WO2023248512A1 - Mixed microorganisms and wastewater treatment method - Google Patents

Mixed microorganisms and wastewater treatment method Download PDF

Info

Publication number
WO2023248512A1
WO2023248512A1 PCT/JP2023/002254 JP2023002254W WO2023248512A1 WO 2023248512 A1 WO2023248512 A1 WO 2023248512A1 JP 2023002254 W JP2023002254 W JP 2023002254W WO 2023248512 A1 WO2023248512 A1 WO 2023248512A1
Authority
WO
WIPO (PCT)
Prior art keywords
nitrogen
wastewater
mixed
present
kas
Prior art date
Application number
PCT/JP2023/002254
Other languages
French (fr)
Japanese (ja)
Inventor
晴佳 柴田
昌浩 多田羅
育子 坂本
瑠美 東條
Original Assignee
鹿島建設株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 鹿島建設株式会社 filed Critical 鹿島建設株式会社
Priority to JP2023533760A priority Critical patent/JP7345079B1/en
Publication of WO2023248512A1 publication Critical patent/WO2023248512A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/34Biological treatment of water, waste water, or sewage characterised by the microorganisms used
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/20Bacteria; Culture media therefor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology

Definitions

  • the present invention relates to a mixed microorganism and a wastewater treatment method.
  • anaerobic ammonium oxidation As such a nitrogen removal technique, the use of anaerobic ammonium oxidation (anammox) has been proposed (for example, Patent Document 1).
  • the anammox reaction is a reaction in which ammonia nitrogen and nitrite nitrogen are converted into nitrogen gas by the action of anammox bacteria.
  • anammox bacteria can vary depending on the salt concentration of wastewater.
  • conventional anammox bacteria may be able to remove nitrogen well from wastewater with a low salt concentration, but may not be able to remove nitrogen sufficiently from wastewater with a high salt concentration.
  • the present invention was made in view of the above situation, and aims to provide a technology that enables nitrogen removal from wastewater with a wide range of salt concentrations.
  • the present inventors have discovered that the above-mentioned problems can be solved using a newly discovered mixed microorganism containing anammox bacteria, and have completed the present invention. Specifically, the present invention provides the following.
  • a mixed microorganism includes at least an anammox bacterium,
  • the anammox bacterium is KAS-01 of the genus Candidatus Scalindua, Mixed microorganisms.
  • a wastewater treatment method comprising the step of bringing the mixed microorganism according to (1) or (2) into contact with wastewater having a salt concentration of 1% by mass or more.
  • a technology that enables nitrogen removal from wastewater with a wide range of salt concentrations.
  • FIG. 2 is a diagram showing an outline of an accumulation reactor used in Examples. It is a figure showing the nitrogen removal rate of each mixed microorganism used in an example.
  • FIG. 3 is a diagram showing the nitrogen removal rate of each mixed microorganism used in Examples. It is a diagram showing a phylogenetic tree in homology analysis. It is a figure showing the nitrogen removal rate in each mixed microorganism used in an example.
  • the mixed microorganism of the present invention includes at least a certain new anammox bacterium, namely "KAS-01" of the genus Candidatus Scalindua.
  • mixed microorganisms includes aggregates of multiple types of microorganisms.
  • One of the microorganisms constituting the mixed microorganism of the present invention is "KAS-01".
  • the mixed microorganism may be in the form of sludge in which "KAS-01" and other microorganisms coexist.
  • sludge some of the microorganisms consume oxygen while receiving organic matter from the anammox bacteria, thereby creating an absolutely anaerobic growth environment locally.
  • anaerobic anammox bacteria can grow and multiply even if the absolute anaerobic conditions are not satisfied.
  • anammox bacteria is an anaerobic autotrophic bacterium that can grow without the need for aeration or addition of carbon sources.
  • anammox bacteria have not yet been isolated as a single bacterium.
  • KAS-01 in the present invention is also an example of such an anammox bacterium.
  • Anammox bacteria can remove nitrogen from wastewater as a gas through the anammox reaction represented by the following formula. NH 4 + +NO 2 - ⁇ N 2 +NO 3 - +H 2 O
  • New anammox bacteria “KAS-01” "KAS-01” is a novel anammox bacterium of the genus Candidatus Scalindua named by the present inventors.
  • the present inventors deposited the mixed microorganism containing "KAS-01" into the patented microorganisms of the National Institute of Technology and Evaluation, an international depositary authority based on the Budapest Treaty on the International Recognition of the Deposit of Microorganisms for the Purposes of Patent Procedures.
  • a deposit application was made to the Deposit Center (Room 122, 2-5-8 Kazusa Kamatari, Kisarazu City, Chiba Prefecture, Japan).
  • the mixed microorganisms containing "KAS-01” are "mixed microorganisms for which the description of their respective compositions and at least one method for confirming their existence are not described in the deposit application”;
  • the patent microorganism depository rejected the deposit on January 4, 2022, on the grounds that it was “outside the range of biological species that can be deposited.” Therefore, the applicant has self-deposited the mixed microorganism strain containing "KAS-01” at the Kajima Corporation Technical Research Institute (2-19-1 Tobitakyu, Chofu City, Tokyo, Japan) for maintenance and preservation. are doing.
  • the applicant guarantees that the mixed microorganism containing "KAS-01” will be distributed to a third party in cases where each item of Article 27-3 of the Japanese Patent Law Enforcement Regulations applies, subject to compliance with the respective laws and regulations. do.
  • the 16S rRNA gene of "KAS-01" contains the same base sequence as the base sequence set forth in SEQ ID NO:3.
  • “comprising a base sequence identical to the base sequence set forth in SEQ ID NO: 3” preferably includes a base sequence substantially identical to the base sequence set forth in SEQ ID NO: 3, or This includes all base sequences that are completely identical, and more preferably includes all base sequences that are completely identical to the base sequence set forth in SEQ ID NO:3.
  • 16S rRNA is an abbreviation for 16S ribosomal ribonucleic acid.
  • the base sequence set forth in SEQ ID NO: 3 corresponds to the sequence of the amplified region in the gene sequence of "KAS-01" by polymerase chain reaction (PCR) using a predetermined primer pair (SEQ ID NO: 1 and 2).
  • nucleotide sequence that is substantially the same as the nucleotide sequence set forth in SEQ ID NO: 3 means that the difference from the nucleotide sequence set forth in SEQ ID NO: 3 is preferably 5 bases or less, more preferably 3 bases.
  • the following preferably includes base sequences of one base.
  • the amount of "KAS-01" contained in the mixed microorganism (in terms of dry weight) varies depending on the form of the sample, etc., but may be, for example, 0.1% by mass or more with respect to the mixed microorganism.
  • Whether the microorganism is "KAS-01" can be identified by PCR. For example, a predetermined region of the 16S rRNA gene of the target microorganism is amplified using the primer pair of SEQ ID NO: 1 and 2, and the nucleotide sequence of the amplified region is analyzed for homology with the nucleotide sequence set forth in SEQ ID NO: 3. It can be specified by If the homology is 99.5% or more, it can be determined that the microorganism is "KAS-01".
  • the conditions for culturing the mixed microorganisms of the present invention are not particularly limited as long as the conditions allow the growth and proliferation of anammox bacteria.
  • the obtained culture can be appropriately used as the mixed microorganism of the present invention.
  • the mixed microorganism of the present invention contains, for example, sodium nitrite (NaNo 2 ), ammonium sulfate ((NH 4 ) 2 SO 4 ), potassium bicarbonate (KHCO 3 ), potassium dihydrogen phosphate (KH 2 PO 4 ), and magnesium sulfate. It can be cultured in a liquid culture medium containing (MgSO 4 .7H 2 O), calcium chloride (CaCl 2 .2H 2 O), and the like. More specific culture medium compositions include those shown in Examples. Note that since anammox bacteria are autotrophic, wastewater treatment can proceed without adding a carbon source or the like to the culture medium.
  • the mixed microorganism culture medium of the present invention contains ammonia nitrogen and nitrite nitrogen, and the ratio thereof (ammonia nitrogen: nitrite nitrogen) is in the range of 1:1 to 1:1.5. It is preferable that there be. Further, the culture medium may be subjected to culture after a part of the ammonia nitrogen is converted to nitrite nitrogen by the action of ammonia-oxidizing bacteria by aeration or the like.
  • the culture medium may be used after purging oxygen with an inert gas.
  • the culture medium may be continuously supplied in an upward flow manner into the culture tank.
  • the mixed microorganism of the present invention can be used to remove nitrogen from wastewater by using it in the same manner as the conventionally known anammox bacteria.
  • wastewater includes any target to be treated to remove nitrogen, including nitrogen (ammonium nitrogen, nitrite nitrogen, etc.), salts, organic matter, etc. obtain.
  • Wastewater can be water discharged from factories, farms, homes, etc.
  • the wastewater may be subjected to wastewater treatment (activated sludge treatment, anaerobic treatment), or may be untreated wastewater. Note that since anammox bacteria are autotrophic, wastewater treatment can proceed without adding a carbon source or the like to the wastewater.
  • the wastewater to be treated by the mixed microorganism of the present invention contains ammonia nitrogen and nitrite nitrogen, and the ratio thereof (ammonia nitrogen: nitrite nitrogen) is The ratio is preferably in the range of 1:1 to 1:1.5. Furthermore, the wastewater may be subjected to treatment by the mixed microorganism of the present invention after a part of the ammonia nitrogen is converted into nitrite nitrogen by the action of ammonia-oxidizing bacteria through aeration or the like.
  • Anammox bacteria that have been used in the past have mainly been used to treat wastewater with low salt concentrations.
  • the present inventors have discovered that such anammox bacteria may not be able to sufficiently remove nitrogen from wastewater with a high salt concentration.
  • the mixed microorganism of the present invention can effectively remove nitrogen not only from wastewater with a low salt concentration but also from wastewater with a high salt concentration. Therefore, according to the mixed microorganism of the present invention, it is possible to remove nitrogen from wastewater having a wide range of salt concentrations.
  • nitrogen removal from wastewater includes that the nitrogen removal rate and nitrogen removal rate are sufficiently high to be practical, and that the accumulation of bacteria is fast enough to be practical.
  • the nitrogen removal rate and nitrogen removal rate can be determined by the method shown in Examples.
  • the lower limit of the salt concentration of the wastewater to be treated by the mixed microorganism of the present invention is preferably 0% by mass or more (including wastewater that does not contain any salt), more preferably 1% by mass or more, and even more preferably 3% by mass. That's all.
  • the upper limit of the salt concentration of the wastewater to be treated by the mixed microorganism of the present invention is preferably 15% by mass or less, more preferably 9% by mass or less, and still more preferably 5% by mass or less.
  • the "salt concentration of wastewater” includes the total amount (unit: mass %) of any salts contained in wastewater.
  • Salts that may be contained in the wastewater include sodium chloride, potassium chloride, sodium sulfate, calcium chloride, and the like. Salt concentration in wastewater can be determined based on electrical conductivity.
  • the wastewater to be treated by the mixed microorganism of the present invention includes disposal site leachate with high salt concentration, wastewater containing seawater, and the like. Nitrogen may not be sufficiently removed from such wastewater by the anammox bacteria that have been used in the past. Therefore, the present invention is also significant in that it can expand the scope of application of wastewater treatment technology using anammox bacteria.
  • Wastewater treatment method The wastewater treatment method using the mixed microorganism of the present invention is not particularly limited, and conventionally known methods using anammox bacteria can be adopted.
  • a typical wastewater treatment method includes a system including a nitrogen removal tank in which a carrier on which mixed microorganisms (anammox bacteria) are colonized is arranged.
  • a nitrogen removal tank in which a carrier on which mixed microorganisms (anammox bacteria) are colonized is arranged.
  • the nitrogen removal tank by bringing the mixed microorganism of the present invention into contact with wastewater, nitrogen removal by the anammox bacteria progresses.
  • the nitrogen removal tank usually has a configuration that can realize two reactions: a nitrite oxidation reaction of ammonia in wastewater and an anammox reaction.
  • a nitrite oxidation reaction of ammonia in wastewater and an anammox reaction.
  • a "two-vessel system” in which two reactions are performed in separate culture tanks, and a “single-vessel system” in which two reactions are performed in the same culture tank are known.
  • the mixed microorganism of the present invention can be applied to any of these systems.
  • Examples of carriers for colonizing mixed microorganisms include nonwoven fabrics, strings, and the like.
  • the method for colonizing anammox bacteria in the nitrogen removal tank is not particularly limited, and for example, sludge containing the mixed microorganisms of the present invention (anammox sludge) is introduced into the nitrogen removal tank as seed sludge, and wastewater, culture medium, etc. By continuously supplying anammox bacteria, the nitrogen removal tank can be colonized with anammox bacteria.
  • the amount of anammox sludge introduced is not particularly limited, and the amount of suspended solids (SS concentration) per liter of nitrogen removal tank volume is preferably 10 to 1000 mg, more preferably 50 to 500 mg, and even more preferably 100 to 400 mg.
  • the conditions for wastewater treatment are not particularly limited, but from the viewpoint of efficient nitrogen removal, it is preferable to start full-scale operation after confirming the colonization of anammox bacteria using the nitrogen removal rate as an indicator.
  • the inside of the nitrogen removal tank is usually maintained in a sealed environment where it is difficult to come into contact with air.
  • the temperature conditions (for example, the temperature of wastewater) in wastewater treatment are not particularly limited as long as they allow anammox bacteria to grow and multiply, and may be, for example, 5 to 40°C.
  • the mixed microorganism of the present invention can realize treatment with a nitrogen load of 0.5 to 5.0 kg/m 3 /day, for example.
  • the hydraulic retention time (HRT) of the mixed microorganism of the present invention varies depending on the nitrogen load, but for example, when the nitrogen load is 500 mg/L, the HRT can be 2.4 to 24 hours.
  • ⁇ Test 1 Obtaining mixed microorganisms> Based on the following method, enrichment culture of anammox bacteria was performed to obtain mixed microorganisms containing anammox bacteria.
  • sample KAS-01 Sludge collected from an aquarium's filtration tank
  • sample A Sludge collected from an aquarium's filtration tank
  • sample B Sludge collected from the seabed with a sludge collector
  • Sample C Collected by a diver who dived into a river Sludge
  • Sample D Sludge collected by a diver diving into a river
  • An accumulation reactor (corresponding to a nitrogen removal tank or a culture tank) was prepared, and various types of sludge were subjected to accumulation culture while supplying a culture medium to the reactor. Note that the accumulation reactor used in this example corresponds to a single-tank treatment system.
  • compositions of the prepared culture media are shown in Tables 1 to 3.
  • the salt concentration in the culture medium was adjusted to 3% by mass.
  • FIG. 1 shows an overview of the accumulation reactor used in this example.
  • P means a pump
  • pH means a pH meter.
  • the reactor was constantly purged with nitrogen gas during culturing, and the dissolved oxygen concentration was adjusted to 0.5 mg/L or less.
  • the pH inside the accumulation reactor was adjusted to 7.7 ⁇ 0.1 with a 1% NaOH aqueous solution.
  • Enrichment culture was performed for 600 days, and mixed microorganisms containing anammox bacteria were obtained from each of the four types of seed sludge.
  • each of the obtained mixed microorganisms containing anammox bacteria will be indicated by the name of the respective seed sludge.
  • ⁇ Test 2 Evaluation of nitrogen removal performance of mixed microorganisms> The nitrogen removal performance of each mixed microorganism obtained in Test 1 above was evaluated based on the following method.
  • FIG. 2 shows the nitrogen removal rate of each mixed microorganism.
  • Figure 3 shows the nitrogen removal rate in each mixed microorganism.
  • accumulation days means the number of days that have passed since the start of acclimatization.
  • ⁇ Test 3 Genetic analysis of mixed microorganisms-1> Genetic analysis was performed on the mixed microorganism "KAS-01" obtained in Test 1 above based on the following method.
  • the sludge-like mixed microorganism "KAS-01" (500 ⁇ L) was centrifuged (15,000 rpm, 5 minutes) and pellets were collected. After adding "Lysis Solution F” (manufactured by Nippon Gene Co., Ltd.) to the obtained pellets, the pellets were ground for 2 minutes at 1,500 rpm using "Shake Master Neo” (manufactured by BMS Co., Ltd.). The crushed sample was allowed to stand at 65° C. for 10 minutes, then centrifuged at 12,000 ⁇ g for 1 minute, and the supernatant was collected. Next, DNA was purified from the separated supernatant using the "MPure 12 System” and the "MPure Bacterial DNA Extraction Kit” (both manufactured by MP Bio).
  • a library was created using the obtained DNA using "16S Barcoding Kit” (manufactured by Oxford Nanopore Technologies) and primers (SEQ ID NOs: 1 and 2).
  • the obtained DNA was sequenced using "GridION” and “R9.4 Flowcell” (both manufactured by Oxford Nanopore Technologies).
  • a partial sequence of the 16S rRNA gene was obtained from the DNA using "Guppy” (Ver 4.0.11+f1071ce) (SEQ ID NO: 3).
  • ⁇ Test 4 Genetic analysis of mixed microorganisms-2> Based on the genetic information of the mixed microorganism "KAS-01" obtained in Test 3 above, homology analysis with other anammox bacteria was performed.
  • KAS-01 was found to belong to the "genus Candidatus Scalindua.” Furthermore, it was confirmed that "KAS-01” and its closest relatives “AB811946” and “AB573103” differ by 1 to 2 bases, and that "KAS-01” is a new bacterium.
  • ⁇ Test 5 Evaluation of the influence of salt concentration on mixed microorganisms> Among the mixed microorganisms obtained in Test 1 above, the influence of salt concentration was evaluated for "KAS-01" and "A” based on the following method.
  • the culture medium (80 mL) shown in Table 6 was poured into a vial (capacity 120 mL).
  • “Trace Element S1” and “Trace Element S2” each have the same composition as that used in Test 1 (Tables 2 and 3).
  • the salt concentration in the medium was adjusted to a final salt concentration of 0.5 to 9% by mass using artificial seawater. After the vial was sealed, it was degassed with argon gas for 5 minutes. Next, each mixed microorganism (20 mL) was added into the vial. After adding each mixed microorganism, culture was performed at 25° C. for 4 days.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Organic Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Microbiology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • Biomedical Technology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Water Supply & Treatment (AREA)
  • Molecular Biology (AREA)
  • Plant Pathology (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Hydrology & Water Resources (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Medicinal Chemistry (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Virology (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Abstract

The present invention addresses the problem of providing a technology that makes it possible to remove nitrogen in wastewater with a wide range of salt concentrations. The present invention provides mixed microorganisms wherein: the mixed microorganisms include at least anammox bacteria; and the anammox bacteria are KAS-01 of the genus Candidatus Scalindua.

Description

混合微生物及び廃水処理方法Mixed microorganisms and wastewater treatment method
 本発明は、混合微生物及び廃水処理方法に関する。 The present invention relates to a mixed microorganism and a wastewater treatment method.
 近年、循環型社会形成の観点から、廃水処理に関しても地球環境への負荷が低い窒素除去技術への転換が求められている。 In recent years, from the perspective of creating a recycling-oriented society, there has been a demand for a shift to nitrogen removal technology that has a lower impact on the global environment when it comes to wastewater treatment.
 このような窒素除去技術として、アナモックス反応(anammox;anaerobic ammonium oxidation、嫌気性アンモニア酸化反応)の利用が提案されている(例えば、特許文献1)。
 アナモックス反応とは、アナモックス菌の作用により、アンモニア性窒素や亜硝酸性窒素を、窒素ガスに変換する反応である。
As such a nitrogen removal technique, the use of anaerobic ammonium oxidation (anammox) has been proposed (for example, Patent Document 1).
The anammox reaction is a reaction in which ammonia nitrogen and nitrite nitrogen are converted into nitrogen gas by the action of anammox bacteria.
特許第5943661号公報Patent No. 5943661
 ここで、本発明者は、アナモックス菌は、廃水の塩濃度に応じて、窒素除去性能が異なり得ることを見出した。例えば、従来のアナモックス菌は、塩濃度が低い廃水において良好に窒素除去できても、塩濃度が高い廃水においては充分に窒素除去できない可能性がある。 Here, the present inventor discovered that the nitrogen removal performance of anammox bacteria can vary depending on the salt concentration of wastewater. For example, conventional anammox bacteria may be able to remove nitrogen well from wastewater with a low salt concentration, but may not be able to remove nitrogen sufficiently from wastewater with a high salt concentration.
 本発明は、上記の状況に鑑みてなされたものであり、幅広い塩濃度の廃水において窒素除去を可能とする技術を提供することを目的とする。 The present invention was made in view of the above situation, and aims to provide a technology that enables nitrogen removal from wastewater with a wide range of salt concentrations.
 本発明者らは、新規に見出されたアナモックス菌を有する混合微生物によれば上記課題を解決できる点を見出し、本発明を完成するに至った。具体的には、本発明は以下のものを提供する。 The present inventors have discovered that the above-mentioned problems can be solved using a newly discovered mixed microorganism containing anammox bacteria, and have completed the present invention. Specifically, the present invention provides the following.
 (1) 混合微生物であって、
 前記混合微生物が、アナモックス菌を少なくとも含み、
 前記アナモックス菌が、Candidatus Scalindua属のKAS-01である、
混合微生物。
(1) A mixed microorganism,
The mixed microorganism includes at least an anammox bacterium,
The anammox bacterium is KAS-01 of the genus Candidatus Scalindua,
Mixed microorganisms.
 (2) 前記KAS-01の16SrRNA遺伝子が、配列番号3に記載の塩基配列と同一の塩基配列を含む、(1)に記載の混合微生物。 (2) The mixed microorganism according to (1), wherein the 16S rRNA gene of KAS-01 contains the same nucleotide sequence as the nucleotide sequence set forth in SEQ ID NO: 3.
 (3) (1)又は(2)に記載の混合微生物と、塩濃度が1質量%以上である廃水と、を接触させる工程を含む、廃水処理方法。 (3) A wastewater treatment method comprising the step of bringing the mixed microorganism according to (1) or (2) into contact with wastewater having a salt concentration of 1% by mass or more.
 本発明によれば、幅広い塩濃度の廃水において窒素除去を可能とする技術が提供される。 According to the present invention, a technology is provided that enables nitrogen removal from wastewater with a wide range of salt concentrations.
実施例で使用した集積用リアクタの概要を示す図である。FIG. 2 is a diagram showing an outline of an accumulation reactor used in Examples. 実施例で使用した各混合微生物における窒素除去率を示す図である。It is a figure showing the nitrogen removal rate of each mixed microorganism used in an example. 実施例で使用した各混合微生物における窒素除去速度を示す図である。FIG. 3 is a diagram showing the nitrogen removal rate of each mixed microorganism used in Examples. 相同性解析における系統樹を示す図である。It is a diagram showing a phylogenetic tree in homology analysis. 実施例で使用した各混合微生物における窒素除去速度を示す図である。It is a figure showing the nitrogen removal rate in each mixed microorganism used in an example.
 以下、本発明の実施形態について詳細に説明する。なお、本発明は以下の実施形態に限定されない。 Hereinafter, embodiments of the present invention will be described in detail. Note that the present invention is not limited to the following embodiments.
<本発明の混合微生物>
 本発明の混合微生物は、所定の新規アナモックス菌、すなわちCandidatus Scalindua属の「KAS-01」を少なくとも含む。
<Mixed microorganism of the present invention>
The mixed microorganism of the present invention includes at least a certain new anammox bacterium, namely "KAS-01" of the genus Candidatus Scalindua.
(1)混合微生物
 本発明において「混合微生物」とは、複数種類の微生物の集合体を包含する。本発明の混合微生物を構成する微生物のうち1種は、「KAS-01」である。
(1) Mixed microorganisms In the present invention, "mixed microorganisms" includes aggregates of multiple types of microorganisms. One of the microorganisms constituting the mixed microorganism of the present invention is "KAS-01".
 本発明の好ましい態様において、混合微生物は、「KAS-01」とともにその他の微生物が共生した汚泥の形態であり得る。このような汚泥においては、微生物の一部がアナモックス菌から有機物の供給を受けつつ、酸素を消費することによって、局所的に絶対嫌気的生育環境を創出し得る。このような環境が創出されることで、絶対嫌気性の条件を満たさない場合であっても、嫌気性のアナモックス菌を生育及び増殖させることができる。 In a preferred embodiment of the present invention, the mixed microorganism may be in the form of sludge in which "KAS-01" and other microorganisms coexist. In such sludge, some of the microorganisms consume oxygen while receiving organic matter from the anammox bacteria, thereby creating an absolutely anaerobic growth environment locally. By creating such an environment, anaerobic anammox bacteria can grow and multiply even if the absolute anaerobic conditions are not satisfied.
(2)アナモックス菌
 本発明において「アナモックス菌」とは、嫌気性の独立栄養細菌であり、曝気や炭素源等の添加を要さずに増殖することができる。
 ただし、アナモックス菌は、単一の菌としては未だ単離されていない。
 しかし、16SrRNA遺伝子の解析等により、アナモックス菌として複数種類が存在することが知られている。本発明における「KAS-01」も、そのようなアナモックス菌の一例である。
(2) Anammox bacteria In the present invention, “anammox bacteria” is an anaerobic autotrophic bacterium that can grow without the need for aeration or addition of carbon sources.
However, anammox bacteria have not yet been isolated as a single bacterium.
However, it is known from analysis of the 16S rRNA gene that there are multiple types of anammox bacteria. "KAS-01" in the present invention is also an example of such an anammox bacterium.
 アナモックス菌は、下記式で表されるアナモックス反応によって、廃水中の窒素をガスとして除去することができる。
 NH +NO →N+NO +H
Anammox bacteria can remove nitrogen from wastewater as a gas through the anammox reaction represented by the following formula.
NH 4 + +NO 2 - →N 2 +NO 3 - +H 2 O
(3)新規アナモックス菌「KAS-01」
 「KAS-01」とは、本発明者らによって命名された、Candidatus Scalindua属の新規なアナモックス菌である。
(3) New anammox bacteria “KAS-01”
"KAS-01" is a novel anammox bacterium of the genus Candidatus Scalindua named by the present inventors.
 本発明者らは、「KAS-01」を含む混合微生物を、特許手続上の微生物の寄託の国際的承認に関するブダペスト条約に基づく国際寄託当局である、「独立行政法人 製品評価技術基盤機構 特許微生物寄託センター」(日本国千葉県木更津市かずさ鎌足2-5-8 122号室)に寄託申請した。
 しかし、「KAS-01」を含む混合微生物は、「それぞれの組成の説明及びそれらの存在を確認する少なくとも一の方法の説明が寄託申請書に記載されていない混合微生物」であること、及び、特許微生物寄託センターで「受託可能な生物種の範囲外」であることを理由に、2022年1月4日付で受託を拒否された。
 そこで、本出願人は、「KAS-01」を含む混合微生物の株を、鹿島建設株式会社技術研究所(日本国東京都調布市飛田給2-19-1)内において自己寄託し、維持及び保存している。本出願人は、日本国特許法施行規則第27条の3各号に該当する場合、各法令の遵守を条件に、「KAS-01」を含む混合微生物を第三者に分譲することを保証する。
The present inventors deposited the mixed microorganism containing "KAS-01" into the patented microorganisms of the National Institute of Technology and Evaluation, an international depositary authority based on the Budapest Treaty on the International Recognition of the Deposit of Microorganisms for the Purposes of Patent Procedures. A deposit application was made to the Deposit Center (Room 122, 2-5-8 Kazusa Kamatari, Kisarazu City, Chiba Prefecture, Japan).
However, the mixed microorganisms containing "KAS-01" are "mixed microorganisms for which the description of their respective compositions and at least one method for confirming their existence are not described in the deposit application"; The patent microorganism depository rejected the deposit on January 4, 2022, on the grounds that it was "outside the range of biological species that can be deposited."
Therefore, the applicant has self-deposited the mixed microorganism strain containing "KAS-01" at the Kajima Corporation Technical Research Institute (2-19-1 Tobitakyu, Chofu City, Tokyo, Japan) for maintenance and preservation. are doing. The applicant guarantees that the mixed microorganism containing "KAS-01" will be distributed to a third party in cases where each item of Article 27-3 of the Japanese Patent Law Enforcement Regulations applies, subject to compliance with the respective laws and regulations. do.
 本発明の好ましい態様において、「KAS-01」は、その16SrRNA遺伝子が、配列番号3に記載の塩基配列と同一の塩基配列を含む。
 本発明において、「配列番号3に記載の塩基配列と同一の塩基配列を含む」とは、好ましくは、配列番号3に記載の塩基配列と実質的に同一である塩基配列を含むか、又は、完全に同一である塩基配列を全て含むことを包含し、より好ましくは、配列番号3に記載の塩基配列と完全に同一である塩基配列を全て含むことを包含する。
In a preferred embodiment of the present invention, the 16S rRNA gene of "KAS-01" contains the same base sequence as the base sequence set forth in SEQ ID NO:3.
In the present invention, "comprising a base sequence identical to the base sequence set forth in SEQ ID NO: 3" preferably includes a base sequence substantially identical to the base sequence set forth in SEQ ID NO: 3, or This includes all base sequences that are completely identical, and more preferably includes all base sequences that are completely identical to the base sequence set forth in SEQ ID NO:3.
 「16SrRNA」とは、16S リボソームリボ核酸の略称である。 "16S rRNA" is an abbreviation for 16S ribosomal ribonucleic acid.
 配列番号3に記載の塩基配列は、所定のプライマー対(配列番号1及び2)を用いたポリメラーゼ連鎖反応(PCR)による、「KAS-01」の遺伝子配列における増幅領域の配列に相当する。 The base sequence set forth in SEQ ID NO: 3 corresponds to the sequence of the amplified region in the gene sequence of "KAS-01" by polymerase chain reaction (PCR) using a predetermined primer pair (SEQ ID NO: 1 and 2).
 本発明において、「配列番号3に記載の塩基配列と実質的に同一である塩基配列」とは、配列番号3に記載の塩基配列との差異が、好ましくは5塩基以下、より好ましくは3塩基以下、さらに好ましくは1塩基である塩基配列を包含する。 In the present invention, "a nucleotide sequence that is substantially the same as the nucleotide sequence set forth in SEQ ID NO: 3" means that the difference from the nucleotide sequence set forth in SEQ ID NO: 3 is preferably 5 bases or less, more preferably 3 bases. The following preferably includes base sequences of one base.
 混合微生物に含まれる「KAS-01」の量(乾燥重量換算)は、試料の形態等に応じて異なるものの、混合微生物に対して、例えば、0.1質量%以上であり得る。 The amount of "KAS-01" contained in the mixed microorganism (in terms of dry weight) varies depending on the form of the sample, etc., but may be, for example, 0.1% by mass or more with respect to the mixed microorganism.
 微生物が「KAS-01」であるかどうかは、PCRによって特定できる。
 例えば、配列番号1及び2のプライマー対を用いて、対象微生物の16SrRNA遺伝子の所定領域を増幅し、該増幅領域の塩基配列について、配列番号3に記載の塩基配列との相同性を解析することによって特定できる。該相同性が、99.5%以上であれば、該微生物は「KAS-01」であると判断できる。
Whether the microorganism is "KAS-01" can be identified by PCR.
For example, a predetermined region of the 16S rRNA gene of the target microorganism is amplified using the primer pair of SEQ ID NO: 1 and 2, and the nucleotide sequence of the amplified region is analyzed for homology with the nucleotide sequence set forth in SEQ ID NO: 3. It can be specified by If the homology is 99.5% or more, it can be determined that the microorganism is "KAS-01".
(4)混合微生物の培養
 本発明の混合微生物の培養条件としては、アナモックス菌が生育及び増殖できる条件であれば特に限定されない。得られた培養物は、本発明の混合微生物として適宜利用できる。
(4) Cultivation of mixed microorganisms The conditions for culturing the mixed microorganisms of the present invention are not particularly limited as long as the conditions allow the growth and proliferation of anammox bacteria. The obtained culture can be appropriately used as the mixed microorganism of the present invention.
 本発明の混合微生物は、例えば、亜硝酸ナトリウム(NaNo)、硫酸アンモニウム((NHSO)、重炭酸カリウム(KHCO)、リン酸二水素カリウム(KHPO)、硫酸マグネシウム(MgSO・7HO)、及び塩化カルシウム(CaCl・2HO)等を含む液体培養培地中で培養できる。より具体的な培地組成としては、実施例に示したものが挙げられる。
 なお、アナモックス菌は独立栄養性であるので、培地へ炭素源等を添加せずとも廃水処理を進行することができる。
The mixed microorganism of the present invention contains, for example, sodium nitrite (NaNo 2 ), ammonium sulfate ((NH 4 ) 2 SO 4 ), potassium bicarbonate (KHCO 3 ), potassium dihydrogen phosphate (KH 2 PO 4 ), and magnesium sulfate. It can be cultured in a liquid culture medium containing (MgSO 4 .7H 2 O), calcium chloride (CaCl 2 .2H 2 O), and the like. More specific culture medium compositions include those shown in Examples.
Note that since anammox bacteria are autotrophic, wastewater treatment can proceed without adding a carbon source or the like to the culture medium.
 本発明の混合微生物の培養培地は、アンモニア性窒素及び亜硝酸性窒素を含み、かつ、それらの比率(アンモニア性窒素:亜硝酸性窒素)が、1:1~1:1.5の範囲であることが好ましい。
 また、培養培地は、曝気等によって、アンモニア酸化細菌の作用によってアンモニア性窒素の一部を亜硝酸性窒素に変換してから培養に供してもよい。
The mixed microorganism culture medium of the present invention contains ammonia nitrogen and nitrite nitrogen, and the ratio thereof (ammonia nitrogen: nitrite nitrogen) is in the range of 1:1 to 1:1.5. It is preferable that there be.
Further, the culture medium may be subjected to culture after a part of the ammonia nitrogen is converted to nitrite nitrogen by the action of ammonia-oxidizing bacteria by aeration or the like.
 培養培地は、不活性ガスで酸素をパージしてから用いてもよい。 The culture medium may be used after purging oxygen with an inert gas.
 培養中、培養槽内に培養培地を上向流性に連続供給してもよい。 During cultivation, the culture medium may be continuously supplied in an upward flow manner into the culture tank.
<混合微生物の用途>
 本発明の混合微生物は、従来知られるアナモックス菌と同様に使用することで、廃水中の窒素除去に利用できる。
<Applications of mixed microorganisms>
The mixed microorganism of the present invention can be used to remove nitrogen from wastewater by using it in the same manner as the conventionally known anammox bacteria.
(1)廃水の種類
 本発明において「廃水」とは、窒素を除去しようとする任意の処理対象を包含し、例えば、窒素(アンモニア態窒素、亜硝酸態窒素等)、塩、有機物等を含み得る。
 廃水は、工場、農場、家庭等から排出された水であり得る。
 廃水は、廃水処理(活性汚泥法処理、嫌気性処理)等を施されたものであってもよく、未処理の廃水であってもよい。
 なお、アナモックス菌は独立栄養性であるので、廃水へ炭素源等を添加せずとも廃水処理を進行することができる。
(1) Types of wastewater In the present invention, "wastewater" includes any target to be treated to remove nitrogen, including nitrogen (ammonium nitrogen, nitrite nitrogen, etc.), salts, organic matter, etc. obtain.
Wastewater can be water discharged from factories, farms, homes, etc.
The wastewater may be subjected to wastewater treatment (activated sludge treatment, anaerobic treatment), or may be untreated wastewater.
Note that since anammox bacteria are autotrophic, wastewater treatment can proceed without adding a carbon source or the like to the wastewater.
 本発明の混合微生物の処理対象である廃水は、効率的な窒素除去の観点から、アンモニア性窒素及び亜硝酸性窒素を含み、かつ、それらの比率(アンモニア性窒素:亜硝酸性窒素)が、1:1~1:1.5の範囲であることが好ましい。
 また、廃水は、曝気等によって、アンモニア酸化細菌の作用によってアンモニア性窒素の一部を亜硝酸性窒素に変換してから、本発明の混合微生物による処理に供してもよい。
From the viewpoint of efficient nitrogen removal, the wastewater to be treated by the mixed microorganism of the present invention contains ammonia nitrogen and nitrite nitrogen, and the ratio thereof (ammonia nitrogen: nitrite nitrogen) is The ratio is preferably in the range of 1:1 to 1:1.5.
Furthermore, the wastewater may be subjected to treatment by the mixed microorganism of the present invention after a part of the ammonia nitrogen is converted into nitrite nitrogen by the action of ammonia-oxidizing bacteria through aeration or the like.
 従来使用されてきたアナモックス菌は、主に、塩濃度が低い廃水の処理に供されてきた。
 他方で、本発明者らは、このようなアナモックス菌が、塩濃度が高い廃水においては充分に窒素除去できない可能性があることを見出した。
 しかし、本発明の混合微生物によれば、塩濃度が低い廃水だけではなく、塩濃度が高い廃水においても、良好に窒素除去することができることがわかった。
 したがって、本発明の混合微生物によれば、幅広い塩濃度の廃水における窒素除去が可能となる。
Anammox bacteria that have been used in the past have mainly been used to treat wastewater with low salt concentrations.
On the other hand, the present inventors have discovered that such anammox bacteria may not be able to sufficiently remove nitrogen from wastewater with a high salt concentration.
However, it has been found that the mixed microorganism of the present invention can effectively remove nitrogen not only from wastewater with a low salt concentration but also from wastewater with a high salt concentration.
Therefore, according to the mixed microorganism of the present invention, it is possible to remove nitrogen from wastewater having a wide range of salt concentrations.
 本発明において「廃水における窒素除去が可能である」とは、窒素除去速度や窒素除去率が実用に耐えるほどに充分高いことや、菌の集積が実用に耐えるほどに早いことを包含する。
 窒素除去速度や窒素除去率は、実施例に示した方法で特定できる。
In the present invention, "nitrogen removal from wastewater is possible" includes that the nitrogen removal rate and nitrogen removal rate are sufficiently high to be practical, and that the accumulation of bacteria is fast enough to be practical.
The nitrogen removal rate and nitrogen removal rate can be determined by the method shown in Examples.
 本発明の混合微生物の処理対象である廃水の塩濃度の下限は、好ましくは0質量%以上(塩を全く含まない廃水を含む。)、より好ましくは1質量%以上、さらに好ましくは3質量%以上である。 The lower limit of the salt concentration of the wastewater to be treated by the mixed microorganism of the present invention is preferably 0% by mass or more (including wastewater that does not contain any salt), more preferably 1% by mass or more, and even more preferably 3% by mass. That's all.
 本発明の混合微生物の処理対象である廃水の塩濃度の上限は、好ましくは15質量%以下、より好ましくは9質量%以下、さらに好ましくは5質量%以下である。 The upper limit of the salt concentration of the wastewater to be treated by the mixed microorganism of the present invention is preferably 15% by mass or less, more preferably 9% by mass or less, and still more preferably 5% by mass or less.
 本発明において、「廃水の塩濃度」とは、廃水中に含まれる任意の塩の総量(単位:質量%)を包含する。廃水に含まれ得る塩としては、塩化ナトリウム、塩化カリウム、硫酸ナトリウム、塩化カルシウム等が挙げられる。
 廃水中の塩濃度は、電気伝導度に基づき特定できる。
In the present invention, the "salt concentration of wastewater" includes the total amount (unit: mass %) of any salts contained in wastewater. Salts that may be contained in the wastewater include sodium chloride, potassium chloride, sodium sulfate, calcium chloride, and the like.
Salt concentration in wastewater can be determined based on electrical conductivity.
 本発明の混合微生物の処理対象である廃水は、塩濃度が高い処分場浸出水、海水を含む廃水等を包含する。
 このような廃水は、従来使用されてきたアナモックス菌によっては、充分に窒素除去できない可能性があるものである。
 したがって、本発明は、アナモックス菌を用いた廃水処理技術の適用範囲の拡大を実現し得る点でも意義がある。
The wastewater to be treated by the mixed microorganism of the present invention includes disposal site leachate with high salt concentration, wastewater containing seawater, and the like.
Nitrogen may not be sufficiently removed from such wastewater by the anammox bacteria that have been used in the past.
Therefore, the present invention is also significant in that it can expand the scope of application of wastewater treatment technology using anammox bacteria.
(2)廃水処理方法
 本発明の混合微生物を用いた廃水処理方法としては、特に限定されず、アナモックス菌を用いた従来知られる方法を採用できる。
(2) Wastewater treatment method The wastewater treatment method using the mixed microorganism of the present invention is not particularly limited, and conventionally known methods using anammox bacteria can be adopted.
 代表的な廃水処理方法として、混合微生物(アナモックス菌)を定着させた担体を配置した窒素除去槽を含む系が挙げられる。
 窒素除去槽において、本発明の混合微生物と、廃水とを接触させることで、アナモックス菌による窒素除去が進行する。
A typical wastewater treatment method includes a system including a nitrogen removal tank in which a carrier on which mixed microorganisms (anammox bacteria) are colonized is arranged.
In the nitrogen removal tank, by bringing the mixed microorganism of the present invention into contact with wastewater, nitrogen removal by the anammox bacteria progresses.
 窒素除去槽は、通常、廃水中アンモニアの亜硝酸酸化反応、及びアナモックス反応という2つの反応を実現できる構成が採用される。
 このような構成として、2つの反応を別個の培養槽内で行う「二槽式」、及び同一の培養槽内で行う「一槽式」の各システムが知られる。
 本発明の混合微生物は、これらのいずれのシステムにおいても適用できる。
The nitrogen removal tank usually has a configuration that can realize two reactions: a nitrite oxidation reaction of ammonia in wastewater and an anammox reaction.
As such a configuration, a "two-vessel system" in which two reactions are performed in separate culture tanks, and a "single-vessel system" in which two reactions are performed in the same culture tank are known.
The mixed microorganism of the present invention can be applied to any of these systems.
 混合微生物を定着させる担体としては、不織布、ひも等が挙げられる。 Examples of carriers for colonizing mixed microorganisms include nonwoven fabrics, strings, and the like.
 アナモックス菌を窒素除去槽内に定着させるための方法としては、特に限定されず、例えば、本発明の混合微生物を含む汚泥(アナモックス汚泥)を種汚泥として窒素除去槽に投入し、廃水や培地等を連続的に供給することにより、窒素除去槽にアナモックス菌を定着させることができる。 The method for colonizing anammox bacteria in the nitrogen removal tank is not particularly limited, and for example, sludge containing the mixed microorganisms of the present invention (anammox sludge) is introduced into the nitrogen removal tank as seed sludge, and wastewater, culture medium, etc. By continuously supplying anammox bacteria, the nitrogen removal tank can be colonized with anammox bacteria.
 アナモックス汚泥の投入量は特に限定されず、窒素除去槽の容積1L当たり、浮遊物量(SS濃度)として、好ましくは10~1000mg、より好ましくは50~500mg、さらに好ましくは100~400mgである。
 充分量のアナモックス汚泥を投入することで、窒素除去槽の定着を早め、早期(例えば、本発明の混合微生物の投入から1~4ヶ月)に処理系を立ち上げることができる。
The amount of anammox sludge introduced is not particularly limited, and the amount of suspended solids (SS concentration) per liter of nitrogen removal tank volume is preferably 10 to 1000 mg, more preferably 50 to 500 mg, and even more preferably 100 to 400 mg.
By introducing a sufficient amount of anammox sludge, it is possible to speed up the colonization of the nitrogen removal tank and start up the treatment system at an early stage (eg, 1 to 4 months after introducing the mixed microorganisms of the present invention).
 廃水処理の条件は特に限定されないが、効率的な窒素除去の観点から、窒素除去率等を指標としてアナモックス菌の定着を確認した後に、本格的な運転を開始することが好ましい。 The conditions for wastewater treatment are not particularly limited, but from the viewpoint of efficient nitrogen removal, it is preferable to start full-scale operation after confirming the colonization of anammox bacteria using the nitrogen removal rate as an indicator.
 アナモックス菌は、嫌気性であるので、通常、窒素除去槽内は、密封された空気に触れにくい環境に維持される。 Since anammox bacteria are anaerobic, the inside of the nitrogen removal tank is usually maintained in a sealed environment where it is difficult to come into contact with air.
 廃水処理における温度条件(例えば、廃水の温度)は、アナモックス菌が生育及び増殖できる条件であれば特に限定されず、例えば、5~40℃であってもよい。 The temperature conditions (for example, the temperature of wastewater) in wastewater treatment are not particularly limited as long as they allow anammox bacteria to grow and multiply, and may be, for example, 5 to 40°C.
 本発明の混合微生物は、例えば、窒素負荷0.5~5.0kg/m/dayでの処理を実現し得る。 The mixed microorganism of the present invention can realize treatment with a nitrogen load of 0.5 to 5.0 kg/m 3 /day, for example.
 本発明の混合微生物の水理的滞留時間(HRT)は、窒素負荷によって異なるが、例えば、窒素負荷が500mg/Lの場合、HRTが2.4~24時間であり得る。 The hydraulic retention time (HRT) of the mixed microorganism of the present invention varies depending on the nitrogen load, but for example, when the nitrogen load is 500 mg/L, the HRT can be 2.4 to 24 hours.
 以下に、実施例に基づいて本発明をより具体的に説明するが、本発明はこれらの実施例によって限定されるものではない。 The present invention will be described in more detail below based on Examples, but the present invention is not limited to these Examples.
<試験1:混合微生物の取得>
 以下の方法に基づき、アナモックス菌の集積培養を行い、アナモックス菌含有混合微生物を取得した。
<Test 1: Obtaining mixed microorganisms>
Based on the following method, enrichment culture of anammox bacteria was performed to obtain mixed microorganisms containing anammox bacteria.
(1)種汚泥の取得
 塩分を含む環境(海洋等)から、以下の互いに異なる4種の試料を種汚泥として取得した。各試料の浮遊物量(SS濃度)は、1000mg/Lに調整した。
(試料KAS-01)水族館の濾過槽から採取した汚泥
(試料A)水族館の濾過槽から採取した汚泥
(試料B)海底から採泥器で採取した汚泥
(試料C)河川へ潜水したダイバーが採取した汚泥
(試料D)河川へ潜水したダイバーが採取した汚泥
(1) Obtaining seed sludge The following four different types of samples were obtained as seed sludge from an environment containing salt (ocean, etc.). The amount of suspended solids (SS concentration) in each sample was adjusted to 1000 mg/L.
(Sample KAS-01) Sludge collected from an aquarium's filtration tank (Sample A) Sludge collected from an aquarium's filtration tank (Sample B) Sludge collected from the seabed with a sludge collector (Sample C) Collected by a diver who dived into a river Sludge (Sample D) Sludge collected by a diver diving into a river
(2)集積用リアクタ及び培養培地の準備
 集積用リアクタ(窒素除去槽や培養槽に相当する。)を作製し、該リアクタに培養培地を供給しながら、各種汚泥の集積培養を行った。なお、本例で使用した集積用リアクタは、一槽式の処理システムに相当する。
(2) Preparation of accumulation reactor and culture medium An accumulation reactor (corresponding to a nitrogen removal tank or a culture tank) was prepared, and various types of sludge were subjected to accumulation culture while supplying a culture medium to the reactor. Note that the accumulation reactor used in this example corresponds to a single-tank treatment system.
 集積用リアクタとして、直径25mmのひも状担体を充填した培養槽(反応部容積300mL)を作製した。この集積用リアクタを、25℃に温度制御した恒温器の中に設置した。 A culture tank (reaction section volume: 300 mL) filled with string-like carriers with a diameter of 25 mm was prepared as an accumulation reactor. This accumulation reactor was placed in a thermostat whose temperature was controlled at 25°C.
 調製した培養培地の組成を表1~3に示す。
 培養培地中の塩濃度は3質量%に調整した。
The compositions of the prepared culture media are shown in Tables 1 to 3.
The salt concentration in the culture medium was adjusted to 3% by mass.
 本例で使用した集積用リアクタの概要を図1に示す。
 なお、図中、「P」はポンプを意味し、「pH」はpH計を意味する。
Figure 1 shows an overview of the accumulation reactor used in this example.
In addition, in the figure, "P" means a pump, and "pH" means a pH meter.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
(3)アナモックス菌の集積培養
 集積用リアクタ内に、各試料(30mL)を投入し、培養培地を300mL/dayで供給しながら、アナモックス菌を馴致した。
 ただし、培養状況等に応じて、培地供給量及び窒素濃度を適宜変更した。
(3) Enrichment culture of anammox bacteria Each sample (30 mL) was put into the accumulation reactor, and the anammox bacteria were acclimatized while supplying the culture medium at 300 mL/day.
However, the amount of culture medium supplied and the nitrogen concentration were changed as appropriate depending on the culture conditions.
 集積用リアクタ中の溶存酸素を除去するために、培養中、常時窒素ガスでパージし、溶存酸素濃度を0.5mg/L以下に調整した。
 また、培養中、集積用リアクタ内のpHは、1% NaOH水溶液により、7.7±0.1に調整した。
In order to remove dissolved oxygen in the accumulation reactor, the reactor was constantly purged with nitrogen gas during culturing, and the dissolved oxygen concentration was adjusted to 0.5 mg/L or less.
During the culture, the pH inside the accumulation reactor was adjusted to 7.7±0.1 with a 1% NaOH aqueous solution.
 600日にわたって集積培養を行い、4種の種汚泥のそれぞれからアナモックス菌含有混合微生物を取得した。以下、得られた各アナモックス菌含有混合微生物は、それぞれの種汚泥の名称によって示す。 Enrichment culture was performed for 600 days, and mixed microorganisms containing anammox bacteria were obtained from each of the four types of seed sludge. Hereinafter, each of the obtained mixed microorganisms containing anammox bacteria will be indicated by the name of the respective seed sludge.
<試験2:混合微生物の窒素除去性能の評価>
 上記試験1で得られた各混合微生物について、以下の方法に基づき窒素除去性能を評価した。
<Test 2: Evaluation of nitrogen removal performance of mixed microorganisms>
The nitrogen removal performance of each mixed microorganism obtained in Test 1 above was evaluated based on the following method.
 上記「試験1」と同様の集積用リアクタ及び培養培地を用いて培養を行い、各混合微生物の窒素除去性能を評価した。ただし、培地供給量及び窒素濃度は適宜調整し、流入窒素負荷を段階的に上昇させた。
 培養期間中、集積用リアクタへ供給される培地の流入液、及び集積用リアクタからの流出液について、イオン交換クロマトグラフィーを用いて、各種塩(アンモニウム塩、亜硝酸塩、及び硝酸塩)の濃度を測定した。
 次いで、該測定結果に基づき、窒素除去率及び窒素除去速度を以下の式に基づき算出した。その結果を図2及び3に示す。
 窒素除去率(%)=(1-流出液の窒素濃度/流入液の窒素濃度)×100
 窒素除去速度(kg-N/m/day)=流入液の窒素濃度×1日の流入量/リアクタ有効容積×窒素除去率/100
Culture was performed using the same accumulation reactor and culture medium as in "Test 1" above, and the nitrogen removal performance of each mixed microorganism was evaluated. However, the amount of culture medium supplied and the nitrogen concentration were adjusted as appropriate, and the inflow nitrogen load was increased in stages.
During the culture period, the concentration of various salts (ammonium salts, nitrites, and nitrates) was measured using ion exchange chromatography in the influent of the medium supplied to the accumulation reactor and the effluent from the accumulation reactor. did.
Next, based on the measurement results, the nitrogen removal rate and nitrogen removal rate were calculated based on the following formulas. The results are shown in FIGS. 2 and 3.
Nitrogen removal rate (%) = (1-nitrogen concentration of effluent/nitrogen concentration of influent) x 100
Nitrogen removal rate (kg-N/m 3 /day) = Nitrogen concentration of influent x daily inflow amount / Reactor effective volume x Nitrogen removal rate / 100
 図2は、各混合微生物における窒素除去率を示す。図3は、各混合微生物における窒素除去速度を示す。図2及び3のいずれにおいても、「集積日数」とは、馴養開始からの経過日数を意味する。
 「KAS-01」については、実験開始当初(集積日数=0日)では、流入窒素負荷が0.06kg-N/m/dayだったが、230日にわたって段階的に5.71kg-N/m/dayまで上昇させた。
FIG. 2 shows the nitrogen removal rate of each mixed microorganism. Figure 3 shows the nitrogen removal rate in each mixed microorganism. In both FIGS. 2 and 3, "accumulation days" means the number of days that have passed since the start of acclimatization.
Regarding "KAS-01", at the beginning of the experiment (accumulation days = 0 days), the inflow nitrogen load was 0.06 kg-N/m 3 /day, but gradually increased to 5.71 kg-N/m over 230 days. m 3 /day.
 図2に示されるとおり、「KAS-01」では、実験開始から81目にアナモックス反応による窒素除去が確認され、122日目以降は、流入窒素負荷上昇中であっても、窒素除去率が80%前後の水準で安定した。さらに、実験開始230日目には、最大窒素除去速度4.76kg-N/m/day、かつ、窒素除去率83.4%にまで達した。 As shown in Figure 2, in KAS-01, nitrogen removal by anammox reaction was confirmed on the 81st day from the start of the experiment, and from the 122nd day onward, even when the inflow nitrogen load was increasing, the nitrogen removal rate was 80%. It stabilized at a level of around %. Furthermore, on the 230th day after the start of the experiment, the maximum nitrogen removal rate reached 4.76 kg-N/m 3 /day and the nitrogen removal rate reached 83.4%.
 他方で、その他の試料は、いずれも、「KAS-01」と比較して、窒素除去の効率が著しく低く、窒素除去が可能となるまでに200日以上要したうえ、窒素除去速度が低い水準のままだった。 On the other hand, all of the other samples had significantly lower nitrogen removal efficiency than "KAS-01", and it took more than 200 days for nitrogen removal to become possible, and the nitrogen removal rate was at a low level. It remained as it was.
 以上の結果から、得られた各アナモックス菌含有混合微生物のうち、「KAS-01」が、顕著に良好な窒素除去特性を有することがわかった。 From the above results, it was found that among the anammox bacteria-containing mixed microorganisms obtained, "KAS-01" had significantly better nitrogen removal properties.
<試験3:混合微生物の遺伝子解析-1>
 上記試験1で得られた混合微生物「KAS-01」について、以下の方法に基づき遺伝子解析を行った。
<Test 3: Genetic analysis of mixed microorganisms-1>
Genetic analysis was performed on the mixed microorganism "KAS-01" obtained in Test 1 above based on the following method.
 汚泥状の混合微生物「KAS-01」(500μL)を遠心分離(15,000rpm、5分間)し、ペレットを回収した。
 得られたペレットに、「Lysis Solution F」(ニッポンジーン社製)を添加した後、「Shake Master Neo」(bms社製)を用いて、1,500rpmで2分間粉砕した。
 粉砕したサンプルを、65℃で10分間静置した後、12,000×gで1分間遠心分離し、上清を分取した。
 次いで、「MPure 12 システム」及び「MPure Bacterial DNA Extraction Kit」(いずれもMP Bio社製)を用いて、分取した上清からDNAを精製した。
The sludge-like mixed microorganism "KAS-01" (500 μL) was centrifuged (15,000 rpm, 5 minutes) and pellets were collected.
After adding "Lysis Solution F" (manufactured by Nippon Gene Co., Ltd.) to the obtained pellets, the pellets were ground for 2 minutes at 1,500 rpm using "Shake Master Neo" (manufactured by BMS Co., Ltd.).
The crushed sample was allowed to stand at 65° C. for 10 minutes, then centrifuged at 12,000×g for 1 minute, and the supernatant was collected.
Next, DNA was purified from the separated supernatant using the "MPure 12 System" and the "MPure Bacterial DNA Extraction Kit" (both manufactured by MP Bio).
 得られたDNAについて、「16S Barcoding Kit」(Oxford Nanopore Technologies社製)及びプライマー(配列番号1及び2)を用いて、ライブラリーを作製した。 A library was created using the obtained DNA using "16S Barcoding Kit" (manufactured by Oxford Nanopore Technologies) and primers (SEQ ID NOs: 1 and 2).
 また、得られたDNAについて、「GridION」及び「R9.4 Flowcell」(いずれもOxford Nanopore Technologies社製)を用いてシーケンシングした。
 次いで、該DNAについて、「Guppy」(Ver 4.0.11+f1071ce)を用いて、16SrRNA遺伝子の部分配列を取得した(配列番号3)。
Furthermore, the obtained DNA was sequenced using "GridION" and "R9.4 Flowcell" (both manufactured by Oxford Nanopore Technologies).
Next, a partial sequence of the 16S rRNA gene was obtained from the DNA using "Guppy" (Ver 4.0.11+f1071ce) (SEQ ID NO: 3).
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
<試験4:混合微生物の遺伝子解析-2>
 上記試験3で取得した混合微生物「KAS-01」の遺伝子情報に基づき、他のアナモックス菌との相同性解析を行った。
<Test 4: Genetic analysis of mixed microorganisms-2>
Based on the genetic information of the mixed microorganism "KAS-01" obtained in Test 3 above, homology analysis with other anammox bacteria was performed.
 相同性解析に基づき得られた系統樹を図4に示す。なお、図4中、「KA-01」及び「KA-02」は、いずれも特許第5943661号の実施例で得られたアナモックス菌である。 The phylogenetic tree obtained based on homology analysis is shown in Figure 4. In FIG. 4, "KA-01" and "KA-02" are both anammox bacteria obtained in the example of Patent No. 5943661.
 図4に示されるとおり、「KAS-01」は、「Candidatus Scalindua属」に属することがわかった。また、「KAS-01」と、その最も近縁にある「AB811946」及び「AB573103」とは、1~2塩基異なり、「KAS-01」は新規な菌であることを確認した。 As shown in FIG. 4, "KAS-01" was found to belong to the "genus Candidatus Scalindua." Furthermore, it was confirmed that "KAS-01" and its closest relatives "AB811946" and "AB573103" differ by 1 to 2 bases, and that "KAS-01" is a new bacterium.
<試験5:混合微生物に対する塩濃度の影響の評価>
 上記試験1で得られた混合微生物のうち、「KAS-01」及び「A」について、以下の方法に基づき、塩濃度による影響を評価した。
<Test 5: Evaluation of the influence of salt concentration on mixed microorganisms>
Among the mixed microorganisms obtained in Test 1 above, the influence of salt concentration was evaluated for "KAS-01" and "A" based on the following method.
 バイアル瓶(容量120mL)に、表6に示す培地(80mL)を投入した。なお、表6中、「Trace Element S1」及び「Trace Element S2」は、それぞれ試験1(表2及び3)で使用したものと同一組成である。
 培地中の塩濃度は、人工海水を用いて、最終塩濃度を0.5~9質量%の各段階に調整した。
 バイアル瓶を密封後、アルゴンガスで5分間脱気した。
 次いで、バイアル瓶内に、各混合微生物(20mL)を添加した。
 各混合微生物を添加後、25℃で、4日間培養を行った。
The culture medium (80 mL) shown in Table 6 was poured into a vial (capacity 120 mL). In Table 6, "Trace Element S1" and "Trace Element S2" each have the same composition as that used in Test 1 (Tables 2 and 3).
The salt concentration in the medium was adjusted to a final salt concentration of 0.5 to 9% by mass using artificial seawater.
After the vial was sealed, it was degassed with argon gas for 5 minutes.
Next, each mixed microorganism (20 mL) was added into the vial.
After adding each mixed microorganism, culture was performed at 25° C. for 4 days.
 培養直後、並びに、培養開始から1、2、3及び4日後の各時点でサンプル(10mL)を採取し、初期汚泥濃度の汚泥濃度、及び、イオン交換クロマトグラフィーを用いた各種塩(アンモニウム塩、亜硝酸塩、及び硝酸塩)の濃度を測定した。得られた測定結果に基づき、下記式により、単位汚泥量当たりの窒素除去速度を算出した。
 なお、各バイアルで3反復実験を行った。その結果を図5に示す。
 窒素除去速度(mg-N/mg cell/day)=(前日の窒素濃度-当日の窒素濃度)/乾燥菌体濃度の最大値
Samples (10 mL) were collected immediately after the culture and at each time point 1, 2, 3, and 4 days after the start of the culture, and the sludge concentration was the initial sludge concentration, and various salts (ammonium salt, ammonium salt, The concentrations of nitrite and nitrate were measured. Based on the obtained measurement results, the nitrogen removal rate per unit amount of sludge was calculated using the following formula.
Note that three replicate experiments were performed for each vial. The results are shown in FIG.
Nitrogen removal rate (mg-N/mg cell/day) = (Nitrogen concentration of the previous day - Nitrogen concentration of the day) / Maximum value of dry bacterial cell concentration
 図5に示されるとおり、「KAS-01」は、幅広い塩濃度において良好な窒素除去性能を示した。
 これに対し、「A」は、いずれの塩濃度においても、「KAS-01」と比較して著しく低い窒素除去性能しか示さなかった。
As shown in FIG. 5, "KAS-01" showed good nitrogen removal performance over a wide range of salt concentrations.
On the other hand, "A" exhibited significantly lower nitrogen removal performance than "KAS-01" at any salt concentration.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006

Claims (3)

  1.  混合微生物であって、
     前記混合微生物が、アナモックス菌を少なくとも含み、
     前記アナモックス菌が、Candidatus Scalindua属のKAS-01である、
    混合微生物。
    A mixed microorganism,
    The mixed microorganism includes at least an anammox bacterium,
    The anammox bacterium is KAS-01 of the genus Candidatus Scalindua,
    Mixed microorganisms.
  2.  前記KAS-01の16SrRNA遺伝子が、配列番号3に記載の塩基配列と同一の塩基配列を含む、請求項1に記載の混合微生物。 The mixed microorganism according to claim 1, wherein the 16S rRNA gene of KAS-01 contains the same base sequence as the base sequence set forth in SEQ ID NO:3.
  3.  請求項1又は請求項2に記載の混合微生物と、塩濃度が1質量%以上である廃水と、を接触させる工程を含む、廃水処理方法。 A wastewater treatment method comprising the step of bringing the mixed microorganism according to claim 1 or claim 2 into contact with wastewater having a salt concentration of 1% by mass or more.
PCT/JP2023/002254 2022-06-21 2023-01-25 Mixed microorganisms and wastewater treatment method WO2023248512A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023533760A JP7345079B1 (en) 2022-06-21 2023-01-25 Mixed microorganisms and wastewater treatment method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-099726 2022-06-21
JP2022099726 2022-06-21

Publications (1)

Publication Number Publication Date
WO2023248512A1 true WO2023248512A1 (en) 2023-12-28

Family

ID=89379366

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/002254 WO2023248512A1 (en) 2022-06-21 2023-01-25 Mixed microorganisms and wastewater treatment method

Country Status (1)

Country Link
WO (1) WO2023248512A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09201187A (en) * 1996-01-24 1997-08-05 Mitsubishi Heavy Ind Ltd Salt-tolerant ammonia-oxidizing bacterium
JP2000121641A (en) * 1998-10-20 2000-04-28 Mitsubishi Heavy Ind Ltd Control method for salt-tolerance ammonia oxidative bacteria and control antibody for salt-tolerance ammonia oxidative bacteria
JP2010046592A (en) * 2008-08-20 2010-03-04 Kanto Natural Gas Development Co Ltd Method for treating ammonia contained in underground brine
CN111170450A (en) * 2020-01-14 2020-05-19 杭州师范大学 Pulse type domestication method of salt-tolerant anaerobic ammonium oxidation sludge

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09201187A (en) * 1996-01-24 1997-08-05 Mitsubishi Heavy Ind Ltd Salt-tolerant ammonia-oxidizing bacterium
JP2000121641A (en) * 1998-10-20 2000-04-28 Mitsubishi Heavy Ind Ltd Control method for salt-tolerance ammonia oxidative bacteria and control antibody for salt-tolerance ammonia oxidative bacteria
JP2010046592A (en) * 2008-08-20 2010-03-04 Kanto Natural Gas Development Co Ltd Method for treating ammonia contained in underground brine
CN111170450A (en) * 2020-01-14 2020-05-19 杭州师范大学 Pulse type domestication method of salt-tolerant anaerobic ammonium oxidation sludge

Similar Documents

Publication Publication Date Title
Zhang et al. Improvement of biological nitrogen removal with nitrate-dependent Fe (II) oxidation bacterium Aquabacterium parvum B6 in an up-flow bioreactor for wastewater treatment
Bae et al. Enrichment of ANAMMOX bacteria from conventional activated sludge entrapped in poly (vinyl alcohol)/sodium alginate gel
Zhong et al. Bacterial community analysis by PCR-DGGE and 454-pyrosequencing of horizontal subsurface flow constructed wetlands with front aeration
EP3142970B1 (en) Denitrification of saline industrial waste water
Ishii et al. Enrichment and physiological characterization of a cold-adapted nitrite-oxidizing Nitrotoga sp. from an eelgrass sediment
Matsutani et al. Enrichment of a novel marine ammonia-oxidizing archaeon obtained from sand of an eelgrass zone
US20110180476A1 (en) Novel Anammox Bacterium Isolate
JP2008017713A (en) Method for enrichment culture of ammonia-oxidizing bacterium community and denitrifying bacterium community
CN111117914B (en) Salt-tolerant heterotrophic aerobic nitrobacteria strain, culture method, bacterial liquid and application
Chen et al. Enrichment and characteristics of ammonia-oxidizing archaea in wastewater treatment process
CN114703095A (en) Pseudomonas mendocina and application thereof in field of sewage and wastewater purification
Park et al. Improved insights into the adaptation and selection of Nitrosomonas spp. for partial nitritation under saline conditions based on specific oxygen uptake rates and next generation sequencing
Jeong et al. Insight into functionally active bacteria in nitrification following Na+ and Mg2+ exposure based on 16S rDNA and 16S rRNA sequencing
CN109161513B (en) Sphingobacterium and application thereof
CN108300675B (en) Tenecium luteum for synchronously decarbonizing, nitrogen, phosphorus and surfactant and application of Tenecium luteum in sewage treatment
Shinohara et al. Partial nitritation treatment of underground brine waste with high ammonium and salt content
JP7345079B1 (en) Mixed microorganisms and wastewater treatment method
WO2023248512A1 (en) Mixed microorganisms and wastewater treatment method
CN110468066B (en) Aerobic denitrifying strain and application thereof
CN114292798A (en) Anaerobic denitrifying bacterium and application thereof in riverway water body restoration
EP1502948A1 (en) Ammonia-oxidizing bacteria
US7482151B2 (en) Method of using ammonia-oxidizing bacteria
CN113699058A (en) Salt-tolerant heat-resistant ammonia oxidizing bacteria and separation method and application thereof
CN111705009A (en) Marine aerobic denitrifying halomonas bacterium, application thereof and method for treating aquaculture wastewater
US7267816B2 (en) Ammonia-oxidizing bacteria

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2023533760

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23826705

Country of ref document: EP

Kind code of ref document: A1