WO2023008480A1 - Polyamide resin composition, polyamide resin composition for three-dimensional modeling, and three-dimensional model of same - Google Patents

Polyamide resin composition, polyamide resin composition for three-dimensional modeling, and three-dimensional model of same Download PDF

Info

Publication number
WO2023008480A1
WO2023008480A1 PCT/JP2022/028939 JP2022028939W WO2023008480A1 WO 2023008480 A1 WO2023008480 A1 WO 2023008480A1 JP 2022028939 W JP2022028939 W JP 2022028939W WO 2023008480 A1 WO2023008480 A1 WO 2023008480A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyamide resin
resin composition
polyamide
mass
dimensional modeling
Prior art date
Application number
PCT/JP2022/028939
Other languages
French (fr)
Japanese (ja)
Inventor
哲也 安井
知之 中川
Original Assignee
Ube株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2021122547A external-priority patent/JP2023018424A/en
Priority claimed from JP2021122613A external-priority patent/JP2023018462A/en
Priority claimed from JP2021122591A external-priority patent/JP2023018449A/en
Application filed by Ube株式会社 filed Critical Ube株式会社
Publication of WO2023008480A1 publication Critical patent/WO2023008480A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/106Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material
    • B29C64/118Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using filamentary material being melted, e.g. fused deposition modelling [FDM]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • B33Y70/10Composites of different types of material, e.g. mixtures of ceramics and polymers or mixtures of metals and biomaterials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y80/00Products made by additive manufacturing
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L61/00Compositions of condensation polymers of aldehydes or ketones; Compositions of derivatives of such polymers
    • C08L61/04Condensation polymers of aldehydes or ketones with phenols only
    • C08L61/06Condensation polymers of aldehydes or ketones with phenols only of aldehydes with phenols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L77/00Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers

Definitions

  • the first and second inventions relate to polyamide resin compositions.
  • a third invention relates to a polyamide resin composition for three-dimensional modeling.
  • nylon 6 and nylon 66 are highly heat-resistant and rigid, and have a considerable track record of being used as materials for automobile parts.
  • these polyamides have the disadvantage that they are susceptible to cracking when they are attacked by road deicing agents using halogenated metal salts such as calcium chloride, magnesium chloride, zinc chloride and rock salt.
  • Patent Document 1 describes a polyamide resin composition containing 90 to 60% by weight of polyamide, 5 to 30% by weight of a phenolic compound, and 5 to 25% by weight of an ethylene elastomer.
  • Polyamide having road antifreeze resistance and low water absorption An automotive underhood component made of resin is disclosed.
  • a novolac type phenolic resin is used as the phenolic compound.
  • Patent Documents 2 to 4 Polyamide resin compositions containing a polyamide resin and a novolak-type phenolic resin are also disclosed in Patent Documents 2 to 4.
  • Patent Document 2 discloses that a polyamide resin composition containing a polyamide resin and a high-molecular-weight novolak-type phenolic resin can greatly improve the glass transition temperature of the polyamide resin composition, and can be used not only in a dry state but also in a water-absorbing state. However, it is described that the mechanical strength is excellent.
  • Patent Document 3 describes that a polyamide resin composition obtained by adding 1 to 15% by weight of a novolac phenolic resin to a polyamide resin can increase the melt flow index.
  • Patent Document 4 describes that a polyamide resin composition containing a low melt viscosity polyamide resin, a low molecular weight novolac phenolic resin, and a filler has excellent melt fluidity while containing a high filler content. .
  • a method of manufacturing a three-dimensional molded product a method of manufacturing a three-dimensional modeled object using a 3D printer, which is a manufacturing device for three-dimensional modeling, is used.
  • a 3D printer manufactures a three-dimensional object by sequentially stacking two-dimensional layers based on three-dimensional coordinate data.
  • FDM method hot melt deposition method
  • liquid bath photopolymerization method an inkjet method
  • inkjet method a hot melt deposition method
  • the FDM method a filament-like raw material composition is continuously extruded and deposited from a nozzle portion onto an XY plane table while being heated and melted, and is further stacked in the Z-axis direction. It fuses and solidifies together as it cools.
  • thermoplastic resins such as polycarbonate resins, ABS resins, polycarbonate ABS resins, polylactic acid, polyamide resins and polyamide elastomers have been used because they require melt fluidity.
  • a polyamide resin composition containing a polyamide resin composition and a novolac-type phenol resin is known as a resin composition having good melt fluidity in injection molding. (See Patent Document 3). Similar compositions are known to have low water absorption and excellent mechanical properties (see Patent Documents 1 and 2).
  • JP-A-60-188456 JP 2016-113603 A Japanese Patent Publication No. 2011-500875 JP-A-2003-246934
  • Patent Document 1 Since a specific amount of the ethylene-based elastomer is contained, the mechanical properties and heat resistance of the polyamide resin composition may deteriorate.
  • Patent Document 2 since the novolac-type phenolic resin has a high molecular weight, the polyamide resin composition has a low fluidity, and sufficient moldability cannot be obtained in some cases.
  • Patent Document 3 since the content of the novolak-type phenolic resin is small, there are cases where the water absorption of the polyamide resin cannot be sufficiently suppressed.
  • Patent Document 4 since a polyamide resin with a low melt viscosity and a novolak-type phenolic resin with a low molecular weight are combined, the molecular weight is low and the amount of inorganic filler is large, resulting in a decrease in impact resistance.
  • the first invention has good calcium chloride resistance, a low extraction amount by the Soxhlet extraction method when water is used as a solvent and when methanol is used as a solvent, has insulating properties, has a low water absorption, and when water is absorbed.
  • An object of the present invention is to provide a polyamide resin composition having good mechanical properties.
  • Patent Document 1 when a specific amount of the ethylene-based elastomer is contained, the heat resistance of the polyamide resin composition may be lowered in addition to the deterioration of the adhesion to the reinforcing material.
  • Patent Document 2 since the novolak-type phenolic resin has a high molecular weight, the fluidity of the nylon resin composition is lowered, and sufficient moldability cannot be obtained in some cases.
  • Patent Document 3 since the content of the novolak-type phenolic resin is small, the polyamide resin may not sufficiently suppress water absorption.
  • Patent Document 4 since a polyamide resin with a low melt viscosity and a novolak-type phenolic resin with a low molecular weight are combined, the molecular weight is low and the amount of inorganic filler is large, so the impact resistance may be lowered.
  • a second object of the invention is to provide a polyamide resin composition that has good calcium chloride resistance, low water absorption, and excellent mechanical properties when water is absorbed.
  • thermoplastic resins such as polylactic acid, polyamide resin, and polyamide elastomer, which have been used in the conventional FDM method, are thermoplastic resins in a molten state extruded from a nozzle.
  • the resin is solidified as a three-dimensional molded product, deformation such as warpage occurs in the molded product due to the influence of heat shrinkage, etc., and a highly accurate molded product may not be obtained.
  • a polyamide resin composition containing a polyamide resin composition and a novolak-type phenolic resin has been used in a molding method for injection molding, but no attempt has been made to mold it with a 3D printer.
  • the third invention when molded with a 3D printer, suppresses warping of the molded product, suppresses foaming when extruded from the nozzle, and has a good appearance and a low water absorption rate. It is an object of the present invention to provide a polyamide resin composition for three-dimensional modeling that satisfies the requirements for strength.
  • the first invention is, for example, the following [1] to [8].
  • [1] A polyamide resin composition containing 60 to 95% by mass of a polyamide resin (A) and 5 to 40% by mass of a novolak phenolic resin (B) in 100% by mass of the polyamide resin composition,
  • the polyamide resin (A) has a relative viscosity of 1.9 or more and 5.0 or less measured at 25° C. in accordance with JIS K6920-2
  • the novolak-type phenol resin (B) has a softening point temperature of 130° C.
  • the polyamide resin composition is extracted for 6 hours by a Soxhlet extraction method using water as a solvent, and the extracted amount is 1.5% by mass or less with respect to 100% by mass of the polyamide resin composition used for extraction.
  • Resin composition [2] The polyamide resin composition of [1], wherein the novolak-type phenolic resin (B) is a novolac-type phenolic resin represented by the following formula (1). (In the above formula (1), n is 1 to 200.) [3]
  • the polyamide resin (A) contains at least one selected from the group consisting of an aliphatic homopolyamide resin (A-1) and an aliphatic copolyamide resin (A-2) [1] or [ 2] of the polyamide resin composition.
  • the second invention is, for example, the following (1) to (8).
  • (1) In 100% by mass of the polyamide resin composition, 30 to 70% by mass of the polyamide resin (A), 10 to 40% by mass of the novolak phenolic resin (B), and 5 to 40% by mass of the reinforcing filler (C)
  • a polyamide resin composition comprising: (2) The polyamide resin composition according to (1), wherein the novolak-type phenolic resin (B) has a softening point temperature of 130° C. or lower.
  • the polyamide resin (A) contains at least one selected from the group consisting of an aliphatic homopolyamide resin (A-1) and an aliphatic copolyamide resin (A-2) (1) to ( The polyamide resin composition according to any one of 4).
  • the third invention consists of, for example, the following ⁇ 1> to ⁇ 8>.
  • ⁇ 1> A polyamide resin composition for three-dimensional modeling containing 60 to 95% by mass of a polyamide resin (A) and 5 to 40% by mass of a novolak-type phenolic resin (B) in 100% by mass of a polyamide resin composition for three-dimensional modeling.
  • ⁇ 2> The polyamide resin composition for three-dimensional modeling according to ⁇ 1>, wherein the polyamide resin (A) contains an aliphatic copolymer polyamide (A-2).
  • ⁇ 3> The three-dimensional modeling of ⁇ 1>, wherein the polyamide resin (A) is at least one selected from the group consisting of polyamide 6, polyamide 6/66, polyamide 6/12 and polyamide 6/66/12. Polyamide resin composition.
  • ⁇ 4> The polyamide resin composition for three-dimensional modeling according to any one of ⁇ 1> to ⁇ 3>, wherein the novolak-type phenolic resin (B) has a softening point temperature of 110 to 150°C.
  • ⁇ 5> The water absorption rate when an ISO527 type A tensile test piece obtained by injection molding the polyamide resin composition for three-dimensional modeling is immersed in water at 40 ° C. for 24 hours, is 2.2% or less.
  • the polyamide resin composition for three-dimensional modeling according to any one of ⁇ 1> to ⁇ 4>.
  • ⁇ 6> After leaving the ISO527 type A tensile test piece obtained by three-dimensionally modeling the polyamide resin composition for three-dimensional modeling using a 3D printer under conditions of 23 ° C. and 50% RH for 24 hours. , When placed on a surface plate and one end of the width direction side is fixed with a weight, the amount of warpage of the other width direction side end from the surface of the surface plate is 30 mm or less ⁇ 1> to ⁇ 5> any polyamide resin composition for three-dimensional modeling.
  • ⁇ 7> A monofilament for three-dimensional modeling obtained by molding the polyamide resin composition for three-dimensional modeling according to any one of ⁇ 1> to ⁇ 6>.
  • Molded article obtained by three-dimensional modeling of the polyamide resin composition for three-dimensional modeling according to any one of ⁇ 1> to ⁇ 6> or the monofilament for three-dimensional modeling according to claim 7 using a 3D printer.
  • ⁇ 9> Use of the polyamide resin composition for three-dimensional modeling of ⁇ 1> in three-dimensional modeling.
  • ⁇ 10> A method of using the polyamide resin composition for three-dimensional modeling of ⁇ 1> for three-dimensional modeling.
  • the polyamide resin composition of the first invention has a low extraction amount by the Soxhlet extraction method when water is used as a solvent and when methanol is used as a solvent, and has good calcium chloride resistance and insulation. It has low water absorption and good mechanical properties when water is absorbed.
  • the polyamide resin composition of the second invention has good calcium chloride resistance, low water absorption, and excellent mechanical properties when water is absorbed.
  • the term "substantially does not contain” means that the properties of the polyamide resin composition and the functions and properties of the molded product obtained from the polyamide resin composition are not changed. It does not exclude that it is included to the extent that it does not impair the characteristics.
  • the first invention is a polyamide resin composition containing 60 to 95% by mass of a polyamide resin (A) and 5 to 40% by mass of a novolac type phenolic resin (B) in 100% by mass of the polyamide resin composition.
  • the polyamide resin (A) has a relative viscosity of 1.9 or more and 5.0 or less measured at 25 ° C. in accordance with JIS K6920-2, and the novolak phenol resin (B) is softened.
  • the point temperature is 130 ° C. or less, and the extracted amount when the above-mentioned polyamide resin composition is extracted for 6 hours by the Soxhlet extraction method using water as a solvent is 100% by mass of the polyamide resin composition used for extraction. It relates to a polyamide resin composition having a content of 1.5% by mass or less.
  • the polyamide resin composition of the first invention contains a polyamide resin (A).
  • the polyamide resin (A) include an aliphatic homopolyamide resin (A-1), an aliphatic copolyamide resin (A-2), an aromatic homopolyamide resin (A-3) and an aromatic copolyamide resin (A -4). These may be used individually by 1 type, or may be used in combination of 2 or more types.
  • the polyamide resin (A) is at least one selected from the group consisting of an aliphatic homopolyamide resin (A-1) and an aliphatic copolymerized polyamide resin (A-2). It preferably contains an aliphatic homopolyamide resin (A-1), and more preferably contains an aliphatic homopolyamide resin (A-1).
  • the aliphatic homopolyamide resin (A-1) is a polyamide resin composed of one type of aliphatic constitutional unit.
  • the aliphatic homopolyamide resin (A-1) may consist of at least one aminocarboxylic acid that is one type of lactam and a hydrolyzate of the lactam, and one type of diamine and one type of dicarboxylic acid. It may consist of a combination of Here, the combination of diamine and dicarboxylic acid is regarded as one type of monomer in combination of one type of diamine and one type of dicarboxylic acid.
  • Lactams include ⁇ -caprolactam, enantholactam, undecanelactam, ⁇ -pyrrolidone, ⁇ -piperidone, laurolactam and the like. Among these, one selected from the group consisting of ⁇ -caprolactam, undecanelactam, and laurolactam is preferred from the viewpoint of polymerization production.
  • Aminocarboxylic acids include 6-aminocaproic acid, 7-aminoheptanoic acid, 9-aminononanoic acid, 11-aminoundecanoic acid, and 12-aminododecanoic acid. Among these, one selected from the group consisting of 6-aminocaproic acid, 11-aminoundecanoic acid, and 12-aminododecanoic acid is preferable from the viewpoint of polymerization production.
  • Diamines include ethylenediamine, tetramethylenediamine, pentamethylenediamine, hexamethylenediamine, peptamethylenediamine, octamethylenediamine, nonamethylenediamine, decamethylenediamine, undecamethylenediamine, dodecamethylenediamine, tridecanediamine, and tetradecanediamine.
  • 1,3-/1,4-cyclohexyldiamine bis(4-aminocyclohexyl)methane, bis(4-aminocyclohexyl)propane, bis(3-methyl-4-aminocyclohexyl)methane, (3 -methyl-4-aminocyclohexyl)propane, 1,3-/1,4-bisaminomethylcyclohexane, 5-amino-2,2,4-trimethyl-1-cyclopentanemethylamine, 5-amino-1,3 , 3-trimethylcyclohexanemethylamine, bis(aminopropyl)piperazine, bis(aminoethyl)piperazine, norbornane dimethyleneamine and other alicyclic diamines.
  • aliphatic diamines are preferred, and hexamethylenediamine is more preferred.
  • Dicarboxylic acids include oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, undecanedioic acid, dodecanedioic acid, tridecanedioic acid, tetradecanedioic acid, pentadecane.
  • Aliphatic dicarboxylic acids such as dioic acid, hexadecanedioic acid, octadecanedioic acid, eicosandioic acid; 1,3-/1,4-cyclohexanedicarboxylic acid, dicyclohexanemethane-4,4'-dicarboxylic acid, norbornanedicarboxylic acid alicyclic dicarboxylic acids such as Among these, aliphatic dicarboxylic acids are preferred, one selected from the group consisting of adipic acid, sebacic acid and dodecanedioic acid is more preferred, and adipic acid or dodecanedioic acid is even more preferred.
  • aliphatic homopolyamide resin (A-1) examples include polycaprolactam (polyamide 6), polyenantholactam (polyamide 7), polyundecanelactam (polyamide 11), polylaurolactam (polyamide 12), and polyhexamethylene.
  • adipamide polyamide 66), polytetramethylene dodecamide (polyamide 412), polypentamethylene adipamide (polyamide 56), polypentamethylene azelamide (polyamide 59), polypentamethylene sebacamide (polyamide 510), Polypentamethylene dodecamide (Polyamide 512), Polyhexamethylene Azelamide (Polyamide 69), Polyhexamethylene Sebacamide (Polyamide 610), Polyhexamethylene Dodecamide (Polyamide 612), Polynonamethylene adipamide (Polyamide 96 ), polynonamethyleneazelamide (polyamide 99), polynonamethylenesebacamide (polyamide 910), polynonamethylenedodecanamide (polyamide 912), polydecamethyleneadipamide (polyamide 106), polydecamethyleneazelamide ( Polyamide 109), polydecamethylenedecamide (polyamide 1010), polydecamethylenedodecamide (polyamide 1010)
  • the aliphatic homopolyamide resin (A-1) is preferably at least one selected from the group consisting of polyamide 6, polyamide 11, polyamide 12, polyamide 66, polyamide 610 and polyamide 612 from the viewpoint of polymerization productivity, At least one selected from polyamide 6, polyamide 11, polyamide 12, polyamide 610 and polyamide 612 is more preferred, and polyamide 6 is even more preferred.
  • Equipment for producing the aliphatic homopolyamide resin (A-1) includes a batch reactor, a single-vessel or multi-vessel continuous reactor, a tubular continuous reactor, a single-screw kneading extruder, and a twin-screw kneading extruder.
  • a known polyamide manufacturing apparatus such as a kneading reaction extruder such as
  • As a polymerization method known methods such as melt polymerization, solution polymerization, and solid phase polymerization can be used, and polymerization can be performed by repeating normal pressure, reduced pressure, and pressurization operations. These polymerization methods can be used alone or in combination as appropriate.
  • the relative viscosity of the aliphatic homopolyamide resin (A-1) is measured at 25°C by dissolving 1 g of the aliphatic homopolyamide in 100 ml of 96% concentrated sulfuric acid according to JIS K 6920-2.
  • the relative viscosity of the aliphatic homopolyamide is preferably 1.9 or more and 5.0 or less, more preferably 2.3 or more and 4.5 or less, and preferably 2.7 or more and 4.3 or less. More preferred.
  • 3.2 or more and 4.2 or less is particularly preferable. When the relative viscosity is within the above range, molding processability is good, and mechanical properties are also good.
  • the terminal amino group concentration of the aliphatic homopolyamide resin (A-1) is determined by neutralization titration after dissolving in a mixed solvent of phenol and methanol.
  • the terminal amino group concentration of the aliphatic homopolyamide resin (A-1) is preferably 30 ⁇ mol/g or more, more preferably 30 ⁇ mol/g or more and 50 ⁇ mol/g or less.
  • the aliphatic copolyamide resin (A-2) is a polyamide resin composed of two or more kinds of aliphatic constitutional units.
  • the aliphatic copolyamide resin (A-2) is a copolymer of monomers selected from the group consisting of combinations of diamines and dicarboxylic acids, lactams and aminocarboxylic acids.
  • the combination of diamine and dicarboxylic acid is regarded as one type of monomer in combination of one type of diamine and one type of dicarboxylic acid.
  • diamine examples include those exemplified as raw materials for the aliphatic homopolyamide resin (A-1).
  • a diamine may be used individually by 1 type, and may be used in combination of 2 or more types as appropriate.
  • at least one selected from the group consisting of aliphatic diamines is preferable, at least one selected from the group consisting of linear aliphatic diamines is more preferable, and hexamethylenediamine is More preferred.
  • dicarboxylic acid examples include those exemplified as raw materials for the aliphatic homopolyamide resin (A-1).
  • One type of dicarboxylic acid may be used alone, or two or more types may be used in combination as appropriate.
  • aliphatic dicarboxylic acids are preferred, at least one selected from the group consisting of adipic acid, sebacic acid and dodecanedioic acid is more preferred, and at least one selected from the group consisting of adipic acid and dodecanedioic acid is More preferred.
  • lactam examples include those exemplified as raw materials for the aliphatic homopolyamide resin (A-1).
  • One type of lactam may be used alone, or two or more types may be used in combination as appropriate.
  • at least one selected from the group consisting of ⁇ -caprolactam, undecanelactam and laurolactam is preferred.
  • examples of the aminocarboxylic acid include those similar to those exemplified as raw materials for the aliphatic homopolyamide resin (A-1).
  • One type of aminocarboxylic acid may be used alone, or two or more types may be used in combination as appropriate.
  • at least one selected from the group consisting of 6-aminocaproic acid, 11-aminoundecanoic acid, and 12-aminododecanoic acid is preferable from the viewpoint of polymerization production.
  • aliphatic copolymerized polyamide resin (A-2) examples include caprolactam/hexamethylenediaminoadipic acid copolymer (polyamide 6/66) and caprolactam/hexamethylenediaminoazelaic acid copolymer (polyamide 6/69).
  • caprolactam/hexamethylenediaminosebacic acid copolymer (polyamide 6/610), caprolactam/hexamethylenediaminoundecanoic acid copolymer (polyamide 6/611), caprolactam/hexamethylenediaminododecanoic acid copolymer (polyamide 6/612 ), caprolactam/aminoundecanoic acid copolymer (polyamide 6/11), caprolactam/laurolactam copolymer (polyamide 6/12), caprolactam/hexamethylenediaminoadipic acid/laurolactam copolymer (polyamide 6/66/ 12), caprolactam/hexamethylenediaminoadipic acid/hexamethylenediaminosebacic acid copolymer (polyamide 6/66/610), caprolactam/hexamethylenediaminoadipic acid/hexamethylenediaminododecanedicarboxy
  • At least one selected from the group consisting of polyamide 6/66, polyamide 6/12 and polyamide 6/66/12 is preferable from the viewpoint of suppressing the water absorption rate of the molded product and maintaining the mechanical strength, At least one selected from the group consisting of polyamide 6/66 and polyamide 6/66/12 is more preferred, and polyamide 6/66 is particularly preferred.
  • Examples of the production apparatus and polymerization method for the aliphatic copolyamide resin (A-2) are the same as those exemplified in the section for the aliphatic homopolyamide resin (A-1).
  • the relative viscosity of the aliphatic copolyamide resin (A-2) is determined by dissolving 1 g of the aliphatic copolyamide in 100 ml of 96% concentrated sulfuric acid in accordance with JIS K 6920-2, from the viewpoint of moldability and mechanical properties.
  • the relative viscosity measured at 25 ° C. is preferably 1.9 or more and 5.0 or less, more preferably 2.3 or more and 4.5 or less, and 2.7 or more and 4.3 or less. More preferred.
  • 3.2 or more and 4.2 or less is particularly preferable. When the relative viscosity is within the above range, molding processability is good, and mechanical properties are also good.
  • the terminal amino group concentration of the aliphatic copolyamide resin (A-2) is determined by neutralization titration after dissolving in a mixed solvent of phenol and methanol.
  • the terminal amino group concentration of the aliphatic copolymerized polyamide resin (A-2) is preferably 30 ⁇ mol/g or more, more preferably 30 ⁇ mol/g or more and 50 ⁇ mol/g or less.
  • the terminal amino group concentration is within the above range, it is preferable from the viewpoint of adhesion to reinforcing materials and adhesion to other resins.
  • Aromatic homopolyamide resin (A-3) is an aromatic polyamide resin consisting of one type of structural unit derived from an aromatic monomer component, for example, aliphatic dicarboxylic acid and an aromatic diamine, an aromatic dicarboxylic acid and an aliphatic diamine, or an aromatic dicarboxylic acid and an aromatic diamine as raw materials, and are obtained by polycondensation thereof.
  • the combination of diamine and dicarboxylic acid is regarded as one type of monomer in combination of one type of diamine and one type of dicarboxylic acid.
  • Examples of the aliphatic diamine and aliphatic dicarboxylic acid used as raw materials include those exemplified as the starting materials for the aliphatic homopolyamide resin (A-1). Examples are also included.
  • Examples of aromatic diamines include meta-xylylenediamine and para-xylylenediamine, and examples of aromatic dicarboxylic acids include naphthalenedicarboxylic acid, terephthalic acid, isophthalic acid, and phthalic acid.
  • aromatic homopolyamide resin (A-3) examples include polynonamethylene terephthalamide (polyamide 9T), polyhexamethylene terephthalamide (polyamide 6T), polyhexamethylene isophthalamide (polyamide 6I), polyxyl and lenadipamide (polyamide MXD6).
  • the aromatic homopolyamide resin (A-3) may be used singly or as a mixture of two or more.
  • Examples of the production apparatus and polymerization method for the aromatic homopolyamide resin (A-3) are the same as those exemplified in the section for the aliphatic homopolyamide resin (A-1).
  • the degree of polymerization of (A-3) aromatic homopolyamide resin in the present invention is not particularly limited, but from the viewpoint of moldability and mechanical properties, (A-3) aromatic copolymerization is performed according to JIS K 6920-2.
  • the relative viscosity of the polyamide measured at a resin temperature of 25 ° C. is preferably 1.9 or more and 5.0 or less, more preferably 2.3 or more and 4.5 or less, and 2.7 or more and 4.3 or less is more preferable.
  • 3.2 or more and 4.2 or less is particularly preferable.
  • Aromatic copolymerized polyamide resin is an aromatic polyamide resin containing at least one aromatic monomer component, for example, an aliphatic dicarboxylic acid and an aromatic diamine, an aromatic dicarboxylic acid and A polyamide resin obtained by polycondensation of an aliphatic diamine or an aromatic dicarboxylic acid and an aromatic diamine as raw materials.
  • the aromatic copolyamide resin (A-4) is a polyamide resin composed of two or more structural units.
  • the combination of diamine and dicarboxylic acid is regarded as one type of monomer in combination of one type of diamine and one type of dicarboxylic acid.
  • Examples of the aliphatic diamine and aliphatic dicarboxylic acid used as raw materials include those exemplified as the starting materials for the aliphatic homopolyamide resin (A-1). Examples are also included. These aliphatic diamines and aliphatic dicarboxylic acids may be used singly or in combination of two or more.
  • aromatic diamines include meta-xylylenediamine and para-xylylenediamine
  • aromatic dicarboxylic acids include naphthalenedicarboxylic acid, terephthalic acid, isophthalic acid, and phthalic acid. These aromatic diamines and aromatic dicarboxylic acids may be used singly or in combination of two or more.
  • aromatic copolyamide resin may contain structural units derived from lactams and aminocarboxylic acids. The same ones as those mentioned above can be mentioned. These lactams and aminocarboxylic acids may be used singly or in combination of two or more.
  • aromatic copolymerized polyamide resin (A-4) examples include (polyamide 66/6T), polyhexamethylene terephthalamide/polycaproamide copolymer (polyamide 6T/6), polyhexamethylene adipamide/ Polyhexamethylene isophthalamide copolymer (polyamide 66/6I), polyhexamethylene isophthalamide/polycaproamide copolymer (polyamide 6I/6), polydodecanamide/polyhexamethylene terephthalamide copolymer (polyamide 12/6T), polyhexamethylene azide Pamide/polyhexamethylene terephthalamide/polyhexamethylene isophthalamide copolymer (polyamide 66/6T/6I), polyhexamethylene adipamide/polycaproamide/polyhexamethylene isophthalamide copolymer (polyamide 66/6/6I), polyhexamethylene terephthalamide/polyhexamethylene isophthalamide copolymer (
  • Examples of the production apparatus and polymerization method for the aromatic copolyamide resin (A-4) are the same as those exemplified in the section for the aliphatic homopolyamide resin (A-1).
  • the degree of polymerization of the aromatic copolyamide resin (A-4) in the present invention is not particularly limited, but from the viewpoint of molding processability and mechanical properties, according to JIS K 6920-2, (A-4) aromatic copolyamide resin
  • the relative viscosity of the polymerized polyamide measured at a resin temperature of 25° C. is preferably 1.9 or more and 5.0 or less, more preferably 2.3 or more and 4.5 or less, and 2.7 or more and 4.3 More preferably: Furthermore, from the viewpoint of improving the effect of the present invention, 3.2 or more and 4.2 or less is particularly preferable. When the relative viscosity is within the above range, molding processability is good, and mechanical properties are also good.
  • the terminal amino group concentration of the aromatic copolymerized polyamide resin (A-4) is determined by neutralization titration after dissolving in a mixed solvent of phenol and methanol.
  • the terminal amino group concentration of the aromatic copolyamide resin (A-4) is preferably 20 ⁇ mol/g or more and 60 ⁇ mol/g or less. When the terminal amino group concentration is within the above range, it is preferable from the viewpoint of adhesion to reinforcing materials and adhesion to other resins.
  • the polyamide resin (A) in the first invention has a relative viscosity of 1.9 or more and 5.0 measured at 25°C by dissolving 1 g of polyamide in 100 ml of 96% concentrated sulfuric acid in accordance with JIS K-6920-2. or less, preferably 2.3 or more and 4.5 or less, more preferably 2.7 or more and 4.3 or less. Furthermore, from the viewpoint of improving the effects of the present invention, it is more preferably 3.2 or more and 4.2 or less. When the relative viscosity is within the above range, molding processability is good, and mechanical properties are also good.
  • the polyamide resin (A) is composed of two or more polyamide resins having different relative viscosities (e.g., at least one aliphatic homopolyamide resin (A-1) and at least one aliphatic copolymerized polyamide resin (A-2)
  • the relative viscosity in the polyamide resin (A) is preferably measured with the above content, but if the relative viscosity of each polyamide resin and its mixing ratio are known, the relative viscosity of each mixing An average value calculated by summing the values obtained by multiplying the ratios may be used as the relative viscosity of the polyamide resin (A).
  • the terminal amino group concentration of the polyamide resin (A) in the first invention is preferably in the range of 30 ⁇ mol / g or more, preferably 30 ⁇ mol / g, as the terminal amino group concentration obtained by neutralization titration by dissolving in a mixed solvent of phenol and methanol.
  • a more preferable range is 50 ⁇ mol/g or less. Within the above range, sufficient moldability and mechanical properties can be obtained.
  • the polyamide resin (A) is composed of two or more polyamide resins having different terminal amino group concentrations (e.g., at least one aliphatic homopolyamide resin (A-1) and at least one aliphatic copolymerized polyamide resin (A- When 2)) is included, the terminal amino group concentration in the polyamide resin (A) is preferably measured by the above-mentioned neutralization measurement, but the terminal amino group concentration and the mixing ratio of each polyamide resin are known. If there is, the terminal amino group concentration of the polyamide resin (A) may be the average value calculated by summing the values obtained by multiplying the respective terminal amino group concentrations by the mixture ratios.
  • terminal amino group concentration in the polyamide resin (A) may be the average value calculated by summing the values obtained by multiplying the respective terminal amino group concentrations by the mixture ratios.
  • the polyamide resin (A) in the first invention is preferably at least one selected from the group consisting of polyamide 6, polyamide 6/66, polyamide 6/12 and polyamide 6/66/12, and polyamide 6 is more preferred.
  • the polyamide resin (A) in the first invention is 60 to 95% by mass in 100% by mass of the polyamide resin composition, preferably 65 to 90% by mass, more preferably 65 to 85% by mass, more preferably 70 to 80% by mass. % by mass. If the content of the polyamide resin (A) is less than the above range, moldability will be poor, and if it is more than the above range, the water absorption rate of the molded product will increase and the calcium chloride resistance will decrease.
  • the polyamide resin composition of the first invention contains a novolak-type phenolic resin (B).
  • the novolak-type phenolic resin (B) in the first invention include those produced by condensation polymerization of phenols and aldehydes in the presence of an acidic catalyst. However, it is preferable not to contain resol-type phenol-formaldehyde produced by condensation polymerization of phenols and aldehydes in the presence of an alkaline catalyst.
  • phenols used in the production of the novolak-type phenolic resin (B) include phenol, cresol, trimethylphenol, xylenol, resorcinol, catechol, butylphenol, octylphenol, nonylphenol, phenylphenol, dihydroxybenzene, bisphenol A, and naphthol. monohydric or polyhydric phenols such as and substituted products thereof. These may be used individually by 1 type, or may be used in combination of 2 or more type. Among these, phenol and cresol are preferred, and phenol is more preferred.
  • aldehydes used in the production of the novolak-type phenolic resin (B) include formaldehyde, acetaldehyde, propionaldehyde, butyraldehyde, glyoxal, n-propanal, n-butanal, isopropanal, isobutyraldehyde, 3 -methyl-n-butanal, benzaldehyde, p-tolylaldehyde, 2-phenylacetaldehyde and the like, and these may be used alone or in combination of two or more.
  • formaldehyde and acetaldehyde are preferred, and formaldehyde is more preferred.
  • acidic catalysts include, but are not limited to, oxalic acid, hydrochloric acid, sulfuric acid, phosphoric acid, acetic acid, p-toluenesulfonic acid, phenolsulfonic acid, formic acid, maleic acid, zinc acetate, and zinc octylate.
  • phenol-formaldehyde resins represented by the following formula (1) are preferable from the viewpoint of mechanical properties and heat resistance.
  • n is preferably 1-200, more preferably 1-50, even more preferably 5-20.
  • the number average molecular weight of the novolak-type phenolic resin (B) in the first invention is preferably 500 to 5,000, more preferably 700 to 3,000, more preferably 1,000 to 3,000, from the viewpoint of moldability and heat resistance. is particularly preferred.
  • the number average molecular weight is the number average molecular weight calculated based on the hydroxyl value measured according to JIS K 1557. Specifically, the hydroxyl value is measured and calculated using (56.1 ⁇ 1000 ⁇ valence) / hydroxyl value by the terminal group determination method (in this formula, the unit of hydroxyl value is [mgKOH / g] is). In the above formula, the valence is the number of hydroxyl groups in one molecule.
  • the softening point temperature of the novolak-type phenolic resin (B) in the first invention is 130°C or less, preferably 110 to 130°C, more preferably 120 to 130°C.
  • the softening point temperature is a value determined by ring and ball method softening point measurement based on JIS K6910. When the softening point temperature of the novolac-type phenol resin (B) is within the above range, moldability is improved.
  • novolac-type phenolic resins include HF-4M, NC58, H-1 manufactured by Meiwa Kasei, and RHENOSIN (registered trademark) PR95 manufactured by LANXESS.
  • the novolak-type phenolic resin (B) is contained in an amount of 5 to 40% by mass, preferably 10 to 30% by mass, in 100% by mass of the polyamide resin composition in the first invention. If the amount of the novolac-type phenolic resin is less than the above range, the water absorption rate of the molded article increases and the resistance to calcium chloride deteriorates. If the content of the novolak-type phenolic resin is more than the above range, the heat resistance and mechanical properties of the polyamide composition will deteriorate.
  • the polyamide resin composition may contain optional components such as dyes, pigments, fibrous reinforcing materials, particulate reinforcing materials, plasticizers, antioxidants, heat-resistant agents, foaming agents, weathering agents, crystal nucleating agents, crystals Accelerators, releasing agents, lubricants, antistatic agents, flame retardants, auxiliary flame retardants, colorants, and other functional imparting agents may be contained as appropriate.
  • the optional additive may be contained in an amount of preferably 0.01 to 1% by mass, more preferably 0.05 to 0.5% by mass, based on 100% by mass of the polyamide resin composition.
  • the polyamide resin composition of the first invention may contain a thermoplastic resin other than the polyamide resin (A) and the novolak-type phenol resin (B).
  • Thermoplastic resins other than the polyamide resin (A) and the novolak-type phenolic resin (B) are preferably 2% by mass or less in 100% by mass of the polyamide resin composition from the viewpoint of mechanical properties and moldability, and 0.1 mass % is more preferable, and not containing is even more preferable.
  • the polyamide resin composition of the first invention preferably contains a novolak-type phenol resin (B) as a main component as a thermoplastic resin other than the polyamide resin (A), and a thermoplastic resin other than the polyamide resin (A) It preferably contains 90% by mass or more of the novolac-type phenolic resin (B), more preferably 95% by mass or more, based on 100% by mass of the resin. Moreover, it is preferable that the polyamide resin composition of the first invention does not substantially contain an ethylene-based elastomer. If an ethylene-based elastomer is contained, the heat resistance may be lowered.
  • the method for producing the polyamide resin composition is not particularly limited, and for example, the following method can be applied.
  • a known melt-kneader such as a single-screw or twin-screw extruder, a Banbury mixer, a kneader, and a mixing roll is used. Used.
  • a method of melt-kneading for example, using a twin-screw extruder, after blending all the raw materials, a method of melt-kneading, a method of blending a part of the raw materials, melt-kneading, further blending the remaining raw materials and melt-kneading, or part Any method may be used, such as a method of mixing the remaining raw materials using a side feeder during melt-kneading after blending the raw materials.
  • the extracted amount when the polyamide resin composition of the first invention is extracted for 6 hours by the Soxhlet extraction method using water as a solvent is 1.5% by mass or less with respect to 100% by mass of the polyamide resin composition used for extraction. and preferably 1.2% by mass or less.
  • the extracted amount is 7.5% by mass or less with respect to 100% by mass of the polyamide resin composition used for extraction. and more preferably 6.8% by weight or less.
  • the extraction method used was the Soxhlet extraction method.
  • the extractable amount was determined by the formula: (mass of polyamide resin composition before boiling—mass of residue after vacuum drying after boiling)/mass of polyamide resin composition before boiling.
  • Such hot water extraction amount and hot methanol extraction amount can be adjusted by appropriately adjusting the selection of the novolak resin and the blending amount of each component. If the amount extracted by the Soxhlet extraction method using water or methanol as the solvent is larger than the above range, the polyamide resin and novolak resin will decompose from the molded article, resulting in a large amount of monomers eluting. , the molded product becomes brittle and the monomer bleeds out on the surface of the molded product.
  • the polyamide resin composition of the first invention can be suitably used for producing injection-molded articles by injection molding, extrusion-molded articles by extrusion molding, blow-molded articles by blow molding, and rotomolded articles by rotational molding. Since the polyamide resin composition has good injection moldability, it can be suitably used for injection-molded articles.
  • the method of manufacturing an injection-molded product from a polyamide resin composition by injection molding is not particularly limited, and a known method can be used. For example, a method conforming to ISO294-1 is taken into consideration.
  • the method for producing an extruded product from the polyamide resin composition by extrusion molding is not particularly limited, and known methods can be used. It is also possible to obtain a multi-layered structure by co-extrusion with polyolefin such as polyethylene or other thermoplastic resin, followed by blow molding. In that case, it is possible to provide an adhesive layer between the polyamide resin composition layer and another thermoplastic resin layer such as polyolefin. In the case of multilayer structures, the polyamide resin composition of the present invention can be used for both the outer layer and the inner layer.
  • the method for producing a blow-molded product from a polyamide resin composition by blow molding is not particularly limited, and a known method can be used.
  • blow molding may be carried out after the parison is formed using an ordinary blow molding machine.
  • the preferred resin temperature during parison formation is preferably in the range of 10° C. to 70° C. higher than the melting point of the polyamide resin composition.
  • the method for producing a rotomolded article by rotomolding from a polyamide resin composition is not particularly limited, and a known method can be used. For example, the method described in International Publication 2019/054109 is taken into consideration.
  • Injection-molded products by injection molding, extrusion-molded products by extrusion molding, blow-molded products by blow molding, and rotational-molded products by rotational molding include, but are not limited to, spoilers, air intake ducts, intake manifolds, resonators, fuel tanks, Automotive parts such as gas tanks, hydraulic oil tanks, fuel filler tubes, fuel delivery pipes, and various other hoses, tubes, and tanks; mechanical parts such as power tool housings and pipes; - Suitable for various applications such as electronic parts, household/office supplies, building material-related parts, and furniture parts.
  • the polyamide resin composition is preferably used for automobile parts because of its excellent resistance to calcium chloride.
  • the polyamide resin composition has excellent gas barrier properties, it is suitably used for molded articles that come into contact with high-pressure gas, such as tanks, tubes, hoses, and films that come into contact with high-pressure gas.
  • high-pressure gas such as tanks, tubes, hoses, and films that come into contact with high-pressure gas.
  • the type of gas is not particularly limited, and includes hydrogen, nitrogen, oxygen, helium, methane, butane, propane, etc. Gases with low polarity are preferred, and hydrogen, nitrogen, and methane are particularly preferred.
  • polyamide resin composition of the present invention can be used for both the outer layer and the inner layer.
  • the second invention comprises 100% by mass of the polyamide resin composition, 30 to 70% by mass of the polyamide resin (A), 10 to 40% by mass of the novolak phenolic resin (B), and a reinforcing filler (C ) relates to a polyamide resin composition containing 5 to 40% by mass.
  • the polyamide resin composition of the second invention contains a polyamide resin (A).
  • the polyamide resin (A) include an aliphatic homopolyamide resin (A-1), an aliphatic copolyamide resin (A-2), an aromatic homopolyamide resin (A-3) and an aromatic copolyamide resin (A -4). These may be used individually by 1 type, or may be used in combination of 2 or more types.
  • the polyamide resin (A) is selected from the group consisting of aliphatic homopolyamide resin (A-1) and aliphatic copolymerized polyamide resin (A-2). It preferably contains at least one, and more preferably contains an aliphatic homopolyamide resin (A-1).
  • (A-1) Aliphatic homopolyamide resin
  • the definition of the aliphatic homopolyamide resin (A-1) is the same as in the first invention, and the aliphatic homopolyamide resin (A-1) is the first invention and Similar resins may be mentioned.
  • the aliphatic homopolyamide resin (A-1) is selected from the group consisting of polyamide 6, polyamide 11, polyamide 12, polyamide 66, polyamide 610 and polyamide 612 from the viewpoint of the polymerization productivity of the aliphatic homopolyamide resin. At least one is preferred, at least one selected from polyamide 6, polyamide 11, polyamide 12, polyamide 610 and polyamide 612 is more preferred, and polyamide 6 is even more preferred.
  • the production apparatus and polymerization method for the aliphatic homopolyamide resin (A-1) are also the same as in the first invention.
  • the relative viscosity of the aliphatic homopolyamide resin (A-1) is measured at 25°C by dissolving 1 g of the aliphatic homopolyamide in 100 ml of 96% concentrated sulfuric acid in accordance with JIS K 6920-2.
  • the relative viscosity of the aliphatic homopolyamide is preferably 1.9 to 5.0, more preferably 2.1 to 4.5, even more preferably 2.3 to 4.2. Furthermore, from the viewpoint of improving the effects of the present invention, 2.3 to 3.4 are particularly preferable. When the relative viscosity is within the above range, molding processability is good, and mechanical properties are also good.
  • the terminal amino group concentration of the aliphatic homopolyamide resin (A-1) is determined by neutralization titration after dissolving in a mixed solvent of phenol and methanol.
  • the terminal amino group concentration of the aliphatic homopolyamide resin (A-1) is preferably 30 ⁇ mol/g or more, more preferably 30 ⁇ mol/g or more and 110 ⁇ mol/g or less.
  • (A-2) Aliphatic Copolyamide Resin
  • the definition of the aliphatic copolyamide resin (A-2) is the same as in the first invention, and the aliphatic copolyamide resin (A-2) is the first and resins similar to those of the invention.
  • At least one selected from the group consisting of polyamide 6/66, polyamide 6/12 and polyamide 6/66/12 is preferable from the viewpoint of suppressing the water absorption rate of the molded product and maintaining the mechanical strength, At least one selected from the group consisting of polyamide 6/66 and polyamide 6/66/12 is more preferred, and polyamide 6/66 is particularly preferred.
  • the production apparatus and polymerization method for the aliphatic copolyamide resin (A-2) are also the same as in the first invention.
  • the relative viscosity of the aliphatic copolyamide resin (A-2) is determined by dissolving 1 g of the aliphatic copolyamide in 100 ml of 96% concentrated sulfuric acid in accordance with JIS K 6920-2, from the viewpoint of moldability and mechanical properties.
  • the relative viscosity measured at 25° C. is preferably 1.9 to 5.0, more preferably 2.1 to 4.5, even more preferably 2.3 to 4.2.
  • 2.3 to 3.4 are particularly preferable.
  • the terminal amino group concentration of the aliphatic copolyamide resin (A-2) is determined by neutralization titration after dissolving in a mixed solvent of phenol and methanol.
  • the terminal amino group concentration of the aliphatic copolyamide resin (A-2) is preferably 30 ⁇ mol/g or more, more preferably 30 ⁇ mol/g or more and 70 ⁇ mol/g or less.
  • the terminal amino group concentration is within the above range, it is preferable from the viewpoint of adhesion to reinforcing materials and adhesion to other resins.
  • Aromatic homopolyamide resin The definition of the aromatic homopolyamide resin (A-3) is the same as in the first invention, and the aromatic homopolyamide resin (A-3) is the same as in the first invention. Similar resins may be mentioned. The production apparatus and polymerization method for the aromatic homopolyamide resin (A-3) are also the same as in the first invention.
  • the degree of polymerization of the aromatic homopolyamide resin (A-3) is not particularly limited, but from the viewpoint of molding processability and mechanical properties, the resin temperature of the aromatic copolymerized polyamide (A-3) according to JIS K 6920-2
  • the relative viscosity measured at 25° C. is preferably 1.9 to 5.0, more preferably 2.1 to 4.5, even more preferably 2.3 to 4.2. Furthermore, from the viewpoint of improving the effects of the present invention, 2.3 to 3.4 are particularly preferable. When the relative viscosity is within the above range, molding processability is good, and mechanical properties are also good.
  • aromatic copolyamide resin (A-4) Aromatic Copolyamide Resin
  • the definition of the aromatic copolyamide resin (A-4) is the same as in the first invention, and the aromatic copolyamide resin (A-4) is the first and resins similar to those of the invention. Among these, polyamide 6T/6I is preferred.
  • the production apparatus and polymerization method for the aromatic copolyamide resin (A-4) are also the same as in the first invention.
  • the degree of polymerization of the aromatic copolyamide resin (A-4) in the present invention is not particularly limited, but from the viewpoint of molding processability and mechanical properties, the aromatic copolyamide resin (A- The relative viscosity of 4) measured at a resin temperature of 25° C. is preferably 1.9 to 5.0, more preferably 2.1 to 4.5, and 2.3 to 4.2. is more preferred. Furthermore, from the viewpoint of improving the effects of the present invention, 2.3 to 3.4 are particularly preferable. When the relative viscosity is within the above range, molding processability is good, and mechanical properties are also good.
  • the terminal amino group concentration of the aromatic copolymerized polyamide resin (A-4) is determined by neutralization titration after dissolving in a mixed solvent of phenol and methanol.
  • the terminal amino group concentration of the aromatic copolyamide resin (A-4) is preferably 20 ⁇ mol/g or more and 60 ⁇ mol/g or less. When the terminal amino group concentration is within the above range, it is preferable from the viewpoint of adhesion to reinforcing materials and adhesion to other resins.
  • the polyamide resin (A) in the second invention is obtained by dissolving 1 g of polyamide in 100 ml of 96% concentrated sulfuric acid in accordance with JIS K 6920-2, and having a relative viscosity of 1.9 to 5.0 measured at 25 ° C. is preferably 2.1 to 4.5, and even more preferably 2.3 to 4.2. Furthermore, from the viewpoint of improving the effects of the present invention, 2.3 to 3.4 are particularly preferable. When it is within the above range, the moldability is good and the mechanical properties are excellent.
  • the method of determining the relative viscosity is the same as in the first invention.
  • the terminal amino group concentration of the polyamide resin (A) in the second invention is dissolved in a mixed solvent of phenol and methanol and obtained by neutralization titration.
  • a more preferable range is 110 ⁇ mol/g or more. Within this range, sufficient moldability and mechanical properties can be obtained.
  • the method for determining the terminal amino group concentration is the same as in the first invention.
  • the polyamide resin (A) in the second invention is preferably at least one selected from the group consisting of polyamide 6, polyamide 6/66, polyamide 6/12 and polyamide 6/66/12, and polyamide 6 is more preferred.
  • the polyamide resin (A) in the second invention is contained in an amount of 30-70% by mass, preferably 35-65% by mass, more preferably 40-60% by mass in 100% by mass of the polyamide resin composition. If the content of the polyamide resin (A) is less than the above range, moldability will be poor, and if it is more than the above range, the water absorption rate of the molded product will increase and the calcium chloride resistance will decrease.
  • the polyamide resin composition of the second invention contains a novolak-type phenolic resin (B).
  • the novolak-type phenolic resin (B) in the second invention the same ones as in the first invention can be mentioned. That is, the phenols, aldehydes and acidic catalysts used in the production of the novolak-type phenolic resin (B) are the same as in the first invention.
  • phenol-formaldehyde resins represented by the following formula (1) are preferable from the viewpoint of mechanical properties and heat resistance.
  • n is preferably 1-200, more preferably 1-50, even more preferably 5-20.
  • the number average molecular weight of the novolak-type phenolic resin (B) is preferably 500 to 5,000, more preferably 700 to 3,000, and particularly preferably 1,000 to 3,000, from the viewpoint of moldability and heat resistance.
  • the method for measuring the number average molecular weight is the same as in the first invention.
  • the softening point temperature of the novolak-type phenolic resin (B) in the second invention is preferably 130°C or less, more preferably 110°C to 130°C, even more preferably 120°C to 130°C.
  • the softening point temperature is a value determined by ring and ball method softening point measurement based on JIS K6910. When the softening point temperature of the novolak-type phenol resin (B) is within the above range, moldability is improved.
  • novolak-type phenolic resins include HF-4M, NC58, H-1 manufactured by Meiwa Kasei, and RHENOSIN (registered trademark) PR95 manufactured by LANXESS.
  • the novolac-type phenol resin (B) is contained in an amount of 10 to 40% by mass, preferably 10 to 30% by mass, in 100% by mass of the polyamide resin composition of the second invention. If the amount of the novolac-type phenolic resin is less than the above range, the water absorption rate of the molded article increases and the resistance to calcium chloride deteriorates. If the content of the novolak-type phenolic resin is more than the above range, the heat resistance and mechanical properties of the polyamide composition will deteriorate.
  • the polyamide resin composition of the second invention contains a reinforcing filler (C).
  • the reinforcing filler (C) in the second invention may be either an inorganic filler or an organic filler, such as glass fiber, carbon fiber, cellulose fiber, flaky glass, mica, talc, kaolin, clay, alumina, and various metal foils. etc.
  • the shape may be fibrous, plate-like, or granular. Among them, at least one selected from the group consisting of glass fiber, carbon fiber and cellulose fiber is preferable from the viewpoint of improving the mechanical properties without reducing the flexibility of the molded article.
  • the reinforcing filler (C) may be used alone or in combination of two or more.
  • the reinforcing filler (C) may be surface-treated with a surface treatment agent. Furthermore, in order to improve workability, these surface treatment agents may be aggregated or granulated.
  • Surface treatment agents include various coupling agents such as silane coupling agents, titanium coupling agents, aluminum coupling agents, and zirconia coupling agents; water glass, methyl cellulose, carboxymethyl cellulose, hydroxyethyl cellulose, hydroxypropyl cellulose, Examples include starch, polyvinyl alcohol, acrylic resins, epoxy resins, phenol resins, polyvinyl acetate, polyurethane resins, epoxy compounds, isocyanate compounds, colloidal silica, colloidal alumina, fatty acids, surfactants, and the like.
  • the surface treatment agents may be used alone or in combination of two or more.
  • the surface treatment agent may be applied to the reinforcing filler (C) in advance, dried and subjected to surface treatment or convergence treatment, or may be added simultaneously with the reinforcing filler (C) during preparation of the resin composition. good.
  • the reinforcing filler (C) in the resin composition is completely unraveled even if it is as it is. It may be broken into individual particles, may be partially unraveled and partly left as it is, or the individual unraveled particles may be further pulverized.
  • the raw material glass fiber may have an average fiber diameter of 4 to 25 ⁇ m, for example.
  • the average fiber diameter is preferably 6 to 23 ⁇ m, and for example, those having an average fiber diameter of 10 to 23 ⁇ m can be used.
  • the glass fibers may be used alone or in combination of two or more. Two or more types of glass fibers having different average fiber diameters may be used. Examples of combinations of glass fiber diameters include (C1) glass fibers with an average fiber diameter of 6 to 11 ⁇ m and (C2) glass fibers with an average fiber diameter of 13 to 25 ⁇ m.
  • the raw material glass fiber length (cut length) is not particularly limited, and preferably cut chopped strands of 1 mm to 50 mm can be used, and 3 mm to 10 mm is more preferable from the viewpoint of productivity.
  • the average fiber length of the glass fibers in the polyamide resin composition is not particularly limited, and preferably 50 ⁇ m to 1,000 ⁇ m can be used, and 100 ⁇ m to 500 ⁇ m is more preferable from the viewpoint of dimensional stability of the molded product. It is preferably 200 ⁇ m to 400 ⁇ m, more preferably 200 ⁇ m to 400 ⁇ m.
  • the above values for the average fiber diameter of the glass fiber and the raw glass fiber length (cut length) are the values before melting and kneading with the polyamide.
  • the value of the average fiber length of the glass fibers in the polyamide resin composition is the value after melt-kneading with the polyamide.
  • the value after melt-kneading takes into consideration the case where at least part of the glass fibers are broken and dispersed in the composition during the melt-kneading of raw materials in the production process of the polyamide composition.
  • the average fiber diameter of the raw material glass fiber and the raw material glass fiber length (cut length) can be observed using an optical microscope.
  • the average fiber diameter of the raw material glass fiber (B) and the raw material glass fiber length (cut length) may be catalog values.
  • the average fiber length of the glass fibers in the polyamide resin composition can be observed with an optical microscope after the polyamide resin is dissolved in the polyamide resin composition using sulfuric acid and separated from the glass fibers. About 1,000 arbitrarily selected glass fibers are measured from the observed image using image analysis software, and the average value is determined to be the average fiber length.
  • Commercially available glass fibers include ECS 03T-249H, ECS 03T-275H, and the like, manufactured by Nippon Electric Glass Co., Ltd.
  • the reinforcing filler (C) is contained in an amount of 5 to 40% by mass, preferably 10 to 35% by mass, more preferably 15 to 30% by mass in 100% by mass of the polyamide resin composition of the second invention. If the amount of the reinforcing filler compounded is less than the above range, the mechanical properties are deteriorated, and if it exceeds the above range, moldability becomes difficult.
  • Optional additives and their content in the polyamide resin composition are the same as in the first invention.
  • the polyamide resin composition of the second invention may contain a thermoplastic resin other than the polyamide resin (A) and the novolak-type phenolic resin (B).
  • Thermoplastic resins other than the polyamide resin (A) and the novolac phenolic resin (B) are preferably 2% by mass or less in 100% by mass of the polyamide resin composition from the viewpoint of not impairing the mechanical properties, and 0.1 Less than mass % is more preferable, and not containing is even more preferable.
  • the polyamide resin composition of the second invention preferably contains a novolak-type phenol resin (B) as a main component as a thermoplastic resin other than the polyamide resin (A), and a thermoplastic resin other than the polyamide resin (A) It preferably contains 90% by mass or more of the novolac-type phenolic resin (B), more preferably 95% by mass or more, based on 100% by mass of the resin.
  • the polyamide resin composition of the second invention preferably does not substantially contain an ethylene-based elastomer. If an ethylene-based elastomer is contained, the mechanical properties and heat resistance may deteriorate. Ethylene-based elastomers also include ethylene-based ionomers.
  • the production method of the polyamide resin composition of the second invention is the same as the production method of the first invention.
  • the polyamide resin composition of the second invention can be suitably used for producing injection-molded articles by injection molding, extrusion-molded articles by extrusion molding, blow-molded articles by blow molding, and rotomolded articles by rotational molding. Its manufacturing method is the same as that of the first invention. The use of the molded product is also the same as in the first invention.
  • the polyamide resin composition is preferably used for automobile parts because of its excellent resistance to calcium chloride.
  • the third invention is a three-dimensional molding containing 60 to 95% by mass of a polyamide resin (A) and 5 to 40% by mass of a novolak phenolic resin (B) in 100% by mass of a polyamide resin composition for three-dimensional modeling.
  • the present invention relates to a polyamide resin composition for modeling (hereinafter also referred to as "polyamide resin composition").
  • polyamide resin composition a polyamide resin composition for modeling
  • three-dimensional modeling refers to modeling by a 3D printer.
  • a polyamide resin composition for three-dimensional modeling according to a third aspect of the invention contains a polyamide resin (A).
  • the polyamide resin (A) include an aliphatic homopolyamide resin (A-1), an aliphatic copolyamide resin (A-2), an aromatic homopolyamide resin (A-3) and an aromatic copolyamide resin (A -4). These may be used individually by 1 type, or may be used in combination of 2 or more types.
  • the polyamide resin (A) is at least one selected from the group consisting of aliphatic homopolyamide resin (A-1) and aliphatic copolymerized polyamide resin (A-2).
  • it contains an aliphatic copolymerized polyamide resin (A-2).
  • (A-2) Aliphatic Copolyamide Resin
  • the definition of the aliphatic copolyamide resin (A-2) is the same as in the first invention, and the aliphatic copolyamide resin (A-2) is the first and resins similar to those of the invention.
  • the production apparatus and polymerization method for the aliphatic copolyamide resin (A-2) are also the same as in the first invention.
  • the relative viscosity of the aliphatic copolyamide resin (A-2) is determined by dissolving 1 g of the aliphatic copolyamide in 100 ml of 96% concentrated sulfuric acid in accordance with JIS K 6920-2, from the viewpoint of moldability and mechanical properties. and the relative viscosity measured at 25° C. is preferably from 2.3 to 5.0, more preferably from 2.4 to 5.0, even more preferably from 2.4 to 4.5. 4 or more and 4.2 or less is particularly preferable.
  • the terminal amino group concentration of the aliphatic copolyamide resin (A-2) is determined by neutralization titration after dissolving in a mixed solvent of phenol and methanol.
  • the terminal amino group concentration of the aliphatic copolymerized polyamide resin (A-2) is preferably 30 ⁇ mol/g or more, more preferably 30 ⁇ mol/g or more and 50 ⁇ mol/g or less. When the terminal amino group concentration is within the above range, it is preferable from the viewpoint of adhesiveness to other resins.
  • (A-1) Aliphatic homopolyamide resin
  • the definition of the aliphatic homopolyamide resin (A-1) is the same as in the first invention, and the aliphatic homopolyamide resin (A-1) is the first invention and Similar resins may be mentioned.
  • the aliphatic homopolyamide resin (A-1) is preferably at least one selected from the group consisting of polyamide 6, polyamide 11, polyamide 12, polyamide 66, polyamide 610 and polyamide 612 from the viewpoint of polymerization productivity, At least one selected from polyamide 6, polyamide 11, polyamide 12, polyamide 610 and polyamide 612 is more preferred, and polyamide 6 is even more preferred.
  • the production apparatus and polymerization method for the aliphatic homopolyamide resin (A-1) are also the same as in the first invention.
  • the relative viscosity of the aliphatic homopolyamide resin (A-1) is measured at 25°C by dissolving 1 g of the aliphatic homopolyamide in 100 ml of 96% concentrated sulfuric acid according to JIS K 6920-2.
  • the relative viscosity of the aliphatic homopolyamide is preferably from 2.3 to 5.0, more preferably from 2.4 to 5.0, even more preferably from 2.4 to 4.5. Furthermore, from the viewpoint of improving the effects of the present invention, it is particularly preferable to be 2.4 or more and 4.2 or less. When it is 2.3 or more, molding processing is easier, and when it is 5.0 or less, better mechanical properties of the polyamide resin can be maintained.
  • the terminal amino group concentration of the aliphatic homopolyamide resin (A-1) is determined by neutralization titration after dissolving in a mixed solvent of phenol and methanol.
  • the terminal amino group concentration of the aliphatic homopolyamide resin (A-2) is preferably 30 ⁇ mol/g or more, more preferably 30 ⁇ mol/g or more and 50 ⁇ mol/g or less.
  • aromatic copolyamide resin (A-4) Aromatic Copolyamide Resin
  • the definition of the aromatic copolyamide resin (A-4) is the same as in the first invention, and the aromatic copolyamide resin (A-4) is the first and resins similar to those of the invention. Among these, polyamide 6T/6I is preferred.
  • the production apparatus and polymerization method for the aromatic copolyamide resin (A-4) are also the same as in the first invention.
  • the degree of polymerization of the aromatic copolyamide resin (A-4) in the present invention is not particularly limited, but the relative viscosity measured at 25 ° C. according to JIS K 6920-2 is , is preferably 2.3 or more and 5.0 or less, more preferably 2.4 or more and 5.0 or less, further preferably 2.4 or more and 4.5 or less, and particularly preferably 2.4 or more and 4.2 or less .
  • the terminal amino group concentration of the aromatic copolymerized polyamide resin (A-4) is determined by neutralization titration after dissolving in a mixed solvent of phenol and methanol.
  • the terminal amino group concentration of the aromatic copolyamide resin (A-4) is preferably 20 ⁇ mol/g or more and 60 ⁇ mol/g or less.
  • Aromatic homopolyamide resin The definition of the aromatic homopolyamide resin (A-3) is the same as in the first invention, and the aromatic homopolyamide resin (A-3) is the same as in the first invention. Similar resins may be mentioned. The production apparatus and polymerization method for the aromatic homopolyamide resin (A-3) are also the same as in the first invention.
  • the degree of polymerization of (A-3) the aromatic homopolyamide resin in the present invention is not particularly limited, but the relative viscosity measured at 25° C. according to JIS K 6920-2 is, from the viewpoint of molding processability and mechanical properties, It is preferably 2.3 or more and 5.0 or less, more preferably 2.4 or more and 5.0 or less, still more preferably 2.4 or more and 4.5 or less, and particularly preferably 2.4 or more and 4.2 or less.
  • the polyamide resin (A) in the third invention is preferably at least one selected from the group consisting of polyamide 6, polyamide 6/66, polyamide 6/12 and polyamide 6/66/12, and polyamide 6 is more preferred.
  • the polyamide resin (A) in the third invention is obtained by dissolving 1 g of the polyamide resin in 100 ml of 96% concentrated sulfuric acid in accordance with JIS K 6920-2, and having a relative viscosity of 2.3 or more measured at 25 ° C.5. It is preferably 0 or less, more preferably 2.4 or more and 5.0 or less, and even more preferably 2.4 or more and 4.5 or less. Furthermore, from the viewpoint of improving the effects of the present invention, it is particularly preferable to be 2.4 or more and 4.2 or less. When it is 2.3 or more, molding is easier. Moreover, when it is 5.0 or less, better mechanical properties of the polyamide resin can be obtained.
  • the method of determining the relative viscosity is the same as in the first invention.
  • the terminal amino group concentration of the polyamide resin (A) in the third invention is dissolved in a mixed solvent of phenol and methanol and obtained by neutralization titration.
  • the range of 110 ⁇ mol/g or more is more preferable, and the range of 30 ⁇ mol/g or more and 70 ⁇ mol/g or less is even more preferable. If it is 30 ⁇ mol/g or more, the adhesiveness to the reinforcing material is good, and sufficient melt viscosity and impact resistance can be obtained. In addition, when the amount is 110 ⁇ mol/g or less, molding processability is good.
  • the method for determining the terminal amino group concentration is the same as in the first invention.
  • the polyamide resin (A) in the third invention is 60 to 95% by mass, preferably 65 to 95% by mass, more preferably 65 to 85% by mass, more preferably 100% by mass of the polyamide resin composition for three-dimensional modeling. is contained in an amount of 70 to 85% by mass, particularly preferably 70 to 78% by mass. If the content of the polyamide resin (A) is less than the above range, the mechanical properties of the polyamide resin are reduced. is large and there is a lot of bubbling.
  • a polyamide resin composition for three-dimensional modeling according to a third invention contains a novolak-type phenolic resin (B).
  • the novolac-type phenolic resin (B) in the third invention the same ones as in the first invention can be mentioned. That is, the phenols, aldehydes and acidic catalysts used in the production of the novolak-type phenolic resin (B) are the same as in the first invention.
  • phenol-formaldehyde resins represented by the following formula (1) are preferable from the viewpoint of mechanical properties and heat resistance.
  • n is preferably 1-200, more preferably 1-50, even more preferably 5-20.
  • the number average molecular weight of the novolac-type phenolic resin (B) in the third invention is preferably 100 to 20,000, more preferably 300 to 15,000, from the viewpoint of moldability and heat resistance.
  • the method for measuring the number average molecular weight is the same as in the first invention.
  • the softening point temperature of the novolac-type phenolic resin (B) in the third invention is preferably 50 to 250°C, more preferably 70 to 200°C, and even more preferably 110 to 150°C, from the viewpoint of moldability and heat resistance. , 110-130° C. is particularly preferred, and 120-130° C. is most preferred.
  • the softening point temperature is a value determined by ring and ball method softening point measurement based on JIS K6910.
  • novolac-type phenolic resins include HF-4M, NC58, H-1 manufactured by Meiwa Kasei, and RHENOSIN (registered trademark) PR95 manufactured by LANXESS.
  • the novolak phenolic resin (B) is 5 to 40% by mass, preferably 5 to 35% by mass, more preferably 22 to 30% by mass.
  • the polyamide resin composition for three-dimensional modeling of the third invention may contain dyes, pigments, fibrous reinforcing materials, particulate reinforcing materials, plasticizers, antioxidants, heat-resistant agents, and foaming agents as optional components depending on the purpose. , a weathering agent, a crystal nucleating agent, a crystallization accelerator, a releasing agent, a lubricant, an antistatic agent, a flame retardant, a flame retardant auxiliary, a coloring agent, and other function-imparting agents.
  • the optional additive is contained in an amount of preferably 0 to 35% by mass, more preferably 0.05 to 30% by mass, based on 100% by mass of the polyamide resin composition for three-dimensional modeling.
  • the polyamide resin composition for three-dimensional modeling of the third invention may contain resins other than the polyamide resin (A) and the novolac-type phenolic resin (B). Resins other than the polyamide resin (A) and the novolak-type phenolic resin (B) are preferably contained in an amount of 0 to 20% by mass.
  • the method for producing the polyamide resin composition for three-dimensional modeling according to the third invention is the same as the method for producing the polyamide resin composition according to the first invention.
  • polyamide resin composition for three-dimensional modeling contains polyamide 6 according to ISO 527, molding temperature: 250 ° C., mold temperature: 40 ° C., polyamide resin (A) contains polyamide 6. If not included, the type A tensile test piece obtained by injection molding at a molding temperature of 220 ° C and a mold temperature of 40 ° C is stored at room temperature so as not to absorb water after molding, and then the initial mass (W0) is Measured, immersed in water at 40 ° C.
  • the polyamide resin composition for three-dimensional modeling has a reduced water absorption rate.
  • the amount of warpage obtained by measuring the amount with a finger is preferably 30 mm or less, more preferably 20 mm or less.
  • the polyamide resin composition for three-dimensional modeling suppresses warpage of a molded article obtained by three-dimensional modeling using a 3D printer, and can provide a molded article with good accuracy.
  • a filament for three-dimensional modeling is produced using the polyamide resin composition for three-dimensional modeling.
  • the method for producing the filament for three-dimensional modeling is not particularly limited, but the polyamide resin composition for three-dimensional modeling is molded by a known molding method such as extrusion molding, or the filament is used as it is during the production of the polyamide resin composition for three-dimensional modeling.
  • the conditions are the polyamide for three-dimensional modeling It is preferable to carry out the treatment at a temperature which is 5 to 100° C., preferably 10 to 80° C. higher than the melting point or glass transition temperature (Tg) of the resin composition.
  • the diameter of the filament for 3D modeling is determined by the device, but in the case of the 1.75 mm specification, the range of 1.65 to 1.85 mm is preferable. In the case of 3.00 mm specification, 2.90 to 3.10 mm is preferable.
  • a blocking agent may be applied or coated on the surface of the three-dimensional modeling filament to prevent blocking between the three-dimensional modeling filaments before melting.
  • blocking agents examples include silicone-based blocking agents, inorganic fillers such as talc, and fatty acid metal salts. These blocking agents may be used alone or in combination of two or more.
  • Preferred forms of the filament include a wound body in which the filament is wound around a bobbin or the like, and a cartridge in which the filament is stored in a container.
  • Three-dimensional modeling is performed by modeling a polyamide resin composition for three-dimensional modeling or a filament for three-dimensional modeling (hereinafter also referred to as "material for three-dimensional modeling") with a 3D printer, which is a three-dimensional model manufacturing device. Molded bodies can be produced.
  • the FDM 3D printer usually comprises a raw material supply unit, a gear 2, a tube 3, a nozzle 4 with a heater 6, and a table 5.
  • the heater and nozzle may be separate.
  • the material for three-dimensional modeling is drawn out from the raw material supply unit, fed into the tube 3 by a pair of opposing gears 2, heated and melted by the heater 6, and pushed out from the nozzle 4.
  • the temperature for heating and melting the three-dimensional modeling material is not particularly limited, but the melting point or glass transition temperature (Tg) of the polyamide resin composition for three-dimensional modeling or higher, and the melting point or glass transition temperature (Tg) + 300 ° C. or less is preferable, and specifically, the temperature is preferably set by adding 5 to 100° C., preferably 10 to 80° C. to the melting point or glass transition temperature (Tg).
  • the molten three-dimensional modeling material extruded from the nozzle 4 is a two-dimensional layer obtained by slicing the three-dimensional coordinate data based on the three-dimensional coordinate data, and the table 5 defines the XY axis directions. By stacking these two-dimensional layers on top of each other and successively stacking these two-dimensional layers in the Z-axis direction, a three-dimensionally shaped compact can be obtained.
  • the molding speed is preferably 10-100 mm/sec.
  • ⁇ Uses of compacts obtained by three-dimensional modeling> The use of the molded body obtained by three-dimensional modeling of the polyamide resin composition for three-dimensional modeling or the filament for three-dimensional modeling is not particularly limited, but spoilers, air intake ducts, intake manifolds, resonators, fuel tanks, gas tanks, Hydraulic oil tanks, fuel filler tubes, fuel delivery pipes, other automotive parts such as hoses, tubes, and tanks, electric tool housings, mechanical parts such as pipes, electrical and electronic parts such as tanks, tubes, hoses, films, etc. Suitable for various applications such as parts, household/office supplies, building material-related parts, and furniture parts.
  • the polyamide resin composition for three-dimensional modeling has excellent gas barrier properties, it is suitably used for molded articles that come into contact with high-pressure gas, such as tanks, tubes, hoses, and films that come into contact with high-pressure gas.
  • high-pressure gas such as tanks, tubes, hoses, and films that come into contact with high-pressure gas.
  • the type of gas is not particularly limited, and includes hydrogen, nitrogen, oxygen, helium, methane, butane, propane, etc. Gases with low polarity are preferred, and hydrogen, nitrogen, and methane are particularly preferred.
  • the softening point temperature is a value determined by ring and ball method softening point measurement based on JIS K6910.
  • ⁇ Calcium chloride resistance> An ISO TYPE-A test piece obtained by injection molding a polyamide resin composition was used. A gauze was placed on the test piece, a saturated calcium chloride solution was applied to the test piece, and the test piece was left at 80° C. and 90% RH for 24 hours for pretreatment. After heating the pretreated test piece in an oven at 100 ° C. for 2 hours, a test in which it is left in a constant temperature bath at 80 ° C. and 90% RH for 20 hours is performed as one cycle. The presence or absence of cracks in the test piece was observed with a scope VHX-5000 and evaluated according to the following criteria. ⁇ : no cracks occurred in the test piece ⁇ : cracks occurred in the test piece. A sample in which no cracks occurred after one cycle was regarded as acceptable.
  • ⁇ Dielectric constant and dielectric loss tangent> Using an injection molding machine FANUC T-100D, a mold clamping force of 100 tons, a screw diameter of 36 mm, a cylinder temperature of 250 ° C., a mold temperature of 40 ° C., and an injection speed of 50 mm / sec. A flat plate of 70 mm ⁇ 2 mm thickness was prepared. This flat plate was immersed in water at 40° C. for 7 days and used as a test piece. Impedance analyzer Agilent 4294A (manufactured by Agilent Technologies Inc.) and fixture Agilent 16451B (manufactured by Agilent Technologies Inc.) were used as dielectric constant measuring devices. The electrode contact method was used for the measurement, and the value of the dielectric loss tangent was obtained at 10 GHz.
  • Examples 1 to 5 Each component described in Table 1 is melt-kneaded with a twin-screw kneader TEX44HCT, a cylinder diameter of 44 mm L / D35, a cylinder temperature of 250 ° C., a screw rotation of 160 rpm, and a discharge rate of 50 kg / hrs, to obtain the desired polyamide resin composition pellet.
  • the unit of composition in the table is % by mass, and the total resin composition is 100% by mass.
  • PA6 Polyamide 6, relative viscosity 3.36 (manufactured by UBE Corporation)
  • PA6/66 Polyamide 6/66, relative viscosity 4.05, polyamide 6 85 mol%, polyamide 66 15 mol% (manufactured by UBE Corporation)
  • Novolak-type phenolic resin (1): softening point temperature: 102° C., product name HF-4M (manufactured by Meiwa Kasei), structure represented by formula (1), n about 6.7
  • Novolac-type phenolic resin (2): softening point temperature: 125°C, product name NC58 (manufactured by Meiwa Kasei), structure represented by formula (1), n about 14.6
  • Example 1 to 5 From the results in Table 1, in Examples 1 to 5, the extraction amount with hot water is 1.5% by mass or less, the calcium chloride resistance is good, the insulation is good, the water absorption is low, and the water absorption is low. A polyamide resin composition having excellent mechanical properties is obtained. Comparing Examples 1 to 5 with Comparative Examples 3 and 4, when the polyamide resin composition contains a specific amount of novolac-type phenolic resin within a specific range of softening point temperature, the amount of novolak-type phenolic resin is higher than that of the polyamide resin alone. , water absorption, calcium chloride resistance, insulation and mechanical properties. Comparing Examples 1 to 5 with Comparative Examples 1 and 2, when the amount extracted with hot water exceeds 1.5% by mass, the mechanical properties of the polyamide resin composition deteriorate.
  • the softening point temperature is a value determined by ring and ball method softening point measurement based on JIS K6910.
  • ⁇ Calcium chloride resistance> An ISO TYPE-A test piece obtained by injection molding a polyamide resin composition was used. A gauze was placed on the test piece, a saturated calcium chloride solution was applied to the test piece, and the test piece was left at 80° C. and 90% RH for 24 hours for pretreatment. After heating the test piece after pretreatment in an oven at 100 ° C. for 2 hours, a test in which it was left in a constant temperature bath at 80 ° C. and 90% RH for 20 hours was performed as one cycle. Using VHX-5000, the presence or absence of cracks in the test piece was observed and evaluated according to the following criteria. ⁇ : no cracks occurred in the test piece ⁇ : cracks occurred in the test piece. A sample in which no cracks occurred after one cycle was regarded as acceptable.
  • Examples 6 to 11, Comparative Examples 5 to 10 Each component described in Table 2 is melt-kneaded with a twin-screw kneader TEX44HCT, a cylinder diameter of 44 mm L / D35, a cylinder temperature of 250 ° C., a screw rotation of 160 rpm, and a discharge rate of 50 kg / hrs, to obtain the desired polyamide resin composition pellet. was made. Table 2 shows the results. The unit of composition in the table is % by mass, and the total resin composition is 100% by mass.
  • Examples 6 to 11 have good calcium chloride resistance and mechanical properties after water absorption.
  • Comparative Examples 5 to 7 are examples in which the resin composition does not contain a novolak-type phenolic resin or, even if it does contain it, is less than the scope of the present invention. In addition, mechanical properties such as bending strength are also inferior to those of the examples.
  • Comparative Examples 8 to 10 are examples in which the resin composition does not contain glass fiber, but it can be seen that the mechanical properties are inferior to those of the examples. Moreover, as in Comparative Example 9, when the amount of the polyamide resin is larger than that of the Examples, the resistance to calcium chloride is also inferior.
  • test piece used for the measurement was prepared by the following method.
  • Test piece preparation by injection molding Polyamide resin composition is injection molded according to ISO 527, polyamide 6 at a cylinder temperature of 250 ° C and a mold temperature of 40 ° C, and other copolymer polyamides at a cylinder temperature of 220 ° C. , and a mold temperature of 40°C, type A tensile test pieces were prepared.
  • the softening point temperature is a value determined by ring and ball method softening point measurement based on JIS K6910.
  • the polyamide resin composition was shaped according to the shape of ISO527 according to the 3D printer modeling method of (2) above, and the obtained test piece was left under conditions of 23° C. and 50% RH for 24 hours. Next, when the test piece is placed on a surface plate and one end of the width direction side is fixed with a weight of 30 mm in width and 200 g, the amount of warping from the surface of the surface plate for the other end of the width direction side was measured with a finger square.
  • the polyamide resin composition was made into filaments by the method (2-1) above.
  • the obtained filaments were left under conditions of 23° C. and 50% RH for 24 hours, 100 hours and 240 hours, and used as humidity-conditioning filaments after 24 hours, 100 hours and 240 hours.
  • a humidity-controlled filament was supplied to the 3D printer at a feeding speed of 300 mm/min, and the state of foaming of the resin coming out of the nozzle of the 3D printer was visually confirmed.
  • Foaming was evaluated according to the following criteria. x: A lot of foaming was observed ⁇ : A little foaming was observed O: No foaming was observed A case in which no foaming was observed when the humidity-conditioned filament was used after 24 hours was evaluated as acceptable.
  • the polyamide resin composition was molded according to ISO 178 in accordance with the molding method using a 3D printer described in (2) above, and a tensile tester model 5567 manufactured by Instron The tensile strength and nominal tensile strain at break were measured under the conditions of distance between chucks: 20 mm and test speed: 5 mm/min.
  • the polyamide resin composition was molded into a type A test piece shape according to ISO 527 according to the molding method using a 3D printer described in (2) above, and an Instron tension test was performed.
  • the XY axis direction refers to the surface of the table being shaped, and the Z axis direction refers to a direction perpendicular to the plane defined by the XY axes.
  • Examples 12-21, Comparative Examples 11-14 Each component listed in Table 3 was melt-kneaded using a twin-screw kneader ZSK32McPlus (manufactured by Coperion), L/D 48, screw diameter 32 mm, cylinder temperature 230°C, screw rotation speed 200 rpm, and discharge rate 50 kg/h. , pellets of the polyamide resin composition were produced. From the obtained pellets, the test piece of (1) and the shaped article of (2) were prepared. The unit of composition in the table is % by mass, and the total resin composition is 100% by mass.
  • PA6 (1) Polyamide 6, relative viscosity 2.47 (manufactured by UBE Corporation)
  • PA6 (2) Polyamide 6, relative viscosity 3.37 (manufactured by UBE Corporation)
  • PA6/66 Polyamide 6/66, relative viscosity 4.05, polyamide 6 85 mol%, polyamide 66 15 mol% (manufactured by UBE Corporation)
  • PA6/12 Polyamide 6/12, relative viscosity 3.87, polyamide 6 80 mol%, polyamide 12 20 mol% (manufactured by UBE Corporation)
  • PA6/66/12 Polyamide 6/66/12, relative viscosity 4.05, polyamide 6 80 mol%, polyamide 66 10 mol%, polyamide 12 10 mol% (manufactured by UBE Corporation)
  • Novolak-type phenolic resin (1) softening point temperature: 102° C., product name HF-4M (manufactured by Meiwa Kasei), structure represented by formula (1),
  • Example 12 Comparing Example 12 and Example 16, it can be seen that when the softening point temperature of the novolac-type phenolic resin is within a specific range, warpage is further suppressed. Comparing Examples 12-14 with Examples 16-18, it can be seen that when the softening point temperature of the novolac-type phenolic resin is within a specific range, the strength is higher.
  • the polyamide resin composition of the first invention has good calcium chloride resistance, insulating properties, low water absorption, and good mechanical properties when water is absorbed, so that it can be suitably used for automobile parts.
  • the polyamide resin composition of the second invention has good calcium chloride resistance, low water absorption, and excellent mechanical properties when water is absorbed, so that it can be suitably used for various parts, especially automobile parts.
  • the polyamide resin composition for three-dimensional modeling of the third invention is suitably used for modeling with a 3D printer.

Abstract

The present invention relates to a polyamide resin composition which contains 60% by mass to 95% by mass of a polyamide resin (A) and 5% by mass to 40% by mass of a novolac type phenolic resin (B) in 100% by mass of the polyamide resin composition, wherein: the polyamide resin (A) has a relative viscosity of 1.9 to 5.0 as determined at 25°C in accordance with JIS K6920-2; the novolac type phenolic resin (B) has a softening point temperature of 130°C or less; and the extract fraction after subjecting the polyamide resin composition to 6-hour extraction by means of a Soxhlet extraction method that uses water as a solvent is 1.5% by mass or less relative to 100% by mass of the polyamide resin composition used for the extraction. The present invention also relates to: a polyamide resin composition which contains 30% by mass to 70% by mass of a polyamide resin (A), 10% by mass to 40% by mass of a novolac type phenolic resin (B) and 5% by mass to 40% by mass of a reinforcement filler (C) in 100% by mass of the polyamide resin composition; and a polyamide resin composition for three-dimensional modeling, the polyamide resin composition containing 60% by mass to 95% by mass of a polyamide resin (A) and 5% by mass to 40% by mass of a novolac type phenolic resin (B) in 100% by mass of the polyamide resin composition for three-dimensional modeling.

Description

ポリアミド樹脂組成物、3次元造形用ポリアミド樹脂組成物及びその3次元造形された成形体Polyamide resin composition, polyamide resin composition for three-dimensional modeling, and three-dimensionally modeled molding thereof
 第1及び第2の発明は、ポリアミド樹脂組成物に関する。第3の発明は3次元造形用ポリアミド樹脂組成物に関する。 The first and second inventions relate to polyamide resin compositions. A third invention relates to a polyamide resin composition for three-dimensional modeling.
 自動車業界では燃料費節減のため,車体の軽量化,防錆,遮音効果などを目的に従来の金属部品を樹脂部品で代替する傾向がある。なかでも,ナイロン6やナイロン66は耐熱性,剛性が高いため自動車部品材料として相当の使用実績がある。しかし,これらのポリアミドは塩化カルシウム,塩化マグネシウム,塩化亜鉛,岩塩などのハロゲン化金属塩を用いた道路凍結防止剤に侵されひび割れ(クラック)を生じ易いという欠点があった。この欠点を改良するため,いくつかの方法が提案されている。 In the automotive industry, there is a tendency to replace conventional metal parts with resin parts for the purpose of reducing fuel costs, reducing the weight of the car body, preventing rust, and providing sound insulation. Among them, nylon 6 and nylon 66 are highly heat-resistant and rigid, and have a considerable track record of being used as materials for automobile parts. However, these polyamides have the disadvantage that they are susceptible to cracking when they are attacked by road deicing agents using halogenated metal salts such as calcium chloride, magnesium chloride, zinc chloride and rock salt. Several methods have been proposed to improve this drawback.
 特許文献1には、ポリアミド90~60重量%、フェノール化合物5~30重量%及びエチレン系エラストマー5~25重量%を含むポリアミド樹脂組成物からなる耐道路凍結防止剤性および低吸水性を有するポリアミド樹脂からなる自動車用アンダー・フード部品が開示されている。このフェノール化合物としては、ノボラック型フェノール樹脂が使用されている。 Patent Document 1 describes a polyamide resin composition containing 90 to 60% by weight of polyamide, 5 to 30% by weight of a phenolic compound, and 5 to 25% by weight of an ethylene elastomer. Polyamide having road antifreeze resistance and low water absorption An automotive underhood component made of resin is disclosed. A novolac type phenolic resin is used as the phenolic compound.
 ポリアミド樹脂とノボラック型フェノール樹脂とを含むポリアミド樹脂組成物は、特許文献2~4にも開示されている。
 特許文献2には、ポリアミド樹脂と高分子量のノボラック型フェノール樹脂とを含むポリアミド樹脂組成物が、ポリアミド樹脂組成物のガラス転移温度を大きく向上させることができ、乾燥状態のみならず吸水状態であっても機械的強度に優れていることが記載されている。
 特許文献3には、ポリアミド樹脂に1~15重量%のノボラック型フェノール樹脂を添加したポリアミド樹脂組成物が、メルトフローインデックスを高めることができることが記載されている。
 特許文献4には、低溶融粘度のポリアミド樹脂と低分子量のノボラック型フェノール樹脂とフィラーとを含むポリアミド樹脂組成物が、フィラーを高含有量で含みながら溶融流動性に優れることが記載されている。
Polyamide resin compositions containing a polyamide resin and a novolak-type phenolic resin are also disclosed in Patent Documents 2 to 4.
Patent Document 2 discloses that a polyamide resin composition containing a polyamide resin and a high-molecular-weight novolak-type phenolic resin can greatly improve the glass transition temperature of the polyamide resin composition, and can be used not only in a dry state but also in a water-absorbing state. However, it is described that the mechanical strength is excellent.
Patent Document 3 describes that a polyamide resin composition obtained by adding 1 to 15% by weight of a novolac phenolic resin to a polyamide resin can increase the melt flow index.
Patent Document 4 describes that a polyamide resin composition containing a low melt viscosity polyamide resin, a low molecular weight novolac phenolic resin, and a filler has excellent melt fluidity while containing a high filler content. .
 立体の成形品の製造方法として、3次元造形用の製造装置である3Dプリンターを用いて3次元造形物を製造する方法が行われている。3Dプリンターでは、3次元の座標データをもとに、2次元層を順次積層していくことによって3次元造形物を製造する。 As a method of manufacturing a three-dimensional molded product, a method of manufacturing a three-dimensional modeled object using a 3D printer, which is a manufacturing device for three-dimensional modeling, is used. A 3D printer manufactures a three-dimensional object by sequentially stacking two-dimensional layers based on three-dimensional coordinate data.
 3Dプリンターでは、熱溶解積層方式( 以下、「FDM法」とも言う。)、液槽光重合方式、インクジェット方式等の方式が採用され、これらの中でもFDM法が広く使用されている。
 FDM法では、フィラメント状の原料組成物を、加熱溶融しながらノズル部位からのX-Y平面テーブル上に連続的に押し出され堆積したものが、さらにZ軸方向に積層されていき、堆積すると共に融着し、これが冷却するにつれて一体となって固化する。
In 3D printers, methods such as a hot melt deposition method (hereinafter also referred to as "FDM method"), a liquid bath photopolymerization method, an inkjet method, etc. are adopted, and among these, the FDM method is widely used.
In the FDM method, a filament-like raw material composition is continuously extruded and deposited from a nozzle portion onto an XY plane table while being heated and melted, and is further stacked in the Z-axis direction. It fuses and solidifies together as it cools.
 FDM法に用いる原料としては、溶融流動性が求められることから、ポリカーボネート樹脂、ABS樹脂、ポリカーボネートABS樹脂、ポリ乳酸等、ポリアミド樹脂及びポリアミドエラストマーの熱可塑性樹脂が用いられてきた。
 一方、射出成形において溶融流動性が良好な樹脂組成物として、ポリアミド樹脂組成物とノボラック型フェノール樹脂を含むポリアミド樹脂組成物が知られている。(特許文献3参照)。同様の組成物が、吸水率が低いとともに、機械特性に優れることが知られている(特許文献1及び2参照)。
As raw materials used in the FDM method, thermoplastic resins such as polycarbonate resins, ABS resins, polycarbonate ABS resins, polylactic acid, polyamide resins and polyamide elastomers have been used because they require melt fluidity.
On the other hand, a polyamide resin composition containing a polyamide resin composition and a novolac-type phenol resin is known as a resin composition having good melt fluidity in injection molding. (See Patent Document 3). Similar compositions are known to have low water absorption and excellent mechanical properties (see Patent Documents 1 and 2).
特開昭60-188456号公報JP-A-60-188456 特開2016-113603号公報JP 2016-113603 A 特表2011-500875号公報Japanese Patent Publication No. 2011-500875 特開2003-246934号公報JP-A-2003-246934
1.第1の発明の課題
 特許文献1では、特定量のエチレン系エラストマーを含むため、ポリアミド樹脂組成物としての機械物性や耐熱性が低下してしまう事があった。特許文献2では、ノボラック型フェノール樹脂が高分子量であるため、ポリアミド樹脂組成物の流動性が低下し、十分な成形加工性が得られない場合があった。特許文献3では、ノボラック型フェノール樹脂の含有量が少ないため、ポリアミド樹脂の吸水抑制が十分できない場合があった。特許文献4では、低溶融粘度のポリアミド樹脂と低分子量のノボラック型フェノール樹脂とを組み合わせるため、分子量が低く無機フィラーの量が多くなり、耐衝撃性が低下してしまうことがあった。
1. Problems of the First Invention In Patent Document 1, since a specific amount of the ethylene-based elastomer is contained, the mechanical properties and heat resistance of the polyamide resin composition may deteriorate. In Patent Document 2, since the novolac-type phenolic resin has a high molecular weight, the polyamide resin composition has a low fluidity, and sufficient moldability cannot be obtained in some cases. In Patent Document 3, since the content of the novolak-type phenolic resin is small, there are cases where the water absorption of the polyamide resin cannot be sufficiently suppressed. In Patent Document 4, since a polyamide resin with a low melt viscosity and a novolak-type phenolic resin with a low molecular weight are combined, the molecular weight is low and the amount of inorganic filler is large, resulting in a decrease in impact resistance.
 第1の発明は、耐塩化カルシウム性が良好で、水を溶媒とした場合及びメタノールを溶媒とした場合のソックスレーによる抽出法による抽出量が低く、絶縁性があり、吸水量が低く、吸水時の機械的特性が良好なポリアミド樹脂組成物を提供することを課題とする。 The first invention has good calcium chloride resistance, a low extraction amount by the Soxhlet extraction method when water is used as a solvent and when methanol is used as a solvent, has insulating properties, has a low water absorption, and when water is absorbed. An object of the present invention is to provide a polyamide resin composition having good mechanical properties.
2.第2の発明の課題
 特許文献1では、特定量のエチレン系エラストマーを含むと強化材との密着性が阻害される他にポリアミド樹脂組成物としての耐熱性が低下してしまうことがあった。特許文献2では、ノボラック型フェノール樹脂が高分子量であるため、ナイロン樹脂組成物の流動性が低下し、十分な成形加工性が得られない場合があった。特許文献3では、ノボラック型フェノール樹脂の含有量が少ないため、ポリアミド樹脂の吸水抑制が十分ではない場合があった。特許文献4では、低溶融粘度のポリアミド樹脂と低分子量のノボラック型フェノール樹脂とを組み合わせるため、分子量が低い上、無機フィラーの量が多いため、耐衝撃性が低下してしまうことがあった。
2. Problems of the Second Invention In Patent Document 1, when a specific amount of the ethylene-based elastomer is contained, the heat resistance of the polyamide resin composition may be lowered in addition to the deterioration of the adhesion to the reinforcing material. In Patent Document 2, since the novolak-type phenolic resin has a high molecular weight, the fluidity of the nylon resin composition is lowered, and sufficient moldability cannot be obtained in some cases. In Patent Document 3, since the content of the novolak-type phenolic resin is small, the polyamide resin may not sufficiently suppress water absorption. In Patent Document 4, since a polyamide resin with a low melt viscosity and a novolak-type phenolic resin with a low molecular weight are combined, the molecular weight is low and the amount of inorganic filler is large, so the impact resistance may be lowered.
 第2の発明は、耐塩化カルシウム性が良好で、吸水量が低く、吸水時の機械的特性に優れるポリアミド樹脂組成物を提供することを課題とする。 A second object of the invention is to provide a polyamide resin composition that has good calcium chloride resistance, low water absorption, and excellent mechanical properties when water is absorbed.
3.第3の発明の課題
 従来のFDM法に用いられてきたポリカーボネート樹脂、ABS樹脂、ポリカーボネートABS樹脂及びポリ乳酸、ポリアミド樹脂及びポリアミドエラストマー等の熱可塑性樹脂は、ノズルから押し出された溶融状態の熱可塑性樹脂が3次元成形品として固化する際、熱収縮等の影響で成形品に反り等の変形が生じ、精度の高い成形品が得られないことがあった。
 ポリアミド樹脂組成物とノボラック型フェノール樹脂を含むポリアミド樹脂組成物は、射出成形の成形方法に用いられてきたが、3Dプリンターで成形する試みは行われてこなかった。
3. Problems of the Third Invention Polycarbonate resin, ABS resin, polycarbonate ABS resin, and thermoplastic resins such as polylactic acid, polyamide resin, and polyamide elastomer, which have been used in the conventional FDM method, are thermoplastic resins in a molten state extruded from a nozzle. When the resin is solidified as a three-dimensional molded product, deformation such as warpage occurs in the molded product due to the influence of heat shrinkage, etc., and a highly accurate molded product may not be obtained.
A polyamide resin composition containing a polyamide resin composition and a novolak-type phenolic resin has been used in a molding method for injection molding, but no attempt has been made to mold it with a 3D printer.
 そこで、第3の発明は、3Dプリンターで成形した場合に、成形品の反りが抑制されるとともに、ノズルから押し出される際の発泡が抑制されて成形品の外観が良好であり、吸水率が低く、強度も満足できる3次元造形用ポリアミド樹脂組成物を提供することを課題とする。 Therefore, the third invention, when molded with a 3D printer, suppresses warping of the molded product, suppresses foaming when extruded from the nozzle, and has a good appearance and a low water absorption rate. It is an object of the present invention to provide a polyamide resin composition for three-dimensional modeling that satisfies the requirements for strength.
1.第1の発明の課題を解決するための手段
 第1の発明は、たとえば以下の[1]~[8]である。
[1]ポリアミド樹脂組成物100質量%中、ポリアミド樹脂(A)を60~95質量%及びノボラック型フェノール樹脂(B)を5~40質量%含むポリアミド樹脂組成物であって、
 前記ポリアミド樹脂(A)は、JIS K6920-2に準拠して、25℃で測定した相対粘度が1.9以上5.0以下であり、
前記ノボラック型フェノール樹脂(B)は、軟化点温度が130℃以下であり、
前記ポリアミド樹脂組成物を、水を溶媒としたソックスレーによる抽出法により6時間抽出した際の抽出分が、抽出に用いたポリアミド樹脂組成物100質量%に対して1.5質量%以下であるポリアミド樹脂組成物。
[2]前記ノボラック型フェノール樹脂(B)が、下記式(1)で表されるノボラック型フェノール樹脂である[1]のポリアミド樹脂組成物。
Figure JPOXMLDOC01-appb-C000002

(上記式(1)中、nは、1~200である。)
[3]前記ポリアミド樹脂(A)が、脂肪族ホモポリアミド樹脂(A-1)及び脂肪族共重合ポリアミド樹脂(A-2)からなる群から選択される少なくとも1種を含む[1]又は[2]のポリアミド樹脂組成物。
[4]前記ノボラック型フェノール樹脂(B)は、軟化点温度が110~130℃である[1]~[3]のいずれかのポリアミド樹脂組成物。
[5]前記ポリアミド樹脂組成物において、ポリアミド樹脂(A)以外の熱可塑性樹脂成分として、ノボラック型フェノール樹脂(B)を主成分として含む[1]~[4]のいずれかのポリアミド樹脂組成物。
[6]実質的にエチレン系エラストマーを含まない[1]~[5]のいずれかのポリアミド樹脂組成物。
[7][1]~[6]のいずれかのポリアミド樹脂組成物の成形品。
[8]自動車部品である[7]の成形品。
1. Means for Solving the Problems of the First Invention The first invention is, for example, the following [1] to [8].
[1] A polyamide resin composition containing 60 to 95% by mass of a polyamide resin (A) and 5 to 40% by mass of a novolak phenolic resin (B) in 100% by mass of the polyamide resin composition,
The polyamide resin (A) has a relative viscosity of 1.9 or more and 5.0 or less measured at 25° C. in accordance with JIS K6920-2,
The novolak-type phenol resin (B) has a softening point temperature of 130° C. or less,
The polyamide resin composition is extracted for 6 hours by a Soxhlet extraction method using water as a solvent, and the extracted amount is 1.5% by mass or less with respect to 100% by mass of the polyamide resin composition used for extraction. Resin composition.
[2] The polyamide resin composition of [1], wherein the novolak-type phenolic resin (B) is a novolac-type phenolic resin represented by the following formula (1).
Figure JPOXMLDOC01-appb-C000002

(In the above formula (1), n is 1 to 200.)
[3] The polyamide resin (A) contains at least one selected from the group consisting of an aliphatic homopolyamide resin (A-1) and an aliphatic copolyamide resin (A-2) [1] or [ 2] of the polyamide resin composition.
[4] The polyamide resin composition according to any one of [1] to [3], wherein the novolac-type phenolic resin (B) has a softening point temperature of 110 to 130°C.
[5] The polyamide resin composition according to any one of [1] to [4], which contains a novolac-type phenolic resin (B) as a main component as a thermoplastic resin component other than the polyamide resin (A). .
[6] The polyamide resin composition of any one of [1] to [5] substantially free of ethylene elastomer.
[7] A molded article of the polyamide resin composition according to any one of [1] to [6].
[8] The molded article of [7], which is an automobile part.
2.第2の発明の課題を解決するための手段
 第2の発明は、例えば以下の(1)~(8)である。
(1)ポリアミド樹脂組成物100質量%中、ポリアミド樹脂(A)を30~70質量%、ノボラック型フェノール樹脂(B)を10~40質量%、及び強化フィラー(C)を5~40質量%含むポリアミド樹脂組成物。
(2)前記ノボラック型フェノール樹脂(B)の軟化点温度が130℃以下ある(1)のポリアミド樹脂組成物。
(3)前記強化フィラー(C)が、ガラス繊維、炭素繊維及びセルロース繊維からなる群から選択される少なくとも1種である(1)又は(2)のポリアミド樹脂組成物。
(4)前記ポリアミド樹脂組成物が、実質的にエチレン系エラストマーを含まない(1)~(3)のいずれかのポリアミド樹脂組成物。
(5)前記ポリアミド樹脂(A)が、脂肪族ホモポリアミド樹脂(A-1)及び脂肪族共重合ポリアミド樹脂(A-2)からなる群から選択される少なくとも1種を含む(1)~(4)のいずれかのポリアミド樹脂組成物。
(6)前記ノボラック型フェノール樹脂(B)が、下記式(1)で表されるノボラック型フェノール樹脂である(1)~(5)のいずれかのポリアミド樹脂組成物。
Figure JPOXMLDOC01-appb-C000003

(上記式(1)中、nは、1~200である。)
(7)(1)~(6)のいずれかのポリアミド樹脂組成物の成形品。
(8)自動車部品である(7)の成形品。
2. Means for Solving the Problems of the Second Invention The second invention is, for example, the following (1) to (8).
(1) In 100% by mass of the polyamide resin composition, 30 to 70% by mass of the polyamide resin (A), 10 to 40% by mass of the novolak phenolic resin (B), and 5 to 40% by mass of the reinforcing filler (C) A polyamide resin composition comprising:
(2) The polyamide resin composition according to (1), wherein the novolak-type phenolic resin (B) has a softening point temperature of 130° C. or lower.
(3) The polyamide resin composition of (1) or (2), wherein the reinforcing filler (C) is at least one selected from the group consisting of glass fiber, carbon fiber and cellulose fiber.
(4) The polyamide resin composition according to any one of (1) to (3), wherein the polyamide resin composition does not substantially contain an ethylene-based elastomer.
(5) The polyamide resin (A) contains at least one selected from the group consisting of an aliphatic homopolyamide resin (A-1) and an aliphatic copolyamide resin (A-2) (1) to ( The polyamide resin composition according to any one of 4).
(6) The polyamide resin composition according to any one of (1) to (5), wherein the novolak-type phenolic resin (B) is a novolak-type phenolic resin represented by the following formula (1).
Figure JPOXMLDOC01-appb-C000003

(In the above formula (1), n is 1 to 200.)
(7) A molded article of the polyamide resin composition according to any one of (1) to (6).
(8) The molded article of (7) which is an automobile part.
3.第3の発明の課題を解決するための手段
 第3の発明は、例えば以下の<1>~<8>からなる。
<1>3次元造形用ポリアミド樹脂組成物100質量%中、ポリアミド樹脂(A)60~95質量%及びノボラック型フェノール樹脂(B)5~40質量%を含む3次元造形用ポリアミド樹脂組成物。
<2>前記ポリアミド樹脂(A)が脂肪族共重合ポリアミド(A-2)を含む<1>の3次元造形用ポリアミド樹脂組成物。
<3>前記ポリアミド樹脂(A)が、ポリアミド6、ポリアミド6/66、ポリアミド6/12及びポリアミド6/66/12からなる群から選択される少なくとも1種である<1>の3次元造形用ポリアミド樹脂組成物。
<4>前記ノボラック型フェノール樹脂(B)の軟化点温度が110~150℃である<1>~<3>のいずれかの3次元造形用ポリアミド樹脂組成物。
<5>前記3次元造形用ポリアミド樹脂組成物を、射出成形して得られたISO527タイプA型引張試験片を、40℃の水に24時間浸漬させた場合の吸水率が2.2%以下である、<1>~<4>のいずれかの3次元造形用ポリアミド樹脂組成物。
<6>前記3次元造形用ポリアミド樹脂組成物を、3Dプリンターを用いて3次元造形して得られたISO527タイプA型引張試験片を、23℃、50%RH条件下で24時間放置した後、定盤に置き、幅方向辺の一方の端部を重りで固定した時の、もう一方の幅方向辺の端部の定盤面からの反り上がり量 が30mm以下である、<1>~<5>のいずれかの3次元造形用ポリアミド樹脂組成物。
<7><1>~<6>のいずれかの3次元造形用ポリアミド樹脂組成物を成形して得られる3次元造形用モノフィラメント。
<8><1>~<6>のいずれかの3次元造形用ポリアミド樹脂組成物又は請求項7に記載の3次元造形用モノフィラメントを、3Dプリンターを用いて3次元造形して得られる成形体。
<9><1>の3次元造形用ポリアミド樹脂組成物の3次元造形における使用。
<10><1>の3次元造形用ポリアミド樹脂組成物を3次元造形に使用する方法。
3. Means for Solving the Problems of the Third Invention The third invention consists of, for example, the following <1> to <8>.
<1> A polyamide resin composition for three-dimensional modeling containing 60 to 95% by mass of a polyamide resin (A) and 5 to 40% by mass of a novolak-type phenolic resin (B) in 100% by mass of a polyamide resin composition for three-dimensional modeling.
<2> The polyamide resin composition for three-dimensional modeling according to <1>, wherein the polyamide resin (A) contains an aliphatic copolymer polyamide (A-2).
<3> The three-dimensional modeling of <1>, wherein the polyamide resin (A) is at least one selected from the group consisting of polyamide 6, polyamide 6/66, polyamide 6/12 and polyamide 6/66/12. Polyamide resin composition.
<4> The polyamide resin composition for three-dimensional modeling according to any one of <1> to <3>, wherein the novolak-type phenolic resin (B) has a softening point temperature of 110 to 150°C.
<5> The water absorption rate when an ISO527 type A tensile test piece obtained by injection molding the polyamide resin composition for three-dimensional modeling is immersed in water at 40 ° C. for 24 hours, is 2.2% or less. The polyamide resin composition for three-dimensional modeling according to any one of <1> to <4>.
<6> After leaving the ISO527 type A tensile test piece obtained by three-dimensionally modeling the polyamide resin composition for three-dimensional modeling using a 3D printer under conditions of 23 ° C. and 50% RH for 24 hours. , When placed on a surface plate and one end of the width direction side is fixed with a weight, the amount of warpage of the other width direction side end from the surface of the surface plate is 30 mm or less <1> to <5> any polyamide resin composition for three-dimensional modeling.
<7> A monofilament for three-dimensional modeling obtained by molding the polyamide resin composition for three-dimensional modeling according to any one of <1> to <6>.
<8> Molded article obtained by three-dimensional modeling of the polyamide resin composition for three-dimensional modeling according to any one of <1> to <6> or the monofilament for three-dimensional modeling according to claim 7 using a 3D printer. .
<9> Use of the polyamide resin composition for three-dimensional modeling of <1> in three-dimensional modeling.
<10> A method of using the polyamide resin composition for three-dimensional modeling of <1> for three-dimensional modeling.
1.第1の発明の効果
 第1の発明のポリアミド樹脂組成物は、水を溶媒とした場合及びメタノールを溶媒とした場合のソックスレーによる抽出法による抽出量が低く、耐塩化カルシウム性が良好で、絶縁性があり、吸水量が低く、吸水時の機械的特性が良好である。
1. Effect of the first invention The polyamide resin composition of the first invention has a low extraction amount by the Soxhlet extraction method when water is used as a solvent and when methanol is used as a solvent, and has good calcium chloride resistance and insulation. It has low water absorption and good mechanical properties when water is absorbed.
2.第2の発明の効果
 第2の発明のポリアミド樹脂組成物は、耐塩化カルシウム性が良好で、吸水量が低く、吸水時の機械的特性に優れる。
2. Effects of the Second Invention The polyamide resin composition of the second invention has good calcium chloride resistance, low water absorption, and excellent mechanical properties when water is absorbed.
3.第3の発明の効果
 第3の発明の3次元造形用ポリアミド樹脂組成物は、3Dプリンターで成形した場合に、成形品の反りが抑制されるとともに、ノズルから押し出される際の発泡が抑制されて成形品の外観が良好であり、吸水率が低く、強度も満足できる。
3. Effect of the third invention When the polyamide resin composition for three-dimensional modeling of the third invention is molded with a 3D printer, the molded product is suppressed from warping and foaming is suppressed when extruded from the nozzle. The appearance of the molded product is good, the water absorption is low, and the strength is satisfactory.
第3の発明における3Dプリンターの一例を示す図である。It is a figure which shows an example of the 3D printer in 3rd invention.
 本明細書において、「実質的に含まない」とは、ポリアミド樹脂組成物の特性やポリアミド樹脂組成物から得られる成形品の機能や特性に変化を及ぼす程度には含まないという意味であり、機能や特性を損なわない程度に含まれることを排除するものではない。 As used herein, the term "substantially does not contain" means that the properties of the polyamide resin composition and the functions and properties of the molded product obtained from the polyamide resin composition are not changed. It does not exclude that it is included to the extent that it does not impair the characteristics.
1.第1の発明
 第1の発明は、ポリアミド樹脂組成物100質量%中、ポリアミド樹脂(A)を60~95質量%及びノボラック型フェノール樹脂(B)を5~40質量%含むポリアミド樹脂組成物であって、前記ポリアミド樹脂(A)は、JIS K6920-2に準拠して、25℃で測定した相対粘度が1.9以上5.0以下であり、前記ノボラック型フェノール樹脂(B)は、軟化点温度が130℃以下であり、前記ポリアミド樹脂組成物を、水を溶媒としたソックスレーによる抽出法により6時間抽出した際の抽出分が、抽出に用いたポリアミド樹脂組成物100質量%に対して1.5質量%以下であるポリアミド樹脂組成物に関する。
1. First invention The first invention is a polyamide resin composition containing 60 to 95% by mass of a polyamide resin (A) and 5 to 40% by mass of a novolac type phenolic resin (B) in 100% by mass of the polyamide resin composition. The polyamide resin (A) has a relative viscosity of 1.9 or more and 5.0 or less measured at 25 ° C. in accordance with JIS K6920-2, and the novolak phenol resin (B) is softened. The point temperature is 130 ° C. or less, and the extracted amount when the above-mentioned polyamide resin composition is extracted for 6 hours by the Soxhlet extraction method using water as a solvent is 100% by mass of the polyamide resin composition used for extraction. It relates to a polyamide resin composition having a content of 1.5% by mass or less.
<ポリアミド樹脂(A)>
 第1の発明のポリアミド樹脂組成物は、ポリアミド樹脂(A)を含む。
ポリアミド樹脂(A)としては、脂肪族ホモポリアミド樹脂(A-1)、脂肪族共重合ポリアミド樹脂(A-2)、芳香族ホモポリアミド樹脂(A-3)及び芳香族共重合ポリアミド樹脂(A-4)が挙げられる。これらは1種単独で用いても、2種以上組み合わせて用いてもよい。これらの中でも、成形性の観点から、ポリアミド樹脂(A)は、脂肪族ホモポリアミド樹脂(A-1)及び脂肪族共重合ポリアミド樹脂(A-2)からなる群から選択される少なくとも1種を含むことが好ましく、脂肪族ホモポリアミド樹脂(A-1)を含むことがより好ましい。
<Polyamide resin (A)>
The polyamide resin composition of the first invention contains a polyamide resin (A).
Examples of the polyamide resin (A) include an aliphatic homopolyamide resin (A-1), an aliphatic copolyamide resin (A-2), an aromatic homopolyamide resin (A-3) and an aromatic copolyamide resin (A -4). These may be used individually by 1 type, or may be used in combination of 2 or more types. Among these, from the viewpoint of moldability, the polyamide resin (A) is at least one selected from the group consisting of an aliphatic homopolyamide resin (A-1) and an aliphatic copolymerized polyamide resin (A-2). It preferably contains an aliphatic homopolyamide resin (A-1), and more preferably contains an aliphatic homopolyamide resin (A-1).
(A-1)脂肪族ホモポリアミド樹脂
 脂肪族ホモポリアミド樹脂(A-1)は、1種類の脂肪族の構成単位からなるポリアミド樹脂である。脂肪族ホモポリアミド樹脂(A-1)は、1種類のラクタム及び当該ラクタムの加水分解物であるアミノカルボン酸の少なくとも一方からなるものであってもよく、1種類のジアミンと1種類のジカルボン酸との組合せからなるものであってもよい。ここで、ジアミンとジカルボン酸の組み合わせは、1種類のジアミンと1種類のジカルボン酸の組合せで1種類のモノマーとみなす。
(A-1) Aliphatic Homopolyamide Resin The aliphatic homopolyamide resin (A-1) is a polyamide resin composed of one type of aliphatic constitutional unit. The aliphatic homopolyamide resin (A-1) may consist of at least one aminocarboxylic acid that is one type of lactam and a hydrolyzate of the lactam, and one type of diamine and one type of dicarboxylic acid. It may consist of a combination of Here, the combination of diamine and dicarboxylic acid is regarded as one type of monomer in combination of one type of diamine and one type of dicarboxylic acid.
 ラクタムとしては、ε-カプロラクタム、エナントラクタム、ウンデカンラクタム、α-ピロリドン、α-ピペリドン、ラウロラクタム等が挙げられる。
これらの中でも重合生産の観点から、ε-カプロラクタム、ウンデカンラクタム、及びラウロラクタムからなる群から選択される1種が好ましい。
 また、アミノカルボン酸としては6-アミノカプロン酸、7-アミノヘプタン酸、9-アミノノナン酸、11-アミノウンデカン酸、12-アミノドデカン酸が挙げられる。
 これらの中でも重合生産の観点から、6-アミノカプロン酸、11-アミノウンデカン酸、及び12-アミノドデカン酸からなる群から選択される1種が好ましい。
Lactams include ε-caprolactam, enantholactam, undecanelactam, α-pyrrolidone, α-piperidone, laurolactam and the like.
Among these, one selected from the group consisting of ε-caprolactam, undecanelactam, and laurolactam is preferred from the viewpoint of polymerization production.
Aminocarboxylic acids include 6-aminocaproic acid, 7-aminoheptanoic acid, 9-aminononanoic acid, 11-aminoundecanoic acid, and 12-aminododecanoic acid.
Among these, one selected from the group consisting of 6-aminocaproic acid, 11-aminoundecanoic acid, and 12-aminododecanoic acid is preferable from the viewpoint of polymerization production.
 ジアミンとしては、エチレンジアミン、テトラメチレンジアミン、ペンタメチレンジアミン、ヘキサメチレンジアミン、ペプタメチレンジアミン、オクタメチレンジアミン、ノナメチレンジアミン、デカメチレンジアミン、ウンデカメチレンジアミン、ドデカメチレンジアミン、トリデカンジアミン、テトラデカンジアミン、ペンタデカンジアミン、ヘキサデカンジアミン、ヘプタデカンジアミン、オクタデカンジアミン、ノナデカンジアミン、エイコサンジアミン、2-メチル-1,8-オクタンジアミン、2,2,4/2,4,4-トリメチルヘキサメチレンジアミン等の脂肪族ジアミン;1,3-/1,4-シクロヘキシルジアミン、ビス(4-アミノシクロヘキシル)メタン、ビス(4-アミノシクロヘキシル)プロパン、ビス(3-メチル-4-アミノシクロヘキシル)メタン、(3-メチル-4-アミノシクロヘキシル)プロパン、1,3-/1,4-ビスアミノメチルシクロヘキサン、5-アミノ-2,2,4-トリメチル-1-シクロペンタンメチルアミン、5-アミノ-1,3,3-トリメチルシクロヘキサンメチルアミン、ビス(アミノプロピル)ピペラジン、ビス(アミノエチル)ピペラジン、ノルボルナンジメチレンアミン等の脂環式ジアミン等が挙げられる。
 これらの中でも重合生産性の観点から、脂肪族ジアミンが好ましく、ヘキサメチレンジアミンがより好ましい。
Diamines include ethylenediamine, tetramethylenediamine, pentamethylenediamine, hexamethylenediamine, peptamethylenediamine, octamethylenediamine, nonamethylenediamine, decamethylenediamine, undecamethylenediamine, dodecamethylenediamine, tridecanediamine, and tetradecanediamine. , pentadecanediamine, hexadecanediamine, heptadecanediamine, octadecanediamine, nonadecanediamine, eicosanediamine, 2-methyl-1,8-octanediamine, 2,2,4/2,4,4-trimethylhexamethylenediamine, etc. 1,3-/1,4-cyclohexyldiamine, bis(4-aminocyclohexyl)methane, bis(4-aminocyclohexyl)propane, bis(3-methyl-4-aminocyclohexyl)methane, (3 -methyl-4-aminocyclohexyl)propane, 1,3-/1,4-bisaminomethylcyclohexane, 5-amino-2,2,4-trimethyl-1-cyclopentanemethylamine, 5-amino-1,3 , 3-trimethylcyclohexanemethylamine, bis(aminopropyl)piperazine, bis(aminoethyl)piperazine, norbornane dimethyleneamine and other alicyclic diamines.
Among these, from the viewpoint of polymerization productivity, aliphatic diamines are preferred, and hexamethylenediamine is more preferred.
 ジカルボン酸としては、シュウ酸、マロン酸、コハク酸、グルタル酸、アジピン酸、ピメリン酸、スベリン酸、アゼライン酸、セバシン酸、ウンデカンジオン酸、ドデカンジオン酸、トリデカンジオン酸、テトラデカンジオン酸、ペンタデカンジオン酸、ヘキサデカンジオン酸、オクタデカンジオン酸、エイコサンジオン酸等の脂肪族ジカルボン酸;1,3-/1,4-シクロヘキサンジカルボン酸、ジシクロヘキサンメタン-4,4’-ジカルボン酸、ノルボルナンジカルボン酸等の脂環式ジカルボン酸等が挙げられる。
 これらの中でも脂肪族ジカルボン酸が好ましく、アジピン酸、セバシン酸及びドデカンジオン酸からなる群から選択される1種がより好ましく、アジピン酸又はドデカンジオン酸が更に好ましい。
Dicarboxylic acids include oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, undecanedioic acid, dodecanedioic acid, tridecanedioic acid, tetradecanedioic acid, pentadecane. Aliphatic dicarboxylic acids such as dioic acid, hexadecanedioic acid, octadecanedioic acid, eicosandioic acid; 1,3-/1,4-cyclohexanedicarboxylic acid, dicyclohexanemethane-4,4'-dicarboxylic acid, norbornanedicarboxylic acid alicyclic dicarboxylic acids such as
Among these, aliphatic dicarboxylic acids are preferred, one selected from the group consisting of adipic acid, sebacic acid and dodecanedioic acid is more preferred, and adipic acid or dodecanedioic acid is even more preferred.
 脂肪族ホモポリアミド樹脂(A-1)として具体的には、ポリカプロラクタム(ポリアミド6)、ポリエナントラクタム(ポリアミド7)、ポリウンデカンラクタム(ポリアミド11)、ポリラウロラクタム(ポリアミド12)、ポリヘキサメチレンアジパミド(ポリアミド66)、ポリテトラメチレンドデカミド(ポリアミド412)、ポリペンタメチレンアジパミド(ポリアミド56)、ポリペンタメチレンアゼラミド(ポリアミド59)、ポリペンタメチレンセバカミド(ポリアミド510)、ポリペンタメチレンドデカミド(ポリアミド512)、ポリヘキサメチレンアゼラミド(ポリアミド69)、ポリヘキサメチレンセバカミド(ポリアミド610)、ポリヘキサメチレンドデカミド(ポリアミド612)、ポリノナメチレンアジパミド(ポリアミド96)、ポリノナメチレンアゼラミド(ポリアミド99)、ポリノナメチレンセバカミド(ポリアミド910)、ポリノナメチレンドデカミド(ポリアミド912)、ポリデカメチレンアジパミド(ポリアミド106)、ポリデカメチレンアゼラミド(ポリアミド109)、ポリデカメチレンデカミド(ポリアミド1010)、ポリデカメチレンドデカミド(ポリアミド1012)、ポリドデカメチレンアジパミド(ポリアミド126)、ポリドデカメチレンアゼラミド(ポリアミド129)、ポリドデカメチレンセバカミド(ポリアミド1210)、ポリドデカメチレンドデカミド(ポリアミド1212)、ポリアミド122等が挙げられる。脂肪族ホモポリアミド樹脂(A-1)は1種単独で用いても、2種以上を組合せた混合物として用いてもよい。 Specific examples of the aliphatic homopolyamide resin (A-1) include polycaprolactam (polyamide 6), polyenantholactam (polyamide 7), polyundecanelactam (polyamide 11), polylaurolactam (polyamide 12), and polyhexamethylene. adipamide (polyamide 66), polytetramethylene dodecamide (polyamide 412), polypentamethylene adipamide (polyamide 56), polypentamethylene azelamide (polyamide 59), polypentamethylene sebacamide (polyamide 510), Polypentamethylene dodecamide (Polyamide 512), Polyhexamethylene Azelamide (Polyamide 69), Polyhexamethylene Sebacamide (Polyamide 610), Polyhexamethylene Dodecamide (Polyamide 612), Polynonamethylene adipamide (Polyamide 96 ), polynonamethyleneazelamide (polyamide 99), polynonamethylenesebacamide (polyamide 910), polynonamethylenedodecanamide (polyamide 912), polydecamethyleneadipamide (polyamide 106), polydecamethyleneazelamide ( Polyamide 109), polydecamethylenedecamide (polyamide 1010), polydecamethylenedodecamide (polyamide 1012), polydodecamethyleneadipamide (polyamide 126), polydodecamethyleneazelamide (polyamide 129), polydodecamethylene sevaca amide (polyamide 1210), polydodecamethylene dodecamide (polyamide 1212), polyamide 122 and the like. The aliphatic homopolyamide resin (A-1) may be used alone or as a mixture of two or more.
 中でも脂肪族ホモポリアミド樹脂(A-1)は、重合生産性の観点から、ポリアミド6、ポリアミド11、ポリアミド12、ポリアミド66、ポリアミド610及びポリアミド612からなる群から選択される少なくとも1種が好ましく、ポリアミド6、ポリアミド11、ポリアミド12、ポリアミド610及びポリアミド612ら選択される少なくとも1種がより好ましく、ポリアミド6が更に好ましい。 Among them, the aliphatic homopolyamide resin (A-1) is preferably at least one selected from the group consisting of polyamide 6, polyamide 11, polyamide 12, polyamide 66, polyamide 610 and polyamide 612 from the viewpoint of polymerization productivity, At least one selected from polyamide 6, polyamide 11, polyamide 12, polyamide 610 and polyamide 612 is more preferred, and polyamide 6 is even more preferred.
 脂肪族ホモポリアミド樹脂(A-1)の製造装置としては、バッチ式反応釜、一槽式ないし多槽式の連続反応装置、管状連続反応装置、一軸型混練押出機、二軸型混練押出機等の混練反応押出機等、公知のポリアミド製造装置が挙げられる。重合方法としては溶融重合、溶液重合や固相重合等の公知の方法を用い、常圧、減圧、加圧操作を繰り返して重合することができる。これらの重合方法は単独で、あるいは適宜、組合せて用いることができる。 Equipment for producing the aliphatic homopolyamide resin (A-1) includes a batch reactor, a single-vessel or multi-vessel continuous reactor, a tubular continuous reactor, a single-screw kneading extruder, and a twin-screw kneading extruder. A known polyamide manufacturing apparatus such as a kneading reaction extruder such as As a polymerization method, known methods such as melt polymerization, solution polymerization, and solid phase polymerization can be used, and polymerization can be performed by repeating normal pressure, reduced pressure, and pressurization operations. These polymerization methods can be used alone or in combination as appropriate.
 脂肪族ホモポリアミド樹脂(A-1)の相対粘度は、JIS K 6920-2に準拠し、脂肪族ホモポリアミド1gを96%濃硫酸100mlに溶解させ、25℃で測定される。脂肪族ホモポリアミドの相対粘度は、1.9以上5.0以下であることが好ましく、2.3以上4.5以下であることがより好ましく、2.7以上4.3以下であることがさらに好ましい。更に本発明の効果を向上させる観点から、3.2以上4.2以下が特に好ましい。相対粘度が上記範囲であると成形加工性が良く、機械物性も良好である。 The relative viscosity of the aliphatic homopolyamide resin (A-1) is measured at 25°C by dissolving 1 g of the aliphatic homopolyamide in 100 ml of 96% concentrated sulfuric acid according to JIS K 6920-2. The relative viscosity of the aliphatic homopolyamide is preferably 1.9 or more and 5.0 or less, more preferably 2.3 or more and 4.5 or less, and preferably 2.7 or more and 4.3 or less. More preferred. Furthermore, from the viewpoint of improving the effect of the present invention, 3.2 or more and 4.2 or less is particularly preferable. When the relative viscosity is within the above range, molding processability is good, and mechanical properties are also good.
 脂肪族ホモポリアミド樹脂(A-1)の末端アミノ基濃度は、フェノールとメタノールの混合溶媒に溶解させ、中和滴定で求められる。脂肪族ホモポリアミド樹脂(A-1)の末端アミノ基濃度は、30μmol/g以上であることが好ましく、30μmol/g以上50μmol/g以下がより好ましい。 The terminal amino group concentration of the aliphatic homopolyamide resin (A-1) is determined by neutralization titration after dissolving in a mixed solvent of phenol and methanol. The terminal amino group concentration of the aliphatic homopolyamide resin (A-1) is preferably 30 μmol/g or more, more preferably 30 μmol/g or more and 50 μmol/g or less.
(A-2)脂肪族共重合ポリアミド樹脂
 脂肪族共重合ポリアミド樹脂(A-2)は、2種以上の脂肪族の構成単位からなるポリアミド樹脂である。脂肪族共重合ポリアミド樹脂(A-2)は、ジアミンとジカルボン酸との組合せ、ラクタム及びアミノカルボン酸からなる群から選択されるモノマーの共重合体である。ここで、ジアミンとジカルボン酸の組み合わせは、1種類のジアミンと1種類のジカルボン酸の組合せで1種類のモノマーとみなす。
(A-2) Aliphatic Copolyamide Resin The aliphatic copolyamide resin (A-2) is a polyamide resin composed of two or more kinds of aliphatic constitutional units. The aliphatic copolyamide resin (A-2) is a copolymer of monomers selected from the group consisting of combinations of diamines and dicarboxylic acids, lactams and aminocarboxylic acids. Here, the combination of diamine and dicarboxylic acid is regarded as one type of monomer in combination of one type of diamine and one type of dicarboxylic acid.
 ジアミンとしては、脂肪族ホモポリアミド樹脂(A-1)の原料として例示したものと同様のものが挙げられる。ジアミンは1種類単独で使用してもよいし、2種類以上を適宜組み合わせて使用してもよい。これらの中でも重合生産性の観点から、脂肪族ジアミンからなる群から選択される少なくとも1種が好ましく、直鎖状脂肪族ジアミンからなる群から選択される少なくとも1種がより好ましく、ヘキサメチレンジアミンが更に好ましい。 Examples of the diamine include those exemplified as raw materials for the aliphatic homopolyamide resin (A-1). A diamine may be used individually by 1 type, and may be used in combination of 2 or more types as appropriate. Among these, from the viewpoint of polymerization productivity, at least one selected from the group consisting of aliphatic diamines is preferable, at least one selected from the group consisting of linear aliphatic diamines is more preferable, and hexamethylenediamine is More preferred.
 ジカルボン酸としては、脂肪族ホモポリアミド樹脂(A-1)の原料として例示したものと同様のものが挙げられる。ジカルボン酸は1種類単独で使用してもよいし、2種類以上を適宜組み合わせて使用してもよい。これらの中でも脂肪族ジカルボン酸が好ましく、アジピン酸、セバシン酸及びドデカンジオン酸からなる群から選択される少なくとも1種がより好ましく、アジピン酸及びドデカンジオン酸からなる群から選択される少なくとも1種が更に好ましい。 Examples of the dicarboxylic acid include those exemplified as raw materials for the aliphatic homopolyamide resin (A-1). One type of dicarboxylic acid may be used alone, or two or more types may be used in combination as appropriate. Among these, aliphatic dicarboxylic acids are preferred, at least one selected from the group consisting of adipic acid, sebacic acid and dodecanedioic acid is more preferred, and at least one selected from the group consisting of adipic acid and dodecanedioic acid is More preferred.
 ラクタムとしては、脂肪族ホモポリアミド樹脂(A-1)の原料として例示したものと同様のものが挙げられる。ラクタムは1種類単独で使用してもよいし、2種類以上を適宜組み合わせて使用してもよい。
 これらの中でも重合生産の観点から、ε-カプロラクタム、ウンデカンラクタム及びラウロラクタムからなる群から選択される少なくとも1種が好ましい。
Examples of the lactam include those exemplified as raw materials for the aliphatic homopolyamide resin (A-1). One type of lactam may be used alone, or two or more types may be used in combination as appropriate.
Among these, from the viewpoint of polymerization production, at least one selected from the group consisting of ε-caprolactam, undecanelactam and laurolactam is preferred.
 また、アミノカルボン酸としては、脂肪族ホモポリアミド樹脂(A-1)の原料として例示したものと同様のものが挙げられる。アミノカルボン酸は1種類単独で使用してもよいし、2種類以上を適宜組み合わせて使用してもよい。これらの中でも重合生産の観点から、6-アミノカプロン酸、11-アミノウンデカン酸、及び12-アミノドデカン酸からなる群から選択される少なくとも1種が好ましい。 In addition, examples of the aminocarboxylic acid include those similar to those exemplified as raw materials for the aliphatic homopolyamide resin (A-1). One type of aminocarboxylic acid may be used alone, or two or more types may be used in combination as appropriate. Among these, at least one selected from the group consisting of 6-aminocaproic acid, 11-aminoundecanoic acid, and 12-aminododecanoic acid is preferable from the viewpoint of polymerization production.
 脂肪族共重合ポリアミド樹脂(A-2)として具体的には、カプロラクタム/ヘキサメチレンジアミノアジピン酸共重合体(ポリアミド6/66)、カプロラクタム/ヘキサメチレンジアミノアゼライン酸共重合体(ポリアミド6/69)、カプロラクタム/ヘキサメチレンジアミノセバシン酸共重合体(ポリアミド6/610)、カプロラクタム/ヘキサメチレンジアミノウンデカン酸共重合体(ポリアミド6/611)、カプロラクタム/ヘキサメチレンジアミノドデカン酸共重合体(ポリアミド6/612)、カプロラクタム/アミノウンデカン酸共重合体(ポリアミド6/11)、カプロラクタム/ラウロラクタム共重合体(ポリアミド6/12)、カプロラクタム/ヘキサメチレンジアミノアジピン酸/ラウロラクタム共重合体(ポリアミド6/66/12)、カプロラクタム/ヘキサメチレンジアミノアジピン酸/ヘキサメチレンジアミノセバシン酸共重合体(ポリアミド6/66/610)、カプロラクタム/ヘキサメチレンジアミノアジピン酸/ヘキサメチレンジアミノドデカンジカルボン酸共重合体(ポリアミド6/66/612)等の脂肪族共重合ポリアミドが挙げられる。脂肪族共重合ポリアミド樹脂(A-2)は1種単独で用いても、2種以上を組合せた混合物として用いてもよい。 Specific examples of the aliphatic copolymerized polyamide resin (A-2) include caprolactam/hexamethylenediaminoadipic acid copolymer (polyamide 6/66) and caprolactam/hexamethylenediaminoazelaic acid copolymer (polyamide 6/69). , caprolactam/hexamethylenediaminosebacic acid copolymer (polyamide 6/610), caprolactam/hexamethylenediaminoundecanoic acid copolymer (polyamide 6/611), caprolactam/hexamethylenediaminododecanoic acid copolymer (polyamide 6/612 ), caprolactam/aminoundecanoic acid copolymer (polyamide 6/11), caprolactam/laurolactam copolymer (polyamide 6/12), caprolactam/hexamethylenediaminoadipic acid/laurolactam copolymer (polyamide 6/66/ 12), caprolactam/hexamethylenediaminoadipic acid/hexamethylenediaminosebacic acid copolymer (polyamide 6/66/610), caprolactam/hexamethylenediaminoadipic acid/hexamethylenediaminododecanedicarboxylic acid copolymer (polyamide 6/66 /612) and other aliphatic copolyamides. The aliphatic copolyamide resin (A-2) may be used alone or as a mixture of two or more.
 これらの中でも、成形品の吸水率を抑制し、機械的強度を保つ観点から、ポリアミド6/66、ポリアミド6/12及びポリアミド6/66/12からなる群から選択される少なくとも1種が好ましく、ポリアミド6/66及びポリアミド6/66/12からなる群から選択される少なくとも1種がより好ましく、ポリアミド6/66が特に好ましい。 Among these, at least one selected from the group consisting of polyamide 6/66, polyamide 6/12 and polyamide 6/66/12 is preferable from the viewpoint of suppressing the water absorption rate of the molded product and maintaining the mechanical strength, At least one selected from the group consisting of polyamide 6/66 and polyamide 6/66/12 is more preferred, and polyamide 6/66 is particularly preferred.
 脂肪族共重合ポリアミド樹脂(A-2)の製造装置、重合方法としては、脂肪族ホモポリアミド樹脂(A-1)の項で例示したものと同様のものが挙げられる。 Examples of the production apparatus and polymerization method for the aliphatic copolyamide resin (A-2) are the same as those exemplified in the section for the aliphatic homopolyamide resin (A-1).
 脂肪族共重合ポリアミド樹脂(A-2)の相対粘度は、成形加工性と機械物性の観点から、JIS K 6920-2に準拠し、脂肪族共重合ポリアミド1gを96%濃硫酸100mlに溶解させ、25℃で測定した相対粘度が1.9以上5.0以下であることが好ましく、2.3以上4.5以下であることがより好ましく、2.7以上4.3以下であることがさらに好ましい。更に本発明の効果を向上させる観点から、3.2以上4.2以下が特に好ましい。相対粘度が上記範囲であると成形加工性が良く、機械物性も良好である。 The relative viscosity of the aliphatic copolyamide resin (A-2) is determined by dissolving 1 g of the aliphatic copolyamide in 100 ml of 96% concentrated sulfuric acid in accordance with JIS K 6920-2, from the viewpoint of moldability and mechanical properties. , the relative viscosity measured at 25 ° C. is preferably 1.9 or more and 5.0 or less, more preferably 2.3 or more and 4.5 or less, and 2.7 or more and 4.3 or less. More preferred. Furthermore, from the viewpoint of improving the effect of the present invention, 3.2 or more and 4.2 or less is particularly preferable. When the relative viscosity is within the above range, molding processability is good, and mechanical properties are also good.
 脂肪族共重合ポリアミド樹脂(A-2)の末端アミノ基濃度は、フェノールとメタノールの混合溶媒に溶解させ、中和滴定で求められる。脂肪族共重合ポリアミド樹脂(A-2)の末端アミノ基濃度は、30μmol/g以上であることが好ましく、30μmol/g以上50μmol/g以下がより好ましい。末端アミノ基濃度が前記範囲にあると、強化材との密着性や他樹脂への接着性の点から好ましい。 The terminal amino group concentration of the aliphatic copolyamide resin (A-2) is determined by neutralization titration after dissolving in a mixed solvent of phenol and methanol. The terminal amino group concentration of the aliphatic copolymerized polyamide resin (A-2) is preferably 30 μmol/g or more, more preferably 30 μmol/g or more and 50 μmol/g or less. When the terminal amino group concentration is within the above range, it is preferable from the viewpoint of adhesion to reinforcing materials and adhesion to other resins.
(A-3)芳香族ホモポリアミド樹脂
 芳香族ホモポリアミド樹脂(A-3)とは、芳香族系モノマー成分由来の1種類の構成単位からなる芳香族ポリアミド樹脂であり、例えば、脂肪族ジカルボン酸と芳香族ジアミン、芳香族ジカルボン酸と脂肪族ジアミン、または芳香族ジカルボン酸と芳香族ジアミンを原料とし、これらの重縮合によって得られるポリアミド樹脂である。ここで、ジアミンとジカルボン酸の組み合わせは、1種類のジアミンと1種類のジカルボン酸の組合せで1種類のモノマーとみなす。
(A-3) Aromatic homopolyamide resin Aromatic homopolyamide resin (A-3) is an aromatic polyamide resin consisting of one type of structural unit derived from an aromatic monomer component, for example, aliphatic dicarboxylic acid and an aromatic diamine, an aromatic dicarboxylic acid and an aliphatic diamine, or an aromatic dicarboxylic acid and an aromatic diamine as raw materials, and are obtained by polycondensation thereof. Here, the combination of diamine and dicarboxylic acid is regarded as one type of monomer in combination of one type of diamine and one type of dicarboxylic acid.
 原料の脂肪族ジアミン及び脂肪族ジカルボン酸としては、前記の脂肪族ホモポリアミド樹脂(A-1)の原料として例示したものと同様のものが挙げられ、脂環式ジアミン及び脂環式ジカルボン酸として例示したものも含まれる。
 芳香族ジアミンとしては、メタキシリレンジアミン、パラキシリレンジアミン等が挙げられ、芳香族ジカルボン酸としては、ナフタレンジカルボン酸、テレフタル酸、イソフタル酸、フタル酸等が挙げられる。
Examples of the aliphatic diamine and aliphatic dicarboxylic acid used as raw materials include those exemplified as the starting materials for the aliphatic homopolyamide resin (A-1). Examples are also included.
Examples of aromatic diamines include meta-xylylenediamine and para-xylylenediamine, and examples of aromatic dicarboxylic acids include naphthalenedicarboxylic acid, terephthalic acid, isophthalic acid, and phthalic acid.
 芳香族ホモポリアミド樹脂(A-3)の具体的な例としては、ポリノナンメチレンテレフタルアミド(ポリアミド9T) 、ポリヘキサメチレンテレフタルアミド(ポリアミド6T)、ポリヘキサメチレンイソフタルアミド(ポリアミド6I)、ポリキシリレンアジパミド(ポリアミドMXD6)などが挙げられる。芳香族ホモポリアミド樹脂(A-3)は1種単独で用いても、2種以上を組合せた混合物として用いてもよい。 Specific examples of the aromatic homopolyamide resin (A-3) include polynonamethylene terephthalamide (polyamide 9T), polyhexamethylene terephthalamide (polyamide 6T), polyhexamethylene isophthalamide (polyamide 6I), polyxyl and lenadipamide (polyamide MXD6). The aromatic homopolyamide resin (A-3) may be used singly or as a mixture of two or more.
 芳香族ホモポリアミド樹脂(A-3)の製造装置、重合方法としては、脂肪族ホモポリアミド樹脂(A-1)の項で例示したものと同様のものが挙げられる。 Examples of the production apparatus and polymerization method for the aromatic homopolyamide resin (A-3) are the same as those exemplified in the section for the aliphatic homopolyamide resin (A-1).
 本発明における(A-3)芳香族ホモポリアミド樹脂の重合度には特に制限はないが、成形加工性と機械物性の観点から、JIS K 6920-2に従い、(A-3)芳香族共重合ポリアミドの樹脂温度25℃で測定した相対粘度が、1.9以上5.0以下であることが好ましく、2.3以上4.5以下であることがより好ましく、2.7以上4.3以下であることがさらに好ましい。更に本発明の効果を向上させる観点から、3.2以上4.2以下が特に好ましい。 The degree of polymerization of (A-3) aromatic homopolyamide resin in the present invention is not particularly limited, but from the viewpoint of moldability and mechanical properties, (A-3) aromatic copolymerization is performed according to JIS K 6920-2. The relative viscosity of the polyamide measured at a resin temperature of 25 ° C. is preferably 1.9 or more and 5.0 or less, more preferably 2.3 or more and 4.5 or less, and 2.7 or more and 4.3 or less is more preferable. Furthermore, from the viewpoint of improving the effect of the present invention, 3.2 or more and 4.2 or less is particularly preferable.
(A-4)芳香族共重合ポリアミド樹脂
 芳香族ポリアミドとは、芳香族系モノマー成分を少なくとも1成分含む芳香族ポリアミド樹脂であり、例えば、脂肪族ジカルボン酸と芳香族ジアミン、芳香族ジカルボン酸と脂肪族ジアミン、または芳香族ジカルボン酸と芳香族ジアミンを原料とし、これらの重縮合によって得られるポリアミド樹脂である。芳香族共重合ポリアミド樹脂(A-4)は、上記芳香族ポリアミド樹脂の中で、2種以上の構成単位からなるポリアミド樹脂である。ここで、ジアミンとジカルボン酸の組み合わせは、1種類のジアミンと1種類のジカルボン酸の組合せで1種類のモノマーとみなす。
(A-4) Aromatic copolymerized polyamide resin Aromatic polyamide is an aromatic polyamide resin containing at least one aromatic monomer component, for example, an aliphatic dicarboxylic acid and an aromatic diamine, an aromatic dicarboxylic acid and A polyamide resin obtained by polycondensation of an aliphatic diamine or an aromatic dicarboxylic acid and an aromatic diamine as raw materials. Among the above aromatic polyamide resins, the aromatic copolyamide resin (A-4) is a polyamide resin composed of two or more structural units. Here, the combination of diamine and dicarboxylic acid is regarded as one type of monomer in combination of one type of diamine and one type of dicarboxylic acid.
 原料の脂肪族ジアミン及び脂肪族ジカルボン酸としては、前記の脂肪族ホモポリアミド樹脂(A-1)の原料として例示したものと同様のものが挙げられ、脂環式ジアミン及び脂環式ジカルボン酸として例示したものも含まれる。これらの脂肪族ジアミン及び脂肪族ジカルボン酸は1種類単独で使用してもよいし、2種類以上を適宜組み合わせて使用してもよい。 Examples of the aliphatic diamine and aliphatic dicarboxylic acid used as raw materials include those exemplified as the starting materials for the aliphatic homopolyamide resin (A-1). Examples are also included. These aliphatic diamines and aliphatic dicarboxylic acids may be used singly or in combination of two or more.
 芳香族ジアミンとしては、メタキシリレンジアミン、パラキシリレンジアミン等が挙げられ、芳香族ジカルボン酸としては、ナフタレンジカルボン酸、テレフタル酸、イソフタル酸、フタル酸等が挙げられる。
 これらの芳香族ジアミン及び芳香族ジカルボン酸は1種類単独で使用してもよいし、2種類以上を適宜組み合わせて使用してもよい。
Examples of aromatic diamines include meta-xylylenediamine and para-xylylenediamine, and examples of aromatic dicarboxylic acids include naphthalenedicarboxylic acid, terephthalic acid, isophthalic acid, and phthalic acid.
These aromatic diamines and aromatic dicarboxylic acids may be used singly or in combination of two or more.
 また、芳香族共重合ポリアミド樹脂は、ラクタム、アミノカルボン酸由来の構成単位を含んでいてもよく、ラクタム、アミノカルボン酸としては、前記の脂肪族ホモポリアミド樹脂(A-1)の原料として例示したものと同様のものが挙げられる。
 これらのラクタム、アミノカルボン酸は1種単独で用いてもよいし、2種以上組み合わせて用いてもよい。
In addition, the aromatic copolyamide resin may contain structural units derived from lactams and aminocarboxylic acids. The same ones as those mentioned above can be mentioned.
These lactams and aminocarboxylic acids may be used singly or in combination of two or more.
 芳香族共重合ポリアミド樹脂(A-4)の具体的な例としては、(ポリアミド66/6T)、ポリヘキサメチレンテレフタルアミド/ポリカプロアミドコポリマー(ポリアミド6T/6)、ポリヘキサメチレンアジパミド/ポリヘキサメチレンイソフタルアミドコポリマー(ポリアミド66/6I)、ポリヘキサメチレンイソフタルアミド/ポリカプロアミドコポリマー(ポリアミド6I/6)、ポリドデカミド/ポリヘキサメチレンテレフタラミドコポリマー(ポリアミド12/6T)、ポリヘキサメチレンアジパミド/ポリヘキサメチレンテレフタルアミド/ポリヘキサメチレンイソフタルアミドコポリマー(ポリアミド66/6T/6I)、ポリヘキサメチレンアジパミド/ポリカプロアミド/ポリヘキサメチレンイソフタルアミドコポリマー(ポリアミド66/6/6I)、ポリヘキサメチレンテレフタルアミド/ ポリヘキサメチレンイソフタルアミドコポリマー(ポリアミド6T/6I)、ポリヘキサメチレンテレフタルアミド/ポリ(2-メチルペンタメチレンテレフタルアミド)コポリマー(ポリアミド6T/M5T)などが挙げられる。芳香族共重合ポリアミド樹脂(A-4)は1種単独で用いても、2種以上を組合せて用いてもよい。これらの中でも、ポリアミド6T/6Iが好ましい。 Specific examples of the aromatic copolymerized polyamide resin (A-4) include (polyamide 66/6T), polyhexamethylene terephthalamide/polycaproamide copolymer (polyamide 6T/6), polyhexamethylene adipamide/ Polyhexamethylene isophthalamide copolymer (polyamide 66/6I), polyhexamethylene isophthalamide/polycaproamide copolymer (polyamide 6I/6), polydodecanamide/polyhexamethylene terephthalamide copolymer (polyamide 12/6T), polyhexamethylene azide Pamide/polyhexamethylene terephthalamide/polyhexamethylene isophthalamide copolymer (polyamide 66/6T/6I), polyhexamethylene adipamide/polycaproamide/polyhexamethylene isophthalamide copolymer (polyamide 66/6/6I), polyhexamethylene terephthalamide/polyhexamethylene isophthalamide copolymer (polyamide 6T/6I), polyhexamethylene terephthalamide/poly(2-methylpentamethylene terephthalamide) copolymer (polyamide 6T/M5T), and the like. The aromatic copolyamide resin (A-4) may be used alone or in combination of two or more. Among these, polyamide 6T/6I is preferred.
 芳香族共重合ポリアミド樹脂(A-4)の製造装置、重合方法としては、脂肪族ホモポリアミド樹脂(A-1)の項で例示したものと同様のものが挙げられる。 Examples of the production apparatus and polymerization method for the aromatic copolyamide resin (A-4) are the same as those exemplified in the section for the aliphatic homopolyamide resin (A-1).
 本発明における芳香族共重合ポリアミド樹脂(A-4)の重合度には特に制限はないが、成形加工性と機械物性の観点から、JIS K 6920-2に従い、(A-4)芳香族共重合ポリアミドの樹脂温度25℃で測定した相対粘度が、1.9以上5.0以下であることが好ましく、2.3以上4.5以下であることがより好ましく、2.7以上4.3以下であることがさらに好ましい。更に本発明の効果を向上させる観点から、3.2以上4.2以下が特に好ましい。相対粘度が上記範囲であると成形加工性が良く、機械物性も良好である。 The degree of polymerization of the aromatic copolyamide resin (A-4) in the present invention is not particularly limited, but from the viewpoint of molding processability and mechanical properties, according to JIS K 6920-2, (A-4) aromatic copolyamide resin The relative viscosity of the polymerized polyamide measured at a resin temperature of 25° C. is preferably 1.9 or more and 5.0 or less, more preferably 2.3 or more and 4.5 or less, and 2.7 or more and 4.3 More preferably: Furthermore, from the viewpoint of improving the effect of the present invention, 3.2 or more and 4.2 or less is particularly preferable. When the relative viscosity is within the above range, molding processability is good, and mechanical properties are also good.
 芳香族共重合ポリアミド樹脂(A-4)の末端アミノ基濃度は、フェノールとメタノールの混合溶媒に溶解させ、中和滴定で求められる。芳香族共重合ポリアミド樹脂(A-4)の末端アミノ基濃度は、20μmol/g以上60μmol/g以下が好ましい。末端アミノ基濃度が前記範囲にあると、強化材との密着性や他樹脂への接着性の点から好ましい。 The terminal amino group concentration of the aromatic copolymerized polyamide resin (A-4) is determined by neutralization titration after dissolving in a mixed solvent of phenol and methanol. The terminal amino group concentration of the aromatic copolyamide resin (A-4) is preferably 20 μmol/g or more and 60 μmol/g or less. When the terminal amino group concentration is within the above range, it is preferable from the viewpoint of adhesion to reinforcing materials and adhesion to other resins.
 第1の発明におけるポリアミド樹脂(A)は、JIS K-6920-2に準拠して、ポリアミド1gを96%濃硫酸100mlに溶解させ、25℃で測定した相対粘度が1.9以上5.0以下であり、2.3以上4.5以下であることが好ましく、2.7以上4.3以下であることがより好ましい。更に本発明の効果を向上させる観点から、3.2以上4.2以下がさらに好ましい。相対粘度が上記範囲であると成形加工性が良く、機械物性も良好である。 The polyamide resin (A) in the first invention has a relative viscosity of 1.9 or more and 5.0 measured at 25°C by dissolving 1 g of polyamide in 100 ml of 96% concentrated sulfuric acid in accordance with JIS K-6920-2. or less, preferably 2.3 or more and 4.5 or less, more preferably 2.7 or more and 4.3 or less. Furthermore, from the viewpoint of improving the effects of the present invention, it is more preferably 3.2 or more and 4.2 or less. When the relative viscosity is within the above range, molding processability is good, and mechanical properties are also good.
 ポリアミド樹脂(A)が、相対粘度が異なる2種以上のポリアミド樹脂(例えば、少なくとも1種の脂肪族ホモポリアミド樹脂(A-1)と少なくとも1種の脂肪族共重合ポリアミド樹脂(A-2)を含む場合、ポリアミド樹脂(A)における相対粘度は、上記内容で測定されるのが好ましいが、それぞれのポリアミド樹脂の相対粘度とその混合比が判明している場合、それぞれの相対粘度にその混合比を乗じた値を合計して算出される平均値を、ポリアミド樹脂(A)の相対粘度としてもよい。 The polyamide resin (A) is composed of two or more polyamide resins having different relative viscosities (e.g., at least one aliphatic homopolyamide resin (A-1) and at least one aliphatic copolymerized polyamide resin (A-2) When containing, the relative viscosity in the polyamide resin (A) is preferably measured with the above content, but if the relative viscosity of each polyamide resin and its mixing ratio are known, the relative viscosity of each mixing An average value calculated by summing the values obtained by multiplying the ratios may be used as the relative viscosity of the polyamide resin (A).
 第1の発明におけるポリアミド樹脂(A)の末端アミノ基濃度は、フェノールとメタノールの混合溶媒に溶解させ中和滴定で求められる末端アミノ基濃度として、30μmol/g以上の範囲が好ましく、30μmol/g以上50μmol/g以下の範囲がより好ましい。上記範囲であれば、成形加工性や機械物性を十分に得ることができる。 The terminal amino group concentration of the polyamide resin (A) in the first invention is preferably in the range of 30 μmol / g or more, preferably 30 μmol / g, as the terminal amino group concentration obtained by neutralization titration by dissolving in a mixed solvent of phenol and methanol. A more preferable range is 50 μmol/g or less. Within the above range, sufficient moldability and mechanical properties can be obtained.
 ポリアミド樹脂(A)が、末端アミノ基濃度の異なる2種以上のポリアミド樹脂(例えば、少なくとも1種の脂肪族ホモポリアミド樹脂(A-1)と少なくとも1種の脂肪族共重合ポリアミド樹脂(A-2))を含む場合、ポリアミド樹脂(A)における末端アミノ基濃度は、上記中和摘定で測定されるのが好ましいが、それぞれのポリアミド樹脂の末端アミノ基濃度とその混合比が判明している場合、それぞれの末端アミノ基濃度にその混合比を乗じた値を合計して算出される平均値を、ポリアミド樹脂(A)の末端アミノ基濃度としてもよい。 The polyamide resin (A) is composed of two or more polyamide resins having different terminal amino group concentrations (e.g., at least one aliphatic homopolyamide resin (A-1) and at least one aliphatic copolymerized polyamide resin (A- When 2)) is included, the terminal amino group concentration in the polyamide resin (A) is preferably measured by the above-mentioned neutralization measurement, but the terminal amino group concentration and the mixing ratio of each polyamide resin are known. If there is, the terminal amino group concentration of the polyamide resin (A) may be the average value calculated by summing the values obtained by multiplying the respective terminal amino group concentrations by the mixture ratios.
 第1の発明におけるポリアミド樹脂(A)は、ポリアミド6、ポリアミド6/66、ポリアミド6/12及びポリアミド6/66/12からなる群から選択される少なくとも1種であることが好ましく、ポリアミド6がより好ましい。 The polyamide resin (A) in the first invention is preferably at least one selected from the group consisting of polyamide 6, polyamide 6/66, polyamide 6/12 and polyamide 6/66/12, and polyamide 6 is more preferred.
 第1の発明におけるポリアミド樹脂(A)は、ポリアミド樹脂組成物100質量%中、60~95質量%、好ましくは65~90重量%、より好ましくは65~85質量%、さらに好ましくは70~80質量%含まれる。ポリアミド樹脂(A)の含有割合が上記範囲より少ないと、成形加工性が悪くなり、上記範囲より多いと、成形品の吸水率が高まるとともに、耐塩化カルシウム性が低下する。 The polyamide resin (A) in the first invention is 60 to 95% by mass in 100% by mass of the polyamide resin composition, preferably 65 to 90% by mass, more preferably 65 to 85% by mass, more preferably 70 to 80% by mass. % by mass. If the content of the polyamide resin (A) is less than the above range, moldability will be poor, and if it is more than the above range, the water absorption rate of the molded product will increase and the calcium chloride resistance will decrease.
<ノボラック型フェノール樹脂(B)>
 第1の発明のポリアミド樹脂組成物は、ノボラック型フェノール樹脂(B)を含む。
 第1の発明におけるノボラック型フェノール樹脂(B)としては、フェノール類とアルデヒド類を酸性触媒の存在下で縮合重合して製造されるものが挙げられる。ただし、フェノール類とアルデヒド類をアルカリ性触媒の存在下で縮合重合して製造されたレゾール型フェノール-ホルムアルデヒドを含まない方が好ましい。
<Novolak-type phenolic resin (B)>
The polyamide resin composition of the first invention contains a novolak-type phenolic resin (B).
Examples of the novolak-type phenolic resin (B) in the first invention include those produced by condensation polymerization of phenols and aldehydes in the presence of an acidic catalyst. However, it is preferable not to contain resol-type phenol-formaldehyde produced by condensation polymerization of phenols and aldehydes in the presence of an alkaline catalyst.
 ここでノボラック型フェノール樹脂(B)の製造に用いられるフェノール類としては、例えば、フェノール、クレゾール、トリメチルフェノール、キシレノール、レゾルシノール、カテコール、ブチルフェノール、オクチルフェノール、ノニルフェノール、フェニルフェノール、ジヒドロキシベンゼン、ビスフェノールA、ナフトール等の1価又は多価フェノール類、並びにそれらの置換体が挙げられる。これらは1種を単独で用いても、2種以上を組み合わせて用いてもよい。これらの中でも、フェノール、クレゾールが好ましく、フェノールがより好ましい。 Examples of phenols used in the production of the novolak-type phenolic resin (B) include phenol, cresol, trimethylphenol, xylenol, resorcinol, catechol, butylphenol, octylphenol, nonylphenol, phenylphenol, dihydroxybenzene, bisphenol A, and naphthol. monohydric or polyhydric phenols such as and substituted products thereof. These may be used individually by 1 type, or may be used in combination of 2 or more type. Among these, phenol and cresol are preferred, and phenol is more preferred.
 ノボラック型フェノール樹脂(B)の製造に用いられるアルデヒド類としては、具体的には、ホルムアルデヒド、アセトアルデヒド、プロピオンアルデヒド、ブチルアルデヒド、グリオキザール、n-プロパナール、n-ブタナール、イソプロパナール、イソブチルアルデヒド、3-メチル-n-ブタナール、ベンズアルデヒド、p-トリルアルデヒド、2-フェニルアセトアルデヒド等が挙げられ、これらは1種を単独で用いても、2種以上を組み合わせて用いてもよい。これらの中でも、ホルムアルデヒド、アセトアルデヒドが好ましく、ホルムアルデヒドがより好ましい。 Specific examples of aldehydes used in the production of the novolak-type phenolic resin (B) include formaldehyde, acetaldehyde, propionaldehyde, butyraldehyde, glyoxal, n-propanal, n-butanal, isopropanal, isobutyraldehyde, 3 -methyl-n-butanal, benzaldehyde, p-tolylaldehyde, 2-phenylacetaldehyde and the like, and these may be used alone or in combination of two or more. Among these, formaldehyde and acetaldehyde are preferred, and formaldehyde is more preferred.
 酸性触媒としては、特に制限されないが、シュウ酸、塩酸、硫酸、リン酸、酢酸、パラトルエンスルホン酸、フェノールスルホン酸、蟻酸、マレイン酸、酢酸亜鉛、オクチル酸亜鉛等が挙げられる。 Examples of acidic catalysts include, but are not limited to, oxalic acid, hydrochloric acid, sulfuric acid, phosphoric acid, acetic acid, p-toluenesulfonic acid, phenolsulfonic acid, formic acid, maleic acid, zinc acetate, and zinc octylate.
 なお、このようなノボラック型フェノール樹脂(B)の中でも、機械物性や耐熱性の観点から、下記式(1)で表されるフェノールホルムアルデヒド樹脂が好ましい。
Figure JPOXMLDOC01-appb-C000004

上記式(1)中、nは、1~200が好ましく、1~50がより好ましく、5~20がさらに好ましい。
Among such novolak-type phenolic resins (B), phenol-formaldehyde resins represented by the following formula (1) are preferable from the viewpoint of mechanical properties and heat resistance.
Figure JPOXMLDOC01-appb-C000004

In the above formula (1), n is preferably 1-200, more preferably 1-50, even more preferably 5-20.
 第1の発明におけるノボラック型フェノール樹脂(B)の数平均分子量は、成形加工性や耐熱性の観点から、500~5,000が好ましく、700~3,000がより好ましく、1000~3,000が特に好ましい。数平均分子量は、JIS K 1557に準拠して測定した水酸基価に基づいて算出した数平均分子量とする。具体的には、水酸基価を測定し、末端基定量法により、(56.1×1000×価数)/水酸基価を用いて算出する(この式において、水酸基価の単位は[mgKOH/g]である)。前記式中において、価数は1分子中の水酸基の数である。 The number average molecular weight of the novolak-type phenolic resin (B) in the first invention is preferably 500 to 5,000, more preferably 700 to 3,000, more preferably 1,000 to 3,000, from the viewpoint of moldability and heat resistance. is particularly preferred. The number average molecular weight is the number average molecular weight calculated based on the hydroxyl value measured according to JIS K 1557. Specifically, the hydroxyl value is measured and calculated using (56.1 × 1000 × valence) / hydroxyl value by the terminal group determination method (in this formula, the unit of hydroxyl value is [mgKOH / g] is). In the above formula, the valence is the number of hydroxyl groups in one molecule.
 第1の発明におけるノボラック型フェノール樹脂(B)の軟化点温度は、130℃以下であり、110~130℃が好ましく、120~130℃がより好ましい。軟化点温度は、JIS  K6910に基づく環球法軟化点測定により求めた値である。ノボラック型フェノール樹脂(B)の軟化点温度が上記範囲にあることで、成形加工性が良好になる。 The softening point temperature of the novolak-type phenolic resin (B) in the first invention is 130°C or less, preferably 110 to 130°C, more preferably 120 to 130°C. The softening point temperature is a value determined by ring and ball method softening point measurement based on JIS K6910. When the softening point temperature of the novolac-type phenol resin (B) is within the above range, moldability is improved.
 このようなノボラック型フェノール樹脂の市販品としては、明和化成製のHF-4M、NC58、H-1、LANXESS製のRHENOSIN(登録商標)PR95等が挙げられる。 Commercially available products of such novolac-type phenolic resins include HF-4M, NC58, H-1 manufactured by Meiwa Kasei, and RHENOSIN (registered trademark) PR95 manufactured by LANXESS.
 第1の発明におけるポリアミド樹脂組成物100質量%中、ノボラック型フェノール樹脂(B)は、5~40質量%、好ましくは10~30質量%含まれる。ノボラック型フェノール樹脂の配合量が上記範囲より少ないと、成形品の吸水率が高まるとともに、耐塩化カルシウム性が悪くなる。ノボラック型フェノール樹脂の含有割合が上記範囲より多いと、ポリアミド組成物での耐熱性や機械物性が低下する。 The novolak-type phenolic resin (B) is contained in an amount of 5 to 40% by mass, preferably 10 to 30% by mass, in 100% by mass of the polyamide resin composition in the first invention. If the amount of the novolac-type phenolic resin is less than the above range, the water absorption rate of the molded article increases and the resistance to calcium chloride deteriorates. If the content of the novolak-type phenolic resin is more than the above range, the heat resistance and mechanical properties of the polyamide composition will deteriorate.
<添加剤>
 ポリアミド樹脂組成物は目的等に応じて、任意成分として、染料、顔料、繊維状補強物、粒子状補強物、可塑剤、酸化防止剤、耐熱剤、発泡剤、耐候剤、結晶核剤、結晶化促進剤、離型剤、滑剤、帯電防止剤、難燃剤、難燃助剤、着色剤等の機能性付与剤等を適宜含有していてもよい。
 任意の添加剤は、ポリアミド樹脂組成物100質量%中、好ましくは0.01~1質量%、より好ましくは0.05~0.5質量%含まれていてもよい。
<Additive>
Depending on the purpose, etc., the polyamide resin composition may contain optional components such as dyes, pigments, fibrous reinforcing materials, particulate reinforcing materials, plasticizers, antioxidants, heat-resistant agents, foaming agents, weathering agents, crystal nucleating agents, crystals Accelerators, releasing agents, lubricants, antistatic agents, flame retardants, auxiliary flame retardants, colorants, and other functional imparting agents may be contained as appropriate.
The optional additive may be contained in an amount of preferably 0.01 to 1% by mass, more preferably 0.05 to 0.5% by mass, based on 100% by mass of the polyamide resin composition.
 第1の発明のポリアミド樹脂組成物は、ポリアミド樹脂(A)及びノボラック型フェノール樹脂(B)以外の熱可塑性樹脂を含んでいてもよい。ポリアミド樹脂(A)及びノボラック型フェノール樹脂(B)以外の熱可塑性樹脂は、機械物性や成形加工性の観点から、ポリアミド樹脂組成物100質量%中、2質量%以下が好ましく、0.1質量%未満がより好ましく、含まないことがさらに好ましい。すなわち、第1の発明のポリアミド樹脂組成物は、ポリアミド樹脂(A)以外の熱可塑性樹脂として、ノボラック型フェノール樹脂(B)を主成分として含むことが好ましく、ポリアミド樹脂(A)以外の熱可塑性樹脂100質量%中、ノボラック型フェノール樹脂(B)を90質量%以上含むことが好ましく、95質量%以上含むことがより好ましい。
 また、第1の発明のポリアミド樹脂組成物は、実質的にエチレン系エラストマーを含まないことが好ましい。エチレン系エラストマーを含むと、耐熱性が低下することがある。
The polyamide resin composition of the first invention may contain a thermoplastic resin other than the polyamide resin (A) and the novolak-type phenol resin (B). Thermoplastic resins other than the polyamide resin (A) and the novolak-type phenolic resin (B) are preferably 2% by mass or less in 100% by mass of the polyamide resin composition from the viewpoint of mechanical properties and moldability, and 0.1 mass % is more preferable, and not containing is even more preferable. That is, the polyamide resin composition of the first invention preferably contains a novolak-type phenol resin (B) as a main component as a thermoplastic resin other than the polyamide resin (A), and a thermoplastic resin other than the polyamide resin (A) It preferably contains 90% by mass or more of the novolac-type phenolic resin (B), more preferably 95% by mass or more, based on 100% by mass of the resin.
Moreover, it is preferable that the polyamide resin composition of the first invention does not substantially contain an ethylene-based elastomer. If an ethylene-based elastomer is contained, the heat resistance may be lowered.
<ポリアミド樹脂組成物の製造方法>
 ポリアミド樹脂組成物の製造方法は特に制限されるものではなく、例えば次の方法を適用することができる。
 ポリアミド樹脂(A)と、ノボラック型フェノール樹脂(B)と、その他任意成分との混合には、単軸、2軸の押出機、バンバリーミキサー、ニーダー、及びミキシングロールなど通常公知の溶融混練機が用いられる。例えば、2軸押出機を使用して、全ての原材料を配合後、溶融混練する方法、一部の原材料を配合後、溶融混練し、更に残りの原材料を配合し溶融混練する方法、あるいは一部の原材料を配合後、溶融混練中にサイドフィーダーを用いて残りの原材料を混合する方法など、いずれの方法を用いてもよい。
<Method for producing polyamide resin composition>
The method for producing the polyamide resin composition is not particularly limited, and for example, the following method can be applied.
For mixing the polyamide resin (A), the novolak-type phenolic resin (B), and other optional components, a known melt-kneader such as a single-screw or twin-screw extruder, a Banbury mixer, a kneader, and a mixing roll is used. Used. For example, using a twin-screw extruder, after blending all the raw materials, a method of melt-kneading, a method of blending a part of the raw materials, melt-kneading, further blending the remaining raw materials and melt-kneading, or part Any method may be used, such as a method of mixing the remaining raw materials using a side feeder during melt-kneading after blending the raw materials.
<ポリアミド樹脂組成物の特性>
 第1の発明のポリアミド樹脂組成物を、水を溶媒としたソックスレー抽出方法により6時間抽出した際の抽出分は、抽出に用いたポリアミド樹脂組成物100質量%に対して1.5質量%以下であり、1.2質量%以下であることが好ましい。
 第1の発明のポリアミド樹脂組成物を、メタノールを溶媒としたソックスレー抽出方法により3時間抽出した際の抽出分は、抽出に用いたポリアミド樹脂組成物100質量%に対して7.5質量%以下であることが好ましく、6.8量%以下であることがより好ましい。
 抽出方法は、ソックスレー抽出方法を用いた。抽出分は、式:(煮沸前のポリアミド樹脂組成物の質量― 煮沸後真空乾燥した後の残渣の質量)/煮沸前のポリアミド樹脂組成物の質量で求めた。
 このような、熱水抽出量及び熱メタノール抽出量は、ノボラック樹脂の選択、各成分の配合量を適宜調整することにより、調整することができる。
 水を溶媒とした場合及びメタノールを溶媒とした場合のソックスレー抽出方法による抽出量が前記範囲より多いと、成形品からポリアミド樹脂及びノボラック樹脂が分解してモノマー等が溶出する量が多いことになり、成形品が脆くなったり、成形品の表面にモノマーがブリードアウトする。
<Characteristics of Polyamide Resin Composition>
The extracted amount when the polyamide resin composition of the first invention is extracted for 6 hours by the Soxhlet extraction method using water as a solvent is 1.5% by mass or less with respect to 100% by mass of the polyamide resin composition used for extraction. and preferably 1.2% by mass or less.
When the polyamide resin composition of the first invention is extracted for 3 hours by the Soxhlet extraction method using methanol as a solvent, the extracted amount is 7.5% by mass or less with respect to 100% by mass of the polyamide resin composition used for extraction. and more preferably 6.8% by weight or less.
The extraction method used was the Soxhlet extraction method. The extractable amount was determined by the formula: (mass of polyamide resin composition before boiling—mass of residue after vacuum drying after boiling)/mass of polyamide resin composition before boiling.
Such hot water extraction amount and hot methanol extraction amount can be adjusted by appropriately adjusting the selection of the novolak resin and the blending amount of each component.
If the amount extracted by the Soxhlet extraction method using water or methanol as the solvent is larger than the above range, the polyamide resin and novolak resin will decompose from the molded article, resulting in a large amount of monomers eluting. , the molded product becomes brittle and the monomer bleeds out on the surface of the molded product.
[ポリアミド樹脂組成物の成形品及びその用途]
 第1の発明のポリアミド樹脂組成物は、射出成形による射出成形品、押出成形による押出成形品、ブロー成形によるブロー成形品、回転成形による回転成形品の製造に好適に用いることができる。ポリアミド樹脂組成物は、射出成形性が良好であるので、射出成形による射出成形品により好適に用いることができる。
[Molded article of polyamide resin composition and use thereof]
The polyamide resin composition of the first invention can be suitably used for producing injection-molded articles by injection molding, extrusion-molded articles by extrusion molding, blow-molded articles by blow molding, and rotomolded articles by rotational molding. Since the polyamide resin composition has good injection moldability, it can be suitably used for injection-molded articles.
 ポリアミド樹脂組成物から射出成形による射出成形品を製造する方法については特に制限されず、公知の方法を利用することができる。例えばISO294-1に準拠した方法が参酌される。 The method of manufacturing an injection-molded product from a polyamide resin composition by injection molding is not particularly limited, and a known method can be used. For example, a method conforming to ISO294-1 is taken into consideration.
 ポリアミド樹脂組成物から押出成形により押出成形品を製造する方法については特に制限されず、公知の方法を利用することができる。
 また、ポリエチレンなどのポリオレフィンや他の熱可塑性樹脂と共押出した後、ブロー成形を行い、多層構造体を得ることも可能である。その場合ポリアミド樹脂組成物層とポリオレフィンなどの他の熱可塑性樹脂層の間に接着層を設けることも可能である。多層構造体の場合、本発明のポリアミド樹脂組成物は外層、内層のいずれにも使用し得る。 
The method for producing an extruded product from the polyamide resin composition by extrusion molding is not particularly limited, and known methods can be used.
It is also possible to obtain a multi-layered structure by co-extrusion with polyolefin such as polyethylene or other thermoplastic resin, followed by blow molding. In that case, it is possible to provide an adhesive layer between the polyamide resin composition layer and another thermoplastic resin layer such as polyolefin. In the case of multilayer structures, the polyamide resin composition of the present invention can be used for both the outer layer and the inner layer.
 ポリアミド樹脂組成物からブロー成形によりブロー成形品を製造する方法については特に制限されず、公知の方法を利用することができる。一般的には、通常のブロー成形機を用いパリソンを形成した後、ブロー成形を実施すればよい。パリソン形成時の好ましい樹脂温度は、ポリアミド樹脂組成物の融点より10℃から70℃高い温度範囲で行うことが好ましい。 The method for producing a blow-molded product from a polyamide resin composition by blow molding is not particularly limited, and a known method can be used. In general, blow molding may be carried out after the parison is formed using an ordinary blow molding machine. The preferred resin temperature during parison formation is preferably in the range of 10° C. to 70° C. higher than the melting point of the polyamide resin composition.
 ポリアミド樹脂組成物から回転成形による回転成形品を製造する方法については特に制限されず、公知の方法を利用することができる。例えば国際公開公報2019/054109に記載の方法が参酌される。 The method for producing a rotomolded article by rotomolding from a polyamide resin composition is not particularly limited, and a known method can be used. For example, the method described in International Publication 2019/054109 is taken into consideration.
 射出成形による射出成形品、押出成形による押出成形品、ブロー成形によるブロー成形品、及び回転成形による回転成形品としては、特に限定されないが、スポイラー、エアインテークダクト、インテークマニホールド、レゾネーター、燃料タンク、ガスタンク、作動油タンク、燃料フィラーチューブ、燃料デリバリーパイプ、その他各種ホース・チューブ・タンク類などの自動車部品、電動工具ハウジング、パイプ類などの機械部品を始め、タンク、チューブ、ホース、フィルム等の電気・電子部品、家庭・事務用品、建材関係部品、家具用部品など各種用途が好適に挙げられる。これらの中でも、ポリアミド樹脂組成物は耐塩化カルシウム性に優れることから、自動車部品に使用されることが好ましい。  Injection-molded products by injection molding, extrusion-molded products by extrusion molding, blow-molded products by blow molding, and rotational-molded products by rotational molding include, but are not limited to, spoilers, air intake ducts, intake manifolds, resonators, fuel tanks, Automotive parts such as gas tanks, hydraulic oil tanks, fuel filler tubes, fuel delivery pipes, and various other hoses, tubes, and tanks; mechanical parts such as power tool housings and pipes; - Suitable for various applications such as electronic parts, household/office supplies, building material-related parts, and furniture parts. Among these, the polyamide resin composition is preferably used for automobile parts because of its excellent resistance to calcium chloride. 
 また、ポリアミド樹脂組成物は、ガスバリア性に優れるため、高圧ガスと接触する成形品、たとえば、高圧ガスに接するタンク、チューブ、ホース、フィルム等に好適に用いられる。前記ガスの種類としては、特に制限されず、水素、窒素、酸素、ヘリウム、メタン、ブタン、プロパン等が挙げられ、極性の小さいガスが好ましく、水素、窒素、メタンが特に好ましい。 In addition, since the polyamide resin composition has excellent gas barrier properties, it is suitably used for molded articles that come into contact with high-pressure gas, such as tanks, tubes, hoses, and films that come into contact with high-pressure gas. The type of gas is not particularly limited, and includes hydrogen, nitrogen, oxygen, helium, methane, butane, propane, etc. Gases with low polarity are preferred, and hydrogen, nitrogen, and methane are particularly preferred.
 また、ポリエチレンなどのポリオレフィンや他の熱可塑性樹脂と共押出した後、ブロー成形を行い、多層構造体を得ることも可能である。その場合 ポリアミド樹脂組成物層とポリオレフィンなどの他の熱可塑性樹脂層の間に接着層を設けることも可能である。多層構造体の場合、本発明のポリアミド樹脂組成物は、外層、内層のいずれにも使用し得る。 It is also possible to obtain a multilayer structure by co-extrusion with polyolefins such as polyethylene or other thermoplastic resins, followed by blow molding. In that case, it is also possible to provide an adhesive layer between the polyamide resin composition layer and another thermoplastic resin layer such as polyolefin. In the case of multilayer structures, the polyamide resin composition of the present invention can be used for both the outer layer and the inner layer.
2.第2の発明
 第2の発明は、ポリアミド樹脂組成物100質量%中、ポリアミド樹脂(A)を30~70質量%、ノボラック型フェノール樹脂(B)を10~40質量%、及び強化フィラー(C)を5~40質量%含むポリアミド樹脂組成物に関する。
2. Second Invention The second invention comprises 100% by mass of the polyamide resin composition, 30 to 70% by mass of the polyamide resin (A), 10 to 40% by mass of the novolak phenolic resin (B), and a reinforcing filler (C ) relates to a polyamide resin composition containing 5 to 40% by mass.
<ポリアミド樹脂(A)>
 第2の発明のポリアミド樹脂組成物は、ポリアミド樹脂(A)を含む。
 ポリアミド樹脂(A)としては、脂肪族ホモポリアミド樹脂(A-1)、脂肪族共重合ポリアミド樹脂(A-2)、芳香族ホモポリアミド樹脂(A-3)及び芳香族共重合ポリアミド樹脂(A-4)が挙げられる。これらは1種単独で用いても、2種以上組み合わせて用いてもよい。これらの中でも、機械物性や成形加工性の観点から、ポリアミド樹脂(A)は、脂肪族ホモポリアミド樹脂(A-1)及び脂肪族共重合ポリアミド樹脂(A-2)からなる群から選択される少なくとも1種を含むことが好ましく、脂肪族ホモポリアミド樹脂(A-1)を含むことがより好ましい。
<Polyamide resin (A)>
The polyamide resin composition of the second invention contains a polyamide resin (A).
Examples of the polyamide resin (A) include an aliphatic homopolyamide resin (A-1), an aliphatic copolyamide resin (A-2), an aromatic homopolyamide resin (A-3) and an aromatic copolyamide resin (A -4). These may be used individually by 1 type, or may be used in combination of 2 or more types. Among these, from the viewpoint of mechanical properties and molding processability, the polyamide resin (A) is selected from the group consisting of aliphatic homopolyamide resin (A-1) and aliphatic copolymerized polyamide resin (A-2). It preferably contains at least one, and more preferably contains an aliphatic homopolyamide resin (A-1).
(A-1)脂肪族ホモポリアミド樹脂
 脂肪族ホモポリアミド樹脂(A-1)の定義は第1の発明と同様であり、脂肪族ホモポリアミド樹脂(A-1)としては、第1の発明と同様の樹脂が挙げられる。
(A-1) Aliphatic homopolyamide resin The definition of the aliphatic homopolyamide resin (A-1) is the same as in the first invention, and the aliphatic homopolyamide resin (A-1) is the first invention and Similar resins may be mentioned.
 中でも脂肪族ホモポリアミド樹脂(A-1)は、脂肪族ホモポリアミド樹脂の重合生産性の観点から、ポリアミド6、ポリアミド11、ポリアミド12、ポリアミド66、ポリアミド610及びポリアミド612からなる群から選択される少なくとも1種が好ましく、ポリアミド6、ポリアミド11、ポリアミド12、ポリアミド610及びポリアミド612ら選択される少なくとも1種がより好ましく、ポリアミド6が更に好ましい。
 脂肪族ホモポリアミド樹脂(A-1)の製造装置及び重合方法も、第1の発明と同様である。
Among them, the aliphatic homopolyamide resin (A-1) is selected from the group consisting of polyamide 6, polyamide 11, polyamide 12, polyamide 66, polyamide 610 and polyamide 612 from the viewpoint of the polymerization productivity of the aliphatic homopolyamide resin. At least one is preferred, at least one selected from polyamide 6, polyamide 11, polyamide 12, polyamide 610 and polyamide 612 is more preferred, and polyamide 6 is even more preferred.
The production apparatus and polymerization method for the aliphatic homopolyamide resin (A-1) are also the same as in the first invention.
 脂肪族ホモポリアミド樹脂(A-1)の相対粘度は、JIS K 6920-2に準拠して、脂肪族ホモポリアミド1gを96%濃硫酸100mlに溶解させ、25℃で測定される。脂肪族ホモポリアミドの相対粘度は、1.9~5.0であることが好ましく、2.1~4.5であることがより好ましく、2.3~4.2であることがさらに好ましい。更に本発明の効果を向上させる観点から、2.3~3.4が特に好ましい。相対粘度が上記範囲であると成形加工性が良く、機械物性も良好である。 The relative viscosity of the aliphatic homopolyamide resin (A-1) is measured at 25°C by dissolving 1 g of the aliphatic homopolyamide in 100 ml of 96% concentrated sulfuric acid in accordance with JIS K 6920-2. The relative viscosity of the aliphatic homopolyamide is preferably 1.9 to 5.0, more preferably 2.1 to 4.5, even more preferably 2.3 to 4.2. Furthermore, from the viewpoint of improving the effects of the present invention, 2.3 to 3.4 are particularly preferable. When the relative viscosity is within the above range, molding processability is good, and mechanical properties are also good.
 脂肪族ホモポリアミド樹脂(A-1)の末端アミノ基濃度は、フェノールとメタノールの混合溶媒に溶解させ、中和滴定で求められる。脂肪族ホモポリアミド樹脂(A-1)の末端アミノ基濃度は、30μmol/g以上であることが好ましく、30μmol/g以上110μmol/g以下がより好ましい。 The terminal amino group concentration of the aliphatic homopolyamide resin (A-1) is determined by neutralization titration after dissolving in a mixed solvent of phenol and methanol. The terminal amino group concentration of the aliphatic homopolyamide resin (A-1) is preferably 30 μmol/g or more, more preferably 30 μmol/g or more and 110 μmol/g or less.
(A-2)脂肪族共重合ポリアミド樹脂
 脂肪族共重合ポリアミド樹脂(A-2)の定義は第1の発明と同様であり、脂肪族共重合ポリアミド樹脂(A-2)としては、第1の発明と同様の樹脂が挙げられる。
(A-2) Aliphatic Copolyamide Resin The definition of the aliphatic copolyamide resin (A-2) is the same as in the first invention, and the aliphatic copolyamide resin (A-2) is the first and resins similar to those of the invention.
 これらの中でも、成形品の吸水率を抑制し、機械的強度を保つ観点から、ポリアミド6/66、ポリアミド6/12及びポリアミド6/66/12からなる群から選択される少なくとも1種が好ましく、ポリアミド6/66及びポリアミド6/66/12からなる群から選択される少なくとも1種がより好ましく、ポリアミド6/66が特に好ましい。
 脂肪族共重合ポリアミド樹脂(A-2)の製造装置及び重合方法も、第1の発明と同様である。
Among these, at least one selected from the group consisting of polyamide 6/66, polyamide 6/12 and polyamide 6/66/12 is preferable from the viewpoint of suppressing the water absorption rate of the molded product and maintaining the mechanical strength, At least one selected from the group consisting of polyamide 6/66 and polyamide 6/66/12 is more preferred, and polyamide 6/66 is particularly preferred.
The production apparatus and polymerization method for the aliphatic copolyamide resin (A-2) are also the same as in the first invention.
 脂肪族共重合ポリアミド樹脂(A-2)の相対粘度は、成形加工性と機械物性の観点から、JIS K 6920-2に準拠し、脂肪族共重合ポリアミド1gを96%濃硫酸100mlに溶解させ、25℃で測定した相対粘度が1.9~5.0であることが好ましく、2.1~4.5であることがより好ましく、2.3~4.2であることがさらに好ましい。更に本発明の効果を向上させる観点から、2.3~3.4が特に好ましい。相対粘度が上記範囲であると成形加工性が良く、機械物性も良好である。  The relative viscosity of the aliphatic copolyamide resin (A-2) is determined by dissolving 1 g of the aliphatic copolyamide in 100 ml of 96% concentrated sulfuric acid in accordance with JIS K 6920-2, from the viewpoint of moldability and mechanical properties. , the relative viscosity measured at 25° C. is preferably 1.9 to 5.0, more preferably 2.1 to 4.5, even more preferably 2.3 to 4.2. Furthermore, from the viewpoint of improving the effects of the present invention, 2.3 to 3.4 are particularly preferable. When the relative viscosity is within the above range, molding processability is good, and mechanical properties are also good. 
 脂肪族共重合ポリアミド樹脂(A-2)の末端アミノ基濃度は、フェノールとメタノールの混合溶媒に溶解させ、中和滴定で求められる。脂肪族共重合ポリアミド樹脂(A-2)の末端アミノ基濃度は、30μmol/g以上であることが好ましく、30μmol/g以上70μmol/g以下がより好ましい。末端アミノ基濃度が前記範囲にあると、強化材との密着性や他樹脂との接着性の点から好ましい。 The terminal amino group concentration of the aliphatic copolyamide resin (A-2) is determined by neutralization titration after dissolving in a mixed solvent of phenol and methanol. The terminal amino group concentration of the aliphatic copolyamide resin (A-2) is preferably 30 μmol/g or more, more preferably 30 μmol/g or more and 70 μmol/g or less. When the terminal amino group concentration is within the above range, it is preferable from the viewpoint of adhesion to reinforcing materials and adhesion to other resins.
(A-3)芳香族ホモポリアミド樹脂
 芳香族ホモポリアミド樹脂(A-3)の定義は第1の発明と同様であり、芳香族ホモポリアミド樹脂(A-3)としては、第1の発明と同様の樹脂が挙げられる。
 芳香族ホモポリアミド樹脂(A-3)の製造装置及び重合方法も、第1の発明と同様である。
(A-3) Aromatic homopolyamide resin The definition of the aromatic homopolyamide resin (A-3) is the same as in the first invention, and the aromatic homopolyamide resin (A-3) is the same as in the first invention. Similar resins may be mentioned.
The production apparatus and polymerization method for the aromatic homopolyamide resin (A-3) are also the same as in the first invention.
 芳香族ホモポリアミド樹脂(A-3)の重合度には特に制限はないが、成形加工性と機械物性の観点から、JIS K 6920-2に従って芳香族共重合ポリアミド(A-3)の樹脂温度25℃で測定した相対粘度が、1.9~5.0であることが好ましく、2.1~4.5であることがより好ましく、2.3~4.2であることがさらに好ましい。更に本発明の効果を向上させる観点から、2.3~3.4が特に好ましい。相対粘度が上記範囲であると成形加工性が良く、機械物性も良好である。  The degree of polymerization of the aromatic homopolyamide resin (A-3) is not particularly limited, but from the viewpoint of molding processability and mechanical properties, the resin temperature of the aromatic copolymerized polyamide (A-3) according to JIS K 6920-2 The relative viscosity measured at 25° C. is preferably 1.9 to 5.0, more preferably 2.1 to 4.5, even more preferably 2.3 to 4.2. Furthermore, from the viewpoint of improving the effects of the present invention, 2.3 to 3.4 are particularly preferable. When the relative viscosity is within the above range, molding processability is good, and mechanical properties are also good. 
(A-4)芳香族共重合ポリアミド樹脂
 芳香族共重合ポリアミド樹脂(A-4)の定義は第1の発明と同様であり、芳香族共重合ポリアミド樹脂(A-4)としては、第1の発明と同様の樹脂が挙げられる。これらの中でも、ポリアミド6T/6Iが好ましい。
 芳香族共重合ポリアミド樹脂(A-4)の製造装置及び重合方法も、第1の発明と同様である。
(A-4) Aromatic Copolyamide Resin The definition of the aromatic copolyamide resin (A-4) is the same as in the first invention, and the aromatic copolyamide resin (A-4) is the first and resins similar to those of the invention. Among these, polyamide 6T/6I is preferred.
The production apparatus and polymerization method for the aromatic copolyamide resin (A-4) are also the same as in the first invention.
 本発明における芳香族共重合ポリアミド樹脂(A-4)の重合度には特に制限はないが、成形加工性と機械物性の観点から、JIS K 6920-2に従って、芳香族共重合ポリアミド(A-4)の樹脂温度25℃で測定した相対粘度が、1.9~5.0であることが好ましく、2.1~4.5であることがより好ましく、2.3~4.2であることがさらに好ましい。更に本発明の効果を向上させる観点から、2.3~3.4が特に好ましい。相対粘度が上記範囲であると成形加工性が良く、機械物性も良好である。  The degree of polymerization of the aromatic copolyamide resin (A-4) in the present invention is not particularly limited, but from the viewpoint of molding processability and mechanical properties, the aromatic copolyamide resin (A- The relative viscosity of 4) measured at a resin temperature of 25° C. is preferably 1.9 to 5.0, more preferably 2.1 to 4.5, and 2.3 to 4.2. is more preferred. Furthermore, from the viewpoint of improving the effects of the present invention, 2.3 to 3.4 are particularly preferable. When the relative viscosity is within the above range, molding processability is good, and mechanical properties are also good. 
 芳香族共重合ポリアミド樹脂(A-4)の末端アミノ基濃度は、フェノールとメタノールの混合溶媒に溶解させ、中和滴定で求められる。芳香族共重合ポリアミド樹脂(A-4)の末端アミノ基濃度は、20μmol/g以上60μmol/g以下が好ましい。末端アミノ基濃度が前記範囲にあると、強化材との密着性や他樹脂への接着性の点から好ましい。 The terminal amino group concentration of the aromatic copolymerized polyamide resin (A-4) is determined by neutralization titration after dissolving in a mixed solvent of phenol and methanol. The terminal amino group concentration of the aromatic copolyamide resin (A-4) is preferably 20 μmol/g or more and 60 μmol/g or less. When the terminal amino group concentration is within the above range, it is preferable from the viewpoint of adhesion to reinforcing materials and adhesion to other resins.
 第2の発明におけるポリアミド樹脂(A)は、JIS K 6920-2に準拠して、ポリアミド1gを96%濃硫酸100mlに溶解させ、25℃で測定される相対粘度が1.9~5.0であることが好ましく、2.1~4.5であることがより好ましく、2.3~4.2であることがさらに好ましい。更に本発明の効果を向上させる観点から、2.3~3.4が特に好ましい。前記範囲内であると、成形加工性が良く、機械物性に優れる。 The polyamide resin (A) in the second invention is obtained by dissolving 1 g of polyamide in 100 ml of 96% concentrated sulfuric acid in accordance with JIS K 6920-2, and having a relative viscosity of 1.9 to 5.0 measured at 25 ° C. is preferably 2.1 to 4.5, and even more preferably 2.3 to 4.2. Furthermore, from the viewpoint of improving the effects of the present invention, 2.3 to 3.4 are particularly preferable. When it is within the above range, the moldability is good and the mechanical properties are excellent.
 ポリアミド樹脂(A)が、相対粘度が異なる2種以上のポリアミド樹脂を含む場合の相対粘度の求め方は、第1の発明と同様である。 When the polyamide resin (A) contains two or more types of polyamide resins with different relative viscosities, the method of determining the relative viscosity is the same as in the first invention.
 第2の発明におけるポリアミド樹脂(A)の末端アミノ基濃度は、フェノールとメタノールの混合溶媒に溶解させ中和滴定で求められる末端アミノ基濃度として、30μmol/g以上の範囲が好ましく、30μmol/g以上110μmol/g以下の範囲がより好ましい。この範囲であれば、十分な成形加工性や機械物性を得ることができる。 The terminal amino group concentration of the polyamide resin (A) in the second invention is dissolved in a mixed solvent of phenol and methanol and obtained by neutralization titration. A more preferable range is 110 μmol/g or more. Within this range, sufficient moldability and mechanical properties can be obtained.
 ポリアミド樹脂(A)が、末端アミノ基濃度の異なる2種以上のポリアミド樹脂を含む場合の末端アミノ基濃度の求め方は、第1の発明と同様である。 When the polyamide resin (A) contains two or more polyamide resins with different terminal amino group concentrations, the method for determining the terminal amino group concentration is the same as in the first invention.
 第2の発明におけるポリアミド樹脂(A)は、ポリアミド6、ポリアミド6/66、ポリアミド6/12及びポリアミド6/66/12からなる群から選択される少なくとも1種であることが好ましく、ポリアミド6がより好ましい。 The polyamide resin (A) in the second invention is preferably at least one selected from the group consisting of polyamide 6, polyamide 6/66, polyamide 6/12 and polyamide 6/66/12, and polyamide 6 is more preferred.
 第2の発明におけるポリアミド樹脂(A)は、ポリアミド樹脂組成物100質量%中、30~70質量%、好ましくは35~65質量%、より好ましくは40~60質量%含まれる。ポリアミド樹脂(A)の含有割合が上記範囲より少ないと、成形加工性が悪くなり、上記範囲より多いと、成形品の吸水率が高まるとともに、耐塩化カルシウム性が低下する。 The polyamide resin (A) in the second invention is contained in an amount of 30-70% by mass, preferably 35-65% by mass, more preferably 40-60% by mass in 100% by mass of the polyamide resin composition. If the content of the polyamide resin (A) is less than the above range, moldability will be poor, and if it is more than the above range, the water absorption rate of the molded product will increase and the calcium chloride resistance will decrease.
<ノボラック型フェノール樹脂(B)>
 第2の発明のポリアミド樹脂組成物は、ノボラック型フェノール樹脂(B)を含む。
 第2の発明におけるノボラック型フェノール樹脂(B)としては、第1の発明と同様のものが挙げられる。すなわち、ノボラック型フェノール樹脂(B)の製造に用いられるフェノール類、アルデヒド類及び酸性触媒は、第1の発明と同様である。
<Novolak-type phenolic resin (B)>
The polyamide resin composition of the second invention contains a novolak-type phenolic resin (B).
As the novolak-type phenolic resin (B) in the second invention, the same ones as in the first invention can be mentioned. That is, the phenols, aldehydes and acidic catalysts used in the production of the novolak-type phenolic resin (B) are the same as in the first invention.
 なお、このようなノボラック型フェノール樹脂(B)の中でも、機械物性や耐熱性の観点から、下記式(1)で表されるフェノールホルムアルデヒド樹脂が好ましい。
Figure JPOXMLDOC01-appb-C000005

 上記式(1)中、nは、1~200が好ましく、1~50がより好ましく、5~20がさらに好ましい。
Among such novolak-type phenolic resins (B), phenol-formaldehyde resins represented by the following formula (1) are preferable from the viewpoint of mechanical properties and heat resistance.
Figure JPOXMLDOC01-appb-C000005

In the above formula (1), n is preferably 1-200, more preferably 1-50, even more preferably 5-20.
 ノボラック型フェノール樹脂(B)の数平均分子量は、成形加工性や耐熱性の観点から、500~5,000が好ましく、700~3,000がより好ましく、1000~3,000が特に好ましい。数平均分子量の測定方法は、第1の発明と同様である。 The number average molecular weight of the novolak-type phenolic resin (B) is preferably 500 to 5,000, more preferably 700 to 3,000, and particularly preferably 1,000 to 3,000, from the viewpoint of moldability and heat resistance. The method for measuring the number average molecular weight is the same as in the first invention.
 第2の発明におけるノボラック型フェノール樹脂(B)の軟化点温度は、130℃以下であることが好ましく、110℃~130℃がより好ましく、120~130℃がさらに好ましい。軟化点温度は、JIS K6910に基づく環球法軟化点測定により求めた値である。ノボラック型フェノール樹脂(B)の軟化点温度が上記範囲であることで、成形加工性がよくなる。 The softening point temperature of the novolak-type phenolic resin (B) in the second invention is preferably 130°C or less, more preferably 110°C to 130°C, even more preferably 120°C to 130°C. The softening point temperature is a value determined by ring and ball method softening point measurement based on JIS K6910. When the softening point temperature of the novolak-type phenol resin (B) is within the above range, moldability is improved.
 このようなノボラック型フェノール樹脂の市販品は、明和化成製のHF-4M、NC58、H-1、LANXESS製のRHENOSIN(登録商標)PR95等が挙げられる。 Commercially available products of such novolak-type phenolic resins include HF-4M, NC58, H-1 manufactured by Meiwa Kasei, and RHENOSIN (registered trademark) PR95 manufactured by LANXESS.
 第2の発明のポリアミド樹脂組成物100質量%中、ノボラック型フェノール樹脂(B)は、10~40質量%、好ましくは10~30質量%含まれる。ノボラック型フェノール樹脂の配合量が上記範囲より少ないと、成形品の吸水率が高まるとともに、耐塩化カルシウム性が悪くなる。ノボラック型フェノール樹脂の含有割合が上記範囲より多いと、ポリアミド組成物での耐熱性や機械物性が低下する。 The novolac-type phenol resin (B) is contained in an amount of 10 to 40% by mass, preferably 10 to 30% by mass, in 100% by mass of the polyamide resin composition of the second invention. If the amount of the novolac-type phenolic resin is less than the above range, the water absorption rate of the molded article increases and the resistance to calcium chloride deteriorates. If the content of the novolak-type phenolic resin is more than the above range, the heat resistance and mechanical properties of the polyamide composition will deteriorate.
<強化フィラー(C)>
 第2の発明のポリアミド樹脂組成物は、強化フィラー(C)を含む。
 第2の発明における強化フィラー(C)としては、無機フィラー及び有機フィラーのいずれでも良く、ガラス繊維、炭素繊維、セルロース繊維、フレーク状ガラス、雲母、タルク、カオリン、クレイ、アルミナ、各種の金属箔等が挙げられる。形状は繊維状、板状、粒状が挙げられる。中でも、成形品の柔軟性の低下がなく、機械的特性が向上する観点から、ガラス繊維、炭素繊維及びセルロース繊維からなる群から選択される少なくとも1種が好ましい。強化フィラー(C)は、単独でも、2種以上を併用してもよい。
<Reinforcing filler (C)>
The polyamide resin composition of the second invention contains a reinforcing filler (C).
The reinforcing filler (C) in the second invention may be either an inorganic filler or an organic filler, such as glass fiber, carbon fiber, cellulose fiber, flaky glass, mica, talc, kaolin, clay, alumina, and various metal foils. etc. The shape may be fibrous, plate-like, or granular. Among them, at least one selected from the group consisting of glass fiber, carbon fiber and cellulose fiber is preferable from the viewpoint of improving the mechanical properties without reducing the flexibility of the molded article. The reinforcing filler (C) may be used alone or in combination of two or more.
 強化フィラー(C)は、表面処理剤により表面処理されていてもよい。さらに、作業性を高めるために、これらの表面処理剤により収束ないし顆粒化されていてもよい。表面処理剤としては、シランカップリング剤、チタン系カップリング剤、アルミニウム系カップリング剤、ジルコニア系カップリング剤等の各種カップリング剤;水ガラス、メチルセルロース、カルボキシメチルセルロース、ヒドロキシエチルセルロース、ヒドロキシプロピルセルロース、澱粉、ポリビニルアルコール、アクリル樹脂、エポキシ樹脂、フェノール樹脂、ポリ酢酸ビニル、ポリウレタン樹脂、エポキシ系化合物、イソシアネート系化合物、コロイダルシリカ、コロイダルアルミナ、脂肪酸、界面活性剤等を挙げることができる。表面処理剤は、単独でも、2種以上を併用してもよい。 The reinforcing filler (C) may be surface-treated with a surface treatment agent. Furthermore, in order to improve workability, these surface treatment agents may be aggregated or granulated. Surface treatment agents include various coupling agents such as silane coupling agents, titanium coupling agents, aluminum coupling agents, and zirconia coupling agents; water glass, methyl cellulose, carboxymethyl cellulose, hydroxyethyl cellulose, hydroxypropyl cellulose, Examples include starch, polyvinyl alcohol, acrylic resins, epoxy resins, phenol resins, polyvinyl acetate, polyurethane resins, epoxy compounds, isocyanate compounds, colloidal silica, colloidal alumina, fatty acids, surfactants, and the like. The surface treatment agents may be used alone or in combination of two or more.
 表面処理剤は、予め強化フィラー(C)に適用し、乾燥させて表面処理若しくは収束処理を施しておくか、又は樹脂組成物の調製の際に、強化フィラー(C)と同時に添加してもよい。ポリアミド樹脂と、強化フィラー(C)とを配合し、溶融混練してポリアミド樹脂組成物を製造する場合、樹脂組成物中の強化フィラー(C)は、元のままであっても、すべてが解れて個々の粒子になっていても、部分的に解れて一部が元のまま残っていてもよく、解れた個々の粒子がさらに粉砕されていてもよい。 The surface treatment agent may be applied to the reinforcing filler (C) in advance, dried and subjected to surface treatment or convergence treatment, or may be added simultaneously with the reinforcing filler (C) during preparation of the resin composition. good. When the polyamide resin and the reinforcing filler (C) are blended and melt-kneaded to produce a polyamide resin composition, the reinforcing filler (C) in the resin composition is completely unraveled even if it is as it is. It may be broken into individual particles, may be partially unraveled and partly left as it is, or the individual unraveled particles may be further pulverized.
 強化フィラー(C)がガラス繊維の場合、原料のガラス繊維としては、例えば平均繊維径4~25μmのものを使用することができる。組成物からなる成形品の寸法安定性及び機械的特性の点から、平均繊維径は6~23μmが好ましく、例えば平均繊維径10~23μmのものを使用することができる。 When the reinforcing filler (C) is glass fiber, the raw material glass fiber may have an average fiber diameter of 4 to 25 μm, for example. From the viewpoint of the dimensional stability and mechanical properties of molded articles made from the composition, the average fiber diameter is preferably 6 to 23 μm, and for example, those having an average fiber diameter of 10 to 23 μm can be used.
 ガラス繊維は、単独でも、2種以上を併用してもよい。異なる平均繊維径のガラス繊維を2種以上使用してもよい。ガラス繊維径の組み合わせとしては、例えば、(C1)平均繊維径6~11μmのガラス繊維と、(C2)平均繊維径13~25μmのガラス繊維の組み合わせを挙げることができる。 The glass fibers may be used alone or in combination of two or more. Two or more types of glass fibers having different average fiber diameters may be used. Examples of combinations of glass fiber diameters include (C1) glass fibers with an average fiber diameter of 6 to 11 μm and (C2) glass fibers with an average fiber diameter of 13 to 25 μm.
 原料のガラス繊維長(カット長)は、特に限定されず、好ましくは1mm~50mmのカットされたチョップドストランドを使用することができ、生産性の観点から3mm~10mmがより好ましい。
 ポリアミド樹脂組成物中のガラス繊維の平均繊維長は、特に限定されず、好ましくは50μm~1,000μmのものを使用することができ、成形品の寸法安定性の点から、100μm~500μmがより好ましく、さらに好ましくは200μm~400μmである。
The raw material glass fiber length (cut length) is not particularly limited, and preferably cut chopped strands of 1 mm to 50 mm can be used, and 3 mm to 10 mm is more preferable from the viewpoint of productivity.
The average fiber length of the glass fibers in the polyamide resin composition is not particularly limited, and preferably 50 μm to 1,000 μm can be used, and 100 μm to 500 μm is more preferable from the viewpoint of dimensional stability of the molded product. It is preferably 200 μm to 400 μm, more preferably 200 μm to 400 μm.
 上述のガラス繊維の平均繊維径や原料のガラス繊維長(カット長)の値は、ポリアミドと溶融混練する前の値である。ポリアミド樹脂組成物中のガラス繊維の平均繊維長の値は、ポリアミドとともに溶融混練した後の値である。溶融混練した後の値とは、ポリアミド組成物の製造工程において原料の溶融混練の際に、ガラス繊維少なくとも一部が折れて組成中に分散した場合を考慮したものである。 The above values for the average fiber diameter of the glass fiber and the raw glass fiber length (cut length) are the values before melting and kneading with the polyamide. The value of the average fiber length of the glass fibers in the polyamide resin composition is the value after melt-kneading with the polyamide. The value after melt-kneading takes into consideration the case where at least part of the glass fibers are broken and dispersed in the composition during the melt-kneading of raw materials in the production process of the polyamide composition.
 原料のガラス繊維の平均繊維径や原料のガラス繊維長(カット長)は、光学顕微鏡を使用して観察ができる。原料のガラス繊維(B)の平均繊維径や原料のガラス繊維長(カット長)は、カタログ値であってもよい。
 ポリアミド樹脂組成物中のガラス繊維の平均繊維長は、ポリアミド樹脂組成物中から、硫酸を用いてポリアミド樹脂を溶解させ、ガラス繊維と分離した後、光学顕微鏡で観察することができる。観察した画像から画像解析ソフトを用いて、任意で選んだ約1,000本のガラス繊維長を測定し、その平均値を求め、平均繊維長とする。
 ガラス繊維の市販品としては、日本電気硝子株式会社製品名ECS 03T-249H、ECS 03T-275H等が挙げられる。
The average fiber diameter of the raw material glass fiber and the raw material glass fiber length (cut length) can be observed using an optical microscope. The average fiber diameter of the raw material glass fiber (B) and the raw material glass fiber length (cut length) may be catalog values.
The average fiber length of the glass fibers in the polyamide resin composition can be observed with an optical microscope after the polyamide resin is dissolved in the polyamide resin composition using sulfuric acid and separated from the glass fibers. About 1,000 arbitrarily selected glass fibers are measured from the observed image using image analysis software, and the average value is determined to be the average fiber length.
Commercially available glass fibers include ECS 03T-249H, ECS 03T-275H, and the like, manufactured by Nippon Electric Glass Co., Ltd.
 フレーク状ガラスの市販品としては、日本板硝子株式会社製品名「Eガラスフレーク(登録商標)REF-160A(平均厚さ:5μm、平均粒径:160μm)」、「Eガラスフレーク(登録商標)REF-600A(平均厚さ:5μm、平均粒径:600μm)」、日本板硝子株式会社製品名「Cガラスフレーク(登録商標)RCF-160A(平均厚さ:5μm、平均粒径:160μm)」、「Cガラスフレーク(登録商標)RCF-600A(平均厚さ:5μm、平均粒径:600μm)」、日本板硝子株式会社製品名「ファインフレーク(登録商標)MEG160FY-M01(平均厚さ:0.7μm、平均粒径:160μm)」等が挙げられる。 Commercial products of glass flakes include Nippon Sheet Glass Co., Ltd. product names "E glass flake (registered trademark) REF-160A (average thickness: 5 μm, average particle size: 160 μm)", "E glass flake (registered trademark) REF -600A (average thickness: 5 μm, average particle size: 600 μm)”, Nippon Sheet Glass Co., Ltd. product name “C glass flake (registered trademark) RCF-160A (average thickness: 5 μm, average particle size: 160 μm)”, “ C glass flake (registered trademark) RCF-600A (average thickness: 5 μm, average particle size: 600 μm)”, Nippon Sheet Glass Co., Ltd. product name “Fine flake (registered trademark) MEG160FY-M01 (average thickness: 0.7 μm, average particle size: 160 μm)” and the like.
 第2の発明のポリアミド樹脂組成物100質量%中、強化フィラー(C)は、5~40質量%、好ましくは10~35質量%、より好ましくは15~30質量%含まれる。強化フィラーの配合量が上記範囲より少ないと、機械的特性が劣り、上記範囲より多いと、成形加工性が困難になる。 The reinforcing filler (C) is contained in an amount of 5 to 40% by mass, preferably 10 to 35% by mass, more preferably 15 to 30% by mass in 100% by mass of the polyamide resin composition of the second invention. If the amount of the reinforcing filler compounded is less than the above range, the mechanical properties are deteriorated, and if it exceeds the above range, moldability becomes difficult.
<添加剤>
 ポリアミド樹脂組成物の任意の添加剤及びその含有量については、第1の発明と同様である。
<Additive>
Optional additives and their content in the polyamide resin composition are the same as in the first invention.
 第2の発明のポリアミド樹脂組成物は、ポリアミド樹脂(A)、ノボラック型フェノール樹脂(B)以外の熱可塑性樹脂を含んでいてもよい。ポリアミド樹脂(A)、ノボラック型フェノール樹脂(B)以外の熱可塑性樹脂は、機械物性を損なわないようにする観点から、ポリアミド樹脂組成物100質量%中、2質量%以下が好ましく、0.1質量%未満がより好ましく、含まないことがさらに好ましい。すなわち、第2の発明のポリアミド樹脂組成物は、ポリアミド樹脂(A)以外の熱可塑性樹脂として、ノボラック型フェノール樹脂(B)を主成分として含むことが好ましく、ポリアミド樹脂(A)以外の熱可塑性樹脂100質量%中、ノボラック型フェノール樹脂(B)を90質量%以上含むことが好ましく、95質量%以上含むことがより好ましい。 The polyamide resin composition of the second invention may contain a thermoplastic resin other than the polyamide resin (A) and the novolak-type phenolic resin (B). Thermoplastic resins other than the polyamide resin (A) and the novolac phenolic resin (B) are preferably 2% by mass or less in 100% by mass of the polyamide resin composition from the viewpoint of not impairing the mechanical properties, and 0.1 Less than mass % is more preferable, and not containing is even more preferable. That is, the polyamide resin composition of the second invention preferably contains a novolak-type phenol resin (B) as a main component as a thermoplastic resin other than the polyamide resin (A), and a thermoplastic resin other than the polyamide resin (A) It preferably contains 90% by mass or more of the novolac-type phenolic resin (B), more preferably 95% by mass or more, based on 100% by mass of the resin.
 また、第2の発明のポリアミド樹脂組成物は、実質的にエチレン系エラストマーを含まないことが好ましい。エチレン系エラストマーを含むと、機械物性や耐熱性が低下することがある。エチレン系エラストマーには、エチレン系アイオノマーも含む。 Also, the polyamide resin composition of the second invention preferably does not substantially contain an ethylene-based elastomer. If an ethylene-based elastomer is contained, the mechanical properties and heat resistance may deteriorate. Ethylene-based elastomers also include ethylene-based ionomers.
<ポリアミド樹脂組成物の製造方法>
 第2の発明のポリアミド樹脂組成物の製造方法は、第1の発明における製造方法と同様である。
<Method for producing polyamide resin composition>
The production method of the polyamide resin composition of the second invention is the same as the production method of the first invention.
[ポリアミド樹脂組成物の成形品及びその用途]
 第2の発明のポリアミド樹脂組成物は、射出成形による射出成形品、押出成形による押出成形品、ブロー成形によるブロー成形品、回転成形による回転成形品の製造に好適に用いることができる。その製造方法は、第1の発明と同様である。
 成形品の用途も第1の発明と同様である。これらの中でも、ポリアミド樹脂組成物は耐塩化カルシウム性に優れることから、自動車部品に使用されることが好ましい。 
[Molded article of polyamide resin composition and use thereof]
The polyamide resin composition of the second invention can be suitably used for producing injection-molded articles by injection molding, extrusion-molded articles by extrusion molding, blow-molded articles by blow molding, and rotomolded articles by rotational molding. Its manufacturing method is the same as that of the first invention.
The use of the molded product is also the same as in the first invention. Among these, the polyamide resin composition is preferably used for automobile parts because of its excellent resistance to calcium chloride.
3.第3の発明
 第3の発明は、3次元造形用ポリアミド樹脂組成物100質量%中、ポリアミド樹脂(A)60~95質量%及びノボラック型フェノール樹脂(B)5~40質量%を含む3次元造形用ポリアミド樹脂組成物(以下、「ポリアミド樹脂組成物」ともいう。)に関する。
 本明細書において、「3次元造形」とは、3Dプリンターによる造形をいう。
3. Third Invention The third invention is a three-dimensional molding containing 60 to 95% by mass of a polyamide resin (A) and 5 to 40% by mass of a novolak phenolic resin (B) in 100% by mass of a polyamide resin composition for three-dimensional modeling. The present invention relates to a polyamide resin composition for modeling (hereinafter also referred to as "polyamide resin composition").
As used herein, "three-dimensional modeling" refers to modeling by a 3D printer.
<<3次元造形用ポリアミド樹脂組成物>>
<ポリアミド樹脂(A)>
 第3の発明の3次元造形用ポリアミド樹脂組成物は、ポリアミド樹脂(A)を含む。
 ポリアミド樹脂(A)としては、脂肪族ホモポリアミド樹脂(A-1)、脂肪族共重合ポリアミド樹脂(A-2)、芳香族ホモポリアミド樹脂(A-3)及び芳香族共重合ポリアミド樹脂(A-4)が挙げられる。これらは1種単独で用いても、2種以上組み合わせて用いてもよい。これらの中でも、成形加工性の観点から、ポリアミド樹脂(A)は、脂肪族ホモポリアミド樹脂(A-1)及び脂肪族共重合ポリアミド樹脂(A-2)からなる群から選択される少なくとも1種を含むことが好ましく、脂肪族共重合ポリアミド樹脂(A-2)を含むことがより好ましい。
<<Polyamide resin composition for three-dimensional modeling>>
<Polyamide resin (A)>
A polyamide resin composition for three-dimensional modeling according to a third aspect of the invention contains a polyamide resin (A).
Examples of the polyamide resin (A) include an aliphatic homopolyamide resin (A-1), an aliphatic copolyamide resin (A-2), an aromatic homopolyamide resin (A-3) and an aromatic copolyamide resin (A -4). These may be used individually by 1 type, or may be used in combination of 2 or more types. Among these, from the viewpoint of molding processability, the polyamide resin (A) is at least one selected from the group consisting of aliphatic homopolyamide resin (A-1) and aliphatic copolymerized polyamide resin (A-2). Preferably, it contains an aliphatic copolymerized polyamide resin (A-2).
(A-2)脂肪族共重合ポリアミド樹脂
 脂肪族共重合ポリアミド樹脂(A-2)の定義は第1の発明と同様であり、脂肪族共重合ポリアミド樹脂(A-2)としては、第1の発明と同様の樹脂が挙げられる。
(A-2) Aliphatic Copolyamide Resin The definition of the aliphatic copolyamide resin (A-2) is the same as in the first invention, and the aliphatic copolyamide resin (A-2) is the first and resins similar to those of the invention.
 これらの中でも、成形品の吸水率を抑制し、3Dプリンターで製造した成形品の反り発泡を抑制するとともに機械的強度を保つ観点から、ポリアミド6/66、ポリアミド6/12及びポリアミド6/66/12からなる群から選択される少なくとも1種が好ましく、ポリアミド6/12及びポリアミド6/66/12からなる群から選択される少なくとも1種がより好ましく、ポリアミド6/66/12が特に好ましい。 Among these, from the viewpoint of suppressing the water absorption rate of the molded product, suppressing the warp foaming of the molded product manufactured by the 3D printer and maintaining the mechanical strength, polyamide 6/66, polyamide 6/12 and polyamide 6/66/ At least one selected from the group consisting of 12 is preferred, at least one selected from the group consisting of polyamide 6/12 and polyamide 6/66/12 is more preferred, and polyamide 6/66/12 is particularly preferred.
 脂肪族共重合ポリアミド樹脂(A-2)の製造装置及び重合方法も、第1の発明と同様である。 The production apparatus and polymerization method for the aliphatic copolyamide resin (A-2) are also the same as in the first invention.
 脂肪族共重合ポリアミド樹脂(A-2)の相対粘度は、成形加工性及び機械特性の観点から、JIS K 6920-2に準拠して、脂肪族共重合ポリアミド1gを96%濃硫酸100mlに溶解させ、25℃で測定した相対粘度が2.3以上5.0以下であることが好ましく、2.4以上5.0以下がより好ましく、2.4以上4.5以下がさらに好ましく、2.4以上4.2以下が特に好ましい。 The relative viscosity of the aliphatic copolyamide resin (A-2) is determined by dissolving 1 g of the aliphatic copolyamide in 100 ml of 96% concentrated sulfuric acid in accordance with JIS K 6920-2, from the viewpoint of moldability and mechanical properties. and the relative viscosity measured at 25° C. is preferably from 2.3 to 5.0, more preferably from 2.4 to 5.0, even more preferably from 2.4 to 4.5. 4 or more and 4.2 or less is particularly preferable.
 脂肪族共重合ポリアミド樹脂(A-2)の末端アミノ基濃度は、フェノールとメタノールの混合溶媒に溶解させ、中和滴定で求められる。脂肪族共重合ポリアミド樹脂(A-2)の末端アミノ基濃度は、30μmol/g以上であることが好ましく、30μmol/g以上50μmol/g以下がより好ましい。末端アミノ基濃度が前記範囲にあると、他樹脂との接着性の点から好ましい。 The terminal amino group concentration of the aliphatic copolyamide resin (A-2) is determined by neutralization titration after dissolving in a mixed solvent of phenol and methanol. The terminal amino group concentration of the aliphatic copolymerized polyamide resin (A-2) is preferably 30 μmol/g or more, more preferably 30 μmol/g or more and 50 μmol/g or less. When the terminal amino group concentration is within the above range, it is preferable from the viewpoint of adhesiveness to other resins.
(A-1)脂肪族ホモポリアミド樹脂
 脂肪族ホモポリアミド樹脂(A-1)の定義は第1の発明と同様であり、脂肪族ホモポリアミド樹脂(A-1)としては、第1の発明と同様の樹脂が挙げられる。
 中でも脂肪族ホモポリアミド樹脂(A-1)は、重合生産性の観点から、ポリアミド6、ポリアミド11、ポリアミド12、ポリアミド66、ポリアミド610及びポリアミド612からなる群から選択される少なくとも1種が好ましく、ポリアミド6、ポリアミド11、ポリアミド12、ポリアミド610及びポリアミド612ら選択される少なくとも1種がより好ましく、ポリアミド6が更に好ましい。
(A-1) Aliphatic homopolyamide resin The definition of the aliphatic homopolyamide resin (A-1) is the same as in the first invention, and the aliphatic homopolyamide resin (A-1) is the first invention and Similar resins may be mentioned.
Among them, the aliphatic homopolyamide resin (A-1) is preferably at least one selected from the group consisting of polyamide 6, polyamide 11, polyamide 12, polyamide 66, polyamide 610 and polyamide 612 from the viewpoint of polymerization productivity, At least one selected from polyamide 6, polyamide 11, polyamide 12, polyamide 610 and polyamide 612 is more preferred, and polyamide 6 is even more preferred.
 脂肪族ホモポリアミド樹脂(A-1)の製造装置及び重合方法も、第1の発明と同様である。 The production apparatus and polymerization method for the aliphatic homopolyamide resin (A-1) are also the same as in the first invention.
 脂肪族ホモポリアミド樹脂(A-1)の相対粘度は、JIS K 6920-2に準拠し、脂肪族ホモポリアミド1gを96%濃硫酸100mlに溶解させ、25℃で測定される。脂肪族ホモポリアミドの相対粘度は、2.3以上5.0以下であることが好ましく、2.4以上5.0以下がより好ましく、2.4以上4.5以下がさらに好ましい。更に本発明の効果を向上させる観点から、2.4以上4.2以下が特に好ましい。2.3以上であると、より成形加工が容易であり、5.0以下ではポリアミド樹脂のより良好な機械物性を維持できる。 The relative viscosity of the aliphatic homopolyamide resin (A-1) is measured at 25°C by dissolving 1 g of the aliphatic homopolyamide in 100 ml of 96% concentrated sulfuric acid according to JIS K 6920-2. The relative viscosity of the aliphatic homopolyamide is preferably from 2.3 to 5.0, more preferably from 2.4 to 5.0, even more preferably from 2.4 to 4.5. Furthermore, from the viewpoint of improving the effects of the present invention, it is particularly preferable to be 2.4 or more and 4.2 or less. When it is 2.3 or more, molding processing is easier, and when it is 5.0 or less, better mechanical properties of the polyamide resin can be maintained.
 脂肪族ホモポリアミド樹脂(A-1)の末端アミノ基濃度は、フェノールとメタノールの混合溶媒に溶解させ、中和滴定で求められる。脂肪族ホモポリアミド樹脂(A-2)の末端アミノ基濃度は、30μmol/g以上であることが好ましく、30μmol/g以上50μmol/g以下がより好ましい。 The terminal amino group concentration of the aliphatic homopolyamide resin (A-1) is determined by neutralization titration after dissolving in a mixed solvent of phenol and methanol. The terminal amino group concentration of the aliphatic homopolyamide resin (A-2) is preferably 30 μmol/g or more, more preferably 30 μmol/g or more and 50 μmol/g or less.
(A-4)芳香族共重合ポリアミド樹脂
 芳香族共重合ポリアミド樹脂(A-4)の定義は第1の発明と同様であり、芳香族共重合ポリアミド樹脂(A-4)としては、第1の発明と同様の樹脂が挙げられる。これらの中でも、ポリアミド6T/6Iが好ましい。
 芳香族共重合ポリアミド樹脂(A-4)の製造装置及び重合方法も、第1の発明と同様である。
(A-4) Aromatic Copolyamide Resin The definition of the aromatic copolyamide resin (A-4) is the same as in the first invention, and the aromatic copolyamide resin (A-4) is the first and resins similar to those of the invention. Among these, polyamide 6T/6I is preferred.
The production apparatus and polymerization method for the aromatic copolyamide resin (A-4) are also the same as in the first invention.
 本発明における芳香族共重合ポリアミド樹脂(A-4)の重合度には特に制限はないが、JIS K 6920-2に従って、25℃で測定した相対粘度が、成形加工性及び機械物性の観点から、2.3以上5.0以下であることが好ましく、2.4以上5.0以下がより好ましく、2.4以上4.5以下がさらに好ましく、2.4以上4.2以下が特に好ましい。 The degree of polymerization of the aromatic copolyamide resin (A-4) in the present invention is not particularly limited, but the relative viscosity measured at 25 ° C. according to JIS K 6920-2 is , is preferably 2.3 or more and 5.0 or less, more preferably 2.4 or more and 5.0 or less, further preferably 2.4 or more and 4.5 or less, and particularly preferably 2.4 or more and 4.2 or less .
 芳香族共重合ポリアミド樹脂(A-4)の末端アミノ基濃度は、フェノールとメタノールの混合溶媒に溶解させ、中和滴定で求められる。芳香族共重合ポリアミド樹脂(A-4)の末端アミノ基濃度は、20μmol/g以上60μmol/g以下が好ましい。 The terminal amino group concentration of the aromatic copolymerized polyamide resin (A-4) is determined by neutralization titration after dissolving in a mixed solvent of phenol and methanol. The terminal amino group concentration of the aromatic copolyamide resin (A-4) is preferably 20 μmol/g or more and 60 μmol/g or less.
(A-3)芳香族ホモポリアミド樹脂
 芳香族ホモポリアミド樹脂(A-3)の定義は第1の発明と同様であり、芳香族ホモポリアミド樹脂(A-3)としては、第1の発明と同様の樹脂が挙げられる。
 芳香族ホモポリアミド樹脂(A-3)の製造装置及び重合方法も、第1の発明と同様である。
(A-3) Aromatic homopolyamide resin The definition of the aromatic homopolyamide resin (A-3) is the same as in the first invention, and the aromatic homopolyamide resin (A-3) is the same as in the first invention. Similar resins may be mentioned.
The production apparatus and polymerization method for the aromatic homopolyamide resin (A-3) are also the same as in the first invention.
 本発明における(A-3)芳香族ホモポリアミド樹脂の重合度には特に制限はないが、JIS K 6920-2に従って、25℃で測定した相対粘度が、成形加工性及び機械物性の観点から、2.3以上5.0以下であることが好ましく、2.4以上5.0以下がより好ましく、2.4以上4.5以下がさらに好ましく、2.4以上4.2以下が特に好ましい。 The degree of polymerization of (A-3) the aromatic homopolyamide resin in the present invention is not particularly limited, but the relative viscosity measured at 25° C. according to JIS K 6920-2 is, from the viewpoint of molding processability and mechanical properties, It is preferably 2.3 or more and 5.0 or less, more preferably 2.4 or more and 5.0 or less, still more preferably 2.4 or more and 4.5 or less, and particularly preferably 2.4 or more and 4.2 or less.
 第3の発明におけるポリアミド樹脂(A)は、ポリアミド6、ポリアミド6/66、ポリアミド6/12及びポリアミド6/66/12からなる群から選択される少なくとも1種であることが好ましく、ポリアミド6がより好ましい。 The polyamide resin (A) in the third invention is preferably at least one selected from the group consisting of polyamide 6, polyamide 6/66, polyamide 6/12 and polyamide 6/66/12, and polyamide 6 is more preferred.
 第3の発明におけるポリアミド樹脂(A)は、JIS K 6920-2に準拠して、ポリアミド樹脂1gを96%濃硫酸100mlに溶解させ、25℃で測定される相対粘度が2.3以上5.0以下であることが好ましく、2.4以上5.0以下がより好ましく、2.4以上4.5以下がさらに好ましい。更に本発明の効果を向上させる観点から、2.4以上4.2以下が特に好ましい。2.3以上であると、より成形加工が容易である。また5.0以下であるとポリアミド樹脂のより良好な機械物性を得ることができる。 The polyamide resin (A) in the third invention is obtained by dissolving 1 g of the polyamide resin in 100 ml of 96% concentrated sulfuric acid in accordance with JIS K 6920-2, and having a relative viscosity of 2.3 or more measured at 25 ° C.5. It is preferably 0 or less, more preferably 2.4 or more and 5.0 or less, and even more preferably 2.4 or more and 4.5 or less. Furthermore, from the viewpoint of improving the effects of the present invention, it is particularly preferable to be 2.4 or more and 4.2 or less. When it is 2.3 or more, molding is easier. Moreover, when it is 5.0 or less, better mechanical properties of the polyamide resin can be obtained.
 ポリアミド樹脂(A)が、相対粘度が異なる2種以上のポリアミド樹脂を含む場合の相対粘度の求め方は、第1の発明と同様である。 When the polyamide resin (A) contains two or more types of polyamide resins with different relative viscosities, the method of determining the relative viscosity is the same as in the first invention.
 第3の発明におけるポリアミド樹脂(A)の末端アミノ基濃度は、フェノールとメタノールの混合溶媒に溶解させ中和滴定で求められる末端アミノ基濃度として、30μmol/g以上の範囲が好ましく、30μmol/g以上110μmol/g以下の範囲がより好ましく、30μmol/g以上70μmol/g以下の範囲がさらに好ましい。30μmol/g以上であれば、強化材との接着性が良く、溶融粘度や耐衝撃性を十分に得ることができる。また110μmol/g以下で成形加工性が良好である。 The terminal amino group concentration of the polyamide resin (A) in the third invention is dissolved in a mixed solvent of phenol and methanol and obtained by neutralization titration. The range of 110 μmol/g or more is more preferable, and the range of 30 μmol/g or more and 70 μmol/g or less is even more preferable. If it is 30 μmol/g or more, the adhesiveness to the reinforcing material is good, and sufficient melt viscosity and impact resistance can be obtained. In addition, when the amount is 110 μmol/g or less, molding processability is good.
 ポリアミド樹脂(A)が、末端アミノ基濃度の異なる2種以上のポリアミド樹脂を含む場合の末端アミノ基濃度の求め方は、第1の発明と同様である。 When the polyamide resin (A) contains two or more polyamide resins with different terminal amino group concentrations, the method for determining the terminal amino group concentration is the same as in the first invention.
 第3の発明におけるポリアミド樹脂(A)は、3次元造形用ポリアミド樹脂組成物100質量%中、60~95質量%、好ましくは65~95重量%、より好ましくは65~85質量%、さらに好ましくは70~85質量%、特に好ましくは70~78質量%含まれる。ポリアミド樹脂(A)の含有割合が上記範囲より少ないと、ポリアミド樹脂の機械物性が低下し、上記範囲より多いと、成形品の吸水率が高まるとともに、3次元造形装置で製造した成形品の反りが大きく、発泡も多い。 The polyamide resin (A) in the third invention is 60 to 95% by mass, preferably 65 to 95% by mass, more preferably 65 to 85% by mass, more preferably 100% by mass of the polyamide resin composition for three-dimensional modeling. is contained in an amount of 70 to 85% by mass, particularly preferably 70 to 78% by mass. If the content of the polyamide resin (A) is less than the above range, the mechanical properties of the polyamide resin are reduced. is large and there is a lot of bubbling.
<ノボラック型フェノール樹脂(B)>
 第3の発明の3次元造形用ポリアミド樹脂組成物は、ノボラック型フェノール樹脂(B)を含む。
 第3の発明におけるノボラック型フェノール樹脂(B)としては、第1の発明と同様のものが挙げられる。すなわち、ノボラック型フェノール樹脂(B)の製造に用いられるフェノール類、アルデヒド類及び酸性触媒は、第1の発明と同様である。
<Novolak-type phenolic resin (B)>
A polyamide resin composition for three-dimensional modeling according to a third invention contains a novolak-type phenolic resin (B).
As the novolac-type phenolic resin (B) in the third invention, the same ones as in the first invention can be mentioned. That is, the phenols, aldehydes and acidic catalysts used in the production of the novolak-type phenolic resin (B) are the same as in the first invention.
 なお、このようなノボラック型フェノール樹脂(B)の中でも、機械物性や耐熱性の観点から、下記式(1)で表されるフェノールホルムアルデヒド樹脂が好ましい。
Figure JPOXMLDOC01-appb-C000006

 上記式(1)中、nは、1~200が好ましく、1~50がより好ましく、5~20がさらに好ましい。
Among such novolak-type phenolic resins (B), phenol-formaldehyde resins represented by the following formula (1) are preferable from the viewpoint of mechanical properties and heat resistance.
Figure JPOXMLDOC01-appb-C000006

In the above formula (1), n is preferably 1-200, more preferably 1-50, even more preferably 5-20.
 第3の発明におけるノボラック型フェノール樹脂(B)の数平均分子量は、成形加工性や耐熱性の観点から、100~20,000が好ましく、300~15,000がより好ましい。数平均分子量の測定方法は、第1の発明と同様である。 The number average molecular weight of the novolac-type phenolic resin (B) in the third invention is preferably 100 to 20,000, more preferably 300 to 15,000, from the viewpoint of moldability and heat resistance. The method for measuring the number average molecular weight is the same as in the first invention.
 第3の発明におけるノボラック型フェノール樹脂(B)の軟化点温度は、成形加工性や耐熱性の観点から、50~250℃が好ましく、70~200℃がより好ましく、110~150℃がさらに好ましく、110~130℃が特に好ましく、120~130℃が最も好ましい。軟化点温度は、JIS K6910に基づく環球法軟化点測定により求めた値である。 The softening point temperature of the novolac-type phenolic resin (B) in the third invention is preferably 50 to 250°C, more preferably 70 to 200°C, and even more preferably 110 to 150°C, from the viewpoint of moldability and heat resistance. , 110-130° C. is particularly preferred, and 120-130° C. is most preferred. The softening point temperature is a value determined by ring and ball method softening point measurement based on JIS K6910.
 このようなノボラック型フェノール樹脂の市販品としては、明和化成製のHF-4M、NC58、H-1、LANXESS製のRHENOSIN(登録商標)PR95等が挙げられる。 Commercially available products of such novolac-type phenolic resins include HF-4M, NC58, H-1 manufactured by Meiwa Kasei, and RHENOSIN (registered trademark) PR95 manufactured by LANXESS.
 第3の発明の3次元造形用ポリアミド樹脂組成物100質量%中、ノボラック型フェノール樹脂(B)は、5~40質量%、好ましくは5~35質量%、より好ましくは22~30質量%含まれる。ノボラック型フェノール樹脂の配合量が上記範囲より少ないと、成形品の吸水率が高まるとともに、3次元造形装置で製造した成形品の反りが大きく、吸水による発泡も多い。ノボラック型フェノール樹脂の含有割合が上記範囲より多いと、ポリアミド自体の機械物性が損なわれる。 In 100% by mass of the polyamide resin composition for three-dimensional modeling of the third invention, the novolak phenolic resin (B) is 5 to 40% by mass, preferably 5 to 35% by mass, more preferably 22 to 30% by mass. be If the amount of the novolak-type phenolic resin is less than the above range, the water absorption rate of the molded product increases, and the molded product produced by the three-dimensional modeling apparatus has large warpage and foaming due to water absorption. If the content of the novolak-type phenolic resin is more than the above range, the mechanical properties of the polyamide itself are impaired.
<添加剤>
 第3の発明の3次元造形用ポリアミド樹脂組成物は目的等に応じて、任意成分として、染料、顔料、繊維状補強物、粒子状補強物、可塑剤、酸化防止剤、耐熱剤、発泡剤、耐候剤、結晶核剤、結晶化促進剤、離型剤、滑剤、帯電防止剤、難燃剤、難燃助剤、着色剤等の機能性付与剤等を適宜含有していてもよい。
 任意の添加剤は、3次元造形用ポリアミド樹脂組成物100質量%中、好ましくは0~35質量%、より好ましくは0.05~30質量%含まれる。
<Additive>
The polyamide resin composition for three-dimensional modeling of the third invention may contain dyes, pigments, fibrous reinforcing materials, particulate reinforcing materials, plasticizers, antioxidants, heat-resistant agents, and foaming agents as optional components depending on the purpose. , a weathering agent, a crystal nucleating agent, a crystallization accelerator, a releasing agent, a lubricant, an antistatic agent, a flame retardant, a flame retardant auxiliary, a coloring agent, and other function-imparting agents.
The optional additive is contained in an amount of preferably 0 to 35% by mass, more preferably 0.05 to 30% by mass, based on 100% by mass of the polyamide resin composition for three-dimensional modeling.
 第3の発明の3次元造形用ポリアミド樹脂組成物は、ポリアミド樹脂(A)及びノボラック型フェノール樹脂(B)以外の樹脂を含んでいてもよい。ポリアミド樹脂(A)及びノボラック型フェノール樹脂(B)以外の樹脂は、好ましくは、0~20質量%含まれる。 The polyamide resin composition for three-dimensional modeling of the third invention may contain resins other than the polyamide resin (A) and the novolac-type phenolic resin (B). Resins other than the polyamide resin (A) and the novolak-type phenolic resin (B) are preferably contained in an amount of 0 to 20% by mass.
<3次元造形用ポリアミド樹脂組成物の製造方法>
 第3の発明の3次元造形用ポリアミド樹脂組成物の製造方法は、第1の発明のポリアミド樹脂組成物の製造方法と同様である。
<Method for producing a polyamide resin composition for three-dimensional modeling>
The method for producing the polyamide resin composition for three-dimensional modeling according to the third invention is the same as the method for producing the polyamide resin composition according to the first invention.
<3次元造形用ポリアミド樹脂組成物の特性>
 第3の発明の3次元造形用ポリアミド樹脂組成物をISO527に従ってポリアミド樹脂(A)がポリアミド6を含む場合は成形温度:250℃、金型温度:40℃、ポリアミド樹脂(A)がポリアミド6を含まない場合は成形温度:220℃、金型温度:40℃で射出成形して得られたタイプA型引張試験片を、成形後吸水させないようにして室温で保管後、初期質量(W0)を測定し、40℃の水に24時間浸漬させ、取り出し後に付着水分をふき取り、質量(W1)を測定し、((W1-W0)/W0)×100により算出した吸水率が2.2%以下であることが好ましく、2.0%以下がより好ましい。
このように3次元造形用ポリアミド樹脂組成物は、吸水率が抑制されている。
<Characteristics of polyamide resin composition for three-dimensional modeling>
When the polyamide resin composition for three-dimensional modeling of the third invention contains polyamide 6 according to ISO 527, molding temperature: 250 ° C., mold temperature: 40 ° C., polyamide resin (A) contains polyamide 6. If not included, the type A tensile test piece obtained by injection molding at a molding temperature of 220 ° C and a mold temperature of 40 ° C is stored at room temperature so as not to absorb water after molding, and then the initial mass (W0) is Measured, immersed in water at 40 ° C. for 24 hours, wiped off the attached moisture after removal, measured the mass (W1), and the water absorption calculated by ((W1-W0) / W0) × 100 is 2.2% or less. is preferable, and 2.0% or less is more preferable.
Thus, the polyamide resin composition for three-dimensional modeling has a reduced water absorption rate.
 第3の発明の3次元造形用ポリアミド樹脂組成物を3Dプリンターを用いてISO527の形状に従った形状に3次元造形して得られたタイプA型引張試験片を23℃、50%RH条件下で24時間放置した後、定盤に試験片を置き、幅方向辺の一方の端部を幅30mm、200gの重りで固定し、もう一方の幅方向辺の端部の定盤面からの反り上がり量を指矩で測定して得られた反り上がり量が30mm以下であることが好ましく、20mm以下がより好ましい。
 このように3次元造形用ポリアミド樹脂組成物は、3Dプリンターを用いて3次元造形して得られる成形体の反りが抑制され、精度の良好な成形品を得ることができる。
A type A tensile test piece obtained by three-dimensionally shaping the polyamide resin composition for three-dimensional shaping of the third invention into a shape according to the shape of ISO527 using a 3D printer at 23 ° C. and under 50% RH conditions After leaving it for 24 hours, place the test piece on the surface plate, fix one end of the width direction side with a weight of 30 mm width and 200 g, and warp up from the surface plate surface of the other width direction side end The amount of warpage obtained by measuring the amount with a finger is preferably 30 mm or less, more preferably 20 mm or less.
As described above, the polyamide resin composition for three-dimensional modeling suppresses warpage of a molded article obtained by three-dimensional modeling using a 3D printer, and can provide a molded article with good accuracy.
 <3次元造形用フィラメント>
 3次元造形用フィラメントは、上記3次元造形用ポリアミド樹脂組成物を用いて製造される。3次元造形用フィラメントの製造方法は特に制限されないが、3次元造形用ポリアミド樹脂組成物を、押出成形等の公知の成形方法により成形する方法や3次元造形用ポリアミド樹脂組成物の製造時にそのままフィラメントとする方法等によって得ることができる。
 具体的には、3次元造形用ポリアミド樹脂組成物から、3次元造形用フィラメントを製造する方法としては、例えば、3次元造形用フィラメントを押出成形により得る場合、その条件は、3次元造形用ポリアミド樹脂組成物の融点又はガラス転移温度(Tg)に、5~100℃、好ましくは10~80℃加えた温度で行なうことが好ましい。
<Filament for 3D printing>
A filament for three-dimensional modeling is produced using the polyamide resin composition for three-dimensional modeling. The method for producing the filament for three-dimensional modeling is not particularly limited, but the polyamide resin composition for three-dimensional modeling is molded by a known molding method such as extrusion molding, or the filament is used as it is during the production of the polyamide resin composition for three-dimensional modeling. It can be obtained by a method such as
Specifically, as a method for producing a filament for three-dimensional modeling from a polyamide resin composition for three-dimensional modeling, for example, when obtaining a filament for three-dimensional modeling by extrusion molding, the conditions are the polyamide for three-dimensional modeling It is preferable to carry out the treatment at a temperature which is 5 to 100° C., preferably 10 to 80° C. higher than the melting point or glass transition temperature (Tg) of the resin composition.
 3次元造形用フィラメントの径は、装置によって定められるが、1.75mm仕様の場合は1.65~1.85mmの範囲が好ましい。また3.00mm仕様の場合は、2.90~3.10mmが好ましい。 The diameter of the filament for 3D modeling is determined by the device, but in the case of the 1.75 mm specification, the range of 1.65 to 1.85 mm is preferable. In the case of 3.00 mm specification, 2.90 to 3.10 mm is preferable.
 溶融前の3次元造形用フィラメント同士のブロッキングを防ぐため、3次元造形用フィラメント表面にブロッキング剤を塗布又はコーティングしてもよい。 A blocking agent may be applied or coated on the surface of the three-dimensional modeling filament to prevent blocking between the three-dimensional modeling filaments before melting.
 ここで用いることのできるブロッキング剤の例としては、シリコーン系ブロッキング剤、タルク等の無機フィラー、脂肪酸金属塩等が挙げられる。これらのブロッキング剤は1種のみで用いてもよいし、2種以上を組み合わせて用いてもよい。 Examples of blocking agents that can be used here include silicone-based blocking agents, inorganic fillers such as talc, and fatty acid metal salts. These blocking agents may be used alone or in combination of two or more.
 フィラメントの好ましい形態としては、フィラメントをボビン等に巻きとった巻回体、フィラメントを容器に収納したカートリッジが挙げられる。 Preferred forms of the filament include a wound body in which the filament is wound around a bobbin or the like, and a cartridge in which the filament is stored in a container.
 <3次元造形方法>
 3次元造形用ポリアミド樹脂組成物または3次元造形用フィラメント(以下、「3次元造形用材料」ともいう。)を3次元造形物製造装置である3Dプリンターにより造形することで、3次元造形された成形体を製造することができる。
<Three-dimensional modeling method>
Three-dimensional modeling is performed by modeling a polyamide resin composition for three-dimensional modeling or a filament for three-dimensional modeling (hereinafter also referred to as "material for three-dimensional modeling") with a 3D printer, which is a three-dimensional model manufacturing device. Molded bodies can be produced.
 3Dプリンターとしては、特に制限がないが、FDM法の装置が好ましく挙げられる。図1に示すようにFDM法の3Dプリンターは、通常、原料供給部、ギア2、チューブ3、ヒーター6を備えたノズル4及びテーブル5を備えている。ヒーターとノズルは、別個であってもよい。 There are no particular restrictions on the 3D printer, but an FDM method device is preferred. As shown in FIG. 1, the FDM 3D printer usually comprises a raw material supply unit, a gear 2, a tube 3, a nozzle 4 with a heater 6, and a table 5. The heater and nozzle may be separate.
 FDM法の3Dプリンターにおいて、3次元造形用材料は原料供給部から繰り出され、対向する1組のギア2によりチューブ3へ送り込まれ、ヒーター6で加熱溶融され、ノズル4より押し出される。 In the FDM 3D printer, the material for three-dimensional modeling is drawn out from the raw material supply unit, fed into the tube 3 by a pair of opposing gears 2, heated and melted by the heater 6, and pushed out from the nozzle 4.
 3次元造形用材料を加熱し溶融する温度は、特に制限されないが、3次元造形用ポリアミド樹脂組成物の融点又はガラス転移温度(Tg) 以上であって、同融点又はガラス転移温度(Tg)+300℃ 以下が好ましく、具体的には融点又はガラス転移温度(Tg)に、5~100℃、好ましくは10~80℃加えた温度設定が好ましい。 The temperature for heating and melting the three-dimensional modeling material is not particularly limited, but the melting point or glass transition temperature (Tg) of the polyamide resin composition for three-dimensional modeling or higher, and the melting point or glass transition temperature (Tg) + 300 ° C. or less is preferable, and specifically, the temperature is preferably set by adding 5 to 100° C., preferably 10 to 80° C. to the melting point or glass transition temperature (Tg).
 ノズル4から押し出された溶融状態の3次元造形用材料は、3次元の座標データをもとに、3次元の座標データを輪切りにした2次元層をX-Y軸方向を規定するテーブル5の上に堆積し、この2次元層をZ軸方向に順次積層することにより、3次元造形された成形体を得ることができる。 The molten three-dimensional modeling material extruded from the nozzle 4 is a two-dimensional layer obtained by slicing the three-dimensional coordinate data based on the three-dimensional coordinate data, and the table 5 defines the XY axis directions. By stacking these two-dimensional layers on top of each other and successively stacking these two-dimensional layers in the Z-axis direction, a three-dimensionally shaped compact can be obtained.
 造形スピードは、10~100mm/秒であることが好ましい。 The molding speed is preferably 10-100 mm/sec.
<3次元造形して得られる成形体の用途>
 3次元造形用ポリアミド樹脂組成物または3次元造形用フィラメントを3次元造形して得られる成形体の用途としては、特に限定されないが、スポイラー、エアインテークダクト、インテークマニホールド、レゾネーター、燃料タンク、ガスタンク、作動油タンク、燃料フィラーチューブ、燃料デリバリーパイプ、その他各種ホース・チューブ・タンク類などの自動車部品、電動工具ハウジング、パイプ類などの機械部品を始め、タンク、チューブ、ホース、フィルム等の電気・電子部品、家庭・事務用品、建材関係部品、家具用部品など各種用途が好適に挙げられる。
<Uses of compacts obtained by three-dimensional modeling>
The use of the molded body obtained by three-dimensional modeling of the polyamide resin composition for three-dimensional modeling or the filament for three-dimensional modeling is not particularly limited, but spoilers, air intake ducts, intake manifolds, resonators, fuel tanks, gas tanks, Hydraulic oil tanks, fuel filler tubes, fuel delivery pipes, other automotive parts such as hoses, tubes, and tanks, electric tool housings, mechanical parts such as pipes, electrical and electronic parts such as tanks, tubes, hoses, films, etc. Suitable for various applications such as parts, household/office supplies, building material-related parts, and furniture parts.
 また、3次元造形用ポリアミド樹脂組成物は、ガスバリア性に優れるため、高圧ガスと接触する成形品、たとえば、高圧ガスに接するタンク、チューブ、ホース、フィルム等に好適に用いられる。前記ガスの種類としては、特に制限されず、水素、窒素、酸素、ヘリウム、メタン、ブタン、プロパン等が挙げられ、極性の小さいガスが好ましく、水素、窒素、メタンが特に好ましい。 In addition, since the polyamide resin composition for three-dimensional modeling has excellent gas barrier properties, it is suitably used for molded articles that come into contact with high-pressure gas, such as tanks, tubes, hoses, and films that come into contact with high-pressure gas. The type of gas is not particularly limited, and includes hydrogen, nitrogen, oxygen, helium, methane, butane, propane, etc. Gases with low polarity are preferred, and hydrogen, nitrogen, and methane are particularly preferred.
1.第1の発明の実施例
以下、第1の発明を実施例及び比較例により更に詳細に説明するが、本発明はこれら実施例により限定されるものではない。
1. EXAMPLES OF THE FIRST INVENTION Hereinafter, the first invention will be described in more detail with reference to examples and comparative examples, but the present invention is not limited to these examples.
実施例及び比較例における測定方法は以下の通りである。
<相対粘度>
 JIS K6920-2に準拠し、ポリアミド1gを96%濃硫酸100mlに溶解させ、25℃で測定した値である。
The measurement methods in Examples and Comparative Examples are as follows.
<Relative viscosity>
It is a value measured at 25° C. by dissolving 1 g of polyamide in 100 ml of 96% concentrated sulfuric acid according to JIS K6920-2.
<軟化点温度>
 軟化点温度は、JIS  K6910に基づく環球法軟化点測定により求めた値である。
<Softening point temperature>
The softening point temperature is a value determined by ring and ball method softening point measurement based on JIS K6910.
<熱水抽出量>
 水を溶媒としたソックスレーによる抽出法により、ポリアミド樹脂組成物を熱水と共に6時間煮沸後、熱水を除去し、残渣を真空乾燥機にて90℃16時間乾燥を行った。残渣量を秤量し、煮沸前のポリアミド樹脂組成物の質量から煮沸後真空乾燥した後の残渣の質量を差し引いて得られる減量分を煮沸前のポリアミド樹脂組成物の質量で除した値を、ポリアミド樹脂組成物100質量%あたりの熱水抽出分とした。
<Hot water extraction amount>
After the polyamide resin composition was boiled with hot water for 6 hours by the Soxhlet extraction method using water as a solvent, the hot water was removed and the residue was dried in a vacuum dryer at 90° C. for 16 hours. Weigh the amount of residue, subtract the mass of the residue after vacuum drying after boiling from the mass of the polyamide resin composition before boiling, and divide the loss by the mass of the polyamide resin composition before boiling. It was set as the hot water extractable amount per 100% by mass of the resin composition.
<熱メタノール抽出量>
 メタノールを溶媒としたソックスレーによる抽出法により、ポリアミド樹脂組成物を熱メタノールと共に3時間煮沸後、熱メタノールを除去し、残渣を真空乾燥機にて90℃16時間乾燥を行った。残渣量を秤量し、煮沸前のポリアミド樹脂組成物の質量から煮沸後真空乾燥した後の残渣の質量を差し引いて得られる減量分を煮沸前のポリアミド樹脂組成物の質量で除した値を、ポリアミド樹脂組成物100質量%あたりの熱メタノール抽出分とした。
<Hot methanol extraction amount>
After boiling the polyamide resin composition with hot methanol for 3 hours by a Soxhlet extraction method using methanol as a solvent, the hot methanol was removed and the residue was dried in a vacuum dryer at 90° C. for 16 hours. Weigh the amount of residue, subtract the mass of the residue after vacuum drying after boiling from the mass of the polyamide resin composition before boiling, and divide the loss by the mass of the polyamide resin composition before boiling. It was taken as the hot methanol extract per 100% by mass of the resin composition.
<耐塩化カルシウム性>
 ポリアミド樹脂組成物を射出成形して得られるISO TYPE-A試験片を使用した。試験片にガーゼを載せ、飽和塩化カルシウム溶液を塗布し、80℃、90%RHで24時間放置し、前処理を行なった。前処理後の試験片を100℃のオーブンで2時間加熱した後、80℃、90%RHの恒温槽に20時間放置するという試験を1サイクルとして行い、1サイクル終了毎にキーエンス社製デジタルマイクロスコープVHX-5000にて試験片のクラック発生の有無を観察し、以下の基準で評価した。
〇:試験片にクラックが発生していない
×:試験片にクラックが発生している。
なお、1サイクル後にクラックが発生しなかったものを合格とした。
<Calcium chloride resistance>
An ISO TYPE-A test piece obtained by injection molding a polyamide resin composition was used. A gauze was placed on the test piece, a saturated calcium chloride solution was applied to the test piece, and the test piece was left at 80° C. and 90% RH for 24 hours for pretreatment. After heating the pretreated test piece in an oven at 100 ° C. for 2 hours, a test in which it is left in a constant temperature bath at 80 ° C. and 90% RH for 20 hours is performed as one cycle. The presence or absence of cracks in the test piece was observed with a scope VHX-5000 and evaluated according to the following criteria.
◯: no cracks occurred in the test piece ×: cracks occurred in the test piece.
A sample in which no cracks occurred after one cycle was regarded as acceptable.
<誘電率及び誘電正接>
 ポリアミド樹脂組成物を射出成形機FANUC社製T-100D、型締め力100トン、スクリュー径36mmを用いて、シリンダー温度250℃、金型温度40℃、射出速度50mm/secの条件で、100mm×70mm×厚み2mmの平板を作成した。この平板を水中40℃で7日間浸漬処理したものを試験体として用いた。誘電率測定装置としては、インピーダンスアナライザAgilent 4294A(アジレント・テクノロジー社製)及びフィクスチャーAgilent 16451B(アジレント・テクノロジー社製)を用いた。測定は、電極接触法を採用し、誘電正接は10GHzにおける値を求めた。
<Dielectric constant and dielectric loss tangent>
Using an injection molding machine FANUC T-100D, a mold clamping force of 100 tons, a screw diameter of 36 mm, a cylinder temperature of 250 ° C., a mold temperature of 40 ° C., and an injection speed of 50 mm / sec. A flat plate of 70 mm×2 mm thickness was prepared. This flat plate was immersed in water at 40° C. for 7 days and used as a test piece. Impedance analyzer Agilent 4294A (manufactured by Agilent Technologies Inc.) and fixture Agilent 16451B (manufactured by Agilent Technologies Inc.) were used as dielectric constant measuring devices. The electrode contact method was used for the measurement, and the value of the dielectric loss tangent was obtained at 10 GHz.
<吸水後の機械的特性>
 ポリアミド樹脂組成物のISO TYPE-A試験片を40℃の水に168時間浸漬させ、前処理した 試験片を用いて以下の機械的特性を測定した。なお、吸水率は、浸漬前後の試験片の質量差から算出した。
(1)吸水後の引張降伏応力及び引張破壊呼びひずみ 
 前記40℃水中で168時間吸水させた試験片を用いて、ISO527に準じて、インストロン製引張試験機型式5567を使用して23℃で測定した。
(2)吸水後の曲げ強さ及び曲げ弾性率
 前記40℃水中で168時間吸水させた試験片を用いて、ISO 178に準拠した方法でインストロン製引張試験機型式5567を使用して23℃で測定した。
<Mechanical properties after water absorption>
An ISO TYPE-A test piece of the polyamide resin composition was immersed in water at 40° C. for 168 hours, and the following mechanical properties were measured using the pretreated test piece. The water absorption was calculated from the difference in mass of the test piece before and after immersion.
(1) Tensile yield stress and tensile fracture nominal strain after water absorption
Using the test piece soaked in water at 40°C for 168 hours, the tensile strength was measured at 23°C according to ISO527 using a tensile tester model 5567 manufactured by Instron.
(2) Flexural strength and flexural modulus after water absorption Using a test piece that has been soaked in water at 40°C for 168 hours, it is measured at 23°C using an Instron tensile tester model 5567 in accordance with ISO 178. measured in
[実施例1~5、比較例1~4]
 表1に記載した各成分を二軸混練機TEX44HCT、シリンダー径44mm L/D35で、シリンダー温度250℃、スクリュー回転160rpm、吐出量50kg/hrsにて溶融混練し、目的とするポリアミド樹脂組成物ペレットを作製した。
 なお、表中の組成の単位は質量%であり、樹脂組成物全体を100質量%とする。
[Examples 1 to 5, Comparative Examples 1 to 4]
Each component described in Table 1 is melt-kneaded with a twin-screw kneader TEX44HCT, a cylinder diameter of 44 mm L / D35, a cylinder temperature of 250 ° C., a screw rotation of 160 rpm, and a discharge rate of 50 kg / hrs, to obtain the desired polyamide resin composition pellet. was made.
The unit of composition in the table is % by mass, and the total resin composition is 100% by mass.
 表1に記載の成分は、以下のものを使用した。
PA6:ポリアミド6、相対粘度3.36 (UBE株式会社製)
PA6/66:ポリアミド6/66、相対粘度4.05、ポリアミド6 85mol%、ポリアミド66 15mol% (UBE株式会社製)
ノボラック型フェノール樹脂(1):軟化点温度:102℃、製品名HF-4M(明和化成製)、式(1)で表される構造であって、n=約6.7
ノボラック型フェノール樹脂(2):軟化点温度:125℃、製品名NC58(明和化成製)、式(1)で表される構造であって、n=約14.6
The components listed in Table 1 used the following.
PA6: Polyamide 6, relative viscosity 3.36 (manufactured by UBE Corporation)
PA6/66: Polyamide 6/66, relative viscosity 4.05, polyamide 6 85 mol%, polyamide 66 15 mol% (manufactured by UBE Corporation)
Novolak-type phenolic resin (1): softening point temperature: 102° C., product name HF-4M (manufactured by Meiwa Kasei), structure represented by formula (1), n=about 6.7
Novolac-type phenolic resin (2): softening point temperature: 125°C, product name NC58 (manufactured by Meiwa Kasei), structure represented by formula (1), n = about 14.6
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
 表1の結果から、実施例1~5では、熱水での抽出量が1.5質量%以下であり、耐塩化カルシウム性が良好で、絶縁性があり、吸水量が低く、吸水時の機械的特性に優れるポリアミド樹脂組成物が得られている。
 実施例1~5と比較例3及び4とを比較すると、ポリアミド樹脂組成物が特定の軟化点温度の範囲で特定の範囲の量のノボラック型フェノール樹脂を含有すると、ポリアミド樹脂単独の場合よりも、吸水率、耐塩化カルシウム性、絶縁性、機械的特性が優れることがわかる。
 実施例1~5と比較例1及び2とを比較すると、熱水での抽出量が1.5質量%を超えると、ポリアミド樹脂組成物の機械物性低下が生じている。また、このように熱水抽出量および熱メタノール抽出量が多いと、成形品表面へのブリードアウトが生じてしまう。
 実施例1、3及び4と比較例1及び2とを比較すると、ノボラックフェノール樹脂(1)を使用した場合は、その含有量が20質量%以上であると、熱水での抽出量が1.5質量%を超えることがわかる。実施例2~4からは、ノボラックフェノール樹脂(2)を使用した場合は、その含有量が第1の発明の範囲であると、熱水での抽出量が1.5質量%以下であることがわかる。
 実施例2~4を比較すると、本願発明の範囲内ではノボラック型フェノール樹脂の添加量が多いと曲げ弾性率が高く、吸水率が低く、絶縁性及び耐塩化カルシウム性もより良好になることがわかる。
From the results in Table 1, in Examples 1 to 5, the extraction amount with hot water is 1.5% by mass or less, the calcium chloride resistance is good, the insulation is good, the water absorption is low, and the water absorption is low. A polyamide resin composition having excellent mechanical properties is obtained.
Comparing Examples 1 to 5 with Comparative Examples 3 and 4, when the polyamide resin composition contains a specific amount of novolac-type phenolic resin within a specific range of softening point temperature, the amount of novolak-type phenolic resin is higher than that of the polyamide resin alone. , water absorption, calcium chloride resistance, insulation and mechanical properties.
Comparing Examples 1 to 5 with Comparative Examples 1 and 2, when the amount extracted with hot water exceeds 1.5% by mass, the mechanical properties of the polyamide resin composition deteriorate. Moreover, when the hot water extraction amount and the hot methanol extraction amount are large in this way, bleeding out to the surface of the molded article occurs.
Comparing Examples 1, 3 and 4 with Comparative Examples 1 and 2, when the novolac phenol resin (1) is used and the content is 20% by mass or more, the extraction amount with hot water is 1. 0.5% by mass is exceeded. From Examples 2 to 4, when the novolak phenol resin (2) was used, the content was within the range of the first invention, and the extraction amount with hot water was 1.5% by mass or less. I understand.
A comparison of Examples 2 to 4 reveals that, within the scope of the present invention, when the amount of novolac-type phenolic resin added is large, the flexural modulus is high, the water absorption is low, and the insulation and calcium chloride resistance are better. Recognize.
2.第2の発明の実施例
 以下、第2の発明を実施例及び比較例により更に詳細に説明するが、本発明はこれら実施例により限定されるものではない。
2. EXAMPLES OF THE SECOND INVENTION Hereinafter, the second invention will be described in more detail with reference to examples and comparative examples, but the present invention is not limited to these examples.
 実施例及び比較例における測定方法は以下の通りである。
<相対粘度>
JIS K6920-2に準拠し、ポリアミド1gを96%濃硫酸100mlに溶解させ、25℃で測定した値である。
The measurement methods in Examples and Comparative Examples are as follows.
<Relative viscosity>
It is a value measured at 25° C. by dissolving 1 g of polyamide in 100 ml of 96% concentrated sulfuric acid according to JIS K6920-2.
<軟化点温度>
軟化点温度は、JIS  K6910に基づく環球法軟化点測定により求めた値である。
<Softening point temperature>
The softening point temperature is a value determined by ring and ball method softening point measurement based on JIS K6910.
<耐塩化カルシウム性>
ポリアミド樹脂組成物を射出成形して得られたISO TYPE-A試験片を使用した。試験片にガーゼを載せ、飽和塩化カルシウム溶液を塗布し、80℃、90%RHで24時間放置し、前処理を行なった。前処理後の試験片を100℃のオーブンで2時間加熱した後、80℃、90%RHの恒温槽に20時間放置した試験を1サイクルとして行い、1サイクル終了毎にキーエンス社製デジタルマイクロスコープVHX-5000を用いて試験片のクラック発生の有無を観察し、以下の基準で評価した。
〇:試験片にクラックが発生していない
×:試験片にクラックが発生している。
なお、1サイクル後にクラックが発生しなかったものを合格とした。
<Calcium chloride resistance>
An ISO TYPE-A test piece obtained by injection molding a polyamide resin composition was used. A gauze was placed on the test piece, a saturated calcium chloride solution was applied to the test piece, and the test piece was left at 80° C. and 90% RH for 24 hours for pretreatment. After heating the test piece after pretreatment in an oven at 100 ° C. for 2 hours, a test in which it was left in a constant temperature bath at 80 ° C. and 90% RH for 20 hours was performed as one cycle. Using VHX-5000, the presence or absence of cracks in the test piece was observed and evaluated according to the following criteria.
◯: no cracks occurred in the test piece ×: cracks occurred in the test piece.
A sample in which no cracks occurred after one cycle was regarded as acceptable.
<吸水後の機械的特性>
ポリアミド樹脂組成物を射出成形して得られたISO TYPE-A試験片を40℃の水に168時間浸漬させ、前処理した試験片を用いて以下の機械的特性を測定した。なお、吸水率は、浸漬前後の試験片の質量差を浸漬前の質量で割ることにより算出した。
(1)吸水後の引張降伏応力及び引張破壊呼びひずみ
 前記40℃水中で168時間吸水させた試験片を用いて、ISO527に準じて、インストロン製引張試験機型式5567を使用して23℃で測定した。
(2)吸水後の曲げ弾性率及び曲げ強度
 前記40℃水中で168時間吸水させた試験片を用いて、ISO178に準拠した方法でインストロン製引張試験機型式5567を使用して23℃で測定した。
(3)吸水後の曲げ弾性保持率
 吸水後の曲げ弾性保持率とは、吸水前の曲げ弾性率に対する吸水後の曲げ弾性率(=(吸水後の曲げ弾性率/吸水前の曲げ弾性率)×100)である
 吸水前の曲げ弾性率は、ポリアミド樹脂組成物を射出成形して得られたISO TYPE-A試験片をISO178に準拠した方法でインストロン製引張試験機型式5567を使用して23℃で測定した。
<Mechanical properties after water absorption>
An ISO TYPE-A test piece obtained by injection molding a polyamide resin composition was immersed in water at 40° C. for 168 hours, and the following mechanical properties were measured using the pretreated test piece. The water absorption was calculated by dividing the difference in mass of the test piece before and after immersion by the mass before immersion.
(1) Tensile yield stress and nominal tensile fracture strain after water absorption Using the test piece that has been soaked in water at 40°C for 168 hours, according to ISO 527, at 23°C using an Instron tensile tester model 5567 It was measured.
(2) Flexural modulus and flexural strength after water absorption Measured at 23°C using a test piece that had been soaked in water at 40°C for 168 hours and using an Instron tensile tester model 5567 in accordance with ISO 178. bottom.
(3) Bending elasticity retention after water absorption The bending elasticity retention after water absorption is the bending elasticity after water absorption relative to the bending elasticity before water absorption (=(bending elasticity after water absorption/bending elasticity before water absorption). × 100) The flexural modulus before water absorption was measured using an ISO TYPE-A test piece obtained by injection molding a polyamide resin composition in accordance with ISO 178 using a tensile tester model 5567 manufactured by Instron. Measured at 23°C.
[実施例6~11、比較例5~10]
 表2に記載した各成分を二軸混練機TEX44HCT、シリンダー径44mm L/D35で、シリンダー温度250℃、スクリュー回転160rpm、吐出量50kg/hrsにて溶融混練し、目的とするポリアミド樹脂組成物ペレットを作製した。
 結果を表2に示す。
 なお、表中の組成の単位は質量%であり、樹脂組成物全体を100質量%とする。
[Examples 6 to 11, Comparative Examples 5 to 10]
Each component described in Table 2 is melt-kneaded with a twin-screw kneader TEX44HCT, a cylinder diameter of 44 mm L / D35, a cylinder temperature of 250 ° C., a screw rotation of 160 rpm, and a discharge rate of 50 kg / hrs, to obtain the desired polyamide resin composition pellet. was made.
Table 2 shows the results.
The unit of composition in the table is % by mass, and the total resin composition is 100% by mass.
 表2に記載の成分は、以下のものを使用した。
PA6(1):ポリアミド6、相対粘度2.47 UBE株式会社製
PA6(2):ポリアミド6、相対粘度3.36 UBE株式会社製
PA6/66:ポリアミド6/66、相対粘度3.04、ポリアミド6 85mol%、ポリアミド66 15mol% (UBE株式会社製)
ノボラック型フェノール樹脂(1):軟化点温度:102℃、製品名HF-4M(明和化成製)、式(1)で表される構造であって、n=約6.7
ノボラック型フェノール樹脂(2):軟化点温度:125℃、製品名NC58(明和化成製)、式(1)で表される構造であって、n=約14.6
ガラス繊維(1):製品名ECS 03T-249H カット長3mm、平均繊維径10.5μm(カタログ値)(日本電気硝子製)
ガラス繊維(2):製品名ECS 03T-275H カット長3mm、平均繊維径10.5μm(カタログ値)((日本電気硝子製)
The components listed in Table 2 used the following.
PA6 (1): Polyamide 6, relative viscosity 2.47 UBE PA6 (2): Polyamide 6, relative viscosity 3.36 UBE PA6/66: Polyamide 6/66, relative viscosity 3.04, polyamide 6 85 mol%, polyamide 66 15 mol% (manufactured by UBE Corporation)
Novolak-type phenolic resin (1): softening point temperature: 102° C., product name HF-4M (manufactured by Meiwa Kasei), structure represented by formula (1), n=about 6.7
Novolac-type phenolic resin (2): softening point temperature: 125°C, product name NC58 (manufactured by Meiwa Kasei), structure represented by formula (1), n = about 14.6
Glass fiber (1): Product name ECS 03T-249H Cut length 3 mm, average fiber diameter 10.5 μm (catalog value) (manufactured by Nippon Electric Glass)
Glass fiber (2): Product name ECS 03T-275H Cut length 3 mm, average fiber diameter 10.5 μm (catalog value) (manufactured by Nippon Electric Glass)
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
 表2の結果から、実施例6~11は、耐塩化カルシウム性および吸水後の機械的特性が良好であることがわかる。
 比較例5~7は、樹脂組成物が、ノボラック型フェノール樹脂を含まないか、含んでも本願発明の範囲よりも少ない例であるが、実施例よりも耐塩化カルシウム性が劣ることがわかる。また、曲げ強度などの機械物性も実施例よりも劣る。
 比較例8~10は、樹脂組成物が、ガラス繊維を含まない例であるが、実施例よりも機械的特性が劣ることがわかる。また、比較例9のように、さらにポリアミド樹脂の量が実施例よりも多いと、耐塩化カルシウム性も劣ることがわかる。
From the results in Table 2, it can be seen that Examples 6 to 11 have good calcium chloride resistance and mechanical properties after water absorption.
Comparative Examples 5 to 7 are examples in which the resin composition does not contain a novolak-type phenolic resin or, even if it does contain it, is less than the scope of the present invention. In addition, mechanical properties such as bending strength are also inferior to those of the examples.
Comparative Examples 8 to 10 are examples in which the resin composition does not contain glass fiber, but it can be seen that the mechanical properties are inferior to those of the examples. Moreover, as in Comparative Example 9, when the amount of the polyamide resin is larger than that of the Examples, the resistance to calcium chloride is also inferior.
3.第3の発明の実施例
 以下、第3の発明を実施例及び比較例により更に詳細に説明するが、本発明はこれら実施例により限定されるものではない。
3. Examples of the Third Invention Hereinafter, the third invention will be described in more detail with reference to examples and comparative examples, but the present invention is not limited to these examples.
 測定に使用した試験片は以下の方法で作成した。
(1)射出成形による試験片作成
 ポリアミド樹脂組成物を射出成形にてISO527に従い、ポリアミド6はシリンダー温度250℃、金型温度40℃にて、それ以外の共重合体のポリアミドはシリンダー温度220℃、金型温度40℃にて、タイプA型引張試験片を作成した。
A test piece used for the measurement was prepared by the following method.
(1) Test piece preparation by injection molding Polyamide resin composition is injection molded according to ISO 527, polyamide 6 at a cylinder temperature of 250 ° C and a mold temperature of 40 ° C, and other copolymer polyamides at a cylinder temperature of 220 ° C. , and a mold temperature of 40°C, type A tensile test pieces were prepared.
(2)3Dプリンターによる造形
(2-1)フィラメントの作成
 ポリアミド樹脂組成物を押出機を用いて、シリンダー温度230℃、ノズル径3mmから押し出される樹脂を巻き取り、フィラメント径1.75mmになるように調整し、3Dプリンターに用いるフィラメントを作成する。
(2-2)3Dプリンターによる造形
 3Dプリンターは武藤工業株式会社製、商品名:Value3D MagiX MF-2200Dを用いて、ノズル径0.5mm、ノズルヒーター240℃、テーブル温度110℃、積層ピッチ0.3mm、造形スピード72mm/秒、冷却ファン無し、にて、(2-1)で得られたフィラメントを使用して、3次元の座標データをもとに、溶融したフィラメントをテーブルの上に順次積層させて、造形品を得た。
(2) Modeling by 3D printer (2-1) Creation of filament Using an extruder, the polyamide resin composition is extruded from a cylinder temperature of 230 ° C. and a nozzle diameter of 3 mm. to create a filament for use in a 3D printer.
(2-2) Modeling by a 3D printer A 3D printer manufactured by Mutoh Industries Co., Ltd., trade name: Value3D MagiX MF-2200D was used with a nozzle diameter of 0.5 mm, a nozzle heater of 240°C, a table temperature of 110°C, and a lamination pitch of 0.5°C. Using the filament obtained in (2-1) at 3 mm, modeling speed 72 mm/sec, without cooling fan, the molten filament is sequentially stacked on the table based on the three-dimensional coordinate data. and obtained a modeled product.
実施例及び表3に記載の数値は、以下の方法で測定した。
(3)測定方法
<相対粘度>
JIS K6920-2に準拠し、ポリアミド1gを96%濃硫酸100mlに溶解させ、25℃で測定した値である。
Numerical values described in Examples and Table 3 were measured by the following methods.
(3) Measuring method <relative viscosity>
It is a value measured at 25° C. by dissolving 1 g of polyamide in 100 ml of 96% concentrated sulfuric acid according to JIS K6920-2.
<軟化点温度>
軟化点温度は、JIS  K6910に基づく環球法軟化点測定により求めた値である。
<Softening point temperature>
The softening point temperature is a value determined by ring and ball method softening point measurement based on JIS K6910.
<吸水率>
 ポリアミド樹脂組成物を、上記(1)の条件で射出成形して得られたタイプA型引張試験片を、成形後吸水させないようにして室温で保管後、初期質量(W0)を測定した。次いで、その乾燥処理後の試験片を40℃の水に24時間浸漬させた場合及び80℃の水に24時間浸漬させた場合のそれぞれについて、取り出し後付着水分をふき取り質量(W1)を測定し、((W1-W0)/W0)×100により算出したものを吸水率とした。
<Water absorption rate>
A type A tensile test piece obtained by injection molding the polyamide resin composition under the conditions of (1) above was stored at room temperature so as not to absorb water after molding, and then the initial mass (W0) was measured. Next, when the test piece after the drying treatment was immersed in water at 40°C for 24 hours and in water at 80°C for 24 hours, the weight (W1) was measured by wiping off the adhering moisture after removal. , ((W1−W0)/W0)×100 was used as the water absorption.
<3Dプリンター造形品の反り量>
 ポリアミド樹脂組成物を、上記(2)の3Dプリンターによる造形方法に従って、ISO527の形状に従った形で造形し、得られた試験片を23℃、50%RH条件下で24時間放置した。次に、定盤に試験片を置き、幅方向辺の一方の端部を幅30mm、200gの重りで固定した時の、もう一方の幅方向辺の端部について、定盤面からの反り上がり量を指矩で測定した。
<Warpage amount of 3D printer model>
The polyamide resin composition was shaped according to the shape of ISO527 according to the 3D printer modeling method of (2) above, and the obtained test piece was left under conditions of 23° C. and 50% RH for 24 hours. Next, when the test piece is placed on a surface plate and one end of the width direction side is fixed with a weight of 30 mm in width and 200 g, the amount of warping from the surface of the surface plate for the other end of the width direction side was measured with a finger square.
<3Dプリンターノズルからの発泡状態>
 ポリアミド樹脂組成物を上記(2-1)の方法によりフィラメントにした。得られたフィラメントを、23℃、50%RH条件下で24時間、100時間、240時間放置し、24時間後、100時間後、240時間後の調湿フィラメントとして用いた。
 3Dプリンターに、調湿フィラメントを送り速度を300mm/分で供給し、3Dプリンターのノズルから出てくる樹脂の発泡状態を目視にて確認した。
発泡を以下の基準で評価した。
×:発泡が多く見られる
△:発泡が少し見られる
〇:発泡が見られない
24時間後の調湿フィラメントを用いた場合に、発泡が見られない場合を合格とした。
<Bubbling state from 3D printer nozzle>
The polyamide resin composition was made into filaments by the method (2-1) above. The obtained filaments were left under conditions of 23° C. and 50% RH for 24 hours, 100 hours and 240 hours, and used as humidity-conditioning filaments after 24 hours, 100 hours and 240 hours.
A humidity-controlled filament was supplied to the 3D printer at a feeding speed of 300 mm/min, and the state of foaming of the resin coming out of the nozzle of the 3D printer was visually confirmed.
Foaming was evaluated according to the following criteria.
x: A lot of foaming was observed △: A little foaming was observed O: No foaming was observed A case in which no foaming was observed when the humidity-conditioned filament was used after 24 hours was evaluated as acceptable.
<3Dプリンター造形品機械物性>
 Z軸方向の機械物性については、ポリアミド樹脂組成物を、上記(2)の3Dプリンターによる造形方法に従って、ISO178に準じた試験片形状の造形品を作成し、インストロン製引張試験機型式5567を使用して、チャック間距離:20mm、試験速度:5mm/分の条件で、引張強さ及び引張破壊呼びひずみを測定した。
 X-Y軸方向の機械物性については、ポリアミド樹脂組成物を、上記(2)の3Dプリンターによる造形方法に従って、ISO527に準じたタイプA型試験片形状の造形品を作成し、インストロン製引張試験機型式5567を使用して、チャック間距離:115mm、試験速度:5mm/分の条件で、引張強さ及び引張破壊呼びひずみを測定した。
 なお、X-Y軸方向とは、造形しているテーブル面をいい、Z軸方向とは、X-Y軸で定められる平面に垂直な方向をいう。
<Mechanical properties of 3D printer models>
For the mechanical properties in the Z-axis direction, the polyamide resin composition was molded according to ISO 178 in accordance with the molding method using a 3D printer described in (2) above, and a tensile tester model 5567 manufactured by Instron The tensile strength and nominal tensile strain at break were measured under the conditions of distance between chucks: 20 mm and test speed: 5 mm/min.
For the mechanical properties in the XY axis direction, the polyamide resin composition was molded into a type A test piece shape according to ISO 527 according to the molding method using a 3D printer described in (2) above, and an Instron tension test was performed. Using a testing machine model 5567, the tensile strength and tensile nominal strain at break were measured under the conditions of distance between chucks: 115 mm and test speed: 5 mm/min.
The XY axis direction refers to the surface of the table being shaped, and the Z axis direction refers to a direction perpendicular to the plane defined by the XY axes.
[実施例12~21、比較例11~14]
 表3に記載した各成分を二軸混練機ZSK32McPlus(コペリオン社製)、L/D 48、スクリュー径32mmで、シリンダー温度230℃、スクリュー回転数200rpm、吐出量50kg/hにて溶融混練して、ポリアミド樹脂組成物のペレットを作製した。
 得られたペレットから、上記(1)の試験片及び(2)の造形品を作成した。
 なお、表中の組成の単位は質量%であり、樹脂組成物全体を100質量%とする。
[Examples 12-21, Comparative Examples 11-14]
Each component listed in Table 3 was melt-kneaded using a twin-screw kneader ZSK32McPlus (manufactured by Coperion), L/D 48, screw diameter 32 mm, cylinder temperature 230°C, screw rotation speed 200 rpm, and discharge rate 50 kg/h. , pellets of the polyamide resin composition were produced.
From the obtained pellets, the test piece of (1) and the shaped article of (2) were prepared.
The unit of composition in the table is % by mass, and the total resin composition is 100% by mass.
表3に記載の成分は、以下のものを使用した。
PA6(1):ポリアミド6、相対粘度2.47 (UBE株式会社製)
PA6(2):ポリアミド6、相対粘度3.37 (UBE株式会社製)
PA6/66:ポリアミド6/66、相対粘度4.05、ポリアミド6 85mol%、ポリアミド66 15mol% (UBE株式会社製)
PA6/12:ポリアミド6/12、相対粘度3.87、ポリアミド6 80mol%、ポリアミド12 20mol% (UBE株式会社製)
PA6/66/12:ポリアミド6/66/12、相対粘度4.05、ポリアミド6 80mol%、ポリアミド66 10mol%,ポリアミド12 10mol% (UBE株式会社製)
ノボラック型フェノール樹脂(1):軟化点温度:102℃、製品名HF-4M(明和化成製)、式(1)で表される構造であって、n=約6.7
ノボラック型フェノール樹脂(2):軟化点温度:125℃、製品名NC58(明和化成製)、式(1)で表される構造であって、n=約14.6
The components listed in Table 3 used the following.
PA6 (1): Polyamide 6, relative viscosity 2.47 (manufactured by UBE Corporation)
PA6 (2): Polyamide 6, relative viscosity 3.37 (manufactured by UBE Corporation)
PA6/66: Polyamide 6/66, relative viscosity 4.05, polyamide 6 85 mol%, polyamide 66 15 mol% (manufactured by UBE Corporation)
PA6/12: Polyamide 6/12, relative viscosity 3.87, polyamide 6 80 mol%, polyamide 12 20 mol% (manufactured by UBE Corporation)
PA6/66/12: Polyamide 6/66/12, relative viscosity 4.05, polyamide 6 80 mol%, polyamide 66 10 mol%, polyamide 12 10 mol% (manufactured by UBE Corporation)
Novolak-type phenolic resin (1): softening point temperature: 102° C., product name HF-4M (manufactured by Meiwa Kasei), structure represented by formula (1), n=about 6.7
Novolac-type phenolic resin (2): softening point temperature: 125°C, product name NC58 (manufactured by Meiwa Kasei), structure represented by formula (1), n = about 14.6
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
 実施例12~21のポリアミド樹脂組成物は、3Dプリンターで成形した場合に、成形品の反りが抑制されるとともに、ノズルから押し出される際の発泡が抑制されて外観が良好であり、吸水率が低く、強度も満足できる。
 特に、脂肪族共重合ポリアミドを含む実施例19~21のポリアミド樹脂組成物は、成形品の反りがより抑制されているとともに、強度も高い。
 実施例14と15とを比較すると、相対粘度が特定の範囲にあるポリアミド樹脂を使用した場合に、より反りが抑制されることが分かる。
 実施例12と実施例16とを比較すると、ノボラック型フェノール樹脂の軟化点温度が特定の範囲にある場合に、より反りが抑制されることが分かる。
 実施例12~14と実施例16~18とを比較すると、ノボラック型フェノール樹脂の軟化点温度が特定の範囲にある場合に、より強度が高くなることがわかる。
When the polyamide resin compositions of Examples 12 to 21 were molded with a 3D printer, the warpage of the molded product was suppressed, and foaming when extruded from the nozzle was suppressed, resulting in a good appearance and a high water absorption rate. It is low and the strength is satisfactory.
In particular, the polyamide resin compositions of Examples 19 to 21 containing the aliphatic copolyamide exhibited more suppressed warpage of molded articles and high strength.
Comparing Examples 14 and 15, it can be seen that warping is more suppressed when a polyamide resin having a relative viscosity within a specific range is used.
Comparing Example 12 and Example 16, it can be seen that when the softening point temperature of the novolac-type phenolic resin is within a specific range, warpage is further suppressed.
Comparing Examples 12-14 with Examples 16-18, it can be seen that when the softening point temperature of the novolac-type phenolic resin is within a specific range, the strength is higher.
 第1の発明のポリアミド樹脂組成物は、耐塩化カルシウム性が良好で、絶縁性があり、吸水量が低く、吸水時の機械的特性が良好なため、自動車部品に好適に使用できる。
 第2の発明のポリアミド樹脂組成物は、耐塩化カルシウム性が良好で、吸水量が低く、吸水時の機械的特性に優れるため、さまざまな部品、特に自動車部品に好適に使用できる。
 第3の発明の3次元造形用ポリアミド樹脂組成物は、3Dプリンターによる造形に好適に用いられる。
The polyamide resin composition of the first invention has good calcium chloride resistance, insulating properties, low water absorption, and good mechanical properties when water is absorbed, so that it can be suitably used for automobile parts.
The polyamide resin composition of the second invention has good calcium chloride resistance, low water absorption, and excellent mechanical properties when water is absorbed, so that it can be suitably used for various parts, especially automobile parts.
The polyamide resin composition for three-dimensional modeling of the third invention is suitably used for modeling with a 3D printer.
1 フィラメント
2 ギア
3 チューブ
4 ノズル
5 テーブル
6 ヒーター
7 FDM法の3Dプリンター
1 filament 2 gear 3 tube 4 nozzle 5 table 6 heater 7 FDM method 3D printer
 本出願は、日本国特許出願2021-122547号、日本国特許出願2021-122591号及び日本国特許出願2021-122613号に基づく優先権を主張する。日本国特許出願2021-122547号、日本国特許出願2021-122591号及び日本国特許出願2021-122613号の全体の開示の内容を参照により引用する。 This application claims priority based on Japanese Patent Application No. 2021-122547, Japanese Patent Application No. 2021-122591 and Japanese Patent Application No. 2021-122613. The contents of the entire disclosure of Japanese Patent Application No. 2021-122547, Japanese Patent Application No. 2021-122591 and Japanese Patent Application No. 2021-122613 are cited by reference.

Claims (23)

  1.  ポリアミド樹脂組成物100質量%中、ポリアミド樹脂(A)を60~95質量%及びノボラック型フェノール樹脂(B)を5~40質量%含むポリアミド樹脂組成物であって、
     前記ポリアミド樹脂(A)は、JIS K6920-2に準拠して、25℃で測定した相対粘度が1.9以上5.0以下であり、
     前記ノボラック型フェノール樹脂(B)は、軟化点温度が130℃以下であり、
     前記ポリアミド樹脂組成物を、水を溶媒としたソックスレーによる抽出法により6時間抽出した際の抽出分が、抽出に用いたポリアミド樹脂組成物100質量%に対して1.5質量%以下であるポリアミド樹脂組成物。
    A polyamide resin composition containing 60 to 95% by mass of a polyamide resin (A) and 5 to 40% by mass of a novolak phenolic resin (B) in 100% by mass of the polyamide resin composition,
    The polyamide resin (A) has a relative viscosity of 1.9 or more and 5.0 or less measured at 25° C. in accordance with JIS K6920-2,
    The novolak-type phenol resin (B) has a softening point temperature of 130° C. or less,
    The polyamide resin composition is extracted for 6 hours by a Soxhlet extraction method using water as a solvent, and the extracted amount is 1.5% by mass or less with respect to 100% by mass of the polyamide resin composition used for extraction. Resin composition.
  2.  ポリアミド樹脂組成物100質量%中、ポリアミド樹脂(A)を30~70質量%、ノボラック型フェノール樹脂(B)を10~40質量%、及び強化フィラー(C)を5~40質量%含むポリアミド樹脂組成物。 In 100% by mass of the polyamide resin composition, 30 to 70% by mass of the polyamide resin (A), 10 to 40% by mass of the novolac phenol resin (B), and 5 to 40% by mass of the reinforcing filler (C) Polyamide resin containing Composition.
  3.  3次元造形用ポリアミド樹脂組成物100質量%中、ポリアミド樹脂(A)60~95質量%及びノボラック型フェノール樹脂(B)5~40質量%を含む3次元造形用ポリアミド樹脂組成物。 A polyamide resin composition for three-dimensional modeling containing 60 to 95% by mass of a polyamide resin (A) and 5 to 40% by mass of a novolac-type phenolic resin (B) in 100% by mass of a polyamide resin composition for three-dimensional modeling.
  4.  前記ポリアミド樹脂(A)が、脂肪族ホモポリアミド樹脂(A-1)及び脂肪族共重合ポリアミド樹脂(A-2)からなる群から選択される少なくとも1種を含む請求項1~3のいずれか1項に記載のポリアミド樹脂組成物。 Any one of claims 1 to 3, wherein the polyamide resin (A) contains at least one selected from the group consisting of an aliphatic homopolyamide resin (A-1) and an aliphatic copolyamide resin (A-2). The polyamide resin composition according to item 1.
  5.  前記ポリアミド樹脂(A)が、ポリアミド6、ポリアミド6/66、ポリアミド6/12及びポリアミド6/66/12からなる群から選択される少なくとも1種である請求項1~3のいずれか1項に記載のポリアミド樹脂組成物。 The polyamide resin (A) is at least one selected from the group consisting of polyamide 6, polyamide 6/66, polyamide 6/12 and polyamide 6/66/12, according to any one of claims 1 to 3. A polyamide resin composition as described.
  6.  前記ノボラック型フェノール樹脂(B)は、軟化点温度が130℃以下である請求項2に記載のポリアミド樹脂組成物。 The polyamide resin composition according to claim 2, wherein the novolak-type phenolic resin (B) has a softening point temperature of 130°C or lower.
  7.  前記ノボラック型フェノール樹脂(B)は、軟化点温度が110~150℃である請求項3に記載のポリアミド樹脂組成物。 The polyamide resin composition according to claim 3, wherein the novolak-type phenolic resin (B) has a softening point temperature of 110 to 150°C.
  8.  前記ノボラック型フェノール樹脂(B)は、軟化点温度が110~130℃である請求項1~3のいずれか1項に記載のポリアミド樹脂組成物。 The polyamide resin composition according to any one of claims 1 to 3, wherein the novolac-type phenolic resin (B) has a softening point temperature of 110 to 130°C.
  9.  前記ノボラック型フェノール樹脂(B)は、軟化点温度が120~130℃である請求項1~3のいずれか1項に記載のポリアミド樹脂組成物。 The polyamide resin composition according to any one of claims 1 to 3, wherein the novolak-type phenolic resin (B) has a softening point temperature of 120 to 130°C.
  10.  前記ノボラック型フェノール樹脂(B)が、下記式(1)で表されるノボラック型フェノール樹脂である請求項1~3のいずれか1項に記載のポリアミド樹脂組成物。
    Figure JPOXMLDOC01-appb-C000001

    (上記式(1)中、nは、1~200である。)
    The polyamide resin composition according to any one of claims 1 to 3, wherein the novolak-type phenol resin (B) is a novolak-type phenol resin represented by the following formula (1).
    Figure JPOXMLDOC01-appb-C000001

    (In the above formula (1), n is 1 to 200.)
  11.  前記ポリアミド樹脂組成物において、ポリアミド樹脂(A)以外の熱可塑性樹脂成分として、ノボラック型フェノール樹脂(B)を主成分として含む請求項1又は2に記載のポリアミド樹脂組成物。 The polyamide resin composition according to claim 1 or 2, wherein the polyamide resin composition contains a novolac-type phenolic resin (B) as a main component as a thermoplastic resin component other than the polyamide resin (A).
  12.  実質的にエチレン系エラストマーを含まない請求項1又は2に記載のポリアミド樹脂組成物。 The polyamide resin composition according to claim 1 or 2, which does not substantially contain an ethylene elastomer.
  13.  前記ポリアミド樹脂(A)は、JIS K6920-2に準拠して、25℃で測定した相対粘度が3.2以上4.2以下である請求項1に記載のポリアミド樹脂組成物。 The polyamide resin composition according to claim 1, wherein the polyamide resin (A) has a relative viscosity of 3.2 or more and 4.2 or less measured at 25°C in accordance with JIS K6920-2.
  14.  前記強化フィラー(C)が、ガラス繊維、炭素繊維及びセルロース繊維からなる群から選択される少なくとも1種である請求項2に記載のポリアミド樹脂組成物。 The polyamide resin composition according to claim 2, wherein the reinforcing filler (C) is at least one selected from the group consisting of glass fiber, carbon fiber and cellulose fiber.
  15.  ポリアミド樹脂組成物100質量%中、前記強化フィラー(C)を10~35質量%含む請求項2に記載のポリアミド樹脂組成物。 The polyamide resin composition according to claim 2, which contains 10 to 35% by mass of the reinforcing filler (C) in 100% by mass of the polyamide resin composition.
  16.  前記3次元造形用ポリアミド樹脂組成物を、射出成形して得られたISO527タイプA型引張試験片を、40℃の水に24時間浸漬させた場合の吸水率が2.2%以下である、請求項3に記載の3次元造形用ポリアミド樹脂組成物。 The water absorption rate when an ISO527 type A tensile test piece obtained by injection molding the polyamide resin composition for three-dimensional modeling is immersed in water at 40 ° C. for 24 hours, is 2.2% or less. The polyamide resin composition for three-dimensional modeling according to claim 3.
  17.  前記3次元造形用ポリアミド樹脂組成物を、3Dプリンターを用いて3次元造形して得られたISO527タイプA型引張試験片を、23℃、50%RH条件下で24時間放置した後、定盤に置き、幅方向辺の一方の端部を重りで固定した時の、もう一方の幅方向辺の端部の定盤面からの反り上がり量 が30mm以下である、請求項3に記載の3次元造形用ポリアミド樹脂組成物。 An ISO527 type A tensile test piece obtained by three-dimensionally modeling the polyamide resin composition for three-dimensional modeling using a 3D printer is left for 24 hours under conditions of 23 ° C. and 50% RH, and then a surface plate 3. The three-dimensional according to claim 3, wherein when one end of the width direction side is fixed with a weight, the amount of warpage from the surface plate surface of the other width direction side end is 30 mm or less Polyamide resin composition for modeling.
  18.  請求項1又は2に記載のポリアミド樹脂組成物の成形品。 A molded article of the polyamide resin composition according to claim 1 or 2.
  19.  自動車部品である請求項18の成形品。 The molded article according to claim 18, which is an automobile part.
  20.  請求項3に記載の3次元造形用ポリアミド樹脂組成物を成形して得られる3次元造形用モノフィラメント。 A monofilament for three-dimensional modeling obtained by molding the polyamide resin composition for three-dimensional modeling according to claim 3.
  21.  請求項3に記載の3次元造形用ポリアミド樹脂組成物又は請求項20に記載の3次元造形用モノフィラメントを、3Dプリンターを用いて3次元造形して得られる成形体。 A molded article obtained by three-dimensionally modeling the polyamide resin composition for three-dimensional modeling according to claim 3 or the monofilament for three-dimensional modeling according to claim 20 using a 3D printer.
  22.  請求項3に記載の3次元造形用ポリアミド樹脂組成物の3次元造形における使用。 Use of the polyamide resin composition for three-dimensional modeling according to claim 3 in three-dimensional modeling.
  23.  3次元造形方法であって、請求項3に記載の3次元造形用ポリアミド樹脂組成物を3Dプリンターを用いて3次元造形する方法。 A three-dimensional modeling method, wherein the polyamide resin composition for three-dimensional modeling according to claim 3 is three-dimensionally modeled using a 3D printer.
PCT/JP2022/028939 2021-07-27 2022-07-27 Polyamide resin composition, polyamide resin composition for three-dimensional modeling, and three-dimensional model of same WO2023008480A1 (en)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2021122547A JP2023018424A (en) 2021-07-27 2021-07-27 Polyamide resin composition
JP2021-122547 2021-07-27
JP2021-122591 2021-07-27
JP2021122613A JP2023018462A (en) 2021-07-27 2021-07-27 Polyamide resin composition
JP2021122591A JP2023018449A (en) 2021-07-27 2021-07-27 Polyamide resin composition for three-dimensional modeling, and three-dimensionally modeled shaped body thereof
JP2021-122613 2021-07-27

Publications (1)

Publication Number Publication Date
WO2023008480A1 true WO2023008480A1 (en) 2023-02-02

Family

ID=85086817

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/028939 WO2023008480A1 (en) 2021-07-27 2022-07-27 Polyamide resin composition, polyamide resin composition for three-dimensional modeling, and three-dimensional model of same

Country Status (1)

Country Link
WO (1) WO2023008480A1 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60188456A (en) * 1984-03-09 1985-09-25 Ube Ind Ltd Under-hood parts for automobile
JP2002129010A (en) * 2000-10-30 2002-05-09 Sakamoto Yakuhin Kogyo Co Ltd Flame-retardant polyamide resin composition
JP2005054087A (en) * 2003-08-05 2005-03-03 Mitsubishi Engineering Plastics Corp Conductive polyamide resin composition
JP2008050509A (en) * 2006-08-25 2008-03-06 Asahi Kasei Chemicals Corp Flame retardant polyamide-based resin composition
JP2008540777A (en) * 2005-05-12 2008-11-20 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Polyamide resin composition
JP2013053251A (en) * 2011-09-05 2013-03-21 Sumitomo Rubber Ind Ltd Highly damping composition
JP2014024946A (en) * 2012-07-26 2014-02-06 Dic Corp Flame-retardant polyamide resin composition and moldings of the same
JP2016113603A (en) * 2014-12-12 2016-06-23 株式会社豊田中央研究所 Polyamide resin composition and polyamide resin molding comprising the same
JP2018203920A (en) * 2017-06-07 2018-12-27 Dic株式会社 Phenolic hydroxyl group-containing resin, epoxy resin, and curable composition

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60188456A (en) * 1984-03-09 1985-09-25 Ube Ind Ltd Under-hood parts for automobile
JP2002129010A (en) * 2000-10-30 2002-05-09 Sakamoto Yakuhin Kogyo Co Ltd Flame-retardant polyamide resin composition
JP2005054087A (en) * 2003-08-05 2005-03-03 Mitsubishi Engineering Plastics Corp Conductive polyamide resin composition
JP2008540777A (en) * 2005-05-12 2008-11-20 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Polyamide resin composition
JP2008050509A (en) * 2006-08-25 2008-03-06 Asahi Kasei Chemicals Corp Flame retardant polyamide-based resin composition
JP2013053251A (en) * 2011-09-05 2013-03-21 Sumitomo Rubber Ind Ltd Highly damping composition
JP2014024946A (en) * 2012-07-26 2014-02-06 Dic Corp Flame-retardant polyamide resin composition and moldings of the same
JP2016113603A (en) * 2014-12-12 2016-06-23 株式会社豊田中央研究所 Polyamide resin composition and polyamide resin molding comprising the same
JP2018203920A (en) * 2017-06-07 2018-12-27 Dic株式会社 Phenolic hydroxyl group-containing resin, epoxy resin, and curable composition

Similar Documents

Publication Publication Date Title
EP2325260B1 (en) Semi-aromatic moulding masses and their applications
CN112654677B (en) Polyamide resin composition
EP3034301B1 (en) Multilayer structure
CN110229515B (en) High-heat-resistance polyamide composition and preparation method thereof
CN111448257B (en) Polyamide resin composition
JP2006002156A (en) Polymer mixture of aromatic polyamide and partial aromatic polyamide, its molded item and its use
KR20130025817A (en) Thermoplastic moulding compositions with increased hydrolysis resistance
US9624416B2 (en) Polyamide resin composition and molded article comprising the same
KR100990345B1 (en) Electrically conductive composition based on polyamide matrix
CN109844026B (en) Use of glass fibres of circular cross-section in a mixture comprising a semi-aromatic polyamide and an aliphatic polyamide to improve the mechanical properties of said mixture
JP5668387B2 (en) Reinforced polyamide resin composition for hollow molded body and hollow molded body using the same
EP3412731B1 (en) Polyamide resin composition
CN112210208A (en) Polyamide resin composition and process for producing molded article
JP5400457B2 (en) Polyamide resin composition and molded body
JP5400456B2 (en) Polyamide resin composition and molded body comprising the same
KR20200077407A (en) Polyamide moulding composition for extrusion blow moulding
KR20220094192A (en) polyamide resin composition
WO2023008480A1 (en) Polyamide resin composition, polyamide resin composition for three-dimensional modeling, and three-dimensional model of same
JP2023018462A (en) Polyamide resin composition
JP2023018449A (en) Polyamide resin composition for three-dimensional modeling, and three-dimensionally modeled shaped body thereof
JP2023018424A (en) Polyamide resin composition
WO2023037937A1 (en) Polyamide resin composition
JP7404774B2 (en) polyamide resin composition
WO2023249051A1 (en) Polyamide resin composition for molded product contacting high pressure gas
CN115066467A (en) Polyamide resin composition

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22849541

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE