WO2023248908A1 - Optical filter and imaging device - Google Patents

Optical filter and imaging device Download PDF

Info

Publication number
WO2023248908A1
WO2023248908A1 PCT/JP2023/022132 JP2023022132W WO2023248908A1 WO 2023248908 A1 WO2023248908 A1 WO 2023248908A1 JP 2023022132 W JP2023022132 W JP 2023022132W WO 2023248908 A1 WO2023248908 A1 WO 2023248908A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass substrate
optical filter
inorganic film
main surface
glass
Prior art date
Application number
PCT/JP2023/022132
Other languages
French (fr)
Japanese (ja)
Inventor
和彦 塩野
弥生 山森
貴尋 坂上
崇 長田
克司 上條
Original Assignee
Agc株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agc株式会社 filed Critical Agc株式会社
Publication of WO2023248908A1 publication Critical patent/WO2023248908A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/22Surface treatment of glass, not in the form of fibres or filaments, by coating with other inorganic material
    • C03C17/23Oxides
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/12Silica-free oxide glass compositions
    • C03C3/16Silica-free oxide glass compositions containing phosphorus
    • C03C3/17Silica-free oxide glass compositions containing phosphorus containing aluminium or beryllium
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/11Anti-reflection coatings
    • G02B1/113Anti-reflection coatings using inorganic layer materials only
    • G02B1/115Multilayers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/22Absorbing filters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • H04N23/55Optical parts specially adapted for electronic image sensors; Mounting thereof

Definitions

  • the present invention relates to an optical filter and an imaging device.
  • Imaging devices such as in-vehicle cameras and smartphone cameras are equipped with solid-state image sensors (CCD, CMOS, etc.).
  • solid-state image sensors exhibit stronger sensitivity to infrared light than human visual sense. Therefore, an optical filter is further installed in the imaging device in order to bring the image taken by the solid-state imaging device closer to the human visibility.
  • High-precision optical filters must (1) have high transmittance in the visible light region, (2) have high light-shielding properties in the infrared region, and (3) have optical characteristics that do not change depending on the incident angle of light. is required.
  • Patent Document 1 describes an optical filter having a CuO-containing fluorophosphate glass substrate.
  • the CuO-containing fluorophosphate glass substrate has a function of absorbing infrared rays to some extent. Therefore, by combining the CuO-containing fluorophosphate glass substrate, the dye-containing layer, and the dielectric multilayer film, it is possible to provide an optical filter that combines the effects (1) to (3) described above.
  • the present invention has been made in view of this background, and provides an optical filter that has significantly high light-shielding properties in the infrared region and has significantly suppressed angular dependence of optical characteristics.
  • the purpose is to
  • An optical filter having a glass substrate and a first antireflection layer
  • the glass substrate has a first main surface and a second main surface facing each other, and an end surface connecting the two main surfaces
  • the first antireflection layer is installed on the first main surface side of the glass substrate
  • the glass substrate is phosphate glass containing an absorbent
  • the first main surface of the glass substrate is coated with a first inorganic film
  • the second main surface of the glass substrate is coated with a second inorganic film
  • the end surface of the glass substrate is coated with a third inorganic film
  • the first inorganic film is a film that is closest to the glass substrate among the films that constitute the first antireflection layer, or is a film that is different from the film that constitutes the first antireflection layer.
  • An optical filter is provided in which the third inorganic film has a maximum thickness on at least one of the first main surface side and the second main surface side.
  • an optical filter that has significantly high light-shielding properties in the infrared region and that has significantly suppressed angular dependence of optical characteristics.
  • FIG. 2 is a diagram showing a comparison of typical optical properties of fluorophosphate glass (a) and phosphate glass (b) containing CuO.
  • 1 is a cross-sectional view schematically showing a configuration example of an optical filter according to an embodiment of the present invention.
  • FIG. 3 is a cross-sectional view schematically showing a configuration example of an optical filter according to another embodiment of the present invention.
  • FIG. 7 is a cross-sectional view schematically showing a configuration example of an optical filter according to still another embodiment of the present invention.
  • 1 is a diagram schematically showing an example of optical characteristics of a glass substrate included in an optical filter according to an embodiment of the present invention.
  • FIG. 1 is a diagram schematically showing an example of optical characteristics of a glass substrate included in an optical filter according to an embodiment of the present invention.
  • FIG. 6 is a diagram schematically showing an example of a cross-sectional form of a third inorganic film formed on an end surface of a glass substrate of an optical filter according to an embodiment of the present invention.
  • FIG. 6 is a diagram schematically showing another example of the cross-sectional form of the third inorganic film formed on the end surface of the glass substrate of the optical filter according to the embodiment of the present invention.
  • FIG. 7 is a diagram schematically showing still another example of the cross-sectional form of the third inorganic film formed on the end surface of the glass substrate of the optical filter according to the embodiment of the present invention.
  • FIG. 3 is a diagram schematically showing an example of optical characteristics of a resin layer that may be included in an optical filter according to an embodiment of the present invention.
  • FIG. 1 is a diagram schematically showing an example of optical characteristics of an optical filter according to an embodiment of the present invention.
  • 1 is a flow diagram schematically showing an example of a method for manufacturing an optical filter according to an embodiment of the present invention.
  • FIG. 3 is a diagram showing an example of a transmittance profile obtained in an optical filter according to an embodiment of the present invention.
  • FIG. 3 is a diagram showing an example of a reflectance profile obtained in an optical filter according to an embodiment of the present invention.
  • FIG. 7 is a diagram showing an example of a transmittance profile obtained in an optical filter according to another embodiment of the present invention.
  • conventional optical filters may not be able to sufficiently suppress light leakage in the infrared region and/or the phenomenon in which optical characteristics change depending on the incident angle of light (hereinafter referred to as "angle-dependent problem").
  • the inventors of the present application have discovered that when phosphate glass is used instead of fluorophosphate glass as a glass substrate containing an absorbent, absorption in the infrared region can be further enhanced, and that the use of an infrared cut film can be discontinued. We found that the ⁇ angle-dependent problem'' could be solved by this method.
  • phosphate glass has the property of being easily eluted when it comes into contact with water. Therefore, when phosphate glass is used for the glass substrate of an optical filter, a problem may arise in terms of durability.
  • adhesives are used when attaching optical filters to electronic devices, and many of these adhesives exhibit water absorption properties. Therefore, in an environment where the phosphate glass substrate in the optical filter comes into contact with the adhesive, the problem of glass elution may become more pronounced.
  • An optical filter having a glass substrate and a first antireflection layer,
  • the glass substrate has a first main surface and a second main surface facing each other, and an end surface connecting the two main surfaces
  • the first antireflection layer is installed on the first main surface side of the glass substrate
  • the glass substrate is phosphate glass containing an absorbent
  • the first main surface of the glass substrate is coated with a first inorganic film
  • the second main surface of the glass substrate is coated with a second inorganic film
  • the end surface of the glass substrate is coated with a third inorganic film
  • the first inorganic film is a film closest to the glass substrate among the films forming the first antireflection layer, or a film different from the film forming the first antireflection layer.
  • An optical filter is provided in which the third inorganic film has a maximum thickness on at least one of the first main surface side and the second main surface side.
  • no infrared cut film is used.
  • the "angle-dependent problem" is unlikely to occur, and the optical characteristics do not change much even if the incident angle of light changes from 0° to 50°, for example.
  • phosphate glass is used as the glass for the absorbent-containing glass substrate.
  • FIG. 1 shows typical optical properties of fluorophosphate glass and phosphate glass containing an absorbent (CuO).
  • the horizontal axis is the wavelength of light, and the vertical axis is the transmittance.
  • (a) is the transmittance of the absorbent-containing fluorophosphate glass, and (b) is the transmittance of the absorbent-containing phosphate glass.
  • the absorbent-containing phosphate glass has the same transmittance as the absorbent-containing fluorophosphate glass in the wavelength range of 450 nm to 600 nm. Therefore, even if phosphate glass is used instead of fluorophosphate glass as the glass substrate of the optical filter, high transmittance can be maintained in the visible light region.
  • the absorbent-containing phosphate glass exhibits a sufficiently lower transmittance than the absorbent-containing fluorophosphate glass in a wavelength region higher than 750 nm.
  • the light-shielding property in the infrared region can be significantly improved without using an infrared cut film.
  • the glass substrate is placed within the optical filter such that no surface is exposed to the outside world. That is, the glass substrate is arranged such that the first main surface is covered with the first inorganic film, the second main surface is covered with the second inorganic film, and the end surface is covered with the third inorganic film. be done.
  • the first inorganic film may be the film closest to the glass substrate among the films that constitute the first antireflection layer.
  • the first inorganic film may be a film different from the film constituting the first antireflection layer.
  • the glass substrate is surrounded by an inorganic film. Therefore, even if the glass substrate is made of absorbent-containing phosphate glass, the problem of the glass being eluted by moisture in the environment can be significantly suppressed.
  • the first main surface side or the second main surface side is likely to come into contact with an adhesive when the optical filter is assembled into an electronic device. Therefore, the portion of the end surface of the glass substrate that is in contact with the adhesive tends to be more easily eluted due to moisture absorption of the adhesive.
  • the third inorganic film installed on the end surface of the glass substrate is configured such that the third inorganic film has a maximum thickness on the side of at least one main surface of the glass substrate. ing. Therefore, in one embodiment of the present invention, the problem of glass elution can be further suppressed by making the side of the glass substrate where the third inorganic film is thicker the side that is more likely to come into contact with the adhesive. .
  • the glass substrate is surrounded by an inorganic film, and in particular, the third inorganic film has a thickness on at least one main surface side of the glass substrate. It is configured to be the maximum. Therefore, even if the glass substrate is made of absorbent-containing phosphate glass, the problem of the glass being eluted by moisture in the environment can be significantly suppressed.
  • one embodiment of the present invention can provide an optical filter that has significantly high light-shielding properties in the infrared region and has significantly suppressed angular dependence of optical characteristics.
  • optical filter according to one embodiment of the present invention Optical filter according to one embodiment of the present invention
  • an optical filter according to an embodiment of the present invention will be described in more detail with reference to FIG. 2.
  • FIG. 2 schematically shows a cross section of the configuration of an optical filter according to an embodiment of the present invention.
  • an optical filter 100 includes a glass substrate 110 and a first antireflection layer 130.
  • the glass substrate 110 has a first main surface 112 and a second main surface 114 that face each other, and an end surface 116 between the two main surfaces.
  • First antireflection layer 130 is disposed on the first main surface 112 side of glass substrate 110.
  • the glass substrate 110 is made of phosphate glass containing an absorbent.
  • phosphate glass means glass containing 50 mass % or more of P 2 O 5 in terms of oxide.
  • the first antireflection layer 130 is composed of a dielectric multilayer film.
  • the first optical filter 100 further includes a first inorganic film 122, a second inorganic film 124, and a third inorganic film 126.
  • the first inorganic film 122 is installed to cover the first main surface 112 of the glass substrate 110, and the second inorganic film 124 is installed to cover the second main surface 114 of the glass substrate 310. . Further, the third inorganic film 126 is installed to cover the end surface 116 of the glass substrate 110.
  • the glass substrate 110 made of phosphate glass tends to be eluted relatively easily when it comes into contact with moisture in the environment.
  • the first main surface 112 side or the second main surface 114 side of the end surface 116 of the glass substrate 110 can come into contact with adhesive when the first optical filter 100 is assembled into an electronic device. Highly sexual. Therefore, the portion of the end surface 116 of the glass substrate 110 that comes into contact with the adhesive tends to be more easily eluted due to moisture absorption of the adhesive.
  • the third inorganic film 126 installed on the end surface 116 of the glass substrate 110 has a maximum thickness on the side of at least one main surface 112, 114 of the glass substrate 110. It is configured as follows. For example, in the example shown in FIG. 2, the third inorganic film 126 is configured to have the maximum thickness on the first main surface 112 side of the glass substrate 110.
  • the problem of glass elution can be further suppressed by making the side of the glass substrate 110 on which the third inorganic film 126 is thicker the side that is more likely to come into contact with the adhesive. can.
  • the first optical filter 100 does not use an infrared cut film, which is a factor in the angle dependence problem. Therefore, in the first optical filter 100, the angle dependence problem can be significantly suppressed.
  • the first optical filter 100 has significantly high light-shielding properties in the infrared region, and can significantly suppress the angular dependence of optical characteristics.
  • the first inorganic film 122 and the first antireflection layer 130 are provided on the first main surface 112 side of the glass substrate 110, respectively.
  • the first inorganic film 122 may be the film closest to the glass substrate 110 among the films forming the first antireflection layer 130. In this case, the first inorganic film 122 may be apparently omitted.
  • FIG. 3 schematically shows a cross section of the configuration of an optical filter (hereinafter referred to as "second optical filter”) according to another embodiment of the present invention.
  • the second optical filter 200 has the same configuration as the first optical filter 100 described above. Therefore, in FIG. 3, reference numerals with 100 added to the reference numerals shown in FIG. 2 are used for members corresponding to those included in the first optical filter 100.
  • the second optical filter 200 includes a glass substrate 210, first to third inorganic films 222 to 226, and a first antireflection layer 230.
  • a second antireflection layer 250 is provided on the second inorganic film 224.
  • the first main surface 212 of the glass substrate 210 is covered with the first inorganic film 222
  • the second main surface 214 is covered with the second inorganic film 224
  • the end surface 216 is covered with a third inorganic film 226.
  • the third inorganic film 226 is configured to have a maximum thickness on the first main surface 112 side of the glass substrate 110.
  • the problem that the glass substrate 210 made of phosphate glass reacts with moisture in the outside world and elutes can be significantly suppressed.
  • the second optical filter 200 does not use an infrared cut film, which is a factor in the angle dependence problem. Therefore, the angle dependence problem can be significantly suppressed in the second optical filter 200 as well.
  • the second optical filter 200 has significantly high light-shielding properties in the infrared region, and can significantly suppress the angular dependence of optical characteristics.
  • a second inorganic film 224 and a second antireflection layer 250 are provided on the second main surface 214 side of the glass substrate 210, respectively.
  • the second inorganic film 224 may be the film closest to the glass substrate 210 among the films forming the second antireflection layer 250. In this case, the second inorganic film 224 may be apparently omitted.
  • the first inorganic film 222 may be the film closest to the glass substrate 210 among the films forming the first antireflection layer 230.
  • FIG. 4 schematically shows a cross section of the configuration of an optical filter (hereinafter referred to as "third optical filter”) according to yet another embodiment of the present invention.
  • the third optical filter 300 has the same configuration as the second optical filter 200 described above. Therefore, in FIG. 4, reference numerals with 100 added to the reference numerals shown in FIG. 4 are used for members corresponding to those included in the second optical filter 200.
  • the third optical filter 300 includes a glass substrate 310, first to third inorganic films 322 to 326, a first antireflection layer 330, and a second antireflection layer. 350.
  • a resin layer 340 is provided between the second inorganic film 324 and the second antireflection layer 350.
  • the resin layer 340 is made of resin containing a pigment. Details of the resin layer 340 will be described later.
  • the first main surface 312 of the glass substrate 310 is covered with the first inorganic film 322
  • the second main surface 314 is covered with the second inorganic film 324
  • the end surface 316 is covered with a third inorganic film 326.
  • the third inorganic film 326 is configured to have a maximum thickness on the first main surface 312 side of the glass substrate 310.
  • the glass substrate 310 made of phosphate glass reacts with moisture in the outside world and elutes can be significantly suppressed.
  • the third optical filter 300 does not use an infrared cut film, which is a factor in the angle dependence problem. Therefore, also in the third optical filter 300, the angle dependence problem can be significantly suppressed.
  • the third optical filter 300 has a significantly high light-shielding property in the infrared region, and can significantly suppress the angular dependence of the optical characteristics.
  • a first inorganic film 322 and a first antireflection layer 330 are provided on the first main surface 312 side of the glass substrate 310, respectively.
  • the first inorganic film 322 may be the film closest to the glass substrate 310 among the films forming the first antireflection layer 330. In this case, the first inorganic film 322 may be apparently omitted.
  • each member constituting the optical filter according to an embodiment of the present invention will be described in more detail. Note that, for clarity, here, constituent members will be described using the third optical filter 300 shown in FIG. 4 as an example. Therefore, when representing each member, the reference numerals shown in FIG. 4 will be used.
  • Glass substrate 310 Glass substrate 310
  • a glass substrate 310 used in an optical filter according to an embodiment of the present invention will be described.
  • the content of each component and the total content represent mass percentage values based on oxides.
  • the glass substrate 310 is made of phosphate glass containing an absorbent.
  • the absorbent contained in the glass substrate 310 is a metal oxide, and may be CuO, for example.
  • the absorbent may be included in the entire glass substrate 310 in a mass percentage of 4% to 20% on an oxide basis.
  • the glass substrate 310 has a mass percentage based on oxide, 50% to 80% P 2 O 5 , 5% to 20% Al 2 O 3 , 4% to 20% CuO, 0.5% to 15% R(1) 2 O, where R(1) is at least one component selected from the group consisting of Li, Na, K, Rb, and Cs, and 0 ⁇ 15% R(2)O, where R(2) is at least one component selected from the group consisting of Ca, Mg, Ba, Sr, and Zn; May include.
  • P 2 O 5 is a main component forming glass, and is a component for improving near-infrared ray cutting properties. If the content of P 2 O 5 is 50% or more, the effect can be sufficiently obtained, and if it is 80% or less, problems such as glass becoming unstable and weather resistance decreasing are unlikely to occur. Therefore, P 2 O 5 is preferably 50 to 80%, more preferably 52 to 78%, still more preferably 54 to 77%, even more preferably 56 to 76%, and most preferably is 60-75%.
  • Al 2 O 3 is a main component forming glass, and is a component for increasing the strength of glass. If the content of Al 2 O 3 is 5% or more, the effect can be sufficiently obtained, and if it is 20% or less, problems such as the glass becoming unstable and the near-infrared cut property decreasing are unlikely to occur. Therefore, Al 2 O 3 is preferably 5 to 20%, more preferably 6 to 18%, still more preferably 7 to 17%, even more preferably 8 to 16%, and most preferably is 9-13%. If the content of Al 2 O 3 is 9% or more, the weather resistance of the glass can be improved.
  • R(1) 2 O is a component for lowering the melting temperature of the glass, lowering the liquidus temperature of the glass, and stabilizing the glass. If the total amount of R(1) 2 O is 0.5% or more, the effect can be sufficiently obtained, and if it is 20% or less, the glass is less likely to become unstable, which is preferable. Therefore, the total amount of R(1) 2 O is preferably 0.5 to 20%, more preferably 1 to 20%, even more preferably 2 to 20%, even more preferably 3 to 20%. 20%, most preferably 4-20%.
  • Li 2 O is a component for lowering the melting temperature of glass, lowering the liquidus temperature of glass, and stabilizing glass.
  • the content of Li 2 O is preferably 0 to 15%. It is preferable that the Li 2 O content is 15% or less because problems such as the glass becoming unstable and the near-infrared cut property being lowered are less likely to occur.
  • the Li 2 O content is more preferably 0 to 8%, still more preferably 0 to 7%, even more preferably 0 to 6%, and most preferably substantially Li 2 O. do not.
  • substantially not containing a specific component means that it is not intentionally added, and excludes content that is unavoidably mixed in from raw materials etc. and does not affect the intended characteristics. It's not something you do.
  • Na 2 O is a component for lowering the melting temperature of glass, lowering the liquidus temperature of glass, and stabilizing glass.
  • the content of Na 2 O is preferably 0 to 15%. It is preferable that the Na 2 O content is 15% or less because the glass is less likely to become unstable.
  • the content of Na 2 O is more preferably 0.5 to 14%, still more preferably 1 to 13%, even more preferably 2 to 13%.
  • K 2 O is a component that has effects such as lowering the melting temperature of glass and lowering the liquidus temperature of glass.
  • the content of K 2 O is preferably 0 to 15%. It is preferable that the content of K 2 O is 15% or less because the glass is less likely to become unstable.
  • the content of K 2 O is more preferably 0.5 to 14%, still more preferably 1 to 13%, even more preferably 2 to 13%.
  • Rb 2 O is a component that has effects such as lowering the melting temperature of glass and lowering the liquidus temperature of glass.
  • the content of Rb 2 O is preferably 0 to 15%. It is preferable that the Rb 2 O content is 15% or less because the glass is less likely to become unstable.
  • the content of Rb 2 O is more preferably 0.5 to 14%, still more preferably 1 to 13%, even more preferably 2 to 13%.
  • Cs 2 O is a component that has effects such as lowering the melting temperature of glass and lowering the liquidus temperature of glass.
  • the content of Cs 2 O is preferably 0 to 15%. It is preferable that the Cs 2 O content is 15% or less because the glass is less likely to become unstable.
  • the content of Cs 2 O is more preferably 0.5 to 14%, still more preferably 1 to 13%, even more preferably 2 to 13%.
  • R(2)O is a component for lowering the melting temperature of the glass, lowering the liquidus temperature of the glass, stabilizing the glass, and increasing the strength of the glass.
  • the total amount of R(2)O is preferably 0 to 15%. If the total amount of R(2)O is less than 15%, problems such as glass becoming unstable, near-infrared cut property decreasing, short wavelength infrared transmittance decreasing, and glass strength decreasing. This is preferable because it is less likely to occur.
  • the total amount of R(2)O is more preferably 0 to 13%, even more preferably 0 to 11%. Even more preferably it is 0 to 9%, even more preferably 0 to 8%.
  • CuO is a component for cutting near-infrared rays. If the content of CuO is 4% or more, the effect can be sufficiently obtained, and if it is 20% or less, the transmittance in the visible light region decreases, the transmittance in the short wavelength infrared region decreases, etc. This is preferable because it is less likely to cause problems.
  • the content of CuO is more preferably 4 to 19.5%, still more preferably 5 to 19%, even more preferably 6 to 18.5%, even more preferably more than 7%. be.
  • a CuO content of more than 7% can further improve near-infrared ray cutting properties and short-wavelength infrared ray transmittance. .
  • the CuO content is 7 to 18% (excluding 7%).
  • the glass substrate 310 does not substantially contain divalent cations other than Cu. The reason for this is explained below.
  • the glass of this embodiment contains CuO
  • light in the near-infrared region is cut due to light absorption by Cu 2+ ions.
  • the optical absorption is caused by electronic transition between the d-orbitals of Cu 2+ ions split by the electric field of O 2- ions.
  • Splitting of the d-orbital is promoted when the symmetry of the O 2- ions around the Cu 2+ ions decreases. For example, when a cation exists around an O 2- ion, the O 2- ion is attracted by the electric field of the cation, reducing the symmetry of the O 2- ion.
  • the splitting of the d-orbitals is promoted, and light absorption occurs due to electronic transition between the split d-orbitals, which weakens the light absorption ability in the near-infrared region and strengthens the light absorption ability in the short-wavelength infrared region.
  • the strength of the electric field of a cation becomes stronger as the valence of the ion increases, so if an oxide containing divalent cations other than Cu is added to the glass, the near-infrared cutting property will decrease, and short-wavelength infrared rays There is a risk that the permeability of
  • CaO is a component that lowers the melting temperature of glass, lowers the liquidus temperature of glass, stabilizes glass, and increases the strength of glass.
  • the content of CaO is preferably 0 to 10%. If the content of CaO is 10% or less, problems such as the glass becoming unstable, the near-infrared cut property decreasing, and the short-wavelength infrared transmittance decreasing are less likely to occur, so it is preferable. More preferably, it is 0 to 8%, still more preferably 0 to 6%, even more preferably 0 to 5%. Most preferably it contains substantially no CaO.
  • MgO is a component that lowers the melting temperature of glass, lowers the liquidus temperature of glass, stabilizes glass, and increases the strength of glass.
  • the content of MgO is preferably 0 to 15%. If the content of MgO is 15% or less, problems such as the glass becoming unstable, the near-infrared cut property decreasing, and the transmittance of short wavelength infrared rays decreasing are less likely to occur, so it is preferable. More preferably, it is 0 to 13%, still more preferably 0 to 10%, even more preferably 0 to 9%. Most preferably, it does not substantially contain MgO.
  • BaO is a component for lowering the melting temperature of glass, lowering the liquidus temperature of glass, and stabilizing glass.
  • the BaO content is preferably 0.1 to 10%. If the BaO content is 10% or less, it is preferable because problems such as glass becoming unstable, near-infrared cutting properties being reduced, and short-wavelength infrared rays transmittance being reduced are less likely to occur. More preferably, it is 0 to 8%, still more preferably 0 to 6%, even more preferably 0 to 5%. Most preferably it contains substantially no BaO.
  • SrO is a component for lowering the melting temperature of glass, lowering the liquidus temperature of glass, and stabilizing glass.
  • the content of SrO is preferably 0 to 10%. If the content of SrO is 10% or less, problems such as glass becoming unstable, near-infrared cut property decreasing, and short-wavelength infrared transmittance decreasing are less likely to occur, which is preferable. More preferably 0 to 8%, still more preferably 0 to 7%. Most preferably, it does not substantially contain SrO.
  • ZnO has effects such as lowering the melting temperature of glass and lowering the liquidus temperature of glass.
  • the content of ZnO is preferably 0 to 15%. If the content of ZnO is 15% or less, problems such as deterioration of glass solubility, deterioration of near-infrared cut property, and deterioration of short-wavelength infrared transmittance are less likely to occur, which is preferable. More preferably, it is 0 to 13%, still more preferably 0 to 10%, even more preferably 0 to 9%. Most preferably it contains substantially no ZnO.
  • B 2 O 3 may be contained in a range of 10% or less in order to stabilize the glass. If the content of B 2 O 3 is 10% or less, problems such as deterioration of weather resistance of the glass, deterioration of near-infrared cut property, and deterioration of short-wavelength infrared transmittance are less likely to occur, which is preferable. Preferably it is 9% or less, more preferably 8% or less, still more preferably 7% or less, even more preferably 6% or less, and most preferably substantially free of B 2 O 3 .
  • F is an effective component for increasing weather resistance, it is preferably an environmentally hazardous substance and there is a risk that the near-infrared cut property may be reduced, so it is preferable that F is not substantially contained.
  • SiO 2 , GeO 2 , ZrO 2 , SnO 2 , TiO 2 , CeO 2 , WO 3 , Y 2 O 3 , La 2 O 3 , Gd 2 O 3 , Yb 2 O 3 , Nb 2 O 5 may be contained in an amount of 5% or less in order to improve the weather resistance of the glass. It is preferable that the content of these components is 5% or less, since problems such as a decrease in near-infrared cut property and a decrease in short-wavelength infrared transmittance are unlikely to occur. Preferably it is 4% or less, more preferably 3% or less, still more preferably 2% or less, even more preferably 1% or less.
  • Fe 2 O 3 , Cr 2 O 3 , Bi 2 O 3 , NiO, V 2 O 5 , MoO 3 , MnO 2 and CoO are all components that reduce visible transmittance when present in glass. . Therefore, it is preferable that these components are not substantially contained in the glass.
  • the glass substrate 310 preferably has a thermal expansion coefficient of 60 ⁇ 10 ⁇ 7 /°C to 180 ⁇ 10 ⁇ 7 /°C in the range of 30° C. to 300° C.
  • the glass substrate 310 may have a thickness in the range of 0.1 mm to 3 mm, for example.
  • the shape of the glass substrate 310 is not particularly limited.
  • the first main surface 312 and the second main surface 314 of the glass substrate 310 may be rectangular or elliptical (including circular).
  • the glass substrate 310 When the first main surface 312 and the second main surface 314 are rectangular, the glass substrate 310 has a plurality of end faces 316. On the other hand, when the first main surface 312 and the second main surface 314 are circular, the glass substrate 310 has a single end surface 316.
  • end surface 316 is not particularly limited.
  • end surface 316 may have a shape extending in a direction substantially perpendicular to first major surface 312 and second major surface 314, or may have another shape.
  • the end surface 316 of the glass substrate 310 may have a portion that is inclined with respect to the normal to the first major surface 312 and/or the normal to the second major surface 314.
  • FIG. 5 schematically shows an example of the optical characteristics of the glass substrate 310.
  • the horizontal axis is the wavelength
  • the vertical axis is the internal transmittance.
  • the glass substrate 310 is (i) Internal transmittance T at a wavelength of 450 nm (g) 450 is 92% or more, (ii) Average internal transmittance T in the wavelength range of 450 nm to wavelength 600 nm (g) ave1 is 90% or more, (iii) Minimum wavelength ⁇ at which the internal transmittance is 50% (g) 50 is in the range of 625 nm to 650 nm (iv) Average internal transmittance T in the wavelength range of 750 nm to 1000 nm (g) ave2 is 2.5% or less, (v) Average internal transmittance T in the wavelength range of 1000 nm to 1200 nm (g) It is preferable to have such spectral characteristics that ave3 is 7% or less.
  • the first to third inorganic films 322 to 326 are provided to protect the glass substrate 310 from the outside world. That is, the glass substrate 310 made of phosphate glass tends to dissolve when exposed to moisture in the outside world. However, by covering the periphery of the glass substrate 310 with the first to third inorganic films 322 to 326, such elution can be significantly suppressed.
  • the first to third inorganic films 322 to 326 do not necessarily need to be made of the same material.
  • the first inorganic film 322, the second inorganic film 324, and the third inorganic film 326 may all be made of different materials.
  • the first to third inorganic films 322 to 326 are all aluminum oxide films. This is because the aluminum oxide film serves as an effective barrier against moisture.
  • the method of forming the first to third inorganic films 322 to 326 is not particularly limited.
  • the first to third inorganic films 322 to 326 may be formed by, for example, a sputtering method, a vapor deposition method, or the like.
  • the third inorganic film 326 is configured to have a maximum thickness on the first main surface 312 side and/or the second main surface 314 side of the glass substrate 310.
  • thickness distribution such a thickness profile of the third inorganic film 326 will be simply referred to as "thickness distribution.”
  • FIGS. 6 to 8 schematically show examples of the cross-sectional form of the third inorganic film 326 formed on the end surface 316 of the glass substrate 310.
  • third inorganic film 326 has a maximum thickness t max on the side of first major surface 312 of glass substrate 310 . Further, the third inorganic film 326 has a minimum thickness t min on the second main surface 314 side of the glass substrate 310 .
  • a first inorganic film 322 is provided on the first main surface 312 of the glass substrate 310, and a second inorganic film 324 is provided on the second main surface 314. be done. Therefore, the boundary between the third inorganic film 326 and the first inorganic film 322 and the boundary between the third inorganic film 326 and the second inorganic film 324 tend to become unclear. Moreover, as a result, the definition of the "thickness" of the third inorganic film 326 tends to be unclear.
  • the region between the broken line L1 and the broken line L2 is defined as the region R3 of the third inorganic film 326, and the (in a direction parallel to the main surface 312) is defined as the "thickness" of the third inorganic film 326.
  • the broken line L1 is defined as a line extending from the first main surface 312 of the glass substrate 310
  • the broken line L2 is defined as a line extended from the second main surface 314 of the glass substrate 310.
  • the "thickness" of the third inorganic film 326 at each position within the region R3 is determined as the distance from the end surface 316 of the glass substrate 310.
  • FIG. 7 schematically shows another cross-sectional form of the third inorganic film 326 formed on the end surface 316 of the glass substrate 310.
  • the third inorganic film 326 has a maximum thickness t max on the side of the first major surface 312 and the side of the second major surface 314 of the glass substrate 310 .
  • the third inorganic film 326 has a minimum thickness t min at the center of the thickness of the glass substrate 310 .
  • FIG. 8 schematically shows still another cross-sectional form of the third inorganic film 326 formed on the end surface 316 of the glass substrate 310.
  • third inorganic film 326 has a maximum thickness t max on the side of first major surface 312 of glass substrate 310 . Additionally, the third inorganic film 326 has a minimum thickness t min at the center of the thickness of the glass substrate 310 . Additionally, third inorganic film 326 has a thickness between t min and t max on the side of second major surface 314 of glass substrate 310 .
  • the form of the "thickness distribution" of the third inorganic film 326 has a maximum thickness on the first main surface 312 side and/or the second main surface 314 side of the glass substrate 310. It should be noted that there are no particular limitations as long as the
  • the maximum thicknesses of the first inorganic film 322 and the second inorganic film 324 are not particularly limited.
  • the maximum thickness of the first inorganic film 322 and the second inorganic film 324 may be in the range of 0.1 ⁇ m to 3.0 ⁇ m, for example.
  • antireflection layer refers to a layer configured to have a maximum reflectance of 45% or less for light having a wavelength of 450 nm to 1200 nm.
  • the first antireflection layer 330 is composed of a multilayer film.
  • the multilayer film may be composed of alternating films of high refractive index and low refractive index films.
  • the high refractive index film may be selected from titania and alumina, for example.
  • the low refractive index film may be selected from silica and magnesium fluoride, for example.
  • the thickness of the first antireflection layer 330 is, for example, in the range of 0.1 ⁇ m to 3 ⁇ m, although it is not limited thereto.
  • the film closest to the glass substrate 310 may be the first inorganic film 322.
  • the resin layer 340 contains a dye that absorbs infrared rays.
  • Such dyes may be selected from, for example, squarylium dyes, phthalocyanine dyes, and cyanine dyes.
  • the resin constituting the resin layer 340 is not particularly limited as long as it is transparent.
  • the resin examples include polyester resin, acrylic resin, epoxy resin, ene-thiol resin, polycarbonate resin, polyether resin, polyarylate resin, polysulfone resin, polyethersulfone resin, polyparaphenylene resin, polyarylene ether phosphine oxide.
  • the material may be selected from resins, polyamide resins, polyimide resins, polyamideimide resins, polyolefin resins, cyclic olefin resins, polyurethane resins, polystyrene resins, and the like.
  • the resin is preferably selected from polyimide resin, polycarbonate resin, polyester resin, and acrylic resin.
  • the glass transition point (Tg) of the resin is preferably 200° C. or higher from the viewpoint of heat resistance.
  • the resin layer 340 may contain one type of resin, or a mixture of two or more types.
  • the thickness of the resin layer 340 is not particularly limited.
  • the resin layer 340 may have a thickness in the range of 0.3 ⁇ m to 10 ⁇ m, for example.
  • the resin layer 340 (ie, the dye) may have a maximum absorption wavelength in the range of 650 nm to 850 nm.
  • the aforementioned squarylium dye may have a maximum absorption wavelength of 752 nm
  • the cyanine dye may have a maximum absorption wavelength of 773 nm.
  • the resin layer 340 may include a dye that absorbs light in the ultraviolet region.
  • a dye may be, for example, a merocyanine dye (maximum absorption wavelength 397 nm).
  • FIG. 9 schematically shows an example of the absorption spectrum of the resin layer 340 (more precisely, the dye contained in the resin layer 340).
  • the horizontal axis is the wavelength
  • the vertical axis is the internal transmittance.
  • the resin layer 340 contains a merocyanine dye, a cyanine dye, and a squarylium dye as dyes.
  • the resin layer 340 exhibits large absorption in a wavelength region of approximately 400 nm and a wavelength region of approximately 750 nm.
  • the internal transmittance in the infrared region can be further suppressed compared to the case of using only the glass substrate 310. Furthermore, in this case, the internal transmittance in the ultraviolet region can also be sufficiently suppressed.
  • FIG. 10 schematically shows an example of the optical characteristics of the first optical filter 100.
  • the horizontal axis is wavelength and the vertical axis is transmittance.
  • the transmittance T (t)450 at a wavelength of 450 nm is 80% or more
  • the average transmittance T (t) ave1 in the wavelength range of 450 nm to 600 nm is 78% or more
  • the maximum transmittance in the wavelength range of 450 nm to 600 nm at both incident angles ⁇ 0° and 50°.
  • T (t)max1 is 85% or more
  • the average transmittance T (t) ave2 in the wavelength range of 750 nm to 1200 nm is 2.0% or less
  • the maximum transmittance T (t)max2 in the wavelength range of 1000 nm to 1200 nm is 15% or less, It is possible to obtain such spectral characteristics.
  • the maximum reflectance R (t)max1 in the wavelength range of 700 nm is 7% or less
  • a method for manufacturing an optical filter (hereinafter referred to as "first method") according to an embodiment of the present invention is as follows: a step of preparing a glass substrate having predetermined dimensions (step S110); forming an inorganic film on the entire exposed surface of the glass substrate (step S120); A step of installing a first antireflection layer on the first main surface of the glass substrate, and installing a resin layer and a second antireflection layer on the second main surface of the glass substrate (step S130); has.
  • a glass substrate is prepared.
  • the glass substrate 310 has a first major surface 312, a second major surface 314, and an end surface 316, and is constructed of phosphate glass containing an absorbent.
  • the glass substrate 310 is cut in advance into the dimensions required for the optical filter. This is because if the glass substrate 310 is cut after forming the inorganic film in the next step S120, the end surface 316 not covered with the inorganic film will be exposed.
  • Step S120 Next, a first inorganic film 322 is installed on the first main surface 312 of the glass substrate 310, a second inorganic film 324 is installed on the second main surface 314, and a third inorganic film 326 is installed on the end surface 316. will be installed.
  • the first to third inorganic films 322 to 326 may be made of the same material or may be made of different materials.
  • all inorganic films may be made of alumina.
  • the method of forming the inorganic film is not particularly limited.
  • the inorganic film may be formed by, for example, a vapor deposition method or a sputtering method.
  • a first process to form a first inorganic film 322 on the first main surface 312 and a second process to form a second inorganic film 324 on the second main surface 314 are performed.
  • the second process and the third process of forming the third inorganic film 326 on the end surface 316 may be performed in random order.
  • the method of forming the third inorganic film 326 having a "thickness distribution" on the end surface 316 is not particularly limited.
  • the third inorganic film 326 may be formed on the end surface 316 due to the wraparound of film forming components.
  • the third inorganic film 326 formed in this manner has a minimum thickness at the center of the thickness of the glass substrate 310 and has a minimum thickness on the side of the first main surface 312 and/or on the second main surface 314. A distribution in which the thickness is greatest on the sides (ie, the configuration shown in FIG. 7 or FIG. 8 described above) is likely to be obtained.
  • an inorganic film is formed on the entire exposed surface of the glass substrate 110.
  • the third inorganic film 126 having a "thickness distribution" can be formed on the end surface 116 of the glass substrate 110.
  • Step S130 After that, members necessary for the first optical filter 100 are sequentially formed on the glass substrate 310.
  • a first antireflection layer 330 is installed on the first inorganic film 322, and a resin layer 340 and a second antireflection layer 350 are installed on the second inorganic film 324.
  • the first antireflection layer 330 is composed of multiple films.
  • the first antireflection layer 330 may be formed by alternately depositing a high refractive index film and a low refractive index film.
  • the method for forming the first antireflection layer 330 is not particularly limited.
  • a general film forming method such as a sputtering method may be used.
  • the resin layer 340 is formed from a resin solution containing a dye.
  • the resin solution may be prepared by dissolving the dye in a solution containing a resin, an organic solvent, and the like.
  • Dyes may include infrared absorbing dyes and ultraviolet absorbing dyes as described above.
  • a resin solution is applied onto the second inorganic film 324 by a coating method such as a spin coating method. Thereafter, the resin layer 340 is formed by drying the coating film.
  • the second antireflection layer 350 may be formed by the same method as the first antireflection layer 330.
  • the third optical filter 300 can be manufactured.
  • the step of installing a resin layer on the first inorganic film in the first method described above is omitted, and the second optical filter is placed on the first inorganic film.
  • the antireflection layer may be applied directly.
  • An optical filter according to an embodiment of the present invention can be applied to, for example, an imaging device such as a digital still camera. Such an imaging device can provide good color reproducibility.
  • An imaging device including an optical filter according to an embodiment of the present invention further includes a solid-state imaging device and an imaging lens, and the optical filter may be disposed between the imaging lens and the solid-state imaging device, for example. good. Further, the optical filter according to an embodiment of the present invention may be directly attached to a solid-state imaging device and/or an imaging lens of an imaging device, for example, via an adhesive layer.
  • Example 1 A glass substrate whose entire exposed surface was covered with an inorganic film was prepared by the following method.
  • a glass plate measuring 76 mm long x 76 mm wide x 0.28 mm thick was prepared.
  • phosphate glass having the composition shown in "Glass A” in Table 1 below was used.
  • the optical characteristics of the glass plate used are shown in FIG. 5 mentioned above. Further, the "Glass A” column in Table 2 below shows various parameters calculated from the measured optical properties.
  • this glass plate was fully cut by a blade dicing method to produce a glass substrate measuring 20 mm long x 20 mm wide x 0.28 mm thick.
  • a first alumina film was formed on the first main surface of the glass substrate by a vapor deposition method.
  • the thickness of the first alumina film was targeted to be 143 nm.
  • a second alumina film was formed on the second main surface of the glass substrate.
  • the thickness of the second alumina film was targeted to be 143 nm.
  • the end surface of the glass substrate was observed using a scanning electron microscope (Fe-SEM). As a result, it was confirmed that the end surface of the glass substrate was coated with an alumina film.
  • the alumina film had a form as shown in FIG. 7 described above. That is, the alumina film on the end face was thickest on the first main surface side and second main surface side of the glass substrate, and thinnest on the center side in the thickness direction of the glass substrate.
  • the vapor deposition material wraps around the end face of the glass substrate, and the alumina film is formed there. I found out that it will be done. However, it is considered that on the central side of the end face in the thickness direction, the vapor deposition material did not wrap around sufficiently even during vapor deposition from either side, and the alumina film became the thinnest.
  • DA means the vicinity of the first main surface at the line L1 in FIGS. 6 to 8 described above, that is, the end surface. Further, “DB” means the center side of the glass substrate at the end surface, and “DC” means the vicinity of the second main surface at the end surface, which is the line L2 in FIGS. 6 to 8 described above.
  • the glass substrate was taken out and its condition was evaluated. As a result, no abnormality was observed on the first main surface and second main surface of the glass substrate. It was also found that glass elution was suppressed to 1 mm or less from the surface also at the end face.
  • phosphate glass having the composition shown in "Glass B" in Table 1 above was used.
  • the thickness of the glass plate was 0.35 mm.
  • the “Glass B” column in Table 2 above shows various parameters calculated from the optical properties of the glass plate.
  • the glass substrate was taken out and its condition was evaluated. As a result, no abnormality was observed on the first main surface and second main surface of the glass substrate. It was also found that glass elution was suppressed to 1 mm or less from the surface also at the end face.
  • Example 3 A glass substrate whose entire exposed surface was covered with an inorganic film was prepared by the following method.
  • a glass plate measuring 76 mm long x 76 mm wide x 0.28 mm thick was prepared.
  • phosphate glass having the composition shown in "Glass A” in Table 1 above was used.
  • a second alumina film was formed on one main surface (second main surface) of the glass plate by a vapor deposition method.
  • the thickness of the second alumina film was targeted to be 143 nm.
  • this glass plate was fully cut using a blade dicing method to obtain a glass substrate measuring 20 mm long x 20 mm wide x 0.28 mm thick.
  • a first alumina film was formed on the main surface (first main surface) on which the second alumina film of the glass substrate was not provided by a vapor deposition method.
  • the thickness of the first alumina film was targeted to be 143 nm.
  • the end surface of the glass substrate was observed using a scanning electron microscope (Fe-SEM).
  • Fe-SEM scanning electron microscope
  • the glass substrate was taken out and its condition was evaluated. As a result, no abnormality was observed on the first main surface and second main surface of the glass substrate. It was also found that glass elution was suppressed to 1 mm or less from the surface also at the end face.
  • a glass plate measuring 76 mm long x 76 mm wide x 0.28 mm thick was prepared.
  • phosphate glass having the composition shown in "Glass A" in Table 1 above was used.
  • an alumina film was formed on both main surfaces of the glass plate by a vapor deposition method.
  • the thickness of the alumina film on each main surface was targeted to be 143 nm.
  • the glass plate after the film formation was cut by a blade dicing method to produce a glass substrate measuring 20 mm long x 20 mm wide x 0.28 mm thick.
  • the glass substrate was taken out and its condition was evaluated. As a result, in this glass substrate, elution of glass occurred in a region exceeding 1 mm from the surface on the end face.
  • Example 1 Examples of the present invention will be described below. In addition, in the following description, Example 1 and Example 2 are examples.
  • a glass substrate whose entire exposed surface was covered with an alumina film was prepared by a method similar to that shown in Experiment 1 above.
  • this glass substrate will be referred to as "covered glass substrate A.”
  • the alumina film installed on the first main surface side of the coated glass substrate A is referred to as a first alumina film
  • the alumina film installed on the second main surface side is referred to as a second alumina film
  • the alumina film installed on the end face side is referred to as a third alumina film.
  • a first antireflection layer was formed on the first alumina film of the coated glass substrate A by a vapor deposition method.
  • the first antireflection layer was made of alternating films of silica films and titania films.
  • the total thickness of the first antireflection layer is 200 nm.
  • Table 4 below shows the structure of the first antireflection layer.
  • the first film is the film closest to the first main surface of the glass substrate, and the following are the second film, the third film,..., the film closest to the first main surface. 15 membranes are arranged in this order.
  • the resin layer liquid was prepared as follows.
  • polyimide varnish C3G30G (manufactured by Mitsubishi Gas Chemical Co., Ltd.) was diluted with cyclohexanone and ⁇ -butyrolactone so that the resin solid content was 8.5 wt%.
  • a resin layer liquid was prepared by adding Compound A, Compound B, and Compound C as dyes to this diluted liquid.
  • the amounts of Compound A, Compound B, and Compound C added were 2.33% by mass, 6.08% by mass, and 2.56% by mass, respectively, based on the resin content.
  • Compound A, Compound B, and Compound C each have the following general formula.
  • the resin layer liquid was spin coated onto the second alumina film of the coated glass substrate A.
  • the target thickness was 1 ⁇ m.
  • This resin layer has optical properties as shown in FIG. 9 described above.
  • the second antireflection layer had the same structure as the first antireflection layer, and was formed by vapor deposition.
  • optical filter 1 The produced optical filter is referred to as "optical filter 1."
  • Example 2 An optical filter was produced in the same manner as in Example 1.
  • optical filter 2 the obtained optical filter will be referred to as "optical filter 2.”
  • FIG. 12 shows an example of a transmittance profile obtained in the optical filter 1.
  • the horizontal axis is wavelength and the vertical axis is transmittance.
  • FIG. 13 shows an example of the reflectance profile obtained in the optical filter 1.
  • the horizontal axis is wavelength and the vertical axis is reflectance.
  • FIG. 14 shows an example of the transmittance profile obtained in the optical filter 2.
  • the horizontal axis is wavelength and the vertical axis is transmittance.
  • optical filter 2 As shown in FIG. 14, the same results as for optical filter 1 were obtained for optical filter 2 as well. That is, in the visible light region, high transmittance was obtained regardless of the incident angle ⁇ . Further, even if the incident angle ⁇ changed, the region where the transmittance sharply decreased hardly changed. Furthermore, it was found that low transmittance was exhibited in a wavelength region exceeding 1000 nm, regardless of the incident angle ⁇ .
  • Table 6 summarizes the parameters related to the transmittance profile measured in Optical Filter 1 and Optical Filter 2.
  • Table 7 summarizes the parameters related to the reflectance profile measured in Optical Filter 1 and Optical Filter 2.
  • optical filter 1 and optical filter 2 the optical characteristics hardly change even if the incident angle ⁇ changes. Furthermore, it was confirmed that infrared rays were sufficiently blocked by optical filter 1 and optical filter 2.
  • the present invention includes the following aspects.
  • An optical filter having a glass substrate and a first antireflection layer
  • the glass substrate has a first main surface and a second main surface facing each other, and an end surface connecting the two main surfaces
  • the first antireflection layer is installed on the first main surface side of the glass substrate
  • the glass substrate is phosphate glass containing an absorbent
  • the first main surface of the glass substrate is coated with a first inorganic film
  • the second main surface of the glass substrate is coated with a second inorganic film
  • the end surface of the glass substrate is coated with a third inorganic film
  • the first inorganic film is a film that is closest to the glass substrate among the films that constitute the first antireflection layer, or is a film that is different from the film that constitutes the first antireflection layer.
  • the third inorganic film has a maximum thickness on at least one of the first main surface side and the second main surface side.
  • a resin layer containing a dye is disposed on the second inorganic film installed on the second main surface side of the glass substrate,
  • the glass substrate has a mass percentage based on oxide, 50% to 80% P 2 O 5 , 5% to 20% Al 2 O 3 , 4% to 20% CuO, 0.5% to 15% R(1) 2 O, where R(1) is at least one component selected from the group consisting of Li, Na, K, Rb, and Cs, and 0 ⁇ 15% R(2)O, where R(2) is at least one component selected from the group consisting of Ca, Mg, Ba, Sr, and Zn;
  • the optical filter according to any one of aspects 1 to 9, comprising:
  • T (t)max1 is 85% or more
  • the average transmittance T (t) ave2 in the wavelength range of 750 nm to 1200 nm is 2.0% or less
  • the maximum transmittance T (t)max2 in the wavelength range of 1000 nm to 1200 nm is 15% or less
  • the optical filter according to any one of aspects 1 to 10, having spectral characteristics.
  • the optical filter according to any one of aspects 1 to 11, having spectral characteristics.
  • first optical filter 110 glass substrate 112 first main surface 114 second main surface 116 end face 122 first inorganic film 124 second inorganic film 126 third inorganic film 130 first antireflection layer 200 2 optical filter 210 Glass substrate 212 First main surface 214 Second main surface 216 End surface 222 First inorganic film 224 Second inorganic film 226 Third inorganic film 230 First antireflection layer 250 Second Antireflection layer 300 Third optical filter 310 Glass substrate 312 First main surface 314 Second main surface 316 End surface 322 First inorganic film 324 Second inorganic film 326 Third inorganic film 330 First antireflection Layer 340 Resin layer 350 Second antireflection layer

Abstract

The present invention provides an optical filter which comprises a glass substrate and a first antireflective layer, wherein: the glass substrate has first and second main surfaces and an end face; the first antireflective layer is arranged on the first main surface side of the glass substrate; the glass substrate is formed of phosphate glass that contains an absorbent; the first main surface of the glass substrate is covered with a first inorganic film; the second main surface of the glass substrate is covered with a second inorganic film; the end face of the glass substrate is covered with a third inorganic film; the first inorganic film is a film that is closest to the glass substrate among the films that constitute the first antireflective layer, or alternatively a film that is different from the films that constitute the first antireflective layer; and the third inorganic film has the maximum thickness on at least one of the first main surface side and the second main surface side.

Description

光学フィルタおよび撮像装置Optical filters and imaging devices
 本発明は、光学フィルタおよび撮像装置に関する。 The present invention relates to an optical filter and an imaging device.
 車載カメラおよびスマートフォンカメラなどの撮像装置は、固体撮像素子(CCDおよびCMOSなど)を備える。ただし、固体撮像素子は、人間の視感に比べて、赤外光に対してより強い感度を示す。このため、固体撮像素子による画像を人間の視感度に近づけるため、撮像装置には、さらに光学フィルタが設置される。 Imaging devices such as in-vehicle cameras and smartphone cameras are equipped with solid-state image sensors (CCD, CMOS, etc.). However, solid-state image sensors exhibit stronger sensitivity to infrared light than human visual sense. Therefore, an optical filter is further installed in the imaging device in order to bring the image taken by the solid-state imaging device closer to the human visibility.
国際公開第2014/030628号International Publication No. 2014/030628
 高精度の光学フィルタには、(1)可視光領域での透過率が高いこと、(2)赤外線領域での遮光性が高いこと、および(3)光の入射角度によって光学特性が変化しないことが求められる。 High-precision optical filters must (1) have high transmittance in the visible light region, (2) have high light-shielding properties in the infrared region, and (3) have optical characteristics that do not change depending on the incident angle of light. is required.
 このような特性を満たすため、特許文献1には、CuO含有フツリン酸ガラス基板を有する光学フィルタが記載されている。CuO含有フツリン酸ガラス基板は、赤外線をある程度吸収する機能を有する。このため、CuO含有フツリン酸ガラス基板、色素含有層、および誘電体多層膜を組み合わせることにより、前述の(1)~(3)の効果を兼ね備えた光学フィルタを提供できる。 In order to satisfy such characteristics, Patent Document 1 describes an optical filter having a CuO-containing fluorophosphate glass substrate. The CuO-containing fluorophosphate glass substrate has a function of absorbing infrared rays to some extent. Therefore, by combining the CuO-containing fluorophosphate glass substrate, the dye-containing layer, and the dielectric multilayer film, it is possible to provide an optical filter that combines the effects (1) to (3) described above.
 しかしながら、本願発明者らによれば、特許文献1に記載の光学フィルタにおいても、前述の(2)および(3)の効果は十分であるとは言い難いことが把握されている。 However, according to the inventors of the present application, it is understood that even in the optical filter described in Patent Document 1, the effects (2) and (3) described above cannot be said to be sufficient.
 特に、スマートフォンのような電子機器に搭載されるカメラ用の光学フィルタに対しては、近年ますます低勢化が求められるようになっている。そのような光学フィルタの低勢化が進むと、光学特性の角度依存性の問題は、今後より顕著になると予想される。 In particular, in recent years there has been an increasing demand for optical filters for cameras installed in electronic devices such as smartphones. As such optical filters become less popular, it is expected that the problem of angular dependence of optical characteristics will become more prominent in the future.
 本発明は、このような背景に鑑みなされたものであり、本発明では、赤外線領域において、有意に高い遮光性を有するとともに、光学特性の角度依存性が有意に抑制された光学フィルタを提供することを目的とする。 The present invention has been made in view of this background, and provides an optical filter that has significantly high light-shielding properties in the infrared region and has significantly suppressed angular dependence of optical characteristics. The purpose is to
 本発明では、
 ガラス基板および第1の反射防止層を有する光学フィルタであって、
 前記ガラス基板は、相互に対向する第1の主表面および第2の主表面と、両主表面をつなぐ端面とを有し、
 前記第1の反射防止層は、前記ガラス基板の前記第1の主表面の側に設置され、
 前記ガラス基板は、吸収剤を含むリン酸ガラスであり、
 前記ガラス基板の前記第1の主表面は、第1の無機膜で被覆され、前記ガラス基板の前記第2の主表面は、第2の無機膜で被覆され、前記ガラス基板の前記端面は、第3の無機膜で被覆されており、
 前記第1の無機膜は、前記第1の反射防止層を構成する膜のうち前記ガラス基板に最近接の膜であり、または前記第1の反射防止層を構成する膜とは別の膜であり、
 前記第3の無機膜は、前記第1の主表面側および前記第2の主表面側の少なくとも一方で、最大の厚さを有する、光学フィルタが提供される。
In the present invention,
An optical filter having a glass substrate and a first antireflection layer,
The glass substrate has a first main surface and a second main surface facing each other, and an end surface connecting the two main surfaces,
The first antireflection layer is installed on the first main surface side of the glass substrate,
The glass substrate is phosphate glass containing an absorbent,
The first main surface of the glass substrate is coated with a first inorganic film, the second main surface of the glass substrate is coated with a second inorganic film, and the end surface of the glass substrate is coated with a third inorganic film,
The first inorganic film is a film that is closest to the glass substrate among the films that constitute the first antireflection layer, or is a film that is different from the film that constitutes the first antireflection layer. can be,
An optical filter is provided in which the third inorganic film has a maximum thickness on at least one of the first main surface side and the second main surface side.
 本発明では、赤外線領域において、有意に高い遮光性を有するとともに、光学特性の角度依存性が有意に抑制された光学フィルタを提供することができる。 According to the present invention, it is possible to provide an optical filter that has significantly high light-shielding properties in the infrared region and that has significantly suppressed angular dependence of optical characteristics.
CuOを含むフツリン酸ガラス(a)およびリン酸ガラス(b)の代表的な光学特性を比較して示した図である。FIG. 2 is a diagram showing a comparison of typical optical properties of fluorophosphate glass (a) and phosphate glass (b) containing CuO. 本発明の一実施形態による光学フィルタの一構成例を模式的に示した断面図である。1 is a cross-sectional view schematically showing a configuration example of an optical filter according to an embodiment of the present invention. 本発明の別の実施形態による光学フィルタの一構成例を模式的に示した断面図である。FIG. 3 is a cross-sectional view schematically showing a configuration example of an optical filter according to another embodiment of the present invention. 本発明のさらに別の実施形態による光学フィルタの一構成例を模式的に示した断面図である。FIG. 7 is a cross-sectional view schematically showing a configuration example of an optical filter according to still another embodiment of the present invention. 本発明の一実施形態による光学フィルタに含まれるガラス基板の光学特性の一例を模式的に示した図である。1 is a diagram schematically showing an example of optical characteristics of a glass substrate included in an optical filter according to an embodiment of the present invention. 本発明の一実施形態による光学フィルタのガラス基板の端面に形成される第3の無機膜の断面形態の一例を模式的に示した図である。FIG. 6 is a diagram schematically showing an example of a cross-sectional form of a third inorganic film formed on an end surface of a glass substrate of an optical filter according to an embodiment of the present invention. 本発明の一実施形態による光学フィルタのガラス基板の端面に形成される第3の無機膜の断面形態の別の例を模式的に示した図である。FIG. 6 is a diagram schematically showing another example of the cross-sectional form of the third inorganic film formed on the end surface of the glass substrate of the optical filter according to the embodiment of the present invention. 本発明の一実施形態による光学フィルタのガラス基板の端面に形成される第3の無機膜の断面形態のさらに別の例を模式的に示した図である。FIG. 7 is a diagram schematically showing still another example of the cross-sectional form of the third inorganic film formed on the end surface of the glass substrate of the optical filter according to the embodiment of the present invention. 本発明の一実施形態による光学フィルタに含まれ得る樹脂層の光学特性の一例を模式的に示した図である。FIG. 3 is a diagram schematically showing an example of optical characteristics of a resin layer that may be included in an optical filter according to an embodiment of the present invention. 本発明の一実施形態による光学フィルタの光学特性の一例を模式的に示した図である。1 is a diagram schematically showing an example of optical characteristics of an optical filter according to an embodiment of the present invention. 本発明の一実施形態による光学フィルタを製造する方法の一例を模式的に示したフロー図である。1 is a flow diagram schematically showing an example of a method for manufacturing an optical filter according to an embodiment of the present invention. 本発明の一実施形態による光学フィルタにおいて得られた透過率のプロファイルの一例を示した図である。FIG. 3 is a diagram showing an example of a transmittance profile obtained in an optical filter according to an embodiment of the present invention. 本発明の一実施形態による光学フィルタにおいて得られた反射率のプロファイルの一例を示した図である。FIG. 3 is a diagram showing an example of a reflectance profile obtained in an optical filter according to an embodiment of the present invention. 本発明の別の実施形態による光学フィルタにおいて得られた透過率のプロファイルの一例を示した図である。FIG. 7 is a diagram showing an example of a transmittance profile obtained in an optical filter according to another embodiment of the present invention.
 以下、図面を参照して、本発明の一実施形態について説明する。 Hereinafter, one embodiment of the present invention will be described with reference to the drawings.
 前述のように、これまでの光学フィルタでは、前述の(2)および(3)の効果が依然として十分であるとは言い難い。従って、従来の光学フィルタでは、赤外線領域の光もれ、および/または光の入射角度によって光学特性が変化する現象(以下、「角度依存問題」と称する)が十分に抑制できない可能性がある。 As mentioned above, it cannot be said that the effects (2) and (3) described above are still sufficient in conventional optical filters. Therefore, conventional optical filters may not be able to sufficiently suppress light leakage in the infrared region and/or the phenomenon in which optical characteristics change depending on the incident angle of light (hereinafter referred to as "angle-dependent problem").
 特に、将来、光学フィルタのさらなる低勢化が進められると、「角度依存問題」は、より顕著になることが予想される。 In particular, as optical filters become more affordable in the future, it is expected that the "angle-dependent problem" will become more prominent.
 このような背景から、本願発明者らは、(2)および(3)の効果をより高めることが可能な光学フィルタの構成について鋭意研究開発を進めてきた。 Against this background, the inventors of the present application have been diligently researching and developing an optical filter configuration that can further enhance the effects (2) and (3).
 そして、本願発明者らは、吸収剤を含むガラス基板として、フツリン酸ガラスの代わりにリン酸ガラスを使用した場合、赤外線領域での吸収をより高められること、および赤外線カット膜の使用をやめることにより、「角度依存問題」が解消され得ることを見出した。 The inventors of the present application have discovered that when phosphate glass is used instead of fluorophosphate glass as a glass substrate containing an absorbent, absorption in the infrared region can be further enhanced, and that the use of an infrared cut film can be discontinued. We found that the ``angle-dependent problem'' could be solved by this method.
 ただし、リン酸ガラスは、水と接触すると容易に溶出する性質がある。従って、光学フィルタのガラス基板にリン酸ガラスを使用した場合、耐久性の面で問題が生じ得る。 However, phosphate glass has the property of being easily eluted when it comes into contact with water. Therefore, when phosphate glass is used for the glass substrate of an optical filter, a problem may arise in terms of durability.
 特に、光学フィルタを電子機器に取り付ける際には接着剤が使用されるが、そのような接着剤の中には、吸水性を示すものが多く存在する。従って、光学フィルタ内のリン酸ガラス基板が接着剤と接触するような環境では、ガラスの溶出問題がより顕著になる可能性がある。 In particular, adhesives are used when attaching optical filters to electronic devices, and many of these adhesives exhibit water absorption properties. Therefore, in an environment where the phosphate glass substrate in the optical filter comes into contact with the adhesive, the problem of glass elution may become more pronounced.
 本願発明者らは、このような新たに生じた耐久性の問題に対しても検討を続けてきた。そして、光学フィルタにおいて、リン酸ガラス基板を外環境に露出させない構成とすることにより、そのような溶出の問題も解消できることを見出した。 The inventors of the present application have continued to study such newly emerged durability problems. We have also found that such elution problems can be resolved by configuring the optical filter so that the phosphate glass substrate is not exposed to the outside environment.
 従って、本発明の一実施形態では、
 ガラス基板および第1の反射防止層を有する光学フィルタであって、
 前記ガラス基板は、相互に対向する第1の主表面および第2の主表面と、両主表面をつなぐ端面とを有し、
 前記第1の反射防止層は、前記ガラス基板の前記第1の主表面の側に設置され、
 前記ガラス基板は、吸収剤を含むリン酸ガラスであり、
 前記ガラス基板の前記第1の主表面は、第1の無機膜で被覆され、前記ガラス基板の前記第2の主表面は、第2の無機膜で被覆され、前記ガラス基板の前記端面は、第3の無機膜で被覆されており、
 前記第1の無機膜は、前記第1の反射防止層を構成する膜のうち前記ガラス基板に最近接の膜であり、または前記第1の反射防止層を構成する膜とは別の膜であり、
 前記第3の無機膜は、前記第1の主表面側および前記第2の主表面側の少なくとも一方で、最大の厚さを有する、光学フィルタが提供される。
Therefore, in one embodiment of the invention:
An optical filter having a glass substrate and a first antireflection layer,
The glass substrate has a first main surface and a second main surface facing each other, and an end surface connecting the two main surfaces,
The first antireflection layer is installed on the first main surface side of the glass substrate,
The glass substrate is phosphate glass containing an absorbent,
The first main surface of the glass substrate is coated with a first inorganic film, the second main surface of the glass substrate is coated with a second inorganic film, and the end surface of the glass substrate is coated with a third inorganic film,
The first inorganic film is a film closest to the glass substrate among the films forming the first antireflection layer, or a film different from the film forming the first antireflection layer. can be,
An optical filter is provided in which the third inorganic film has a maximum thickness on at least one of the first main surface side and the second main surface side.
 本発明の一実施形態による光学フィルタでは、赤外線カット膜は使用されていない。 In the optical filter according to one embodiment of the present invention, no infrared cut film is used.
 従って、本発明の一実施形態による光学フィルタでは、「角度依存問題」が生じ難く、例えば、光の入射角度が0゜から50゜に変化しても、光学特性はあまり変化しない。 Therefore, in the optical filter according to an embodiment of the present invention, the "angle-dependent problem" is unlikely to occur, and the optical characteristics do not change much even if the incident angle of light changes from 0° to 50°, for example.
 また、本発明の一実施形態では、吸収剤含有ガラス基板用のガラスとして、リン酸ガラスが使用される。 Furthermore, in one embodiment of the present invention, phosphate glass is used as the glass for the absorbent-containing glass substrate.
 図1には、吸収剤(CuO)を含むフツリン酸ガラスおよびリン酸ガラスの代表的な光学特性を示す。図1において、横軸は、光の波長であり、縦軸は、透過率である。また、図1において、(a)は、吸収剤含有フツリン酸ガラスの透過率であり、(b)は、吸収剤含有リン酸ガラスの透過率である。 FIG. 1 shows typical optical properties of fluorophosphate glass and phosphate glass containing an absorbent (CuO). In FIG. 1, the horizontal axis is the wavelength of light, and the vertical axis is the transmittance. Moreover, in FIG. 1, (a) is the transmittance of the absorbent-containing fluorophosphate glass, and (b) is the transmittance of the absorbent-containing phosphate glass.
 図1に示すように、吸収剤含有リン酸ガラスは、波長450nm~600nmの領域において、吸収剤含有フツリン酸ガラスと同等の透過率を有する。従って、光学フィルタのガラス基板として、フツリン酸ガラスに代えてリン酸ガラスを使用しても、可視光領域において、高い透過率を維持することができる。 As shown in FIG. 1, the absorbent-containing phosphate glass has the same transmittance as the absorbent-containing fluorophosphate glass in the wavelength range of 450 nm to 600 nm. Therefore, even if phosphate glass is used instead of fluorophosphate glass as the glass substrate of the optical filter, high transmittance can be maintained in the visible light region.
 また、図1に示すように、吸収剤含有リン酸ガラスは、750nmよりも高い波長領域において、吸収剤含有フツリン酸ガラスに比べて十分に低い透過率を示す。 Further, as shown in FIG. 1, the absorbent-containing phosphate glass exhibits a sufficiently lower transmittance than the absorbent-containing fluorophosphate glass in a wavelength region higher than 750 nm.
 従って、光学フィルタのガラス基板に吸収剤含有リン酸ガラスを使用した場合、赤外線カット膜を使用しなくても、反射防止層との組み合わせにより、赤外線領域での遮光性を有意に高めることができる。 Therefore, when using absorbent-containing phosphate glass for the glass substrate of an optical filter, in combination with an anti-reflection layer, the light-shielding property in the infrared region can be significantly improved without using an infrared cut film. .
 さらに、本発明の一実施形態では、ガラス基板は、外界に対して露出面が生じないようにして、光学フィルタ内に配置される。すなわち、ガラス基板は、第1の主表面が第1の無機膜で被覆され、第2の主表面が第2の無機膜で被覆され、端面が第3の無機膜で被覆されるように配置される。 Furthermore, in one embodiment of the present invention, the glass substrate is placed within the optical filter such that no surface is exposed to the outside world. That is, the glass substrate is arranged such that the first main surface is covered with the first inorganic film, the second main surface is covered with the second inorganic film, and the end surface is covered with the third inorganic film. be done.
 なお、第1の無機膜は、第1の反射防止層を構成する膜のうちガラス基板に最近接の膜であってもよい。あるいは、第1の無機膜は、第1の反射防止層を構成する膜とは別の膜であってもよい。 Note that the first inorganic film may be the film closest to the glass substrate among the films that constitute the first antireflection layer. Alternatively, the first inorganic film may be a film different from the film constituting the first antireflection layer.
 このように、本発明の一実施形態では、ガラス基板は、周囲が無機膜によって被覆されている。このため、ガラス基板が吸収剤含有リン酸ガラスで構成されても、環境中の水分によってガラスが溶出するという問題を有意に抑制できる。 As described above, in one embodiment of the present invention, the glass substrate is surrounded by an inorganic film. Therefore, even if the glass substrate is made of absorbent-containing phosphate glass, the problem of the glass being eluted by moisture in the environment can be significantly suppressed.
 また、一般に、ガラス基板の端面のうち、第1の主表面の側または第2の主表面の側は、光学フィルタを電子機器に組み付ける際に、接着剤と接触する可能性が高い。このため、ガラス基板の端面の接着剤と接触した部分では、接着剤の吸湿によって、より溶出され易い傾向にある。 Furthermore, in general, among the end faces of the glass substrate, the first main surface side or the second main surface side is likely to come into contact with an adhesive when the optical filter is assembled into an electronic device. Therefore, the portion of the end surface of the glass substrate that is in contact with the adhesive tends to be more easily eluted due to moisture absorption of the adhesive.
 これに対して、本発明の一実施形態では、ガラス基板の端面に設置される第3の無機膜は、ガラス基板の少なくとも一方の主表面の側で、厚さが最大となるように構成されている。従って、本発明の一実施形態では、ガラス基板において、第3の無機膜が厚く構成された側を、接着剤に触れやすい側とすることにより、ガラス溶出の問題をよりいっそう抑制することができる。 In contrast, in one embodiment of the present invention, the third inorganic film installed on the end surface of the glass substrate is configured such that the third inorganic film has a maximum thickness on the side of at least one main surface of the glass substrate. ing. Therefore, in one embodiment of the present invention, the problem of glass elution can be further suppressed by making the side of the glass substrate where the third inorganic film is thicker the side that is more likely to come into contact with the adhesive. .
 このように、本発明の一実施形態では、ガラス基板は、周囲が無機膜によって被覆されており、特に、第3の無機膜は、ガラス基板の少なくとも一方の主表面の側で、厚さが最大となるように構成されている。このため、ガラス基板が吸収剤含有リン酸ガラスで構成されても、環境中の水分によってガラスが溶出するという問題を有意に抑制できる。 Thus, in one embodiment of the present invention, the glass substrate is surrounded by an inorganic film, and in particular, the third inorganic film has a thickness on at least one main surface side of the glass substrate. It is configured to be the maximum. Therefore, even if the glass substrate is made of absorbent-containing phosphate glass, the problem of the glass being eluted by moisture in the environment can be significantly suppressed.
 以上の効果により、本発明の一実施形態では、赤外線領域において有意に高い遮光性を有するとともに、光学特性の角度依存性が有意に抑制された光学フィルタを提供できる。 As a result of the above effects, one embodiment of the present invention can provide an optical filter that has significantly high light-shielding properties in the infrared region and has significantly suppressed angular dependence of optical characteristics.
 (本発明の一実施形態による光学フィルタ)
 以下、図2を参照して、本発明の一実施形態による光学フィルタについてより詳しく説明する。
(Optical filter according to one embodiment of the present invention)
Hereinafter, an optical filter according to an embodiment of the present invention will be described in more detail with reference to FIG. 2.
 図2には、本発明の一実施形態による光学フィルタの構成の断面を模式的に示す。 FIG. 2 schematically shows a cross section of the configuration of an optical filter according to an embodiment of the present invention.
 図2に示すように、本発明の一実施形態による光学フィルタ(以下、「第1の光学フィルタ」と称する)100は、ガラス基板110と、第1の反射防止層130と、を有する。 As shown in FIG. 2, an optical filter (hereinafter referred to as "first optical filter") 100 according to an embodiment of the present invention includes a glass substrate 110 and a first antireflection layer 130.
 ガラス基板110は、相互に対向する第1の主表面112および第2の主表面114と、両主表面の間の端面116とを有する。第1の反射防止層130は、ガラス基板110の第1の主表面112の側に配置される。 The glass substrate 110 has a first main surface 112 and a second main surface 114 that face each other, and an end surface 116 between the two main surfaces. First antireflection layer 130 is disposed on the first main surface 112 side of glass substrate 110.
 ガラス基板110は、吸収剤を含むリン酸ガラスで構成される。 The glass substrate 110 is made of phosphate glass containing an absorbent.
 なお、本願において、リン酸ガラスとは、酸化物換算で、Pを50質量%以上含有するガラス意味する。 In addition, in this application, phosphate glass means glass containing 50 mass % or more of P 2 O 5 in terms of oxide.
 第1の反射防止層130は、誘電体多層膜で構成される。 The first antireflection layer 130 is composed of a dielectric multilayer film.
 また、第1の光学フィルタ100は、さらに、第1の無機膜122、第2の無機膜124、および第3の無機膜126を有する。 Further, the first optical filter 100 further includes a first inorganic film 122, a second inorganic film 124, and a third inorganic film 126.
 第1の無機膜122は、ガラス基板110の第1の主表面112を覆うように設置され、第2の無機膜124は、ガラス基板310の第2の主表面114を覆うように設置される。また、第3の無機膜126は、ガラス基板110の端面116を覆うように設置される。 The first inorganic film 122 is installed to cover the first main surface 112 of the glass substrate 110, and the second inorganic film 124 is installed to cover the second main surface 114 of the glass substrate 310. . Further, the third inorganic film 126 is installed to cover the end surface 116 of the glass substrate 110.
 ここで、リン酸ガラスで構成されたガラス基板110は、環境中の水分と接した場合、比較的容易に溶出する傾向がある。 Here, the glass substrate 110 made of phosphate glass tends to be eluted relatively easily when it comes into contact with moisture in the environment.
 特に、ガラス基板110の端面116のうち、第1の主表面112の側または第2の主表面114の側は、第1の光学フィルタ100を電子機器に組み付ける際に、接着剤と接触する可能性が高い。このため、ガラス基板110の端面116の接着剤と接触する部分は、接着剤の吸湿により、より溶出され易い傾向にある。 In particular, the first main surface 112 side or the second main surface 114 side of the end surface 116 of the glass substrate 110 can come into contact with adhesive when the first optical filter 100 is assembled into an electronic device. Highly sexual. Therefore, the portion of the end surface 116 of the glass substrate 110 that comes into contact with the adhesive tends to be more easily eluted due to moisture absorption of the adhesive.
 しかしながら、第1の光学フィルタ100では、ガラス基板110の端面116に設置される第3の無機膜126は、ガラス基板110の少なくとも一方の主表面112、114の側で、厚さが最大となるように構成される。例えば、図2に示した例では、第3の無機膜126は、ガラス基板110の第1の主表面112の側で、最大の厚さを有するように構成されている。 However, in the first optical filter 100, the third inorganic film 126 installed on the end surface 116 of the glass substrate 110 has a maximum thickness on the side of at least one main surface 112, 114 of the glass substrate 110. It is configured as follows. For example, in the example shown in FIG. 2, the third inorganic film 126 is configured to have the maximum thickness on the first main surface 112 side of the glass substrate 110.
 従って、第1の光学フィルタ100では、ガラス基板110において、第3の無機膜126が厚く構成された側を、接着剤と触れやすい側とすることにより、ガラス溶出の問題をより抑制することができる。 Therefore, in the first optical filter 100, the problem of glass elution can be further suppressed by making the side of the glass substrate 110 on which the third inorganic film 126 is thicker the side that is more likely to come into contact with the adhesive. can.
 また、第1の光学フィルタ100では、角度依存問題の一要因となる赤外線カット膜は使用されていない。このため、第1の光学フィルタ100では、角度依存問題を有意に抑制することができる。 Furthermore, the first optical filter 100 does not use an infrared cut film, which is a factor in the angle dependence problem. Therefore, in the first optical filter 100, the angle dependence problem can be significantly suppressed.
 以上の効果により、第1の光学フィルタ100では、赤外線領域において有意に高い遮光性を有するとともに、光学特性の角度依存性を有意に抑制できる。 As a result of the above effects, the first optical filter 100 has significantly high light-shielding properties in the infrared region, and can significantly suppress the angular dependence of optical characteristics.
 なお、図2に示した例では、ガラス基板110の第1の主表面112の側に、第1の無機膜122および第1の反射防止層130がそれぞれ設置されている。 Note that in the example shown in FIG. 2, the first inorganic film 122 and the first antireflection layer 130 are provided on the first main surface 112 side of the glass substrate 110, respectively.
 しかしながら、これとは別に、第1の光学フィルタ100において、第1の無機膜122は、第1の反射防止層130を構成する膜のうちガラス基板110に最近接の膜であってもよい。この場合、第1の無機膜122は、見かけ上、省略されてもよい。 However, in addition to this, in the first optical filter 100, the first inorganic film 122 may be the film closest to the glass substrate 110 among the films forming the first antireflection layer 130. In this case, the first inorganic film 122 may be apparently omitted.
 (本発明の別の実施形態による光学フィルタ)
 次に、図3を参照して、本発明の別の実施形態による光学フィルタについて説明する。
(Optical filter according to another embodiment of the present invention)
Next, with reference to FIG. 3, an optical filter according to another embodiment of the present invention will be described.
 図3には、本発明の別の実施形態による光学フィルタ(以下、「第2の光学フィルタ」と称する)の構成の断面を模式的に示す。 FIG. 3 schematically shows a cross section of the configuration of an optical filter (hereinafter referred to as "second optical filter") according to another embodiment of the present invention.
 図3に示すように、第2の光学フィルタ200は、前述の第1の光学フィルタ100と同様の構成を有する。従って、図3において、第1の光学フィルタ100に含まれる部材と対応する部材には、それぞれ、図2に示した参照符号に100を加えた参照符号が使用されている。 As shown in FIG. 3, the second optical filter 200 has the same configuration as the first optical filter 100 described above. Therefore, in FIG. 3, reference numerals with 100 added to the reference numerals shown in FIG. 2 are used for members corresponding to those included in the first optical filter 100.
 例えば、図3に示すように、第2の光学フィルタ200は、ガラス基板210と、第1~第3の無機膜222~226と、第1の反射防止層230と、を有する。 For example, as shown in FIG. 3, the second optical filter 200 includes a glass substrate 210, first to third inorganic films 222 to 226, and a first antireflection layer 230.
 ただし、第2の光学フィルタ200では、第1の光学フィルタ100とは異なり、第2の無機膜224の上に、第2の反射防止層250が設置されている。 However, in the second optical filter 200, unlike the first optical filter 100, a second antireflection layer 250 is provided on the second inorganic film 224.
 第2の光学フィルタ200においても、ガラス基板210の第1の主表面212は、第1の無機膜222で被覆され、第2の主表面214は、第2の無機膜224で被覆され、端面216は、第3の無機膜226で被覆されている。特に、第3の無機膜226は、ガラス基板110の第1の主表面112の側で、最大の厚さを有するように構成される。 Also in the second optical filter 200, the first main surface 212 of the glass substrate 210 is covered with the first inorganic film 222, the second main surface 214 is covered with the second inorganic film 224, and the end surface 216 is covered with a third inorganic film 226. In particular, the third inorganic film 226 is configured to have a maximum thickness on the first main surface 112 side of the glass substrate 110.
 従って、第2の光学フィルタ200においても、リン酸ガラスで構成されたガラス基板210が外界の水分と反応して溶出するという問題を有意に抑制できる。 Therefore, also in the second optical filter 200, the problem that the glass substrate 210 made of phosphate glass reacts with moisture in the outside world and elutes can be significantly suppressed.
 また、第2の光学フィルタ200では、角度依存問題の一要因となる赤外線カット膜は使用されていない。このため、第2の光学フィルタ200においても、角度依存問題を有意に抑制することができる。 Furthermore, the second optical filter 200 does not use an infrared cut film, which is a factor in the angle dependence problem. Therefore, the angle dependence problem can be significantly suppressed in the second optical filter 200 as well.
 以上の効果により、第2の光学フィルタ200では、赤外線領域において有意に高い遮光性を有するとともに、光学特性の角度依存性を有意に抑制できる。 As a result of the above effects, the second optical filter 200 has significantly high light-shielding properties in the infrared region, and can significantly suppress the angular dependence of optical characteristics.
 なお、図3に示した例では、ガラス基板210の第2の主表面214の側に、第2の無機膜224および第2の反射防止層250がそれぞれ設置されている。 Note that in the example shown in FIG. 3, a second inorganic film 224 and a second antireflection layer 250 are provided on the second main surface 214 side of the glass substrate 210, respectively.
 しかしながら、これとは別に、第2の光学フィルタ200において、第2の無機膜224は、第2の反射防止層250を構成する膜のうちガラス基板210に最近接の膜であってもよい。この場合、第2の無機膜224は、見かけ上、省略されてもよい。 However, in addition to this, in the second optical filter 200, the second inorganic film 224 may be the film closest to the glass substrate 210 among the films forming the second antireflection layer 250. In this case, the second inorganic film 224 may be apparently omitted.
 また、前述のように、第1の無機膜222は、第1の反射防止層230を構成する膜のうちガラス基板210に最近接の膜であってもよい。 Furthermore, as described above, the first inorganic film 222 may be the film closest to the glass substrate 210 among the films forming the first antireflection layer 230.
 (本発明のさらに別の実施形態による光学フィルタ)
 次に、図4を参照して、本発明のさらに別の実施形態による光学フィルタについて説明する。
(Optical filter according to yet another embodiment of the present invention)
Next, with reference to FIG. 4, an optical filter according to yet another embodiment of the present invention will be described.
 図4には、本発明のさらに別の実施形態による光学フィルタ(以下、「第3の光学フィルタ」と称する)の構成の断面を模式的に示す。 FIG. 4 schematically shows a cross section of the configuration of an optical filter (hereinafter referred to as "third optical filter") according to yet another embodiment of the present invention.
 図4に示すように、第3の光学フィルタ300は、前述の第2の光学フィルタ200と同様の構成を有する。従って、図4において、第2の光学フィルタ200に含まれる部材と対応する部材には、それぞれ、図4に示した参照符号に100を加えた参照符号が使用されている。 As shown in FIG. 4, the third optical filter 300 has the same configuration as the second optical filter 200 described above. Therefore, in FIG. 4, reference numerals with 100 added to the reference numerals shown in FIG. 4 are used for members corresponding to those included in the second optical filter 200.
 例えば、図4に示すように、第3の光学フィルタ300は、ガラス基板310と、第1~第3の無機膜322~326と、第1の反射防止層330と、第2の反射防止層350と、を有する。 For example, as shown in FIG. 4, the third optical filter 300 includes a glass substrate 310, first to third inorganic films 322 to 326, a first antireflection layer 330, and a second antireflection layer. 350.
 ただし、第3の光学フィルタ300では、第2の光学フィルタ200とは異なり、第2の無機膜324と第2の反射防止層350との間に、樹脂層340が設置されている。 However, in the third optical filter 300, unlike the second optical filter 200, a resin layer 340 is provided between the second inorganic film 324 and the second antireflection layer 350.
 樹脂層340は、色素を含む樹脂で構成される。樹脂層340の詳細については、後述する。 The resin layer 340 is made of resin containing a pigment. Details of the resin layer 340 will be described later.
 第3の光学フィルタ300においても、ガラス基板310の第1の主表面312は、第1の無機膜322で被覆され、第2の主表面314は、第2の無機膜324で被覆され、端面316は、第3の無機膜326で被覆されている。特に、第3の無機膜326は、ガラス基板310の第1の主表面312の側で、最大の厚さを有するように構成される。 Also in the third optical filter 300, the first main surface 312 of the glass substrate 310 is covered with the first inorganic film 322, the second main surface 314 is covered with the second inorganic film 324, and the end surface 316 is covered with a third inorganic film 326. In particular, the third inorganic film 326 is configured to have a maximum thickness on the first main surface 312 side of the glass substrate 310.
 従って、第3の光学フィルタ300においても、リン酸ガラスで構成されたガラス基板310が外界の水分と反応して溶出するという問題を有意に抑制できる。 Therefore, in the third optical filter 300 as well, the problem that the glass substrate 310 made of phosphate glass reacts with moisture in the outside world and elutes can be significantly suppressed.
 また、第3の光学フィルタ300では、角度依存問題の一要因となる赤外線カット膜は使用されていない。このため、第3の光学フィルタ300においても、角度依存問題を有意に抑制することができる。 Further, the third optical filter 300 does not use an infrared cut film, which is a factor in the angle dependence problem. Therefore, also in the third optical filter 300, the angle dependence problem can be significantly suppressed.
 以上の効果により、第3の光学フィルタ300では、赤外線領域において有意に高い遮光性を有するとともに、光学特性の角度依存性を有意に抑制できる。 As a result of the above effects, the third optical filter 300 has a significantly high light-shielding property in the infrared region, and can significantly suppress the angular dependence of the optical characteristics.
 なお、図4に示した例では、ガラス基板310の第1の主表面312の側に、第1の無機膜322および第1の反射防止層330がそれぞれ設置されている。 Note that in the example shown in FIG. 4, a first inorganic film 322 and a first antireflection layer 330 are provided on the first main surface 312 side of the glass substrate 310, respectively.
 しかしながら、前述のように、第3の光学フィルタ300において、第1の無機膜322は、第1の反射防止層330を構成する膜のうちガラス基板310に最近接の膜であってもよい。この場合、第1の無機膜322は、見かけ上、省略されてもよい。 However, as described above, in the third optical filter 300, the first inorganic film 322 may be the film closest to the glass substrate 310 among the films forming the first antireflection layer 330. In this case, the first inorganic film 322 may be apparently omitted.
 (本発明の一実施形態による光学フィルタに含まれる各部材について)
 次に、本発明の一実施形態による光学フィルタを構成する各部材についてより詳しく説明する。なお、ここでは、明確化のため、図4に示した第3の光学フィルタ300を例にその構成部材について説明する。従って、各部材を表す際には、図4に示した参照符号を使用する。
(Regarding each member included in the optical filter according to an embodiment of the present invention)
Next, each member constituting the optical filter according to an embodiment of the present invention will be described in more detail. Note that, for clarity, here, constituent members will be described using the third optical filter 300 shown in FIG. 4 as an example. Therefore, when representing each member, the reference numerals shown in FIG. 4 will be used.
 (ガラス基板310)
 以下、本発明の一実施形態による光学フィルタに使用されるガラス基板310について説明する。なお、以下の記載では、特記しない限り、各成分の含有量および合計含有量は、酸化物基準の質量百分率の値を表す。
(Glass substrate 310)
Hereinafter, a glass substrate 310 used in an optical filter according to an embodiment of the present invention will be described. In the following description, unless otherwise specified, the content of each component and the total content represent mass percentage values based on oxides.
 ガラス基板310は、吸収剤を含むリン酸ガラスで構成される。 The glass substrate 310 is made of phosphate glass containing an absorbent.
 ガラス基板310に含まれる吸収剤は、金属酸化物であり、例えば、CuOであってもよい。 The absorbent contained in the glass substrate 310 is a metal oxide, and may be CuO, for example.
 吸収剤は、ガラス基板310の全体に対して、酸化物基準の質量百分率で、4%~20%の範囲で含まれてもよい。 The absorbent may be included in the entire glass substrate 310 in a mass percentage of 4% to 20% on an oxide basis.
 例えば、ガラス基板310は、酸化物基準の質量百分率で、
 50%~80%のP
 5%~20%のAl
 4%~20%のCuO、
 0.5%~15%のR(1)O、ここで、R(1)は、Li、Na、K、Rb、およびCsからなる群から選択された少なくとも一つの成分である、ならびに
 0~15%のR(2)O、ここで、R(2)は、Ca、Mg、Ba、Sr、およびZnからなる群から選択された少なくとも一つの成分である、
 を含んでもよい。
For example, the glass substrate 310 has a mass percentage based on oxide,
50% to 80% P 2 O 5 ,
5% to 20% Al 2 O 3 ,
4% to 20% CuO,
0.5% to 15% R(1) 2 O, where R(1) is at least one component selected from the group consisting of Li, Na, K, Rb, and Cs, and 0 ~15% R(2)O, where R(2) is at least one component selected from the group consisting of Ca, Mg, Ba, Sr, and Zn;
May include.
 Pは、ガラスを形成する主成分であり、近赤外線カット性を高めるための成分である。Pの含有量が50%以上であれば、その効果が十分得られ、80%以下であれば、ガラスが不安定になる、耐候性が低下する等の問題が生じにくい。そのため、Pは、好ましくは50~80%であり、より好ましくは52~78%であり、さらに好ましくは54~77%であり、さらに一層好ましくは56~76%であり、最も好ましくは60~75%である。 P 2 O 5 is a main component forming glass, and is a component for improving near-infrared ray cutting properties. If the content of P 2 O 5 is 50% or more, the effect can be sufficiently obtained, and if it is 80% or less, problems such as glass becoming unstable and weather resistance decreasing are unlikely to occur. Therefore, P 2 O 5 is preferably 50 to 80%, more preferably 52 to 78%, still more preferably 54 to 77%, even more preferably 56 to 76%, and most preferably is 60-75%.
 Alは、ガラスを形成する主成分であり、ガラスの強度を高める、などのための成分である。Alの含有量が5%以上であれば、その効果が十分得られ、20%以下であれば、ガラスが不安定になる、近赤外線カット性が低下する等の問題が生じにくい。そのため、Alは、好ましくは5~20%であり、より好ましくは6~18%であり、さらに好ましくは7~17%であり、さらに一層好ましくは8~16%であり、最も好ましくは9~13%である。Alの含有量が9%以上であれば、ガラスの耐候性を高めることができる。 Al 2 O 3 is a main component forming glass, and is a component for increasing the strength of glass. If the content of Al 2 O 3 is 5% or more, the effect can be sufficiently obtained, and if it is 20% or less, problems such as the glass becoming unstable and the near-infrared cut property decreasing are unlikely to occur. Therefore, Al 2 O 3 is preferably 5 to 20%, more preferably 6 to 18%, still more preferably 7 to 17%, even more preferably 8 to 16%, and most preferably is 9-13%. If the content of Al 2 O 3 is 9% or more, the weather resistance of the glass can be improved.
 R(1)Oは、ガラスの溶融温度を低くする、ガラスの液相温度を低くする、ガラスを安定化させるなどのための成分である。R(1)Oの合計量が0.5%以上であれば、その効果が十分得られ、20%以下であれば、ガラスが不安定になりにくいため好ましい。そのため、R(1)Oの合計量は、好ましくは0.5~20%であり、より好ましくは1~20%であり、さらに好ましくは2~20%であり、さらに一層好ましくは3~20%であり、最も好ましくは4~20%である。 R(1) 2 O is a component for lowering the melting temperature of the glass, lowering the liquidus temperature of the glass, and stabilizing the glass. If the total amount of R(1) 2 O is 0.5% or more, the effect can be sufficiently obtained, and if it is 20% or less, the glass is less likely to become unstable, which is preferable. Therefore, the total amount of R(1) 2 O is preferably 0.5 to 20%, more preferably 1 to 20%, even more preferably 2 to 20%, even more preferably 3 to 20%. 20%, most preferably 4-20%.
 LiOは、ガラスの溶融温度を低くする、ガラスの液相温度を低くする、ガラスを安定化させるなどのための成分である。LiOの含有量は、0~15%が好ましい。LiOの含有量が15%以下であれば、ガラスが不安定になる、近赤外性カット性が低下する等の問題が生じにくいため好ましい。LiOの含有量は、より好ましくは0~8%であり、さらに好ましくは0~7%であり、さらに一層好ましくは0~6%であり、最も好ましくはLiOを実質的に含有しない。 Li 2 O is a component for lowering the melting temperature of glass, lowering the liquidus temperature of glass, and stabilizing glass. The content of Li 2 O is preferably 0 to 15%. It is preferable that the Li 2 O content is 15% or less because problems such as the glass becoming unstable and the near-infrared cut property being lowered are less likely to occur. The Li 2 O content is more preferably 0 to 8%, still more preferably 0 to 7%, even more preferably 0 to 6%, and most preferably substantially Li 2 O. do not.
 なお、本願において、特定の成分を実質的に含有しないとは、意図的に添加しないという意味であり、原料等から不可避的に混入し、所期の特性に影響を与えない程度の含有を排除するものではない。 In this application, "substantially not containing a specific component" means that it is not intentionally added, and excludes content that is unavoidably mixed in from raw materials etc. and does not affect the intended characteristics. It's not something you do.
 NaOは、ガラスの溶融温度を低くする、ガラスの液相温度を低くする、ガラスを安定化させるなどのための成分である。NaOの含有量は、0~15%が好ましい。NaOの含有量が15%以下であれば、ガラスが不安定になりにくいため好ましい。NaOの含有量は、より好ましくは0.5~14%であり、さらに好ましくは1~13%であり、さらに一層好ましくは2~13%である。 Na 2 O is a component for lowering the melting temperature of glass, lowering the liquidus temperature of glass, and stabilizing glass. The content of Na 2 O is preferably 0 to 15%. It is preferable that the Na 2 O content is 15% or less because the glass is less likely to become unstable. The content of Na 2 O is more preferably 0.5 to 14%, still more preferably 1 to 13%, even more preferably 2 to 13%.
 KOは、ガラスの溶融温度を低くする、ガラスの液相温度を低くする、などの効果がある成分である。KOの含有量としては、0~15%が好ましい。KOの含有量が15%以下であれば、ガラスが不安定になりにくいため好ましい。KOの含有量は、より好ましくは0.5~14%であり、さらに好ましくは1~13%であり、さらに一層好ましくは2~13%である。 K 2 O is a component that has effects such as lowering the melting temperature of glass and lowering the liquidus temperature of glass. The content of K 2 O is preferably 0 to 15%. It is preferable that the content of K 2 O is 15% or less because the glass is less likely to become unstable. The content of K 2 O is more preferably 0.5 to 14%, still more preferably 1 to 13%, even more preferably 2 to 13%.
 RbOは、ガラスの溶融温度を低くする、ガラスの液相温度を低くする、などの効果がある成分である。RbOの含有量としては、0~15%が好ましい。RbOの含有量が15%以下であれば、ガラスが不安定になりにくいため好ましい。RbOの含有量は、より好ましくは0.5~14%であり、さらに好ましくは1~13%であり、さらに一層好ましくは2~13%である。 Rb 2 O is a component that has effects such as lowering the melting temperature of glass and lowering the liquidus temperature of glass. The content of Rb 2 O is preferably 0 to 15%. It is preferable that the Rb 2 O content is 15% or less because the glass is less likely to become unstable. The content of Rb 2 O is more preferably 0.5 to 14%, still more preferably 1 to 13%, even more preferably 2 to 13%.
 CsOは、ガラスの溶融温度を低くする、ガラスの液相温度を低くする、などの効果がある成分である。CsOの含有量としては、0~15%が好ましい。CsOの含有量が15%以下であれば、ガラスが不安定になりにくいため好ましい。CsOの含有量は、より好ましくは0.5~14%であり、さらに好ましくは1~13%であり、さらに一層好ましくは2~13%である。 Cs 2 O is a component that has effects such as lowering the melting temperature of glass and lowering the liquidus temperature of glass. The content of Cs 2 O is preferably 0 to 15%. It is preferable that the Cs 2 O content is 15% or less because the glass is less likely to become unstable. The content of Cs 2 O is more preferably 0.5 to 14%, still more preferably 1 to 13%, even more preferably 2 to 13%.
 R(2)Oは、ガラスの溶融温度を低くする、ガラスの液相温度を低くする、ガラスを安定化させる、ガラスの強度を高めるなどのための成分である。R(2)Oの合計量は、0~15%が好ましい。R(2)Oの合計量が15%以下であれば、ガラスが不安定になる、近赤外線カット性が低下する、短波長赤外線の透過性が低下する、ガラスの強度が低下する等の問題が生じにくいため好ましい。R(2)Oの合計量は、より好ましくは0~13%であり、さらに好ましくは0~11%である。さらに一層好ましくは0~9%であり、さらに一層好ましくは0~8%である。 R(2)O is a component for lowering the melting temperature of the glass, lowering the liquidus temperature of the glass, stabilizing the glass, and increasing the strength of the glass. The total amount of R(2)O is preferably 0 to 15%. If the total amount of R(2)O is less than 15%, problems such as glass becoming unstable, near-infrared cut property decreasing, short wavelength infrared transmittance decreasing, and glass strength decreasing. This is preferable because it is less likely to occur. The total amount of R(2)O is more preferably 0 to 13%, even more preferably 0 to 11%. Even more preferably it is 0 to 9%, even more preferably 0 to 8%.
 CuOは、近赤外線カットのための成分である。CuOの含有量が4%以上であれば、その効果が十分に得られ、また20%以下であれば、可視光域の透過率が低下する、短波長赤外域の透過率が低下するなどの問題が生じにくいため好ましい。CuOの含有量は、より好ましくは4~19.5%であり、さらに好ましくは5~19%であり、さらに一層好ましくは6~18.5%であり、よりさらに一層好ましくは7%超である。特にガラスがCu以外の2価の陽イオンを実質的に含有しない場合、CuOの含有量が7%超であることで、近赤外線のカット性と短波長赤外線の透過性をより高めることができる。CuOの含有量は、7~18%(ただし、7%は含まない)であることが最も好ましい。 CuO is a component for cutting near-infrared rays. If the content of CuO is 4% or more, the effect can be sufficiently obtained, and if it is 20% or less, the transmittance in the visible light region decreases, the transmittance in the short wavelength infrared region decreases, etc. This is preferable because it is less likely to cause problems. The content of CuO is more preferably 4 to 19.5%, still more preferably 5 to 19%, even more preferably 6 to 18.5%, even more preferably more than 7%. be. In particular, when the glass does not substantially contain divalent cations other than Cu, a CuO content of more than 7% can further improve near-infrared ray cutting properties and short-wavelength infrared ray transmittance. . Most preferably, the CuO content is 7 to 18% (excluding 7%).
 ガラス基板310は、Cu以外の2価の陽イオンを実質的に含有しないことが好ましい。その理由を以下に述べる。 It is preferable that the glass substrate 310 does not substantially contain divalent cations other than Cu. The reason for this is explained below.
 本実施形態のガラスがCuOを含む場合、Cu2+イオンの光吸収によって近赤外線領域の光がカットされる。その光吸収はO2-イオンの電場によって分裂したCu2+イオンのd軌道間の電子遷移によって生じる。d軌道の分裂はCu2+イオン回りに存在するO2-イオンの対称性が低下すると促進する。例えばO2-イオンの回りに陽イオンが存在すると、陽イオンの電場によってO2-イオンが引き寄せられ、O2-イオンの対称性が低下する。その結果、d軌道の分裂が促進され、それぞれ分裂したd軌道間の電子遷移による光吸収が生じるため、近赤外域の光吸収能が弱まり、短波長赤外域の光吸収能が強まる。陽イオンの電場の強さはイオンの価数が大きいと強くなるため、特にCu以外の2価の陽イオンを含む酸化物をガラス中に添加すると、近赤外線カット性が低下する、短波長赤外線の透過性が低下する恐れがある。 When the glass of this embodiment contains CuO, light in the near-infrared region is cut due to light absorption by Cu 2+ ions. The optical absorption is caused by electronic transition between the d-orbitals of Cu 2+ ions split by the electric field of O 2- ions. Splitting of the d-orbital is promoted when the symmetry of the O 2- ions around the Cu 2+ ions decreases. For example, when a cation exists around an O 2- ion, the O 2- ion is attracted by the electric field of the cation, reducing the symmetry of the O 2- ion. As a result, the splitting of the d-orbitals is promoted, and light absorption occurs due to electronic transition between the split d-orbitals, which weakens the light absorption ability in the near-infrared region and strengthens the light absorption ability in the short-wavelength infrared region. The strength of the electric field of a cation becomes stronger as the valence of the ion increases, so if an oxide containing divalent cations other than Cu is added to the glass, the near-infrared cutting property will decrease, and short-wavelength infrared rays There is a risk that the permeability of
 CaOは、ガラスの溶融温度を低くする、ガラスの液相温度を低くする、ガラスを安定化させる、ガラスの強度を高めるなどのための成分である。CaOの含有量としては0~10%が好ましい。CaOの含有量が10%以下であれば、ガラスが不安定となる、近赤外線カット性が低下する、短波長赤外線の透過性が低下する等の問題が生じにくいため好ましい。より好ましくは0~8%であり、さらに好ましくは0~6%であり、さらに一層好ましくは0~5%である。最も好ましくはCaOを実質的に含有しない。 CaO is a component that lowers the melting temperature of glass, lowers the liquidus temperature of glass, stabilizes glass, and increases the strength of glass. The content of CaO is preferably 0 to 10%. If the content of CaO is 10% or less, problems such as the glass becoming unstable, the near-infrared cut property decreasing, and the short-wavelength infrared transmittance decreasing are less likely to occur, so it is preferable. More preferably, it is 0 to 8%, still more preferably 0 to 6%, even more preferably 0 to 5%. Most preferably it contains substantially no CaO.
 MgOは、ガラスの溶融温度を低くする、ガラスの液相温度を低くする、ガラスを安定化させる、ガラスの強度を高めるなどのための成分である。MgOの含有量としては0~15%が好ましい。MgOの含有量が15%以下であれば、ガラスが不安定になる、近赤外線カット性が低下する、短波長赤外線の透過性が低下する等の問題が生じにくいため好ましい。より好ましくは0~13%であり、さらに好ましくは0~10%であり、さらに一層好ましくは0~9%である。最も好ましくはMgOを実質的に含有しない。 MgO is a component that lowers the melting temperature of glass, lowers the liquidus temperature of glass, stabilizes glass, and increases the strength of glass. The content of MgO is preferably 0 to 15%. If the content of MgO is 15% or less, problems such as the glass becoming unstable, the near-infrared cut property decreasing, and the transmittance of short wavelength infrared rays decreasing are less likely to occur, so it is preferable. More preferably, it is 0 to 13%, still more preferably 0 to 10%, even more preferably 0 to 9%. Most preferably, it does not substantially contain MgO.
 BaOは、ガラスの溶融温度を低くする、ガラスの液相温度を低くする、ガラスを安定化させるなどのための成分である。BaOの含有量としては0.1~10%が好ましい。BaOの含有量が10%以下であれば、ガラスが不安定となる、近赤外線カット性が低下する、短波長赤外線の透過性が低下する等の問題が生じにくいため好ましい。より好ましくは0~8%であり、さらに好ましくは0~6%であり、さらに一層好ましくは0~5%である。最も好ましくはBaOを実質的に含有しない。 BaO is a component for lowering the melting temperature of glass, lowering the liquidus temperature of glass, and stabilizing glass. The BaO content is preferably 0.1 to 10%. If the BaO content is 10% or less, it is preferable because problems such as glass becoming unstable, near-infrared cutting properties being reduced, and short-wavelength infrared rays transmittance being reduced are less likely to occur. More preferably, it is 0 to 8%, still more preferably 0 to 6%, even more preferably 0 to 5%. Most preferably it contains substantially no BaO.
 SrOは、ガラスの溶融温度を低くする、ガラスの液相温度を低くする、ガラスを安定化させるなどのための成分である。SrOの含有量としては0~10%が好ましい。SrOの含有量が10%以下であれば、ガラスが不安定となる、近赤外線カット性が低下する、短波長赤外線の透過性が低下する等の問題が生じにくいため好ましい。より好ましくは0~8%であり、さらに好ましくは0~7%である。最も好ましくはSrOを実質的に含有しない。 SrO is a component for lowering the melting temperature of glass, lowering the liquidus temperature of glass, and stabilizing glass. The content of SrO is preferably 0 to 10%. If the content of SrO is 10% or less, problems such as glass becoming unstable, near-infrared cut property decreasing, and short-wavelength infrared transmittance decreasing are less likely to occur, which is preferable. More preferably 0 to 8%, still more preferably 0 to 7%. Most preferably, it does not substantially contain SrO.
 ZnOは、ガラスの溶融温度を低くする、ガラスの液相温度を低くする、などの効果がある。ZnOの含有量は0~15%が好ましい。ZnOの含有量が15%以下であれば、ガラスの溶解性が悪化する、近赤外線カット性が低下する、短波長赤外線の透過性が低下する等の問題が生じにくいため好ましい。より好ましくは0~13%であり、さらに好ましくは0~10%であり、さらに一層好ましくは0~9%である。最も好ましくはZnOを実質的に含有しない。 ZnO has effects such as lowering the melting temperature of glass and lowering the liquidus temperature of glass. The content of ZnO is preferably 0 to 15%. If the content of ZnO is 15% or less, problems such as deterioration of glass solubility, deterioration of near-infrared cut property, and deterioration of short-wavelength infrared transmittance are less likely to occur, which is preferable. More preferably, it is 0 to 13%, still more preferably 0 to 10%, even more preferably 0 to 9%. Most preferably it contains substantially no ZnO.
 Bは、ガラスを安定化させるために10%以下の範囲で含有してもよい。Bの含有量が10%以下であれば、ガラスの耐候性が悪化する、近赤外線カット性が低下する、短波長赤外線の透過性が低下する等の問題が生じにくいため好ましい。好ましくは9%以下であり、より好ましくは8%以下であり、さらに好ましくは7%以下であり、さらに一層好ましくは6%以下であり、最も好ましくはBを実質的に含有しない。 B 2 O 3 may be contained in a range of 10% or less in order to stabilize the glass. If the content of B 2 O 3 is 10% or less, problems such as deterioration of weather resistance of the glass, deterioration of near-infrared cut property, and deterioration of short-wavelength infrared transmittance are less likely to occur, which is preferable. Preferably it is 9% or less, more preferably 8% or less, still more preferably 7% or less, even more preferably 6% or less, and most preferably substantially free of B 2 O 3 .
 ガラス基板310において、Fは耐候性を上げるために有効な成分ではあるが、環境負荷物質であることや近赤外線カット性が低下する恐れがあるため、Fを実質的に含有しないことが好ましい。 In the glass substrate 310, although F is an effective component for increasing weather resistance, it is preferably an environmentally hazardous substance and there is a risk that the near-infrared cut property may be reduced, so it is preferable that F is not substantially contained.
 ガラス基板310において、SiO、GeO、ZrO、SnO、TiO、CeO、WO、Y、La、Gd、Yb、Nbはガラスの耐候性を上げるために5%以下の範囲で含有してもよい。これら成分の含有量が5%以下であれば、近赤外線カット性が低下する、短波長赤外線の透過性が低下する等の問題が生じにくいため好ましい。好ましくは4%以下であり、より好ましくは3%以下であり、さらに好ましくは2%以下であり、さらに一層好ましくは1%以下である。 In the glass substrate 310, SiO 2 , GeO 2 , ZrO 2 , SnO 2 , TiO 2 , CeO 2 , WO 3 , Y 2 O 3 , La 2 O 3 , Gd 2 O 3 , Yb 2 O 3 , Nb 2 O 5 may be contained in an amount of 5% or less in order to improve the weather resistance of the glass. It is preferable that the content of these components is 5% or less, since problems such as a decrease in near-infrared cut property and a decrease in short-wavelength infrared transmittance are unlikely to occur. Preferably it is 4% or less, more preferably 3% or less, still more preferably 2% or less, even more preferably 1% or less.
 Fe、Cr、Bi、NiO、V、MoO、MnOおよびCoOは、いずれもガラス中に存在することで、可視透過率を低下させる成分である。よって、これらの成分は、実質的にガラス中に含有しないことが好ましい。 Fe 2 O 3 , Cr 2 O 3 , Bi 2 O 3 , NiO, V 2 O 5 , MoO 3 , MnO 2 and CoO are all components that reduce visible transmittance when present in glass. . Therefore, it is preferable that these components are not substantially contained in the glass.
 ガラス基板310は、30℃~300℃の範囲における熱膨張係数が60×10-7/℃~180×10-7/℃であることが好ましい。 The glass substrate 310 preferably has a thermal expansion coefficient of 60×10 −7 /°C to 180×10 −7 /°C in the range of 30° C. to 300° C.
 ガラス基板310は、例えば、0.1mm~3mmの範囲の厚さを有してもよい。 The glass substrate 310 may have a thickness in the range of 0.1 mm to 3 mm, for example.
 ガラス基板310の形状は、特に限られない。ガラス基板310の第1の主表面312および第2の主表面314は、矩形状であっても、楕円形(円形を含む)であってもよい。 The shape of the glass substrate 310 is not particularly limited. The first main surface 312 and the second main surface 314 of the glass substrate 310 may be rectangular or elliptical (including circular).
 第1の主表面312および第2の主表面314が矩形の場合、ガラス基板310は、複数の端面316を有する。一方、第1の主表面312および第2の主表面314が円形の場合、ガラス基板310は、単一の端面316を有する。 When the first main surface 312 and the second main surface 314 are rectangular, the glass substrate 310 has a plurality of end faces 316. On the other hand, when the first main surface 312 and the second main surface 314 are circular, the glass substrate 310 has a single end surface 316.
 また、端面316の形状は、特に限られない。例えば、端面316は、第1の主表面312および第2の主表面314に対して略垂直な方向に延在する形状を有してもよく、それ以外の形状であってもよい。例えば、ガラス基板310の端面316は、第1の主表面312の法線および/または第2の主表面314の法線に対して、傾斜した部分を有してもよい。 Furthermore, the shape of the end surface 316 is not particularly limited. For example, end surface 316 may have a shape extending in a direction substantially perpendicular to first major surface 312 and second major surface 314, or may have another shape. For example, the end surface 316 of the glass substrate 310 may have a portion that is inclined with respect to the normal to the first major surface 312 and/or the normal to the second major surface 314.
 図5には、ガラス基板310の光学特性の一例を模式的に示す。図5において、横軸は、波長であり、縦軸は、内部透過率である。 FIG. 5 schematically shows an example of the optical characteristics of the glass substrate 310. In FIG. 5, the horizontal axis is the wavelength, and the vertical axis is the internal transmittance.
 なお、本願において、「内部透過率(%)」は、
 
   内部透過率(%)=T(5)/(100-R(5))×100   (1)式
 
で表される。ここで、T(5)は、入射角が5゜のときの透過率(%)であり、R(5)は、入射角が5゜のときの反射率(%)である。
In addition, in this application, "internal transmittance (%)" is

Internal transmittance (%) = T (5) / (100-R (5) ) × 100 (1) formula
It is expressed as Here, T (5) is the transmittance (%) when the incident angle is 5°, and R (5) is the reflectance (%) when the incident angle is 5°.
 図5に示すように、ガラス基板310は、
(i)波長450nmでの内部透過率T(g)450が92%以上であり、
(ii)波長450nm~波長600nmの範囲における平均内部透過率T(g)ave1が90%以上であり、(iii)内部透過率が50%となる最小波長λ(g)50が625nm~650nmの範囲であり、(iv)波長750nm~1000nmの範囲における平均内部透過率T(g)ave2が2.5%以下であり、(v)波長1000nm~1200nmの範囲における平均内部透過率T(g)ave3が7%以下である、ような分光特性を有することが好ましい。
As shown in FIG. 5, the glass substrate 310 is
(i) Internal transmittance T at a wavelength of 450 nm (g) 450 is 92% or more,
(ii) Average internal transmittance T in the wavelength range of 450 nm to wavelength 600 nm (g) ave1 is 90% or more, (iii) Minimum wavelength λ at which the internal transmittance is 50% (g) 50 is in the range of 625 nm to 650 nm (iv) Average internal transmittance T in the wavelength range of 750 nm to 1000 nm (g) ave2 is 2.5% or less, (v) Average internal transmittance T in the wavelength range of 1000 nm to 1200 nm (g) It is preferable to have such spectral characteristics that ave3 is 7% or less.
 (第1の無機膜322、第2の無機膜324、および第3の無機膜326)
 第1の無機膜322~第3の無機膜326は、ガラス基板310を外界から保護するために設置される。すなわち、リン酸ガラスで構成されたガラス基板310は、外界の水分に触れると溶出する傾向がある。しかしながら、ガラス基板310の周囲を第1の無機膜322~第3の無機膜326を被覆することにより、そのような溶出を有意に抑制することができる。
(First inorganic film 322, second inorganic film 324, and third inorganic film 326)
The first to third inorganic films 322 to 326 are provided to protect the glass substrate 310 from the outside world. That is, the glass substrate 310 made of phosphate glass tends to dissolve when exposed to moisture in the outside world. However, by covering the periphery of the glass substrate 310 with the first to third inorganic films 322 to 326, such elution can be significantly suppressed.
 第1の無機膜322~第3の無機膜326は、必ずしも同じ材料で構成される必要はない。例えば、第1の無機膜322、第2の無機膜324、および第3の無機膜326は、全てが別の材料で構成されてもよい。 The first to third inorganic films 322 to 326 do not necessarily need to be made of the same material. For example, the first inorganic film 322, the second inorganic film 324, and the third inorganic film 326 may all be made of different materials.
 ただし、第1の無機膜322~第3の無機膜326は、いずれも酸化アルミニウムの膜であることが好ましい。酸化アルミニウムの膜は、水分に対して有効なバリアとなるためである。 However, it is preferable that the first to third inorganic films 322 to 326 are all aluminum oxide films. This is because the aluminum oxide film serves as an effective barrier against moisture.
 第1の無機膜322~第3の無機膜326を形成する方法は、特に限られない。第1の無機膜322~第3の無機膜326は、例えば、スパッタリング法および蒸着法等の方法で成膜されてもよい。 The method of forming the first to third inorganic films 322 to 326 is not particularly limited. The first to third inorganic films 322 to 326 may be formed by, for example, a sputtering method, a vapor deposition method, or the like.
 前述のように、第3の無機膜326は、ガラス基板310の第1の主表面312の側および/または第2の主表面314の側で、最大の厚さを有するように構成される。以下、第3の無機膜326が有するそのような厚さプロファイルを、単に「厚さ分布」と称する。 As described above, the third inorganic film 326 is configured to have a maximum thickness on the first main surface 312 side and/or the second main surface 314 side of the glass substrate 310. Hereinafter, such a thickness profile of the third inorganic film 326 will be simply referred to as "thickness distribution."
 以下、図6~図8を参照して、「厚さ分布」を有する第3の無機膜326の一態様について説明する。 Hereinafter, one embodiment of the third inorganic film 326 having a "thickness distribution" will be described with reference to FIGS. 6 to 8.
 図6~図8には、ガラス基板310の端面316に形成される第3の無機膜326の断面形態の一例を模式的に示す。 FIGS. 6 to 8 schematically show examples of the cross-sectional form of the third inorganic film 326 formed on the end surface 316 of the glass substrate 310.
 まず図6を参照すると、この例では、第3の無機膜326は、ガラス基板310の第1の主表面312の側で、最大の厚さtmaxを有する。また、第3の無機膜326は、ガラス基板310の第2の主表面314の側で、最小の厚さtminを有する。 Referring first to FIG. 6, in this example, third inorganic film 326 has a maximum thickness t max on the side of first major surface 312 of glass substrate 310 . Further, the third inorganic film 326 has a minimum thickness t min on the second main surface 314 side of the glass substrate 310 .
 なお、本発明の一実施形態において、ガラス基板310の第1の主表面312には、第1の無機膜322が設置され、第2の主表面314には、第2の無機膜324が設置される。このため、第3の無機膜326と第1の無機膜322の境界、および第3の無機膜326と第2の無機膜324の境界は、不明確となりやすい。また、その結果、第3の無機膜326の「厚さ」の定義が不明確となりやすい。 Note that in an embodiment of the present invention, a first inorganic film 322 is provided on the first main surface 312 of the glass substrate 310, and a second inorganic film 324 is provided on the second main surface 314. be done. Therefore, the boundary between the third inorganic film 326 and the first inorganic film 322 and the boundary between the third inorganic film 326 and the second inorganic film 324 tend to become unclear. Moreover, as a result, the definition of the "thickness" of the third inorganic film 326 tends to be unclear.
 そこで、本願では、図6に示すように、破線L1と破線L2の間の領域を第3の無機膜326の領域R3と定め、この領域R3における第3の無機膜326のX方向(第1の主表面312と平行な方向)の寸法を、第3の無機膜326の「厚さ」と定める。なお、破線L1は、ガラス基板310の第1の主表面312を延長した線として定められ、破線L2は、ガラス基板310の第2の主表面314を延長した線として定められる。 Therefore, in the present application, as shown in FIG. 6, the region between the broken line L1 and the broken line L2 is defined as the region R3 of the third inorganic film 326, and the (in a direction parallel to the main surface 312) is defined as the "thickness" of the third inorganic film 326. Note that the broken line L1 is defined as a line extending from the first main surface 312 of the glass substrate 310, and the broken line L2 is defined as a line extended from the second main surface 314 of the glass substrate 310.
 また、領域R3内の各位置における第3の無機膜326の「厚さ」は、ガラス基板310の端面316からの距離として定められる。 Furthermore, the "thickness" of the third inorganic film 326 at each position within the region R3 is determined as the distance from the end surface 316 of the glass substrate 310.
 次に、図7には、ガラス基板310の端面316に形成される第3の無機膜326の別の断面形態を模式的に示す。この例では、第3の無機膜326は、ガラス基板310の第1の主表面312の側および第2の主表面314の側で、最大の厚さtmaxを有する。 Next, FIG. 7 schematically shows another cross-sectional form of the third inorganic film 326 formed on the end surface 316 of the glass substrate 310. In this example, the third inorganic film 326 has a maximum thickness t max on the side of the first major surface 312 and the side of the second major surface 314 of the glass substrate 310 .
 また、第3の無機膜326は、ガラス基板310の厚さの中央側で、最小の厚さtminを有する。 Further, the third inorganic film 326 has a minimum thickness t min at the center of the thickness of the glass substrate 310 .
 次に、図8には、ガラス基板310の端面316に形成される第3の無機膜326のさらに別の断面形態を模式的に示す。 Next, FIG. 8 schematically shows still another cross-sectional form of the third inorganic film 326 formed on the end surface 316 of the glass substrate 310.
 図8に示すように、この例では、第3の無機膜326は、ガラス基板310の第1の主表面312の側で、最大の厚さtmaxを有する。また、第3の無機膜326は、ガラス基板310の厚さの中央で、最小の厚さtminを有する。さらに、第3の無機膜326は、ガラス基板310の第2の主表面314の側で、tminとtmaxの間の厚さを有する。 As shown in FIG. 8, in this example, third inorganic film 326 has a maximum thickness t max on the side of first major surface 312 of glass substrate 310 . Additionally, the third inorganic film 326 has a minimum thickness t min at the center of the thickness of the glass substrate 310 . Additionally, third inorganic film 326 has a thickness between t min and t max on the side of second major surface 314 of glass substrate 310 .
 このように、第3の無機膜326の「厚さ分布」の形態は、ガラス基板310の第1の主表面312の側および/または第2の主表面314の側で、最大の厚さを有する限り、特に限られないことに留意する必要がある。 In this way, the form of the "thickness distribution" of the third inorganic film 326 has a maximum thickness on the first main surface 312 side and/or the second main surface 314 side of the glass substrate 310. It should be noted that there are no particular limitations as long as the
 第1の無機膜322および第2の無機膜324の最大厚さは、特に限られない。第1の無機膜322および第2の無機膜324の最大厚さは、例えば、0.1μm~3.0μmの範囲であってもよい。 The maximum thicknesses of the first inorganic film 322 and the second inorganic film 324 are not particularly limited. The maximum thickness of the first inorganic film 322 and the second inorganic film 324 may be in the range of 0.1 μm to 3.0 μm, for example.
 (第1の反射防止層330および第2の反射防止層350)
 本願において、「反射防止層」とは、波長が450nmから1200nmの間の光に対して、最大反射率が45%以下となるように構成された層を意味する。
(First anti-reflection layer 330 and second anti-reflection layer 350)
In the present application, the term "antireflection layer" refers to a layer configured to have a maximum reflectance of 45% or less for light having a wavelength of 450 nm to 1200 nm.
 第1の反射防止層330は、多層膜で構成される。 The first antireflection layer 330 is composed of a multilayer film.
 多層膜は、高屈折率膜と低屈折率膜の交互膜で構成されてもよい。 The multilayer film may be composed of alternating films of high refractive index and low refractive index films.
 高屈折率膜は、例えば、チタニアおよびアルミナから選定されてもよい。また、低屈折率膜は、例えば、シリカおよびフッ化マグネシウムから選定されてもよい。 The high refractive index film may be selected from titania and alumina, for example. Furthermore, the low refractive index film may be selected from silica and magnesium fluoride, for example.
 第1の反射防止層330の厚さは、これに限られるものではないが、例えば、0.1μm~3μmの範囲である。 The thickness of the first antireflection layer 330 is, for example, in the range of 0.1 μm to 3 μm, although it is not limited thereto.
 第2の反射防止層350についても同様のことが言える。 The same can be said of the second antireflection layer 350.
 なお、前述のように、第1の反射防止層330を構成する膜のうち、ガラス基板310に最近接の膜は、第1の無機膜322であってもよい。 Note that, as described above, among the films forming the first antireflection layer 330, the film closest to the glass substrate 310 may be the first inorganic film 322.
 (樹脂層340)
 樹脂層340は、赤外線を吸収する色素を含む。
(Resin layer 340)
The resin layer 340 contains a dye that absorbs infrared rays.
 そのような色素は、例えば、スクアリリウム色素、フタロシアニン色素、およびシアニン色素から選定されてもよい。 Such dyes may be selected from, for example, squarylium dyes, phthalocyanine dyes, and cyanine dyes.
 また、樹脂層340を構成する樹脂は、透明であれば特に限られない。 Furthermore, the resin constituting the resin layer 340 is not particularly limited as long as it is transparent.
 樹脂は、例えば、ポリエステル樹脂、アクリル樹脂、エポキシ樹脂、エン・チオール樹脂、ポリカーボネート樹脂、ポリエーテル樹脂、ポリアリレート樹脂、ポリサルホン樹脂、ポリエーテルサルホン樹脂、ポリパラフェニレン樹脂、ポリアリーレンエーテルフォスフィンオキシド樹脂、ポリアミド樹脂、ポリイミド樹脂、ポリアミドイミド樹脂、ポリオレフィン樹脂、環状オレフィン樹脂、ポリウレタン樹脂、およびポリスチレン樹脂等から選定されてもよい。 Examples of the resin include polyester resin, acrylic resin, epoxy resin, ene-thiol resin, polycarbonate resin, polyether resin, polyarylate resin, polysulfone resin, polyethersulfone resin, polyparaphenylene resin, polyarylene ether phosphine oxide. The material may be selected from resins, polyamide resins, polyimide resins, polyamideimide resins, polyolefin resins, cyclic olefin resins, polyurethane resins, polystyrene resins, and the like.
 樹脂層340の分光特性、ガラス転移点(Tg)、および密着性の観点から、樹脂は、ポリイミド樹脂、ポリカーボネート樹脂、ポリエステル樹脂、およびアクリル樹脂から選定されることが好ましい。 From the viewpoint of the spectral characteristics, glass transition point (Tg), and adhesion of the resin layer 340, the resin is preferably selected from polyimide resin, polycarbonate resin, polyester resin, and acrylic resin.
 また、樹脂のガラス転移点(Tg)は、耐熱性の観点から、200℃以上であることが好ましい。 Further, the glass transition point (Tg) of the resin is preferably 200° C. or higher from the viewpoint of heat resistance.
 樹脂層340に含まれる樹脂は、1種類であってもよく、2種類以上を混合して使用してもよい。 The resin layer 340 may contain one type of resin, or a mixture of two or more types.
 樹脂層340の厚さは、特に限られない。樹脂層340は、例えば、0.3μm~10μmの範囲の厚さを有してもよい。 The thickness of the resin layer 340 is not particularly limited. The resin layer 340 may have a thickness in the range of 0.3 μm to 10 μm, for example.
 樹脂層340(すなわち色素)は、650nm~850nmの範囲に最大吸収波長を有してもよい。例えば、前述のスクアリリウム色素は、最大吸収波長が752nmであり、シアニン色素は、最大吸収波長が773nmであり得る。 The resin layer 340 (ie, the dye) may have a maximum absorption wavelength in the range of 650 nm to 850 nm. For example, the aforementioned squarylium dye may have a maximum absorption wavelength of 752 nm, and the cyanine dye may have a maximum absorption wavelength of 773 nm.
 さらに、樹脂層340は、紫外線領域の光を吸収する色素を有してもよい。そのような色素は、例えば、メロシアニン色素(最大吸収波長397nm)であってもよい。 Furthermore, the resin layer 340 may include a dye that absorbs light in the ultraviolet region. Such a dye may be, for example, a merocyanine dye (maximum absorption wavelength 397 nm).
 樹脂層340を設けることにより、赤外線領域の内部透過率をさらに低下させることが可能となる。 By providing the resin layer 340, it is possible to further reduce the internal transmittance in the infrared region.
 図9には、樹脂層340(正確には、樹脂層340に含まれる色素)の吸収スペクトルの一例を模式的に示す。図9において、横軸は波長であり、縦軸は内部透過率である。 FIG. 9 schematically shows an example of the absorption spectrum of the resin layer 340 (more precisely, the dye contained in the resin layer 340). In FIG. 9, the horizontal axis is the wavelength, and the vertical axis is the internal transmittance.
 本樹脂層340は、色素として、メロシアニン色素、シアニン色素、およびスクアリリウム色素を含む。 The resin layer 340 contains a merocyanine dye, a cyanine dye, and a squarylium dye as dyes.
 図9に示すように、この例では、樹脂層340は、波長約400nmの領域および波長約750nmの領域で、大きな吸収を示す。 As shown in FIG. 9, in this example, the resin layer 340 exhibits large absorption in a wavelength region of approximately 400 nm and a wavelength region of approximately 750 nm.
 従って、このような樹脂層340と、色素含有リン酸ガラスで構成されたガラス基板310とを組み合わせた場合、ガラス基板310のみの場合に比べて、赤外線領域の内部透過率をよりいっそう抑制できる。また、この場合、紫外線領域の内部透過率も十分に抑制できる。 Therefore, when such a resin layer 340 and the glass substrate 310 made of dye-containing phosphate glass are combined, the internal transmittance in the infrared region can be further suppressed compared to the case of using only the glass substrate 310. Furthermore, in this case, the internal transmittance in the ultraviolet region can also be sufficiently suppressed.
 (第1の光学フィルタ100)
 図10には、第1の光学フィルタ100の光学特性の一例を模式的に示す。図10において、横軸は波長であり、縦軸は透過率である。
(First optical filter 100)
FIG. 10 schematically shows an example of the optical characteristics of the first optical filter 100. In FIG. 10, the horizontal axis is wavelength and the vertical axis is transmittance.
 図10には、入射角度θ=0゜における透過率の変化が示されている。ただし、第1の光学フィルタ100の場合、入射角度θ=50゜においても、あまり光学特性は変化しない。 FIG. 10 shows the change in transmittance at the incident angle θ=0°. However, in the case of the first optical filter 100, the optical characteristics do not change much even when the incident angle θ=50°.
 図10に示すように、第1の光学フィルタ100では、
(I)入射角θ=0゜および50゜の両方において、波長450nmでの透過率T(t)450が80%以上であり、(II)入射角θ=0゜および50゜の両方において、波長450nm~波長600nmの範囲における平均透過率T(t)ave1が78%以上であり、(III)入射角θ=0゜および50゜の両方において、波長450nm~波長600nmの範囲における最大透過率T(t)max1が85%以上であり、(IV)入射角θ=0゜および50゜の両方において、透過率が50%となる最小波長λ(t)50が600nm~650nmの範囲であり、(V)入射角θ=0゜および50゜の両方において、波長750nm~1200nmの範囲における平均透過率T(t)ave2が2.0%以下であり、(VI)入射角θ=0゜および50゜の両方において、波長1000nm~1200nmの範囲における最大透過率T(t)max2が15%以下である、
 ような分光特性を得ることができる。
As shown in FIG. 10, in the first optical filter 100,
(I) At both incident angles θ=0° and 50°, the transmittance T (t)450 at a wavelength of 450 nm is 80% or more, (II) At both incident angles θ=0° and 50°, The average transmittance T (t) ave1 in the wavelength range of 450 nm to 600 nm is 78% or more, and (III) the maximum transmittance in the wavelength range of 450 nm to 600 nm at both incident angles θ = 0° and 50°. T (t)max1 is 85% or more, and (IV) the minimum wavelength λ (t)50 at which the transmittance is 50% is in the range of 600 nm to 650 nm at both incident angles θ = 0° and 50°. , (V) At both incident angles θ=0° and 50°, the average transmittance T (t) ave2 in the wavelength range of 750 nm to 1200 nm is 2.0% or less, and (VI) When the incident angle θ=0° and 50°, the maximum transmittance T (t)max2 in the wavelength range of 1000 nm to 1200 nm is 15% or less,
It is possible to obtain such spectral characteristics.
 さらに、第1の光学フィルタ100は、ガラス基板310の第1の主表面312の側から光が入射された際に、(VII)入射角θ=5゜および50゜の両方において、波長450nm~波長700nmの範囲における最大反射率R(t)max1が7%以下であり、(VIII)入射角5=0゜および50゜の両方において、波長700nm~波長1200nmの範囲における最大反射率R(t)max2が45%以下である、分光特性を有することが好ましい。 Furthermore, when light is incident from the first main surface 312 side of the glass substrate 310, the first optical filter 100 has a wavelength of 450 nm to (VII) at both incident angles θ=5° and 50°. The maximum reflectance R (t)max1 in the wavelength range of 700 nm is 7% or less, and (VIII) the maximum reflectance R (t ) in the wavelength range of 700 nm to 1200 nm at both incident angles 5 = 0° and 50°. ) max2 is preferably 45% or less.
 (本発明の一実施形態による光学フィルタの製造方法)
 次に、図11を参照して、本発明の一実施形態による光学フィルタの製造方法の一例について説明する。
(Method for manufacturing an optical filter according to an embodiment of the present invention)
Next, with reference to FIG. 11, an example of a method for manufacturing an optical filter according to an embodiment of the present invention will be described.
 図11に示すように、本発明の一実施形態による光学フィルタの製造方法(以下、「第1の方法」と称する)は、
 所定の寸法を有するガラス基板を準備する工程(工程S110)と、
 前記ガラス基板の全露出面に無機膜を形成する工程(工程S120)と、
 ガラス基板の第1の主表面に、第1の反射防止層を設置し、ガラス基板の第2の主表面に、樹脂層および第2の反射防止層を設置する工程(工程S130)と、
 を有する。
As shown in FIG. 11, a method for manufacturing an optical filter (hereinafter referred to as "first method") according to an embodiment of the present invention is as follows:
a step of preparing a glass substrate having predetermined dimensions (step S110);
forming an inorganic film on the entire exposed surface of the glass substrate (step S120);
A step of installing a first antireflection layer on the first main surface of the glass substrate, and installing a resin layer and a second antireflection layer on the second main surface of the glass substrate (step S130);
has.
 以下、各工程について説明する。 Each step will be explained below.
 なお、ここでは、前述の第3の光学フィルタ300を例に、その製造方法について説明する。従って、各部材を表す際には、図4に示した参照符号を使用する。 Here, a method for manufacturing the third optical filter 300 described above will be described as an example. Therefore, when representing each member, the reference numerals shown in FIG. 4 will be used.
 (工程S110)
 まず、ガラス基板が準備される。前述のように、ガラス基板310は、第1の主表面312、第2の主表面314、および端面316を有し、吸収剤を含むリン酸ガラスで構成される。
(Step S110)
First, a glass substrate is prepared. As previously described, the glass substrate 310 has a first major surface 312, a second major surface 314, and an end surface 316, and is constructed of phosphate glass containing an absorbent.
 ガラス基板310は、予め光学フィルタに必要な寸法に切断されていることが好ましい。次の工程S120で無機膜を形成した後にガラス基板310を切断した場合、無機膜で被覆されていない端面316が露出するからである。 It is preferable that the glass substrate 310 is cut in advance into the dimensions required for the optical filter. This is because if the glass substrate 310 is cut after forming the inorganic film in the next step S120, the end surface 316 not covered with the inorganic film will be exposed.
 (工程S120)
 次に、ガラス基板310の第1の主表面312に第1の無機膜322が設置され、第2の主表面314に第2の無機膜324が設置され、端面316に第3の無機膜326が設置される。
(Step S120)
Next, a first inorganic film 322 is installed on the first main surface 312 of the glass substrate 310, a second inorganic film 324 is installed on the second main surface 314, and a third inorganic film 326 is installed on the end surface 316. will be installed.
 第1の無機膜322~第3の無機膜326(以下、これらをまとめて、「無機膜」とも称する)は、同じ材料であっても、異なる材料であってもよい。例えば、無機膜は、いずれもアルミナで構成されてもよい。 The first to third inorganic films 322 to 326 (hereinafter collectively referred to as "inorganic films") may be made of the same material or may be made of different materials. For example, all inorganic films may be made of alumina.
 無機膜の形成方法は、特に限られない。無機膜は、例えば、蒸着法またはスパッタリング法により成膜されてもよい。 The method of forming the inorganic film is not particularly limited. The inorganic film may be formed by, for example, a vapor deposition method or a sputtering method.
 なお、同じ材料の無機膜を形成する場合、第1の主表面312に第1の無機膜322を形成する第1の処理、第2の主表面314に第2の無機膜324を形成する第2の処理、および端面316に第3の無機膜326を形成する第3の処理が、順不同に実施されてもよい。 Note that when forming inorganic films of the same material, a first process to form a first inorganic film 322 on the first main surface 312 and a second process to form a second inorganic film 324 on the second main surface 314 are performed. The second process and the third process of forming the third inorganic film 326 on the end surface 316 may be performed in random order.
 端面316に「厚さ分布」を有する第3の無機膜326を形成する方法は、特に限られない。 The method of forming the third inorganic film 326 having a "thickness distribution" on the end surface 316 is not particularly limited.
 例えば、前述の第1の処理および第2の処理の際に、成膜成分の回り込みにより、端面316に第3の無機膜326が成膜される場合がある。そのように成膜された第3の無機膜326では、ガラス基板310の厚さの中心部分で最小厚さを有し、第1の主表面312の側および/または第2の主表面314の側で最大の厚さを有するような分布(すなわち、前述の図7または図8に示した構成)が得られやすい。 For example, during the first and second treatments described above, the third inorganic film 326 may be formed on the end surface 316 due to the wraparound of film forming components. The third inorganic film 326 formed in this manner has a minimum thickness at the center of the thickness of the glass substrate 310 and has a minimum thickness on the side of the first main surface 312 and/or on the second main surface 314. A distribution in which the thickness is greatest on the sides (ie, the configuration shown in FIG. 7 or FIG. 8 described above) is likely to be obtained.
 以上の工程S120により、ガラス基板110の全露出面に無機膜が形成される。特に、ガラス基板110の端面116に「厚さ分布」を有する第3の無機膜126を形成することができる。 Through the above step S120, an inorganic film is formed on the entire exposed surface of the glass substrate 110. In particular, the third inorganic film 126 having a "thickness distribution" can be formed on the end surface 116 of the glass substrate 110.
 (工程S130)
 その後は、ガラス基板310に対して、第1の光学フィルタ100に必要な部材が順次形成される。
(Step S130)
After that, members necessary for the first optical filter 100 are sequentially formed on the glass substrate 310.
 具体的には、第1の無機膜322の上に第1の反射防止層330が設置され、第2の無機膜324の上に樹脂層340および第2の反射防止層350が設置される。 Specifically, a first antireflection layer 330 is installed on the first inorganic film 322, and a resin layer 340 and a second antireflection layer 350 are installed on the second inorganic film 324.
 前述のように、第1の反射防止層330は、複数の膜で構成される。第1の反射防止層330は、高屈折率膜と低屈折率膜を交互に成膜することにより、形成されてもよい。 As described above, the first antireflection layer 330 is composed of multiple films. The first antireflection layer 330 may be formed by alternately depositing a high refractive index film and a low refractive index film.
 第1の反射防止層330の成膜方法は、特に限られない。例えば、スパッタリング法のような一般的な成膜方法が利用されてもよい。 The method for forming the first antireflection layer 330 is not particularly limited. For example, a general film forming method such as a sputtering method may be used.
 また、樹脂層340は、色素を含有する樹脂溶液から形成される。 Further, the resin layer 340 is formed from a resin solution containing a dye.
 樹脂溶液は、樹脂および有機溶媒等を含む溶液に色素を溶解させることにより、調製されてもよい。色素は、前述のような赤外線吸収色素および紫外線吸収色素を含んでもよい。 The resin solution may be prepared by dissolving the dye in a solution containing a resin, an organic solvent, and the like. Dyes may include infrared absorbing dyes and ultraviolet absorbing dyes as described above.
 次に、スピンコート法などの塗布法により、樹脂溶液が第2の無機膜324の上に塗工される。その後、塗工膜を乾燥処理することにより、樹脂層340が形成される。 Next, a resin solution is applied onto the second inorganic film 324 by a coating method such as a spin coating method. Thereafter, the resin layer 340 is formed by drying the coating film.
 なお、第2の反射防止層350は、第1の反射防止層330と同様の方法により形成され得る。 Note that the second antireflection layer 350 may be formed by the same method as the first antireflection layer 330.
 以上の工程により、第3の光学フィルタ300を製造することができる。 Through the above steps, the third optical filter 300 can be manufactured.
 なお、上記記載では、第3の光学フィルタ300を例に、その製造方法について説明した。しかしながら、本発明の別の実施形態による光学フィルタにおいても、同様の方法で製造できることは当業者には明らかである。 Note that in the above description, the method for manufacturing the third optical filter 300 was explained using the third optical filter 300 as an example. However, it is clear to those skilled in the art that optical filters according to other embodiments of the invention can be manufactured in a similar manner.
 例えば、第2の光学フィルタ200を製造する場合、前述の第1の方法において、第1の無機膜の上に樹脂層を設置する工程が省略され、第1の無機膜の上に、第2の反射防止層が直接設置されてもよい。 For example, when manufacturing the second optical filter 200, the step of installing a resin layer on the first inorganic film in the first method described above is omitted, and the second optical filter is placed on the first inorganic film. The antireflection layer may be applied directly.
 その他にも、各種変更が可能である。 Various other changes are also possible.
 本発明の一実施形態による光学フィルタは、例えば、デジタルスチルカメラ等の撮像装置に適用できる。そのような撮像装置では、良好な色再現性を提供できる。 An optical filter according to an embodiment of the present invention can be applied to, for example, an imaging device such as a digital still camera. Such an imaging device can provide good color reproducibility.
 本発明の一実施形態による光学フィルタを備える撮像装置は、さらに、固体撮像素子と、撮像レンズと、を有し、光学フィルタは、例えば、撮像レンズと固体撮像素子との間に配置されてもよい。また、本発明の一実施形態による光学フィルタは、例えば、粘着層を介して、撮像装置の固体撮像素子および/または撮像レンズ等に直接貼着されてもよい。 An imaging device including an optical filter according to an embodiment of the present invention further includes a solid-state imaging device and an imaging lens, and the optical filter may be disposed between the imaging lens and the solid-state imaging device, for example. good. Further, the optical filter according to an embodiment of the present invention may be directly attached to a solid-state imaging device and/or an imaging lens of an imaging device, for example, via an adhesive layer.
 リン酸ガラス基板の耐久性を評価するため、以下の予備実験を行った。 In order to evaluate the durability of the phosphate glass substrate, the following preliminary experiment was conducted.
 (実験1)
 以下の方法により、露出面全体が無機膜で被覆されたガラス基板を作製した。
(Experiment 1)
A glass substrate whose entire exposed surface was covered with an inorganic film was prepared by the following method.
 まず、縦76mm×横76mm×厚さ0.28mmのガラス板を準備した。ガラス板には、以下の表1の「ガラスA」に示す組成を有するリン酸ガラスを使用した。 First, a glass plate measuring 76 mm long x 76 mm wide x 0.28 mm thick was prepared. For the glass plate, phosphate glass having the composition shown in "Glass A" in Table 1 below was used.
Figure JPOXMLDOC01-appb-T000001
 
 使用したガラス板の光学特性を前述の図5に示す。また、以下の表2の「ガラスA」の欄には、測定された光学特性から算出した各種パラメータを示す。
Figure JPOXMLDOC01-appb-T000001

The optical characteristics of the glass plate used are shown in FIG. 5 mentioned above. Further, the "Glass A" column in Table 2 below shows various parameters calculated from the measured optical properties.
Figure JPOXMLDOC01-appb-T000002
 
 
 次に、このガラス板をブレードダイシング法によりフルカットし、縦20mm×横20mm×厚さ0.28mmのガラス基板を作製した。
Figure JPOXMLDOC01-appb-T000002


Next, this glass plate was fully cut by a blade dicing method to produce a glass substrate measuring 20 mm long x 20 mm wide x 0.28 mm thick.
 次に、蒸着法により、ガラス基板の第1の主表面に第1のアルミナ膜を形成した。第1のアルミナ膜の厚さは、143nmを目標とした。 Next, a first alumina film was formed on the first main surface of the glass substrate by a vapor deposition method. The thickness of the first alumina film was targeted to be 143 nm.
 次に、ガラス基板の第2の主表面に第2のアルミナ膜を形成した。第2のアルミナ膜の厚さは、143nmを目標とした。 Next, a second alumina film was formed on the second main surface of the glass substrate. The thickness of the second alumina film was targeted to be 143 nm.
 成膜後に、走査型電子顕微鏡(Fe-SEM)を用いて、ガラス基板の端面を観測した。その結果、ガラス基板の端面は、アルミナ膜で被覆されていることが確認された。 After film formation, the end surface of the glass substrate was observed using a scanning electron microscope (Fe-SEM). As a result, it was confirmed that the end surface of the glass substrate was coated with an alumina film.
 また、端面のアルミナ膜の厚さ分布を評価した結果、アルミナ膜は、前述の図7のような形態を有することがわかった。すなわち、端面のアルミナ膜は、ガラス基板の第1の主表面の側および第2の主表面の側で最も厚く、ガラス基板の厚さ方向の中央側で最も薄い形態であった。 Furthermore, as a result of evaluating the thickness distribution of the alumina film on the end face, it was found that the alumina film had a form as shown in FIG. 7 described above. That is, the alumina film on the end face was thickest on the first main surface side and second main surface side of the glass substrate, and thinnest on the center side in the thickness direction of the glass substrate.
 この結果から、ガラス基板の第1の主表面および第2の主表面のそれぞれの側からアルミナ膜の蒸着を実施した場合、ガラス基板の端面にも蒸着材料が回り込み、ここにアルミナ膜が成膜されることがわかった。ただし、端面の厚さ方向の中央側では、いずれの側からの蒸着の際にも、蒸着材料の回り込みが十分ではなく、アルミナ膜が最も薄くなったと考えられる。 From this result, when the alumina film is deposited from each side of the first main surface and the second main surface of the glass substrate, the vapor deposition material wraps around the end face of the glass substrate, and the alumina film is formed there. I found out that it will be done. However, it is considered that on the central side of the end face in the thickness direction, the vapor deposition material did not wrap around sufficiently even during vapor deposition from either side, and the alumina film became the thinnest.
 以下の表3の「実験1」の欄には、ガラス基板の端面の3箇所におけるアルミナ膜の厚さをまとめて示す。 The "Experiment 1" column in Table 3 below summarizes the thickness of the alumina film at three locations on the end surface of the glass substrate.
Figure JPOXMLDOC01-appb-T000003
 
 表3において、「DA」は、前述の図6~図8における線L1、すなわち端面における第1の主表面の近傍を意味する。また、「DB」は、端面におけるガラス基板の中央側を意味し、「DC」とは、前述の図6~図8における線L2、すなわち端面における第2の主表面の近傍を意味する。
Figure JPOXMLDOC01-appb-T000003

In Table 3, "DA" means the vicinity of the first main surface at the line L1 in FIGS. 6 to 8 described above, that is, the end surface. Further, "DB" means the center side of the glass substrate at the end surface, and "DC" means the vicinity of the second main surface at the end surface, which is the line L2 in FIGS. 6 to 8 described above.
 次に、アルミナ膜で被覆されたガラス基板を用いて、200時間の高温高湿試験を実施した。試験温度は、85℃とし、相対湿度は、85%とした。 Next, a 200-hour high temperature and high humidity test was conducted using a glass substrate coated with an alumina film. The test temperature was 85° C. and the relative humidity was 85%.
 試験後に、ガラス基板を取り出し、状態を評価した。その結果、ガラス基板の第1の主表面および第2の主表面に、異常は認められなかった。また、端面においても、ガラスの溶出は、表面から1mm以下に抑制されていることがわかった。 After the test, the glass substrate was taken out and its condition was evaluated. As a result, no abnormality was observed on the first main surface and second main surface of the glass substrate. It was also found that glass elution was suppressed to 1 mm or less from the surface also at the end face.
 (実験2)
 実験1と同様の実験を実施した。
(Experiment 2)
An experiment similar to Experiment 1 was conducted.
 ただし、この実験2では、実験1の場合とは異なるガラス板を切断して、ガラス基板を準備した。 However, in Experiment 2, a glass substrate was prepared by cutting a different glass plate than in Experiment 1.
 ガラス板には、前述の表1の「ガラスB」に示す組成を有するリン酸ガラスを使用した。ガラス板の厚さは、0.35mmであった。 For the glass plate, phosphate glass having the composition shown in "Glass B" in Table 1 above was used. The thickness of the glass plate was 0.35 mm.
 前述の表2の「ガラスB」の欄には、ガラス板の光学特性から算出した各種パラメータを示す。 The "Glass B" column in Table 2 above shows various parameters calculated from the optical properties of the glass plate.
 その後は、実験1の場合と同様の方法により、アルミナ膜で被覆されたガラス基板を作製した。 Thereafter, a glass substrate coated with an alumina film was produced using the same method as in Experiment 1.
 前述の表3における「実験2」に欄には、ガラス基板の端面の3箇所におけるアルミナ膜の厚さをまとめて示す。 The "Experiment 2" column in Table 3 above collectively shows the thickness of the alumina film at three locations on the end surface of the glass substrate.
 次に、アルミナ膜で被覆されたガラス基板を用いて、高温高湿試験を実施した。 Next, a high temperature and high humidity test was conducted using a glass substrate coated with an alumina film.
 試験後に、ガラス基板を取り出し、状態を評価した。その結果、ガラス基板の第1の主表面および第2の主表面に、異常は認められなかった。また、端面においても、ガラスの溶出は、表面から1mm以下に抑制されていることがわかった。 After the test, the glass substrate was taken out and its condition was evaluated. As a result, no abnormality was observed on the first main surface and second main surface of the glass substrate. It was also found that glass elution was suppressed to 1 mm or less from the surface also at the end face.
 (実験3)
 以下の方法により、露出面全体が無機膜で被覆されたガラス基板を作製した。
(Experiment 3)
A glass substrate whose entire exposed surface was covered with an inorganic film was prepared by the following method.
 縦76mm×横76mm×厚さ0.28mmのガラス板を準備した。 A glass plate measuring 76 mm long x 76 mm wide x 0.28 mm thick was prepared.
 ガラス板には、前述の表1の「ガラスA」に示す組成を有するリン酸ガラスを使用した。 For the glass plate, phosphate glass having the composition shown in "Glass A" in Table 1 above was used.
 次に、蒸着法により、ガラス板の一方の主表面(第2の主表面)に、第2のアルミナ膜を形成した。第2のアルミナ膜の厚さは、143nmを目標とした。 Next, a second alumina film was formed on one main surface (second main surface) of the glass plate by a vapor deposition method. The thickness of the second alumina film was targeted to be 143 nm.
 次に、このガラス板をブレードダイシング法によりフルカットし、縦20mm×横20mm×厚さ0.28mmのガラス基板を得た。 Next, this glass plate was fully cut using a blade dicing method to obtain a glass substrate measuring 20 mm long x 20 mm wide x 0.28 mm thick.
 次に、蒸着法により、ガラス基板の第2のアルミナ膜が設置されていない主表面(第1の主表面)に第1のアルミナ膜を形成した。第1のアルミナ膜の厚さは、143nmを目標とした。 Next, a first alumina film was formed on the main surface (first main surface) on which the second alumina film of the glass substrate was not provided by a vapor deposition method. The thickness of the first alumina film was targeted to be 143 nm.
 成膜後に、走査型電子顕微鏡(Fe-SEM)を用いて、ガラス基板の端面を観測した。その結果、ガラス基板の端面のアルミナ膜は、ガラス基板の第1の主表面の側で最も厚く、ガラス基板の第2の主表面の側で最も薄い形態(前述の図6に示したような形態)であった。 After film formation, the end surface of the glass substrate was observed using a scanning electron microscope (Fe-SEM). As a result, the alumina film on the end surface of the glass substrate is thickest on the first main surface side of the glass substrate and thinnest on the second main surface side of the glass substrate (as shown in FIG. 6 above). form).
 前述の表3における「実験3」に欄には、ガラス基板の端面の3箇所におけるアルミナ膜の厚さをまとめて示す。 In the "Experiment 3" column in Table 3 above, the thicknesses of the alumina film at three locations on the end surface of the glass substrate are collectively shown.
 次に、アルミナ膜で被覆されたガラス基板を用いて、高温高湿試験を実施した。 Next, a high temperature and high humidity test was conducted using a glass substrate coated with an alumina film.
 試験後に、ガラス基板を取り出し、状態を評価した。その結果、ガラス基板の第1の主表面および第2の主表面に、異常は認められなかった。また、端面においても、ガラスの溶出は、表面から1mm以下に抑制されていることがわかった。 After the test, the glass substrate was taken out and its condition was evaluated. As a result, no abnormality was observed on the first main surface and second main surface of the glass substrate. It was also found that glass elution was suppressed to 1 mm or less from the surface also at the end face.
 (実験4)
 以下の方法により、ガラス基板を作製した。
(Experiment 4)
A glass substrate was produced by the following method.
 縦76mm×横76mm×厚さ0.28mmのガラス板を準備した。ガラス板には、前述の表1の「ガラスA」に示す組成を有するリン酸ガラスを使用した。 A glass plate measuring 76 mm long x 76 mm wide x 0.28 mm thick was prepared. For the glass plate, phosphate glass having the composition shown in "Glass A" in Table 1 above was used.
 次に、蒸着法により、ガラス板の両方の主表面に、アルミナ膜を形成した。各主表面のアルミナ膜の厚さは、143nmを目標とした。 Next, an alumina film was formed on both main surfaces of the glass plate by a vapor deposition method. The thickness of the alumina film on each main surface was targeted to be 143 nm.
 次に、成膜後のガラス板をブレードダイシング法により切断し、縦20mm×横20mm×厚さ0.28mmのガラス基板を作製した。 Next, the glass plate after the film formation was cut by a blade dicing method to produce a glass substrate measuring 20 mm long x 20 mm wide x 0.28 mm thick.
 切断後に、走査型電子顕微鏡(Fe-SEM)を用いて、得られたガラス基板の端面を観測した。 After cutting, the end surface of the obtained glass substrate was observed using a scanning electron microscope (Fe-SEM).
 前述の表3における「実験4」に欄には、ガラス基板の端面の3箇所におけるアルミナ膜の厚さをまとめて示す。 In the "Experiment 4" column in Table 3 above, the thickness of the alumina film at three locations on the end surface of the glass substrate is collectively shown.
 表3に示すように、このガラス基板の端面には、アルミナ膜が形成されていないことがわかった。 As shown in Table 3, it was found that no alumina film was formed on the end surface of this glass substrate.
 次に、ガラス基板を用いて、高温高湿試験を実施した。 Next, a high temperature and high humidity test was conducted using the glass substrate.
 試験後に、ガラス基板を取り出し、状態を評価した。その結果、本ガラス基板では、端面において、表面から1mmを超える領域に、ガラスの溶出が生じていた。 After the test, the glass substrate was taken out and its condition was evaluated. As a result, in this glass substrate, elution of glass occurred in a region exceeding 1 mm from the surface on the end face.
 このように、リン酸ガラスをガラス基板として使用した場合、外界からの水分により、ガラスが溶出すること、およびガラス基板の露出面全体をアルミナ膜で被覆することにより、そのようなガラスの溶出が抑制されることがわかった。 In this way, when phosphate glass is used as a glass substrate, the glass elutes due to moisture from the outside world, and by covering the entire exposed surface of the glass substrate with an alumina film, such elution of glass can be prevented. found to be suppressed.
 (実施例)
 以下、本発明の実施例について説明する。なお、以下の記載において、例1および例2は、実施例である。
(Example)
Examples of the present invention will be described below. In addition, in the following description, Example 1 and Example 2 are examples.
 (例1)
 以下の方法により、光学フィルタを作製した。
(Example 1)
An optical filter was produced by the following method.
 前述の実験1に示した方法と同様の方法により、露出面全体がアルミナ膜で被覆されたガラス基板を準備した。以下、このガラス基板を「被覆ガラス基板A」と称する。また、被覆ガラス基板Aの第1の主表面の側に設置されたアルミナ膜を第1のアルミナ膜と称し、第2の主表面の側に設置されたアルミナ膜を第2のアルミナ膜と称し、端面の側に設置されたアルミナ膜を第3のアルミナ膜と称する。 A glass substrate whose entire exposed surface was covered with an alumina film was prepared by a method similar to that shown in Experiment 1 above. Hereinafter, this glass substrate will be referred to as "covered glass substrate A." Further, the alumina film installed on the first main surface side of the coated glass substrate A is referred to as a first alumina film, and the alumina film installed on the second main surface side is referred to as a second alumina film. , the alumina film installed on the end face side is referred to as a third alumina film.
 次に、蒸着法により、被覆ガラス基板Aの第1のアルミナ膜の上に、第1の反射防止層を成膜した。第1の反射防止層は、シリカ膜とチタニア膜の交互膜とした。第1の反射防止層の合計厚さは、200nmである。 Next, a first antireflection layer was formed on the first alumina film of the coated glass substrate A by a vapor deposition method. The first antireflection layer was made of alternating films of silica films and titania films. The total thickness of the first antireflection layer is 200 nm.
 以下の表4には、第1の反射防止層の構成を示す。 Table 4 below shows the structure of the first antireflection layer.
Figure JPOXMLDOC01-appb-T000004
 
 
 表4において、第1の膜は、ガラス基板の第1の主表面に最近接の膜であり、以下、第1の主表面から近い順に、第2の膜、第3の膜、…、第15の膜の順に配置される。
Figure JPOXMLDOC01-appb-T000004


In Table 4, the first film is the film closest to the first main surface of the glass substrate, and the following are the second film, the third film,..., the film closest to the first main surface. 15 membranes are arranged in this order.
 次に、樹脂層用液体を調製した。樹脂層用液体は、以下のように調製した。 Next, a resin layer liquid was prepared. The resin layer liquid was prepared as follows.
 まず、シクロヘキサノンおよびγ-ブチロラクトンにより、ポリイミドワニスC3G30G(三菱ガス化学社製)を樹脂固形分が8.5wt%となるように希釈した。 First, polyimide varnish C3G30G (manufactured by Mitsubishi Gas Chemical Co., Ltd.) was diluted with cyclohexanone and γ-butyrolactone so that the resin solid content was 8.5 wt%.
 この希釈液に、色素として、化合物A、化合物B、および化合物Cを添加して、樹脂層用液体を調合した。化合物A、化合物B、および化合物Cの添加量は、それぞれ、樹脂樹脂分に対して、2.33質量%、6.08質量%、および2.56質量%とした。 A resin layer liquid was prepared by adding Compound A, Compound B, and Compound C as dyes to this diluted liquid. The amounts of Compound A, Compound B, and Compound C added were 2.33% by mass, 6.08% by mass, and 2.56% by mass, respectively, based on the resin content.
 以下の表5には、化合物A、化合物B、および化合物Cの仕様をまとめて示す。 Table 5 below summarizes the specifications of Compound A, Compound B, and Compound C.
Figure JPOXMLDOC01-appb-T000005
 
 
 化合物A、化合物B、および化合物Cは、それぞれ、以下の一般式を有する。
Figure JPOXMLDOC01-appb-T000005


Compound A, Compound B, and Compound C each have the following general formula.
Figure JPOXMLDOC01-appb-C000006
 
 
Figure JPOXMLDOC01-appb-C000006
 
 
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000008
 次に、被覆ガラス基板Aの第2のアルミナ膜の上に、樹脂層用液体をスピンコーティングした。厚さは、1μmを目標とした。
Figure JPOXMLDOC01-appb-C000008
Next, the resin layer liquid was spin coated onto the second alumina film of the coated glass substrate A. The target thickness was 1 μm.
 その後、樹脂層用液体を乾燥させて、樹脂層を形成した。 Thereafter, the resin layer liquid was dried to form a resin layer.
 この樹脂層は、前述の図9に示したような光学特性を有する。 This resin layer has optical properties as shown in FIG. 9 described above.
 次に、樹脂層の上に、第2の反射防止層を形成した。第2の反射防止層は、第1の反射防止層と同じ構成とし、蒸着法により成膜した。 Next, a second antireflection layer was formed on the resin layer. The second antireflection layer had the same structure as the first antireflection layer, and was formed by vapor deposition.
 これにより、光学フィルタが得られた。作製された光学フィルタを、「光学フィルタ1」と称する。 As a result, an optical filter was obtained. The produced optical filter is referred to as "optical filter 1."
 (例2)
 例1と同様の方法により、光学フィルタを作製した。
(Example 2)
An optical filter was produced in the same manner as in Example 1.
 ただし、この例2では、前述の実験2に示した方法と同様の方法により、露出面全体がアルミナ膜で被覆されたガラス基板を準備した。以下、このガラス基板を「被覆ガラス基板B」と称する。 However, in this Example 2, a glass substrate whose entire exposed surface was covered with an alumina film was prepared by a method similar to that shown in Experiment 2 above. Hereinafter, this glass substrate will be referred to as "covered glass substrate B."
 その後は、例1と同様の工程により、光学フィルタを作製した。 After that, an optical filter was produced using the same steps as in Example 1.
 以下、得られた光学フィルタを、「光学フィルタ2」と称する。 Hereinafter, the obtained optical filter will be referred to as "optical filter 2."
 (評価)
 各光学フィルタを用いて、以下の評価を実施した。
(evaluation)
The following evaluations were performed using each optical filter.
 (耐久性の評価)
 光学フィルタ1および光学フィルタ2を用いて、前述の条件で高温高湿試験を実施した。
(Durability evaluation)
A high temperature and high humidity test was conducted using Optical Filter 1 and Optical Filter 2 under the conditions described above.
 試験後の観察の結果、光学フィルタ1および光学フィルタ2では、ガラス基板の端面における溶出は、ほとんど認められなかった。 As a result of observation after the test, in optical filter 1 and optical filter 2, almost no elution was observed at the end surface of the glass substrate.
 (光学特性の評価)
 各光学フィルタを用いて、光学特性の評価を実施した。測定には、紫外可視近赤外分光光度計(UH4150:日立ハイテクサイエンス社製)を使用した。
(Evaluation of optical properties)
Optical characteristics were evaluated using each optical filter. For the measurement, an ultraviolet-visible near-infrared spectrophotometer (UH4150: manufactured by Hitachi High-Tech Science) was used.
 透過率の測定の場合、各光学フィルタにおいて、第1の反射防止層の側から光を入射させた。入射角は、0および50゜とした。一方、反射率の測定の場合、各光学フィルタにおいて、第1の反射防止層の側から、入射角5゜および50゜で光を入射させた。 In the case of transmittance measurement, light was incident on each optical filter from the first antireflection layer side. The angle of incidence was 0 and 50°. On the other hand, in the case of measuring the reflectance, light was incident on each optical filter from the first antireflection layer side at incident angles of 5° and 50°.
 図12には、光学フィルタ1において得られた透過率プロファイルの一例を示す。図12において、横軸は波長であり、縦軸は透過率である。図12には、入射角θ=0゜およびθ=50゜における結果が合わせて示されている。 FIG. 12 shows an example of a transmittance profile obtained in the optical filter 1. In FIG. 12, the horizontal axis is wavelength and the vertical axis is transmittance. FIG. 12 also shows the results at incident angles θ=0° and θ=50°.
 図12に示すように、光学フィルタ1では、入射角θが透過率プロファイルに及ぼす影響は、ほとんど認められないことがわかる。すなわち、可視光領域では、入射角θによらず、高い透過率が得られた。また、入射角θが変化しても、透過率が急激に低下する領域は、ほとんど変化しなかった。さらに、入射角θによらず、波長1000nm超の領域において、低い透過率を示すことがわかった。 As shown in FIG. 12, it can be seen that in the optical filter 1, the influence of the incident angle θ on the transmittance profile is hardly recognized. That is, in the visible light region, high transmittance was obtained regardless of the incident angle θ. Further, even if the incident angle θ changed, the region where the transmittance sharply decreased hardly changed. Furthermore, it was found that low transmittance was exhibited in a wavelength region exceeding 1000 nm, regardless of the incident angle θ.
 図13には、光学フィルタ1において得られた反射率プロファイルの一例を示す。図13において、横軸は波長であり、縦軸は反射率である。図13には、入射角θ=5゜およびθ=50゜における結果が合わせて示されている。 FIG. 13 shows an example of the reflectance profile obtained in the optical filter 1. In FIG. 13, the horizontal axis is wavelength and the vertical axis is reflectance. FIG. 13 also shows the results at incident angles θ=5° and θ=50°.
 図13に示すように、光学フィルタ1では、入射角θが反射率プロファイルに及ぼす影響は、ほとんど認められないことがわかる。 As shown in FIG. 13, it can be seen that in the optical filter 1, the influence of the incident angle θ on the reflectance profile is hardly recognized.
 図14には、光学フィルタ2において得られた透過率プロファイルの一例を示す。図14において、横軸は波長であり、縦軸は透過率である。図14には、入射角θ=0゜およびθ=50゜における結果が合わせて示されている。 FIG. 14 shows an example of the transmittance profile obtained in the optical filter 2. In FIG. 14, the horizontal axis is wavelength and the vertical axis is transmittance. FIG. 14 also shows the results at incident angles θ=0° and θ=50°.
 図14に示すように、光学フィルタ2においても、光学フィルタ1と同様の結果が得られた。すなわち、可視光領域では、入射角θによらず、高い透過率が得られた。また、入射角θが変化しても、透過率が急激に低下する領域は、ほとんど変化しなかった。さらに、入射角θによらず、波長1000nm超の領域において、低い透過率を示すことがわかった。 As shown in FIG. 14, the same results as for optical filter 1 were obtained for optical filter 2 as well. That is, in the visible light region, high transmittance was obtained regardless of the incident angle θ. Further, even if the incident angle θ changed, the region where the transmittance sharply decreased hardly changed. Furthermore, it was found that low transmittance was exhibited in a wavelength region exceeding 1000 nm, regardless of the incident angle θ.
 以下の表6には、光学フィルタ1および光学フィルタ2において測定された、透過率のプロファイルに関するパラメータをまとめて示した。 Table 6 below summarizes the parameters related to the transmittance profile measured in Optical Filter 1 and Optical Filter 2.
Figure JPOXMLDOC01-appb-T000009
 
 
 また、以下の表7には、光学フィルタ1および光学フィルタ2において測定された、反射率のプロファイルに関するパラメータをまとめて示した。
Figure JPOXMLDOC01-appb-T000009


In addition, Table 7 below summarizes the parameters related to the reflectance profile measured in Optical Filter 1 and Optical Filter 2.
Figure JPOXMLDOC01-appb-T000010
 
 
 このように、光学フィルタ1および光学フィルタ2では、入射角θが変化しても、光学特性がほとんど変化しないことが確認された。また、光学フィルタ1および光学フィルタ2では、赤外線が十分に遮蔽されていることが確認された。
Figure JPOXMLDOC01-appb-T000010


In this way, it was confirmed that in optical filter 1 and optical filter 2, the optical characteristics hardly change even if the incident angle θ changes. Furthermore, it was confirmed that infrared rays were sufficiently blocked by optical filter 1 and optical filter 2.
 (本発明の態様)
 本発明は、以下の態様を含む。
(Aspects of the present invention)
The present invention includes the following aspects.
 (態様1)
 ガラス基板および第1の反射防止層を有する光学フィルタであって、
 前記ガラス基板は、相互に対向する第1の主表面および第2の主表面と、両主表面をつなぐ端面とを有し、
 前記第1の反射防止層は、前記ガラス基板の前記第1の主表面の側に設置され、
 前記ガラス基板は、吸収剤を含むリン酸ガラスであり、
 前記ガラス基板の前記第1の主表面は、第1の無機膜で被覆され、前記ガラス基板の前記第2の主表面は、第2の無機膜で被覆され、前記ガラス基板の前記端面は、第3の無機膜で被覆されており、
 前記第1の無機膜は、前記第1の反射防止層を構成する膜のうち前記ガラス基板に最近接の膜であり、または前記第1の反射防止層を構成する膜とは別の膜であり、
 前記第3の無機膜は、前記第1の主表面側および前記第2の主表面側の少なくとも一方で、最大の厚さを有する、光学フィルタ。
(Aspect 1)
An optical filter having a glass substrate and a first antireflection layer,
The glass substrate has a first main surface and a second main surface facing each other, and an end surface connecting the two main surfaces,
The first antireflection layer is installed on the first main surface side of the glass substrate,
The glass substrate is phosphate glass containing an absorbent,
The first main surface of the glass substrate is coated with a first inorganic film, the second main surface of the glass substrate is coated with a second inorganic film, and the end surface of the glass substrate is coated with a third inorganic film,
The first inorganic film is a film that is closest to the glass substrate among the films that constitute the first antireflection layer, or is a film that is different from the film that constitutes the first antireflection layer. can be,
The third inorganic film has a maximum thickness on at least one of the first main surface side and the second main surface side.
 (態様2)
 前記第3の無機膜は、前記第1の主表面側または前記第2の主表面側で、最大の厚さを有する、態様1に記載の光学フィルタ。
(Aspect 2)
The optical filter according to aspect 1, wherein the third inorganic film has a maximum thickness on the first main surface side or the second main surface side.
 (態様3)
 前記第3の無機膜は、前記ガラス基板の厚さ方向の中央で最も薄い形状を有する、態様1または2に記載の光学フィルタ。
(Aspect 3)
The optical filter according to aspect 1 or 2, wherein the third inorganic film has the thinnest shape at the center in the thickness direction of the glass substrate.
 (態様4)
 前記ガラス基板の前記第2の主表面の側に設置された前記第2の無機膜の上には、色素を含む樹脂層が配置され、
 該樹脂層は、650nm~850nmの範囲に最大吸収波長を有する、態様1乃至3のいずれか一つに記載の光学フィルタ。
(Aspect 4)
A resin layer containing a dye is disposed on the second inorganic film installed on the second main surface side of the glass substrate,
The optical filter according to any one of aspects 1 to 3, wherein the resin layer has a maximum absorption wavelength in a range of 650 nm to 850 nm.
 (態様5)
 前記樹脂層の上には、第2の反射防止層が配置される、態様4に記載の光学フィルタ。
(Aspect 5)
The optical filter according to aspect 4, wherein a second antireflection layer is disposed on the resin layer.
 (態様6)
 前記ガラス基板の前記第1の主表面は、前記第1の反射防止層で被覆される、態様1乃至5のいずれか一つに記載の光学フィルタ。
(Aspect 6)
The optical filter according to any one of aspects 1 to 5, wherein the first main surface of the glass substrate is coated with the first antireflection layer.
 (態様7)
 前記第1の無機膜、前記第2の無機膜、および前記第3の無機膜は、同じ材料である、態様1乃至6のいずれか一つに記載の光学フィルタ。
(Aspect 7)
The optical filter according to any one of aspects 1 to 6, wherein the first inorganic film, the second inorganic film, and the third inorganic film are made of the same material.
 (態様8)
 前記第1の無機膜、前記第2の無機膜、および前記第3の無機膜は、酸化アルミニウムの膜である、態様7に記載の光学フィルタ。
(Aspect 8)
The optical filter according to aspect 7, wherein the first inorganic film, the second inorganic film, and the third inorganic film are aluminum oxide films.
 (態様9)
 入射角が5゜のときの透過率(%)をT(5)とし、入射角が5゜のときの反射率(%)をR(5)としたとき、
 前記ガラス基板の内部透過率は、以下の式
 
内部透過率(%)=T(5)/(100-R(5))×100
 
で表され、
 前記ガラス基板は、
(i)波長450nmでの内部透過率T(g)450が92%以上であり、
(ii)波長450nm~波長600nmの範囲における平均内部透過率T(g)ave1が90%以上であり、(iii)内部透過率が50%となる最小波長λ(g)50が625nm~650nmの範囲であり、(iv)波長750nm~1000nmの範囲における平均内部透過率T(g)ave2が2.5%以下であり、(v)波長1000nm~1200nmの範囲における平均内部透過率T(g)ave3が7%以下である、
 分光特性を有する、態様1乃至8のいずれか一つに記載の光学フィルタ。
(Aspect 9)
When the transmittance (%) when the angle of incidence is 5° is T (5) , and the reflectance (%) when the angle of incidence is 5° is R (5) ,
The internal transmittance of the glass substrate is calculated by the following formula:
Internal transmittance (%) = T (5) / (100 - R (5) ) x 100

It is expressed as
The glass substrate is
(i) Internal transmittance T at a wavelength of 450 nm (g) 450 is 92% or more,
(ii) Average internal transmittance T in the wavelength range of 450 nm to wavelength 600 nm (g) ave1 is 90% or more, (iii) Minimum wavelength λ at which the internal transmittance is 50% (g) 50 is in the range of 625 nm to 650 nm (iv) Average internal transmittance T in the wavelength range of 750 nm to 1000 nm (g) ave2 is 2.5% or less, (v) Average internal transmittance T in the wavelength range of 1000 nm to 1200 nm (g) ave3 is 7% or less,
The optical filter according to any one of aspects 1 to 8, having spectral characteristics.
 (態様10)
 前記ガラス基板は、酸化物基準の質量百分率で、
 50%~80%のP
 5%~20%のAl
 4%~20%のCuO、
 0.5%~15%のR(1)O、ここで、R(1)は、Li、Na、K、Rb、およびCsからなる群から選択された少なくとも一つの成分である、ならびに
 0~15%のR(2)O、ここで、R(2)は、Ca、Mg、Ba、Sr、およびZnからなる群から選択された少なくとも一つの成分である、
 を含む、態様1乃至9のいずれか一つに記載の光学フィルタ。
(Aspect 10)
The glass substrate has a mass percentage based on oxide,
50% to 80% P 2 O 5 ,
5% to 20% Al 2 O 3 ,
4% to 20% CuO,
0.5% to 15% R(1) 2 O, where R(1) is at least one component selected from the group consisting of Li, Na, K, Rb, and Cs, and 0 ~15% R(2)O, where R(2) is at least one component selected from the group consisting of Ca, Mg, Ba, Sr, and Zn;
The optical filter according to any one of aspects 1 to 9, comprising:
 (態様11)
 当該光学フィルタは、
(I)入射角θ=0゜および50゜の両方において、波長450nmでの透過率T(t)450が80%以上であり、(II)入射角θ=0゜および50゜の両方において、波長450nm~波長600nmの範囲における平均透過率T(t)ave1が78%以上であり、(III)入射角θ=0゜および50゜の両方において、波長450nm~波長600nmの範囲における最大透過率T(t)max1が85%以上であり、(IV)入射角θ=0゜および50゜の両方において、透過率が50%となる最小波長λ(t)50が600nm~650nmの範囲であり、(V)入射角θ=0゜および50゜の両方において、波長750nm~1200nmの範囲における平均透過率T(t)ave2が2.0%以下であり、(VI)入射角θ=0゜および50゜の両方において、波長1000nm~1200nmの範囲における最大透過率T(t)max2が15%以下である、
 分光特性を有する、態様1乃至10のいずれか一つに記載の光学フィルタ。
(Aspect 11)
The optical filter is
(I) At both incident angles θ=0° and 50°, the transmittance T (t)450 at a wavelength of 450 nm is 80% or more, (II) At both incident angles θ=0° and 50°, The average transmittance T (t) ave1 in the wavelength range of 450 nm to 600 nm is 78% or more, and (III) the maximum transmittance in the wavelength range of 450 nm to 600 nm at both incident angles θ = 0° and 50°. T (t)max1 is 85% or more, and (IV) the minimum wavelength λ (t)50 at which the transmittance is 50% is in the range of 600 nm to 650 nm at both incident angles θ = 0° and 50°. , (V) At both incident angles θ=0° and 50°, the average transmittance T (t) ave2 in the wavelength range of 750 nm to 1200 nm is 2.0% or less, and (VI) When the incident angle θ=0° and 50°, the maximum transmittance T (t)max2 in the wavelength range of 1000 nm to 1200 nm is 15% or less,
The optical filter according to any one of aspects 1 to 10, having spectral characteristics.
 (態様12)
 当該光学フィルタは、前記ガラス基板の前記第1の主表面の側から光が入射された際に、(VII)入射角θ=5゜および50゜の両方において、波長450nm~波長700nmの範囲における最大反射率R(t)max1が7%以下であり、(VIII)入射角5=0゜および50゜の両方において、波長700nm~波長1200nmの範囲における最大反射率R(t)max2が45%以下である、
 分光特性を有する、態様1乃至11のいずれか一つに記載の光学フィルタ。
(Aspect 12)
When light is incident from the first main surface side of the glass substrate, the optical filter (VII) has a wavelength range of 450 nm to 700 nm at both incident angles θ=5° and 50°. The maximum reflectance R (t)max1 is 7% or less, and the maximum reflectance R (t)max2 is 45% in the wavelength range of 700 nm to wavelength 1200 nm at both incident angles 5=0° and 50°. The following is
The optical filter according to any one of aspects 1 to 11, having spectral characteristics.
 (態様13)
 態様1乃至12のいずれか一つに記載の光学フィルタを有する、撮像装置。
(Aspect 13)
An imaging device comprising the optical filter according to any one of aspects 1 to 12.
 
 本願は、2022年6月24日に出願した日本国特許出願第2022-102153号に基づく優先権を主張するものであり、同日本国出願の全内容を本願に参照により援用する。

This application claims priority based on Japanese Patent Application No. 2022-102153 filed on June 24, 2022, and the entire contents of the same Japanese application are incorporated by reference into this application.
 100   第1の光学フィルタ
 110   ガラス基板
 112   第1の主表面
 114   第2の主表面
 116   端面
 122   第1の無機膜
 124   第2の無機膜
 126   第3の無機膜
 130   第1の反射防止層
 200   第2の光学フィルタ
 210   ガラス基板
 212   第1の主表面
 214   第2の主表面
 216   端面
 222   第1の無機膜
 224   第2の無機膜
 226   第3の無機膜
 230   第1の反射防止層
 250   第2の反射防止層
 300   第3の光学フィルタ
 310   ガラス基板
 312   第1の主表面
 314   第2の主表面
 316   端面
 322   第1の無機膜
 324   第2の無機膜
 326   第3の無機膜
 330   第1の反射防止層
 340   樹脂層
 350   第2の反射防止層
100 first optical filter 110 glass substrate 112 first main surface 114 second main surface 116 end face 122 first inorganic film 124 second inorganic film 126 third inorganic film 130 first antireflection layer 200 2 optical filter 210 Glass substrate 212 First main surface 214 Second main surface 216 End surface 222 First inorganic film 224 Second inorganic film 226 Third inorganic film 230 First antireflection layer 250 Second Antireflection layer 300 Third optical filter 310 Glass substrate 312 First main surface 314 Second main surface 316 End surface 322 First inorganic film 324 Second inorganic film 326 Third inorganic film 330 First antireflection Layer 340 Resin layer 350 Second antireflection layer

Claims (13)

  1.  ガラス基板および第1の反射防止層を有する光学フィルタであって、
     前記ガラス基板は、相互に対向する第1の主表面および第2の主表面と、両主表面をつなぐ端面とを有し、
     前記第1の反射防止層は、前記ガラス基板の前記第1の主表面の側に設置され、
     前記ガラス基板は、吸収剤を含むリン酸ガラスであり、
     前記ガラス基板の前記第1の主表面は、第1の無機膜で被覆され、前記ガラス基板の前記第2の主表面は、第2の無機膜で被覆され、前記ガラス基板の前記端面は、第3の無機膜で被覆されており、
     前記第1の無機膜は、前記第1の反射防止層を構成する膜のうち前記ガラス基板に最近接の膜であり、または前記第1の反射防止層を構成する膜とは別の膜であり、
     前記第3の無機膜は、前記第1の主表面側および前記第2の主表面側の少なくとも一方で、最大の厚さを有する、光学フィルタ。
    An optical filter having a glass substrate and a first antireflection layer,
    The glass substrate has a first main surface and a second main surface facing each other, and an end surface connecting the two main surfaces,
    The first antireflection layer is installed on the first main surface side of the glass substrate,
    The glass substrate is phosphate glass containing an absorbent,
    The first main surface of the glass substrate is coated with a first inorganic film, the second main surface of the glass substrate is coated with a second inorganic film, and the end surface of the glass substrate is coated with a third inorganic film,
    The first inorganic film is a film that is closest to the glass substrate among the films that constitute the first antireflection layer, or is a film that is different from the film that constitutes the first antireflection layer. can be,
    The third inorganic film has a maximum thickness on at least one of the first main surface side and the second main surface side.
  2.  前記第3の無機膜は、前記第1の主表面側または前記第2の主表面側で、最大の厚さを有する、請求項1に記載の光学フィルタ。 The optical filter according to claim 1, wherein the third inorganic film has a maximum thickness on the first main surface side or the second main surface side.
  3.  前記第3の無機膜は、前記ガラス基板の厚さ方向の中央で最も薄い形状を有する、請求項1または2に記載の光学フィルタ。 The optical filter according to claim 1 or 2, wherein the third inorganic film has the thinnest shape at the center in the thickness direction of the glass substrate.
  4.  前記ガラス基板の前記第2の主表面の側に設置された前記第2の無機膜の上には、色素を含む樹脂層が配置され、
     該樹脂層は、650nm~850nmの範囲に最大吸収波長を有する、請求項1または2に記載の光学フィルタ。
    A resin layer containing a dye is disposed on the second inorganic film installed on the second main surface side of the glass substrate,
    The optical filter according to claim 1 or 2, wherein the resin layer has a maximum absorption wavelength in a range of 650 nm to 850 nm.
  5.  前記樹脂層の上には、第2の反射防止層が配置される、請求項4に記載の光学フィルタ。 The optical filter according to claim 4, wherein a second antireflection layer is disposed on the resin layer.
  6.  前記ガラス基板の前記第1の主表面は、前記第1の反射防止層で被覆される、請求項1または2に記載の光学フィルタ。 The optical filter according to claim 1 or 2, wherein the first main surface of the glass substrate is coated with the first antireflection layer.
  7.  前記第1の無機膜、前記第2の無機膜、および前記第3の無機膜は、同じ材料である、請求項1または2に記載の光学フィルタ。 The optical filter according to claim 1 or 2, wherein the first inorganic film, the second inorganic film, and the third inorganic film are made of the same material.
  8.  前記第1の無機膜、前記第2の無機膜、および前記第3の無機膜は、酸化アルミニウムの膜である、請求項7に記載の光学フィルタ。 The optical filter according to claim 7, wherein the first inorganic film, the second inorganic film, and the third inorganic film are aluminum oxide films.
  9.  入射角が5゜のときの透過率(%)をT(5)とし、入射角が5゜のときの反射率(%)をR(5)としたとき、
     前記ガラス基板の内部透過率は、以下の式
     
    内部透過率(%)=T(5)/(100-R(5))×100
     
    で表され、
     前記ガラス基板は、
    (i)波長450nmでの内部透過率T(g)450が92%以上であり、
    (ii)波長450nm~波長600nmの範囲における平均内部透過率T(g)ave1が90%以上であり、(iii)内部透過率が50%となる最小波長λ(g)50が625nm~650nmの範囲であり、(iv)波長750nm~1000nmの範囲における平均内部透過率T(g)ave2が2.5%以下であり、(v)波長1000nm~1200nmの範囲における平均内部透過率T(g)ave3が7%以下である、
     分光特性を有する、請求項1または2に記載の光学フィルタ。
    When the transmittance (%) when the angle of incidence is 5° is T (5) , and the reflectance (%) when the angle of incidence is 5° is R (5) ,
    The internal transmittance of the glass substrate is calculated by the following formula:
    Internal transmittance (%) = T (5) / (100 - R (5) ) x 100

    It is expressed as
    The glass substrate is
    (i) Internal transmittance T at a wavelength of 450 nm (g) 450 is 92% or more,
    (ii) Average internal transmittance T in the wavelength range of 450 nm to wavelength 600 nm (g) ave1 is 90% or more, (iii) Minimum wavelength λ at which the internal transmittance is 50% (g) 50 is in the range of 625 nm to 650 nm (iv) Average internal transmittance T in the wavelength range of 750 nm to 1000 nm (g) ave2 is 2.5% or less, (v) Average internal transmittance T in the wavelength range of 1000 nm to 1200 nm (g) ave3 is 7% or less,
    The optical filter according to claim 1 or 2, having spectral characteristics.
  10.  前記ガラス基板は、酸化物基準の質量百分率で、
     50%~80%のP
     5%~20%のAl
     4%~20%のCuO、
     0.5%~15%のR(1)O、ここで、R(1)は、Li、Na、K、Rb、およびCsからなる群から選択された少なくとも一つの成分である、ならびに
     0~15%のR(2)O、ここで、R(2)は、Ca、Mg、Ba、Sr、およびZnからなる群から選択された少なくとも一つの成分である、
     を含む、請求項1または2に記載の光学フィルタ。
    The glass substrate has a mass percentage based on oxide,
    50% to 80% P 2 O 5 ,
    5% to 20% Al 2 O 3 ,
    4% to 20% CuO,
    0.5% to 15% R(1) 2 O, where R(1) is at least one component selected from the group consisting of Li, Na, K, Rb, and Cs, and 0 ~15% R(2)O, where R(2) is at least one component selected from the group consisting of Ca, Mg, Ba, Sr, and Zn;
    The optical filter according to claim 1 or 2, comprising:
  11.  当該光学フィルタは、
    (I)入射角θ=0゜および50゜の両方において、波長450nmでの透過率T(t)450が80%以上であり、(II)入射角θ=0゜および50゜の両方において、波長450nm~波長600nmの範囲における平均透過率T(t)ave1が78%以上であり、(III)入射角θ=0゜および50゜の両方において、波長450nm~波長600nmの範囲における最大透過率T(t)max1が85%以上であり、(IV)入射角θ=0゜および50゜の両方において、透過率が50%となる最小波長λ(t)50が600nm~650nmの範囲であり、(V)入射角θ=0゜および50゜の両方において、波長750nm~1200nmの範囲における平均透過率T(t)ave2が2.0%以下であり、(VI)入射角θ=0゜および50゜の両方において、波長1000nm~1200nmの範囲における最大透過率T(t)max2が15%以下である、
     分光特性を有する、請求項1または2に記載の光学フィルタ。
    The optical filter is
    (I) At both incident angles θ=0° and 50°, the transmittance T (t)450 at a wavelength of 450 nm is 80% or more, (II) At both incident angles θ=0° and 50°, The average transmittance T (t) ave1 in the wavelength range of 450 nm to 600 nm is 78% or more, and (III) the maximum transmittance in the wavelength range of 450 nm to 600 nm at both incident angles θ = 0° and 50°. T (t)max1 is 85% or more, and (IV) the minimum wavelength λ (t)50 at which the transmittance is 50% is in the range of 600 nm to 650 nm at both incident angles θ = 0° and 50°. , (V) At both incident angles θ=0° and 50°, the average transmittance T (t) ave2 in the wavelength range of 750 nm to 1200 nm is 2.0% or less, and (VI) When the incident angle θ=0° and 50°, the maximum transmittance T (t)max2 in the wavelength range of 1000 nm to 1200 nm is 15% or less,
    The optical filter according to claim 1 or 2, having spectral characteristics.
  12.  当該光学フィルタは、前記ガラス基板の前記第1の主表面の側から光が入射された際に、(VII)入射角θ=5゜および50゜の両方において、波長450nm~波長700nmの範囲における最大反射率R(t)max1が7%以下であり、(VIII)入射角5=0゜および50゜の両方において、波長700nm~波長1200nmの範囲における最大反射率R(t)max2が45%以下である、
     分光特性を有する、請求項1または2に記載の光学フィルタ。
    When light is incident from the first main surface side of the glass substrate, the optical filter (VII) has a wavelength range of 450 nm to 700 nm at both incident angles θ=5° and 50°. The maximum reflectance R (t)max1 is 7% or less, and the maximum reflectance R (t)max2 is 45% in the wavelength range of 700 nm to wavelength 1200 nm at both incident angles 5=0° and 50°. The following is
    The optical filter according to claim 1 or 2, having spectral characteristics.
  13.  請求項1または2に記載の光学フィルタを有する、撮像装置。 An imaging device comprising the optical filter according to claim 1 or 2.
PCT/JP2023/022132 2022-06-24 2023-06-14 Optical filter and imaging device WO2023248908A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-102153 2022-06-24
JP2022102153 2022-06-24

Publications (1)

Publication Number Publication Date
WO2023248908A1 true WO2023248908A1 (en) 2023-12-28

Family

ID=89379872

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/022132 WO2023248908A1 (en) 2022-06-24 2023-06-14 Optical filter and imaging device

Country Status (1)

Country Link
WO (1) WO2023248908A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02178601A (en) * 1988-12-28 1990-07-11 Toshiba Glass Co Ltd Optical glass
JP2011008076A (en) * 2009-06-26 2011-01-13 Asahi Glass Co Ltd Optical element and method for producing the same
WO2014030628A1 (en) * 2012-08-23 2014-02-27 旭硝子株式会社 Near-infrared cut filter and solid-state imaging device
WO2016114362A1 (en) * 2015-01-14 2016-07-21 旭硝子株式会社 Near-infrared cut filter and solid-state imaging device
JP2021089357A (en) * 2019-12-03 2021-06-10 Hoya株式会社 Near-infrared cut filter and imaging device having the same
WO2023008291A1 (en) * 2021-07-30 2023-02-02 Agc株式会社 Optical filter

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02178601A (en) * 1988-12-28 1990-07-11 Toshiba Glass Co Ltd Optical glass
JP2011008076A (en) * 2009-06-26 2011-01-13 Asahi Glass Co Ltd Optical element and method for producing the same
WO2014030628A1 (en) * 2012-08-23 2014-02-27 旭硝子株式会社 Near-infrared cut filter and solid-state imaging device
WO2016114362A1 (en) * 2015-01-14 2016-07-21 旭硝子株式会社 Near-infrared cut filter and solid-state imaging device
JP2021089357A (en) * 2019-12-03 2021-06-10 Hoya株式会社 Near-infrared cut filter and imaging device having the same
WO2023008291A1 (en) * 2021-07-30 2023-02-02 Agc株式会社 Optical filter

Similar Documents

Publication Publication Date Title
US10795066B2 (en) Infrared-cut filter and imaging optical system
KR101374755B1 (en) Infrared blocking filter
US20160011348A1 (en) Infrared cut filter
US10310150B2 (en) Near-infrared cut filter and solid-state imaging device
US9201181B2 (en) Infrared cut filter and imaging apparatus
JP5849719B2 (en) Light absorber and imaging device using the same
JP2008051985A (en) Near infrared ray absorbing filter
JP2014203044A (en) Infrared cut filter and image capturing device
US11675116B2 (en) Near-infrared cut-off filter and imaging device including the same
TWI798400B (en) filter
KR102553699B1 (en) Optical Filters and Imaging Devices
KR102540605B1 (en) Optical Filters and Imaging Devices
WO2016189789A1 (en) Image pickup element
KR101410962B1 (en) Glass, device and light filter for absorbing near infra-red ray
JP2017167557A (en) Light absorber and image capturing device using the same
WO2019138976A1 (en) Optical filter and imaging device
WO2023248908A1 (en) Optical filter and imaging device
JP2024041789A (en) Optical filters, near-infrared cut filters, and imaging devices
WO2023248900A1 (en) Optical filter and imaging device
WO2023248903A1 (en) Optical filter and imaging device
JP2020109496A (en) Optical filter and near-infrared cut filter
WO2022138252A1 (en) Optical filter
WO2019069688A1 (en) Optical filter and imaging device
JP6156468B2 (en) Light absorber and imaging device using the same
JP6706700B2 (en) Infrared cut filter, imaging device, and method for manufacturing infrared cut filter

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23827094

Country of ref document: EP

Kind code of ref document: A1