WO2023248624A1 - タンパク質の検出および定量のための方法、装置及びプログラム - Google Patents

タンパク質の検出および定量のための方法、装置及びプログラム Download PDF

Info

Publication number
WO2023248624A1
WO2023248624A1 PCT/JP2023/016945 JP2023016945W WO2023248624A1 WO 2023248624 A1 WO2023248624 A1 WO 2023248624A1 JP 2023016945 W JP2023016945 W JP 2023016945W WO 2023248624 A1 WO2023248624 A1 WO 2023248624A1
Authority
WO
WIPO (PCT)
Prior art keywords
antibody
antigen
chambers
modified particles
sample
Prior art date
Application number
PCT/JP2023/016945
Other languages
English (en)
French (fr)
Inventor
典彦 直野
修 坂本
弘泰 武居
Original Assignee
アイポア株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アイポア株式会社 filed Critical アイポア株式会社
Publication of WO2023248624A1 publication Critical patent/WO2023248624A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/483Physical analysis of biological material
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/543Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals

Definitions

  • the present invention relates to a method, an apparatus, and a program for detecting and quantifying proteins contained in a sample.
  • proteins are basic elements constituting living organisms, their detection and quantification are fundamental means for research related to living organisms. Furthermore, detection and quantification of various proteins are widely used in clinical tests for various diseases. In particular, if it were possible to test microscopic markers of various diseases such as malignant tumors, cranial nerve diseases, and collagen diseases easily, at low cost, and frequently, it would be possible to prevent the disease from worsening through early detection and improve the patient's quality of life. It has a great effect on improvement.
  • ELISA Enzyme-Linked Immuno Sorbent Assay
  • CLEIA Cyhemiluminescent Enzyme Immunoassay
  • CLIA Chemiluminescent Immunoassay
  • High-sensitivity immunoassay technology such as so-called digital ELISA has been proposed by developing methods that utilize such chemiluminescent substances and achieving high sensitivity by combining nano-sized wells and antibody-modified beads (Patent Document 1). ).
  • Patent Document 1 High-sensitivity immunoassay technology
  • such a method requires a complicated measurement protocol and requires a large and precise optical measurement system, making the measurement equipment expensive. For this reason, it is not widely used as a low-cost, simple, and frequent means of clinical testing.
  • a problem with the conventional techniques as described above is the complexity of the measurement procedure and the amount of time it takes.
  • it is necessary to repeat washing after each treatment such as antibody immobilization, blocking, and incubation.
  • Adsorption during immobilization of the primary antibody, adsorption of the target protein to other than the antibody, adsorption of the detection antibody to other than the antigen, and residual antibody/antigen on the substrate all become noise during absorbance measurement, and the target antigen It has a significant negative impact on the sensitivity, specificity, and linearity of quantification in detection and quantification.
  • repeated cleaning is essential, which hinders shortening of inspection time and cost reduction.
  • Non-Patent Document 1 a technique has been proposed in which proteins are directly observed one by one without using nano-sized wells and optical systems.
  • Non-Patent Document 2 we will use the so-called pore electrical resistance method (patented), in which nano-sized particles in an electrolytic solution are driven by electrophoresis and transient changes in electrical resistance are observed as they pass through pores close to the size of the particles.
  • Reference 2 is used.
  • biological samples contain countless amounts of proteins, cells and their debris, and in some cases, pathogens such as viruses and bacteria. For this reason, the pulse waveform measured when the target antigen passes through the pores is almost entirely due to the fine particles that are not to be measured as described above.
  • the present invention was made in view of this situation, and it is possible to obtain highly sensitive and inexpensive proteins (or antibodies or antigens) required for clinical tests that contain many contaminants, without completely removing contaminants. , realizing quick and easy detection and quantification. That is, the present invention can provide the following aspects.
  • a method for estimating the presence or absence or concentration of an antigen or antibody to be detected in a biological sample collected from a living body comprising: filtering the biological sample with a filter having a blocking size m to create a filtered sample; Antibody-modified particles having a particle diameter d and having an antibody that binds to the antigen attached to the surface thereof, or antigen-modified particles having a particle diameter d and having an antigen that binds to the antibody attached to the surface thereof; the filtered sample; A measurement target sample is created by mixing with the first electrolyte, One of the two chambers of a sensor having a structure in which two chambers separated by a partition wall having a pore having a hole diameter D communicate through the pore, and each of the two chambers has an electrode.
  • the antibody-modified particle or the antigen-modified particle is A transient change in the ionic current that occurs each time the ionic current passes through the pore is measured as a pulse waveform group consisting of a plurality of pulse waveforms, Estimating the presence or absence or concentration of an antigen or antibody to be detected in the biological sample by analyzing the pulse waveform group,
  • the inhibition size m is not less than the lower limit determined according to the size of the antigen or antibody to be detected and not more than 1/2 of the hole diameter D, and A method characterized in that the diameter d of the antibody-modified particles or the antigen-modified particles is 1/5 or more of the hole diameter D and less than D.
  • the blocking size m is 2 nm or more and 1/10 or less of the hole diameter D, and The method according to aspect 1, wherein the diameter d 1 of the antibody-modified particles or the antigen-modified particles is 1/5 or more of the hole diameter D and less than D.
  • Aspect 3 An embodiment characterized in that the aggregation state of the antibody-modified particles or the antigen-modified particles in the biological sample is measured by measuring the transient change in the ionic current as a pulse waveform group consisting of a plurality of pulse waveforms. The method described in 1 or 2.
  • Aspect 4 extracting a selected pulse waveform having a peak current equal to or higher than an exclusion threshold from the pulse waveform group, Detecting the presence or absence of an antigen or antibody to be detected in the biological sample or calculating an estimated value of the concentration by analyzing the selected pulse waveform group, The method according to aspect 1, wherein the diameter d of the antibody-modified particles or the antigen-modified particles is less than the hole diameter D, and the inhibition size m is 1/2 or less of the diameter d.
  • Aspect 5 The method according to aspect 4, further comprising recursively determining the exclusion threshold so that the estimated concentration value becomes close to the true value of the antigen or antibody to be detected contained in the biological sample.
  • Aspect 6 The method according to any one of aspects 1 to 5, wherein the first electrolyte and the second electrolyte have different compositions.
  • Aspect 7 The method according to any one of aspects 1 to 5, wherein the first electrolytic solution and the second electrolytic solution have the same composition.
  • a device for estimating the presence or absence or concentration of an antigen or antibody to be detected in a biological sample collected from a living body comprising: a filter having a rejection size m; A sensor having a structure in which two chambers separated by a partition wall having a pore having a hole diameter D communicate with each other through the pore, and each of the two chambers has an electrode; an interface for connecting to a computer via a network; Antibody-modified particles having a particle diameter d and having an antibody that binds to the antigen attached to the surface thereof, or antigen-modified particles having a particle diameter d and having an antigen that binds to the antibody attached to the surface thereof; a filtered sample filtered by the filter; configured to fill one of the two chambers with a measurement target sample created by mixing with a first electrolyte, It is configured to fill the other of the two chambers of the sensor with a second electrolyte and to electrically conduct the two chambers through the pores, A voltage is applied between two electrodes
  • the inhibition size m is not less than the lower limit determined according to the size of the antigen or antibody to be detected and not more than 1/2 of the hole diameter D, and the diameter d of the antibody-modified particles or the antigen-modified particles is An apparatus characterized in that the hole diameter is 1/5 or more of the hole diameter D and less than the hole diameter D.
  • Aspect 9 The device according to aspect 8, wherein the blocking size m is 1/10 or less of the hole diameter D.
  • Aspect 10 In a computer having a processor configured such that two chambers separated by a partition communicate with each other through a pore and are connected via a network to a sensor having a structure in which each of the two chambers has an electrode.
  • a program comprising computer-readable instructions configured to be executed by a processor to perform the following steps: filtering the biological sample through a filter having a blocking size m to create a filtered sample; Antibody-modified particles having a particle diameter d on which an antibody that binds to the antigen is attached, or antigen-modified particles having a particle diameter d and having an antigen that binds to the antibody attached to the surface; the filtered sample; A step of mixing the first electrolyte to create a measurement target sample; One of the two chambers of a sensor having a structure in which two chambers separated by a partition wall having a pore having a hole diameter D communicate through the pore, and each of the two chambers has an electrode.
  • the antibody-modified particle or the antigen-modified particle is a step of measuring a transient change in the ionic current that occurs each time the ionic current passes through the pore as a pulse waveform group consisting of a plurality of pulse waveforms; estimating the presence or absence or concentration of an antigen or antibody to be detected in the biological sample by analyzing the pulse waveform group;
  • the inhibition size m is not less than the lower limit determined according to the size of the antigen or antibody to be detected and not more than 1/2 of the hole diameter D, and the diameter d of the antibody-modified particles or the antigen-modified particles is A program characterized in that the diameter is 1/5 or more of the hole diameter D
  • the present invention has the effect of enabling highly sensitive, inexpensive, rapid and simple detection and quantification of proteins (or antibodies or antigens).
  • 1 shows an example of a device structure of a sensor used in the present invention.
  • An electron microscope image of a pore used to measure pulse waveforms is shown.
  • An example of a transient change in ion current is shown.
  • 1 is a chart outlining principles and procedures for detecting or quantifying antigens in biological samples, according to an embodiment of the present invention.
  • 1 is a chart showing an example of a procedure for producing antibody-modified particles. A state in which the chamber is filled with a sample to be measured is schematically shown. A histogram of the number of pulses for each peak current of the pulse waveform is shown for measurements at each concentration.
  • FIG. 2 is a diagram illustrating a method for measuring influenza A type N protein as a target antigen using a culture supernatant of influenza type A (N1H1 A/California/07/2009) MDCK cells.
  • FIG. 3 is a diagram illustrating a method for quantifying inhibition size in the present invention.
  • the present invention can detect and quantify antigens in biological samples. It is also possible to detect and quantify antibodies in biological samples.
  • antibody-modified particles whose surfaces are modified with an antibody that specifically binds to the antigen to be detected or quantified (hereinafter referred to as "target antigen") are used.
  • antigen-modified particles whose surfaces are modified with an antigen that specifically binds to the antibody to be detected or quantified (hereinafter referred to as "target antibody”) are used.
  • target antibody antigen-modified particles whose surfaces are modified with an antigen that specifically binds to the antibody to be detected or quantified
  • the procedures and principles of the present invention are the same when detecting or quantifying a target antigen using antibody-modified particles and when detecting or quantifying a target antibody using antigen-modified particles.
  • the former that is, an example of detecting or quantifying a target antigen using antibody-modified particles, will be described below.
  • antibodies in biological samples can also be detected and quantified. That is, this other embodiment can be understood by replacing the antigen in the previous explanation with an antibody, and the antibody with an antigen.
  • antibody-modified particles whose surfaces are modified with an antibody that specifically binds to the protein to be detected or quantified bind to the target antigen.
  • Figure 1 shows the state of agglutination, adhesion of antigen to antibody-modified particles, or the state of adhesion of secondary antibody to antibody-modified particles via antigen, etc., without using conventional optical methods. It is measured using a sensor like this.
  • FIG. 1(a) shows an example of a cross section of a sensor used in the present invention.
  • the sensor 100 has a cross-sectional structure in which two chambers 110 and 120 are separated by a partition wall 141 and connected via a pore 140 provided in the partition wall 141. Electrodes 112 and 122 are installed in the two chambers, respectively.
  • a sample containing particles suspended in an electrolytic solution is introduced into the chamber 110 through an inlet 111, an electrolyte is introduced into the chamber 120 through an inlet 121, and a voltage is applied to the two electrodes by a voltage source 152.
  • a voltage is applied between electrode 112 and electrode 122, an ionic current flows through the pores.
  • the term "chamber” refers to a portion that can store a sample solution (electrolyte solution).
  • an electrode is defined as being “inside the chamber” if it is located in a place where the sample liquid in the chamber comes into contact with it (that is, it can be energized).
  • “filling” the chamber does not necessarily mean filling the entire volume of the chamber, and a gap may remain as long as the sensor functions. That is, in this specification, “filling” may be considered interchangeably with “injection” or "introduction.” Note that in this specification, when the sample itself is a liquid, it may be considered as a type of electrolyte.
  • FIG. 1(b) shows an electron microscope image of the pore 140 used for measuring the pulse waveform in the following experiment. The diameter of the pore is selected to be larger than the diameter of the antibody-modified particle to be measured.
  • the ion current flowing between the electrodes in FIG. 1 exhibits a pulse-like transient change as illustrated in FIG. 2. This is measured with an ammeter 151.
  • the pulse waveform is an example of a current value 202 at each time 201.
  • vertical axis 202 may be a voltage value.
  • the peak current value 208 is exemplified below as an object of analysis of the pulse waveform and its distribution.
  • Baseline noise 209 is the noise width when there is no pulse.
  • FIG. 3 shows a chart outlining the principles and procedures for detecting or quantifying antigens in biological samples, according to an embodiment of the present invention.
  • a known sample in which the presence or absence and concentration of the target antigen is known is measured as shown in FIG. Model the shape of the pulse waveform or its correlation with the characteristics of its distribution.
  • AI is trained using the shape of the pulse waveform or the characteristics of its distribution as training data to create a trained AI.
  • an unknown biological sample in which the presence or absence of the target antigen and its concentration are unknown is measured and compared with the model to detect and quantify the target antigen in the biological sample.
  • the shape of the pulse waveform of the unknown sample or the characteristics of its distribution may be input to a trained AI to detect the target antigen or estimate the quantification.
  • a biological sample collected from a living body to creating a sample hereinafter referred to as a measurement target sample
  • measurement preprocessing the procedure from a biological sample collected from a living body to creating a sample (hereinafter referred to as a measurement target sample) to be injected into a chamber of a sensor as shown in FIG. 1 is referred to as "measurement preprocessing.” Since the measurement preprocessing is the essence of the present invention, the outline will be explained with reference to FIG. 3, and then explained in detail with reference to FIG. 11.
  • a known sample containing a target antigen with a known antigen concentration and antibody-modified particles whose surface is modified with an antibody that specifically binds to the target antigen is referred to as a "known sample to be measured.”
  • a sample containing an unknown sample containing a target antigen at an unknown antigen concentration and antibody-modified particles whose surfaces are modified with an antibody that specifically binds to the target antigen may be referred to as an "unknown measurement target sample.”
  • These measurement target samples can be mixed and prepared depending on the reaction efficiency of the target antigen and antibody. It may be interpreted that these measurement target samples include an electrolytic solution for electrically conducting between the chambers. The electrolytes injected into both chambers may have different compositions or may have the same composition. Note that as the electrolyte, any electrolyte known in the technical field can be used depending on the form of application of the present invention.
  • step S301 antibody-modified particles are prepared by modifying detection particles with an antibody that specifically binds to a target antigen.
  • a biological sample in which the presence or absence and concentration of the target antigen are known is subjected to the measurement pre-processing described in FIG. 11 to create a known measurement target sample (step S302).
  • the known measurement target sample includes the first electrolyte.
  • one chamber of the sensor 100 is filled with the known measurement target sample, and the other chamber is filled with the second electrolyte, thereby establishing electrical continuity between the electrodes 112 and 122 (step S303).
  • the first electrolytic solution and the second electrolytic solution may have the same composition or may have different compositions.
  • a voltage is applied between the electrodes of the sensor, and a pulse waveform caused by passing particles is measured (step S304). Then, the correlation between the known presence or absence and concentration of the target antigen and the shape and distribution of each pulse waveform obtained in step S304 is modeled.
  • This modeling may be performed using an analytical method or by training an AI model.
  • the AI model is trained by using training data such as the pulse waveform itself, pulse feature values representing the characteristics of individual pulse waveforms, and distribution features representing the distribution characteristics of a group of pulse waveforms obtained in one measurement.
  • An AI model is trained using the presence or absence and concentration of a certain target antigen as a teacher label.
  • an AI model When using an AI model, what kind of algorithm is used, such as support vector machine, linear discriminant transformation, k-nearest neighbor method, decision tree or ensemble learning of these, or various deep learning or recursive algorithms? You can. Alternatively, it may be an algorithm, such as reinforcement learning, in which the model itself changes dynamically depending on the learning results.
  • a classification algorithm or the like that outputs presence or absence may be used.
  • a regression algorithm or the like that outputs a continuous amount may be used.
  • FIG. 4 shows an example of the antibody-modified particle creation process in steps S301 and S311.
  • antibody-modified particles were created using physical adsorption to polystyrene particles using hydrophobic interactions, but this is only an example of the protocol in the present invention.
  • Antibody-modified particles may be created using the same principles and methods.
  • the measurement particles that serve as the base material for modification can be made of any material, such as high molecular weight polymers or metals.
  • the type of antibody to be modified may be monoclonal, polyclonal, or recombinant, as long as it specifically binds to the target antigen.
  • FIGS. 5A to 5C schematically represent a state in which the chamber 110 is filled with a sample to be measured.
  • the biological sample does not contain the target antigen, as shown in FIG. 5(a)
  • a voltage is applied between the electrodes 112 and 122 in this state, most of the antibody-modified particles in the measurement target sample pass through the pores 140 alone, as shown in FIG. 5(a).
  • the pulse waveforms when antibody-modified particles 511, 512, and 513 pass through pore 140 are 521, 522, and 523, respectively.
  • the antibody-modified particles will not bind via the target antigen. Therefore, many antibody-modified particles pass through the pores alone. However, some particles, such as particle 519, may non-specifically bind without the target antigen, and antibody-modified particles may be observed passing through the pores in a bound state.
  • the chamber 110 is filled with the target antigen bound to antibody-modified particles as shown in FIGS. 5(b) and 5(c), for example.
  • FIG. 5(b) shows a case where the antigen is dilute, and although the target antigen is bound to the antibody-modified particles, there is almost no aggregation of the antibody-modified particles with each other via the target antigen.
  • the pulse waveform generated when the aggregate passes through the pore has a larger peak current value than the pulse waveform when the antibody-modified particle passes through the pore alone. This is because when large particles pass through the pores, the ionic current flowing through the pores is blocked to a greater extent than when small particles pass through the pores.
  • the pulse waveforms of aggregates 551, particles 552, and aggregates 553 passing through the pores 140 are 561, 562, and 563, respectively.
  • the peak current value of the pulse waveform is larger for aggregates 551 than for individual particles 552, and further for aggregates 553 is larger than for these.
  • the peak current values of pulse waveforms 541 to 543 are almost the same as in the state of FIG. 5(a), but due to the binding of the antigen to the antibody-modified particles, As a result of a change in the pulse waveform caused by a change in charge, the present invention allows detection and quantification of the target antigen even in the state shown in FIG. 5(b).
  • the present invention by statistically analyzing the shape of the pulse waveform, it is possible to determine the degree of adhesion of the target antigen to the antibody-modified beads shown in FIG. The degree of aggregation between the antibody-modified particles is estimated. In this way, the target antigen in the sample to be measured is detected and quantified.
  • the present inventors first prepared a 10-fold dilution series from 2 ⁇ g/mL to 2 pg/mL of a recombinant N protein sample of influenza A virus instead of a biological sample.
  • the pulse waveform was measured using the sensor illustrated in FIG. 1, using N protein as the target antigen.
  • the diameter of the pores was approximately 305 nm, and the diameter of the antibody-modified particles was approximately 80 nm.
  • FIG. 6 illustrates a histogram of the number of pulses 602 for each peak current 601 of the pulse waveform for measurement at each concentration.
  • the peak current of the pulse waveform is 208 in FIG.
  • NTC is a measurement target sample that does not contain the target antigen.
  • the pulse measurement result of the histogram 611 is considered to be approximately the distribution of the pulse waveform when the antibody-modified particle alone passes through the pore 140 as shown in FIG. 5(a).
  • FIG. 6 shows histograms 612 of the peak currents of the pulse waveforms of samples with target antigen concentrations of 2 pg/mL, 20 pg/mL, 200 pg/mL, 2 ng/mL, 20 ng/mL, 200 ng/mL, and 2 ⁇ g/mL. 618 are shown.
  • the shapes of the histograms of 2 pg/mL and 20 pg/mL are almost unchanged from those of NTC, and these are considered to be in the state shown in FIG. 5(b).
  • pulse waveforms with large peak currents such as pulses 641 and 642, which are thought to be caused by aggregates, are observed, and these become larger as the target antigen concentration increases. .
  • a pulse waveform with a peak current of 0.7 nA or more 603 is treated as an antibody-modified particle aggregate via the target antigen, and the ratio of the number of pulses to the total pulses is shown in FIG.
  • the horizontal axis 701 is the target antigen concentration
  • the vertical axis 702 is the ratio of pulses of 0.7 nA or more to the total pulses.
  • 712 to 718 in FIG. 7 correspond to 612 to 618 in FIG. 6, respectively.
  • An example of this measurement result shows that the aggregation of antibody-modified particles progresses from approximately 20 pg/mL713 to 200 pg/mL714, which indicates that in the antigen concentration range above this, the state shown in FIG. 5(c) occurs.
  • the state shown in FIG. 5(b) is considered to be in which the antigen gradually attaches to the antibody-modified particles.
  • the degree of antigen adhesion to the antibody-modified particles is determined in the state shown in FIG.
  • biological samples intended for clinical applications contain many impurities.
  • blood and urine which are often used as clinical specimens, contain many cells such as blood cells and their fragments.
  • cells such as blood cells and their fragments.
  • saliva, nasopharyngeal fluid, and the like used as specimens in infectious disease tests although there are few blood cells, they contain large amounts of exosomes with a size of several hundred nanometers. Since it is not realistic to sort these particles on the order of ⁇ m to nm, in order to realize target antigen detection and quantification based on the basic principle shown in Figure 5, it is necessary to detect contaminants other than target antibody-modified particles. A technique to efficiently eliminate pulse waveforms is essential.
  • the present inventors have generally eliminated pulse waveforms other than the passage of the antibody-modified particles to be measured through the pores, and the target antigen
  • the present invention was completed based on the discovery that it is possible to detect or quantify with high accuracy. That is, according to the present invention, the hole diameter of the sensor pore used when measuring the current transient change when particles pass through is D, the blocking size of the filter used in the measurement preprocessing described in detail below is m, and When the particle size of the antibody-modified particles is d, both the following formulas (A) and (B) are satisfied.
  • M min is a lower limit value determined according to the size of the antigen to be measured.
  • M min can be, for example, 2 nm, which is a common protein size. In other words, if more than 30% of the antigen to be measured is blocked by the filter and lost, the subsequent antigen-antibody reaction will be inhibited (in other words, the sensitivity of the measurement will decrease), so it is desirable not to reduce the antigen further. Can be understood in light of technical common sense. In other embodiments, M min may be tailored to the size of another antigen.
  • FIG. 8 The characteristics of the sensor shown in FIG. 1, which is the basis of the principle of the present invention, will be explained using FIG. 8.
  • polystyrene standard beads with various particle sizes 801 from 60 nm to 300 nm were passed through the pores whose diameter D was approximately 305 nm, which was used when measuring the data illustrated in FIGS. 6 and 7.
  • the average pulse height 802 at that time is shown.
  • the smaller the particles the lower the average pulse peak current. This is because the smaller the particle diameter is, the smaller the proportion of passing particles in the pores becomes, and as a result, the block of ionic current flowing through the pores becomes smaller, and the change in resistance value due to particle passage becomes smaller.
  • the pulse height becomes about 30 nA or less, 830 or less, the pulse becomes buried in baseline noise and becomes unobservable.
  • the baseline noise referred to here is a constant noise other than the pulse waveform illustrated as 209 in FIG. 2.
  • FIG. 9(a) shows a pulse waveform when a biological sample is measured by the conventional electrical resistance pore method.
  • the purpose is to measure virus particles 911 in the biological sample 910, many pulses of contaminants other than virus particles contained in the biological sample 910 are observed.
  • the particles 912 to 915 that pass through the pores only 912 is a virus particle.
  • pulse waveforms such as 922 to 925 are measured, and it is difficult to distinguish which pulses are caused by the virus.
  • FIG. 9(b) is a conceptual diagram of the method according to the present invention.
  • a protein specific to the virus to be measured is first extracted as a target antigen 931 from the virus to be measured. Thereafter, after removing viruses and contaminants of the same size as the viruses using a filter, a sample 937 mixed with antibody-modified particles 932 is measured.
  • Sample 937 contains not only the target antigen but also many contaminant particles of similar size. However, as can be seen from FIG. 8, particles having a diameter of 1/10 or less of the hole diameter D840, for example, are not observed as pulses. Therefore, particles 933 to 935 passing through the pores become pulses 943 to 945, respectively, and only the antibody-modified particles to be measured are measured as pulses.
  • FIGS. 10 and 11 As shown in FIGS. 10 and 11, one embodiment of the present invention was carried out using a culture supernatant of influenza A (N1H1 A/California/07/2009) MDCK cells and using influenza A N protein as a target antigen.
  • An example of how to measure using the following method will be explained.
  • a protein specific to the microorganism to be detected or quantified is extracted (steps S1111 and S1112).
  • a solution obtained by diluting PEG (polyethylene glycol) and a surfactant with PBS (phosphate-buffered saline) was used as the first electrolyte.
  • steps S1111 and S1112 were executed to extract the N protein, which is the target antibody inside the influenza virus, but these processes are appropriately selected depending on the type of biological sample and target antigen. Furthermore, if the target antigen is already in a state capable of reacting with the antibody-modified particles within the biological sample, such an extraction process is not necessary, and only dilution with an electrolytic solution such as PBS may be sufficient.
  • both the extracted sample 1011 in which the target antigen is not present and the extracted sample 1021 in which the target antigen is present are mixed with many contaminant particles and the target antigen. If this is directly measured with a sensor, noise pulses due to contaminant particles will be measured as shown in FIG. 9(a). Therefore, filtration is performed using a filter having a blocking size of 1/10 or less of the pore diameter (step S1113).
  • centrifugal filtration was performed at 10,000 G for 3 minutes using a 100 kDa membrane filter.
  • the G and time of centrifugal filtration are just an example, and the optimum values may be selected depending on the biological sample and the extraction process.
  • the filter's blocking size the upper limit particle size at which 30% or more of the particles in the sample are removed.
  • a filter that blocks 30% or more of particles larger than 100 nm but cannot block 30% of particles smaller than 100 nm (in other words, 30% or more of the particles will pass through) is called a filter with a blocking size of 100 nm.
  • the filter used in step S1013 may be of any type, such as one that controls the size of particles passing through fibers or one that utilizes porous hole diameter.
  • blocking size is defined as blocking by “30% or more” because it is generally not realistic for filters made of fibers to block completely, and the reason why “blocking size” is defined as blocking by “30% or more” is because it is generally not realistic for filters made of fibers to block completely. This is due to the inventor's discovery that the performance of the filter can be expressed practically by performing the following steps. The method for quantifying inhibition size will be described further below.
  • step S1111 the first electrolyte was diluted with an electrolyte having a function of extracting N protein, which is a target antigen from microorganisms.
  • the sample to be measured needs to contain the first electrolyte solution, the process of diluting it with the electrolyte solution is not limited to step S1111, and may be performed anywhere from S1111 to S1115 and in any procedure. .
  • both chambers 110 and 120 must be filled with an electrolyte in order to cause an ionic current to flow through the pores.
  • the first electrolyte was mixed with the sample filling the chamber 110 in step S302 (S1111), and the chamber 120 was filled with the second electrolyte.
  • the first electrolytic solution has the necessary components to efficiently generate and maintain the state shown in FIG. 5(b) or (c), and the second electrolytic solution is stable. It is only necessary that conduction be achieved.
  • the first electrolyte contains components such as PEG that promote antigen-antibody reactions, while the second electrolyte contains components that affect the functions of antigens and antibodies, such as high concentrations of surfactants. It may be something that is not included. Since the chamber 120 only serves to conduct the ion current, a function similar to that of the chamber 110 is unnecessary and has no limitations.
  • the second electrolyte may contain any concentration of surfactant for stable conduction. That is, in this embodiment, the first electrolyte and the second electrolyte may have different compositions. In another embodiment, the first electrolyte and the second electrolyte may have the same composition.
  • a pore with a hole diameter of 305 nm was used for measurement. Since the size of the target antigen is approximately 2.7 nm if the molecular weight is 60 kDa, the target antigen should be filtered with a filter having a blocking size of 1/10 or less of the hole diameter (i.e., a filter with a blocking size of 30.5 nm or less). pass through, but contaminant particles with a size of 61 nm or more, which is 1/5 or more of the hole diameter, are generally removed (that is, more than 30% of these contaminant particles are blocked and removed by the filter). ) will happen.
  • a filter having a blocking size of 1/10 or less of the hole diameter i.e., a filter with a blocking size of 30.5 nm or less.
  • step S1114 antibody-modified particles having a particle size of 1/5 or more of the diameter of the pores 140 created in S301 or S311 are mixed into the filtered sample 1012 or 1022 (step S1114). Furthermore, incubation for antigen-antibody reaction (step S1115) is performed. As a result, the measurement target sample 1013 or 1023 is completed, and the process proceeds to step S303 or S313 in FIG.
  • the hole diameter of the sensor pore 140 used in step S304 or S314 is D
  • the blocking size of the filter used in step S1113 is m 1
  • the antibody-modified particles created in step S1114 When the particle size of is d 1 , measurement is performed under conditions that satisfy both the following equations (1) and (2).
  • M min may be 2 nm.
  • step S1113 in FIG. 11 particles having a particle size of m 1 or more shown in (2) are generally removed from the sample.
  • the filtered samples 1012 and 1022 after processing in step S1113 still contain a large amount of contaminant particles even after filtration.
  • the target antigen is partially present in the target antigen.
  • the presence or absence of target antigen binding of the antibody-modified particles 1010 and 1020 in FIG. 10 and the difference in the aggregation state of the antibody-modified particles due to the target antigen can be measured without noise pulses.
  • This makes it possible to detect and quantify target antigens even in biological samples containing large amounts of contaminants, with performance similar to that of pure samples containing only target antigens.
  • the filter used in filtration S1113 is fibrous, it is inevitable that particles larger than the blocking size will pass through the filter and remain in the filtered sample. Therefore, in this embodiment, as shown in FIG. 8, the inhibition size 841 of formula (2) is set to be smaller than the particle size lower limit 842 of the antibody-modified particle of formula (1).
  • Equations (1) and (2) are preferably set to m 1 which is even smaller than the antibody-modified particle diameter d 1 assuming that a membrane filter is used that allows particles larger than the blocking size to pass through to some extent.
  • the blocking size and the antibody-modified particle diameter can be selected by making m 1 smaller and d 1 larger than the particle diameter at the limit where a pulse can be detected in measurement using the sensor shown in FIG.
  • the effect of the method of the present invention will be examined with respect to the measurement results of the influenza A culture supernatant.
  • the culture supernatant of influenza A MDCK cells is extracted using influenza A N protein as the target antigen, filtered through a filter with a blocking size of 30 nm, and then 80 nm antibody-modified particles are mixed and incubated.
  • the results are shown below, which were measured using a sensor having pores with a diameter of 305 nm.
  • the antibody-modified particles with a diameter of 80 nm used in this measurement satisfy (1). Accordingly, the biological sample that has undergone this measurement pre-processing is in the state 1013 or 1023 in FIG.
  • the horizontal axis 1200 in FIG. 12 is the number of pulses per 10 minutes.
  • the number of pulses 1201 is the result of measuring the pulse waveform of the extracted sample 1021 of the culture supernatant containing the target antigen. Influenza N protein, which is the target antigen, is not observed as a pulse in the 305 nm pore, so this pulse is entirely due to contaminant particles.
  • the pulse number 1202 is the result of pulse measurement of the antibody-modified particle storage solution mixed in step S1114.
  • the pulse measurement result of sample 1023 obtained by mixing and incubating these is 1203 pulses.
  • the number of pulses is approximately the sum of 1201 and 1202, but there are many pulses derived from contaminant particles, and it is difficult to model small differences such as attachment of antigen to the surface of antibody-modified particles.
  • the pulse number 1211 is the pulse measurement result of the filtered sample 1022 in step S1113, and almost no pulses are measured. Therefore, the pulse measurement result of sample 1023 in which antibody-modified particles were mixed and incubated was as shown in 1210, and almost all pulses were caused by antibody-modified particles. From this, it can be seen that according to the present invention, target antigens can be detected and quantified in the same manner as in the pure system as shown in FIGS. 6 and 7 even in biological samples containing many impurities such as clinical specimens. .
  • FIG. 13 shows the distribution of peak current when measurement is performed by the method of the present invention after subjecting a cultured influenza virus sample to the measurement pretreatment shown in FIG. 11 under the conditions of equations (1) and (2).
  • NTC is a culture supernatant that does not contain influenza virus
  • distributions 1311 to 1313 below are the results of PCR copy numbers of 10 2 , 10 4 and 10 6 copies/ ⁇ L, respectively. Due to the measurement pre-processing shown in FIG. 11, most of the pulses in this histogram are due to antibody-modified particles, similar to FIG. 6 when the pure system was measured. Looking at the results, similar to FIG. 6, compared to NTC1310 which does not contain influenza virus, a pulse with a large peak current appears every time the virus concentration in the sample increases.
  • FIG. 6 compared to NTC1310 which does not contain influenza virus
  • 13(b) represents the standard deviation of this distribution.
  • the pore diameter D, particle diameter d 1 and blocking size m 1 were selected so that almost no pulses were measured from the sample after filtration.
  • the number of pulses 1211 in FIG. 12 is an example.
  • the pore size, particle size, and blocking size are selected so that pulses are measured from the sample after filtration, and pulse waveforms whose peak current is smaller than the exclusion threshold are excluded from the analysis target. You may.
  • the inhibition size m 2 (861) and the antibody-modified particle diameter d 2 (862) in FIG. 8 are selected and measured so as to satisfy the following expressions (3) and (4).
  • the measurement data will contain a mixture of antibody-modified particles and contaminant particles, as shown in Figure 14.
  • pulse waveforms 1421 to 1423 are measured as particles 1411 to 1413 pass through the pores.
  • a pulse is measured as a waveform 1323 even if the particle 1413 is smaller than the blocking size m 2 .
  • an exclusion threshold 1400 is set, and a pulse waveform, such as pulse waveform 1423, whose peak current is below the exclusion threshold 1400 is excluded from modeling or estimation in step S305 or S315.
  • the exclusion threshold may be determined, for example, within the range 839 in FIG. 8, but it may also be selected recursively so that the performance of the evaluation function for correlation modeling in step S305 is maximized, for example.
  • the exclusion threshold 1400 may be determined so that the output of the trained AI model best reproduces the presence or absence of antigen and the antigen concentration of the known sample.
  • the measurement result of the sample after filtration in this embodiment is a state in which pulses derived from antibody-modified particles and pulses derived from contaminant particles are mixed.
  • the peak current of the pulse waveform derived from contaminants is significantly smaller than that of antibody-modified particles, so by excluding these, only antibody-modified particles can be analyzed. It can be targeted.
  • FIGS. 9, 10, and 14 detection of a state in which an antigen is bound to an antibody-modified particle, that is, a state shown in FIG. 5(b) is taken as an example.
  • the present invention can also be used to detect the state shown in FIG. 5(c) in which antibody-modified particles aggregate with each other due to the target antigen.
  • the rejection size of the filter described above can be evaluated by measuring the pulse waveform using the method described above using standard beads whose particle size is known.
  • FIG. 15 shows a pulse waveform measured by a sensor such as the sensor 100 described above using NIST (National Institute of Standards and Technology) standard beads of known particle size, and the peak current distribution is displayed as a histogram. This is what I did.
  • Distributions 1511 to 1514 are the results of measuring standard beads of 100 nm, 200 nm, 270 nm, and 300 nm using a sensor such as the one illustrated in FIG. Obviously different.
  • the particle size at which the rejection rate is 30% or more is defined as the rejection size.
  • the present invention has been described above using an example in which antibody-modified particles that specifically bind to a target antigen are measured, and the target antigen is detected or quantified in biological particles containing many contaminants.
  • antigen-modified particles whose surfaces are modified with antigens that bind to antibodies to be detected or quantified are used as measurement targets, and target antibodies in biological particles containing many impurities are detected or quantified. You can also do it. In that case, the antibodies and antigens in the above explanation can be read interchangeably.
  • a computer device/terminal having a processor (which may be a single processor or a multi-core processor, and may also include a microprocessor).
  • a computing device may be a device integrated with a sensor, such as sensor 100 of FIG.
  • it may be a computer device operably connected to such a sensor via a network (whether wired or wireless, for example, the Internet, a private private network, a LAN, etc.).
  • Any form of computing device may be used in connection with the present invention, and may be, for example, a workstation, tablet, smartphone, etc.
  • a computer readable program and a medium storing the program may be provided, and the program may be executed by a processor to perform any of the steps included in the method described above. can.
  • Certain embodiments of the present invention may also provide a device for carrying out the above-described method and estimating the presence or concentration of an antigen or antibody. That is, in this device, a filter having a blocking size m as described above and two chambers separated by a partition wall having pores having a hole diameter D communicate through the pores, and each of the two chambers has a filter having a blocking size m.
  • the sensor may include a sensor having an electrode structure, and an interface connected to a computer via a network.
  • the interface of this device transmits the data obtained by measuring the transient changes in the ionic current that occur each time an antibody-modified particle passes through a pore as a pulse waveform group consisting of multiple pulse waveforms to a computer.
  • the computer may be of any form having a processor and may be integrated with the device or may be an external computer connected to the device via some network.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Immunology (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Biomedical Technology (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Urology & Nephrology (AREA)
  • General Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • Pathology (AREA)
  • General Health & Medical Sciences (AREA)
  • Hematology (AREA)
  • Molecular Biology (AREA)
  • Medicinal Chemistry (AREA)
  • Food Science & Technology (AREA)
  • Electrochemistry (AREA)
  • Biophysics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Biotechnology (AREA)
  • Cell Biology (AREA)
  • Microbiology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
  • Investigating Or Analysing Biological Materials (AREA)

Abstract

抗原/抗体を含む生体試料を阻止サイズmを有するフィルタで濾過した濾過済試料と、抗原/抗体に結合する抗体/抗原をその表面に付着させた粒子径dを有する修飾粒子と、第1の電解液とを混合して計測対象試料を作成し、穴径Dの細孔を有する隔壁によって隔てられた2つのチャンバのうちの一方に前記計測対象試料を充填し、第2の電解液を他方のチャンバに充填して前記細孔を通じて前記2つのチャンバを電気的に導通させ、前記2つのチャンバが各々有する2つの電極の間に前記細孔を経由してイオン電流を流した状態で、前記修飾粒子が前記細孔を通過するたびに生じる前記イオン電流の過渡変化をパルス波形群として計測し、前記パルス波形群に基づいて前記生体試料中における抗原/抗体の有無若しくは濃度を推定する。ここで、前記阻止サイズmは抗原/抗体のサイズに応じて定まる下限値以上かつ穴径Dの1/2以下であり、かつ、修飾粒子の径dは穴径Dの1/5以上かつD未満である。

Description

タンパク質の検出および定量のための方法、装置及びプログラム
本発明は、試料中に含まれるタンパク質の検出および定量を行うための方法、装置、及びプログラムに関する。
タンパク質は生体を構成する基本要素であるため、その検出や定量は、生体に係る研究の基本的な手段である。また、各種タンパク質の検出や定量は様々な疾病の臨床検査に広く用いられている。特に、悪性腫瘍、脳神経疾患、膠原病などのさまざまな疾患の極微量マーカーを簡便、低コストかつ頻回で検査することができれば、早期発見による重症化の防止や患者のクオリティ・オブ・ライフの向上に大きな効果を発揮する。
微量タンパク質の検出や定量には、抗体や抗原を化学発光物質で標識して吸光度や発光を計測するELISA(Enzyme-Linked Immuno Sorbent Assey)、CLEIA(Chemiluminescent Enzyme Immunoassay)、CLIA(Chemiluminescent Immunoassay)などが広く使われている。
このような化学発光物質を利用する方法を発展させ、ナノサイズのウェルと抗体修飾ビーズを組み合わせて高感度化を実現する、所謂デジタルELISA等の高感度イムノアッセイ技術が提案されている(特許文献1)。しかしこのような方法は、計測のためのプロトコルが複雑で、また大型かつ精密な光学計測系を必要とするため、計測装置が高額である。このため、低コストで簡便な頻回の臨床検査の手段として広く使われていない。
上記のような従来の技術の課題は、その計測手順の複雑さとかかる時間である。たとえばELISAの場合、抗体固相化、ブロッキング、インキュベーションなど、処理の度に洗浄を繰り返す必要がある。1次抗体固相化の際の吸着、目的タンパク質の抗体以外への吸着、検出用抗体の抗原以外への吸着や基質への抗体/抗原残りなどがすべて、吸光度計測時のノイズとなり、対象抗原の検出や定量における、感度・特異度や定量の直線性に大きな悪影響を及ぼす。これを防ぐためには、度重なる洗浄が不可欠であり、これが検査時間の短縮やコスト低減を阻んでいる。
一方、ナノサイズのウェルと光学系を使わずに、直接タンパク質を1つずつ観察する技術が提案されている(非特許文献1)。ここでは、電解液中のナノサイズの粒子を電気泳動で駆動し、かかる粒子の大きさに近い細孔を通過する際の、電気抵抗の過渡変化を観測する、所謂細孔電気抵抗法(特許文献2)が用いられる。しかし、生体試料にはタンパク質、細胞やその破片、場合によってはウイルスや細菌などの病原体などが無数に含まれている。このため、対象抗原の細孔通過により計測されるパルス波形は、上記のような計測対象としない微粒子によるものがほとんど、という状況になる。上記ELISAの場合は、固相化した抗原または抗体に対する特異的な結合を利用して、それ以外のノイズ源となる微粒子をすべて洗い流すことで、ノイズの問題を回避していた。また、上記細孔電気抵抗法にあっては、計測後のデータ処理において、パルス波形毎に確率的な演算を施すことで、ノイズ源となる微粒子を解析対象データより除外する試みも報告されている(特許文献3)。
米国特許第8236574号明細書 米国特許第9726636号明細書 特許第6985687号公報
Yusko, Erik C., et al. "Real-time shape approximation and fingerprinting of single proteins using a nanopore." Nature nanotechnology 12.4 (2017): 360-367.
しかし、細孔電気抵抗法によるタンパク質の検出では、フィルタを用いて濾過したとしても、対象のタンパク質と同程度の大きさの他のタンパク質や夾雑微粒子はフィルタを通過するため、対象のタンパク質のみを選択的に細孔電気抵抗法における細孔通過の対象として選別する方法はない。また、タンパク質の細孔通過によるパルス波形は極めて微小であり、これを計測後のデータ処理によってノイズパルスと分離することは困難である。
ELISAのようなイムノアッセイと化学発光を利用した従来の技術であっても、細孔電気抵抗法を用いた技術であっても、実用的に意味のあるタンパク質検出や定量の高感度化の成否は、検出や定量の対象となるタンパク質以外に由来するノイズ信号を、簡便かつ低コストで効率よく除去することは、従来技術では実現できていなかった。
本発明は、このような状況に鑑みてなされたものであり、夾雑物を完全に除去することなく、夾雑物の多い臨床検査に必要とされるタンパク質(又は抗体若しくは抗原)の高感度、安価、迅速かつ簡便な検出や定量を実現する。すなわち本発明では下記の態様を提供できる。
態様1.
生体から採取した生体試料中における検出対象である抗原若しくは抗体の有無若しくは濃度を推定するための方法であって、
前記生体試料を、阻止サイズmを有するフィルタで濾過して濾過済試料を作成し、
前記抗原に結合する抗体をその表面に付着させた粒子径dを有する抗体修飾粒子、又は前記抗体に結合する抗原をその表面に付着させた粒子径dを有する抗原修飾粒子と、
前記濾過済試料と、
第1の電解液と
を混合して計測対象試料を作成し、
穴径Dの細孔を有する隔壁によって隔てられた2つのチャンバが前記細孔を通じて疎通し、かつ前記2つのチャンバの各々の中に電極を有する構造のセンサの、前記2つのチャンバのうちの一方に前記計測対象試料を充填し、
第2の電解液を前記センサの有する前記2つのチャンバの他方に充填して前記細孔を通じて前記2つのチャンバを電気的に導通させ、
前記2つのチャンバが各々有する2つの電極の間に電圧を印加して、前記2つの電極の間に前記細孔を経由してイオン電流を流した状態で、前記抗体修飾粒子若しくは前記抗原修飾粒子が前記細孔を通過するたびに生じる前記イオン電流の過渡変化を、複数のパルス波形から成るパルス波形群として計測し、
前記パルス波形群を解析することによって、前記生体試料中における検出対象の抗原若しくは抗体の有無若しくは濃度を推定する
ことを含み、
前記阻止サイズmは検出対象である抗原若しくは抗体のサイズに応じて定まる下限値以上かつ前記穴径Dの1/2以下であり、かつ、
前記抗体修飾粒子若しくは前記抗原修飾粒子の径dは前記穴径Dの1/5以上かつD未満である
ことを特徴とする方法。
態様2.
前記阻止サイズmは2nm以上かつ前記穴径Dの1/10以下であり、かつ、
前記抗体修飾粒子若しくは前記抗原修飾粒子の径d1は前記穴径Dの1/5以上かつD未満である
ことを特徴とする、態様1に記載の方法。
態様3.
前記イオン電流の過渡変化を、複数のパルス波形から成るパルス波形群として計測することによって、前記生体試料中における前記抗体修飾粒子若しくは前記抗原修飾粒子の凝集状態を計測することを特徴とする、態様1又は2に記載の方法。
態様4.
さらに
前記パルス波形群の中から、除外閾値以上のピーク電流を有する選択パルス波形を抽出し、
前記選択パルス波形群を解析することによって、前記生体試料中における検出対象の抗原若しくは抗体の有無の検出又は濃度の推定値を計算すること
を含み、
前記抗体修飾粒子若しくは前記抗原修飾粒子の径dは前記穴径D未満であり、かつ前記阻止サイズmは前記径dの1/2以下であることを特徴とする、態様1に記載の方法。
態様5.
さらに
前記除外閾値を、前記濃度推定値が生体試料中に含まれる検出対象の抗原若しくは抗体の真値と近くなるように再帰的に求めること
を含む、態様4記載の方法。
態様6.
前記第1の電解液と前記第2の電解液は、その組成が異なることを特徴とする態様1~5のいずれかに記載の方法。
態様7.
前記第1の電解液と前記第2の電解液は、その組成が同じであることを特徴とする態様1~5のいずれかに記載の方法。
態様8.
生体から採取した生体試料中における検出対象である抗原若しくは抗体の有無若しくは濃度を推定するための装置であって、
 阻止サイズmを有するフィルタと、
 穴径Dの細孔を有する隔壁によって隔てられた2つのチャンバが前記細孔を通じて疎通し、かつ前記2つのチャンバの各々の中に電極を有する構造のセンサと、
 ネットワークを介してコンピュータに接続するインターフェイスと
を含み、
前記抗原に結合する抗体をその表面に付着させた粒子径dを有する抗体修飾粒子、又は前記抗体に結合する抗原をその表面に付着させた粒子径dを有する抗原修飾粒子と、
前記フィルタによって濾過された濾過済試料と、
第1の電解液と
を混合して作成される計測対象試料を、前記2つのチャンバのうちの一方に前記計測対象試料を充填するように構成され、
第2の電解液を前記センサの有する前記2つのチャンバの他方に充填して前記細孔を通じて前記2つのチャンバを電気的に導通させるように構成され、
前記2つのチャンバが各々有する2つの電極の間に電圧を印加して、前記2つの電極の間に前記細孔を経由してイオン電流を流した状態で、前記抗体修飾粒子若しくは前記抗原修飾粒子が前記細孔を通過するたびに生じる前記イオン電流の過渡変化を、複数のパルス波形から成るパルス波形群として計測してデータを取得し、前記インターフェイスを介して前記データをコンピュータに送信するように構成され、
前記阻止サイズmは、検出対象である抗原若しくは抗体のサイズに応じて定まる下限値以上かつ前記穴径Dの1/2以下であり、かつ前記抗体修飾粒子若しくは前記抗原修飾粒子の径dは、前記穴径Dの1/5以上かつ前記穴径D未満である
ことを特徴とする、装置。
態様9.
前記阻止サイズmは、前記穴径Dの1/10以下である、態様8に記載の装置。
態様10.
隔壁によって隔てられた2つのチャンバが細孔を通じて疎通し、前記2つのチャンバの各々の中に電極を有する構造のセンサとネットワークを介して接続されるように構成されたプロセッサを有するコンピュータにおいて、前記プロセッサが実行することで下記工程を実施するように構成されたコンピュータ可読命令を含むプログラムであって、
生体試料を、阻止サイズmを有するフィルタで濾過して濾過済試料を作成する工程と、
抗原に結合する抗体をその表面に付着させた粒子径dを有する抗体修飾粒子、又は前記抗体に結合する抗原をその表面に付着させた粒子径dを有する抗原修飾粒子と、
前記濾過済試料と、
第1の電解液と
を混合して計測対象試料を作成する工程と、
穴径Dの細孔を有する隔壁によって隔てられた2つのチャンバが前記細孔を通じて疎通し、かつ前記2つのチャンバの各々の中に電極を有する構造のセンサの、前記2つのチャンバのうちの一方に前記計測対象試料を充填する工程と、
第2の電解液を前記センサの有する前記2つのチャンバの他方に充填して前記細孔を通じて前記2つのチャンバを電気的に導通させる工程と、
前記2つのチャンバが各々有する2つの電極の間に電圧を印加して、前記2つの電極の間に前記細孔を経由してイオン電流を流した状態で、前記抗体修飾粒子若しくは前記抗原修飾粒子が前記細孔を通過するたびに生じる前記イオン電流の過渡変化を、複数のパルス波形から成るパルス波形群として計測する工程と、
前記パルス波形群を解析することによって、前記生体試料中における検出対象の抗原若しくは抗体の有無若しくは濃度を推定する工程
とを実施し、
前記阻止サイズmは、検出対象である抗原若しくは抗体のサイズに応じて定まる下限値以上かつ前記穴径Dの1/2以下であり、かつ前記抗体修飾粒子若しくは前記抗原修飾粒子の径dは、前記穴径Dの1/5以上かつ前記穴径D未満である
ことを特徴とする、プログラム。
本発明により、タンパク質(又は抗体若しくは抗原)の高感度、安価、迅速かつ簡便な検出や定量が可能になるという効果が得られる。
本発明において利用するセンサの、デバイス構造の一例を示す。 パルス波形の計測に用いる細孔の電子顕微鏡画像を示す。 イオン電流の過渡変化の例を示す。 本発明の或る実施形態に基づいた、生体試料中の抗原を検出または定量する原理と手順の概要を説明するチャートである。 抗体修飾粒子作成処理手順の例を示すチャートである。 計測対象試料でチャンバを充填した状態を模式的に表す。 各濃度での計測について、パルス波形のピーク電流ごとのパルス数のヒストグラムを示す。 ピーク電流0.7nA以上のパルス波形を、対象抗原を介した抗体修飾粒子凝集塊として、そのパルス数の全パルスに占める割合を示す。 センサの細孔に様々な粒径のポリスチレン標準ビーズを通過させたときの、平均パルス高さを示す。 電気抵抗細孔法の従来の方法により生体試料を計測した場合のパルス波形を、従来技術に係る方法と本発明に係る方法とで比較したものである。 インフルエンザA型(N1H1 A/California/07/2009)のMDCK細胞による培養上清を用い、インフルエンザA型のNタンパク質を対象抗原として計測する方法を説明する図である。 本発明に係る計測前処理の手順を説明するチャートである。 インフルエンザA型のMDCK細胞による培養上清を、インフルエンザA型のNタンパク質を対象抗原として抽出、100kDaフィルタにより濾過した後、80nmの抗体修飾粒子を混和、インキュベートするという手順で計測前処理を実施し、さらに305nmの直径の細孔を有するセンサで計測した結果を示す。 培養インフルエンザウイルス試料に計測前処理を施した後に、計測を行ったときのピーク電流の分布である。 抗体修飾粒子に抗原が結合した状態のパルス波形の別の例を示す。 本発明における阻止サイズの定量方法を説明する図である。
本発明は、生体試料中の抗原の検出や定量を行うことができる。また生体試料中の抗体の検出や定量を行うこともできる。前者の場合は、検出や定量の対象となる抗原(以下「対象抗原」という)と特異的に結合する抗体でその表面を修飾した抗体修飾粒子を用いる。後者の場合は検出や定量の対象となる抗体(以下「対象抗体」という)と特異的に結合する抗原でその表面を修飾した抗原修飾粒子を用いる。抗体修飾粒子を用いて対象抗原の検出または定量を行う場合、抗原修飾粒子を用いて対象抗体の検出または定量を行う場合、ともに本発明の手続きと原理は同様である。以下では記載を徒に長くしないようにするため、前者、すなわち抗体修飾粒子を使って対象抗原の検出または定量する例について説明する。
また本発明の別の実施形態では、生体試料中の抗体の検出や定量を行うこともできる。すなわち、前段の説明の抗原を抗体、また抗体を抗原と読み替えることによって、この別の実施形態を理解することができるであろう。以下都度説明は繰り返さないが、本明細書中の各記載は、矛盾しないかぎりにおいて適宜上述の読み替えが可能であることに留意されたい。
本発明では、検出や定量の対象となるタンパク質(以下、「対象抗原」または略して単に「抗原」ともいう)に特異的に結合する抗体でその表面を修飾した抗体修飾粒子が、対象抗原を介して結合する凝集状態、抗体修飾粒子への抗原の付着、または抗体修飾粒子への抗原を介した2次抗体の付着状態等を、従来のような光学的方法によらず、図1に示すようなセンサを用いて計測する。
図1(a)に、本発明において利用するセンサの断面の一例を示す。センサ100は2つのチャンバ110および120が、隔壁141によって隔てられ、かつ隔壁141に設けられた細孔140を経由して接続される断面構造を有している。2つのチャンバには各々電極112および122が設置される。導入口111より電解液に懸濁した粒子を含む試料を、チャンバ110に、導入口121より電解液をチャンバ120に導入し、電圧源152によって前記2つの電極に電圧を印加する。たとえば、電極112と電極122の間に電圧を印加すると、細孔を経由してイオン電流が流れる。なお本明細書においては、「チャンバ」とは試料液(電解液)を格納できる部分を指すものとする。また本明細書において電極は、チャンバ中の試料液が触れる(すなわち通電可能な)場所にあれば、「チャンバの中にある」と定義するものとする。また本明細書においてチャンバへの「充填」とは、必ずしもチャンバの容積を全て埋めるようにすることは意味せず、センサが機能する限りにおいて空隙が残るようにしてもよい。すなわち本明細書では「充填」を「注入」又は「導入」と互換して考えてもよい。なお本明細書では、試料自体が液体である場合、それを一種の電解液と考えてもよい。図1(b)には、以下の実験でパルス波形の計測に用いた細孔140の電子顕微鏡画像を示す。細孔の直径は、計測対象である抗体修飾粒子の直径よりも大きいものを選択する。
図1(a)のようにチャンバ110に存在する粒子が細孔140を通過する際に、イオン電流が一時的に妨げられ、粒子がチャンバ120に通過した後はもとに戻る。このため、粒子1個が細孔140を通過するたびに、図1の電極間に流れるイオン電流は図2に例示するようなパルス状の過渡変化を呈する。これを電流計151で計測する。図2に示す例では、パルス波形は時刻201ごとの電流値202の一例である。別の実施形態では、縦軸202は電圧値であってもよい。以下パルス波形やその分布の解析対象として例示したのは、ピーク電流値208である。ベースラインノイズ209は、パルスがない時のノイズ幅である。
図3には、本発明の或る実施形態に基づき、生体試料中の抗原を検出または定量する原理と手順の概要を説明するチャートを示す。本発明では、未知生体試料の前に、図3(a)のように対象抗原の有無や濃度が既知である既知試料を計測し、対象抗原の有無や濃度と、本発明による方法で得られるパルス波形の形状またはその分布の特徴との相関をモデル化する。あるいは、パルス波形の形状またはその分布の特徴を教師データとしてAIを訓練し、訓練済AIを作成する。その後、図3(b)のように、対象抗原の有無や濃度が不明な未知生体試料を計測して、前記モデルと比較することで、生体試料中の対象抗原の検出や定量を行う。あるいは、未知試料のパルス波形の形状またはその分布の特徴を訓練済AIに入力して、対象抗原の検出や定量の推定を行ってもよい。本明細書において、生体から採取した生体試料から、図1のようなセンサのチャンバに注入する試料(以下、計測対象試料という)を作成するまでの手続きを、「計測前処理」という。計測前処理については本発明の要諦であるため、図3で概要を説明した後、図11で詳しく説明する。なお本明細書では、既知の抗原濃度の対象抗原を含む既知試料と、当該対象抗原に特異的に結合する抗体で表面を修飾した抗体修飾粒子とを含むものを「既知計測対象試料」と呼ぶことがある。また未知の抗原濃度の対象抗原を含む未知試料と、当該対象抗原に特異的に結合する抗体で表面を修飾した抗体修飾粒子とを含むものを「未知計測対象試料」と呼ぶことがある。これらの計測対象試料は、対象抗原と抗体の反応効率に応じて配合、調製可能である。これらの計測対象試料が、チャンバ間を電気的に導通させるための電解液を含むと解釈してもよい。両チャンバに注入される電解液はそれぞれ異なる組成であってもよいし、同じ組成であってもよい。なお電解液としては、本発明の適用の形態に応じて、当該技術分野で知られる任意のものを使用できる。
図3(a)に示す方法ではまず、対象抗原と特異的に結合する抗体を、検出用粒子に修飾した抗体修飾粒子を作成する(ステップS301)。次に、対象抗原の有無や濃度が既知である生体試料に対して、図11で説明する計測前処理を行い、既知計測対象試料を作成する(ステップS302)。既知計測対象試料は第1の電解液を含む。次に既知計測対象試料でセンサ100の片方のチャンバを充填し、第2の電解液で他方のチャンバを充填することで、電極112および電極122の間を電気的に導通させる(ステップS303)。なお第1の電解液と第2の電解液は、その組成が同一であってもよいし、異なっていてもよい。
その後センサの電極間に電圧を印加して、粒子通過によるパルス波形を計測する(ステップS304)。そして既知である対象抗原の有無や濃度と、上記ステップS304で得られたパルス波形個々の形状やその分布との相関をモデル化する。このモデル化は解析的な手法によってもよく、あるいはAIモデルを訓練することで実行してもよい。AIモデルの訓練は、パルス波形そのもの、個々のパルス波形の特徴を表すパルス特徴量、1計測で得られるパルス波形群の特徴の分布の特徴を表す分布特徴量などを教師データとして、また既知である対象抗原の有無や濃度を教師ラベルとしてAIモデルを訓練する。AIモデルを利用する場合、そのアルゴリズムはたとえば、サポートベクターマシン、線形識別変換、k近傍法、決定木やこれらのアンサンブル学習、あるいは各種の深層学習、再帰型アルゴリズムなど、どのようなアルゴリズムを利用してもよい。あるいは強化学習のように、学習結果によってモデル自身が動的に変化するアルゴリズムであってよい。図3(b)に示す方法で生体試料中に対象抗原が含まれるか否かを調べる場合は、有無を出力とする分類アルゴリズム等を用いてもよい。また図3(b)に示す方法で対象抗原の定量を行う場合は、連続量を出力とする回帰アルゴリズム等を用いてもよい。
上記モデル化(または訓練済AIの作成)の後、図3(b)に例示するように対象抗原の有無や濃度が未知である生体試料の計測結果を前記モデル(または訓練済AI)と照らして、対象抗原の有無や濃度を推定する。ステップS311乃至S312の処理は図3(a)と同様であるので説明を省略する。ステップS301とS311では同じ抗体修飾粒子を使用する必要がある。
ステップS301およびS311における抗体修飾粒子作成処理の一例を図4に示す。図4では、疎水性相互作用を利用したポリスチレン粒子への物理吸着を利用して、抗体修飾粒子を作成したが、これは本発明におけるプロトコルの一例に過ぎず、たとえばカルボジイミド結合のように、どのような原理、方法によって抗体修飾粒子を作成してもよい。この処理によって、修飾の基材となる計測用粒子は、高分子ポリマー、金属など材質を問わない。また、修飾する抗体の種類も、モノクローナルでもポリクローナルでも、またリコンビナント抗体でも、対象抗原に特異的に結合するものであれば何でもよい。
次に、本発明における対象抗原の検出または定量の基本原理を説明する。図5(a)乃至(c)は、計測対象試料でチャンバ110を充填した状態を模式的に表したものである。生体試料に対象抗原が含まれていない場合は図5(a)のように、計測対象試料に対象抗体と結合した対象抗原は存在しない。この状態で電極112および122間に電圧を印加すると、計測対象試料中の抗体修飾粒子は、図5(a)のように、ほとんどが単独で細孔140を通過する。図5(a)の一例では、抗体修飾粒子511、512および513が細孔140を通過したパルス波形が各々521、522および523である。生体試料に対象抗原が含まれない場合、対象抗原を介して抗体修飾粒子が結合することはない。このため、多くの抗体修飾粒子は単独で細孔を通過する。しかし、たとえば粒子519のように、一部は対象抗原を介しない非特異結合をすることがあり、結合した状態で細孔を通過する抗体修飾粒子が観測されることもある。
生体試料中に対象抗原が存在する場合は、たとえば、図5(b)および図5(c)のように対象抗原が抗体修飾粒子に結合した状態で、チャンバ110に充填される。図5(b)は、抗原が希薄な場合であり、抗体修飾粒子に対象抗原が結合しているものの、対象抗原を介した抗体修飾粒子同士の凝集はほとんど発生していない。
図5(c)に示すように対象抗原の濃度が高い場合、抗体修飾粒子同士が対象抗原を介して凝集塊を形成する。従来技術である比濁法、吸光度法、イムノクロマトグラフィーなどはこの凝集現象を利用する。本発明では、凝集塊が細孔を通過したときに生じるパルス波形の波形は、抗体修飾粒子が単独で細孔を通過したときのパルス波形よりも、そのピーク電流値が大きくなる。大きな粒子が細孔を通過する際には、小さな粒子の通過時にくらべて、細孔を流れるイオン電流がより大きく妨げられるためである。たとえば図5(c)において、凝集塊551、粒子552および凝集塊553の細孔140通過のパルス波形は各々561、562および563である。パルス波形のピーク電流値が、単独粒子552のそれより凝集塊551のそれの方が大きく、さらにこれらより凝集塊553のそれが大きいのはこのためである。一方、図5(b)の状態では、凝集塊が形成されないため、パルス波形541乃至543のピーク電流値は図5(a)の状態とほとんど変わらないが、抗体修飾粒子への抗原の結合によって電荷が変化することによりパルス波形に変化が生じる結果、本発明においては図5(b)の状態であっても対象抗原の検出や定量が可能である。
本発明では、パルス波形の形状を統計的に解析することにより、図5(b)に示した抗体修飾ビーズへの対象抗原の付着の程度や、図5(c)に示した対象抗原を介した抗体修飾粒子同士の凝集の程度を推定する。これによって、計測対象試料内の対象抗原の検出や定量を行う。
本発明の有効性を示すため、本発明者らはまず生体試料ではなく、A型インフルエンザウイルスのリコンビナントNタンパク質試料を、2μg/mLから2pg/mLまでの10倍ごとの希釈系列を作成した上で、Nタンパク質を対象抗原として、図1に例示したセンサを用いてパルス波形の計測を行った。細孔の穴径は約305nm、抗体修飾粒子の直径は約80nmであった。図6は、各濃度での計測について、パルス波形のピーク電流601ごとのパルス数602のヒストグラムを図示したものである。パルス波形のピーク電流は図2の208である。NTCは、対象抗原を含まない計測対象試料である。従って、ヒストグラム611のパルス計測結果はおおむね、図5(a)に示した状態の抗体修飾粒子単体が、細孔140を通過したパルス波形の分布であると考えられる。図6には、対象抗原濃度2pg/mL、20pg/mL、200pg/mL、2ng/mL、20ng/mL、200ng/mLおよび2μg/mLの各試料のパルス波形のピーク電流について、各々のヒストグラム612乃至618が示されている。2pg/mLおよび20pg/mLのヒストグラムの形状は、NTCのそれとほとんど変化がなく、これらは図5(b)の状態であると考えられる。一方、対象抗原濃度が200pg/mLでは、凝集塊によると思われる、ピーク電流が大きな、たとえばパルス641や642のようなパルス波形が観測され、それらは対象抗原濃度が高くなるにつれて大きくなっている。
ピーク電流0.7nA以上603のパルス波形を、対象抗原を介した抗体修飾粒子凝集塊として、そのパルス数の全パルスに占める割合を図7として示す。横軸701は対象抗原濃度、縦軸702は全パルスに占める0.7nA以上のパルスの比率である。図7中の712乃至718が各々、図6の612乃至618に対応する。この計測結果の一例では、おおよそ20pg/mL713から200pg/mL714より抗体修飾粒子の凝集が進んでいることから、これ以上の抗原濃度域では、図5(c)の状態であることがわかる。また2pg/mLから20pg/mL以下の領域では、抗体修飾粒子に抗原が徐々に付着している図5(b)の状態と考えられる。本発明では、パルス波形の特徴およびその分布の特徴から、図5(b)の状態にあっては抗体修飾粒子への抗原付着の程度を、また図5(c)の状態にあっては抗体修飾粒子の凝集状態を推定することで、対象抗原の検出または定量が可能になった。
以上、図5を参照して本発明の基本原理を説明した。また、図6および図7を参照して、A型インフルエンザウイルスのリコンビナントNタンパク質の希釈系列でその原理を実証した。しかし図6および図7の実験は、夾雑物がほとんど含まれない純系試料を使っている。このため得られるパルス波形はほとんどが、単体または凝集した抗体修飾粒子であり、対象抗原の有無や濃度とパルス波形の特徴やその分布の特徴との相関をモデル化すること(ステップS305)は容易であった。
しかし、臨床応用を想定した生体試料には、多くの夾雑物が含まれている。たとえば臨床検体としてよく用いられる血液や尿には血球類などの細胞やその破片が数多く含まれている。また、感染症検査における検体として用いられる唾液や鼻咽頭液などの場合、血球類は少ないが、数百nm程度のエクソソームが大量に含まれている。これらμmからnmオーダの粒子をソートすることは現実的ではないため、図5に示した基本原理による対象抗原検出や定量を実現するためには、対象とする抗体修飾粒子以外の夾雑物由来のパルス波形を効率的に排除する技術が必須である。
本発明者らは、以下に述べるフィルタリングと細孔の特性を利用した、本発明による計測前処理技術によって、計測対象となる抗体修飾粒子の細孔通過以外のパルス波形を概ね排除し、対象抗原を高い精度で検出または定量できることを見いだし、本発明を完成させた。すなわち本発明によれば、粒子通過時の電流過渡変化を計測する際に用いるセンサ細孔の穴径をD、以降で詳細に説明する計測前処理にて用いるフィルタの阻止サイズをm、かつ作成する抗体修飾粒子の粒径をdとすると、次の(A)式および(B)式の両方を満たす。
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000002
ここでMminは、計測対象となる抗原のサイズに応じて定められる下限値である。或る実施形態ではMminは例えば一般的なタンパク質のサイズである2nmとすることができる。すなわち計測対象となる抗原がフィルタに阻止されて30%以上失われてしまうことになると、その後の抗原抗体反応を阻害する(つまり測定の感度が下がる)ので、これ以上小さくしないことが望ましいことを技術常識に照らして理解できる。別の実施形態では、Mminを別の抗原のサイズに合わせた値としてもよい。
以下では、この本発明の原理と実験による検証結果についてさらに詳しく説明する。
本発明の原理の基礎となる、図1のようなセンサの特性について、図8を使って説明する。図8には、図6および図7に例示したデータの計測時に利用した直径Dが約305nmである細孔に、60nm径から300nm径の、様々な粒径801のポリスチレン標準ビーズを通過させたときの、平均パルス高さ802を示す。粒子が小さいほど、平均パルスピーク電流は小さくなる。これは、粒子径が小さいほど、細孔に占める通過粒子の割合が小さくなる結果、細孔を流れるイオン電流のブロックも小さくなり、粒子通過による抵抗値の変化が小さくなるためである。図8の例では、パルス高さが30nA程度830以下になると、ベースラインノイズに埋もれてパルスは観測できなくなる。ここで言うベースラインノイズとは図2の209として例示したようなパルス波形以外の常在ノイズである。
次に図9を使い、本発明による夾雑粒子除外の原理を説明する。図9(a)は、電気抵抗細孔法の従来の方法により生体試料を計測した場合のパルス波形である。生体試料910中のウイルス粒子911を計測することを目的とした場合、生体試料910中に含まれるウイルス粒子以外の夾雑物のパルスが多く観測される。たとえば、図9(a)において、細孔を通過する粒子912乃至915のうちウイルス粒子は912のみである。しかし、計測においては922乃至925のようにパルス波形が計測され、どれがウイルスによるパルスかは区別がつかない。
図9(b)は、本発明による方法の概念図である。本発明では、夾雑物を多く含む試料930において、まず計測対象のウイルスから、かかるウイルスに特異的なタンパク質を対象抗原931として抽出する。その後ウイルスやウイルスと同程度の大きさの夾雑物をフィルタで除去した後、抗体修飾粒子932を混和した試料937を計測する。試料937中には対象抗原だけでなく、同程度の大きさの夾雑粒子が多数含まれている。しかし図8よりわかるとおり、たとえば穴径D840の1/10以下の粒子はパルスとして観察されない。このため、細孔を通過する粒子933乃至935は、各々パルス943乃至945のようになり、計測対象とする抗体修飾粒子のみがパルスとして計測される。
(実施形態1)
図10および図11により、本発明の一実施形態を、インフルエンザA型(N1H1 A/California/07/2009)のMDCK細胞による培養上清を用い、インフルエンザA型のNタンパク質を対象抗原として本発明による方法で計測する方法を例として説明する。図9のように微生物を計測する場合には、まず、検出や定量対象の微生物に特有のタンパク質の抽出処理を行う(ステップS1111およびS1112)。この一例では第1の電解液として、PEG(Polyethylene glycol)と界面活性剤をPBS(Phosphate-buffered saline)で希釈したものを使用した。この一例ではインフルエンザウイルス内部の対象抗体であるNタンパク質を抽出するために、ステップS1111およびS1112を実行したが、生体試料や対象抗原の種類によって、これ処理を適切に選択する。また、生体試料内ですでに対象抗原が抗体修飾粒子と反応可能な状態である場合、このような抽出処理は不要であり、PBSのような電解液で希釈するのみであってもよい。
この処理後には、対象抗原が存在していない抽出済試料1011、存在している抽出済試料1021ともに、ともに多くの夾雑粒子と対象抗原が混在している。これをそのままセンサで計測すると、図9(a)のように夾雑粒子によるノイズパルスが計測されてしまうことになる。そこで、細孔穴径の1/10以下の阻止サイズを持つフィルタで濾過を行う(ステップS1113)。この一例では、100kDaのメンブレンフィルタを用いて、10000Gで3分間遠心濾過を行った。ここで遠心濾過のG、時間は一例であり、生体試料である生体試料や抽出処理によって最適な値を選択してよい。この結果、濾過済試料1012および1022のように、夾雑粒子あるいは検出/定量対象の微生物ともに、フィルタの阻止サイズ以上の粒子が概ね除去された状態となる。ここで本明細書においては、試料中の粒子が30%以上除去される上限の粒子サイズを、フィルタの「阻止サイズ」と定義する。たとえば、100nm以上の粒子を30%以上阻止するが、100nm以下の粒子は30%の阻止ができない(すなわち、その粒子の30%以上が通過することになる)フィルタを、阻止サイズ100nmのフィルタという。ステップS1013で利用するフィルタは繊維を通過する粒子サイズを制御したもの、ポーラス穴径を利用したものなど、その種類は問わない。なお本明細書において「阻止サイズ」を「30%以上」阻止するものと定義しているのは、一般に繊維からなるフィルタでは完全な阻止は現実的ではないこと、および、30%以上の阻止を行うことで実用上そのフィルタの性能を表現できることを本発明者が発見したことに因る。阻止サイズの定量方法についてはさらに後述する。
なお、図11の例では、ステップS1111において第1の電解液として微生物からの対象抗原となるNタンパク質の抽出機能を有する電解液で希釈した。計測対象試料には第1の電解液が含まれている必要があるが、電解液で希釈する処理はステップS1111に限定されず、S1111乃至S1115のどこで、どのような手順で行われてもよい。
本発明では図1のようなセンサで、細孔を通じてイオン電流を流すために、チャンバ110、120ともに電解液で充填されている必要がある。この一例では、チャンバ110を充填する試料にステップS302(S1111)で第1の電解液を混和し、またチャンバ120は第2の電解液で充填した。この方法においては、第1の電解液としては、効率よく図5(b)または(c)の状態を生成し維持するために必要な成分を有するものとし、かつ第2の電解液は安定した導通が実現されるだけでよい。たとえば第1の電解液として抗原抗体反応を促進するPEGなどの成分を含み、一方第2の電解液は、抗原や抗体の機能に影響を与えるような成分、たとえば高濃度の界面活性剤などを含まないものなどであってよい。チャンバ120はイオン電流の導通を担うのみであるため、チャンバ110のような機能は不要でありまた制限もない。たとえば第2の電解液は、安定導通のため任意の濃度の界面活性剤を含んでいて良い。すなわちこの実施形態では、第1の電解液と第2の電解液は組成が異なっていてよい。別の実施形態では、第1の電解液と第2の電解液は組成同一であってもよい。
ここで示す一例では、計測には穴径305nmの細孔を利用した。対象抗原の大きさは仮に分子量を60kDaとするとおおよそ2.7nm程度であるから、対象抗原は当該穴径の1/10以下の阻止サイズを持つフィルタ(すなわち、阻止サイズ30.5nm以下のフィルタ)は通過するが、当該穴径の1/5以上の粒径である61nm以上のサイズを持つ夾雑粒子はおおむね除去される(すなわち、それらの夾雑粒子のうち30%以上はフィルタに阻止され除去される)ことになる。次にこの濾過済試料1012または1022に、S301またはS311で作成した細孔140の穴径の1/5以上の粒径を有する抗体修飾粒子を混和(ステップS1114)する。さらに抗原抗体反応のためのインキュベーション(ステップS1115)を行う。これにより、計測対象試料1013または1023が完成し、図3のステップS303またはS313へと進む。
ここで例示する第一の実施形態では、ステップS304またはS314で利用するセンサ細孔140の穴径をD、ステップS1113で利用するフィルタの阻止サイズをm1、そしてステップS1114で作成する抗体修飾粒子の粒径をd1とすると次の(1)式および(2)式の両方を満たす条件にて計測を行う。一例として、Mminは2nmであってよい。
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000004
この実施形態において、式(1)および(2)の条件を満たすことによって、夾雑物の多い生体試料中の対象抗原の検出または定量が、高精度で実現する理由を説明する。図11のステップS1113の処理によって、(2)に示す粒径m1以上の粒子は、おおむね試料より除去される。一方、生体試料から対象抗原の大きさに近い夾雑粒子を選択的に排除する方法はないため、ステップS1113の処理後の濾過済試料1012および1022は、濾過をしてもなお、大量の夾雑粒子に一部対象抗原が存在する状態である。ただし(2)式を満たす濾過であれば、この試料の夾雑粒子および対象抗原ともに計測してもパルスは計測されない。さらに(1)式を満たす抗体修飾粒子を混和、およびインキュベーションした試料1013および1023は、計測対象とする抗体修飾粒子またはその凝集体のみのパルスが計測できる。
このようにして本発明では、図10における抗体修飾粒子1010や1020の対象抗原結合の有無や、対象抗原による抗体修飾粒子同士の凝集状態の違いを、ノイズパルスなしで計測することができる。このことで、大量の夾雑物が含まれる生体試料についても、対象抗原のみが含まれる純系試料と同様の性能をもって、対象抗原の検出や定量が行えるようになった。なお、濾過S1113で用いるフィルタが繊維状のものである場合、阻止サイズ以上の粒子がフィルタを通過して濾過済試料に残存することは避けられない。このため本実施形態では、図8に示すとおり、(2)式の阻止サイズ841を、(1)式の抗体修飾粒子の粒径下限842よりさらに小さく設定している。(1)式と(2)式は阻止サイズ以上の粒子をある程度通過させてしまうメンブレンフィルタを使うことを想定して、抗体修飾粒子径d1よりもさらに小さいm1とすることが好ましい。本発明における阻止サイズと抗体修飾粒子径の選択は、図1のようなセンサでの計測において、パルスが検出できる限界の粒径よりm1を小さく、かつd1を大きくすればよい。
次に図12を用いて、前記インフルエンザA型培養上清の計測結果について、本発明の方法の効果を検討する。図12では、インフルエンザA型のMDCK細胞による培養上清を、インフルエンザA型のNタンパク質を対象抗原として抽出、阻止サイズ30nmのフィルタにより濾過した後、80nmの抗体修飾粒子を混和、インキュベートするという手順で計測前処理を実施し、さらに305nmの直径の細孔を有するセンサで計測した結果を示す。上記フィルタの阻止サイズは、細孔穴径D=305nmに対して(2)式を十分に満たしている。かつ、本計測で利用した80nm径の抗体修飾粒子は(1)を満たしている。これらより、この計測前処理を実施した生体試料は、図10における1013または1023の状態となっている。
図12の横軸1200は、10分あたりのパルス数である。パルス数1201は、対象抗原を有する培養上清の抽出済試料1021のパルス波形の計測を行った結果である。305nmの細孔では対象抗原であるインフルエンザNタンパクはパルスとして観測されないので、このパルスはすべて夾雑粒子による。また、パルス数1202は、ステップS1114で混和した抗体修飾粒子保存液のパルス計測を行った結果である。これらを混和およびインキュベートした試料1023のパルス計測結果が、パルス数1203である。パルス数はおおむね1201と1202の和となるが、夾雑粒子由来のパルスが多く、抗体修飾粒子表面への抗原付着といった、小さな違いをモデル化することは困難である。
これに対してパルス数1211は、ステップS1113での濾過後試料1022のパルス計測結果であり、ほとんどパルスが計測されない。したがって、これに抗体修飾粒子を混和、インキュベーションを行った試料1023のパルス計測結果は、1210のようになり、ほぼすべてのパルスが抗体修飾粒子によるものとなる。このことから、本発明によれば、臨床検体のような夾雑物を多く含む生体試料であっても、図6や図7のような純系と同様に対象抗原の検出や定量が行えることがわかる。
図13は、培養インフルエンザウイルス試料に(1)式および(2)式の条件で図11の計測前処理を施した後に、本発明の方法による計測を行ったときのピーク電流の分布である。NTCは、インフルエンザウイルスが含まれていない培養上清、以下分布1311乃至1313は各々、PCRコピー数が102、104および106コピー/μLの結果である。図11に示した計測前処理により、純系で計測した図6と同様にこのヒストグラムのパルスはほとんどが抗体修飾粒子によるものである。その結果を見ると図6と同様に、インフルエンザウイルスを含まないNTC1310と比較して、試料中のウイルス濃度が上昇する毎にピーク電流の大きなパルスが現れる。図13(b)は、この分布の標準偏差を表している。このようなパルス波形の分布と対象抗原であるインフルエンザAのNタンパク質との相関関係をモデル化すれば、生体試料である上記培養上清中のインフルエンザウイルス濃度を推定することができる。
以上、夾雑粒子を大量に含む生体粒子中の、微生物から特異的なタンパク質を抽出して、それを抗原として本発明の方法で定量を行った。本発明の方法では、微生物内に限らず、抗原となるタンパク質が生体試料中に含まれていればその効果を発揮する。
(実施形態2)
上記実施形態1では、濾過後の試料からはほとんどパルスが計測されないように、細孔径D、粒子径d1および阻止サイズm1を選択した。図12のパルス数1211はその例である。一方、本発明の他の実施形態として、濾過後の試料からパルスが計測されるように細孔径、粒子径および阻止サイズを選択した上、除外閾値よりピーク電流が小さなパルス波形を解析対象から除外してもよい。
この実施形態の一例では、以下(3)式および(4)式を満たすように、図8における阻止サイズm2(861)と抗体修飾粒子径d2(862)を選択して計測する。
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000006
いま一例として、図14のとおりD=305nm、d2=220nm、m2=100nm、Mmin=2nmとすると、図14のとおり、計測データには抗体修飾粒子と夾雑粒子が混合した状態となる。図14の一例では、粒子1411乃至1413の細孔通過にともなって、パルス波形1421乃至1423のパルス波形が各々計測される。この一例の場合、阻止サイズm2以下の粒子1413であっても、パルスが波形1323として計測されてしまう。本実施形態においては、除外閾値1400を設定し、たとえばパルス波形1423のように、ピーク電流が除外閾値1400を下回るパルス波形を、ステップS305またはS315のモデル化や推定の対象から除外する。除外閾値はたとえば、図8の範囲839内で決めてよいが、たとえばステップS305の相関モデル化の評価関数の成績が最善になるように、回帰的に選択することもできる。またたとえば、このステップS305でAIモデルの訓練を行う場合、訓練済AIモデルの出力がもっとも良く既知試料の抗原の有無や抗原濃度を再現するように、除外閾値1400を決めてよい。
この実施形態における濾過後の試料の計測結果は、抗体修飾粒子由来および夾雑粒子由来のパルスが混合する状態になる。しかし(3)式および(4)式を満たす限り、夾雑物由来のパルス波形のピーク電流は、抗体修飾粒子のそれに比べて有意に小さいため、これらを除外することで、抗体修飾粒子のみを解析対象とすることができる。たとえば、阻止サイズの小さなフィルタが高価である、高価な遠心装置を要する、あるいは濾過時間が長いなどの問題がある場合には、(1)式および(2)式に従うことが困難である場合がある。このような場合、この実施形態2による方法が有効である。
以上の実施形態1、実施形態2の説明において、図9、図10および図14で、抗体修飾粒子に抗原が結合した状態、すなわち図5(b)の状態の検出を例にとった。本発明では、対象抗原により抗体修飾粒子同士が凝集した図5(c)の状態の検出にも利用できる。
上述したフィルタの阻止サイズは、粒子のサイズが既知である標準ビーズを使い、上述したような手法でパルス波形を計測することで評価できる。図15は、粒径が既知であるNIST(アメリカ国立標準技術研究所)準拠の標準ビーズを用いて、上述したセンサ100などのセンサでパルス波形を計測し、そのピーク電流の分布をヒストグラムとして表示したものである。分布1511乃至1514は各々、305nmの穴径の細孔を持つ図1に例示したようなセンサで、100nm、200nm、270nmおよび300nmの標準ビーズを計測した結果であり、粒径ごとにその分布が明らかに異なる。評価対象のフィルタで、各々の粒径の標準ビーズを濾過した試料を計測し、フィルタで濾過しない計測結果のパルス数と比較すると、各々の粒径毎の阻止率を見積もることができる。その阻止率が30%以上になる粒径を、阻止サイズとして定める。
さらに以上は、対象抗原に特異的に結合する抗体修飾粒子を計測対象とし、夾雑物の多い生体粒子中の対象抗原の検出または定量を行う例で本発明を説明した。これらに限定されず、本発明では検出または定量対象の抗体に結合する抗原をその表面に修飾した抗原修飾粒子を計測対象とし、夾雑物の多い生体粒子中の対象抗体の検出または定量を行うこともできる。その場合は上記の説明の抗体と抗原を逆に読み替えればよい。
一般に、抗原または抗体の検出や定量にかかる従来の技術にあっては、抗原抗体反応の有する特異性を利用して抗体または抗原を捕捉した後に、それ以外を洗浄等によって可能な限り除去する必要があり、不要物の除去に多くの手間を要する問題があった。本発明がユニークな点は、対象試料から夾雑物を除去するのではなく、対象試料に夾雑物が大量に含まれていたとしても、これらが解析結果に影響を与えない条件を与えることで、夾雑物除去に要する手間やコストを削減することに成功した点にある。
また、以上説明してきた本発明に係る方法は、プロセッサ(単数のプロセッサでもマルチコアプロセッサでもよく、またマイクロプロセッサも含んでよい)を有するコンピュータ装置・端末により実施可能である。そうしたコンピュータ装置は、図1のセンサ100等のセンサと一体化した装置であってもよい。あるいは、そうしたセンサとネットワーク(有線、無線を問わず、例えばインターネット、専用閉域網、LAN等であってよい)を介して動作可能に接続するコンピュータ装置であってもよい。
本発明に関して使用できるコンピュータ装置の形態は任意であり、例えばワークステーション、タブレット、スマートフォン等であってよい。
本発明の或る実施形態においては、コンピュータにより可読であるプログラムおよび当該プログラムを格納する媒体を提供でき、当該プログラムをプロセッサが実行することで、上述した方法が含む任意の工程を実施するようにできる。
本発明に係る或る実施形態では、上述した方法を実施し、抗原若しくは抗体の有無若しくは濃度を推定するための装置も提供できる。すなわち当該装置は、上述したような阻止サイズmを有するフィルタと、穴径Dの細孔を有する隔壁によって隔てられた2つのチャンバが前記細孔を通じて疎通し、かつ前記2つのチャンバの各々の中に電極を有する構造のセンサと、ネットワークを介してコンピュータに接続するインターフェイスとを含んでよい。当該装置が有するインターフェイスは、抗体修飾粒子が細孔を通過するたびに生じるイオン電流の過渡変化を、複数のパルス波形から成るパルス波形群として計測することで取得されたデータを、コンピュータに送信するように構成されるものであってよい。当該コンピュータはプロセッサを有する任意の形態であってよく、上記装置と一体化したものであってもよいし、あるいは何らかのネットワークを介して上記装置と接続する外部コンピュータであってもよい。

Claims (10)

  1. 生体から採取した生体試料中における検出対象である抗原若しくは抗体の有無若しくは濃度を推定するための方法であって、
    前記生体試料を、阻止サイズmを有するフィルタで濾過して濾過済試料を作成し、
    前記抗原に結合する抗体をその表面に付着させた粒子径dを有する抗体修飾粒子、又は前記抗体に結合する抗原をその表面に付着させた粒子径dを有する抗原修飾粒子と、
    前記濾過済試料と、
    第1の電解液と
    を混合して計測対象試料を作成し、
    穴径Dの細孔を有する隔壁によって隔てられた2つのチャンバが前記細孔を通じて疎通し、かつ前記2つのチャンバの各々の中に電極を有する構造のセンサの、前記2つのチャンバのうちの一方に前記計測対象試料を充填し、
    第2の電解液を前記センサの有する前記2つのチャンバの他方に充填して前記細孔を通じて前記2つのチャンバを電気的に導通させ、
    前記2つのチャンバが各々有する2つの電極の間に電圧を印加して、前記2つの電極の間に前記細孔を経由してイオン電流を流した状態で、前記抗体修飾粒子若しくは前記抗原修飾粒子が前記細孔を通過するたびに生じる前記イオン電流の過渡変化を、複数のパルス波形から成るパルス波形群として計測し、
    前記パルス波形群を解析することによって、前記生体試料中における検出対象の抗原若しくは抗体の有無若しくは濃度を推定する
    ことを含み、
    前記阻止サイズmは検出対象である抗原若しくは抗体のサイズに応じて定まる下限値以上かつ前記穴径Dの1/2以下であり、かつ、
    前記抗体修飾粒子若しくは前記抗原修飾粒子の径dは前記穴径Dの1/5以上かつD未満である
    ことを特徴とする方法。
  2. 前記阻止サイズmは2nm以上かつ前記穴径Dの1/10以下であり、かつ、
    前記抗体修飾粒子若しくは前記抗原修飾粒子の径d1は前記穴径Dの1/5以上かつD未満である
    ことを特徴とする、請求項1に記載の方法。
  3. 前記イオン電流の過渡変化を、複数のパルス波形から成るパルス波形群として計測することによって、前記生体試料中における前記抗体修飾粒子若しくは前記抗原修飾粒子の凝集状態を計測することを特徴とする、請求項1又は2に記載の方法。
  4. さらに
    前記パルス波形群の中から、除外閾値以上のピーク電流を有する選択パルス波形を抽出し、
    前記選択パルス波形群を解析することによって、前記生体試料中における検出対象の抗原若しくは抗体の有無の検出又は濃度の推定値を計算すること
    を含み、
    前記抗体修飾粒子若しくは前記抗原修飾粒子の径dは前記穴径D未満であり、かつ前記阻止サイズmは前記径dの1/2以下であることを特徴とする、請求項1に記載の方法。
  5. さらに
    前記除外閾値を、前記濃度推定値が生体試料中に含まれる検出対象の抗原若しくは抗体の真値と近くなるように再帰的に求めること
    を含む、請求項4記載の方法。
  6. 前記第1の電解液と前記第2の電解液は、その組成が異なることを特徴とする請求項1、2、又は4のいずれかに記載の方法。
  7. 前記第1の電解液と前記第2の電解液は、その組成が同じであることを特徴とする請求項1、2、又は4のいずれかに記載の方法。
  8. 生体から採取した生体試料中における検出対象である抗原若しくは抗体の有無若しくは濃度を推定するための装置であって、
     阻止サイズmを有するフィルタと、
     穴径Dの細孔を有する隔壁によって隔てられた2つのチャンバが前記細孔を通じて疎通し、かつ前記2つのチャンバの各々の中に電極を有する構造のセンサと、
     ネットワークを介してコンピュータに接続するインターフェイスと
    を含み、
    前記抗原に結合する抗体をその表面に付着させた粒子径dを有する抗体修飾粒子、又は前記抗体に結合する抗原をその表面に付着させた粒子径dを有する抗原修飾粒子と、
    前記フィルタによって濾過された濾過済試料と、
    第1の電解液と
    を混合して作成される計測対象試料を、前記2つのチャンバのうちの一方に前記計測対象試料を充填するように構成され、
    第2の電解液を前記センサの有する前記2つのチャンバの他方に充填して前記細孔を通じて前記2つのチャンバを電気的に導通させるように構成され、
    前記2つのチャンバが各々有する2つの電極の間に電圧を印加して、前記2つの電極の間に前記細孔を経由してイオン電流を流した状態で、前記抗体修飾粒子若しくは前記抗原修飾粒子が前記細孔を通過するたびに生じる前記イオン電流の過渡変化を、複数のパルス波形から成るパルス波形群として計測してデータを取得し、前記インターフェイスを介して前記データをコンピュータに送信するように構成され、
    前記阻止サイズmは、検出対象である抗原若しくは抗体のサイズに応じて定まる下限値以上かつ前記穴径Dの1/2以下であり、かつ前記抗体修飾粒子若しくは前記抗原修飾粒子の径dは、前記穴径Dの1/5以上かつ前記穴径D未満である
    ことを特徴とする、装置。
  9. 前記阻止サイズmは、前記穴径Dの1/10以下である、請求項8に記載の装置。
  10. 隔壁によって隔てられた2つのチャンバが細孔を通じて疎通し、前記2つのチャンバの各々の中に電極を有する構造のセンサとネットワークを介して接続されるように構成されたプロセッサを有するコンピュータにおいて、前記プロセッサが実行することで下記工程を実施するように構成されたコンピュータ可読命令を含むプログラムであって、
    生体試料を、阻止サイズmを有するフィルタで濾過して濾過済試料を作成する工程と、
    抗原に結合する抗体をその表面に付着させた粒子径dを有する抗体修飾粒子、又は前記抗体に結合する抗原をその表面に付着させた粒子径dを有する抗原修飾粒子と、
    前記濾過済試料と、
    第1の電解液と
    を混合して計測対象試料を作成する工程と、
    穴径Dの細孔を有する隔壁によって隔てられた2つのチャンバが前記細孔を通じて疎通し、かつ前記2つのチャンバの各々の中に電極を有する構造のセンサの、前記2つのチャンバのうちの一方に前記計測対象試料を充填する工程と、
    第2の電解液を前記センサの有する前記2つのチャンバの他方に充填して前記細孔を通じて前記2つのチャンバを電気的に導通させる工程と、
    前記2つのチャンバが各々有する2つの電極の間に電圧を印加して、前記2つの電極の間に前記細孔を経由してイオン電流を流した状態で、前記抗体修飾粒子若しくは前記抗原修飾粒子が前記細孔を通過するたびに生じる前記イオン電流の過渡変化を、複数のパルス波形から成るパルス波形群として計測する工程と、
    前記パルス波形群を解析することによって、前記生体試料中における検出対象の抗原若しくは抗体の有無若しくは濃度を推定する工程
    とを実施し、
    前記阻止サイズmは、検出対象である抗原若しくは抗体のサイズに応じて定まる下限値以上かつ前記穴径Dの1/2以下であり、かつ前記抗体修飾粒子若しくは前記抗原修飾粒子の径dは、前記穴径Dの1/5以上かつ前記穴径D未満である
    ことを特徴とする、プログラム。
PCT/JP2023/016945 2022-06-24 2023-04-28 タンパク質の検出および定量のための方法、装置及びプログラム WO2023248624A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-101996 2022-06-24
JP2022101996A JP2024002665A (ja) 2022-06-24 2022-06-24 タンパク質の検出および定量のための方法、装置及びプログラム

Publications (1)

Publication Number Publication Date
WO2023248624A1 true WO2023248624A1 (ja) 2023-12-28

Family

ID=89379666

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/016945 WO2023248624A1 (ja) 2022-06-24 2023-04-28 タンパク質の検出および定量のための方法、装置及びプログラム

Country Status (2)

Country Link
JP (1) JP2024002665A (ja)
WO (1) WO2023248624A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014173936A (ja) * 2013-03-07 2014-09-22 Toshiba Corp 検体検出装置及び検出方法
WO2018199179A1 (ja) * 2017-04-28 2018-11-01 国立大学法人東京医科歯科大学 修飾ナノ粒子、該修飾ナノ粒子を含む分散液、抵抗パルスセンシング用セット、ウイルス又は細菌の検出用セット及び試薬、並びにウイルス又は細菌の検出方法
WO2021239912A1 (en) * 2020-05-27 2021-12-02 Imperial College Innovations Limited Analyte detection method
JP2022059154A (ja) * 2020-10-01 2022-04-13 株式会社日立製作所 分析装置及び分析方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014173936A (ja) * 2013-03-07 2014-09-22 Toshiba Corp 検体検出装置及び検出方法
WO2018199179A1 (ja) * 2017-04-28 2018-11-01 国立大学法人東京医科歯科大学 修飾ナノ粒子、該修飾ナノ粒子を含む分散液、抵抗パルスセンシング用セット、ウイルス又は細菌の検出用セット及び試薬、並びにウイルス又は細菌の検出方法
WO2021239912A1 (en) * 2020-05-27 2021-12-02 Imperial College Innovations Limited Analyte detection method
JP2022059154A (ja) * 2020-10-01 2022-04-13 株式会社日立製作所 分析装置及び分析方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
CHANNEL JBA: "BioJapan2022 Bio x AI (5) Mr. Norihiko Naono", YOUTUBE, 25 October 2022 (2022-10-25), XP093119811, Retrieved from the Internet <URL:https://www.youtube.com/watch?v=qmjwoZQAlrE> [retrieved on 20240116] *
TAKAKURA T.; YANAGI I.; GOTO Y.; ISHIGE Y.; KOHARA Y.: "Single-molecule detection of proteins with antigen-antibody interaction using resistive-pulse sensing of submicron latex particles", APPLIED PHYSICS LETTERS, AMERICAN INSTITUTE OF PHYSICS, 2 HUNTINGTON QUADRANGLE, MELVILLE, NY 11747, vol. 108, no. 12, 21 March 2016 (2016-03-21), 2 Huntington Quadrangle, Melville, NY 11747, XP012206142, ISSN: 0003-6951, DOI: 10.1063/1.4944641 *

Also Published As

Publication number Publication date
JP2024002665A (ja) 2024-01-11

Similar Documents

Publication Publication Date Title
Chia et al. Advances in exosome quantification techniques
JP4568499B2 (ja) 低コストで細胞計数するための方法およびアルゴリズム
US10416168B2 (en) Method of analyzing the content of drops and associated apparatus
TWI577389B (zh) 使用多專一性捕捉及雞尾酒檢測試劑檢測胰臟病患之循環腫瘤細胞的方法及套組
Obeid et al. Development of a NanoBioAnalytical platform for" on-chip" qualification and quantification of platelet-derived microparticles
CN107144617B (zh) 一种氧化石墨烯/甲胎蛋白适体电化学传感器的制备方法
Kailashiya Platelet-derived microparticles analysis: Techniques, challenges and recommendations
US20070154960A1 (en) Method for assessing disease states by profile analysis of isolated circulating endothelial cells
CN102507395A (zh) 实时监测溶液中病毒颗粒的方法
Yang et al. Dielectrophoresis assisted high-throughput detection system for multiplexed immunoassays
JP6861456B2 (ja) アナライトの検出およびそのための方法
CN104122285B (zh) 一种基于磁性微珠的低场nmr稀有细胞检测方法
Zhou et al. Multiplex metal-detection based assay (MMDA) for COVID-19 diagnosis and identification of disease severity biomarkers
WO2023248624A1 (ja) タンパク質の検出および定量のための方法、装置及びプログラム
WO2006020936A2 (en) A method for assessing disease states by profile analysis of isolated circulating endothelial cells
WO2016125243A1 (ja) エクソソーム測定方法及びエクソソーム抽出方法
US20230221319A1 (en) A Method, A System, An Article, A Kit And Use Thereof For Biomolecule, Bioorganelle, Bioparticle, Cell And Microorganism Detection
Tahari Fluorescence correlation spectroscopy: Ultrasensitive detection in clear and turbid media
WO2023248623A1 (ja) タンパク質の検出および定量のための方法及びプログラム
WO2023248608A1 (ja) 病原体、微生物、もしくはタンパク質の検出および定量のための計測および解析方法、ならびに当該方法を実施するためのコンピュータプログラム
WO2023106342A1 (ja) 微粒子の検出、識別、および定量のための方法、装置
Yang et al. Rapid and label-free identification of single foodborne pathogens using microfluidic pore sensors
RU2225446C2 (ru) Способ определения концентрации вирусов в жидком биологическом материале и устройство для его осуществления
CN114184781B (zh) 一种新型病原体抗体检测方法及其检测新冠病毒抗体应用
CN111830289B (zh) 一种利用原子力显微术对生物素化抗体-IgE免疫复合物直接成像的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23826813

Country of ref document: EP

Kind code of ref document: A1