WO2023272416A1 - 一种电池系统及其均衡管理方法 - Google Patents

一种电池系统及其均衡管理方法 Download PDF

Info

Publication number
WO2023272416A1
WO2023272416A1 PCT/CN2021/102633 CN2021102633W WO2023272416A1 WO 2023272416 A1 WO2023272416 A1 WO 2023272416A1 CN 2021102633 W CN2021102633 W CN 2021102633W WO 2023272416 A1 WO2023272416 A1 WO 2023272416A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
cluster
equalizer
pack
battery system
Prior art date
Application number
PCT/CN2021/102633
Other languages
English (en)
French (fr)
Inventor
曾伟
温进
Original Assignee
远景能源有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 远景能源有限公司 filed Critical 远景能源有限公司
Priority to US18/279,390 priority Critical patent/US20240235213A9/en
Priority to CN202180002138.3A priority patent/CN113632340A/zh
Priority to PCT/CN2021/102633 priority patent/WO2023272416A1/zh
Priority to EP21947382.4A priority patent/EP4366113A1/en
Priority to AU2021454419A priority patent/AU2021454419A1/en
Publication of WO2023272416A1 publication Critical patent/WO2023272416A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0047Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with monitoring or indicating devices or circuits
    • H02J7/0048Detection of remaining charge capacity or state of charge [SOC]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • H02J7/0014Circuits for equalisation of charge between batteries
    • H02J7/0016Circuits for equalisation of charge between batteries using shunting, discharge or bypass circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • H02J7/0014Circuits for equalisation of charge between batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2207/00Indexing scheme relating to details of circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J2207/20Charging or discharging characterised by the power electronics converter
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention relates to the field of new energy technologies, in particular to a battery system and a balance management method thereof.
  • the nominal voltage of the battery cell is low, in practical applications, such as photovoltaics, energy storage, new energy electric vehicles and other fields, it is usually necessary to form a battery cluster with multiple series-connected battery packs to meet different voltage requirements. need. In some fields, multiple battery clusters are further connected in parallel to form a battery system.
  • the state of charge or terminal voltage of each battery pack may be inconsistent during use.
  • Charging must be stopped, and during the discharge process, as long as one battery pack is emptied, or the discharge cut-off voltage is reached, the discharge must be stopped.
  • the imbalance of each battery pack will gradually increase, which will gradually reduce the charge and discharge capacity of the battery cluster, and eventually cause the battery system to be scrapped in advance, greatly affecting the service life of the battery pack. Therefore, battery balancing technology is very important.
  • the parallel-connected full-power cluster DCDC solution can be used to achieve inter-cluster balance, but it must use high-voltage semiconductor devices, so the cost is high, the weight is large, and the volume is large; and the small power package DCDC solution is used to form a cluster balance bus, although It can meet the balance of battery packs, but cannot achieve inter-cluster balance.
  • the present invention provides a battery system on the one hand, including several battery clusters connected in parallel, the battery clusters are connected to the energy storage converter through the battery bus bar, and any of the battery clusters Clusters include:
  • a pack equalizer which corresponds to the battery pack one by one, and its first end is connected to the two ends of the corresponding battery pack, and the second end is connected to the second end of the cluster equalizer;
  • a cluster equalizer the first end of which is connected in series with the battery pack, and the second end is connected to the power source.
  • the power source is a power grid or a generator.
  • the power source is a battery or a supercapacitor.
  • the power source is the cluster battery.
  • the second section of the packet equalizer is correspondingly connected to the second terminal of the cluster equalizer.
  • the cluster equalizer includes a first DCDC circuit and a battery cluster power distribution device.
  • the pack equalizer includes a second DCDC circuit and a battery pack power distribution device.
  • the first DCDC circuit adopts a bidirectional boost/buck or buck-boost circuit.
  • the second DCDC circuit adopts an isolated dual active bridge, series resonance or LLC circuit.
  • the battery system also includes a control module, including:
  • a power detection device for detecting the power state of each battery pack and battery cluster
  • the controller is used to determine the charging and discharging logic of the packet equalizer and the cluster equalizer according to the state of charge of the battery pack and/or battery cluster.
  • Another aspect of the present invention provides a battery system balance management method, including:
  • control the cluster equalizer When charging, control the cluster equalizer to absorb energy from the battery bus through its first terminal, and then control the packet equalizer to absorb energy from the second terminal of the cluster equalizer and send it to the battery pack;
  • the packet equalizer When discharging, the packet equalizer is controlled to absorb energy from the battery pack through its first end, and then the cluster equalizer is controlled to absorb energy from the second end of the packet equalizer and sent to the battery bus.
  • a battery system and its equalization management method provided by the present invention on the one hand, a pack equalizer is used between the battery packs to adjust the balance of the battery packs in each cluster; on the other hand, each battery cluster is connected with a cluster equalizer to realize Balance regulation of battery clusters.
  • the voltage of the cluster equalizer is relatively low, and the current is the cluster current, so the function can be realized by using a low-power DCDC circuit of a low-voltage semiconductor device.
  • the low-power DCDC has low cost, small volume, light weight and low loss.
  • the packet equalizer is also a low-power DCDC composed of low-voltage semiconductor devices, which has the characteristics of low cost, small size, light weight and low loss.
  • the battery system only needs to increase the voltage of the cluster equalizer to increase the Vbus voltage of the energy storage converter, so that it can work at a higher grid voltage and increase the power of the energy storage converter .
  • FIG. 1 shows a schematic structural diagram of a battery system according to an embodiment of the present invention
  • FIGS. 2a-2e show schematic diagrams of various topological types of packet equalizers
  • 3a-3g show schematic diagrams of various topological types of cluster equalizer power sources
  • Fig. 4 shows a schematic diagram of the topology of a battery system according to an embodiment of the present invention
  • 6a-6d show schematic diagrams of the current flow in the charging and discharging mode of the DCDC circuit according to another embodiment of the present invention.
  • high-voltage DCDC is usually used to achieve cluster balancing. It connects DCDC and battery clusters in parallel, and after full-power conversion, outputs to the battery bus.
  • Full-power DCDC has high power, so the semiconductor devices that need to be selected are under high pressure. , large volume, heavy weight, and large loss.
  • packet balancing is required, an additional low-power packet DCDC needs to be configured, which further increases the overall cost of the battery system.
  • the inventor found through research that if the cluster equalizer is connected in series with the battery packs in the battery cluster, the cluster balance adjustment can be realized only through a DCDC circuit composed of low-voltage semiconductor devices.
  • the present invention firstly provides a battery system, which utilizes a low-voltage semiconductor device to implement a DCDC circuit, and enables the entire system to have cluster equalization and packet equalization at the same time.
  • FIG. 1 shows a schematic structural diagram of a battery system according to an embodiment of the present invention.
  • a battery system includes several battery clusters 101, ..., 10M connected in parallel, and the two ends of the battery clusters are respectively connected to the energy storage converter (Power Conversion System, PCS)
  • PCS Power Conversion System
  • the positive and negative poles of the Vbus terminal are connected to the grid.
  • any of the battery clusters 10m includes several battery packs 10m1, ..., 10mN-1, 10mN connected in series, a packet equalizer 20m and a cluster equalizer 30m, where m is the distance between 1-M any natural number.
  • the first end of the pack equalizer 201 is connected to both ends of each battery pack, and the second end is connected to the power source PS for adjusting the power of the battery packs 10m1, ..., 10mN-1, 10mN in the cluster. balanced.
  • the first end of the cluster equalizer 30m is connected in series with the battery pack, and the second end is connected to the power source PS of each battery cluster. Together with the cluster equalizer of the battery cluster, the battery clusters 101, ..., 10M are realized. Balance adjustment.
  • the battery system further includes a control module, and the control module is mainly used to determine the charging and discharging logic of the packet equalizer and the cluster equalizer.
  • the control module includes:
  • a power detection device for detecting the power state of each battery pack and battery cluster
  • the controller is used for determining the charging and discharging logic of the packet equalizer and the cluster equalizer according to the state of charge of the battery pack and/or battery cluster.
  • both the cluster equalizer and the packet equalizer use bidirectional converters.
  • any of the battery clusters 10m there may be one or more packet equalizers 20m.
  • FIGS. 2a-2e show schematic diagrams of multiple topological types of packet equalizers, and the main difference between various schemes is the connection mode of the second end of the packet equalizer:
  • the positive pole and negative pole of the second end of any one of the packet equalizers 20mn are respectively connected to the positive poles and negative poles of the second ends of the remaining packet equalizers in the cluster.
  • the power source of the cluster equalizer can be grid, generator, battery or supercapacitor;
  • the positive pole and the negative pole of the second end of any of the packet equalizers 20mn are connected to the battery bus + and the battery bus - respectively.
  • the power source can be grid, generator, battery or supercapacitor;
  • the positive pole of the second end of any of the pack equalizers 20mn is connected to the positive pole of the battery pack 10m1, and the negative pole is connected to the battery bus bar-, in this embodiment, the cluster
  • the power source of the equalizer can be grid, generator, battery or supercapacitor
  • the positive pole and the negative pole of the second end of any of the pack equalizers 20mn are connected to the battery bus + and the battery bus - respectively, and at the same time, any of the packs
  • the positive pole and the negative pole of the second end of the equalizer 20mn are also correspondingly connected to the positive pole and the negative pole of the second end of the cluster equalizer as a power source;
  • the positive pole of the second end of any of the pack equalizers 20mn is connected to the positive pole of the battery pack 10m1
  • the negative pole is connected to the battery bus bar-
  • any of the The positive pole and the negative pole of the second terminal of the packet equalizer 20mn are connected correspondingly to the positive pole and the negative pole of the second terminal of the cluster equalizer as a power source.
  • the cluster equalizer 30M can be connected in series at any position in the cluster through its first end, and is not limited to being close to the battery bus + in the example shown in FIG. between battery packs.
  • the connection method close to the battery bus bar - includes: the positive pole of the first end of the cluster equalizer 30M is connected to the negative pole of the battery pack 10MN, and the negative pole is connected to the battery bus bar -; and connected to two adjacent
  • the connection method between the battery packs includes: the positive pole and the negative pole of the first end of the cluster equalizer 30M are respectively connected to the negative poles and the positive poles of two adjacent battery packs.
  • the power source PS is connected to the second terminal of the cluster equalizer through the cluster equalizer bus Vs.
  • Figures 3a-3g show schematic diagrams of various topological types of cluster equalizer power sources.
  • the second end of the cluster equalizer can be directly connected to a power grid, or connected to a generator, and the power grid or generator can be regarded as a power source PS.
  • the second end of the cluster equalizer can also be connected to a battery or a supercapacitor, and the battery or supercapacitor can be regarded as a power source PS.
  • the cluster battery can also be used as a power source PS.
  • Figures 3c-3g show several topological types using this cluster of batteries as a power source:
  • the positive pole of the second terminal of the cluster equalizer 30m is connected to the positive pole of the battery pack 10m1, and the negative pole is connected to the negative pole of the battery pack 10mN.
  • the The power source is N battery packs connected in series;
  • the positive pole of the second terminal of the cluster equalizer 30m is connected to the positive pole of the first terminal of the cluster equalizer 30m, and the negative pole is connected to the negative pole of the battery pack 10mN,
  • the power source is N battery packs connected in series and the cluster equalizer itself;
  • the voltage of the battery pack equalized by the pack equalizer can also be used as a power source.
  • the power source is the voltage adjusted by the packet equalizer of N battery packs connected in series; it should be understood that, due to the In one embodiment, the pack equalizer includes multiple ones corresponding to the battery packs. Therefore, as shown in FIG. 3f, the positive pole and the negative pole of the second end of the cluster equalizer 30m can be connected to any The positive and negative poles of one or more battery pack equalizers, and then use the voltage of one or more battery packs equalized and connected in parallel as a power source.
  • the cluster voltage Vr can also be formed directly by using the voltage adjusted by the pack equalizer of N battery packs connected in series.
  • Fig. 4 shows a schematic topology diagram of a battery system according to an embodiment of the present invention.
  • the cluster equalizer of the battery system uses the battery of the cluster as the power source, specifically, uses only the parallel voltage equalized by the packet equalizer as the power source, and in any battery cluster 10m, each Both the positive pole and the negative pole of the second terminal of the packet equalizer are linked correspondingly to the positive pole and the negative pole of the cluster equalizer 30m.
  • the cluster equalizer in any battery cluster 10m, includes a first DCDC circuit 300 and a battery cluster power distribution device (not shown), and the packet equalizer includes a second DCDC circuit 200 and the battery pack power distribution device (not shown in the figure).
  • the first DCDC circuit adopts a bidirectional step-up/step-down or buck-boost circuit, such as a bidirectional half-bridge non-isolated Buck DCDC and a bidirectional half-bridge non-isolated Boost DCDC.
  • Figures 5a-5d show a schematic diagram of the current flow in the charging and discharging mode of the DCDC circuit according to an embodiment of the present invention.
  • the first DCDC circuit can adopt a Buck structure, including N-MOS transistors T1, T2, and a capacitor Cr , Cs, inductor L and diodes D1, D2:
  • the capacitor Cr is in a charging state, and the voltage gradually rises ⁇ Uc, which can reduce the voltage ripple.
  • T1 is cut off, as shown in Figure 5c, when the battery system starts to discharge, T2 is turned on, and at this time the anode voltage of D1 is lower than the cathode voltage, reverse cut-off, then at this time, the discharge current of the battery is at this time
  • the self-inductance potential generated at both ends of L hinders the current rise, making L convert electric energy into magnetic energy and store it.
  • the capacitor Cr is in a charging state, and the voltage gradually rises ⁇ Uc.
  • the first DCDC circuit can adopt a Boost structure, including N-MOS transistors T1, T2, capacitors Cr, Cs, inductor L, and diodes D1, D2:
  • the capacitor Cr is at In the charging state, after the Ton time, the T1 tube is turned off, as shown in Figure 6b, the self-inductance potential generated at both ends of the inductor prevents the current from falling, making D2 forward-biased and turned on, and then the current in the inductor flows through D2 to the load.
  • the capacitor is in a discharge state.
  • T1 is turned on again, and the above process is repeated, and the balance of the battery cluster during the charging process is completed.
  • T1 is cut off, as shown in Figure 6c.
  • T2 is turned on.
  • the discharge current of the battery flows through T2 and the inductor L, and enters the subsequent battery pack or battery bus, and the inductor L
  • the capacitor Cr is in the charging state.
  • the T2 tube is turned off.
  • D2 is forward-biased and turned on, so that the discharge current of the battery can flow through D2 and the inductor L, and then flow into the subsequent battery.
  • the capacitor is in a discharge state.
  • bidirectional boost/buck or buck-boost circuits may also be used, not limited to the bidirectional half-bridge circuit structure shown in the figure.
  • the second DCDC circuit may use an isolation circuit, including but not limited to a dual active bridge, series resonant or LLC circuit.
  • the balance management of the battery system as described above includes:
  • control the cluster equalizer When charging, control the cluster equalizer to absorb energy from the battery bus through its first terminal, and then control the packet equalizer to absorb energy from the second terminal of the cluster equalizer and send it to the battery pack;
  • the packet equalizer When discharging, the packet equalizer is controlled to absorb energy from the battery pack through its first end, and then the cluster equalizer is controlled to absorb energy from the second end of the packet equalizer and sent to the battery bus.
  • control module is required to determine the charging and discharging logic of the cluster equalizer and the pack equalizer according to the power state of the battery packs.
  • a battery system and its equalization management method provided by the present invention on the one hand, a pack equalizer is used between the battery packs to adjust the balance of the battery packs in each cluster; on the other hand, each battery cluster is connected with a cluster equalizer to realize Balance regulation of battery clusters.
  • the voltage of the cluster equalizer is relatively low, and the current is the cluster current, so the function can be realized by using a low-power DCDC circuit of a low-voltage semiconductor device.
  • the low-power DCDC has low cost, small volume, light weight and low loss.
  • the packet equalizer is also a low-power DCDC composed of low-voltage semiconductor devices, which has the characteristics of low cost, small volume, light weight and low loss.
  • the battery system only needs to increase the voltage of the cluster equalizer to increase the Vbus voltage of the energy storage converter, so that it can work at a higher grid voltage and increase the power of the energy storage converter .

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

一种电池系统,包括若干个并联的电池簇,各个电池簇通过电池母线连接至储能变流器,且任一电池簇包括若干个串联的电池包;还包括包均衡器,其与电池包一一对应,且其第一端连接至对应电池包的两端,第二端与功率源连接;以及簇均衡器,其第一端与电池包串联,第二端连接至功率源。该电池系统一方面在电池包间采用了包均衡器调节每簇内电池包的均衡,另一方面,在各个电池簇上连接有簇均衡器,实现了电池簇的均衡调节,具有成本低、体积小、重量轻、损耗小的优点。还涉及一种该电池系统的均衡管理方法。

Description

一种电池系统及其均衡管理方法 技术领域
本发明涉及新能源技术领域,特别涉及一种电池系统及其均衡管理方法。
背景技术
由于蓄电池单体的标称电压较低,因此,在实际应用中,例如,光伏、储能、新能源电动车等领域,通常都需要多个串联的电池包组成电池簇,以满足不同的电压需求。在某些领域,还会进一步地将多个电池簇并联,最终形成电池系统。
但是,由于各电池包的单体性能的不一致性,使得在使用过程中各个电池包之间的荷电状态或端电压可能不一致,在充电过程中只要有一个电池包被充满或达到充电截止电压时就必须停止充电,以及在放电过程中,只要有一个电池包被放空,或达到放电截止电压就必须停止放电。随着充放电循环次数的增加,各电池包的不均衡程度会逐步加剧,进而使得电池簇的充放电容量逐步降低,最终使得电池系统提前报废,大大影响电池组的使用寿命。因此,电池均衡技术至关重要。
目前,电池系统中常用的电池均衡方案多数仅针对簇间均衡或包均衡。例如,并联型的全功率簇DCDC方案可以用于实现簇间均衡,但其必须要使用高压半导体器件,因此成本高,重量大,体积大;而采用小功率包DCDC方案形成簇均衡母线,虽然可满足电池包的均衡,但无法实现簇间均衡。
若需要同时实现簇间均衡和包均衡,需要同时配置全功率簇DCDC和小功率包DCDC,成本较高。
发明内容
针对现有技术中的部分或全部问题,本发明一方面提供一种电池系统,包括若干个并联的电池簇,所述电池簇通过电池母线连接至储能变流器,且任一所述电池簇包括:
若干个串联的电池包;
包均衡器,其与所述电池包一一对应,且其第一端连接至对应电池包的两端,第二端与簇均衡器的第二端连接;以及
簇均衡器,其第一端与所述电池包串联,第二端连接至功率源。
进一步地,所述功率源为电网或发电机。
进一步地,所述功率源为电池或超级电容。
进一步地,所述功率源为本簇电池。
进一步地,当功率源为本簇电池时,在任一所述电池簇中,所述包均衡器的第二段对应连接至所述簇均衡器的第二端。
进一步地,所述簇均衡器包括第一DCDC电路以及电池簇配电器件。
进一步地,所述包均衡器包括第二DCDC电路以及电池包配电器件。
进一步地,所述第一DCDC电路采用双向升压/降压或升降压电路。
进一步地,所述第二DCDC电路采用隔离双有源桥、串联谐振或LLC电路。
进一步地,所述电池系统还包括控制模块,包括:
电量检测装置,用于检测各个电池包及电池簇的电量状态;以及
控制器,其用于根据电池包和/或电池簇的电量状态,确定包均衡器及簇均衡器的充放电逻辑。
本发明另一方面提供一种电池系统的均衡管理方法,包括:
充电时,控制所述簇均衡器通过其第一端从电池母线吸收能量,然后控制所述包均衡器从所述簇均衡器的第二端吸收能量,并送入电池包;以及
放电时,控制所述包均衡器通过其第一端从电池包吸收能量,然后控制所述簇均衡器从所述包均衡器的第二端吸收能量,并送入电池母线。
本发明提供的一种电池系统及其均衡管理方法,一方面在电池包间采用了包均衡器调节每簇内电池包的均衡,另一方面,在各电池簇上均连接有簇均衡器,实现电池簇的均衡调节。采用这种均衡方案,所述簇均衡器的电压较低,且电流为簇电流,因此使用低压半导体器件的小功率DCDC电路即可实现功能。相较于现有技术中的高压DCDC,小功率DCDC成本低、体积小、重量轻、损耗小。同时,基于类似的原理,所述包均衡器同样为低压半导体器件组成的小功率DCDC,具有成本低、体积小、 重量轻、损耗小特点。此外,所述电池系统只需要提升簇均衡器的电压,就可使得储能变流器的Vbus电压升高,进而使其能够工作于更高的电网电压下,提升储能变流器的功率。
附图说明
为进一步阐明本发明的各实施例的以上和其它优点和特征,将参考附图来呈现本发明的各实施例的更具体的描述。可以理解,这些附图只描绘本发明的典型实施例,因此将不被认为是对其范围的限制。在附图中,为了清楚明了,相同或相应的部件将用相同或类似的标记表示。
图1示出本发明一个实施例的一种电池系统的结构示意图;
图2a-2e示出包均衡器的多种拓扑型式示意图;
图3a-3g示出簇均衡器功率源的多种拓扑型式示意图;
图4示出本发明一个实施例的一种电池系统的拓扑型式示意图;
图5a-5d示出本发明一个实施例的DCDC电路充放电模式下电流流向的示意图;以及
图6a-6d示出本发明又一个实施例的DCDC电路充放电模式下电流流向的示意图。
具体实施方式
以下的描述中,参考各实施例对本发明进行描述。然而,本领域的技术人员将认识到可在没有一个或多个特定细节的情况下或者与其它替换和/或附加方法、材料或组件一起实施各实施例。在其它情形中,未示出或未详细描述公知的结构、材料或操作以免模糊本发明的发明点。类似地,为了解释的目的,阐述了特定数量、材料和配置,以便提供对本发明的实施例的全面理解。然而,本发明并不限于这些特定细节。此外,应理解附图中示出的各实施例是说明性表示且不一定按正确比例绘制。
在本说明书中,对“一个实施例”或“该实施例”的引用意味着结合该实施例描述的特定特征、结构或特性被包括在本发明的至少一个实施例中。在本说明书各处中出现的短语“在一个实施例中”并不一定全部指代同一实施例。
需要说明的是,本发明的实施例以特定顺序对工艺步骤进行描述, 然而这只是为了阐述该具体实施例,而不是限定各步骤的先后顺序。相反,在本发明的不同实施例中,可根据工艺的调节来调整各步骤的先后顺序。
现有的电池均衡方案中,通常是采用高压DCDC实现簇均衡,其将DCDC与电池簇并联,进行全功率变换后,输出给电池母线,全功率DCDC功率大,因此需要选用的半导体器件压力高、体积大、重量大、损耗大。此外,如果还需要实现包均衡,则还需额外配置小功率包DCDC,进一步加大了电池系统的整体成本。针对上述问题,发明人经过研究发现,若将簇均衡器通过串联的方式与电池簇内的电池包连接,则可以仅通过低压半导体器件组成的DCDC电路实现簇均衡调节。基于此,本发明首先提供一种电池系统,利用低压半导体器件实现DCDC电路,并使得整个系统同时具备簇均衡和包均衡。下面结合实施例附图,对本发明的方案做进一步描述。
图1示出本发明一个实施例的一种电池系统的结构示意图。如图1所示,一种电池系统,包括若干个并联的电池簇101、…、10M,所述电池簇的两端分别通过电池母线+、电池母线-连接至储能变流器(Power Conversion System,PCS)Vbus端的正负极,进而接入电网Grid。
如图1所示,任一所述电池簇10m中,均包括若干个串联的电池包10m1、…、10mN-1、10mN,包均衡器20m以及簇均衡器30m,m为1-M间的任意自然数。其中,所述包均衡器201的第一端连接至各个电池包的两端,第二端则与功率源PS能够实现连通,用于调节簇内电池包10m1、…、10mN-1、10mN的均衡。所述簇均衡器30m的第一端与所述电池包串联,第二端则连接至各电池簇的功率源PS,与其与电池簇的簇均衡器一起,实现电池簇101、…、10M的均衡调节。
在本发明的一个实施例中,为了更好地实现电池系统的均衡管理,所述电池系统还包括控制模块,所述控制模块主要用于决定包均衡器及簇均衡器的充放电逻辑。具体而言,所述控制模块包括:
电量检测装置,用于检测各个电池包及电池簇的电量状态;以及
控制器,其用于根据所述电池包和/或电池簇的电量状态,确定包均衡器及簇均衡器的充放电逻辑。
在本发明的实施例中,为实现均衡调节,所述簇均衡器及包均衡器均采用双向变换器。
任一所述电池簇10m中,所述包均衡器20m可以为一个或多个,在本发明的一个实施例中,在任一所述电池簇10m中,包括有N个包均衡器20m1、…、20mN-1、20mN,其与所述电池包10m1、…、10mN-1、10mN一一对应,具体来说,就是所述包均衡器20mn的第一端的正负极分别连接至电池包10mn的正负极,其中,m为1-M间的任意自然数,以及n为1-N间的任意自然数。
对于一个由多个电池包串联形成的电池簇,其包均衡可以采用多种方式实现。图2a-2e示出包均衡器的多种拓扑型式示意图,各种方案的主要区别在于所述包均衡器的第二端的连接方式:
如图2a所示,在任一所述电池簇10m中,任一所述包均衡器20mn第二端的正极和负极分别与簇内其余包均衡器第二端的正极负极对应连接,在该实施例中,簇均衡器的功率源可为电网、发电机、电池或超级电容;
如图2b所示,在任一所述电池簇10m中,任一所述包均衡器20mn第二端的正极和负极分别与电池母线+及电池母线-对应连接,在该实施例中,簇均衡器的功率源可为电网、发电机、电池或超级电容;
如图2c所示,在任一所述电池簇10m中,任一所述包均衡器20mn第二端的正极连接至电池包10m1的正极,以及负极连接至电池母线-,在该实施例中,簇均衡器的功率源可为电网、发电机、电池或超级电容;
如图2d所示,在任一所述电池簇10m中,任一所述包均衡器20mn第二端的正极和负极分别与电池母线+及电池母线-对应连接,同时,所述任一所述包均衡器20mn第二端的正极和负极还与簇均衡器第二端的正极及负极对应连接,以作为功率源;以及
如图2e所示,在任一所述电池簇10m中,任一所述包均衡器20mn第二端的正极连接至电池包10m1的正极,以及负极连接至电池母线-,同时,所述任一所述包均衡器20mn第二端的正极和负极还与簇均衡器第二端的正极及负极对应连接,以作为功率源。
应当理解的是,所述簇均衡器30M可以通过其第一端串联于簇内任意位置,并不限于图1示例靠近电池母线+,例如其还可以靠近电池母线-,或者连接于相邻两个电池包之间。具体而言,靠近电池母线-的连接方式包括:所述簇均衡器30M的第一端的正极连接至所述电池包10MN的负极,以及负极连接至电池母线-;以及连接于相邻两个电池包之间 的连接方式包括:所述簇均衡器30M的第一端的正极及负极分别连接至相邻两个电池包的负极、正极。
所述功率源PS通过簇均衡母线Vs连接至簇均衡器的第二端。图3a-3g示出簇均衡器功率源的多种拓扑型式示意图。如图3a所示,所述簇均衡器的第二端可直接连入电网,或与发电机连接,所述电网或发电机即可视为功率源PS。如图3b所示,所述簇均衡器的第二端还可与电池或超级电容连接,所述电池或超级电容即可视为功率源PS。此外,还可将本簇电池作为功率源PS。图3c-3g示出采用本簇电池作为功率源的几种拓扑型式:
如图3c所示,在任一电池簇10m中,所述簇均衡器30m的第二端的正极连接至电池包10m1的正极,以及负极则连接至电池包10mN的负极,在该实施例中,所述功率源为串联的N个电池包;
如图3d所示,在任一电池簇10m中,所述簇均衡器30m的第二端的正极连接至所述簇均衡器30m的第一端的正极,以及负极则连接至电池包10mN的负极,在该实施例中,所述功率源为串联的N个电池包以及簇均衡器自身;
此外,还可以采用电池包经所述包均衡器均衡后的电压作为功率源,如图3e所示,在任一电池簇10m中,所述簇均衡器30m的第二端的正极及负极分别连接至包均衡器20m的第二端的正极及负极,在该实施例中,所述功率源为串联的N个电池包经所述包均衡器调节后的电压;应当理解的是,由于在本发明的一个实施例中,所述包均衡器包括多个,且与所述电池包一一对应,因此,如图3f所示,所述簇均衡器30m的第二端的正极及负极可连接至任意一个或多个包均衡器的正极及负极,进而采用一个或多个电池包均衡后并联的电压作为功率源。
如图3g所示,也可直接利用串联的N个电池包经所述包均衡器调节后的电压形成簇电压Vr。
为了能够尽可能减少电池系统的整体器件体积及重量,在本发明的实施例中,优选采用本簇电池作为功率源,同时,综合考量包均衡的拓扑型式,可得到一个优选的拓扑型式。图4示出本发明一个实施例的一种电池系统的拓扑型式示意图。如图4所示,所述电池系统的簇均衡器采用本簇电池作为功率源,具体而言,是采用仅包均衡器均衡后的并联电压作为功率源,及在任一电池簇10m中,各包均衡器的第二端的正极 及负极均与所述簇均衡器30m的正极及负极对应链接。同时,如图4所示,在任一电池簇10m中,所述簇均衡器包括第一DCDC电路300以及电池簇配电器件(图中未示出),所述包均衡器包括第二DCDC电路200以及电池包配电器件(图中未示出)。所述第一DCDC电路采用双向升压/降压或升降压电路,例如双向半桥非隔离Buck DCDC及双向半桥非隔离Boost DCDC。
图5a-5d示出本发明一个实施例的DCDC电路充放电模式下电流流向的示意图,如图所示,所述第一DCDC电路可采用Buck结构,包括N-MOS管T1、T2、电容Cr、Cs、电感L以及二极管D1、D2:
充电模式下,T2截止,如图5a所示,当电池系统开始充电时,T1导通,且此时D2阳极电压低于阴极电压,反向截止,则此时,簇电流Ir流经电感L向负载即包均衡器供电,电感L中电流IL逐渐上升△IL,电感电流的变化值满足:L*△IL=(Vr-Vs)*Ton,而L两端产生的自感电势阻碍电流上升,使得L将电能转化为磁能存储起来,同时,电容Cr处于充电状态,电压逐步上升△Uc,可降低电压脉动电容电压变化值满足:C*△Uc=Ic*Ton,其中Ic=IL-Ir,Ton时间后,T1管关断,如图5b所示,电感两端产生的自感电势阻碍电流下降,使得D2正向偏置导通,进而使得电感中电流经D2构成回路,电流值逐渐下降,其变化值满足:L*△IL=Vs*Toff,其存储的磁能转化为电能释放给负载,此时,簇电流Ir直接经过电容Cr流向电池包或电池母线,电容处于放电状态,且Ic=Ir,其电压变化值则满足:C*△Uc=Ir*Toff,时间Toff后,T1再次导通,重复上述过程,至此完成充电过程中电池簇的均衡,由于在T1管关断及导通时,理论上电感电流上升、下降的变化值应相同,即(Vr-Vs)*Ton=Vs*Toff,电容电压上升及下降的数值也应相等:Ic*Ton=Ir*Toff,因此,可以得到充电过程中,簇均衡电压Vs=D*Vr,以及簇电流Ir=D*IL,其中,D=Ton/(Ton+Toff)。
放电模式下,T1截止,如图5c所示,当电池系统开始放电时,T2导通,且此时D1阳极电压低于阴极电压,反向截止,则此时,电池的放电电流,在本发明实施例中指电池包经包均衡器均衡后的电流,流经电感L与T2形成回路,电感L中电流IL逐渐上升△IL,电感电流的变化值满足:L*△IL=Vs*Ton,而L两端产生的自感电势阻碍电流上升,使得L将电能转化为磁能存储起来,同时,电容Cr处于充电状态,电压 逐步上升△Uc,电容电压变化值满足:C*△Uc=Ic*Ton,其中,由于此时,D1截止,簇电流Ir直接流经电容后进入电池包或电池母线,因此Ic=Ir,Ton时间后,T2管关断,如图5d所示,电感两端产生的自感电势阻碍电流下降,使得D1正向偏置导通,进而使得电感中电流可经D1流入电池包或电池母线,电流值逐渐下降,其变化值满足:L*△IL=(Vr-Vs)*Toff,其存储的磁能转化为电能释放,此时,电容处于放电状态,且Ic=IL-Ir,其电压变化值则满足:C*△Uc=(IL-Ir)*Toff,时间Toff后,T1再次导通,重复上述过程,至此完成放电过程中电池簇的均衡,由于在T2管关断及导通时,理论上电感电流上升、下降的变化值应相同,即Vs*Ton=(Vr-Vs)*Toff,电容电压上升及下降的数值也应相等:Ic*Ton=(IL-Ir)*Toff,因此,可以得到放电过程中,簇均衡电压Vs=(1-D)*Vr,以及簇电流Ir=(1-D)*IL,其中,D=Ton/(Ton+Toff)。
图6a-6d示出本发明又一个实施例的DCDC电路充放电模式下电流流向的示意图。如图所示,所述第一DCDC电路可采用Boost结构,包括N-MOS管T1、T2、电容Cr、Cs、电感L以及二极管D1、D2:
充电模式下,T2截止,如图6a所示,当电池系统开始充电时,T1导通,则此时,簇电流Ir流经电感L与T1后,流向电池包或电池母线,电感L中电流IL逐渐上升△IL,电感电流的变化值满足:L*△IL=Vr*Ton,而L两端产生的自感电势阻碍电流上升,使得L将电能转化为磁能存储起来,同时,电容Cr处于充电状态,Ton时间后,T1管关断,如图6b所示,电感两端产生的自感电势阻碍电流下降,使得D2正向偏置导通,进而使得电感中电流经D2向负载即包均衡器供电,电流值逐渐下降,其变化值满足:L*△IL=(Vs-Vr)*Toff,其存储的磁能转化为电能释放给负载,此时,电容处于放电状态,时间Toff后,T1再次导通,重复上述过程,至此完成充电过程中电池簇的均衡,由于在T1管关断及导通时,理论上电感电流上升、下降的变化值应相同,即Vr*Ton=(Vs-Vr)*Toff,因此,可以得到充电过程中,簇均衡电压Vs=Vr/(1-D),以及簇电流Ir=IL,其中,D=Ton/(Ton+Toff),。
放电模式下,T1截止,如图6c所示,当电池系统开始放电时,T2导通,则此时,电池的放电电流流经T2与电感L,进入后续电池包或电池母线,电感L中电流IL逐渐上升△IL,电感电流的变化值满足:L* △IL=(Vs-Vr)*Ton,而L两端产生的自感电势阻碍电流上升,使得L将电能转化为磁能存储起来,同时,电容Cr处于充电状态,Ton时间后,T2管关断,如图6d所示,D2正向偏置导通,进而使得电池的放电电流流经可经D2及电感L后,流入后续电池包或电池母线,电感电流值逐渐下降,其变化值满足:L*△IL=Vr*Toff,其存储的磁能转化为电能释放,此时,电容处于放电状态,时间Toff后,T2再次导通,重复上述过程,至此完成放电过程中电池簇的均衡,由于在T2管关断及导通时,理论上电感电流上升、下降的变化值应相同,即(Vs-Vr)*Ton=Vr*Toff,因此,可以得到放电过程中,簇均衡电流Vs=Vr/D,以及簇电流Ir=IL,其中,D=Ton/(Ton+Toff)。
应当理解的是,在本发明的其他实施例中,也可采用其他双向升压/降压或升降压电路,而不限于图中所示的双向半桥电路结构。所述第二DCDC电路则可采用隔离电路,包括但不限于双有源桥,串联谐振或者LLC电路。
在正常模式下,如前所述的电池系统的均衡管理包括:
充电时,控制所述簇均衡器通过其第一端从电池母线吸收能量,然后控制所述包均衡器从所述簇均衡器的第二端吸收能量,并送入电池包;以及
放电时,控制所述包均衡器通过其第一端从电池包吸收能量,然后控制所述簇均衡器从所述包均衡器的第二端吸收能量,并送入电池母线。
当需要更换某些电池包时,则需要所述控制模块根据电池包的电量状态,决定所述簇均衡器及所述包均衡器的充放电逻辑。
本发明提供的一种电池系统及其均衡管理方法,一方面在电池包间采用了包均衡器调节每簇内电池包的均衡,另一方面,在各电池簇上均连接有簇均衡器,实现电池簇的均衡调节。采用这种均衡方案,所述簇均衡器的电压较低,且电流为簇电流,因此使用低压半导体器件的小功率DCDC电路即可实现功能。相较于现有技术中的高压DCDC,小功率DCDC成本低、体积小、重量轻、损耗小。同时,基于类似的原理,所述包均衡器同样为低压半导体器件组成的小功率DCDC,具有成本低、体积小、重量轻、损耗小特点。此外,所述电池系统只需要提升簇均衡器的电压,就可使得储能变流器的Vbus电压升高,进而使其能够工作于更高的电 网电压下,提升储能变流器的功率。
尽管上文描述了本发明的各实施例,但是,应该理解,它们只是作为示例来呈现的,而不作为限制。对于相关领域的技术人员显而易见的是,可以对其做出各种组合、变型和改变而不背离本发明的精神和范围。因此,此处所公开的本发明的宽度和范围不应被上述所公开的示例性实施例所限制,而应当仅根据所附权利要求书及其等同替换来定义。

Claims (10)

  1. 一种电池系统,其特征在于,包括若干个并联的电池簇,所述电池簇通过电池母线连接至储能变流器,且任一所述电池簇包括:
    若干个串联的电池包;
    包均衡器,其与所述电池包一一对应,且其第一端连接至对应电池包的两端,第二端与功率源连接;以及
    簇均衡器,其第一端与所述电池包串联,第二端连接至功率源。
  2. 如权利要求1所述的电池系统,其特征在于,所述功率源为电网或发电机。
  3. 如权利要求1所述的电池系统,其特征在于,所述功率源为电池或超级电容。
  4. 如权利要求1所述的电池系统,其特征在于,所述功率源为本簇电池。
  5. 如权利要求4所述的电池系统,其特征在于,在任一所述电池簇中,所述包均衡器的第二端的正负极对应连接至所述簇均衡器的第二端的正负极。
  6. 如权利要求1所述的电池系统,其特征在于,所述簇均衡器包括第一DCDC电路以及电池簇配电器件。
  7. 如权利要求6所述的电池系统,其特征在于,所述包均衡器包括第二DCDC电路以及电池包配电器件。
  8. 如权利要求7所述的电池系统,其特征在于,所述第一DCDC电路采用双向升压/降压或升降压电路,和/或所述第二DCDC电路采用隔离电路。
  9. 如权利要求1所述的电池系统,其特征在于,所述电池系统还包括控制模块,包括:
    电量检测装置,其被配置为能够检测各个电池包及电池簇的电量状态;以及
    控制器,其被配置为能够根据电池包的电量状态,确定包均衡器及簇均衡器的充放电逻辑。
  10. 一种电池系统的均衡管理方法,其特征在于,包括步骤:
    充电时,控制簇均衡器通过其第一端从电池母线吸收能量,然后控制包均衡器从所述簇均衡器的第二端吸收能量,并送入电池包;以及
    放电时,控制包均衡器通过其第一端从电池包吸收能量,然后控制簇均衡器从所述包均衡器的第二端吸收能量,并送入电池母线。
PCT/CN2021/102633 2021-06-28 2021-06-28 一种电池系统及其均衡管理方法 WO2023272416A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US18/279,390 US20240235213A9 (en) 2021-06-28 Battery system and equalization management method therefor
CN202180002138.3A CN113632340A (zh) 2021-06-28 2021-06-28 一种电池系统及其均衡管理方法
PCT/CN2021/102633 WO2023272416A1 (zh) 2021-06-28 2021-06-28 一种电池系统及其均衡管理方法
EP21947382.4A EP4366113A1 (en) 2021-06-28 2021-06-28 Battery system and equalization management method therefor
AU2021454419A AU2021454419A1 (en) 2021-06-28 2021-06-28 Battery system and equalization management method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/102633 WO2023272416A1 (zh) 2021-06-28 2021-06-28 一种电池系统及其均衡管理方法

Publications (1)

Publication Number Publication Date
WO2023272416A1 true WO2023272416A1 (zh) 2023-01-05

Family

ID=78391341

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/102633 WO2023272416A1 (zh) 2021-06-28 2021-06-28 一种电池系统及其均衡管理方法

Country Status (4)

Country Link
EP (1) EP4366113A1 (zh)
CN (1) CN113632340A (zh)
AU (1) AU2021454419A1 (zh)
WO (1) WO2023272416A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113964916B (zh) * 2021-11-10 2023-08-04 上海交通大学 一种并联电池簇均衡电路的拓扑、控制及均衡方法
CN114204647B (zh) * 2022-01-06 2023-11-24 上海交通大学 并联电池簇状态管理系统及并联电池簇
CN114204648A (zh) * 2022-01-06 2022-03-18 上海交通大学 并联电池簇状态管理方法及系统

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012244865A (ja) * 2011-05-24 2012-12-10 Hitachi Ltd 組電池の電圧バランス調整システムおよび電圧バランス調整方法
CN209001618U (zh) * 2018-10-24 2019-06-18 北京天势新能源技术有限公司 一种电池管理系统的主动均衡架构
CN110912235A (zh) * 2019-12-13 2020-03-24 阳光电源股份有限公司 储能系统及其均流方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012244865A (ja) * 2011-05-24 2012-12-10 Hitachi Ltd 組電池の電圧バランス調整システムおよび電圧バランス調整方法
CN209001618U (zh) * 2018-10-24 2019-06-18 北京天势新能源技术有限公司 一种电池管理系统的主动均衡架构
CN110912235A (zh) * 2019-12-13 2020-03-24 阳光电源股份有限公司 储能系统及其均流方法

Also Published As

Publication number Publication date
AU2021454419A1 (en) 2023-09-14
EP4366113A1 (en) 2024-05-08
CN113632340A (zh) 2021-11-09
US20240136825A1 (en) 2024-04-25

Similar Documents

Publication Publication Date Title
WO2023272416A1 (zh) 一种电池系统及其均衡管理方法
US8410634B2 (en) Grid-connected power storage system and method for controlling grid-connected power storage system
EP2302757B1 (en) Method and system for balancing electrical energy storage cells
WO2022188471A1 (zh) 一种储能系统、储能系统的控制方法及光伏发电系统
CN212588110U (zh) 充放电系统
Liu et al. A low-cost multiwinding transformer balancing topology for retired series-connected battery string
TW200410471A (en) Uninterruptible power system
JP2019030214A (ja) 太陽光発電蓄電システムの蓄電池均等化方法及び装置並びに該太陽光発電蓄電システム
Ariyarathna et al. Potential of supercapacitors in novel power converters as semi-ideal lossless voltage droppers
JP2019103384A (ja) 高電圧電池の動的平衡法
CN101557105B (zh) 延长串联直流供电单元组使用寿命的装置及方法
CN111525546A (zh) 一种基于荷电状态的直流微网储能单元分级运行控制方法
TW201330453A (zh) 超級電容與儲能單元之充放電控管電路及其方法
CN111049250A (zh) 一种无线传感节点的“h”构型能量收集和储存系统
Xu et al. A bidirectional integrated equalizer based on the sepic–zeta converter for hybrid energy storage system
CN113489096A (zh) 一种具有均衡管理功能的电池系统
CN111030081A (zh) 太阳能收集复合微能源系统及实现超级电容充电控制方法
Tseng et al. Photovoltaic power system with an interleaving boost converter for battery charger applications
CN108736707B (zh) 一种具有开关电感结构的boost变换器
Yu et al. A multi-cell-to-multi-cell equalizer for series-connected batteries based on flyback conversion
CN112993418A (zh) 储能系统
Arora et al. Reduction of switching transients in CC/CV mode of electric vehicles battery charging
TW201914184A (zh) 具隔離式高升壓轉換器及串聯電池平衡模組的電力裝置
Dam et al. A Multi-Active-Half-Bridge Converter based Soft-switched Fast Voltage Equalizer for Multi-cell to Multi-cell Charge Transfer
US20240235213A9 (en) Battery system and equalization management method therefor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21947382

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2021454419

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 18279390

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2021454419

Country of ref document: AU

Date of ref document: 20210628

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 523451030

Country of ref document: SA

WWE Wipo information: entry into national phase

Ref document number: 2021947382

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021947382

Country of ref document: EP

Effective date: 20240129