WO2023249051A1 - Polyamide resin composition for molded product contacting high pressure gas - Google Patents

Polyamide resin composition for molded product contacting high pressure gas Download PDF

Info

Publication number
WO2023249051A1
WO2023249051A1 PCT/JP2023/022930 JP2023022930W WO2023249051A1 WO 2023249051 A1 WO2023249051 A1 WO 2023249051A1 JP 2023022930 W JP2023022930 W JP 2023022930W WO 2023249051 A1 WO2023249051 A1 WO 2023249051A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyamide resin
aliphatic
resin
resin composition
polyamide
Prior art date
Application number
PCT/JP2023/022930
Other languages
French (fr)
Japanese (ja)
Inventor
和代 若杉
望 重光
龍仁 神藤
康治 福井
英之 蔵田
勇馬 堀池
Original Assignee
トヨタ自動車株式会社
Ube株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社, Ube株式会社 filed Critical トヨタ自動車株式会社
Publication of WO2023249051A1 publication Critical patent/WO2023249051A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/09Carboxylic acids; Metal salts thereof; Anhydrides thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L77/00Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C1/00Pressure vessels, e.g. gas cylinder, gas tank, replaceable cartridge
    • F17C1/16Pressure vessels, e.g. gas cylinder, gas tank, replaceable cartridge constructed of plastics materials
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C5/00Methods or apparatus for filling containers with liquefied, solidified, or compressed gases under pressures
    • F17C5/06Methods or apparatus for filling containers with liquefied, solidified, or compressed gases under pressures for filling with compressed gases

Definitions

  • the present invention relates to a polyamide resin composition for molded articles that come into contact with high-pressure hydrogen gas.
  • Polyamide resins have excellent mechanical properties, heat resistance, and chemical resistance, so they are used in a variety of applications as engineering plastics and are used in a variety of molding methods.
  • a polyamide resin composition in which an aliphatic copolymer polyamide resin and an aliphatic homopolyamide resin, each having a specific relative viscosity, are used in combination, and a fibrous reinforcing agent is used. are known (for example, see Patent Documents 1 and 2).
  • flame-retardant polyamide resin compositions are known in which an aliphatic copolymerized polyamide resin and an aliphatic homopolyamide resin are used together, and a triazine-based compound or the like is combined (for example, see Patent Document 3).
  • hydrogen tanks used in hydrogen vehicles are known as molded products that come into contact with high-pressure hydrogen gas, and polyamide resin compositions are also used in such fields.
  • the hydrogen tank used in hydrogen vehicles is a high-pressure hydrogen storage container with a barrel-like exterior, and consists of a long inner layer (long liner) made of metal or resin that comes into direct contact with hydrogen gas, and a layer laminated on the outer circumference of the long inner layer (long liner). It consists of a fiber-reinforced resin layer.
  • the hydrogen in the hydrogen tank is under high pressure and at an extremely low temperature of -40°C or less. Therefore, long liners that come into direct contact with hydrogen gas are required to have gas barrier properties, as well as flexibility that can withstand high pressure and maintain flexibility even at extremely low temperatures.
  • the relative viscosity of the polyamide resin is 2.7 or more, the terminal amino group concentration of the polyamide resin, the content of acid anhydride groups of the impact-resistant agent, and the content of the impact-resistant material.
  • a polyamide resin composition having a predetermined range has been proposed, and it has been shown that the composition has excellent blow moldability while maintaining a good surface appearance of a molded article (for example, see Patent Document 6). reference).
  • a polyamide resin composition containing a polyamide resin and an olefin elastomer resin having a predetermined weight average particle diameter in a predetermined ratio
  • a polyamide resin containing polypropylene wax and unmodified polypropylene resin in a predetermined ratio
  • Patent Document 7 a polyamide resin composition containing polypropylene wax and unmodified polypropylene resin in a predetermined ratio
  • molded products are required to be lighter and thinner. Particularly in molded products that come into contact with high-pressure hydrogen gas, thinning the walls reduces gas barrier properties and flexibility in low-temperature environments. Therefore, polyamide resin compositions used for molded products that come into contact with high-pressure hydrogen gas are required to maintain gas barrier properties without impairing flexibility in low-temperature environments even when the walls are thinned. Moreover, since it is a molded article, the polyamide resin composition is also required to have good moldability due to improved fluidity.
  • the polyamide resin compositions described in Patent Documents 1 to 3 do not take into account the use of molded products that come into contact with high-pressure hydrogen gas, and have insufficient gas barrier properties and flexibility.
  • the polyamide resin compositions described in Patent Documents 4 to 6 have high flexibility and impact resistance in a low-temperature environment, the resulting molded products are required to further improve fluidity and moldability.
  • the polyamide resin compositions described in Patent Documents 7 and 8 have high abrasion resistance and mold releasability of the molded articles obtained, no attention is paid to flexibility and impact resistance in a low-temperature environment.
  • An object of the present invention is to provide a polyamide resin composition that has high fluidity, excellent hydrogen gas barrier properties when molded, and does not impair flexibility in a low-temperature environment.
  • the present invention relates to the following [1] to [12].
  • the aliphatic copolyamide resin (B) has a relative viscosity of 2.90 to 4.20, and the mixture of the aliphatic homopolyamide resin (A) and the aliphatic copolyamide resin (B) has a relative viscosity of 2.90 to 4.20. 30 to 3.60, In 100% by mass of the polyamide resin composition, the total amount of aliphatic homopolyamide resin (A) and aliphatic copolyamide resin (B) is 93.0 to 100% by mass, and the above compound (C) is 0 to 2.0% by mass.
  • a polyamide resin composition [2] The polyamide resin composition according to [1], wherein the ratio of the aliphatic homopolyamide resin (A) to the aliphatic copolyamide resin (B) is 65:35 to 90:10 on a mass basis. [3] The polyamide resin composition according to [1] or [2], wherein the aliphatic homopolyamide resin (A) has a relative viscosity of 1.80 to 2.60.
  • Aliphatic homopolyamide resin (measured according to ISO 1183-3 using a Type-A1 test piece molded in an injection molding machine with a resin temperature of 250°C and a mold temperature of 80°C according to ISO 294-1) A), the density of the aliphatic copolymerized polyamide resin (B) and the polyamide resin composition is 1.120 g/cm 3 to 1.150 g/cm 3 , 1.100 g/cm 3 to 1.130 g/cm 3 and The polyamide resin composition according to any one of [1] to [6], which has a weight of 1.120 g/cm 3 to 1.140 g/cm 3 .
  • Density of polyamide resin composition measured according to ISO 1183-3 using a Type-A1 test piece molded in an injection molding machine with a resin temperature of 250°C and a mold temperature of 80°C according to ISO 294-1 is 1.126 to 1.129 g/cm 3 , the polyamide resin composition according to [7].
  • the polyamide resin composition was molded using an injection molding machine at a resin temperature of 250°C and a mold temperature of 80°C, with a thickness of 2.0 mm and a diameter of ⁇ 60 mm.
  • the hydrogen gas permeability coefficient at 55°C and 1 atm measured using the differential pressure method is 0.1 x 10 -10 cm 3 cm/(cm 2 s cm Hg) or more than 1.8 x
  • high-pressure hydrogen tank comprising a high-pressure hydrogen tank liner comprising the polyamide resin composition according to any one of [1] to [9] and a continuous fiber-reinforced resin layer.
  • the present invention it is possible to provide a polyamide resin composition that has high fluidity, excellent hydrogen gas barrier properties when molded, and does not impair flexibility in a low-temperature environment.
  • the content of each component in the composition refers to the total amount of the multiple substances present in the composition.
  • the relative viscosity defined for polyamide resin means a value measured at 25° C. in accordance with JIS K 6920 by dissolving 1 g of polyamide resin in 100 ml of 96% sulfuric acid.
  • the polyamide resin composition of the present invention is selected from the group consisting of an aliphatic homopolyamide resin (A), an aliphatic copolyamide resin (B), and, as an optional component, a fatty acid having 18 to 32 carbon atoms and a derivative thereof.
  • the relative viscosity of the aliphatic homopolyamide resin (A) is 1.80 to 2.70 when measured at 25° C.
  • the relative viscosity of the mixture of the aliphatic homopolyamide resin (A) and the aliphatic copolyamide resin (B) is 2.30 to 3.60, and the polyamide resin In 100% by mass of the composition, the total of the aliphatic homopolyamide resin (A) and the aliphatic copolyamide resin (B) is 93.0 to 100% by mass, and the compound (C) is 0 to 2.0% by mass.
  • the ratio of the aliphatic homopolyamide resin (A) to the aliphatic copolyamide resin (B) is 50:50 to 90:10 on a mass basis. .
  • the present invention also relates to the use and method of use of polyamide resin compositions for producing molded articles that are exposed to high pressure hydrogen gas. Furthermore, the present invention provides the use and method of using a polyamide resin composition for producing one selected from the group consisting of a high-pressure hydrogen tank liner, a high-pressure hydrogen hose, a high-pressure hydrogen tube, and a high-pressure hydrogen joint. be. Further, the present invention is the use and method of use of a polyamide resin composition to manufacture one selected from the group consisting of hydrogen storage tank liners, hydrogen transfer hoses, hydrogen transfer tubes, and hydrogen transfer fittings.
  • substantially not contained means that it is not contained to the extent that it impairs the function or characteristics of the polyamide resin composition of the present invention and its molded product, or it is not contained to the extent that it changes, This does not preclude inclusion to the extent that the function or characteristics are not impaired.
  • the polyamide resin composition contains an aliphatic homopolyamide resin (A).
  • the aliphatic homopolyamide resin (A) means a polyamide resin in which only one type of monomer component constitutes the aliphatic polyamide resin.
  • the aliphatic homopolyamide resin (A) may consist of at least one of one type of lactam and an aminocarboxylic acid that is a hydrolyzate of the lactam, and one type of aliphatic diamine and one type of aliphatic diamine. It may also consist of a combination with a dicarboxylic acid.
  • the monomer component constituting the aliphatic polyamide resin is a combination of an aliphatic diamine and an aliphatic dicarboxylic acid
  • the combination of one type of aliphatic diamine and one type of aliphatic dicarboxylic acid produces one type of monomer. shall be considered as an ingredient.
  • the aliphatic homopolyamide resin (A) is prepared by dissolving 1 g of the aliphatic homopolyamide resin (A) in 100 ml of 96% sulfuric acid according to JIS K 6920, and the relative viscosity measured at 25°C is 1.80-2. It is 70.
  • the relative viscosity of the aliphatic homopolyamide resin (A) within the above range, the fluidity of the polyamide resin composition can be increased, and the moldability of large molded products such as hydrogen tank liners can be improved. Does not impair the flexibility of molded products in low-temperature environments.
  • the relative viscosity of the aliphatic homopolyamide resin (A) is preferably 1.80 to 2. 60, more preferably 2.20 to 2.60, particularly preferably 2.40 to 2.60.
  • the relative viscosity of the aliphatic homopolyamide resin (A) is preferably measured as described above.
  • Type-A1 is molded using an injection molding machine with a resin temperature of 250°C and a mold temperature of 80°C in accordance with ISO 294-1.
  • the density of the aliphatic homopolyamide resin (A) measured according to ISO 1183-3 using a test piece is preferably 1.120 g/cm 3 to 1.150 g/cm 3 , and 1.120 g/cm 3 It is more preferably from 1.140 g/cm 3 to 1.125 g/cm 3 , and even more preferably from 1.125 g/cm 3 to 1.135 g/cm 3 .
  • aliphatic homopolyamide resin (A) examples include aliphatic homopolyamide resins made of aliphatic diamines and aliphatic dicarboxylic acids, aliphatic homopolyamide resins made of lactams or aminocarboxylic acids, and the like.
  • the monomer components constituting the aliphatic homopolyamide resin (A) include an aliphatic diamine having 2 to 20 carbon atoms, preferably 4 to 12 carbon atoms, and a fatty acid having 2 to 20 carbon atoms, preferably 6 to 12 carbon atoms.
  • Examples include combinations of group dicarboxylic acids, lactams having 6 to 12 carbon atoms, or aminocarboxylic acids.
  • Examples of aliphatic diamines include ethylenediamine, tetramethylenediamine, pentamethylenediamine, hexamethylenediamine, peptamethylenediamine, octamethylenediamine, nonamethylenediamine, decamethylenediamine, undecamethylenediamine, dodecamethylenediamine, tridecanediamine, Tetradecanediamine, pentadecanediamine, hexadecanediamine, heptadecanediamine, octadecanediamine, nonadecanediamine, eicosanediamine, 2-methyl-1,8-octanediamine, 2,2,4/2,4,4-trimethylhexamethylene Examples include diamine.
  • aliphatic dicarboxylic acids examples include oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, undecanedioic acid, dodecanedioic acid, tridecanedioic acid, and tetradecanedione.
  • acids such as pentadecanedioic acid, hexadecanedionic acid, octadecanedioic acid, eicosandioic acid, and derivatives thereof.
  • Examples of the combination of aliphatic diamine and aliphatic dicarboxylic acid include a combination of hexamethylene diamine and adipic acid, a combination of hexamethylene diamine and sebacic acid, a combination of hexamethylene diamine and dodecanedioic acid, etc. Salt is preferably used.
  • lactam examples include ⁇ -pyrrolidone, ⁇ -valerolactam, ⁇ -caprolactam, ⁇ -enantholactam, ⁇ -octalactam, ⁇ -undecanelactam, and ⁇ -laurolactam. From the viewpoint of productivity, the lactam is preferably ⁇ -caprolactam, ⁇ -undecanelactam or ⁇ -laurolactam.
  • aminocarboxylic acid examples include ⁇ -aminobutyric acid, 6-aminocaproic acid, 7-aminoheptanoic acid, 8-aminooctanoic acid, 9-aminononanoic acid, 11-aminoundecanoic acid, and 12-aminododecanoic acid.
  • the aliphatic homopolyamide resin (A) includes polyamide 4, polyamide 6, polyamide 7, polyamide 8, polyamide 9, polyamide 11, polyamide 12, polyamide 66, polyamide 412, polyamide 59, polyamide 510, polyamide 512, Polyamide 69, polyamide 610, polyamide 612, polyamide 96, polyamide 99, polyamide 910, polyamide 912, polyamide 106, polyamide 109, polyamide 1010, polyamide 1012, polyamide 126, polyamide 129, polyamide 1210, polyamide 1212, polyamide 122, etc. It will be done.
  • the aliphatic homopolyamide resin (A) is preferably one or more selected from the group consisting of polyamide 6, polyamide 66, polyamide 610, polyamide 612, polyamide 11, and polyamide 12; 6 and/or polyamide 66 are particularly preferred.
  • the aliphatic homopolyamide resin (A) may be used alone or in combination of two or more.
  • the polyamide resin composition includes an aliphatic copolymerized polyamide resin (B).
  • the aliphatic copolymerized polyamide resin (B) means a polyamide resin in which the monomer components constituting the aliphatic polyamide resin are a combination of two or more types.
  • the aliphatic copolymerized polyamide resin (B) is a copolymer of two or more selected from the group consisting of a combination of an aliphatic diamine and an aliphatic dicarboxylic acid, a lactam, and an aminocarboxylic acid.
  • the combination of aliphatic diamine and aliphatic dicarboxylic acid is considered to be one type of monomer component.
  • the aliphatic copolyamide resin (B) is prepared by dissolving 1 g of the aliphatic copolyamide resin (B) in 100 ml of 96% sulfuric acid and having a relative viscosity of 2.90 to 2.90 at 25°C, according to JIS K 6920. It is 4.20.
  • the relative viscosity of the aliphatic copolyamide resin (B) is preferably 2.90 to 3.50, more preferably 2.90 to 3.20.
  • the relative viscosity of the aliphatic copolyamide resin (B) is preferably measured as described above.
  • the density of the aliphatic copolyamide resin (B) measured according to ISO 1183-3 is preferably 1.100 g/cm 3 to 1.130 g/cm 3 , and preferably 1.100 g/cm 3 to 1.125 g. /cm 3 is more preferable, and even more preferably 1.110 g/cm 3 to 1.120 g/cm 3 .
  • Examples of the aliphatic diamine include the same ones as those exemplified as raw materials for the aliphatic homopolyamide resin (A).
  • Examples of the aliphatic dicarboxylic acids include those exemplified as raw materials for the aliphatic homopolyamide resin (A).
  • lactam examples include those exemplified as raw materials for the aliphatic homopolyamide resin (A). Moreover, as the aminocarboxylic acid, the same ones as those exemplified as the raw material for the aliphatic homopolyamide resin (A) can be mentioned.
  • aliphatic diamines aliphatic dicarboxylic acids, lactams, and aminocarboxylic acids may be used alone or in combination of two or more.
  • the aliphatic copolymerized polyamide resin (B) includes polyamide 6/66, polyamide 6/69, polyamide 6/610, polyamide 6/611, polyamide 6/612, polyamide 6/11, polyamide 6/12, Examples include polyamide 6/66/12, polyamide 6/66/610, polyamide 6/66/612, and the like.
  • At least one selected from the group consisting of polyamide 6/66, polyamide 6/12 and polyamide 6/66/12 is preferred, and at least one selected from the group consisting of polyamide 6/66 and polyamide 6/66/12 is preferred. At least one kind is more preferred.
  • the aliphatic copolymer polyamide resin (B) contains 30 mol% or more of ⁇ -caprolactam-derived structural units and 6-aminocaproic acid-derived structural units in 100 mol% of all structural units.
  • the content is preferably less than 75 mol%, more preferably 75 mol% or more and less than 95 mol%, and particularly preferably 85 mol% or more and 93 mol% or less.
  • the aliphatic copolymer polyamide resin (B) may be used alone or in combination of two or more.
  • the relative viscosity of the mixture of the aliphatic homopolyamide resin (A) and the aliphatic copolyamide resin (B) is 2.30 to 3.60.
  • the above-mentioned mixture means a mixture consisting only of the aliphatic homopolyamide resin (A) and the aliphatic copolyamide resin (B), which are mixed in the same proportion as in the polyamide resin composition.
  • the aliphatic homopolyamide resin (A) has a relative viscosity of 1.80 to 2.70
  • the aliphatic copolyamide resin (B) has a relative viscosity of 2.90 to 4.20
  • the aliphatic homopolyamide resin By setting the relative viscosity of the mixture of (A) and aliphatic copolymerized polyamide resin (B) to 2.30 to 3.60, the fluidity of the polyamide resin composition is increased, and it can be used in a low-temperature environment when molded. Hydrogen gas barrier properties can be improved without impairing the flexibility underneath.
  • the relative viscosity of the mixture of the aliphatic homopolyamide resin (A) and the aliphatic copolyamide resin (B) is preferably 2.30 to 3.00, more preferably 2.40 to 2.80, Particularly preferably 2.50 to 2.80.
  • the relative viscosity of the mixture of aliphatic homopolyamide resin (A) and aliphatic copolyamide resin (B) is measured at 25 ° C. by dissolving 1 g of the mixture in 100 ml of 96% sulfuric acid according to JIS K 6920. is preferable.
  • the aliphatic homopolyamide resin (A) and the aliphatic copolyamide resin (B) in 100% by mass of the polyamide resin composition.
  • the total content of is 93.0 to 100% by mass, more preferably 98.0 to 100% by mass.
  • the polyamide resin contained in the polyamide resin composition consists only of an aliphatic homopolyamide resin (A) and an aliphatic copolyamide resin (B).
  • a mixture of polyamide 6 and polyamide 6/66 or a mixture of polyamide 6 and polyamide 6/66/12 is particularly preferred.
  • the ratio of the aliphatic homopolyamide resin (A) to the aliphatic copolyamide resin (B) is 50% by mass. :50 to 90:10, preferably 65:35 to 90:10.
  • the polyamide resin composition can contain other polyamide resins than the aliphatic homopolyamide resin (A) and the aliphatic copolyamide resin (B), as long as the object of the present invention is not hindered.
  • other polyamide resins include polyamide resins that are copolymers having an alicyclic, aromatic, etc. structure in the main chain or side chain.
  • the other polyamide resin is preferably a copolyamide resin containing at least two aromatic monomer components, for example.
  • lactam and aminocarboxylic acid that are raw materials for other polyamide resins, those exemplified for the aliphatic homopolyamide resin (A) can be mentioned.
  • Examples of other alicyclic diamines constituting the polyamide resin include cyclohexane diamine, methylcyclohexane diamine, isophorone diamine, and bis(3-methyl-4-aminocyclohexyl)methane.
  • Examples of aromatic diamines constituting other polyamide resins include p-phenylenediamine, m-phenylenediamine, p-xylenediamine, m-xylenediamine, 4,4'-diaminodiphenylmethane, 4,4'-diaminodiphenyl Examples include sulfone, 4,4'-diaminodiphenyl ether, and the like.
  • Examples of other alicyclic dicarboxylic acids constituting the polyamide resin include 1,3-cyclopentanedicarboxylic acid and 1,4-cyclohexanedicarboxylic acid.
  • aromatic dicarboxylic acids constituting other polyamide resins include terephthalic acid, isophthalic acid, 2,6-naphthalenedicarboxylic acid, 2,7-naphthalenedicarboxylic acid, 1,4-naphthalenedicarboxylic acid, 1,4- phenylenedioxydiacetic acid, 1,3-phenylenedioxydiacetic acid, dibenzoic acid, 4,4'-oxydibenzoic acid, diphenylmethane-4,4'-dicarboxylic acid, diphenylsulfone-4,4'-dicarboxylic acid, Examples include 4,4'-biphenyldicarboxylic acid.
  • polyamide resins include isophthalic acid/terephthalic acid/hexamethylene diamine/bis(3-methyl-4-aminocyclohexyl)methane polycondensate, terephthalic acid/2,2,4-trimethylhexamethylene diamine /2,4,4-trimethylhexamethylene diamine polycondensate, isophthalic acid/bis(3-methyl-4-aminocyclohexyl)methane/ ⁇ -laurolactam polycondensate, isophthalic acid/terephthalic acid/hexamethylene diamine (polyamide 6T/6I), isophthalic acid/2,2,4-trimethylhexamethylenediamine/2,4,4-trimethylhexamethylenediamine polycondensate, isophthalic acid/terephthalic acid/2,2, Examples include polycondensates of 4-trimethylhexamethylenediamine/2,4,4-trimethylhexamethylenediamine, and polycondensates of iso
  • other polyamide resins are preferably those consisting of 40 to 95 mol% of terephthalic acid component units, 5 to 60 mol% of isophthalic acid component units, and an aliphatic diamine.
  • Preferred combinations of monomer components constituting other polyamide resins include equimolar salts of hexamethylene diamine and terephthalic acid, and equimolar salts of hexamethylene diamine and isophthalic acid.
  • polyamide resins contain units derived from a monomer component consisting of aliphatic diamine, isophthalic acid, and terephthalic acid in an amount of 60% by mass or more and 99% by mass or less, and 1% by mass or more and 40% by mass of units from the aliphatic polyamide component.
  • a copolymer containing the following is preferable.
  • Polyamide resin manufacturing equipment includes batch reaction vessels, single-vessel or multi-vessel continuous reaction apparatuses, tubular continuous reaction apparatuses, kneading reaction extruders such as single-screw kneading extruders, twin-screw kneading extruders, etc.
  • kneading reaction extruders such as single-screw kneading extruders, twin-screw kneading extruders, etc.
  • known polyamide manufacturing equipment can be mentioned.
  • known methods such as melt polymerization, solution polymerization, solid phase polymerization, etc. can be used, and polymerization can be carried out by repeating normal pressure, reduced pressure, and pressurization operations. These polymerization methods can be used alone or in combination as appropriate.
  • the polyamide resin composition further contains at least one compound (C) selected from the group consisting of fatty acids having 18 to 32 carbon atoms and derivatives thereof (hereinafter also referred to as compound (C)).
  • Compound (C) is more preferably at least one selected from the group consisting of fatty acids having 18 to 32 carbon atoms, metal salts, esters, and amides thereof.
  • the compound (C) may be used alone or in combination of two or more types, and from the viewpoint of mold releasability, a mixture of two or more types is preferable.
  • Fatty acids having 18 to 32 carbon atoms include saturated fatty acids such as stearic acid, arachidic acid, behenic acid, lignoceric acid, cerotic acid, montanic acid, melisic acid, and dotriacontanoic acid; oleic acid, vaccenic acid, and linoleic acid. , linolenic acid, eleostearic acid, eicosenoic acid, erucic acid, nervonic acid, and other unsaturated fatty acids; compounds in which some of the hydrogen atoms of the alkyl or alkenyl groups of the above fatty acids such as ricinoleic acid are substituted with hydroxyl groups, etc. can be mentioned.
  • Derivatives of fatty acids having 18 to 32 carbon atoms include metal salts of the fatty acids, ester compounds formed from the fatty acids or halides of the fatty acids, and compounds having hydroxyl groups, and compounds formed from the fatty acids and compounds having amino groups. Examples include amide compounds. Examples of the metal of the metal salt of fatty acid include lithium, magnesium, calcium, aluminum, cadmium, barium, zinc, and lead.
  • the ester compounds include butyl stearate, stearyl stearate, arachidyl arachidate, behenyl behenate, lignoceryl lignocerate, hexacosyl cerotate, octacosyl montanate, melisyl melisinate, dotriacontanoate, oleyl oleate, and monostearin.
  • Monoester compounds such as ethylene glycol acid, glyceryl monostearate, pentaerythrityl monostearate; ethylene glycol distearate, ethylene glycol dimontanate, (di- or tri-)glyceryl stearate, (di- or tri-)montane
  • Polyvalent ester compounds of fatty acids and polyhydric alcohols such as acid glyceryl, (di-, tri- or tetra-)pentaerythrityl stearate, (di-, tri- or tetra-)pentaerythrityl montanate, etc. It will be done. From the viewpoint of availability and moldability, stearyl stearate, behenyl behenate, ethylene glycol monostearate, ethylene glycol dimontanate, or (di- or tri-)glyceryl montanate are preferred.
  • Examples of the metal salts of fatty acids include calcium stearate, magnesium stearate, zinc stearate, barium stearate, aluminum stearate, calcium 12-hydroxystearate, zinc 12-hydroxystearate, magnesium 12-hydroxystearate, and 12-hydroxystearate.
  • Examples include calcium acid, zinc montanate, magnesium montanate, aluminum montanate, sodium montanate, potassium montanate, and the like. From the viewpoint of moldability, calcium stearate, zinc stearate, lithium behenate, calcium 12-hydroxystearate or calcium montanate are preferred.
  • the amide compounds include stearic acid amide, arachidic acid amide, behenic acid amide, lignoceric acid amide, cerotic acid amide, montanic acid amide, melisic acid amide, dotriacontanoic acid amide, oleic acid amide, erucic acid amide, and ricinoleic acid.
  • Aliphatic monocarboxylic acid amides such as amide, 12-hydroxystearic acid amide; methylenebisstearic acid amide, methylenebis-12-hydroxystearic acid amide, methylenebisarachidic acid amide, methylenebisbehenic acid amide, methylenebislignoceric acid amide, methylenebiscerotinamide, methylenebismontanamide, methylenebismericinamide, methylenebisdotricontanoic acidamide, ethylenebisstearamide, ethylenebis-12-hydroxystearamide, ethylenebisarachidine Acid amide, ethylene bisbehenic acid amide, ethylene bislignoceric acid amide, ethylene biscerotic acid amide, ethylene bismontanic acid amide, ethylene bismericic acid amide, ethylene bisdotriacontanoic acid amide, butylene bisstearic acid amide, Hexamethylene bis-oleic acid amide, hexamethylene bis-stearic acid amide,
  • stearamide behenic acid amide, montanic acid amide, oleic acid amide, erucic acid amide or ethylene bisstearic acid amide is preferable, and ethylene bis stearic acid amide is more preferable.
  • the content of compound (C) in 100% by mass of the polyamide resin composition is 0 to 2.0% by mass. , preferably from 0.01 to 2.0% by weight, more preferably from 0.1 to 1.5% by weight, even more preferably from 0.2 to 1.0% by weight.
  • the polyamide resin composition can contain other components as long as the effects of the present invention are not impaired.
  • Other functional ingredients include antioxidants, crystal nucleating agents, crystallization accelerators, heat resistant agents, plasticizers, foaming agents, weathering agents, antistatic agents, flame retardants, flame retardant aids, pigments, and dyes.
  • the content of other components is 0 to 5.0% by mass, preferably 0.01 to 2.0% by mass, more preferably 0.05 to 1.5% by mass based on 100% by mass of the polyamide resin composition. It is.
  • the polyamide resin composition is substantially free of polyolefin resin.
  • substantially not containing a polyolefin resin By substantially not containing a polyolefin resin, the fluidity of the composition can be increased and the moldability can be improved. Furthermore, the hydrogen gas barrier properties of the molded article can be improved, and the coefficient of linear expansion can also be reduced.
  • substantially not contained means that it is not contained to the extent that it impairs the function or characteristics of the polyamide resin composition of the present invention and its molded product, or it is not contained to the extent that it changes, This does not preclude inclusion to the extent that the function or characteristics are not impaired.
  • substantially free means that the content of polyolefin resin in 100% by mass of the polyamide resin composition is less than 0.1% by mass, preferably 0.05% by mass. %, more preferably less than 0.01% by mass.
  • Such polyolefin resins include unmodified polyolefin resins and modified polyolefin resins. Examples of unmodified polyolefin resins include homopolymers of ⁇ -olefins such as ethylene and propylene; (ethylene and/or propylene)/ ⁇ -olefin copolymers, and the like.
  • Modified polyolefin resins include polyethylene, polypropylene, (ethylene and/or or propylene)/ ⁇ -olefin copolymer; (ethylene and/or propylene)/( ⁇ , ⁇ -unsaturated carboxylic acid and/or ⁇ , ⁇ -unsaturated carboxylic acid ester) copolymer Copolymerized polyolefin resins such as polymers; Olefin ionomers such as salts of (ethylene and/or propylene)/( ⁇ , ⁇ -unsaturated carboxylic acid and/or ⁇ , ⁇ -unsaturated carboxylic acid ester) copolymers etc.
  • the polyamide resin composition contains an antioxidant as another component.
  • the antioxidant include organic antioxidants and inorganic antioxidants.
  • organic antioxidants examples include phenolic antioxidants, phosphorus antioxidants, sulfur antioxidants, and the like. From the viewpoint of improving the antioxidant performance of the molded article, the organic antioxidant is preferably at least one selected from the group consisting of phenolic antioxidants, phosphorus antioxidants, and sulfur antioxidants. Preferably, it is more preferable to contain both a phenolic antioxidant and a phosphorus antioxidant.
  • N,N'-hexamethylenebis(3,5-di-t-butyl-4-hydroxy-hydrocinnamamide (Irganox (registered trademark) 1098; BASF Japan Ltd. ), pentaerythrityl-tetrakis [3-(3,5-di-t-butyl-4-hydroxyphenyl)-propionate] (Irganox® 1010; manufactured by BASF Japan Ltd.), ethylene bis(oxyethylene ) bis[3-(5-tert-butyl-4-hydroxy-m-tolyl)propionate] (Irganox (registered trademark) 245; manufactured by BASF Japan Ltd.), 3,9-bis[2-[3-(3 -tert-butyl-4-hydroxy-5-methylphenyl)propionyloxy]-1,1-dimethylethyl]-2,4,8,10-tetraoxaspiro[5.5]undecane (Sumily
  • the phosphorus antioxidants include tris(2,4-di-t-butylphenyl) phosphite (Irgafos (registered trademark) 168; manufactured by BASF Japan Ltd.), bis(2,6-di-t- -butyl-4-methylphenyl) pentaerthritol diphosphite (ADEKA STAB (registered trademark) PEP-36; manufactured by ADEKA Co., Ltd.), tetrakis (2,4-di-tert-butylphenoxy)-4,4-biphenyl Examples include a reaction product of biphenyl containing diphosphine as a main component, phosphorus trichloride, and 2,4-di-tert-butylphenol (Hostanox (registered trademark) P-EPQ (registered trademark) P; manufactured by Clariant Japan Co., Ltd.). At least one selected from the group consisting of these is preferred.
  • the phosphorus antioxidants may be
  • sulfur-based antioxidants examples include thioether-based antioxidants, specifically distearyl-3,3-thiodipropionate (Irganox (registered trademark) PS802; manufactured by BASF Japan Ltd.), pentaeryth Lythyltetrakis (3-laurylthiopropionate) (Sumilyzer (registered trademark) TP-D; manufactured by Sumitomo Chemical Co., Ltd.), didodecyl (3,3'-thiodipropionate) (Irganox (registered trademark) PS800; BASF Japan) Co., Ltd.), and at least one selected from the group consisting of these is preferred.
  • the sulfur-based antioxidants may be used alone or in combination of two or more.
  • the content of the organic antioxidant is preferably 0.01 to 5.0% by mass, more preferably 0.01 to 2.0% by mass in 100% by mass of the polyamide resin composition. , 0.05 to 1.5% by mass is particularly preferred.
  • inorganic antioxidants examples include metal halide antioxidants.
  • the metal halide antioxidant is a component that mainly provides long-term heat resistance.
  • a metal halide antioxidant is a compound of a halogen and a metal. Examples of the halogen include fluorine, chlorine, bromine, and iodine.
  • metals include Group 1 elements (alkali metals), Group 2 elements (alkaline earth metals), Group 3 elements to Group 12 elements (eg, transition metals), and the like.
  • the metal in the metal halide is preferably a Group 1 element (alkali metal) or a Group 11 element (copper group).
  • metal halide when the metal is a Group 1 element (alkali metal) include potassium iodide, potassium bromide, potassium chloride, sodium iodide, and sodium chloride.
  • metal halides when the metal is a Group 11 element (copper group), metal halides include cuprous chloride, cupric chloride, cuprous bromide, cupric bromide, cuprous iodide, Examples include cupric iodide.
  • the metal halide antioxidant is more preferably a mixture of cuprous iodide and potassium halide, or a mixture of cuprous bromide and potassium halide; Particularly preferred are mixtures or mixtures of cuprous bromide and potassium bromide.
  • a mixture of cuprous iodide and potassium iodide, or a mixture of cuprous bromide and potassium bromide has a lower amount of potassium iodide than the amount (mass%) of cuprous iodide or cuprous bromide.
  • the amount (mass %) of potassium bromide is large.
  • a nitrogen-containing compound such as melamine, benzoguanamine, dimethylol urea, or cyanuric acid in combination.
  • the inorganic antioxidants may be used alone or in combination of two or more.
  • the content of the inorganic antioxidant is preferably 0.01 to 5.0% by mass, more preferably 0.01 to 2.0% by mass in 100% by mass of the polyamide resin composition. , 0.05 to 1.0% by mass is particularly preferred.
  • the method for producing the polyamide resin composition is not particularly limited, and for example, the following method can be applied.
  • a single screw or twin screw extruder Commonly known melt-kneading machines such as Banbury mixers, kneaders, and mixing rolls can be used, and blenders that do not perform melt-kneading may also be used.
  • melt-kneading for example, using a twin-screw extruder
  • all the raw materials are blended and then melt-kneaded, or some of the raw materials are blended, then melt-kneaded, and the remaining raw materials are blended and melt-kneaded.
  • Any method may be used, such as a method of blending some of the raw materials, or a method of mixing the remaining raw materials using a side feeder during melt-kneading.
  • the polyamide resin composition may be in the form of pellets or powder, for example.
  • the density of the polyamide resin composition is preferably 1.120 g/cm 3 to 1.140 g/cm 3 , more preferably 1.121 g/cm 3 to 1.135 g/cm 3 , It is more preferably .125 g/cm 3 to 1.135 g/cm 3 , particularly preferably 1.126 to 1.129 g/cm 3 .
  • the density of the polyamide resin composition may be determined from the density of each raw material of the polyamide resin composition and the composition ratio thereof.
  • Polyamide resin compositions have high fluidity and excellent hydrogen gas barrier properties and flexibility in low-temperature environments when made into molded products, and can be used for molded products that come into contact with high-pressure hydrogen gas.
  • the polyamide resin composition is not particularly limited, and can be used to manufacture molded articles using known methods.
  • a molded product that comes into contact with high-pressure hydrogen gas is a molded product that comes into contact with hydrogen gas at a pressure higher than normal pressure. Since the molded product according to the present invention has excellent hydrogen gas barrier properties, it is expected to have the effect of suppressing the occurrence of defective points when repeatedly filling and releasing high-pressure hydrogen gas. It is preferably used for molded products that come into contact with the above hydrogen gas, and more preferably used for molded products that come into contact with hydrogen gas of 30 MPa or more.
  • it is preferably used for molded products that come into contact with hydrogen gas at a pressure of 200 MPa or less, more preferably used for molded products that come into contact with hydrogen gas at a pressure of 150 MPa or less, and even more preferably used for molded products that come into contact with hydrogen gas at a pressure of 100 MPa or less.
  • Examples of molded products that come into contact with high-pressure hydrogen gas include high-pressure hydrogen containers and their parts, which are selected from the group consisting of high-pressure hydrogen tank liners, high-pressure hydrogen hoses, high-pressure hydrogen tubes, and high-pressure hydrogen joints. It is preferable that there is one.
  • Another aspect of the invention is one selected from the group consisting of a hydrogen storage tank liner, a hydrogen transfer hose, a hydrogen transfer tube, and a hydrogen transfer fitting, comprising a polyamide resin composition.
  • the hydrogen can be high pressure hydrogen.
  • a high-pressure hydrogen tank liner containing a polyamide resin composition can be suitably used as a high-pressure hydrogen tank in combination with a continuous fiber-reinforced resin layer. That is, another aspect of the present invention is a high-pressure hydrogen tank liner including a polyamide resin composition and a high-pressure hydrogen tank including a continuous fiber-reinforced resin layer. In a high-pressure hydrogen tank, it is preferable that a continuous fiber-reinforced resin layer is laminated on the outside of a high-pressure hydrogen tank liner containing a polyamide resin composition. In the present invention, continuous fibers refer to fibers with a fiber length of 100 mm or more. Yet another aspect of the invention is a hydrogen storage tank that includes a hydrogen storage tank liner that includes a polyamide resin composition and a continuous fiber reinforced resin layer.
  • the continuous fibers constituting the continuous fiber reinforced resin layer include carbon fibers, glass fibers, aramid fibers, etc. Among them, carbon fibers are preferred from the viewpoint of specific strength and weight reduction.
  • the continuous fibers may be used alone or in combination of two or more. From the viewpoint of ease of handling and weight reduction, the fiber diameter of the continuous fibers is preferably 5 to 30 ⁇ m, more preferably 5 to 20 ⁇ m, and even more preferably 5 to 10 ⁇ m.
  • the resin constituting the continuous fiber reinforced resin layer may be a thermosetting resin or a thermoplastic resin.
  • thermosetting resins include epoxy resins, unsaturated polyester resins, vinyl ester resins, phenol resins, polyurethane resins, and silicone resins, among which epoxy resins are particularly preferred from the viewpoint of processability.
  • the epoxy resin include bisphenol A epoxy resin, bisphenol F epoxy resin, bisphenol S epoxy resin, phenol novolak epoxy resin, isocyanate-modified bisphenol A epoxy resin, and the like. These thermosetting resins may be used alone or in combination of two or more. When using a thermosetting resin, a curing agent, a reaction accelerator, etc. may be used in combination.
  • thermoplastic resins include polyethylene resin, polypropylene resin, polyvinyl chloride resin, ABS resin, polystyrene resin, AS resin, polyamide resin, polyacetal resin, polycarbonate resin, thermoplastic polyester resin, PPS resin, fluororesin, and polyetherimide resin. , polyetherketone resin, polyimide resin, and copolymers of these resins. These thermoplastic resins may be used alone or in combination of two or more. When using a thermoplastic resin, a compatibilizer, a flame retardant, etc. may be used in combination.
  • Another aspect of the present invention is a method of manufacturing a high-pressure hydrogen tank, which includes forming a high-pressure hydrogen tank liner from a polyamide resin composition.
  • the method for manufacturing a high-pressure hydrogen tank is not particularly limited, and for example, continuous fibers are wrapped around a high-pressure hydrogen tank liner formed into a tank shape, and then a thermosetting resin is applied to the continuous fibers and then thermoset.
  • Yet another aspect of the invention is a method of making a hydrogen storage tank that includes forming a hydrogen storage tank liner from a polyamide resin composition.
  • Method for manufacturing molded products that come into contact with high-pressure hydrogen gas examples include blow molding, extrusion molding, injection molding, and rotational molding, and injection molding and rotational molding can be used more preferably.
  • the method of producing an injection molded article from a polyamide resin composition by injection molding there is no particular restriction on the method of producing an injection molded article from a polyamide resin composition by injection molding, and any known method can be used. For example, a method based on ISO 294-1 may be considered.
  • the molding conditions during injection molding are not particularly limited, but for example, the resin temperature of the polyamide resin composition can be 250 to 270°C, and the mold temperature can be 60 to 80°C.
  • the density of molded articles exposed to high pressure hydrogen gas can be measured according to ISO 1183-3.
  • the density of the molded article may be determined from the density and composition of each raw material of the molded article.
  • the density of the molded article that comes into contact with high-pressure hydrogen gas is preferably 1.120 g/cm 3 to 1.140 g/cm 3 , and 1.121 g/cm 3 to 1.1 g/cm 3 . It is more preferably 135 g/cm 3 , even more preferably 1.125 g/cm 3 to 1.135 g/cm 3 , and particularly preferably 1.126 to 1.129 g/cm 3 .
  • the molded product that comes into contact with high-pressure hydrogen gas is made using the polyamide resin composition according to JIS K 7126-1, and is molded in an injection molding machine at a resin temperature of 250°C and a mold temperature of 80°C to a size of 80 mm x 80 mm and a thickness of 2.5 mm.
  • the hydrogen gas permeability coefficient at 55°C and 1 atm measured using the differential pressure method for a circular molded product with a diameter of 60 mm cut from a 0 mm plate-shaped test piece was 0.1 ⁇ 10 - It is preferably more than 1.8 ⁇ 10 ⁇ 10 cm 3 ⁇ cm / (cm 2 ⁇ s ⁇ cmHg), and less than 0.1 ⁇ 10 ⁇ 10 cm More preferably , it is more than 3.cm/(cm 2.s.cmHg) and less than 1.7 ⁇ 10 ⁇ 10 cm 3.cm/(cm 2.s.cmHg), and less than 0.1 ⁇ 10 ⁇ 10 cm 3 -More preferably cm/(cm 2 s ⁇ cmHg) and less than 1.5 ⁇ 10 ⁇ 10 cm 3 ⁇ cm/(cm 2 s ⁇ cmHg).
  • the hydrogen gas permeability coefficient is within the above range, it has excellent hydrogen gas barrier properties and can be suitably used for molded products that come into contact with high-pressure
  • the molded product that comes into contact with high-pressure hydrogen gas is Type-A1, which is obtained by molding the polyamide resin composition in an injection molding machine at a resin temperature of 250°C and a mold temperature of 80°C in accordance with ISO 294-1.
  • the tensile elastic modulus between 0.3% and 0.5% of the nominal tensile strain measured at a test speed of 50 mm/min according to ISO 527-2 is , preferably more than 1,600 MPa and less than 2,800 MPa, more preferably more than 1,600 MPa and less than 2,750 MPa, even more preferably more than 1,600 MPa and less than 2,700 MPa.
  • the molded product When the tensile modulus at ⁇ 60° C. is within the above range, the molded product has an excellent balance between flexibility and mechanical strength in a low-temperature environment, and can be suitably used for molded products exposed to high-pressure hydrogen gas. If the tensile modulus is 1,600 MPa or less, the molded product is likely to be deformed. If the tensile modulus is 2,800 MPa or more, the molded product will easily break.
  • Density Type-A1 test piece molded with an injection molding machine at a resin temperature of 250°C and a mold temperature of 80°C according to ISO 294-1 for aliphatic homopolyamide resin, aliphatic copolyamide resin, and polyamide resin composition. The density was measured according to ISO 1183-3.
  • Hydrogen gas permeability coefficient According to JIS K7126-1, pellets of Examples and Comparative Examples were molded into plates of 80 mm x 80 mm and 2.0 mm thickness using an injection molding machine at a resin temperature of 250°C and a mold temperature of 80°C. A test piece was molded, and a hydrogen gas permeation test was conducted on a circular molded product with a diameter of 60 mm cut from the test piece at 55° C., 0% RH, and 1 atm using a differential pressure method. As the measuring device, a differential pressure type gas/vapor permeability measuring device (GTR-30XAD, serial number G2700T/F (manufactured by GTR Tech)) was used. Hydrogen gas barrier properties were evaluated based on the following criteria.
  • Hydrogen gas permeability coefficient is more than 0.1 ⁇ 10 -10 cm 3 ⁇ cm/(cm 2 ⁇ s ⁇ cmHg) and less than 1.5 ⁇ 10 ⁇ 10 cm 3 ⁇ cm/(cm 2 ⁇ s ⁇ cmHg) ⁇ :Hydrogen gas permeability coefficient is 1.5 ⁇ 10 -10 cm 3 ⁇ cm/(cm 2 ⁇ s ⁇ cmHg) or more and less than 1.8 ⁇ 10 ⁇ 10 cm 3 ⁇ cm/(cm 2 ⁇ s ⁇ cmHg) ⁇ : Hydrogen gas permeability coefficient is 1.8 ⁇ 10 -10 cm 3 ⁇ cm/(cm 2 ⁇ s ⁇ cmHg) or more
  • Tensile modulus at -60°C is more than 1,600 MPa and less than 2,700 MPa ⁇ : Tensile modulus at -60°C is 2,700 MPa or more and less than 2,800 MPa ⁇ : Tensile modulus at -60°C is 2,800 MPa or more
  • Antioxidant Metal halide antioxidant mixture of cuprous iodide and potassium iodide, mass ratio 1:6
  • Examples 1 to 9 and Comparative Examples 1 to 7 The components listed in Tables 1 and 2 were mixed using a ZSK32mc twin-screw extruder (manufactured by Coperion, cylinder diameter 32 mm, L/D 48), which is a twin-screw kneading machine, at a cylinder temperature of 250°C, a screw rotation speed of 200 rpm, and a discharge rate. The mixture was melt-kneaded at 50 kg/hrs to produce pellets of the desired polyamide resin composition. Note that the unit of composition in the table is mass %, and the entire resin composition is 100 mass %.
  • the aliphatic homopolyamide resin (A) having a relative viscosity of 1.80 to 2.70 and the aliphatic copolyamide resin (B) having a relative viscosity of 2.90 to 4.20 The polyamide resin compositions of Examples 1 to 9, in which the mixture of component A) and component (B) have a relative viscosity of 2.30 to 3.60 and do not contain a polyolefin resin, have high fluidity; It can be seen that the molded article has excellent hydrogen gas barrier properties, no brittle fracture during a tensile test at -60°C, and excellent flexibility in a low-temperature environment.
  • the relative viscosity of the aliphatic homopolyamide resin (A) is 2.20 to 2.60
  • the relative viscosity of the aliphatic copolyamide resin (B) is 2.90 to 4.20
  • the (A) component and the (B) component are 2.90 to 4.20
  • Comparative Example 1 using only an aliphatic homopolyamide resin whose relative viscosity is outside the range of the present invention as a polyamide resin has poor fluidity.
  • Comparative Example 6 using only the aliphatic copolymerized polyamide resin (B) had poor fluidity. Comparative Example 7, in which an aliphatic homopolyamide resin and a modified polyolefin resin were used in combination, was inferior in fluidity and hydrogen gas barrier properties of the molded article.
  • the polyamide resin composition of the present invention can be suitably used for producing various molded products by injection molding, rotational molding, etc.

Abstract

Provided is a polyamide resin composition having high fluidity and an excellent hydrogen gas barrier property when made into molded products, and does not compromise flexibility in low-temperature environments. This polyamide resin composition for a molded product that contacts high-pressure hydrogen gas includes an aliphatic homopolyamide resin (A) and an aliphatic copolyamide resin (B), and as an optional component, at least one compound (C) selected from the group consisting of fatty acids having 18-32 carbon atoms and derivatives thereof, and does not substantially include a polyolefin resin. The relative viscosity of (A) is 1.80-2.70, the relative viscosity of (B) is 2.90-4.20, the relative viscosity of a mixture of (A) and (B) is 2.30-3.60, and in 100 mass% of the polyamide resin composition, the total of (A) and (B) is 93.0-100 mass%, (C) accounts for 0-2.0 mass%, and other components account for 0-5.0 mass%, with the ratio of (A) and (B) being 50:50 to 90:10 on a mass basis.

Description

高圧水素ガスに触れる成形品用のポリアミド樹脂組成物Polyamide resin composition for molded products that come into contact with high-pressure hydrogen gas
 本発明は、高圧水素ガスに触れる成形品用のポリアミド樹脂組成物に関する。 The present invention relates to a polyamide resin composition for molded articles that come into contact with high-pressure hydrogen gas.
 ポリアミド樹脂は、優れた機械的特性、耐熱性、耐薬品性を有することから、エンジニアリングプラスチックスとして様々な用途で展開され、様々な成形方法によって使用されている。例えば、耐熱性、機械的強度等の改善を目的に、特定の相対粘度をそれぞれ有する脂肪族共重合ポリアミド樹脂及び脂肪族ホモポリアミド樹脂を併用し、かつ、繊維状強化剤を組み合わせたポリアミド樹脂組成物が知られている(例えば、特許文献1及び2を参照)。また、脂肪族共重合ポリアミド樹脂及び脂肪族ホモポリアミド樹脂を併用し、かつ、トリアジン系化合物等を組み合わせた難燃性ポリアミド樹脂組成物が知られている(例えば、特許文献3を参照)。 Polyamide resins have excellent mechanical properties, heat resistance, and chemical resistance, so they are used in a variety of applications as engineering plastics and are used in a variety of molding methods. For example, for the purpose of improving heat resistance, mechanical strength, etc., a polyamide resin composition in which an aliphatic copolymer polyamide resin and an aliphatic homopolyamide resin, each having a specific relative viscosity, are used in combination, and a fibrous reinforcing agent is used. are known (for example, see Patent Documents 1 and 2). Further, flame-retardant polyamide resin compositions are known in which an aliphatic copolymerized polyamide resin and an aliphatic homopolyamide resin are used together, and a triazine-based compound or the like is combined (for example, see Patent Document 3).
 一方、高圧水素ガスに触れる成形品として、例えば水素自動車で使用される水素タンクが知られており、このような分野においてもポリアミド樹脂組成物が使用されている。水素自動車で使用される水素タンクは、樽のような外形をした高圧水素貯蔵容器であり、水素ガスに直接接触する金属製又は樹脂製の長尺内層(長尺ライナー)とその外周面に積層された繊維強化樹脂層とから成り立っている。
 水素タンク中の水素は、高圧で-40℃以下の極低温となっている。そのため、水素ガスに直接接触する長尺ライナーには、ガスバリア性に加え、高圧に耐え得る柔軟性と、極低温下でも柔軟性が維持できることが求められている。
On the other hand, hydrogen tanks used in hydrogen vehicles, for example, are known as molded products that come into contact with high-pressure hydrogen gas, and polyamide resin compositions are also used in such fields. The hydrogen tank used in hydrogen vehicles is a high-pressure hydrogen storage container with a barrel-like exterior, and consists of a long inner layer (long liner) made of metal or resin that comes into direct contact with hydrogen gas, and a layer laminated on the outer circumference of the long inner layer (long liner). It consists of a fiber-reinforced resin layer.
The hydrogen in the hydrogen tank is under high pressure and at an extremely low temperature of -40°C or less. Therefore, long liners that come into direct contact with hydrogen gas are required to have gas barrier properties, as well as flexibility that can withstand high pressure and maintain flexibility even at extremely low temperatures.
 従来、高圧水素ガスに触れる成形品の用途では、ポリアミド樹脂に変性ポリオレフィン系樹脂を添加して耐衝撃性を向上させたポリアミド樹脂組成物からなる成形品が使用されていた。そのようなポリアミド樹脂組成物として、ポリアミド及び酸変性ポリオレフィンを所定の割合で含むポリアミド樹脂組成物が開示されている(例えば、特許文献4を参照)。また、ポリアミド6、共重合ポリアミド及び酸変性エチレン・α-オレフィン系共重合体等の耐衝撃材を含むポリアミド樹脂組成物からなる水素タンクライナー用材料が提案されており、ガスバリア性に優れ、低温でも優れた耐衝撃性を有することが示されている(例えば、特許文献5を参照)。さらに、ポリアミド樹脂及び耐衝撃材を含み、ポリアミド樹脂の相対粘度を2.7以上とし、ポリアミド樹脂の末端アミノ基濃度、耐衝撃剤の酸無水物基の含有量及び耐衝撃材の含有率を所定の範囲としたポリアミド樹脂組成物が提案されており、該組成物は、成形体の良好な表面外観を維持しながら、ブロー成形性に優れることが示されている(例えば、特許文献6を参照)。 Conventionally, in applications where molded products come into contact with high-pressure hydrogen gas, molded products made of polyamide resin compositions whose impact resistance has been improved by adding modified polyolefin resins to polyamide resins have been used. As such a polyamide resin composition, a polyamide resin composition containing polyamide and acid-modified polyolefin in a predetermined ratio is disclosed (for example, see Patent Document 4). In addition, materials for hydrogen tank liners have been proposed that are made of polyamide resin compositions containing impact-resistant materials such as polyamide 6, copolyamides, and acid-modified ethylene/α-olefin copolymers, which have excellent gas barrier properties and low temperature However, it has been shown to have excellent impact resistance (for example, see Patent Document 5). Furthermore, it contains a polyamide resin and an impact-resistant material, the relative viscosity of the polyamide resin is 2.7 or more, the terminal amino group concentration of the polyamide resin, the content of acid anhydride groups of the impact-resistant agent, and the content of the impact-resistant material. A polyamide resin composition having a predetermined range has been proposed, and it has been shown that the composition has excellent blow moldability while maintaining a good surface appearance of a molded article (for example, see Patent Document 6). reference).
 また、ポリアミド樹脂組成物に未変性のオレフィン系樹脂を配合して、耐摩擦性、離型性等を改善することも知られている。そのようなポリアミド樹脂組成物として、ポリアミド樹脂及び所定の重量平均粒子径を有するオレフィン系エラストマー樹脂を所定の割合で含むポリアミド樹脂組成物(例えば、特許文献7を参照)、並びに、ポリアミド樹脂、変性ポリプロピレンワックス及び未変性ポリプロピレン樹脂を所定の割合で含むポリアミド樹脂組成物(例えば、特許文献8を参照)が知られている。 It is also known to improve abrasion resistance, mold releasability, etc. by blending an unmodified olefin resin into a polyamide resin composition. Examples of such a polyamide resin composition include a polyamide resin composition containing a polyamide resin and an olefin elastomer resin having a predetermined weight average particle diameter in a predetermined ratio (see, for example, Patent Document 7), a polyamide resin, a modified polyamide resin A polyamide resin composition (see, for example, Patent Document 8) containing polypropylene wax and unmodified polypropylene resin in a predetermined ratio is known.
特開平4-63863号公報Japanese Patent Application Publication No. 4-63863 特開平6-299068号公報Japanese Patent Application Publication No. 6-299068 国際公開第2013/099522号International Publication No. 2013/099522 特開2020-122157号公報Japanese Patent Application Publication No. 2020-122157 特開2009-191871号公報Japanese Patent Application Publication No. 2009-191871 特開2017-206639号公報Japanese Patent Application Publication No. 2017-206639 特開2007-119581号公報Japanese Patent Application Publication No. 2007-119581 特開2019-1934号公報JP 2019-1934 Publication
 省エネの観点から、成形品の軽量化及び薄肉化が求められている。特に高圧水素ガスに触れる成形品では、薄肉化することにより、ガスバリア性及び低温環境下における柔軟性が下がる。そのため、高圧水素ガスに触れる成形品に用いられるポリアミド樹脂組成物では、薄肉化しても、低温環境下における柔軟性を損なわず、ガスバリア性が維持されることが求められる。また、成形品である以上、該ポリアミド樹脂組成物は、流動性の向上による良好な成形性も求められる。 From the perspective of energy saving, molded products are required to be lighter and thinner. Particularly in molded products that come into contact with high-pressure hydrogen gas, thinning the walls reduces gas barrier properties and flexibility in low-temperature environments. Therefore, polyamide resin compositions used for molded products that come into contact with high-pressure hydrogen gas are required to maintain gas barrier properties without impairing flexibility in low-temperature environments even when the walls are thinned. Moreover, since it is a molded article, the polyamide resin composition is also required to have good moldability due to improved fluidity.
 特許文献1~3に記載されたポリアミド樹脂組成物は、高圧水素ガスに触れる成形品の用途を考慮しておらず、ガスバリア性及び柔軟性は不十分であった。特許文献4~6に記載されたポリアミド樹脂組成物は、得られる成形品の低温環境下での柔軟性及び耐衝撃性は高いものの、流動性及び成形性にさらなる向上が求められている。特許文献7及び8に記載されたポリアミド樹脂組成物は、得られる成形品の耐摩擦性及び離型性は高いものの、低温環境下での柔軟性及び耐衝撃性については着目していない。 The polyamide resin compositions described in Patent Documents 1 to 3 do not take into account the use of molded products that come into contact with high-pressure hydrogen gas, and have insufficient gas barrier properties and flexibility. Although the polyamide resin compositions described in Patent Documents 4 to 6 have high flexibility and impact resistance in a low-temperature environment, the resulting molded products are required to further improve fluidity and moldability. Although the polyamide resin compositions described in Patent Documents 7 and 8 have high abrasion resistance and mold releasability of the molded articles obtained, no attention is paid to flexibility and impact resistance in a low-temperature environment.
 本発明は、流動性が高く、成形品とした場合の水素ガスバリア性に優れ、低温環境下における柔軟性を損なわないポリアミド樹脂組成物を提供することを目的とする。 An object of the present invention is to provide a polyamide resin composition that has high fluidity, excellent hydrogen gas barrier properties when molded, and does not impair flexibility in a low-temperature environment.
 本発明は、以下の[1]~[12]に関する。
[1]脂肪族ホモポリアミド樹脂(A)及び脂肪族共重合ポリアミド樹脂(B)、並びに任意成分として、炭素数が18~32である脂肪酸及びその誘導体からなる群より選択される少なくとも1種の化合物(C)を含み、実質的にポリオレフィン系樹脂を含まない、高圧水素ガスに触れる成形品用のポリアミド樹脂組成物であって、
 JIS K 6920に準じて、ポリアミド樹脂1gを96%硫酸100mlに溶解させ、25℃で測定される相対粘度において、脂肪族ホモポリアミド樹脂(A)の相対粘度が1.80~2.70であり、脂肪族共重合ポリアミド樹脂(B)の相対粘度が2.90~4.20であり、脂肪族ホモポリアミド樹脂(A)及び脂肪族共重合ポリアミド樹脂(B)の混合物の相対粘度が2.30~3.60であり、
 ポリアミド樹脂組成物100質量%中に、脂肪族ホモポリアミド樹脂(A)及び脂肪族共重合ポリアミド樹脂(B)の合計を93.0~100質量%、前記化合物(C)を0~2.0質量%、並びに他の成分を0~5.0質量%含み、脂肪族ホモポリアミド樹脂(A)と脂肪族共重合ポリアミド樹脂(B)との比率が、質量基準で50:50~90:10であるポリアミド樹脂組成物。
[2]脂肪族ホモポリアミド樹脂(A)と脂肪族共重合ポリアミド樹脂(B)との比率が、質量基準で65:35~90:10である、[1]に記載のポリアミド樹脂組成物。
[3]脂肪族ホモポリアミド樹脂(A)の相対粘度が1.80~2.60である、[1]又は[2]に記載のポリアミド樹脂組成物。
[4]脂肪族ホモポリアミド樹脂(A)及び脂肪族共重合ポリアミド樹脂(B)の混合物の相対粘度が2.40~2.80である、[1]~[3]のいずれか1つに記載のポリアミド樹脂組成物。
[5]脂肪族共重合ポリアミド樹脂(B)が、全構成単位100mol%中、ε-カプロラクタム由来の構成単位及び6-アミノカプロン酸由来の構成単位を75mol%以上95mol%未満含む、[1]~[4]のいずれか一つに記載のポリアミド樹脂組成物。
[6]化合物(C)が、炭素数が18~32である脂肪酸並びにその金属塩、エステル及びアミドからなる群より選択される少なくとも1種である、[1]~[5]のいずれか一つに記載のポリアミド樹脂組成物。
[7]ISO 294-1に従い、樹脂温度250℃及び金型温度80℃の射出成形機にて成形されるType-A1試験片を用い、ISO 1183-3に従い測定される脂肪族ホモポリアミド樹脂(A)、脂肪族共重合ポリアミド樹脂(B)及びポリアミド樹脂組成物の密度がそれぞれ、1.120g/cm~1.150g/cm、1.100g/cm~1.130g/cm及び1.120g/cm~1.140g/cmである、[1]~[6]のいずれか一つに記載のポリアミド樹脂組成物。
[8]ISO 294-1に従い、樹脂温度250℃及び金型温度80℃の射出成形機にて成形されるType-A1試験片を用い、ISO 1183-3に従い測定されるポリアミド樹脂組成物の密度が1.126~1.129g/cmである、[7]に記載のポリアミド樹脂組成物。
[9]JIS K 7126-1に従い、前記ポリアミド樹脂組成物を用いて、射出成形機にて樹脂温度250℃及び金型温度80℃にて成形して得られた、厚み2.0mm及び直径Φ60mmの円形成形品について、差圧法を採用して測定した55℃及び1atmにおける水素ガス透過係数が0.1×10―10cm・cm/(cm・s・cmHg)超1.8×10―10cm・cm/(cm・s・cmHg)未満である、[1]~[8]のいずれか一つに記載のポリアミド樹脂組成物。
[10][1]~[9]のいずれか一つに記載のポリアミド樹脂組成物を含む、高圧水素ガスに触れる成形品。
[11]高圧水素用タンクライナー、高圧水素用ホース、高圧水素用チューブ及び高圧水素用継ぎ手からなる群から選択される1つである、[10]に記載の高圧水素ガスに触れる成形品。
[12][1]~[9]のいずれか一つに記載のポリアミド樹脂組成物を含む高圧水素用タンクライナー及び連続繊維強化樹脂層を含む高圧水素用タンク。
The present invention relates to the following [1] to [12].
[1] Aliphatic homopolyamide resin (A) and aliphatic copolyamide resin (B), and as an optional component, at least one member selected from the group consisting of fatty acids having 18 to 32 carbon atoms and derivatives thereof. A polyamide resin composition for a molded article that comes into contact with high-pressure hydrogen gas, which contains compound (C) and does not substantially contain a polyolefin resin,
According to JIS K 6920, 1 g of polyamide resin is dissolved in 100 ml of 96% sulfuric acid, and the relative viscosity of the aliphatic homopolyamide resin (A) is 1.80 to 2.70 when measured at 25°C. The aliphatic copolyamide resin (B) has a relative viscosity of 2.90 to 4.20, and the mixture of the aliphatic homopolyamide resin (A) and the aliphatic copolyamide resin (B) has a relative viscosity of 2.90 to 4.20. 30 to 3.60,
In 100% by mass of the polyamide resin composition, the total amount of aliphatic homopolyamide resin (A) and aliphatic copolyamide resin (B) is 93.0 to 100% by mass, and the above compound (C) is 0 to 2.0% by mass. % by mass, and 0 to 5.0% by mass of other components, and the ratio of aliphatic homopolyamide resin (A) to aliphatic copolyamide resin (B) is 50:50 to 90:10 on a mass basis. A polyamide resin composition.
[2] The polyamide resin composition according to [1], wherein the ratio of the aliphatic homopolyamide resin (A) to the aliphatic copolyamide resin (B) is 65:35 to 90:10 on a mass basis.
[3] The polyamide resin composition according to [1] or [2], wherein the aliphatic homopolyamide resin (A) has a relative viscosity of 1.80 to 2.60.
[4] Any one of [1] to [3], wherein the relative viscosity of the mixture of the aliphatic homopolyamide resin (A) and the aliphatic copolyamide resin (B) is 2.40 to 2.80. The polyamide resin composition described.
[5] The aliphatic copolymer polyamide resin (B) contains 75 mol% or more and less than 95 mol% of ε-caprolactam-derived structural units and 6-aminocaproic acid-derived structural units in 100 mol% of the total structural units, [1] The polyamide resin composition according to any one of [4].
[6] Any one of [1] to [5], wherein the compound (C) is at least one selected from the group consisting of fatty acids having 18 to 32 carbon atoms, and metal salts, esters and amides thereof. The polyamide resin composition described in .
[7] Aliphatic homopolyamide resin (measured according to ISO 1183-3 using a Type-A1 test piece molded in an injection molding machine with a resin temperature of 250°C and a mold temperature of 80°C according to ISO 294-1) A), the density of the aliphatic copolymerized polyamide resin (B) and the polyamide resin composition is 1.120 g/cm 3 to 1.150 g/cm 3 , 1.100 g/cm 3 to 1.130 g/cm 3 and The polyamide resin composition according to any one of [1] to [6], which has a weight of 1.120 g/cm 3 to 1.140 g/cm 3 .
[8] Density of polyamide resin composition measured according to ISO 1183-3 using a Type-A1 test piece molded in an injection molding machine with a resin temperature of 250°C and a mold temperature of 80°C according to ISO 294-1 is 1.126 to 1.129 g/cm 3 , the polyamide resin composition according to [7].
[9] According to JIS K 7126-1, the polyamide resin composition was molded using an injection molding machine at a resin temperature of 250°C and a mold temperature of 80°C, with a thickness of 2.0 mm and a diameter of Φ60 mm. Regarding the circular molded product, the hydrogen gas permeability coefficient at 55°C and 1 atm measured using the differential pressure method is 0.1 x 10 -10 cm 3 cm/(cm 2 s cm Hg) or more than 1.8 x The polyamide resin composition according to any one of [1] to [8], which has a surface resistance of less than 10 -10 cm 3 ·cm/(cm 2 ·s·cmHg).
[10] A molded article that is exposed to high-pressure hydrogen gas and includes the polyamide resin composition according to any one of [1] to [9].
[11] The molded article that comes into contact with high-pressure hydrogen gas according to [10], which is one selected from the group consisting of a high-pressure hydrogen tank liner, a high-pressure hydrogen hose, a high-pressure hydrogen tube, and a high-pressure hydrogen joint.
[12] A high-pressure hydrogen tank comprising a high-pressure hydrogen tank liner comprising the polyamide resin composition according to any one of [1] to [9] and a continuous fiber-reinforced resin layer.
 本発明によれば、流動性が高く、成形品とした場合の水素ガスバリア性に優れ、低温環境下における柔軟性を損なわないポリアミド樹脂組成物を提供することができる。 According to the present invention, it is possible to provide a polyamide resin composition that has high fluidity, excellent hydrogen gas barrier properties when molded, and does not impair flexibility in a low-temperature environment.
 本明細書において組成物中の各成分の含有量は、組成物中に各成分に該当する物質が複数存在する場合、特に断らない限り、組成物中に存在する当該複数の物質の合計量を意味する。また、ポリアミド樹脂について規定される相対粘度は、JIS K 6920に準じて、ポリアミド樹脂1gを96%硫酸100mlに溶解させ、25℃で測定された値を意味する。 In this specification, when there are multiple substances corresponding to each component in the composition, unless otherwise specified, the content of each component in the composition refers to the total amount of the multiple substances present in the composition. means. Further, the relative viscosity defined for polyamide resin means a value measured at 25° C. in accordance with JIS K 6920 by dissolving 1 g of polyamide resin in 100 ml of 96% sulfuric acid.
 本発明のポリアミド樹脂組成物は、脂肪族ホモポリアミド樹脂(A)及び脂肪族共重合ポリアミド樹脂(B)、並びに任意成分として、炭素数が18~32である脂肪酸及びその誘導体からなる群より選択される少なくとも1種の化合物(C)を含み、実質的にポリオレフィン系樹脂を含まない、高圧水素ガスに触れる成形品用のポリアミド樹脂組成物であって、JIS K 6920に準じて、ポリアミド樹脂1gを96%硫酸100mlに溶解させ、25℃で測定される相対粘度において、脂肪族ホモポリアミド樹脂(A)の相対粘度が1.80~2.70であり、脂肪族共重合ポリアミド樹脂(B)の相対粘度が2.90~4.20であり、脂肪族ホモポリアミド樹脂(A)及び脂肪族共重合ポリアミド樹脂(B)の混合物の相対粘度が2.30~3.60であり、ポリアミド樹脂組成物100質量%中に、脂肪族ホモポリアミド樹脂(A)及び脂肪族共重合ポリアミド樹脂(B)の合計を93.0~100質量%、前記化合物(C)を0~2.0質量%、並びに他の成分を0~5.0質量%含み、脂肪族ホモポリアミド樹脂(A)と脂肪族共重合ポリアミド樹脂(B)との比率が、質量基準で50:50~90:10である。
 実質的にポリオレフィン系樹脂を配合せず、脂肪族ホモポリアミド樹脂(A)及び脂肪族共重合ポリアミド樹脂(B)の相対粘度を上記範囲とし、各成分の比率を上記範囲とすることにより、流動性が高く、成形品とした場合の水素ガスバリア性に優れ、低温環境下における柔軟性を損なわないポリアミド樹脂組成物とすることができる。
 本発明はまた、高圧水素ガスに触れる成形品を製造するためのポリアミド樹脂組成物の使用及び使用方法に関する。さらに、本発明は、高圧水素用タンクライナー、高圧水素用ホース、高圧水素用チューブ及び高圧水素用継ぎ手からなる群から選択される1つを製造するためのポリアミド樹脂組成物の使用及び使用方法である。さらには、本発明は、水素貯蔵タンクライナー、水素移送ホース、水素移送チューブ及び水素移送継ぎ手からなる群から選択される1つを製造するためのポリアミド樹脂組成物の使用及び使用方法である。
The polyamide resin composition of the present invention is selected from the group consisting of an aliphatic homopolyamide resin (A), an aliphatic copolyamide resin (B), and, as an optional component, a fatty acid having 18 to 32 carbon atoms and a derivative thereof. A polyamide resin composition for molded articles that comes into contact with high-pressure hydrogen gas, containing at least one compound (C) containing at least one compound (C) containing substantially no polyolefin resin, according to JIS K 6920, containing 1 g of polyamide resin. The relative viscosity of the aliphatic homopolyamide resin (A) is 1.80 to 2.70 when measured at 25° C. by dissolving it in 100 ml of 96% sulfuric acid, and the aliphatic copolyamide resin (B) The relative viscosity of the mixture of the aliphatic homopolyamide resin (A) and the aliphatic copolyamide resin (B) is 2.30 to 3.60, and the polyamide resin In 100% by mass of the composition, the total of the aliphatic homopolyamide resin (A) and the aliphatic copolyamide resin (B) is 93.0 to 100% by mass, and the compound (C) is 0 to 2.0% by mass. , and other components in an amount of 0 to 5.0% by mass, and the ratio of the aliphatic homopolyamide resin (A) to the aliphatic copolyamide resin (B) is 50:50 to 90:10 on a mass basis. .
By not blending substantially any polyolefin resin, keeping the relative viscosities of the aliphatic homopolyamide resin (A) and the aliphatic copolyamide resin (B) within the above range, and setting the ratio of each component within the above range, fluidity can be improved. It is possible to obtain a polyamide resin composition that has high properties, excellent hydrogen gas barrier properties when formed into a molded product, and does not impair flexibility in a low-temperature environment.
The present invention also relates to the use and method of use of polyamide resin compositions for producing molded articles that are exposed to high pressure hydrogen gas. Furthermore, the present invention provides the use and method of using a polyamide resin composition for producing one selected from the group consisting of a high-pressure hydrogen tank liner, a high-pressure hydrogen hose, a high-pressure hydrogen tube, and a high-pressure hydrogen joint. be. Further, the present invention is the use and method of use of a polyamide resin composition to manufacture one selected from the group consisting of hydrogen storage tank liners, hydrogen transfer hoses, hydrogen transfer tubes, and hydrogen transfer fittings.
 ここで、「実質的に含まない」とは、本発明のポリアミド樹脂組成物及びその成形品の機能又は特性を損なうような程度で含まない、又は変化を及ぼす程度に含まないという意味であり、機能又は特性を損なわない程度に含まれることを排除するものではない。 Here, "substantially not contained" means that it is not contained to the extent that it impairs the function or characteristics of the polyamide resin composition of the present invention and its molded product, or it is not contained to the extent that it changes, This does not preclude inclusion to the extent that the function or characteristics are not impaired.
<脂肪族ホモポリアミド樹脂(A)>
 ポリアミド樹脂組成物は、脂肪族ホモポリアミド樹脂(A)を含む。
 脂肪族ホモポリアミド樹脂(A)は、脂肪族ポリアミド樹脂を構成するモノマー成分が、1種単独であるポリアミド樹脂を意味する。脂肪族ホモポリアミド樹脂(A)は、1種類のラクタム及び当該ラクタムの加水分解物であるアミノカルボン酸の少なくとも一方からなるものであってもよく、1種類の脂肪族ジアミンと1種類の脂肪族ジカルボン酸との組合せからなるものであってもよい。ここで、脂肪族ポリアミド樹脂を構成するモノマー成分が、脂肪族ジアミン及び脂肪族ジカルボン酸の組合せである場合は、1種類の脂肪族ジアミンと1種類の脂肪族ジカルボン酸の組合せで1種類のモノマー成分とみなすものとする。
<Aliphatic homopolyamide resin (A)>
The polyamide resin composition contains an aliphatic homopolyamide resin (A).
The aliphatic homopolyamide resin (A) means a polyamide resin in which only one type of monomer component constitutes the aliphatic polyamide resin. The aliphatic homopolyamide resin (A) may consist of at least one of one type of lactam and an aminocarboxylic acid that is a hydrolyzate of the lactam, and one type of aliphatic diamine and one type of aliphatic diamine. It may also consist of a combination with a dicarboxylic acid. Here, when the monomer component constituting the aliphatic polyamide resin is a combination of an aliphatic diamine and an aliphatic dicarboxylic acid, the combination of one type of aliphatic diamine and one type of aliphatic dicarboxylic acid produces one type of monomer. shall be considered as an ingredient.
 脂肪族ホモポリアミド樹脂(A)は、JIS K 6920に準じて、脂肪族ホモポリアミド樹脂(A)1gを96%硫酸100mlに溶解させ、25℃で測定される相対粘度が1.80~2.70である。脂肪族ホモポリアミド樹脂(A)の相対粘度を上記範囲とすることにより、ポリアミド樹脂組成物の流動性を高くし、水素タンクライナー等の大型成形品の成形性を向上させることができ、得られる成形品の低温環境下における柔軟性を損なうことがない。特にポリアミド樹脂組成物の流動性を高くし、水素タンクライナー等の大型成形品の成形性を向上させる観点から、脂肪族ホモポリアミド樹脂(A)の相対粘度は、好ましくは1.80~2.60であり、より好ましくは2.20~2.60であり、特に好ましくは2.40~2.60である。 The aliphatic homopolyamide resin (A) is prepared by dissolving 1 g of the aliphatic homopolyamide resin (A) in 100 ml of 96% sulfuric acid according to JIS K 6920, and the relative viscosity measured at 25°C is 1.80-2. It is 70. By setting the relative viscosity of the aliphatic homopolyamide resin (A) within the above range, the fluidity of the polyamide resin composition can be increased, and the moldability of large molded products such as hydrogen tank liners can be improved. Does not impair the flexibility of molded products in low-temperature environments. In particular, from the viewpoint of increasing the fluidity of the polyamide resin composition and improving the moldability of large molded products such as hydrogen tank liners, the relative viscosity of the aliphatic homopolyamide resin (A) is preferably 1.80 to 2. 60, more preferably 2.20 to 2.60, particularly preferably 2.40 to 2.60.
 脂肪族ホモポリアミド樹脂(A)が、相対粘度が異なる2種以上のポリアミド樹脂を含む場合、脂肪族ホモポリアミド樹脂(A)の相対粘度は、上記内容で測定されるのが好ましい。 When the aliphatic homopolyamide resin (A) contains two or more types of polyamide resins having different relative viscosities, the relative viscosity of the aliphatic homopolyamide resin (A) is preferably measured as described above.
 成形品の水素ガスバリア性を損なうことなく、より良好な成形加工性を得る観点から、ISO 294-1に従い、樹脂温度250℃及び金型温度80℃の射出成形機にて成形されるType-A1試験片を用い、ISO 1183-3に従い測定される脂肪族ホモポリアミド樹脂(A)の密度は、1.120g/cm~1.150g/cmであることが好ましく、1.120g/cm~1.140g/cmであることがより好ましく、1.125g/cm~1.135g/cmであることがさらに好ましい。 From the perspective of obtaining better molding processability without impairing the hydrogen gas barrier properties of the molded product, Type-A1 is molded using an injection molding machine with a resin temperature of 250°C and a mold temperature of 80°C in accordance with ISO 294-1. The density of the aliphatic homopolyamide resin (A) measured according to ISO 1183-3 using a test piece is preferably 1.120 g/cm 3 to 1.150 g/cm 3 , and 1.120 g/cm 3 It is more preferably from 1.140 g/cm 3 to 1.125 g/cm 3 , and even more preferably from 1.125 g/cm 3 to 1.135 g/cm 3 .
 脂肪族ホモポリアミド樹脂(A)としては、脂肪族ジアミン及び脂肪族ジカルボン酸からなる脂肪族ホモポリアミド樹脂、ラクタム又はアミノカルボン酸からなる脂肪族ホモポリアミド樹脂等を挙げることができる。 Examples of the aliphatic homopolyamide resin (A) include aliphatic homopolyamide resins made of aliphatic diamines and aliphatic dicarboxylic acids, aliphatic homopolyamide resins made of lactams or aminocarboxylic acids, and the like.
 脂肪族ホモポリアミド樹脂(A)を構成するモノマー成分としては、炭素数2~20、好ましくは炭素数4~12の脂肪族ジアミンと、炭素数2~20、好ましくは炭素数6~12の脂肪族ジカルボン酸の組合せ、炭素数6~12のラクタム又はアミノカルボン酸等を挙げることができる。 The monomer components constituting the aliphatic homopolyamide resin (A) include an aliphatic diamine having 2 to 20 carbon atoms, preferably 4 to 12 carbon atoms, and a fatty acid having 2 to 20 carbon atoms, preferably 6 to 12 carbon atoms. Examples include combinations of group dicarboxylic acids, lactams having 6 to 12 carbon atoms, or aminocarboxylic acids.
 脂肪族ジアミンとしては、エチレンジアミン、テトラメチレンジアミン、ペンタメチレンジアミン、ヘキサメチレンジアミン、ペプタメチレンジアミン、オクタメチレンジアミン、ノナメチレンジアミン、デカメチレンジアミン、ウンデカメチレンジアミン、ドデカメチレンジアミン、トリデカンジアミン、テトラデカンジアミン、ペンタデカンジアミン、ヘキサデカンジアミン、ヘプタデカンジアミン、オクタデカンジアミン、ノナデカンジアミン、エイコサンジアミン、2-メチル-1,8-オクタンジアミン、2,2,4/2,4,4-トリメチルヘキサメチレンジアミン等が挙げられる。また脂肪族ジカルボン酸としては、シュウ酸、マロン酸、コハク酸、グルタル酸、アジピン酸、ピメリン酸、スベリン酸、アゼライン酸、セバシン酸、ウンデカンジオン酸、ドデカンジオン酸、トリデカンジオン酸、テトラデカンジオン酸、ペンタデカンジオン酸、ヘキサデカンジオン酸、オクタデカンジオン酸、エイコサンジオン酸等及びその誘導体が挙げられる。 Examples of aliphatic diamines include ethylenediamine, tetramethylenediamine, pentamethylenediamine, hexamethylenediamine, peptamethylenediamine, octamethylenediamine, nonamethylenediamine, decamethylenediamine, undecamethylenediamine, dodecamethylenediamine, tridecanediamine, Tetradecanediamine, pentadecanediamine, hexadecanediamine, heptadecanediamine, octadecanediamine, nonadecanediamine, eicosanediamine, 2-methyl-1,8-octanediamine, 2,2,4/2,4,4-trimethylhexamethylene Examples include diamine. Examples of aliphatic dicarboxylic acids include oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, undecanedioic acid, dodecanedioic acid, tridecanedioic acid, and tetradecanedione. Examples include acids such as pentadecanedioic acid, hexadecanedionic acid, octadecanedioic acid, eicosandioic acid, and derivatives thereof.
 脂肪族ジアミンと脂肪族ジカルボン酸の組合せとして、ヘキサメチレンジアミンとアジピン酸の組合せ、ヘキサメチレンジアミンとセバシン酸の組合せ、ヘキサメチレンジアミンとドデカンジオン酸の組合せ等が挙げられ、これらの組合せの等モル塩が好ましく用いられる。 Examples of the combination of aliphatic diamine and aliphatic dicarboxylic acid include a combination of hexamethylene diamine and adipic acid, a combination of hexamethylene diamine and sebacic acid, a combination of hexamethylene diamine and dodecanedioic acid, etc. Salt is preferably used.
 ラクタムとしては、α-ピロリドン、δ-バレロラクタム、ε-カプロラクタム、ω-エナントラクタム、ω-オクタラクタム、ω-ウンデカンラクタム、ω-ラウロラクタム等が挙げられる。ラクタムは、生産性の観点から、ε-カプロラクタム、ω-ウンデカンラクタム又はω-ラウロラクタムであることが好ましい。また、アミノカルボン酸としては、γ-アミノ酪酸、6-アミノカプロン酸、7-アミノヘプタン酸、8-アミノオクタン酸、9-アミノノナン酸、11-アミノウンデカン酸、12-アミノドデカン酸が挙げられる。 Examples of the lactam include α-pyrrolidone, δ-valerolactam, ε-caprolactam, ω-enantholactam, ω-octalactam, ω-undecanelactam, and ω-laurolactam. From the viewpoint of productivity, the lactam is preferably ε-caprolactam, ω-undecanelactam or ω-laurolactam. Further, examples of the aminocarboxylic acid include γ-aminobutyric acid, 6-aminocaproic acid, 7-aminoheptanoic acid, 8-aminooctanoic acid, 9-aminononanoic acid, 11-aminoundecanoic acid, and 12-aminododecanoic acid.
 脂肪族ホモポリアミド樹脂(A)として具体的には、ポリアミド4、ポリアミド6、ポリアミド7、ポリアミド8、ポリアミド9、ポリアミド11、ポリアミド12、ポリアミド66、ポリアミド412、ポリアミド59、ポリアミド510、ポリアミド512、ポリアミド69、ポリアミド610、ポリアミド612、ポリアミド96、ポリアミド99、ポリアミド910、ポリアミド912、ポリアミド106、ポリアミド109、ポリアミド1010、ポリアミド1012、ポリアミド126、ポリアミド129、ポリアミド1210、ポリアミド1212、ポリアミド122等が挙げられる。 Specifically, the aliphatic homopolyamide resin (A) includes polyamide 4, polyamide 6, polyamide 7, polyamide 8, polyamide 9, polyamide 11, polyamide 12, polyamide 66, polyamide 412, polyamide 59, polyamide 510, polyamide 512, Polyamide 69, polyamide 610, polyamide 612, polyamide 96, polyamide 99, polyamide 910, polyamide 912, polyamide 106, polyamide 109, polyamide 1010, polyamide 1012, polyamide 126, polyamide 129, polyamide 1210, polyamide 1212, polyamide 122, etc. It will be done.
 脂肪族ホモポリアミド樹脂(A)は、生産性の観点から、ポリアミド6、ポリアミド66、ポリアミド610、ポリアミド612、ポリアミド11及びポリアミド12からなる群から選択される1種以上であることが好ましく、ポリアミド6及び/又はポリアミド66であることが特に好ましい。 From the viewpoint of productivity, the aliphatic homopolyamide resin (A) is preferably one or more selected from the group consisting of polyamide 6, polyamide 66, polyamide 610, polyamide 612, polyamide 11, and polyamide 12; 6 and/or polyamide 66 are particularly preferred.
 脂肪族ホモポリアミド樹脂(A)は、1種又は2種以上の組合せであってもよい。 The aliphatic homopolyamide resin (A) may be used alone or in combination of two or more.
<脂肪族共重合ポリアミド樹脂(B)>
 ポリアミド樹脂組成物は、脂肪族共重合ポリアミド樹脂(B)を含む。
 脂肪族共重合ポリアミド樹脂(B)は、脂肪族ポリアミド樹脂を構成するモノマー成分が、2種以上の組合せであるポリアミド樹脂を意味する。脂肪族共重合ポリアミド樹脂(B)は、脂肪族ジアミンと脂肪族ジカルボン酸の組合せ、ラクタム及びアミノカルボン酸からなる群から選択される2種以上の共重合体である。ここで、脂肪族ジアミンと脂肪族ジカルボン酸の組合せは、1種類の脂肪族ジアミンと1種類の脂肪族ジカルボン酸の組合せで1種類のモノマー成分とみなす。
<Aliphatic copolymer polyamide resin (B)>
The polyamide resin composition includes an aliphatic copolymerized polyamide resin (B).
The aliphatic copolymerized polyamide resin (B) means a polyamide resin in which the monomer components constituting the aliphatic polyamide resin are a combination of two or more types. The aliphatic copolymerized polyamide resin (B) is a copolymer of two or more selected from the group consisting of a combination of an aliphatic diamine and an aliphatic dicarboxylic acid, a lactam, and an aminocarboxylic acid. Here, the combination of aliphatic diamine and aliphatic dicarboxylic acid is considered to be one type of monomer component.
 脂肪族共重合ポリアミド樹脂(B)は、JIS K 6920に準じて、脂肪族共重合ポリアミド樹脂(B)1gを96%硫酸100mlに溶解させ、25℃で測定される相対粘度が2.90~4.20である。脂肪族共重合ポリアミド樹脂(B)の相対粘度を上記範囲とすることにより、ポリアミド樹脂組成物の成形性を損なうことなく、得られる成形品の低温環境下における柔軟性を向上させることができる。脂肪族共重合ポリアミド樹脂(B)の相対粘度は、好ましくは2.90~3.50、より好ましくは2.90~3.20である。 The aliphatic copolyamide resin (B) is prepared by dissolving 1 g of the aliphatic copolyamide resin (B) in 100 ml of 96% sulfuric acid and having a relative viscosity of 2.90 to 2.90 at 25°C, according to JIS K 6920. It is 4.20. By setting the relative viscosity of the aliphatic copolymer polyamide resin (B) within the above range, the flexibility of the resulting molded product in a low-temperature environment can be improved without impairing the moldability of the polyamide resin composition. The relative viscosity of the aliphatic copolyamide resin (B) is preferably 2.90 to 3.50, more preferably 2.90 to 3.20.
 脂肪族共重合ポリアミド樹脂(B)が、相対粘度が異なる2種以上のポリアミド樹脂を含む場合、脂肪族共重合ポリアミド樹脂(B)の相対粘度は、上記内容で測定されるのが好ましい。 When the aliphatic copolyamide resin (B) contains two or more types of polyamide resins having different relative viscosities, the relative viscosity of the aliphatic copolyamide resin (B) is preferably measured as described above.
 成形性を損なうことなく、良好な水素ガスバリア性を得る観点から、ISO 294-1に従い、樹脂温度250℃及び金型温度80℃の射出成形機にて成形されるType-A1試験片を用い、ISO 1183-3に従い測定される脂肪族共重合ポリアミド樹脂(B)の密度は、1.100g/cm~1.130g/cmであることが好ましく、1.100g/cm~1.125g/cmであることがより好ましく、1.110g/cm~1.120g/cmであることがさらに好ましい。 From the viewpoint of obtaining good hydrogen gas barrier properties without impairing moldability, using a Type-A1 test piece molded in an injection molding machine with a resin temperature of 250 ° C. and a mold temperature of 80 ° C. according to ISO 294-1, The density of the aliphatic copolyamide resin (B) measured according to ISO 1183-3 is preferably 1.100 g/cm 3 to 1.130 g/cm 3 , and preferably 1.100 g/cm 3 to 1.125 g. /cm 3 is more preferable, and even more preferably 1.110 g/cm 3 to 1.120 g/cm 3 .
 脂肪族ジアミンとしては、脂肪族ホモポリアミド樹脂(A)の原料として例示したものと同様のものが挙げられる。 Examples of the aliphatic diamine include the same ones as those exemplified as raw materials for the aliphatic homopolyamide resin (A).
 脂肪族ジカルボン酸としては、脂肪族ホモポリアミド樹脂(A)の原料として例示したものと同様のものが挙げられる。 Examples of the aliphatic dicarboxylic acids include those exemplified as raw materials for the aliphatic homopolyamide resin (A).
 ラクタムとしては、脂肪族ホモポリアミド樹脂(A)の原料として例示したものと同様のものが挙げられる。また、アミノカルボン酸としては脂肪族ホモポリアミド樹脂(A)の原料として例示したものと同様のものが挙げられる。 Examples of the lactam include those exemplified as raw materials for the aliphatic homopolyamide resin (A). Moreover, as the aminocarboxylic acid, the same ones as those exemplified as the raw material for the aliphatic homopolyamide resin (A) can be mentioned.
 これらの脂肪族ジアミン、脂肪族ジカルボン酸、ラクタム及びアミノカルボン酸は1種単独で用いてもよいし、2種以上を組み合わせて用いてもよい。 These aliphatic diamines, aliphatic dicarboxylic acids, lactams, and aminocarboxylic acids may be used alone or in combination of two or more.
 脂肪族共重合ポリアミド樹脂(B)として具体的には、ポリアミド6/66、ポリアミド6/69、ポリアミド6/610、ポリアミド6/611、ポリアミド6/612、ポリアミド6/11、ポリアミド6/12、ポリアミド6/66/12、ポリアミド6/66/610、ポリアミド6/66/612等が挙げられる。 Specifically, the aliphatic copolymerized polyamide resin (B) includes polyamide 6/66, polyamide 6/69, polyamide 6/610, polyamide 6/611, polyamide 6/612, polyamide 6/11, polyamide 6/12, Examples include polyamide 6/66/12, polyamide 6/66/610, polyamide 6/66/612, and the like.
 これらのなかでも、ポリアミド6/66、ポリアミド6/12及びポリアミド6/66/12からなる群より選ばれる少なくとも1種が好ましく、ポリアミド6/66及びポリアミド6/66/12からなる群より選ばれる少なくとも1種がより好ましい。 Among these, at least one selected from the group consisting of polyamide 6/66, polyamide 6/12 and polyamide 6/66/12 is preferred, and at least one selected from the group consisting of polyamide 6/66 and polyamide 6/66/12 is preferred. At least one kind is more preferred.
 低温環境下における柔軟性の観点から、脂肪族共重合ポリアミド樹脂(B)は、全構成単位100mol%中、ε-カプロラクタム由来の構成単位及び6-アミノカプロン酸由来の構成単位を30mol%以上95mol%未満含むことが好ましく、75mol%以上95mol%未満含むことがより好ましく、85mol%以上93mol%以下含むことが特に好ましい。 From the viewpoint of flexibility in a low-temperature environment, the aliphatic copolymer polyamide resin (B) contains 30 mol% or more of ε-caprolactam-derived structural units and 6-aminocaproic acid-derived structural units in 100 mol% of all structural units. The content is preferably less than 75 mol%, more preferably 75 mol% or more and less than 95 mol%, and particularly preferably 85 mol% or more and 93 mol% or less.
 脂肪族共重合ポリアミド樹脂(B)は、1種又は2種以上の組合せであってもよい。 The aliphatic copolymer polyamide resin (B) may be used alone or in combination of two or more.
(脂肪族ホモポリアミド樹脂(A)及び脂肪族共重合ポリアミド樹脂(B)の混合物)
 脂肪族ホモポリアミド樹脂(A)及び脂肪族共重合ポリアミド樹脂(B)の混合物の相対粘度は、2.30~3.60である。ここで、前記混合物は、ポリアミド樹脂組成物中における割合と同じ割合で混合された、脂肪族ホモポリアミド樹脂(A)及び脂肪族共重合ポリアミド樹脂(B)のみからなる混合物を意味する。
 脂肪族ホモポリアミド樹脂(A)の相対粘度を1.80~2.70とし、脂肪族共重合ポリアミド樹脂(B)の相対粘度を2.90~4.20とするとともに、脂肪族ホモポリアミド樹脂(A)及び脂肪族共重合ポリアミド樹脂(B)の混合物の相対粘度を2.30~3.60とすることにより、ポリアミド樹脂組成物の流動性を高くし、成形品とした場合の低温環境下における柔軟性を損なうことなく、水素ガスバリア性を向上させることができる。脂肪族ホモポリアミド樹脂(A)及び脂肪族共重合ポリアミド樹脂(B)の混合物の相対粘度は、2.30~3.00であると好ましく、より好ましくは2.40~2.80であり、特に好ましくは2.50~2.80である。
(Mixture of aliphatic homopolyamide resin (A) and aliphatic copolyamide resin (B))
The relative viscosity of the mixture of the aliphatic homopolyamide resin (A) and the aliphatic copolyamide resin (B) is 2.30 to 3.60. Here, the above-mentioned mixture means a mixture consisting only of the aliphatic homopolyamide resin (A) and the aliphatic copolyamide resin (B), which are mixed in the same proportion as in the polyamide resin composition.
The aliphatic homopolyamide resin (A) has a relative viscosity of 1.80 to 2.70, the aliphatic copolyamide resin (B) has a relative viscosity of 2.90 to 4.20, and the aliphatic homopolyamide resin By setting the relative viscosity of the mixture of (A) and aliphatic copolymerized polyamide resin (B) to 2.30 to 3.60, the fluidity of the polyamide resin composition is increased, and it can be used in a low-temperature environment when molded. Hydrogen gas barrier properties can be improved without impairing the flexibility underneath. The relative viscosity of the mixture of the aliphatic homopolyamide resin (A) and the aliphatic copolyamide resin (B) is preferably 2.30 to 3.00, more preferably 2.40 to 2.80, Particularly preferably 2.50 to 2.80.
 脂肪族ホモポリアミド樹脂(A)及び脂肪族共重合ポリアミド樹脂(B)の混合物の相対粘度は、JIS K 6920に準じて、該混合物1gを96%硫酸100mlに溶解させ、25℃で測定されるのが好ましい。 The relative viscosity of the mixture of aliphatic homopolyamide resin (A) and aliphatic copolyamide resin (B) is measured at 25 ° C. by dissolving 1 g of the mixture in 100 ml of 96% sulfuric acid according to JIS K 6920. is preferable.
 組成物の流動性並びに成形品の水素ガスバリア性及び低温環境下における柔軟性の観点から、ポリアミド樹脂組成物100質量%中の脂肪族ホモポリアミド樹脂(A)及び脂肪族共重合ポリアミド樹脂(B)の合計の含有量は、93.0~100質量%であり、より好ましくは、98.0~100質量%である。ポリアミド樹脂組成物中に含まれるポリアミド樹脂は、脂肪族ホモポリアミド樹脂(A)及び脂肪族共重合ポリアミド樹脂(B)のみからなることが特に好ましい。なかでも、ポリアミド樹脂の結晶性の観点から、ポリアミド6とポリアミド6/66との混合物又はポリアミド6とポリアミド6/66/12との混合物が特に好ましい。 From the viewpoint of the fluidity of the composition, the hydrogen gas barrier property of the molded article, and the flexibility in a low-temperature environment, the aliphatic homopolyamide resin (A) and the aliphatic copolyamide resin (B) in 100% by mass of the polyamide resin composition. The total content of is 93.0 to 100% by mass, more preferably 98.0 to 100% by mass. It is particularly preferable that the polyamide resin contained in the polyamide resin composition consists only of an aliphatic homopolyamide resin (A) and an aliphatic copolyamide resin (B). Among these, from the viewpoint of crystallinity of the polyamide resin, a mixture of polyamide 6 and polyamide 6/66 or a mixture of polyamide 6 and polyamide 6/66/12 is particularly preferred.
 組成物の流動性並びに成形品の水素ガスバリア性及び低温環境下における柔軟性の観点から、脂肪族ホモポリアミド樹脂(A)と脂肪族共重合ポリアミド樹脂(B)との比率は、質量基準で50:50~90:10であり、65:35~90:10であることが好ましい。 From the viewpoint of the fluidity of the composition, the hydrogen gas barrier properties of the molded product, and the flexibility in a low-temperature environment, the ratio of the aliphatic homopolyamide resin (A) to the aliphatic copolyamide resin (B) is 50% by mass. :50 to 90:10, preferably 65:35 to 90:10.
(その他のポリアミド樹脂)
 ポリアミド樹脂組成物は、本発明の目的を妨げない範囲で、脂肪族ホモポリアミド樹脂(A)及び脂肪族共重合ポリアミド樹脂(B)以外の、その他のポリアミド樹脂を含むことができる。その他のポリアミド樹脂としては、脂環族、芳香族等の構造を主鎖又は側鎖に有する共重合体であるポリアミド樹脂が挙げられる。その他のポリアミド樹脂は、例えば芳香族系モノマー成分を少なくとも2成分含む共重合ポリアミド樹脂であることが好ましい。
(Other polyamide resins)
The polyamide resin composition can contain other polyamide resins than the aliphatic homopolyamide resin (A) and the aliphatic copolyamide resin (B), as long as the object of the present invention is not hindered. Examples of other polyamide resins include polyamide resins that are copolymers having an alicyclic, aromatic, etc. structure in the main chain or side chain. The other polyamide resin is preferably a copolyamide resin containing at least two aromatic monomer components, for example.
 その他のポリアミド樹脂の原料の脂肪族ジアミン及び脂肪族ジカルボン酸としては、脂肪族ホモポリアミド樹脂(A)で例示したものが挙げられる。その他のポリアミド樹脂の原料のラクタム及びアミノカルボン酸としては、脂肪族ホモポリアミド樹脂(A)で例示したものが挙げられる。 Other aliphatic diamines and aliphatic dicarboxylic acids that are raw materials for the polyamide resin include those exemplified for the aliphatic homopolyamide resin (A). As the lactam and aminocarboxylic acid that are raw materials for other polyamide resins, those exemplified for the aliphatic homopolyamide resin (A) can be mentioned.
 その他のポリアミド樹脂を構成する脂環式ジアミンとしては、例えば、シクロヘキサンジアミン、メチルシクロヘキサンジアミン、イソホロンジアミン、ビス(3-メチル-4-アミノシクロヘキシル)メタン等が挙げられる。その他のポリアミド樹脂を構成する芳香族ジアミンとしては、例えば、p-フェニレンジアミン、m-フェニレンジアミン、p-キシレンジアミン、m-キシレンジアミン、4,4’-ジアミノジフェニルメタン、4,4’-ジアミノジフェニルスルホン、4,4’-ジアミノジフェニルエーテル等が挙げられる。 Examples of other alicyclic diamines constituting the polyamide resin include cyclohexane diamine, methylcyclohexane diamine, isophorone diamine, and bis(3-methyl-4-aminocyclohexyl)methane. Examples of aromatic diamines constituting other polyamide resins include p-phenylenediamine, m-phenylenediamine, p-xylenediamine, m-xylenediamine, 4,4'-diaminodiphenylmethane, 4,4'-diaminodiphenyl Examples include sulfone, 4,4'-diaminodiphenyl ether, and the like.
 その他のポリアミド樹脂を構成する脂環式ジカルボン酸としては、例えば、1,3-シクロペンタンジカルボン酸、1,4-シクロヘキサンジカルボン酸等が挙げられる。その他のポリアミド樹脂を構成する芳香族ジカルボン酸としては、例えば、テレフタル酸、イソフタル酸、2,6-ナフタレンジカルボン酸、2,7-ナフタレンジカルボン酸、1,4-ナフタレンジカルボン酸、1,4-フェニレンジオキシジ酢酸、1,3-フェニレンジオキシジ酢酸、ジ安息香酸、4,4’-オキシジ安息香酸、ジフェニルメタン-4,4’-ジカルボン酸、ジフェニルスルホン-4,4’-ジカルボン酸、4,4’-ビフェニルジカルボン酸等が挙げられる。 Examples of other alicyclic dicarboxylic acids constituting the polyamide resin include 1,3-cyclopentanedicarboxylic acid and 1,4-cyclohexanedicarboxylic acid. Examples of aromatic dicarboxylic acids constituting other polyamide resins include terephthalic acid, isophthalic acid, 2,6-naphthalenedicarboxylic acid, 2,7-naphthalenedicarboxylic acid, 1,4-naphthalenedicarboxylic acid, 1,4- phenylenedioxydiacetic acid, 1,3-phenylenedioxydiacetic acid, dibenzoic acid, 4,4'-oxydibenzoic acid, diphenylmethane-4,4'-dicarboxylic acid, diphenylsulfone-4,4'-dicarboxylic acid, Examples include 4,4'-biphenyldicarboxylic acid.
 その他のポリアミド樹脂として具体的には、イソフタル酸/テレフタル酸/ヘキサメチレンジアミン/ビス(3-メチル-4-アミノシクロヘキシル)メタンの重縮合体、テレフタル酸/2,2,4-トリメチルヘキサメチレンジアミン/2,4,4-トリメチルヘキサメチレンジアミンの重縮合体、イソフタル酸/ビス(3-メチル-4-アミノシクロヘキシル)メタン/ω-ラウロラクタムの重縮合体、イソフタル酸/テレフタル酸/ヘキサメチレンジアミンの重縮合体(ポリアミド6T/6I)、イソフタル酸/2,2,4-トリメチルヘキサメチレンジアミン/2,4,4-トリメチルヘキサメチレンジアミンの重縮合体、イソフタル酸/テレフタル酸/2,2,4-トリメチルヘキサメチレンジアミン/2,4,4-トリメチルヘキサメチレンジアミンの重縮合体、イソフタル酸/ビス(3-メチル-4-アミノシクロヘキシル)メタン/ω-ラウロラクタムの重縮合体等が挙げられる。 Specifically, other polyamide resins include isophthalic acid/terephthalic acid/hexamethylene diamine/bis(3-methyl-4-aminocyclohexyl)methane polycondensate, terephthalic acid/2,2,4-trimethylhexamethylene diamine /2,4,4-trimethylhexamethylene diamine polycondensate, isophthalic acid/bis(3-methyl-4-aminocyclohexyl)methane/ω-laurolactam polycondensate, isophthalic acid/terephthalic acid/hexamethylene diamine (polyamide 6T/6I), isophthalic acid/2,2,4-trimethylhexamethylenediamine/2,4,4-trimethylhexamethylenediamine polycondensate, isophthalic acid/terephthalic acid/2,2, Examples include polycondensates of 4-trimethylhexamethylenediamine/2,4,4-trimethylhexamethylenediamine, and polycondensates of isophthalic acid/bis(3-methyl-4-aminocyclohexyl)methane/ω-laurolactam. .
 その他のポリアミド樹脂として具体的には、テレフタル酸成分単位40~95モル%及びイソフタル酸成分単位5~60モル%と、脂肪族ジアミンとからなるものが好ましい。その他のポリアミド樹脂を構成するモノマー成分の好ましい組合せとしては、ヘキサメチレンジアミンとテレフタル酸の等モル塩とヘキサメチレンジアミンとイソフタル酸の等モル塩が挙げられる。 Specifically, other polyamide resins are preferably those consisting of 40 to 95 mol% of terephthalic acid component units, 5 to 60 mol% of isophthalic acid component units, and an aliphatic diamine. Preferred combinations of monomer components constituting other polyamide resins include equimolar salts of hexamethylene diamine and terephthalic acid, and equimolar salts of hexamethylene diamine and isophthalic acid.
 その他のポリアミド樹脂は、脂肪族ジアミンとイソフタル酸及びテレフタル酸とからなるモノマー成分に由来する単位を60質量%以上99質量%以下で含み、脂肪族ポリアミド成分の単位を1質量%以上40質量%以下で含む共重合体であることが好ましい。 Other polyamide resins contain units derived from a monomer component consisting of aliphatic diamine, isophthalic acid, and terephthalic acid in an amount of 60% by mass or more and 99% by mass or less, and 1% by mass or more and 40% by mass of units from the aliphatic polyamide component. A copolymer containing the following is preferable.
(ポリアミド樹脂の製造)
 ポリアミド樹脂の製造装置としては、バッチ式反応釜、一槽式ないし多槽式の連続反応装置、管状連続反応装置、一軸型混練押出機、二軸型混練押出機等の混練反応押出機等、公知のポリアミド製造装置が挙げられる。重合方法としては溶融重合、溶液重合、固相重合等の公知の方法を用い、常圧、減圧、加圧操作を繰り返して重合することができる。これらの重合方法は単独で、あるいは適宜、組合せて用いることができる。
(Production of polyamide resin)
Polyamide resin manufacturing equipment includes batch reaction vessels, single-vessel or multi-vessel continuous reaction apparatuses, tubular continuous reaction apparatuses, kneading reaction extruders such as single-screw kneading extruders, twin-screw kneading extruders, etc. Known polyamide manufacturing equipment can be mentioned. As the polymerization method, known methods such as melt polymerization, solution polymerization, solid phase polymerization, etc. can be used, and polymerization can be carried out by repeating normal pressure, reduced pressure, and pressurization operations. These polymerization methods can be used alone or in combination as appropriate.
<炭素数が18~32である脂肪酸及びその誘導体からなる群より選択される少なくとも1種の化合物(C)>
 ポリアミド樹脂組成物は、さらに、炭素数が18~32である脂肪酸及びその誘導体からなる群より選択される少なくとも1種の化合物(C)(以下、化合物(C)ともいう)を含むことが好ましい。化合物(C)は、炭素数が18~32である脂肪酸並びにその金属塩、エステル及びアミドからなる群より選択される少なくとも1種であるとより好ましい。ポリアミド樹脂組成物が化合物(C)を含むことにより、成形品とした場合の低温環境下における柔軟性を損なうことなく、射出成形等による成形品の製造の際の離型性を向上させることができる。化合物(C)は、1種又は2種以上の組合せであってもよく、離型性の観点から、2種以上の混合物が好ましい。
<At least one compound (C) selected from the group consisting of fatty acids having 18 to 32 carbon atoms and derivatives thereof>
It is preferable that the polyamide resin composition further contains at least one compound (C) selected from the group consisting of fatty acids having 18 to 32 carbon atoms and derivatives thereof (hereinafter also referred to as compound (C)). . Compound (C) is more preferably at least one selected from the group consisting of fatty acids having 18 to 32 carbon atoms, metal salts, esters, and amides thereof. By containing the compound (C) in the polyamide resin composition, it is possible to improve the mold releasability during the production of molded products by injection molding etc. without impairing the flexibility in low-temperature environments when molded products are made. can. The compound (C) may be used alone or in combination of two or more types, and from the viewpoint of mold releasability, a mixture of two or more types is preferable.
 炭素数が18~32である脂肪酸としては、ステアリン酸、アラキジン酸、ベヘン酸、リグノセリン酸、セロチン酸、モンタン酸、メリシン酸、ドトリアコンタン酸等の飽和脂肪酸;オレイン酸、バクセン酸、リノール酸、リノレン酸、エレオステアリン酸、エイコセン酸、エルカ酸、ネルボン酸等の不飽和脂肪酸;リシノール酸等の上記脂肪酸のアルキル基又はアルケニル基の水素原子の一部が水酸基等で置換された化合物等が挙げられる。 Fatty acids having 18 to 32 carbon atoms include saturated fatty acids such as stearic acid, arachidic acid, behenic acid, lignoceric acid, cerotic acid, montanic acid, melisic acid, and dotriacontanoic acid; oleic acid, vaccenic acid, and linoleic acid. , linolenic acid, eleostearic acid, eicosenoic acid, erucic acid, nervonic acid, and other unsaturated fatty acids; compounds in which some of the hydrogen atoms of the alkyl or alkenyl groups of the above fatty acids such as ricinoleic acid are substituted with hydroxyl groups, etc. can be mentioned.
 炭素数が18~32である脂肪酸の誘導体としては、前記脂肪酸の金属塩、前記脂肪酸又は前記脂肪酸のハロゲン化物と水酸基を有する化合物から形成されるエステル化合物、前記脂肪酸とアミノ基を有する化合物から形成されるアミド化合物等が挙げられる。前記脂肪酸の金属塩の金属としては、リチウム、マグネシウム、カルシウム、アルミニウム、カドミウム、バリウム、亜鉛、鉛等が挙げられる。 Derivatives of fatty acids having 18 to 32 carbon atoms include metal salts of the fatty acids, ester compounds formed from the fatty acids or halides of the fatty acids, and compounds having hydroxyl groups, and compounds formed from the fatty acids and compounds having amino groups. Examples include amide compounds. Examples of the metal of the metal salt of fatty acid include lithium, magnesium, calcium, aluminum, cadmium, barium, zinc, and lead.
 前記エステル化合物としては、ステアリン酸ブチル、ステアリン酸ステアリル、アラキジン酸アラキジル、ベヘン酸ベヘニル、リグノセリン酸リグノセリル、セロチン酸ヘキサコシル、モンタン酸オクタコシル、メリシン酸メリシル、ドトリアコンタン酸ドトリアコンチル、オレイン酸オレイル、モノステアリン酸エチレングリコール、モノステアリン酸グリセリル、モノステアリン酸ペンタエリスリチル等のモノエステル化合物;ジステアリン酸エチレングリコール、ジモンタン酸エチレングリコール、(ジ-又はトリ-)ステアリン酸グリセリル、(ジ-又はトリ-)モンタン酸グリセリル、(ジ-、トリ-又はテトラ-)ステアリン酸ペンタエリスリチル、(ジ-、トリ-又はテトラ-)モンタン酸ペンタエリスリチル等の脂肪酸と多価アルコールとの多価エステル化合物等が挙げられる。
 入手性及び成形性の観点から、ステアリン酸ステアリル、ベヘン酸ベヘニル、モノステアリン酸エチレングリコール、ジモンタン酸エチレングリコール、又は(ジ-もしくはトリ-)モンタン酸グリセリルが好ましい。
The ester compounds include butyl stearate, stearyl stearate, arachidyl arachidate, behenyl behenate, lignoceryl lignocerate, hexacosyl cerotate, octacosyl montanate, melisyl melisinate, dotriacontanoate, oleyl oleate, and monostearin. Monoester compounds such as ethylene glycol acid, glyceryl monostearate, pentaerythrityl monostearate; ethylene glycol distearate, ethylene glycol dimontanate, (di- or tri-)glyceryl stearate, (di- or tri-)montane Polyvalent ester compounds of fatty acids and polyhydric alcohols such as acid glyceryl, (di-, tri- or tetra-)pentaerythrityl stearate, (di-, tri- or tetra-)pentaerythrityl montanate, etc. It will be done.
From the viewpoint of availability and moldability, stearyl stearate, behenyl behenate, ethylene glycol monostearate, ethylene glycol dimontanate, or (di- or tri-)glyceryl montanate are preferred.
 前記脂肪酸の金属塩としては、ステアリン酸カルシウム、ステアリン酸マグネシウム、ステアリン酸亜鉛、ステアリン酸バリウム、ステアリン酸アルミニウム、12-ヒドロキシステアリン酸カルシウム、12-ヒドロキシステアリン酸亜鉛、12-ヒドロキシステアリン酸マグネシウム、12-ヒドロキシステアリン酸アルミニウム、12-ヒドロキシステアリン酸バリウム、12-ヒドロキシステアリン酸リチウム、12-ヒドロキシステアリン酸ナトリウム、ベヘン酸リチウム、ベヘン酸カルシウム、ベヘン酸亜鉛、ベヘン酸マグネシウム、ベヘン酸ナトリウム、ベヘン酸カリウム、モンタン酸カルシウム、モンタン酸亜鉛、モンタン酸マグネシウム、モンタン酸アルミニウム、モンタン酸ナトリウム、モンタン酸カリウム等が挙げられる。
 成形性の観点から、ステアリン酸カルシウム、ステアリン酸亜鉛、ベヘン酸リチウム、12-ヒドロキシステアリン酸カルシウム又はモンタン酸カルシウムが好ましい。
Examples of the metal salts of fatty acids include calcium stearate, magnesium stearate, zinc stearate, barium stearate, aluminum stearate, calcium 12-hydroxystearate, zinc 12-hydroxystearate, magnesium 12-hydroxystearate, and 12-hydroxystearate. Aluminum stearate, barium 12-hydroxystearate, lithium 12-hydroxystearate, sodium 12-hydroxystearate, lithium behenate, calcium behenate, zinc behenate, magnesium behenate, sodium behenate, potassium behenate, montan Examples include calcium acid, zinc montanate, magnesium montanate, aluminum montanate, sodium montanate, potassium montanate, and the like.
From the viewpoint of moldability, calcium stearate, zinc stearate, lithium behenate, calcium 12-hydroxystearate or calcium montanate are preferred.
 前記アミド化合物としては、ステアリン酸アミド、アラキジン酸アミド、ベヘン酸アミド、リグノセリン酸アミド、セロチン酸アミド、モンタン酸アミド、メリシン酸アミド、ドトリアコンタン酸アミド、オレイン酸アミド、エルカ酸アミド、リシノール酸アミド、12-ヒドロキシステアリン酸アミド等の脂肪族モノカルボン酸アミド;メチレンビスステアリン酸アミド、メチレンビス-12-ヒドロキシステアリン酸アミド、メチレンビスアラキジン酸アミド、メチレンビスベヘン酸アミド、メチレンビスリグノセリン酸アミド、メチレンビスセロチン酸アミド、メチレンビスモンタン酸アミド、メチレンビスメリシン酸アミド、メチレンビスドトリアコンタン酸アミド、エチレンビスステアリン酸アミド、エチレンビス-12-ヒドロキシステアリン酸アミド、エチレンビスアラキジン酸アミド、エチレンビスベヘン酸アミド、エチレンビスリグノセリン酸アミド、エチレンビスセロチン酸アミド、エチレンビスモンタン酸アミド、エチレンビスメリシン酸アミド、エチレンビスドトリアコンタン酸アミド、ブチレンビスステアリン酸アミド、ヘキサメチレンビスオレイン酸アミド、へキサメチレンビスステアリン酸アミド、へキサメチレンビス-12-ヒドロキシステアリン酸アミド、ヘキサメチレンビスアラキジン酸アミド、へキサメチレンビスベヘン酸アミド、へキサメチレンビスリグノセリン酸アミド、へキサメチレンビスセロチン酸アミド、へキサメチレンビスモンタン酸アミド、へキサメチレンビスメリシン酸アミド、へキサメチレンビスドトリアコンタン酸アミド等の脂肪族カルボン酸ビスアミド;N-ステアリルステアリン酸アミド、N-ヒドロキシメチルステアリン酸アミド、N-オクタコシルモンタン酸アミド等の上記アミド化合物のN-置換化合物等が挙げられる。
 成形性の観点から、ステアリン酸アミド、ベヘン酸アミド、モンタン酸アミド、オレイン酸アミド、エルカ酸アミド又はエチレンビスステアリン酸アミドが好ましく、エチレンビスステアリン酸アミドがより好ましい。
The amide compounds include stearic acid amide, arachidic acid amide, behenic acid amide, lignoceric acid amide, cerotic acid amide, montanic acid amide, melisic acid amide, dotriacontanoic acid amide, oleic acid amide, erucic acid amide, and ricinoleic acid. Aliphatic monocarboxylic acid amides such as amide, 12-hydroxystearic acid amide; methylenebisstearic acid amide, methylenebis-12-hydroxystearic acid amide, methylenebisarachidic acid amide, methylenebisbehenic acid amide, methylenebislignoceric acid amide, methylenebiscerotinamide, methylenebismontanamide, methylenebismericinamide, methylenebisdotricontanoic acidamide, ethylenebisstearamide, ethylenebis-12-hydroxystearamide, ethylenebisarachidine Acid amide, ethylene bisbehenic acid amide, ethylene bislignoceric acid amide, ethylene biscerotic acid amide, ethylene bismontanic acid amide, ethylene bismericic acid amide, ethylene bisdotriacontanoic acid amide, butylene bisstearic acid amide, Hexamethylene bis-oleic acid amide, hexamethylene bis-stearic acid amide, hexamethylene bis-12-hydroxystearic acid amide, hexamethylene bis-arachidic acid amide, hexamethylene bis-behenic acid amide, hexamethylene bis lignoceric acid Aliphatic carboxylic acid bisamides such as amide, hexamethylene biscerotinamide, hexamethylene bismontanic acid amide, hexamethylene bismeric acid amide, hexamethylene bisdotriacontanoic acid amide; N-stearyl stearic acid N-substituted compounds of the above-mentioned amide compounds, such as amide, N-hydroxymethylstearamide, and N-octacosylmontanamide, can be mentioned.
From the viewpoint of moldability, stearamide, behenic acid amide, montanic acid amide, oleic acid amide, erucic acid amide or ethylene bisstearic acid amide is preferable, and ethylene bis stearic acid amide is more preferable.
 成形品の水素ガスバリア性、低温環境下における柔軟性及び離型性のバランスの観点から、ポリアミド樹脂組成物100質量%中の化合物(C)の含有量は、0~2.0質量%であり、0.01~2.0質量%であることが好ましく、より好ましくは0.1~1.5質量%、さらに好ましくは0.2~1.0質量%である。 From the viewpoint of the hydrogen gas barrier property of the molded product, the flexibility in a low-temperature environment, and the balance of mold releasability, the content of compound (C) in 100% by mass of the polyamide resin composition is 0 to 2.0% by mass. , preferably from 0.01 to 2.0% by weight, more preferably from 0.1 to 1.5% by weight, even more preferably from 0.2 to 1.0% by weight.
<他の成分>
 ポリアミド樹脂組成物は、本発明の効果を損なわない範囲で、他の成分を含むことができる。他の成分としては、酸化防止剤、結晶核剤、結晶化促進剤、耐熱剤、可塑剤、発泡剤、耐候剤、帯電防止剤、難燃剤、難燃助剤、顔料、染料等の機能性付与剤;脂肪族ホモポリアミド樹脂(A)及び脂肪族共重合ポリアミド樹脂(B)以外の樹脂、化合物(C)以外の滑剤等が挙げられる。
 他の成分の含有量は、ポリアミド樹脂組成物100質量%中、0~5.0質量%であり、好ましくは0.01~2.0質量、より好ましくは0.05~1.5質量%である。
<Other ingredients>
The polyamide resin composition can contain other components as long as the effects of the present invention are not impaired. Other functional ingredients include antioxidants, crystal nucleating agents, crystallization accelerators, heat resistant agents, plasticizers, foaming agents, weathering agents, antistatic agents, flame retardants, flame retardant aids, pigments, and dyes. Imparting agents; resins other than the aliphatic homopolyamide resin (A) and aliphatic copolyamide resin (B), lubricants other than the compound (C), and the like.
The content of other components is 0 to 5.0% by mass, preferably 0.01 to 2.0% by mass, more preferably 0.05 to 1.5% by mass based on 100% by mass of the polyamide resin composition. It is.
 ポリアミド樹脂組成物は、実質的にポリオレフィン系樹脂を含まない。実質的にポリオレフィン系樹脂を含まないことで、組成物の流動性を高くし、成形性を向上させることができる。さらに、成形品の水素ガスバリア性を向上でき、線膨張係数も小さくできる。ここで、「実質的に含まない」とは、本発明のポリアミド樹脂組成物及びその成形品の機能又は特性を損なうような程度で含まない、又は変化を及ぼす程度に含まないという意味であり、機能又は特性を損なわない程度に含まれることを排除するものではない。具体的には、「実質的に含まない」とは、ポリアミド樹脂組成物100質量%中のポリオレフィン系樹脂の含有割合が0.1質量%未満であることを意味し、好ましくは0.05質量%未満、より好ましくは0.01質量%未満である。
 そのようなポリオレフィン系樹脂としては、未変性ポリオレフィン樹脂及び変性ポリオレフィン樹脂が挙げられる。未変性ポリオレフィン樹脂としては、エチレン、プロピレン等のα-オレフィンの単独重合体;(エチレン及び/又はプロピレン)/α-オレフィン系共重合体等が挙げられる。変性ポリオレフィン樹脂としては、カルボキシ基、酸無水物基、カルボン酸エステル基、カルボン酸金属塩、カルボン酸イミド基、カルボン酸アミド基、エポキシ基等の官能基を有するポリエチレン、ポリプロピレン、(エチレン及び/又はプロピレン)/α-オレフィン系共重合体等のポリオレフィン系樹脂;(エチレン及び/又はプロピレン)/(α,β-不飽和カルボン酸及び/又はα,β-不飽和カルボン酸エステル)系共重合体等の共重合ポリオレフィン系樹脂;(エチレン及び/又はプロピレン)/(α,β-不飽和カルボン酸及び/又はα,β-不飽和カルボン酸エステル)系共重合体の塩等のオレフィン系アイオノマー等が挙げられる。
The polyamide resin composition is substantially free of polyolefin resin. By substantially not containing a polyolefin resin, the fluidity of the composition can be increased and the moldability can be improved. Furthermore, the hydrogen gas barrier properties of the molded article can be improved, and the coefficient of linear expansion can also be reduced. Here, "substantially not contained" means that it is not contained to the extent that it impairs the function or characteristics of the polyamide resin composition of the present invention and its molded product, or it is not contained to the extent that it changes, This does not preclude inclusion to the extent that the function or characteristics are not impaired. Specifically, "substantially free" means that the content of polyolefin resin in 100% by mass of the polyamide resin composition is less than 0.1% by mass, preferably 0.05% by mass. %, more preferably less than 0.01% by mass.
Such polyolefin resins include unmodified polyolefin resins and modified polyolefin resins. Examples of unmodified polyolefin resins include homopolymers of α-olefins such as ethylene and propylene; (ethylene and/or propylene)/α-olefin copolymers, and the like. Modified polyolefin resins include polyethylene, polypropylene, (ethylene and/or or propylene)/α-olefin copolymer; (ethylene and/or propylene)/(α,β-unsaturated carboxylic acid and/or α,β-unsaturated carboxylic acid ester) copolymer Copolymerized polyolefin resins such as polymers; Olefin ionomers such as salts of (ethylene and/or propylene)/(α,β-unsaturated carboxylic acid and/or α,β-unsaturated carboxylic acid ester) copolymers etc.
 ポリアミド樹脂組成物は、他の成分として酸化防止剤を含むことが好ましい。酸化防止剤としては、有機系酸化防止剤及び無機系酸化防止剤を例示することができる。 It is preferable that the polyamide resin composition contains an antioxidant as another component. Examples of the antioxidant include organic antioxidants and inorganic antioxidants.
(有機系酸化防止剤)
 有機系酸化防止剤としては、フェノール系酸化防止剤、リン系酸化防止剤、硫黄系酸化防止剤等を挙げることができる。成形品の酸化防止性能を向上させる観点から、有機系酸化防止剤は、フェノール系酸化防止剤、リン系酸化防止剤及び硫黄系酸化防止剤からなる群から選択される少なくとも1種であることが好ましく、フェノール系酸化防止剤及びリン系酸化防止剤を共に含むことがより好ましい。
(Organic antioxidant)
Examples of organic antioxidants include phenolic antioxidants, phosphorus antioxidants, sulfur antioxidants, and the like. From the viewpoint of improving the antioxidant performance of the molded article, the organic antioxidant is preferably at least one selected from the group consisting of phenolic antioxidants, phosphorus antioxidants, and sulfur antioxidants. Preferably, it is more preferable to contain both a phenolic antioxidant and a phosphorus antioxidant.
 フェノール系酸化防止剤として具体的には、N,N’-ヘキサメチレンビス(3,5-ジ-t-ブチル-4-ヒドロキシ-ヒドロシンナムアミド(Irganox(登録商標)1098;BASFジャパン株式会社製)、ペンタエリスリチル-テトラキス[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)-プロピオネート](Irganox(登録商標)1010;BASFジャパン株式会社製)、エチレンビス(オキシエチレン)ビス[3-(5-tert-ブチル-4-ヒドロキシ-m-トリル)プロピオネート](Irganox(登録商標)245;BASFジャパン株式会社製)、3,9-ビス[2-〔3-(3-tert-ブチル-4-ヒドロキシ-5-メチルフェニル)プロピオニルオキシ〕-1,1-ジメチルエチル]-2,4,8,10-テトラオキサスピロ[5.5]ウンデカン(スミライザー(登録商標)GA-80;住友化学株式会社製)を挙げることができ、これらからなる群から選択される少なくとも1種が好ましい。フェノール系酸化防止剤は1種単独でも、2種以上を組合せて用いてもよい。 Specifically, as a phenolic antioxidant, N,N'-hexamethylenebis(3,5-di-t-butyl-4-hydroxy-hydrocinnamamide (Irganox (registered trademark) 1098; BASF Japan Ltd. ), pentaerythrityl-tetrakis [3-(3,5-di-t-butyl-4-hydroxyphenyl)-propionate] (Irganox® 1010; manufactured by BASF Japan Ltd.), ethylene bis(oxyethylene ) bis[3-(5-tert-butyl-4-hydroxy-m-tolyl)propionate] (Irganox (registered trademark) 245; manufactured by BASF Japan Ltd.), 3,9-bis[2-[3-(3 -tert-butyl-4-hydroxy-5-methylphenyl)propionyloxy]-1,1-dimethylethyl]-2,4,8,10-tetraoxaspiro[5.5]undecane (Sumilyzer (registered trademark) GA -80; manufactured by Sumitomo Chemical Co., Ltd.), and at least one kind selected from the group consisting of these is preferred.The phenolic antioxidant may be used alone or in combination of two or more kinds. .
 リン系酸化防止剤として具体的には、トリス(2,4-ジ-t-ブチルフェニル)ホスファイト(Irgafos(登録商標)168;BASFジャパン株式会社製)、ビス(2,6-ジ-t-ブチル-4-メチルフェニル)ペンタエルスリトールジフォスファイト(アデカスタブ(登録商標)PEP-36;株式会社ADEKA製)、テトラキス(2,4-ジ-tert-ブチルフェノキシ)-4,4-ビフェニルジホスフィンを主成分とするビフェニル、三塩化リン及び2,4-ジ-tert-ブチルフェノールの反応生成物(Hostanox(登録商標)P-EPQ(登録商標)P;クラリアントジャパン株式会社製)を挙げることができ、これらからなる群から選択される少なくとも1種が好ましい。リン系酸化防止剤は1種単独でも、2種以上を組合せて用いてもよい。 Specifically, the phosphorus antioxidants include tris(2,4-di-t-butylphenyl) phosphite (Irgafos (registered trademark) 168; manufactured by BASF Japan Ltd.), bis(2,6-di-t- -butyl-4-methylphenyl) pentaerthritol diphosphite (ADEKA STAB (registered trademark) PEP-36; manufactured by ADEKA Co., Ltd.), tetrakis (2,4-di-tert-butylphenoxy)-4,4-biphenyl Examples include a reaction product of biphenyl containing diphosphine as a main component, phosphorus trichloride, and 2,4-di-tert-butylphenol (Hostanox (registered trademark) P-EPQ (registered trademark) P; manufactured by Clariant Japan Co., Ltd.). At least one selected from the group consisting of these is preferred. The phosphorus antioxidants may be used alone or in combination of two or more.
 硫黄系酸化防止剤としては、チオエーテル系酸化防止剤が挙げられ、具体的には、ジステアリル-3,3-チオジプロピオネート(Irganox(登録商標)PS802;BASFジャパン株式会社製)、ペンタエリスリチルテトラキス(3-ラウリルチオプロピオネート)(スミライザー(登録商標)TP-D;住友化学株式会社製)、ジドデシル(3,3’-チオジプロピオネート)(Irganox(登録商標)PS800;BASFジャパン株式会社製)を挙げることができ、これらからなる群から選択される少なくとも1種が好ましい。硫黄系酸化防止剤は1種単独でも、2種以上を組合せて用いてもよい。 Examples of sulfur-based antioxidants include thioether-based antioxidants, specifically distearyl-3,3-thiodipropionate (Irganox (registered trademark) PS802; manufactured by BASF Japan Ltd.), pentaeryth Lythyltetrakis (3-laurylthiopropionate) (Sumilyzer (registered trademark) TP-D; manufactured by Sumitomo Chemical Co., Ltd.), didodecyl (3,3'-thiodipropionate) (Irganox (registered trademark) PS800; BASF Japan) Co., Ltd.), and at least one selected from the group consisting of these is preferred. The sulfur-based antioxidants may be used alone or in combination of two or more.
 有機系酸化防止剤の含有量は、ポリアミド樹脂組成物100質量%中に、0.01~5.0質量%であることが好ましく、0.01~2.0質量%であることがより好ましく、0.05~1.5質量%であることが特に好ましい。 The content of the organic antioxidant is preferably 0.01 to 5.0% by mass, more preferably 0.01 to 2.0% by mass in 100% by mass of the polyamide resin composition. , 0.05 to 1.5% by mass is particularly preferred.
(無機系酸化防止剤)
 無機系酸化防止剤としては、ハロゲン化金属系酸化防止剤が挙げられる。ハロゲン化金属系酸化防止剤は、主に長期耐熱性を付与する成分である。ハロゲン化金属系酸化防止剤は、ハロゲンと金属との化合物である。ハロゲンとしては、フッ素、塩素、臭素、ヨウ素等が挙げられる。金属としては、第1族元素(アルカリ金属)、第2族元素(アルカリ土類金属)、第3族元素~第12族元素(例えば、遷移金属)等が挙げられる。ハロゲン化金属における金属は、第1族元素(アルカリ金属)又は第11族元素(銅族)の金属であることが好ましい。
(Inorganic antioxidant)
Examples of inorganic antioxidants include metal halide antioxidants. The metal halide antioxidant is a component that mainly provides long-term heat resistance. A metal halide antioxidant is a compound of a halogen and a metal. Examples of the halogen include fluorine, chlorine, bromine, and iodine. Examples of metals include Group 1 elements (alkali metals), Group 2 elements (alkaline earth metals), Group 3 elements to Group 12 elements (eg, transition metals), and the like. The metal in the metal halide is preferably a Group 1 element (alkali metal) or a Group 11 element (copper group).
 金属が第1族元素(アルカリ金属)である場合のハロゲン化金属としては、ヨウ化カリウム、臭化カリウム、塩化カリウム、ヨウ化ナトリウム、塩化ナトリウム等が挙げられる。また、金属が第11族元素(銅族)である場合のハロゲン化金属としては、塩化第一銅、塩化第二銅、臭化第一銅、臭化第二銅、ヨウ化第一銅、ヨウ化第二銅等が挙げられる。ハロゲン化金属系酸化防止剤は、ヨウ化第一銅及びハロゲン化カリウムの混合物、又は臭化第一銅及びハロゲン化カリウムの混合物であることがより好ましく、ヨウ化第一銅及びヨウ化カリウムの混合物、又は臭化第一銅及び臭化カリウムの混合物であることが特に好ましい。ヨウ化第一銅及びヨウ化カリウムの混合物、又は臭化第一銅及び臭化カリウムの混合物は、ヨウ化第一銅又は臭化第一銅の配合量(質量%)に比べ、ヨウ化カリウム又は臭化カリウムの配合量(質量%)が多い方が好ましい。
 さらに、メラミン、ベンゾグアナミン、ジメチロール尿素、シアヌル酸等の含窒素化合物を併用するとより効果的である。
Examples of the metal halide when the metal is a Group 1 element (alkali metal) include potassium iodide, potassium bromide, potassium chloride, sodium iodide, and sodium chloride. In addition, when the metal is a Group 11 element (copper group), metal halides include cuprous chloride, cupric chloride, cuprous bromide, cupric bromide, cuprous iodide, Examples include cupric iodide. The metal halide antioxidant is more preferably a mixture of cuprous iodide and potassium halide, or a mixture of cuprous bromide and potassium halide; Particularly preferred are mixtures or mixtures of cuprous bromide and potassium bromide. A mixture of cuprous iodide and potassium iodide, or a mixture of cuprous bromide and potassium bromide has a lower amount of potassium iodide than the amount (mass%) of cuprous iodide or cuprous bromide. Alternatively, it is preferable that the amount (mass %) of potassium bromide is large.
Furthermore, it is more effective to use a nitrogen-containing compound such as melamine, benzoguanamine, dimethylol urea, or cyanuric acid in combination.
 無機系酸化防止剤は1種単独でも、2種以上を組合せて用いてもよい。 The inorganic antioxidants may be used alone or in combination of two or more.
 無機系酸化防止剤の含有量は、ポリアミド樹脂組成物100質量%中に、0.01~5.0質量%であることが好ましく、0.01~2.0質量%であることがより好ましく、0.05~1.0質量%であることが特に好ましい。 The content of the inorganic antioxidant is preferably 0.01 to 5.0% by mass, more preferably 0.01 to 2.0% by mass in 100% by mass of the polyamide resin composition. , 0.05 to 1.0% by mass is particularly preferred.
[ポリアミド樹脂組成物の製造方法]
 ポリアミド樹脂組成物の製造方法は特に制限されるものではなく、例えば次の方法を適用することができる。
 脂肪族ホモポリアミド樹脂(A)と、脂肪族共重合ポリアミド樹脂(B)と、任意の化合物(C)及び/又は他の成分とを混合する際には、単軸、二軸の押出機、バンバリーミキサー、ニーダー、及びミキシングロール等通常公知の溶融混練機を用いることができ、また、溶融混練しないブレンダー等を用いてもよい。溶融混練する場合は、例えば、二軸押出機を使用して、全ての原材料を配合後、溶融混練する方法、一部の原材料を配合後、溶融混練し、さらに残りの原材料を配合し溶融混練する方法、あるいは一部の原材料を配合後、溶融混練中にサイドフィーダーを用いて残りの原材料を混合する方法等、いずれの方法を用いてもよい。ポリアミド樹脂組成物は、例えば、ペレットの形態でもよいし、粉末の形態としてもよい。
[Method for manufacturing polyamide resin composition]
The method for producing the polyamide resin composition is not particularly limited, and for example, the following method can be applied.
When mixing the aliphatic homopolyamide resin (A), the aliphatic copolyamide resin (B), and the arbitrary compound (C) and/or other components, a single screw or twin screw extruder, Commonly known melt-kneading machines such as Banbury mixers, kneaders, and mixing rolls can be used, and blenders that do not perform melt-kneading may also be used. When melt-kneading, for example, using a twin-screw extruder, all the raw materials are blended and then melt-kneaded, or some of the raw materials are blended, then melt-kneaded, and the remaining raw materials are blended and melt-kneaded. Any method may be used, such as a method of blending some of the raw materials, or a method of mixing the remaining raw materials using a side feeder during melt-kneading. The polyamide resin composition may be in the form of pellets or powder, for example.
[ポリアミド樹脂組成物の密度]
 成形品の剛性及び低温特性の観点から、ISO 294-1に従い、樹脂温度250℃及び金型温度80℃の射出成形機にて成形されるType-A1試験片を用い、ISO 1183-3に従い測定されるポリアミド樹脂組成物の密度は、1.120g/cm~1.140g/cmであることが好ましく、1.121g/cm~1.135g/cmであることがより好ましく、1.125g/cm~1.135g/cmであることがさらに好ましく、1.126~1.129g/cmであることが特に好ましい。ポリアミド樹脂組成物の密度は、ポリアミド樹脂組成物の各原料の密度とその組成比から求めてもよい。
[Density of polyamide resin composition]
From the viewpoint of the rigidity and low-temperature properties of the molded product, measurements were made in accordance with ISO 1183-3 using Type-A1 test pieces molded in an injection molding machine with a resin temperature of 250°C and a mold temperature of 80°C in accordance with ISO 294-1. The density of the polyamide resin composition is preferably 1.120 g/cm 3 to 1.140 g/cm 3 , more preferably 1.121 g/cm 3 to 1.135 g/cm 3 , It is more preferably .125 g/cm 3 to 1.135 g/cm 3 , particularly preferably 1.126 to 1.129 g/cm 3 . The density of the polyamide resin composition may be determined from the density of each raw material of the polyamide resin composition and the composition ratio thereof.
[ポリアミド樹脂組成物の用途]
 ポリアミド樹脂組成物は、流動性が高く、成形品とした場合の水素ガスバリア性及び低温環境下における柔軟性に優れており、高圧水素ガスに触れる成形品用に使用することができる。ポリアミド樹脂組成物は、特に制限されず、公知の方法を利用する成形品の製造に用いることができる。
[Applications of polyamide resin composition]
Polyamide resin compositions have high fluidity and excellent hydrogen gas barrier properties and flexibility in low-temperature environments when made into molded products, and can be used for molded products that come into contact with high-pressure hydrogen gas. The polyamide resin composition is not particularly limited, and can be used to manufacture molded articles using known methods.
 高圧水素ガスに触れる成形品とは、常圧以上の圧力の水素ガスに触れる成形品である。本発明に係る成形品は、水素ガスのバリア性に優れる為、高圧水素ガスの充填及び放圧を繰り返したときの欠陥点の発生を抑制する効果を奏することが期待されることから、圧力20MPa以上の水素ガスに触れる成形品用途に好ましく用いられ、30MPa以上の水素ガスに触れる成形品用途により好ましく用いられる。一方、圧力200MPa以下の水素ガスに触れる成形品用途に好ましく用いられ、150MPa以下の水素ガスに触れる成形品用途により好ましく用いられ、100MPa以下の水素ガスに触れる成形品用途にさらに好ましく用いられる。 A molded product that comes into contact with high-pressure hydrogen gas is a molded product that comes into contact with hydrogen gas at a pressure higher than normal pressure. Since the molded product according to the present invention has excellent hydrogen gas barrier properties, it is expected to have the effect of suppressing the occurrence of defective points when repeatedly filling and releasing high-pressure hydrogen gas. It is preferably used for molded products that come into contact with the above hydrogen gas, and more preferably used for molded products that come into contact with hydrogen gas of 30 MPa or more. On the other hand, it is preferably used for molded products that come into contact with hydrogen gas at a pressure of 200 MPa or less, more preferably used for molded products that come into contact with hydrogen gas at a pressure of 150 MPa or less, and even more preferably used for molded products that come into contact with hydrogen gas at a pressure of 100 MPa or less.
 高圧水素ガスに触れる成形品としては、高圧水素容器及びその部品を例示することができ、高圧水素用タンクライナー、高圧水素用ホース、高圧水素用チューブ及び高圧水素用継ぎ手からなる群から選択される1つであると好ましい。
 本発明の別の態様は、ポリアミド樹脂組成物を含む、水素貯蔵タンクライナー、水素移送ホース、水素移送チューブ及び水素移送継ぎ手からなる群から選択される1つである。水素は高圧水素であることができる。
Examples of molded products that come into contact with high-pressure hydrogen gas include high-pressure hydrogen containers and their parts, which are selected from the group consisting of high-pressure hydrogen tank liners, high-pressure hydrogen hoses, high-pressure hydrogen tubes, and high-pressure hydrogen joints. It is preferable that there is one.
Another aspect of the invention is one selected from the group consisting of a hydrogen storage tank liner, a hydrogen transfer hose, a hydrogen transfer tube, and a hydrogen transfer fitting, comprising a polyamide resin composition. The hydrogen can be high pressure hydrogen.
 ポリアミド樹脂組成物を含む高圧水素用タンクライナーは、連続繊維強化樹脂層と組み合わせて、高圧水素用タンクとして好適に使用できる。すなわち、本発明の別の態様は、ポリアミド樹脂組成物を含む高圧水素用タンクライナー及び連続繊維強化樹脂層を含む高圧水素用タンクである。高圧水素用タンクにおいて、ポリアミド樹脂組成物を含む高圧水素用タンクライナーの外側に、連続繊維強化樹脂層が積層された形態が好ましい。本発明において、連続繊維とは、繊維長が100mm以上の繊維をいう。
 本発明のさらに別の態様は、ポリアミド樹脂組成物を含む水素貯蔵タンクライナー及び連続繊維強化樹脂層を含む水素貯蔵タンクである。
A high-pressure hydrogen tank liner containing a polyamide resin composition can be suitably used as a high-pressure hydrogen tank in combination with a continuous fiber-reinforced resin layer. That is, another aspect of the present invention is a high-pressure hydrogen tank liner including a polyamide resin composition and a high-pressure hydrogen tank including a continuous fiber-reinforced resin layer. In a high-pressure hydrogen tank, it is preferable that a continuous fiber-reinforced resin layer is laminated on the outside of a high-pressure hydrogen tank liner containing a polyamide resin composition. In the present invention, continuous fibers refer to fibers with a fiber length of 100 mm or more.
Yet another aspect of the invention is a hydrogen storage tank that includes a hydrogen storage tank liner that includes a polyamide resin composition and a continuous fiber reinforced resin layer.
 連続繊維強化樹脂層を構成する連続繊維としては、炭素繊維、ガラス繊維、アラミド繊維等が挙げられ、なかでも、比強度及び軽量化の観点から、炭素繊維が好ましい。連続繊維は、1種単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
 取り扱い性及び軽量化の観点から、連続繊維の繊維径は、5~30μmであることが好ましく、5~20μmであることがより好ましく、5~10μmであることがさらに好ましい。
Examples of the continuous fibers constituting the continuous fiber reinforced resin layer include carbon fibers, glass fibers, aramid fibers, etc. Among them, carbon fibers are preferred from the viewpoint of specific strength and weight reduction. The continuous fibers may be used alone or in combination of two or more.
From the viewpoint of ease of handling and weight reduction, the fiber diameter of the continuous fibers is preferably 5 to 30 μm, more preferably 5 to 20 μm, and even more preferably 5 to 10 μm.
 連続繊維強化樹脂層を構成する樹脂は、熱硬化性樹脂であっても熱可塑性樹脂であってもよい。熱硬化性樹脂としては、エポキシ樹脂、不飽和ポリエステル樹脂、ビニルエステル樹脂、フェノール樹脂、ポリウレタン樹脂、シリコーン樹脂等を例示することができ、なかでも、加工性の観点から、エポキシ樹脂が特に好ましい。エポキシ樹脂としては、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、イソシアネート変性ビスフェノールA型エポキシ樹脂等が挙げられる。これらの熱硬化性樹脂は、1種単独で用いてもよいし、2種以上を組み合わせて用いてもよい。熱硬化性樹脂を用いる場合、硬化剤、反応促進剤等を併用してもよい。 The resin constituting the continuous fiber reinforced resin layer may be a thermosetting resin or a thermoplastic resin. Examples of thermosetting resins include epoxy resins, unsaturated polyester resins, vinyl ester resins, phenol resins, polyurethane resins, and silicone resins, among which epoxy resins are particularly preferred from the viewpoint of processability. Examples of the epoxy resin include bisphenol A epoxy resin, bisphenol F epoxy resin, bisphenol S epoxy resin, phenol novolak epoxy resin, isocyanate-modified bisphenol A epoxy resin, and the like. These thermosetting resins may be used alone or in combination of two or more. When using a thermosetting resin, a curing agent, a reaction accelerator, etc. may be used in combination.
 熱可塑性樹脂としては、ポリエチレン樹脂、ポリプロピレン樹脂、ポリ塩化ビニル樹脂、ABS樹脂、ポリスチレン樹脂、AS樹脂、ポリアミド樹脂、ポリアセタール樹脂、ポリカーボネート樹脂、熱可塑性ポリエステル樹脂、PPS樹脂、フッ素樹脂、ポリエーテルイミド樹脂、ポリエーテルケトン樹脂、ポリイミド樹脂、これらの樹脂の共重合体等を例示することができる。これらの熱可塑性樹脂は、1種単独で用いてもよいし、2種以上を組み合わせて用いてもよい。熱可塑性樹脂を用いる場合、相溶化剤、難燃剤等を併用してもよい。 Examples of thermoplastic resins include polyethylene resin, polypropylene resin, polyvinyl chloride resin, ABS resin, polystyrene resin, AS resin, polyamide resin, polyacetal resin, polycarbonate resin, thermoplastic polyester resin, PPS resin, fluororesin, and polyetherimide resin. , polyetherketone resin, polyimide resin, and copolymers of these resins. These thermoplastic resins may be used alone or in combination of two or more. When using a thermoplastic resin, a compatibilizer, a flame retardant, etc. may be used in combination.
 本発明の別の態様は、ポリアミド樹脂組成物から高圧水素用タンクライナーを形成する工程を含む、高圧水素用タンクの製造方法である。
 高圧水素用タンクの製造方法は、特に限定されず、例えば、タンク状に成形した高圧水素用タンクライナーの周囲に連続繊維を巻き付けた後、連続繊維に熱硬化性樹脂を塗布し、熱硬化させる方法;前記高圧水素用タンクライナーの周囲に連続繊維を巻き付けた後、連続繊維に熱溶融した熱可塑性樹脂を塗布する方法;未硬化の熱硬化性樹脂を塗布又は含侵した状態の連続繊維を、前記高圧水素用タンクライナーの周囲に巻き付けた後、熱硬化させる方法;熱可塑性樹脂を塗布又は含侵した状態の連続繊維を、高圧水素用タンクライナーの周囲に巻き付けた後、熱溶融させる方法;予めタンク状に成形した連続繊維強化樹脂層の内側に、高圧水素用タンクライナーを成形する方法;連続繊維強化樹脂層及び高圧水素用タンクライナーを別々に成形した後、連続繊維強化樹脂層内にライナー成形品を差し込む方法等を採用することができる。
 本発明のさらに別の態様は、ポリアミド樹脂組成物から水素貯蔵タンクライナーを形成する工程を含む、水素貯蔵タンクの製造方法である。
Another aspect of the present invention is a method of manufacturing a high-pressure hydrogen tank, which includes forming a high-pressure hydrogen tank liner from a polyamide resin composition.
The method for manufacturing a high-pressure hydrogen tank is not particularly limited, and for example, continuous fibers are wrapped around a high-pressure hydrogen tank liner formed into a tank shape, and then a thermosetting resin is applied to the continuous fibers and then thermoset. Method: After wrapping continuous fibers around the high-pressure hydrogen tank liner, the continuous fibers are coated with a hot-melted thermoplastic resin; The continuous fibers are coated with or impregnated with an uncured thermosetting resin. , a method in which the continuous fiber coated or impregnated with a thermoplastic resin is wrapped around the high-pressure hydrogen tank liner and then thermally cured; a method in which the continuous fiber is wrapped around the high-pressure hydrogen tank liner and then thermally melted. ; A method of molding a high-pressure hydrogen tank liner inside a continuous fiber-reinforced resin layer formed into a tank shape in advance; After molding a continuous fiber-reinforced resin layer and a high-pressure hydrogen tank liner separately, A method such as inserting a liner molded product into the container can be adopted.
Yet another aspect of the invention is a method of making a hydrogen storage tank that includes forming a hydrogen storage tank liner from a polyamide resin composition.
[高圧水素ガスに触れる成形品の製造方法]
 高圧水素ガスに触れる成形品の製造方法としては、ブロー成形、押出成形、射出成形及び回転成形等が挙げられ、射出成形及び回転成形をより好適に使用できる。
[Method for manufacturing molded products that come into contact with high-pressure hydrogen gas]
Examples of methods for manufacturing molded products that come into contact with high-pressure hydrogen gas include blow molding, extrusion molding, injection molding, and rotational molding, and injection molding and rotational molding can be used more preferably.
 ポリアミド樹脂組成物から射出成形による射出成形品を製造する方法については特に制限されず、公知の方法を利用することができる。例えばISO 294-1に準拠した方法が参酌される。射出成形時の成形条件は、特に限定されないが、例えば、ポリアミド樹脂組成物の樹脂温度を250~270℃、金型温度を60~80℃とすることができる。 There is no particular restriction on the method of producing an injection molded article from a polyamide resin composition by injection molding, and any known method can be used. For example, a method based on ISO 294-1 may be considered. The molding conditions during injection molding are not particularly limited, but for example, the resin temperature of the polyamide resin composition can be 250 to 270°C, and the mold temperature can be 60 to 80°C.
 ポリアミド樹脂組成物から回転成形による回転成形品を製造する方法については特に制限されず、公知の方法を利用することができる。例えば国際公開第2019/054109号に記載の方法が参酌される。 There is no particular restriction on the method for manufacturing a rotationally molded article from a polyamide resin composition by rotationally molding, and any known method can be used. For example, the method described in International Publication No. 2019/054109 may be considered.
(成形品の密度)
 高圧水素ガスに触れる成形品の密度は、ISO 1183-3に従い測定することができる。あるいは、成形品の密度は、成形品の各原料の密度とその組成から求めてもよい。例えば、下記式(1)により成形品の密度を計算してもよい。
    成形品の密度 = Σ(ρi×W)  ----- 式(1)
 式中、ρiは、各原料の密度(g/cm)であり、Wiは、各原料の組成比である。
 成形品の剛性及び低温特性の観点から、高圧水素ガスに触れる成形品の密度は、1.120g/cm~1.140g/cmであることが好ましく、1.121g/cm~1.135g/cmであることがより好ましく、1.125g/cm~1.135g/cmであることがさらに好ましく、1.126~1.129g/cmであることが特に好ましい。
(Density of molded product)
The density of molded articles exposed to high pressure hydrogen gas can be measured according to ISO 1183-3. Alternatively, the density of the molded article may be determined from the density and composition of each raw material of the molded article. For example, the density of the molded article may be calculated using the following formula (1).
Density of molded product = Σ(ρ i ×W i ) ----- Formula (1)
In the formula, ρ i is the density (g/cm 3 ) of each raw material, and W i is the composition ratio of each raw material.
From the viewpoint of the rigidity and low-temperature properties of the molded article, the density of the molded article that comes into contact with high-pressure hydrogen gas is preferably 1.120 g/cm 3 to 1.140 g/cm 3 , and 1.121 g/cm 3 to 1.1 g/cm 3 . It is more preferably 135 g/cm 3 , even more preferably 1.125 g/cm 3 to 1.135 g/cm 3 , and particularly preferably 1.126 to 1.129 g/cm 3 .
(成形品の水素ガス透過係数)
 高圧水素ガスに触れる成形品は、JIS K 7126-1に従い、前記ポリアミド樹脂組成物を用いて、射出成形機にて樹脂温度250℃及び金型温度80℃にて、80mm×80mm、厚み2.0mmの板状試験片を成形し、当該試験片から切り出した直径Φ60mmの円形成形品について、差圧法を採用して測定した55℃及び1atmにおける水素ガス透過係数が、0.1×10-10cm・cm/(cm・s・cmHg)超1.8×10―10cm・cm/(cm・s・cmHg)未満であることが好ましく、0.1×10-10cm・cm/(cm・s・cmHg)超1.7×10-10cm・cm/(cm・s・cmHg)未満であることがより好ましく、0.1×10-10cm・cm/(cm・s・cmHg)超1.5×10-10cm・cm/(cm・s・cmHg)未満であることがさらに好ましい。水素ガス透過係数が前記範囲にあると、水素ガスバリア性に優れ、高圧水素ガスに触れる成形品に好適に使用することができる。
(Hydrogen gas permeability coefficient of molded product)
The molded product that comes into contact with high-pressure hydrogen gas is made using the polyamide resin composition according to JIS K 7126-1, and is molded in an injection molding machine at a resin temperature of 250°C and a mold temperature of 80°C to a size of 80 mm x 80 mm and a thickness of 2.5 mm. The hydrogen gas permeability coefficient at 55°C and 1 atm measured using the differential pressure method for a circular molded product with a diameter of 60 mm cut from a 0 mm plate-shaped test piece was 0.1 × 10 - It is preferably more than 1.8×10 −10 cm 3 cm / (cm 2 s・cmHg), and less than 0.1×10 −10 cm More preferably , it is more than 3.cm/(cm 2.s.cmHg) and less than 1.7 ×10 −10 cm 3.cm/(cm 2.s.cmHg), and less than 0.1×10 −10 cm 3 -More preferably cm/(cm 2 s·cmHg) and less than 1.5×10 −10 cm 3 ·cm/(cm 2 s·cmHg). When the hydrogen gas permeability coefficient is within the above range, it has excellent hydrogen gas barrier properties and can be suitably used for molded products that come into contact with high-pressure hydrogen gas.
(成形品の低温柔軟性)
 高圧水素ガスに触れる成形品は、ISO 294-1に従い、前記ポリアミド樹脂組成物を用いて、射出成形機にて樹脂温度250℃及び金型温度80℃にて成形して得られたType-A1試験片について、前記試験片を-60℃で1時間保管後、ISO 527-2に従い、試験速度50mm/分にて測定した引張呼びひずみ0.3%~0.5%間の引張弾性率が、1,600MPa超2,800MPa未満であることが好ましく、1,600MPa超2,750MPa未満であることがより好ましく、1,600MPa超2,700MPa未満であることがさらに好ましい。-60℃における引張弾性率が前記範囲にあると、成形品の低温環境下における柔軟性と機械的強度のバランスに優れ、高圧水素ガスに触れる成形品に好適に使用することができる。引張弾性率が1,600MPa以下であると、成形品が変形を起こりやすくなる。引張弾性率が2,800MPa以上であると、成形品が割れやすくなる。
(Low temperature flexibility of molded product)
The molded product that comes into contact with high-pressure hydrogen gas is Type-A1, which is obtained by molding the polyamide resin composition in an injection molding machine at a resin temperature of 250°C and a mold temperature of 80°C in accordance with ISO 294-1. Regarding the test piece, after storing the test piece at -60°C for 1 hour, the tensile elastic modulus between 0.3% and 0.5% of the nominal tensile strain measured at a test speed of 50 mm/min according to ISO 527-2 is , preferably more than 1,600 MPa and less than 2,800 MPa, more preferably more than 1,600 MPa and less than 2,750 MPa, even more preferably more than 1,600 MPa and less than 2,700 MPa. When the tensile modulus at −60° C. is within the above range, the molded product has an excellent balance between flexibility and mechanical strength in a low-temperature environment, and can be suitably used for molded products exposed to high-pressure hydrogen gas. If the tensile modulus is 1,600 MPa or less, the molded product is likely to be deformed. If the tensile modulus is 2,800 MPa or more, the molded product will easily break.
 以下、本発明を実施例及び比較例によりさらに詳細に説明するが、本発明はこれら実施例により限定されるものではない。 Hereinafter, the present invention will be explained in more detail with reference to Examples and Comparative Examples, but the present invention is not limited by these Examples.
[評価方法]
1.相対粘度
 脂肪族ホモポリアミド樹脂、脂肪族共重合ポリアミド樹脂及びこれらの混合物について、JIS K 6920に準じて、ポリアミド樹脂1gを96%硫酸100mlに溶解させ、25℃における相対粘度を測定した。
[Evaluation method]
1. Relative Viscosity For aliphatic homopolyamide resins, aliphatic copolyamide resins, and mixtures thereof, 1 g of polyamide resin was dissolved in 100 ml of 96% sulfuric acid and the relative viscosity at 25° C. was measured according to JIS K 6920.
2.密度
 脂肪族ホモポリアミド樹脂、脂肪族共重合ポリアミド樹脂及びポリアミド樹脂組成物について、ISO 294-1に従い、樹脂温度250℃及び金型温度80℃の射出成形機にて成形されるType-A1試験片を用い、ISO 1183-3に従い、密度を測定した。
2. Density Type-A1 test piece molded with an injection molding machine at a resin temperature of 250°C and a mold temperature of 80°C according to ISO 294-1 for aliphatic homopolyamide resin, aliphatic copolyamide resin, and polyamide resin composition. The density was measured according to ISO 1183-3.
3.射出流動長
 キャビティ厚み1mm、幅15mm、長さ360mmのバーフロー金型を設置した射出成形機(日精樹脂工業株式会社製、商品名:PS40E)を使用し、射出圧力50MPa、シリンダー温度265℃、金型温度65℃、射出速度38mm/sec、射出時間4秒及び冷却時間15秒の成形条件にて、実施例及び比較例のペレットをそれぞれ射出成形した。射出成形にて得られた成形品のゲート出口からの全長をL/T流動長として測定した。ポリアミド樹脂組成物の流動性を、以下の基準で評価した。
 ◎:L/T流動長が120mm以上
 ○:L/T流動長が105mm以上120mm未満
 ×:L/T流動長が105mm未満
3. Injection flow length An injection molding machine (manufactured by Nissei Jushi Kogyo Co., Ltd., product name: PS40E) equipped with a bar flow mold with a cavity thickness of 1 mm, width of 15 mm, and length of 360 mm was used, the injection pressure was 50 MPa, the cylinder temperature was 265°C, The pellets of Examples and Comparative Examples were each injection molded under the molding conditions of a mold temperature of 65° C., an injection speed of 38 mm/sec, an injection time of 4 seconds, and a cooling time of 15 seconds. The total length of the molded product obtained by injection molding from the gate exit was measured as the L/T flow length. The fluidity of the polyamide resin composition was evaluated based on the following criteria.
◎: L/T flow length is 120 mm or more ○: L/T flow length is 105 mm or more and less than 120 mm ×: L/T flow length is less than 105 mm
4.水素ガス透過係数
 JIS K7126-1に従い、実施例及び比較例のペレットをそれぞれ用い、射出成形機にて樹脂温度250℃及び金型温度80℃にて、80mm×80mm、厚み2.0mmの板状試験片を成形し、当該試験片から切り出した直径Φ60mmの円形成形品について、差圧法を採用し、55℃、0%RH及び1atmにおいて、水素ガス透過試験を行った。測定装置は、差圧式ガス・蒸気透過率測定装置(GTR-30XAD、シリアル番号G2700T・F(GTRテック社製))を用いた。水素ガスバリア性を以下の基準で評価した。
 ◎:水素ガス透過係数が0.1×10―10cm・cm/(cm・s・cmHg)超1.5×10-10cm・cm/(cm・s・cmHg)未満
 ○:水素ガス透過係数が1.5×10-10cm・cm/(cm・s・cmHg)以上1.8×10-10cm・cm/(cm・s・cmHg)未満
 ×:水素ガス透過係数が1.8×10-10cm・cm/(cm・s・cmHg)以上
4. Hydrogen gas permeability coefficient According to JIS K7126-1, pellets of Examples and Comparative Examples were molded into plates of 80 mm x 80 mm and 2.0 mm thickness using an injection molding machine at a resin temperature of 250°C and a mold temperature of 80°C. A test piece was molded, and a hydrogen gas permeation test was conducted on a circular molded product with a diameter of 60 mm cut from the test piece at 55° C., 0% RH, and 1 atm using a differential pressure method. As the measuring device, a differential pressure type gas/vapor permeability measuring device (GTR-30XAD, serial number G2700T/F (manufactured by GTR Tech)) was used. Hydrogen gas barrier properties were evaluated based on the following criteria.
◎: Hydrogen gas permeability coefficient is more than 0.1×10 -10 cm 3・cm/(cm 2・s・cmHg) and less than 1.5×10 −10 cm 3・cm/(cm 2・s・cmHg) ○ :Hydrogen gas permeability coefficient is 1.5×10 -10 cm 3・cm/(cm 2・s・cmHg) or more and less than 1.8×10 −10 cm 3・cm/(cm 2・s・cmHg) ×: Hydrogen gas permeability coefficient is 1.8×10 -10 cm 3・cm/(cm 2・s・cmHg) or more
5.-60℃における引張弾性率
 ISO 294-1に従い、実施例及び比較例のペレットをそれぞれ用い、射出成形機にて樹脂温度250℃及び金型温度80℃にて成形してType-A1試験片を作製した。該試験片を-60℃で1時間保管した後、ISO 527-2に従い、試験速度:50mm/分にて、引張呼びひずみ0.3%~0.5%間の引張弾性率を測定した。また、引張試験時における脆的な破壊の有無を評価した。試験機はインストロン社製引張試験機型式5567を用いた。引張弾性率の値に基づき、柔軟性を以下の基準で評価した。
 ◎:-60℃における引張弾性率が1,600MPa超2,700MPa未満
 〇:-60℃における引張弾性率が2,700MPa以上2,800MPa未満
 ×:-60℃における引張弾性率が2,800MPa以上 
5. Tensile modulus at -60°C According to ISO 294-1, the pellets of Examples and Comparative Examples were molded using an injection molding machine at a resin temperature of 250°C and a mold temperature of 80°C to obtain a Type-A1 test piece. Created. After storing the test piece at −60° C. for 1 hour, the tensile modulus was measured at a nominal tensile strain of 0.3% to 0.5% at a test speed of 50 mm/min according to ISO 527-2. In addition, the presence or absence of brittle fracture during the tensile test was evaluated. The testing machine used was a tensile testing machine model 5567 manufactured by Instron. The flexibility was evaluated based on the tensile modulus value using the following criteria.
◎: Tensile modulus at -60°C is more than 1,600 MPa and less than 2,700 MPa ○: Tensile modulus at -60°C is 2,700 MPa or more and less than 2,800 MPa ×: Tensile modulus at -60°C is 2,800 MPa or more
[使用材料]
1.ポリアミド樹脂
(1)脂肪族ホモポリアミド樹脂
 PA6-1:ポリアミド6(UBE株式会社製:相対粘度=1.93、密度=1.129g/cm
 PA6-2:ポリアミド6(UBE株式会社製:相対粘度=2.24、密度=1.129g/cm
 PA6-3:ポリアミド6(UBE株式会社製:相対粘度=2.45、密度=1.129g/cm
 PA6-4:ポリアミド6(UBE株式会社製:相対粘度=2.64、密度=1.129g/cm
 PA6-5:ポリアミド6(UBE株式会社製:相対粘度=2.78、密度=1.129g/cm
(2)脂肪族共重合ポリアミド樹脂
 PA6/66-1:ポリアミド6/66(UBE株式会社製:相対粘度=3.04;ポリアミド6成分=92mol%とポリアミド66成分=8mol%との共重合体、密度=1.117g/cm
 PA6/66-2:ポリアミド6/66(UBE株式会社製:相対粘度=4.05;ポリアミド6成分=90mol%とポリアミド66成分=10mol%との共重合体、密度=1.117g/cm
 PA6/66/12-1:ポリアミド6/66/12(UBE株式会社製:相対粘度=4.05;ポリアミド6成分=88mol%とポリアミド66成分=5mol%とポリアミド12成分=7mol%との共重合体、密度=1.117g/cm
[Materials used]
1. Polyamide resin (1) Aliphatic homopolyamide resin PA6-1: Polyamide 6 (manufactured by UBE Corporation: relative viscosity = 1.93, density = 1.129 g/cm 3 )
PA6-2: Polyamide 6 (manufactured by UBE Corporation: relative viscosity = 2.24, density = 1.129 g/cm 3 )
PA6-3: Polyamide 6 (manufactured by UBE Corporation: relative viscosity = 2.45, density = 1.129 g/cm 3 )
PA6-4: Polyamide 6 (manufactured by UBE Corporation: relative viscosity = 2.64, density = 1.129 g/cm 3 )
PA6-5: Polyamide 6 (manufactured by UBE Corporation: relative viscosity = 2.78, density = 1.129 g/cm 3 )
(2) Aliphatic copolymer polyamide resin PA6/66-1: Polyamide 6/66 (manufactured by UBE Corporation: relative viscosity = 3.04; copolymer of polyamide 6 component = 92 mol% and polyamide 66 component = 8 mol%) , density = 1.117g/cm 3 )
PA6/66-2: Polyamide 6/66 (manufactured by UBE Corporation: relative viscosity = 4.05; copolymer of polyamide 6 component = 90 mol% and polyamide 66 component = 10 mol%, density = 1.117 g/cm 3 )
PA6/66/12-1: Polyamide 6/66/12 (manufactured by UBE Corporation: relative viscosity = 4.05; polyamide 6 component = 88 mol%, polyamide 66 component = 5 mol%, polyamide 12 component = 7 mol%) Polymer, density = 1.117g/cm 3 )
2.ポリオレフィン系樹脂
 無水マレイン酸変性エチレン-ブテン共重合体(三井化学株式会社製、タフマー(登録商標)MH5020、密度=0.866g/cm(カタログデータ))
2. Polyolefin resin Maleic anhydride-modified ethylene-butene copolymer (manufactured by Mitsui Chemicals, Inc., Tafmer (registered trademark) MH5020, density = 0.866 g/cm 3 (catalog data))
3.化合物(C)
 炭素数が18~32の長鎖脂肪酸エステル及び長鎖脂肪酸カルシウムの混合物
3. Compound (C)
Mixture of long chain fatty acid ester and long chain fatty acid calcium having 18 to 32 carbon atoms
4.酸化防止剤
 ハロゲン化金属系酸化防止剤:ヨウ化第一銅とヨウ化カリウムとの混合物、質量比1:6
4. Antioxidant Metal halide antioxidant: mixture of cuprous iodide and potassium iodide, mass ratio 1:6
実施例1~9及び比較例1~7
 表1及び2に記載した各成分を、二軸混練機であるZSK32mc二軸押出機(Coperion社製、シリンダー径32mm、L/D48)を用い、シリンダー温度250℃、スクリュー回転数200rpm、吐出量50kg/hrsにて溶融混練し、目的とするポリアミド樹脂組成物のペレットを作製した。なお、表中の組成の単位は質量%であり、樹脂組成物全体を100質量%とする。
Examples 1 to 9 and Comparative Examples 1 to 7
The components listed in Tables 1 and 2 were mixed using a ZSK32mc twin-screw extruder (manufactured by Coperion, cylinder diameter 32 mm, L/D 48), which is a twin-screw kneading machine, at a cylinder temperature of 250°C, a screw rotation speed of 200 rpm, and a discharge rate. The mixture was melt-kneaded at 50 kg/hrs to produce pellets of the desired polyamide resin composition. Note that the unit of composition in the table is mass %, and the entire resin composition is 100 mass %.
 こうして得たペレットについて、上記評価を行った。実施例1~9及び比較例1~7のポリアミド樹脂組成物の評価結果をそれぞれ表1及び2に示す。 The pellets thus obtained were evaluated as described above. The evaluation results of the polyamide resin compositions of Examples 1 to 9 and Comparative Examples 1 to 7 are shown in Tables 1 and 2, respectively.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表1から、相対粘度が1.80~2.70である脂肪族ホモポリアミド樹脂(A)及び相対粘度が2.90~4.20である脂肪族共重合ポリアミド樹脂(B)を含み、(A)成分と(B)成分の混合物の相対粘度が2.30~3.60であり、かつ、ポリオレフィン系樹脂を含まない、実施例1~9のポリアミド樹脂組成物は、流動性が高く、成形品の水素ガスバリア性に優れ、-60℃における引張試験時の脆的な破壊がなく、低温環境下における柔軟性に優れることがわかる。脂肪族ホモポリアミド樹脂(A)の相対粘度が2.20~2.60、脂肪族共重合ポリアミド樹脂(B)の相対粘度が2.90~4.20、(A)成分と(B)成分の混合物の相対粘度が2.40~2.80である実施例3、4及び7のポリアミド樹脂組成物は、流動性、成形品の水素ガスバリア性及び低温環境下における柔軟性がいずれも優れており、好ましい。 From Table 1, the aliphatic homopolyamide resin (A) having a relative viscosity of 1.80 to 2.70 and the aliphatic copolyamide resin (B) having a relative viscosity of 2.90 to 4.20, The polyamide resin compositions of Examples 1 to 9, in which the mixture of component A) and component (B) have a relative viscosity of 2.30 to 3.60 and do not contain a polyolefin resin, have high fluidity; It can be seen that the molded article has excellent hydrogen gas barrier properties, no brittle fracture during a tensile test at -60°C, and excellent flexibility in a low-temperature environment. The relative viscosity of the aliphatic homopolyamide resin (A) is 2.20 to 2.60, the relative viscosity of the aliphatic copolyamide resin (B) is 2.90 to 4.20, the (A) component and the (B) component. The polyamide resin compositions of Examples 3, 4, and 7, in which the relative viscosity of the mixture is 2.40 to 2.80, have excellent fluidity, hydrogen gas barrier properties of molded products, and flexibility in low-temperature environments. Yes, it is preferable.
 ポリアミド樹脂として、相対粘度が本願発明の範囲外である脂肪族ホモポリアミド樹脂のみを用いた比較例1は、流動性に劣る。相対粘度が本願発明の範囲内にある脂肪族ホモポリアミド樹脂を用いているものの、脂肪族共重合ポリアミド樹脂(B)を配合しない比較例2~4は、低温環境下における柔軟性に劣る。相対粘度が本願発明の範囲内にある脂肪族ホモポリアミド樹脂(A)及び脂肪族共重合ポリアミド樹脂(B)を用いているものの、これらの混合物の相対粘度が本願発明の範囲外である比較例5は、-60℃における引張試験時に、脆的な破壊が発生した。
 脂肪族共重合ポリアミド樹脂(B)のみを用いた比較例6は、流動性に劣る。脂肪族ホモポリアミド樹脂と変性ポリオレフィン系樹脂を併用した比較例7は、流動性及び成形品の水素ガスバリア性に劣る。
Comparative Example 1 using only an aliphatic homopolyamide resin whose relative viscosity is outside the range of the present invention as a polyamide resin has poor fluidity. Comparative Examples 2 to 4, which use an aliphatic homopolyamide resin whose relative viscosity is within the range of the present invention, but do not contain an aliphatic copolyamide resin (B), have poor flexibility in a low-temperature environment. A comparative example in which an aliphatic homopolyamide resin (A) and an aliphatic copolyamide resin (B) whose relative viscosities are within the range of the present invention are used, but the relative viscosity of a mixture of these is outside the range of the present invention. In No. 5, brittle fracture occurred during the tensile test at -60°C.
Comparative Example 6 using only the aliphatic copolymerized polyamide resin (B) had poor fluidity. Comparative Example 7, in which an aliphatic homopolyamide resin and a modified polyolefin resin were used in combination, was inferior in fluidity and hydrogen gas barrier properties of the molded article.
 本発明のポリアミド樹脂組成物は、射出成形、回転成形等による各種成形品の製造に好適に用いることができる。 The polyamide resin composition of the present invention can be suitably used for producing various molded products by injection molding, rotational molding, etc.

Claims (12)

  1.  脂肪族ホモポリアミド樹脂(A)及び脂肪族共重合ポリアミド樹脂(B)、並びに任意成分として、炭素数が18~32である脂肪酸及びその誘導体からなる群より選択される少なくとも1種の化合物(C)を含み、実質的にポリオレフィン系樹脂を含まない、高圧水素ガスに触れる成形品用のポリアミド樹脂組成物であって、
     JIS K 6920に準じて、ポリアミド樹脂1gを96%硫酸100mlに溶解させ、25℃で測定される相対粘度において、
     脂肪族ホモポリアミド樹脂(A)の相対粘度が1.80~2.70であり、
     脂肪族共重合ポリアミド樹脂(B)の相対粘度が2.90~4.20であり、
     脂肪族ホモポリアミド樹脂(A)及び脂肪族共重合ポリアミド樹脂(B)の混合物の相対粘度が2.30~3.60であり、
     ポリアミド樹脂組成物100質量%中に、脂肪族ホモポリアミド樹脂(A)及び脂肪族共重合ポリアミド樹脂(B)の合計を93.0~100質量%、前記化合物(C)を0~2.0質量%、並びに他の成分を0~5.0質量%含み、
     脂肪族ホモポリアミド樹脂(A)と脂肪族共重合ポリアミド樹脂(B)との比率が、質量基準で50:50~90:10であるポリアミド樹脂組成物。
    Aliphatic homopolyamide resin (A) and aliphatic copolyamide resin (B), and as an optional component, at least one compound selected from the group consisting of fatty acids having 18 to 32 carbon atoms and derivatives thereof (C ) and substantially free of polyolefin resin, the polyamide resin composition is for molded products exposed to high-pressure hydrogen gas,
    According to JIS K 6920, 1 g of polyamide resin is dissolved in 100 ml of 96% sulfuric acid, and the relative viscosity is measured at 25°C.
    The relative viscosity of the aliphatic homopolyamide resin (A) is 1.80 to 2.70,
    The aliphatic copolymer polyamide resin (B) has a relative viscosity of 2.90 to 4.20,
    The relative viscosity of the mixture of the aliphatic homopolyamide resin (A) and the aliphatic copolyamide resin (B) is 2.30 to 3.60,
    In 100% by mass of the polyamide resin composition, the total amount of aliphatic homopolyamide resin (A) and aliphatic copolyamide resin (B) is 93.0 to 100% by mass, and the above compound (C) is 0 to 2.0% by mass. % by mass, and 0 to 5.0% by mass of other components,
    A polyamide resin composition in which the ratio of aliphatic homopolyamide resin (A) to aliphatic copolyamide resin (B) is 50:50 to 90:10 on a mass basis.
  2.  脂肪族ホモポリアミド樹脂(A)と脂肪族共重合ポリアミド樹脂(B)との比率が、質量基準で65:35~90:10である、請求項1に記載のポリアミド樹脂組成物。 The polyamide resin composition according to claim 1, wherein the ratio of the aliphatic homopolyamide resin (A) to the aliphatic copolyamide resin (B) is 65:35 to 90:10 on a mass basis.
  3.  脂肪族ホモポリアミド樹脂(A)の相対粘度が1.80~2.60である、請求項1又は2に記載のポリアミド樹脂組成物。 The polyamide resin composition according to claim 1 or 2, wherein the aliphatic homopolyamide resin (A) has a relative viscosity of 1.80 to 2.60.
  4.  脂肪族ホモポリアミド樹脂(A)及び脂肪族共重合ポリアミド樹脂(B)の混合物の相対粘度が2.40~2.80である、請求項1又は2に記載のポリアミド樹脂組成物。 The polyamide resin composition according to claim 1 or 2, wherein the mixture of the aliphatic homopolyamide resin (A) and the aliphatic copolyamide resin (B) has a relative viscosity of 2.40 to 2.80.
  5.  脂肪族共重合ポリアミド樹脂(B)が、全構成単位100mol%中、ε-カプロラクタム由来の構成単位及び6-アミノカプロン酸由来の構成単位を75mol%以上95mol%未満含む、請求項1又は2に記載のポリアミド樹脂組成物。 According to claim 1 or 2, the aliphatic copolymerized polyamide resin (B) contains 75 mol% or more and less than 95 mol% of ε-caprolactam-derived structural units and 6-aminocaproic acid-derived structural units in 100 mol% of the total structural units. polyamide resin composition.
  6.  化合物(C)が、炭素数が18~32である脂肪酸並びにその金属塩、エステル及びアミドからなる群より選択される少なくとも1種である、請求項1又は2に記載のポリアミド樹脂組成物。 The polyamide resin composition according to claim 1 or 2, wherein the compound (C) is at least one selected from the group consisting of fatty acids having 18 to 32 carbon atoms, metal salts thereof, esters, and amides thereof.
  7.  ISO 294-1に従い、樹脂温度250℃及び金型温度80℃の射出成形機にて成形されるType-A1試験片を用い、ISO 1183-3に従い測定される脂肪族ホモポリアミド樹脂(A)、脂肪族共重合ポリアミド樹脂(B)及びポリアミド樹脂組成物の密度がそれぞれ、1.120g/cm~1.150g/cm、1.100g/cm~1.130g/cm及び1.120g/cm~1.140g/cmである、請求項1又は2に記載のポリアミド樹脂組成物。 Aliphatic homopolyamide resin (A) measured according to ISO 1183-3 using a Type-A1 test piece molded in an injection molding machine with a resin temperature of 250 ° C. and a mold temperature of 80 ° C. according to ISO 294-1, The densities of the aliphatic copolymerized polyamide resin (B) and the polyamide resin composition are 1.120 g/cm 3 to 1.150 g/cm 3 , 1.100 g/cm 3 to 1.130 g/cm 3 and 1.120 g, respectively. The polyamide resin composition according to claim 1 or 2, wherein the polyamide resin composition has a weight/cm 3 to 1.140 g/cm 3 .
  8.  ISO 294-1に従い、樹脂温度250℃及び金型温度80℃の射出成形機にて成形されるType-A1試験片を用い、ISO 1183-3に従い測定されるポリアミド樹脂組成物の密度が1.126~1.129g/cmである、請求項7に記載のポリアミド樹脂組成物。 The density of the polyamide resin composition measured according to ISO 1183-3 using a Type-A1 test piece molded in an injection molding machine with a resin temperature of 250°C and a mold temperature of 80°C according to ISO 294-1 is 1. The polyamide resin composition according to claim 7, which has a weight of 126 to 1.129 g/cm 3 .
  9.  JIS K 7126-1に従い、前記ポリアミド樹脂組成物を用いて、射出成形機にて樹脂温度250℃及び金型温度80℃にて成形して得られた、厚み2.0mm及び直径Φ60mmの円形成形品について、差圧法を採用して測定した55℃及び1atmにおける水素ガス透過係数が0.1×10―10cm・cm/(cm・s・cmHg)超1.8×10―10cm・cm/(cm・s・cmHg)未満である、請求項1又は2に記載のポリアミド樹脂組成物。 A circle with a thickness of 2.0 mm and a diameter of 60 mm was obtained by molding the polyamide resin composition using an injection molding machine at a resin temperature of 250°C and a mold temperature of 80°C in accordance with JIS K 7126-1. The hydrogen gas permeability coefficient at 55°C and 1 atm measured using the differential pressure method is 0.1 x 10 -10 cm 3 cm / (cm 2 - s cmHg) or more than 1.8 x 10 -10 The polyamide resin composition according to claim 1 or 2, wherein the polyamide resin composition is less than cm 3 ·cm/(cm 2 ·s·cmHg).
  10.  請求項1又は2に記載のポリアミド樹脂組成物を含む、高圧水素ガスに触れる成形品。 A molded article that comes into contact with high-pressure hydrogen gas and includes the polyamide resin composition according to claim 1 or 2.
  11.  高圧水素用タンクライナー、高圧水素用ホース、高圧水素用チューブ及び高圧水素用継ぎ手からなる群から選択される1つである、請求項10に記載の高圧水素ガスに触れる成形品。 The molded article that comes into contact with high-pressure hydrogen gas according to claim 10, which is one selected from the group consisting of a high-pressure hydrogen tank liner, a high-pressure hydrogen hose, a high-pressure hydrogen tube, and a high-pressure hydrogen joint.
  12.  請求項1又は2に記載のポリアミド樹脂組成物を含む高圧水素用タンクライナー及び連続繊維強化樹脂層を含む高圧水素用タンク。 A high-pressure hydrogen tank comprising a high-pressure hydrogen tank liner comprising the polyamide resin composition according to claim 1 or 2 and a continuous fiber-reinforced resin layer.
PCT/JP2023/022930 2022-06-22 2023-06-21 Polyamide resin composition for molded product contacting high pressure gas WO2023249051A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022100081 2022-06-22
JP2022-100081 2022-06-22

Publications (1)

Publication Number Publication Date
WO2023249051A1 true WO2023249051A1 (en) 2023-12-28

Family

ID=89380034

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/022930 WO2023249051A1 (en) 2022-06-22 2023-06-21 Polyamide resin composition for molded product contacting high pressure gas

Country Status (1)

Country Link
WO (1) WO2023249051A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009191871A (en) * 2008-02-12 2009-08-27 Ube Ind Ltd Hydrogen tank liner material and hydrogen tank liner
WO2016136025A1 (en) * 2015-02-27 2016-09-01 東レ株式会社 Polyamide resin composition for molded article to be in contact with high-pressure hydrogen, and molded article obtained therefrom
JP2020117637A (en) * 2019-01-25 2020-08-06 東レ株式会社 Polyamide resin composition for molded product that comes into contact with high pressure hydrogen and molded product therewith
WO2021157606A1 (en) * 2020-02-05 2021-08-12 宇部興産株式会社 Polyamide resin composition

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009191871A (en) * 2008-02-12 2009-08-27 Ube Ind Ltd Hydrogen tank liner material and hydrogen tank liner
WO2016136025A1 (en) * 2015-02-27 2016-09-01 東レ株式会社 Polyamide resin composition for molded article to be in contact with high-pressure hydrogen, and molded article obtained therefrom
JP2020117637A (en) * 2019-01-25 2020-08-06 東レ株式会社 Polyamide resin composition for molded product that comes into contact with high pressure hydrogen and molded product therewith
WO2021157606A1 (en) * 2020-02-05 2021-08-12 宇部興産株式会社 Polyamide resin composition

Similar Documents

Publication Publication Date Title
CN112654677B (en) Polyamide resin composition
JP5113910B2 (en) Polyamide molding compounds, in particular polyamide molding compounds for producing molded parts applied for drinking water
CA2918146C (en) Multilayer structure
CN111448257B (en) Polyamide resin composition
JP2011503250A (en) Molding compounds for producing molded parts for drinking water
EP3040201B1 (en) Multilayer structure
WO2012043640A1 (en) Polyamide resin composition and molded article comprising same
WO2021085472A1 (en) Polyamide resin composition
WO2019026499A1 (en) Easily-torn film, multilayer film, packaging material, and container
WO2023249051A1 (en) Polyamide resin composition for molded product contacting high pressure gas
JP7310942B2 (en) Polyamide resin composition
JP6759706B2 (en) Polyamide resin composition
WO2023037937A1 (en) Polyamide resin composition
EP3130642B1 (en) Molded body and manufacturing method thereof
WO2022149430A1 (en) Material for molded product in contact with high-pressure gas
JP7468189B2 (en) Polyamide resin composition
WO2023008480A1 (en) Polyamide resin composition, polyamide resin composition for three-dimensional modeling, and three-dimensional model of same
JP6979318B2 (en) Pellets, molded products and methods for manufacturing pellets
JP6136489B2 (en) Multilayer structure
JP2021080344A (en) Polyamide resin composition
JP2014201045A (en) Multilayer structure

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23827234

Country of ref document: EP

Kind code of ref document: A1