示域;所述第一SRI指示域用于SRS资源集合指示域的指示信息指示的对应SRS资源集合关联的panel/TRP/TCI/PUSCH TO的PUSCH发送使用的空间滤波器,且所述第一SRI指示域对应有最大比特带宽,所述最大比特带宽基于所述多个SRI指示域所指示的SRS资源集合中的SRS资源数确定;所述第二SRI指示域用于指示第二panel/TRP/TCI/PUSCH TO的PUSCH发送使用的空间滤波器,且所述第二SRI指示域对应的比特数基于所述第二SRI指示域所关联SRS资源集合中的SRS资源数确定。
- 一种预编码指示装置,其特征在于,所述装置包括:发送模块,用于发送单个下行控制信息S-DCI,所述S-DCI用于调度终端从多个天线面板panel面向多个发送接收点TRP基于码本的PUSCH传输;所述S-DCI调度的DCI中承载有SRI指示域,所述SRI指示域用于指示所述PUSCH对应的SRS资源集合中用于PUSCH传输的SRS资源组合,并用于指示所述终端对应于不同panel/TRP/TCI/PUSCH的传输时机TO发送PUSCH时使用的空间滤波器。
- 一种预编码指示装置,其特征在于,所述装置包括:接收模块,用于接收单个下行控制信息S-DCI,所述S-DCI用于调度终端从多个天线面板panel面向多个发送接收点TRP基于码本的PUSCH传输;所述S-DCI调度的DCI中承载有SRI指示域,所述SRI指示域用于指示所述PUSCH对应的SRS资源集合中用于PUSCH传输的SRS资源组合,并用于指示所述终端对应于不同panel/TRP/TCI/PUSCH的传输时机TO发送PUSCH时使用的空间滤波器。
- 一种预编码指示装置,其特征在于,包括:处理器;用于存储处理器可执行指令的存储器;其中,所述处理器被配置为:执行权利要求1至13中任意一项所述的预编码指示方法。
- 一种预编码指示装置,其特征在于,包括:处理器;用于存储处理器可执行指令的存储器;其中,所述处理器被配置为:执行权利要求14至26中任意一项所述的预编码指示方法。
- 一种存储介质,其特征在于,所述存储介质中存储有指令,当所述存储介质中的指令由网络设备的处理器执行时,使得网络设备能够执行权利要求1至13中任意一项所述的预编码指示方法。
- 一种存储介质,其特征在于,所述存储介质中存储有指令,当所述存储介质中的指令由网络设备的处理器执行时,使得网络设备能够执行权利要求14至26中任意一项所述的预编码指示方法。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2022/111524 WO2024031455A1 (zh) | 2022-08-10 | 2022-08-10 | 一种预编码指示方法、装置及存储介质 |
CN202280002981.6A CN117882347A (zh) | 2022-08-10 | 2022-08-10 | 一种预编码指示方法、装置及存储介质 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2022/111524 WO2024031455A1 (zh) | 2022-08-10 | 2022-08-10 | 一种预编码指示方法、装置及存储介质 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2024031455A1 true WO2024031455A1 (zh) | 2024-02-15 |
Family
ID=89850222
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2022/111524 WO2024031455A1 (zh) | 2022-08-10 | 2022-08-10 | 一种预编码指示方法、装置及存储介质 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN117882347A (zh) |
WO (1) | WO2024031455A1 (zh) |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110838856A (zh) * | 2018-08-17 | 2020-02-25 | 电信科学技术研究院有限公司 | 一种数据传输方法、终端及网络设备 |
CN113271188A (zh) * | 2020-02-14 | 2021-08-17 | 大唐移动通信设备有限公司 | 一种数据传输方法、终端和基站 |
CN113766665A (zh) * | 2020-06-01 | 2021-12-07 | 英特尔公司 | 用于多trp场景中基于码本的ul传输的装置和方法 |
WO2022028262A1 (en) * | 2020-08-06 | 2022-02-10 | FG Innovation Company Limited | Wireless communication method and user equipment for non-codebook pusch transmission |
WO2022149272A1 (ja) * | 2021-01-08 | 2022-07-14 | 株式会社Nttドコモ | 端末、無線通信方法及び基地局 |
CN114765879A (zh) * | 2021-01-15 | 2022-07-19 | 维沃移动通信有限公司 | Pusch传输方法、装置、设备及存储介质 |
US20220239440A1 (en) * | 2019-06-05 | 2022-07-28 | Lg Electronics Inc. | Method for transmitting and receiving uplink signal in wireless communication system, and device therefor |
-
2022
- 2022-08-10 WO PCT/CN2022/111524 patent/WO2024031455A1/zh active Application Filing
- 2022-08-10 CN CN202280002981.6A patent/CN117882347A/zh active Pending
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110838856A (zh) * | 2018-08-17 | 2020-02-25 | 电信科学技术研究院有限公司 | 一种数据传输方法、终端及网络设备 |
US20220239440A1 (en) * | 2019-06-05 | 2022-07-28 | Lg Electronics Inc. | Method for transmitting and receiving uplink signal in wireless communication system, and device therefor |
CN113271188A (zh) * | 2020-02-14 | 2021-08-17 | 大唐移动通信设备有限公司 | 一种数据传输方法、终端和基站 |
CN113766665A (zh) * | 2020-06-01 | 2021-12-07 | 英特尔公司 | 用于多trp场景中基于码本的ul传输的装置和方法 |
WO2022028262A1 (en) * | 2020-08-06 | 2022-02-10 | FG Innovation Company Limited | Wireless communication method and user equipment for non-codebook pusch transmission |
WO2022149272A1 (ja) * | 2021-01-08 | 2022-07-14 | 株式会社Nttドコモ | 端末、無線通信方法及び基地局 |
CN114765879A (zh) * | 2021-01-15 | 2022-07-19 | 维沃移动通信有限公司 | Pusch传输方法、装置、设备及存储介质 |
Also Published As
Publication number | Publication date |
---|---|
CN117882347A (zh) | 2024-04-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP4106437A1 (en) | Data transmission method and data transmission apparatus | |
WO2023070563A1 (zh) | 传输配置指示状态确定方法、装置及存储介质 | |
WO2022141074A1 (zh) | 波束指示方法、波束指示装置及存储介质 | |
WO2021163936A1 (zh) | 通信处理方法、装置及计算机存储介质 | |
WO2023070562A1 (zh) | 传输配置指示状态确定方法、装置及存储介质 | |
JP7337201B2 (ja) | データ伝送方法、装置、システム及び記憶媒体 | |
CN113196854B (zh) | 波束确定方法、波束确定装置及存储介质 | |
WO2022205233A1 (zh) | 用于pusch的通信方法、用于pusch的通信装置及存储介质 | |
WO2022205229A1 (zh) | 用于pusch的通信方法、装置及存储介质 | |
WO2019090723A1 (zh) | 数据传输方法及装置 | |
WO2023010465A1 (zh) | 上行pusch的开环功率控制方法、装置及存储介质 | |
WO2024031455A1 (zh) | 一种预编码指示方法、装置及存储介质 | |
WO2024031454A1 (zh) | 一种预编码指示方法、装置及存储介质 | |
WO2024182942A1 (zh) | 一种通信方法、装置及存储介质 | |
WO2024168898A1 (zh) | 一种物理上行共享信道pusch通信方法、装置及存储介质 | |
WO2024168548A1 (zh) | 功率控制参数配置方法、装置及存储介质 | |
WO2024168557A1 (zh) | 传输配置指示状态确定方法、配置方法、装置及存储介质 | |
US20240348397A1 (en) | Uplink coordinated trp determination method and apparatus, and storage medium | |
WO2024130590A1 (zh) | 一种传输配置指示状态的确定方法、装置及存储介质 | |
WO2024174105A1 (zh) | 功率控制参数确定方法、装置及存储介质 | |
WO2024168628A1 (zh) | 一种上行通信方法、装置及存储介质 | |
WO2024168914A1 (zh) | 一种物理上行共享信道传输方法、装置及存储介质 | |
WO2024020816A1 (zh) | 信息处理方法及装置、通信设备及存储介质 | |
WO2024164117A1 (zh) | 一种发送或接收报告的方法、装置、设备及可读存储介质 | |
WO2022077265A1 (zh) | 一种传输配置方法、传输配置装置及存储介质 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 202280002981.6 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22954430 Country of ref document: EP Kind code of ref document: A1 |