WO2023248448A1 - Sheet shape detecting device and sheet shape detecting method - Google Patents

Sheet shape detecting device and sheet shape detecting method Download PDF

Info

Publication number
WO2023248448A1
WO2023248448A1 PCT/JP2022/025202 JP2022025202W WO2023248448A1 WO 2023248448 A1 WO2023248448 A1 WO 2023248448A1 JP 2022025202 W JP2022025202 W JP 2022025202W WO 2023248448 A1 WO2023248448 A1 WO 2023248448A1
Authority
WO
WIPO (PCT)
Prior art keywords
region
axial direction
rolls
roll
metal plate
Prior art date
Application number
PCT/JP2022/025202
Other languages
French (fr)
Japanese (ja)
Inventor
達則 杉本
健治 堀井
隆夫 大和田
信弥 金森
Original Assignee
Primetals Technologies Japan株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Primetals Technologies Japan株式会社 filed Critical Primetals Technologies Japan株式会社
Priority to PCT/JP2022/025202 priority Critical patent/WO2023248448A1/en
Publication of WO2023248448A1 publication Critical patent/WO2023248448A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B38/00Methods or devices for measuring, detecting or monitoring specially adapted for metal-rolling mills, e.g. position detection, inspection of the product
    • B21B38/02Methods or devices for measuring, detecting or monitoring specially adapted for metal-rolling mills, e.g. position detection, inspection of the product for measuring flatness or profile of strips

Definitions

  • plate shape detection devices are known that are placed between rolling mill stands and measure the tension distribution acting on the plate to determine the elongation strain deviation of the rolled material.
  • a plate shape detection device one has been proposed that detects the reaction force that acts when the strip comes into contact with the split roll and calculates the amount of meandering based on this reaction force (for example, Patent Document 1 reference).
  • the plate shape detection device described in Patent Document 1 aims to improve the accuracy of detecting the meandering of the strip and the plate shape.
  • a plate shape detection device is a plate shape detection device that detects the shape of a metal plate, and includes a roll unit having a plurality of rolls on which the metal plate is placed. , a moving mechanism that moves two or more of the plurality of rolls as one roll group along the axial direction, the plurality of rolls have the width direction of the metal plate as the axial direction, and the plurality of rolls move in the axial direction.
  • first regions and second regions that are longer in the axial direction than the first regions are arranged alternately in the axial direction, and in the roll unit, A first boundary portion where the first region switches to the second region from the central portion in the axial direction toward the outside is located in a flat portion of the roll having a constant radius, and A second boundary portion that switches to the first region is located in a gap between the adjacent rolls, and the moving mechanism is configured to move between a first state in which the roll group is located in the first position and a state in which the roll group is located in the first position. It is characterized in that it is possible to switch between the first position and a second position, which is located at a second position that is moved in the axial direction by more than the length of the first region and less than the length of the second region.
  • the moving mechanism when switching between the first state and the second state, is configured to change the total length of the first region and the second region in the axial direction. Move the roll group by half.
  • the first region is located at a position 50 mm outward from an outer end of the flat portion of the center roll of the two adjacent rolls in the axial direction. , and a position 50 mm outward from the central end of the flat portion of the outer roll.
  • a torque meter that detects the tension that acts on the shafts on both sides of the rolls when the metal plate contacts each of the rolls;
  • the metal plate includes an arm that is rotatably supported and whose other end is supported by the torque meter, and a shape calculation section that calculates the shape of the metal plate based on the output of the torque meter.
  • a plate shape detection method detects the plate shape of the metal plate using a roll unit having a plurality of rolls on which the metal plate is placed, the method comprising: By arranging the plurality of rolls with the width direction of the metal plate as the axial direction and forming a gap in the axial direction, a first region and a second region that is longer in the axial direction than the first region are formed.
  • the amount of movement when moving the roll group is half the total length of the first region and the second region in the axial direction.
  • the first region is set to have a length greater than or equal to an expected deviation amount of the metal plate in the axial direction, and the first region in the axial direction is The center is set to be located at an end of the flat portion on the center side in the axial direction of the entire roll unit.
  • the assumed deviation amount is 40 mm.
  • the first region is located at a position 50 mm outward from the outer end of the flat portion of the center roll of the two adjacent rolls in the axial direction. , and a position 50 mm outward from the central end of the flat portion of the outer roll.
  • FIG. 1 is a schematic diagram of a rolling facility provided with a plate shape detection device according to an embodiment of the present invention.
  • FIG. 1 is a plan view of a plate shape detection device according to an embodiment of the present invention.
  • FIG. 2 is a side view of a detection unit of a plate shape detection device according to an embodiment of the present invention.
  • FIG. 4 is a schematic cross-sectional view taken in the direction of arrow A in FIG. 3;
  • FIG. 5 is an enlarged cross-sectional view of a part of FIG. 4;
  • FIG. 2 is a schematic diagram showing (A) a first state and (B) a second state of the plate shape detection device according to an embodiment of the present invention.
  • 1 is an enlarged cross-sectional view of a part of a plate shape detection device according to an embodiment of the present invention. It is a graph showing the relationship between the maximum error of the plate shape detection result and the set position of the end of the metal plate.
  • a plate shape detecting device 1 is a plate shape detecting device that detects the plate shape of a metal plate S, and includes a plurality of metal plates S on which the metal plate S is placed.
  • a roll unit 20 having rolls 2A to 2G, and a moving mechanism that moves two or more of the plurality of rolls 2A to 2G as one roll group along the axial direction.
  • the plurality of rolls 2A to 2G have the width direction of the metal plate S as the axial direction, and are arranged with a gap G in the axial direction, thereby forming a first area A1 and a second area longer than the first area A1 in the axial direction.
  • the two regions A2 are formed so as to be arranged alternately in the axial direction.
  • the first boundary part B1 which switches from the first area A1 to the second area A2 outward from the central part C in the axial direction, is located in the flat part 21 of the roll 2, which has a constant radius.
  • a second boundary B2 where the second area A2 switches to the first area A1 is located in the gap G between the adjacent rolls 2.
  • the moving mechanism has a first state in which the roll group is located at the first position, and a state in which the roll group has moved from the first position in the axial direction by a length L1 or more of the first area A1 and less than a length L2 of the second area A2. It is possible to switch between the second state and the second state located at the second position.
  • the plate shape detection device 1 is provided between the rolling mill stands, and includes a front rolling stand 100 on the upstream side (left side in FIG. 1) and a rear rolling stand 200 on the downstream side (right side in FIG. 1).
  • the plate shape of the metal plate S placed between the two rolling stands 100 and 200 is detected.
  • the front rolling stand 100 includes a pair of rolling rolls 101 and 102, and a pair of reinforcing rolls 103 and 104 sandwiching these rolls.
  • the rear rolling stand 200 includes a pair of rolling rolls 201 and 202, and a pair of reinforcing rolls 203 and 204 sandwiching these rolls.
  • the metal plate S is a rolled material and is formed into a strip shape with the long side direction in the running direction (left-right direction in FIG. 1; X direction), and the width direction in the depth direction (Y direction) in FIG.
  • the vertical direction (Z direction) in FIG. 1 is the plate thickness direction.
  • the upstream side (the left side in FIG. 1) or the downstream side (the right side in FIG. 1) in the traveling direction may be simply referred to as the upstream side or the downstream side, respectively.
  • the plate shape detection device 1 includes a plurality of (seven in this embodiment) detection units 10A to 10G, a support shaft portion 12 connected to a drive motor 11, and a support shaft portion 12 connected to the support shaft portion 12. It includes a supported table 13, a shape calculation section 14, and a moving mechanism.
  • the support shaft portion 12 extends in a rod shape with the Y direction as the axial direction, and a pair of bearings 121 are provided at positions sandwiching the table 13 from the Y direction, and the bearings 121 are supported by a frame (not shown).
  • the table 13 includes a guide member 131 that guides the metal plate S, and a guide support member 132 that supports the guide member 131.
  • the guide members 131 are provided in the same number as the detection units 10A to 10G, and are arranged on the upstream side so as to correspond to each of the detection units 10A to 10G.
  • each of the detection units 10A to 10G is supported on the downstream side of the guide support member 132 and are arranged in line in the Y direction. As shown in FIG. 3, each of the detection units 10A to 10G includes a roll 2, a pair of support arms 3, a torque meter 4, and a fixing part 5.
  • the roll 2 is rotatably provided with the Y direction as the axial direction.
  • a metal plate S is placed on the roll 2, and the roll 2 rotates as the metal plate S contacts and travels.
  • the roll 2 has a flat portion 21 having a constant radius, and chamfered portions 22 that are provided on both sides of the flat portion 21 in the Y direction and whose radius decreases toward the end (see FIG. 5).
  • the end S1 when the end S1 is located on the roll 2, it does not mean that the end S1 is located on the flat part 21.
  • the end S1 is located in the gap G also includes a state in which the end S1 is located so as to correspond to the chamfered portion 22.
  • the chamfered portion 22 may have a curved cross section or a straight cross section, and the chamfered portion 22 does not need to be formed on the roll 2.
  • the pair of support arms 3 are arranged to sandwich one roll 2 from the Y direction, and one end 3A rotatably supports the shaft of the roll 2, and the other end 3B is supported by the torque meter 4.
  • the torque meter 4 is provided on a fixed part 5, and the fixed part 5 is supported by a guide support member 132. Further, the torque meter 4 is, for example, ring-shaped, and is connected to the shape calculation section 14 by wire or wirelessly, and is capable of transmitting measured values.
  • the shape calculation unit 14 is, for example, a microcomputer equipped with a central processing unit (CPU), and calculates the shape of the metal plate S by acquiring measured values from a plurality of torque meters 4 and performing calculation processing. . Note that the shape calculation unit 14 may also perform other calculation processing.
  • CPU central processing unit
  • the support arms 3 are arranged to sandwich one roll 2 from the Y direction, the support arms 3 are arranged between two rolls 2 adjacent to each other in the Y direction. A gap G is formed.
  • a total of seven rolls 2 in the plurality of detection units 10A to 10G constitute a roll unit 20.
  • the respective rolls 2 of the plurality of detection units 10A to 10G are referred to as rolls 2A to 2G.
  • the direction approaching the center C of the roll unit 20 (direction of arrow a in FIG. 4) is called the center section side, and the direction away from the roll 2D of the central detection unit 10D (the 4) is called the outside.
  • the moving mechanism moves all seven rolls 2 as one roll group along the Y direction.
  • the moving mechanism includes a connecting part that connects the seven rolls 2 so that they can move in the Y direction at the same time, and a driving part (for example, an actuator) that generates a driving force in the Y direction.
  • a driving part for example, an actuator
  • the moving mechanism may move the roll 2 together with other elements constituting the detection units 10A to 10G.
  • the detection units 10A, 10G and the detection units 10B, 10F located inside the detection units 10A, 10G may fluctuate in measured values.
  • the end S1 of the metal plate S may also be located at G.
  • the distance from the end S1 to the flat part 21 of the rolls 2A, 2G is longer than the length that the metal plate S traverses during rolling, the metal plate S always separates from the flat part 21 of the rolls 2A, 2G. Therefore, fluctuations in the measured values in the detection units 10A, 10G and the detection units 10B, 10F located inside them are unlikely to occur.
  • the metal plate S does not touch the flat part 21 of the rolls 2A, 2G.
  • the contact and separation may be repeated, which may cause fluctuations in the measured values in the detection units 10A, 10G and the detection units 10B, 10F located inside them.
  • the plurality of rolls 2 have a first region A1 where fluctuations in measured values are likely to occur when the end portion S1 is arranged, and a second region A2 where fluctuations in measured values are difficult to occur. are formed so that they are arranged alternately.
  • a first region A1 is arranged on the Y-direction center C side (a-direction side), and a second region A2 is arranged on the outside thereof (b-direction side).
  • the first boundary part B1 where the first area A1 switches to the second area A2 from the center part C in the Y direction toward the outside (in the b direction) is located in the flat part 21.
  • a second boundary B2 that switches from the second area A2 to the first area A1 is located in the gap G between two adjacent rolls 2 among the rolls 2A to 2F.
  • the length L2 of the second area A2 in the Y direction is longer than the length L1 of the first area A1 in the Y direction.
  • the moving amount D when the moving mechanism moves the roll 2 by the drive unit is set to half the total length of the Y-direction length L1 of the first area A1 and the Y-direction length L2 of the second area A2. There is. Since the length L2 is longer than the length L1, the movement amount D is greater than or equal to the length L1 and less than the length L2.
  • the moving mechanism only needs to include a stopper to set the moving amount D as described above, and does not need to be able to stop during movement.
  • a method for detecting a plate shape using the plate shape detection device 1 described above will be explained, paying particular attention to the moving mechanism and the positional relationship of each part.
  • a state in which the center portion of the metal plate S coincides with the center portion C of the roll unit 20 is defined as a first state, and the position of the roll group at this time is defined as a first position.
  • the moving mechanism is capable of moving the roll 2 from the first state to the second position by the above-mentioned movement amount D, and the state after the movement is the second state.
  • the position of the end portion S1 in the Y direction may be calculated geometrically from the dimensions of the metal plate S and the dimensions of each part of the plate shape detection device 1 (particularly the arrangement and dimensions of the rolls 2A to 2G).
  • a detection unit for detecting may be provided.
  • FIG. 7 shows the state before and after movement on the roll 2A side
  • FIG. 8 shows the state before and after movement on the roll 2G side.
  • the range in which the end portion S1 is located in the first region A1 in the first state is defined as YS1. That is, in the first state, range YS1 coincides with first area A1.
  • FIGS. 9 and 10 show an example in which a metal plate S having a thickness of 3 mm is used.
  • the expected deviation amount ⁇ is the amount by which the metal plate S may traverse in the Y direction when traveling. That is, when the metal plate S is set in the rolling mill, although the movement (traverse) of the metal plate S in the Y direction is limited to some extent by the guide device, it is necessary to set a clearance between the metal plate S and the guide device. , and the total clearance on both sides corresponds to the assumed deviation amount ⁇ .
  • Such one-sided clearance may be, for example, 20 mm, and the expected deviation amount ⁇ in this case is 40 mm.
  • the center of the first region A1 in the Y direction is located at the central end portion 211, and the length L1 is 40 mm or more.
  • the detection accuracy may also be reduced due to other factors. That is, even if repeated contact and separation does not occur, there may be cases where the length of the end S1 placed on the outermost rolls 2A, 2G is short, or when the end S1 is placed in the gap G and placed on the outermost rolls 2A, 2G. When the amount of protrusion from the second roll 2B, 2F is large, there is a possibility that the detection accuracy will be reduced.
  • FIG. 12 A specific example is shown in FIG. In FIG. 12, the position of the end portion S1 is changed by changing the width of the metal plate S, and the error with the largest absolute value among the errors in the plate shape detection results in the width direction of the metal plate S is set as the maximum error E max .
  • the set position (board end set position) PY of the end S1 which is the horizontal axis, indicates the position of the end S1 when the traverse amount ⁇ Y is 0 mm.
  • the central end 211 of the flat part 21 of the roll 2A is set to 0, and for the right end S1, the central end 211 of the flat part 21 of the roll 2G is set to 0, and both left and right sides are set at the center.
  • the part C side was defined as a negative value, and the outside was defined as a positive value.
  • the results are shown when the traverse amount ⁇ Y is 0 mm and ⁇ 20 mm, respectively, when the thickness of the metal plate S is 2 mm and 3 mm.
  • the position of the left end S1 with respect to the roll 2A and the position of the right end S1 with respect to the roll 2G are symmetrical with respect to the center C of the roll unit 20, but the amount of traverse ⁇ Y If is not 0 mm, the center of the metal plate S and the center C of the roll unit 20 will not match, so the positions of the ends S1 on both sides of the rolls 2A and 2G will be symmetrical with respect to the center C of the roll unit 20. It will no longer be.
  • roll 2F is located on the center C side and becomes a center roll
  • roll 2G is located on the outside and becomes an outside roll.
  • Maximum error E max at a position less than 50 mm outward from the outer end 212 of the flat part 21 of the rolls 2b, 2F and a position more than 50 mm outward from the central end 211 of the flat part 21 of the rolls 2A, 2G is 2.47i-unit or less, and this range may be set as the second area A2.
  • a section extending from a position 50 mm outward from the outer end 212 and a position within 50 mm outward from the central end 211 may be defined as the first region A1.
  • the moving mechanism is in the first state in which the roll group constituted by the rolls 2A to 2G is located in the first position, and in the first state in which the roll group constituted by the rolls 2A to 2G is located in the first position. It is possible to switch between a second state in which the device is located at a second position moved in the Y-axis direction from the first position by a movement amount D that is greater than or equal to the length L1 of the first area A1 and less than the length L2 of the second area A2. By doing so, the end portion S1 of the metal plate S can be placed in the second area A2, and detection accuracy can be improved.
  • the moving mechanism moves all of the plurality of rolls 2A to 2G as a roll group along the Y direction, thereby suppressing the complexity of the device compared to a configuration in which each roll 2 is moved independently. be able to.
  • the first region A1 has a length equal to or greater than the assumed deviation amount ⁇
  • the center of the first region A1 in the Y direction is located at the central end 211 of the flat portion 21, and
  • the expected deviation amount ⁇ may be any appropriate value according to the thickness, material, etc. of the metal plate S that can be the target.
  • the position of the center side end 211 is in the first region.
  • SYMBOLS 1...Plate shape detection device 2,2A-2G...Roll, 20...Roll unit, 21...Flat part, 3...Arm, 4...Torque meter, 14...Shape calculation part, S...Metal plate, S1...End part, A1...first region, A2...second region, B1...first boundary part, B2...second boundary part, G...gap

Abstract

Provided are a sheet shape detecting device and a sheet shape detecting method capable of suppressing an increase in the complexity of the device and improving detection accuracy. The sheet shape detecting device (1) detects the sheet shape of a metal sheet (S) and is equipped with a roll unit (20) having a plurality of rolls (2A-2G) on which a metal sheet (S) is placed and a moving mechanism that moves a group of two or more of the plurality of rolls (2A-2G) along the axial direction as a roll group. The plurality of rolls (2A-2G) are lined up with the width direction of the metal sheet (S) as the axial direction while forming gaps (G) in the axial direction, thereby forming first regions (A1) and second regions (A2), which are longer in the axial direction than the first regions (A1), lined up in alternation in the axial direction. In the roll unit (20), first boundary portions (B1) that switch from a first region (A1) to a second region (A2) from the center portion (C) of the axial direction toward the outside are located on flat portions (21) where the radius is constant among the rolls (2), and second boundary portions (B2) that switch from a second region (A2) to a first region (A1) are located in the gaps (G) between adjacent rolls (2). The moving mechanism can switch between a first state in which the roll group is located at a first position and a second state in which the roll group is located at a second position that is moved in the axial direction from the first position by the length (L1) of the first region (A1) and less than the length (L2) of the second region (A2).

Description

板形状検出装置及び板形状検出方法Plate shape detection device and plate shape detection method
 本発明は、板形状検出装置及び板形状検出方法に関する。 The present invention relates to a plate shape detection device and a plate shape detection method.
 一般に、圧延機スタンド間に配置され、板に作用する張力分布を計測することで圧延材の伸び歪み偏差を求める板形状検出装置が知られている。このような板形状検出装置として、帯板が分割ロールに接触した際に作用する反力を検出し、この反力に基づいて蛇行量を算出するものが提案されている(例えば、特許文献1参照)。特許文献1に記載された板形状検出装置では、帯板の蛇行及び板形状の検出の高精度化を図っている。 In general, plate shape detection devices are known that are placed between rolling mill stands and measure the tension distribution acting on the plate to determine the elongation strain deviation of the rolled material. As such a plate shape detection device, one has been proposed that detects the reaction force that acts when the strip comes into contact with the split roll and calculates the amount of meandering based on this reaction force (for example, Patent Document 1 reference). The plate shape detection device described in Patent Document 1 aims to improve the accuracy of detecting the meandering of the strip and the plate shape.
特開2006-346714号公報Japanese Patent Application Publication No. 2006-346714
 特許文献1に記載された板形状検出装置では、一端が分割ロールを回転可能に支持するとともに他端が反力検出器を介して固定部材に支持される支持アームが設けられていることから、隣り合う分割ロール間に間隙が形成される。帯板の幅方向端部が、分割ロール間の間隙や、分割ロールのうち間隙の近傍に配置されると、検出精度が低下してしまう虞があった。 The plate shape detection device described in Patent Document 1 is provided with a support arm whose one end rotatably supports the divided roll and whose other end is supported by a fixed member via a reaction force detector. A gap is formed between adjacent split rolls. If the widthwise ends of the strips were placed in the gaps between the split rolls or in the vicinity of the gaps between the split rolls, there was a risk that the detection accuracy would be reduced.
 そこで、帯板の端部に対してを分割ロールを幅方向に適切な位置に配置することにより、検出精度の低下を抑制する方法も考えられる。しかしながら、様々な帯板の幅や帯板の蛇行等に応じて板形状検出装置の各部を細かく制御しようとすると、装置が複雑化してしまう。 Therefore, it is possible to consider a method of suppressing the decrease in detection accuracy by arranging split rolls at appropriate positions in the width direction with respect to the ends of the strip. However, if it is attempted to finely control each part of the plate shape detection device according to the width of the various strips, the meandering of the strip, etc., the device becomes complicated.
 本発明は、上述の課題に鑑みてなされたものであり、その目的は、装置の複雑化を抑制しつつ検出精度を向上させることができる板形状検出装置及び板形状検出方法を提供することにある。 The present invention has been made in view of the above-mentioned problems, and its purpose is to provide a plate shape detection device and a plate shape detection method that can improve detection accuracy while suppressing the complexity of the device. be.
 上記目的を達成するために、本発明に係る板形状検出装置は、金属板の板形状を検出する板形状検出装置であって、前記金属板が載置される複数のロールを有するロールユニットと、前記複数のロールのうち2以上を一群のロール群として軸方向に沿って移動させる移動機構と、を備え、前記複数のロールは、前記金属板の幅方向を前記軸方向とし、前記軸方向において間隙を形成しつつ並べられることにより、第1領域と、前記第1領域よりも前記軸方向に長い第2領域と、が前記軸方向において交互に並ぶように形成され、前記ロールユニットにおいて、前記軸方向の中央部から外側に向かって、前記第1領域から前記第2領域に切り換わる第1境界部が、前記ロールのうち半径が一定であるフラット部に位置し、前記第2領域から前記第1領域に切り換わる第2境界部が、隣り合う前記ロール同士の間隙に位置し、前記移動機構は、前記ロール群が第1位置に位置する第1状態と、前記ロール群が前記第1位置から前記第1領域の長さ以上且つ前記第2領域の長さ未満だけ前記軸方向に移動した第2位置に位置する第2状態と、を切り換え可能であることを特徴とする。 In order to achieve the above object, a plate shape detection device according to the present invention is a plate shape detection device that detects the shape of a metal plate, and includes a roll unit having a plurality of rolls on which the metal plate is placed. , a moving mechanism that moves two or more of the plurality of rolls as one roll group along the axial direction, the plurality of rolls have the width direction of the metal plate as the axial direction, and the plurality of rolls move in the axial direction. are arranged with gaps formed in the roll unit, so that first regions and second regions that are longer in the axial direction than the first regions are arranged alternately in the axial direction, and in the roll unit, A first boundary portion where the first region switches to the second region from the central portion in the axial direction toward the outside is located in a flat portion of the roll having a constant radius, and A second boundary portion that switches to the first region is located in a gap between the adjacent rolls, and the moving mechanism is configured to move between a first state in which the roll group is located in the first position and a state in which the roll group is located in the first position. It is characterized in that it is possible to switch between the first position and a second position, which is located at a second position that is moved in the axial direction by more than the length of the first region and less than the length of the second region.
 本発明の一態様に係る板形状検出装置において、前記移動機構は、前記第1状態と前記第2状態とを切り換える際、前記軸方向における前記第1領域及び前記第2領域の合計長さの半分だけ前記ロール群を移動させる。 In the plate shape detection device according to one aspect of the present invention, when switching between the first state and the second state, the moving mechanism is configured to change the total length of the first region and the second region in the axial direction. Move the roll group by half.
 本発明の一態様に係る板形状検出装置において、前記第1領域は、前記軸方向における前記金属板の想定ずれ量以上の長さを有し、前記軸方向における前記第1領域の中心は、前記フラット部のうち前記軸方向の中央側端部に位置する。 In the plate shape detection device according to one aspect of the present invention, the first region has a length greater than or equal to an expected deviation amount of the metal plate in the axial direction, and the center of the first region in the axial direction is It is located at the central end of the flat portion in the axial direction.
 本発明の一態様に係る板形状検出装置において、前記想定ずれ量が40mmであることを特徴とする。 The plate shape detection device according to one aspect of the present invention is characterized in that the assumed deviation amount is 40 mm.
 本発明の一態様に係る板形状検出装置において、前記第1領域は、前記軸方向において、隣り合う2つの前記ロールのうち中央側ロールの前記フラット部における外側端部から外側に50mmの位置と、外側ロールの前記フラット部における中央側端部から外側に50mmの位置と、に亘る区間を含む。 In the plate shape detection device according to one aspect of the present invention, the first region is located at a position 50 mm outward from an outer end of the flat portion of the center roll of the two adjacent rolls in the axial direction. , and a position 50 mm outward from the central end of the flat portion of the outer roll.
 本発明の一態様に係る板形状検出装置において、前記金属板が各々の前記ロールに接触した際に当該ロールの両側の軸に作用する張力を検出するトルクメータと、一端が前記ロールの軸を回転可能に支持するとともに他端が前記トルクメータに支持されるアームと、前記トルクメータの出力に基づいて前記金属板の形状を算出する形状演算部と、を備える。 In the plate shape detection device according to one aspect of the present invention, there is provided a torque meter that detects the tension that acts on the shafts on both sides of the rolls when the metal plate contacts each of the rolls; The metal plate includes an arm that is rotatably supported and whose other end is supported by the torque meter, and a shape calculation section that calculates the shape of the metal plate based on the output of the torque meter.
 上記目的を達成するために、本発明に係る板形状検出方法は、金属板が載置される複数のロールを有するロールユニットによって前記金属板の板形状を検出する板形状検出方法であって、前記複数のロールを、前記金属板の幅方向を前記軸方向として当該軸方向において間隙を形成しつつ並べることにより、第1領域と、前記第1領域よりも前記軸方向に長い第2領域と、を前記軸方向において交互に並ぶように形成し、前記ロールユニットにおいて、前記軸方向の中央部から外側に向かって、前記第1領域から前記第2領域に切り換わる第1境界部を、前記ロールのうち半径が一定であるフラット部に設定し、前記第2領域から前記第1領域に切り換わる第2境界部を、2つの前記ロール同士の間隙に設定し、前記金属板の端部が前記第1領域に位置する場合に、前記第1領域の長さ以上且つ前記第2領域の長さ未満だけ、前記複数のロールのうち2以上を一群のロール群として軸方向に沿って移動させることを特徴とする。 In order to achieve the above object, a plate shape detection method according to the present invention detects the plate shape of the metal plate using a roll unit having a plurality of rolls on which the metal plate is placed, the method comprising: By arranging the plurality of rolls with the width direction of the metal plate as the axial direction and forming a gap in the axial direction, a first region and a second region that is longer in the axial direction than the first region are formed. , are formed so as to be arranged alternately in the axial direction, and in the roll unit, a first boundary portion switching from the first region to the second region from the center portion in the axial direction toward the outside; A flat part of the roll is set to have a constant radius, a second boundary part where the second area switches to the first area is set in the gap between the two rolls, and the end part of the metal plate When located in the first region, two or more of the plurality of rolls are moved as a group of rolls along the axial direction by a length that is greater than or equal to the length of the first region and less than the length of the second region. It is characterized by
 本発明の一態様に係る板形状検出方法において、前記ロール群を移動させる際の移動量が、前記軸方向における前記第1領域及び前記第2領域の合計長さの半分である。 In the plate shape detection method according to one aspect of the present invention, the amount of movement when moving the roll group is half the total length of the first region and the second region in the axial direction.
 本発明の一態様に係る板形状検出方法において、前記第1領域を、前記軸方向における前記金属板の想定ずれ量以上の長さを有するように設定し、前記軸方向における前記第1領域の中心を、前記フラット部のうち前記ロールユニット全体における前記軸方向の中央部側の端部に位置するように設定する。 In the plate shape detection method according to one aspect of the present invention, the first region is set to have a length greater than or equal to an expected deviation amount of the metal plate in the axial direction, and the first region in the axial direction is The center is set to be located at an end of the flat portion on the center side in the axial direction of the entire roll unit.
 本発明の一態様に係る板形状検出方法において、前記想定ずれ量を40mmとする。 In the plate shape detection method according to one aspect of the present invention, the assumed deviation amount is 40 mm.
 本発明の一態様に係る板形状検出方法において、前記第1領域を、前記軸方向において、隣り合う2つの前記ロールのうち中央側ロールの前記フラット部における外側端部から外側に50mmの位置と、外側ロールの前記フラット部における中央側端部から外側に50mmの位置と、に亘る区間を含むように設定する。 In the plate shape detection method according to one aspect of the present invention, the first region is located at a position 50 mm outward from the outer end of the flat portion of the center roll of the two adjacent rolls in the axial direction. , and a position 50 mm outward from the central end of the flat portion of the outer roll.
 本発明の一態様に係る板形状検出方法において、前記金属板が各々の前記ロールに接触した際に当該ロールの両側の軸に作用する張力を検出するトルクメータと、一端が前記ロールの軸を回転可能に支持するとともに他端が前記トルクメータに支持されるアームと、前記トルクメータの出力に基づいて前記金属板の形状を算出する形状演算部と、を用いて前記金属板の板形状を検出する。 In the plate shape detection method according to one aspect of the present invention, there is provided a torque meter that detects the tension that acts on the shafts on both sides of the rolls when the metal plate contacts each of the rolls; The plate shape of the metal plate is calculated using an arm that is rotatably supported and whose other end is supported by the torque meter, and a shape calculation unit that calculates the shape of the metal plate based on the output of the torque meter. To detect.
 本発明に係る板形状検出装置及び板形状検出方法によれば、装置の複雑化を抑制しつつ検出精度を向上させることができる。 According to the plate shape detection device and plate shape detection method according to the present invention, detection accuracy can be improved while suppressing the complexity of the device.
本発明の実施の形態に係る板形状検出装置が設けられる圧延設備の概略図である。1 is a schematic diagram of a rolling facility provided with a plate shape detection device according to an embodiment of the present invention. 本発明の実施の形態に係る板形状検出装置の平面図である。FIG. 1 is a plan view of a plate shape detection device according to an embodiment of the present invention. 本発明の実施の形態に係る板形状検出装置の検出ユニットの側面図である。FIG. 2 is a side view of a detection unit of a plate shape detection device according to an embodiment of the present invention. 図3のA矢視断面の模式図である。FIG. 4 is a schematic cross-sectional view taken in the direction of arrow A in FIG. 3; 図4の一部を拡大して示す断面図である。FIG. 5 is an enlarged cross-sectional view of a part of FIG. 4; 本発明の実施の形態に係る板形状検出装置が(A)第1状態となった様子及び(B)第2状態となった様子を示す模式図である。FIG. 2 is a schematic diagram showing (A) a first state and (B) a second state of the plate shape detection device according to an embodiment of the present invention. 本発明の実施の形態に係る板形状検出装置における各部の位置関係を示す模式図である。It is a schematic diagram showing the positional relationship of each part in the board shape detection device concerning an embodiment of the present invention. 本発明の実施の形態に係る板形状検出装置における各部の位置関係を示す模式図である。It is a schematic diagram showing the positional relationship of each part in the board shape detection device concerning an embodiment of the present invention. Chebyshevの多項式近似における一次成分の係数C1の誤差と金属板の横行量との関係を示すグラフである。It is a graph showing the relationship between the error of the coefficient C1 of the first-order component in Chebyshev's polynomial approximation and the amount of traverse of the metal plate. Chebyshevの多項式近似における二次成分の係数C2の誤差と金属板の横行量との関係を示すグラフである。It is a graph which shows the relationship between the error of the coefficient C2 of the quadratic component in Chebyshev's polynomial approximation, and the amount of traverse of a metal plate. 本発明の実施の形態に係る板形状検出装置の一部を拡大して示す断面図である。1 is an enlarged cross-sectional view of a part of a plate shape detection device according to an embodiment of the present invention. 板形状の検出結果の最大誤差と、金属板の端部のセット位置と、の関係を示すグラフである。It is a graph showing the relationship between the maximum error of the plate shape detection result and the set position of the end of the metal plate.
 以下、本発明の実施の形態について図面を参照しながら説明する。図1~5に示すように、本発明の実施の形態に係る板形状検出装置1は、金属板Sの板形状を検出する板形状検出装置であって、金属板Sが載置される複数のロール2A~2Gを有するロールユニット20と、複数のロール2A~2Gのうち2以上を一群のロール群として軸方向に沿って移動させる移動機構と、を備える。複数のロール2A~2Gは、金属板Sの幅方向を軸方向とし、軸方向において間隙Gを形成しつつ並べられることにより、第1領域A1と、第1領域A1よりも軸方向に長い第2領域A2と、が軸方向において交互に並ぶように形成される。ロールユニット20において、軸方向の中央部Cから外側に向かって、第1領域A1から第2領域A2に切り換わる第1境界部B1が、ロール2のうち半径が一定であるフラット部21に位置し、第2領域A2から第1領域A1に切り換わる第2境界部B2が、隣り合うロール2同士の間隙Gに位置する。移動機構は、ロール群が第1位置に位置する第1状態と、ロール群が第1位置から第1領域A1の長さL1以上且つ第2領域A2の長さL2未満だけ軸方向に移動した第2位置に位置する第2状態と、を切り換え可能である。 Embodiments of the present invention will be described below with reference to the drawings. As shown in FIGS. 1 to 5, a plate shape detecting device 1 according to an embodiment of the present invention is a plate shape detecting device that detects the plate shape of a metal plate S, and includes a plurality of metal plates S on which the metal plate S is placed. A roll unit 20 having rolls 2A to 2G, and a moving mechanism that moves two or more of the plurality of rolls 2A to 2G as one roll group along the axial direction. The plurality of rolls 2A to 2G have the width direction of the metal plate S as the axial direction, and are arranged with a gap G in the axial direction, thereby forming a first area A1 and a second area longer than the first area A1 in the axial direction. The two regions A2 are formed so as to be arranged alternately in the axial direction. In the roll unit 20, the first boundary part B1, which switches from the first area A1 to the second area A2 outward from the central part C in the axial direction, is located in the flat part 21 of the roll 2, which has a constant radius. However, a second boundary B2 where the second area A2 switches to the first area A1 is located in the gap G between the adjacent rolls 2. The moving mechanism has a first state in which the roll group is located at the first position, and a state in which the roll group has moved from the first position in the axial direction by a length L1 or more of the first area A1 and less than a length L2 of the second area A2. It is possible to switch between the second state and the second state located at the second position.
 板形状検出装置1は、圧延機スタンド間に設けられるものであって、上流側(図1における左側)の前段圧延スタンド100と、下流側(図1における右側)の後段圧延スタンド200と、の間に配置され、2つの圧延スタンド100,200間を走行する金属板Sの板形状を検出する。前段圧延スタンド100は、一対の圧延ロール101,102と、これらを挟み込む一対の補強ロール103,104と、を有する。後段圧延スタンド200は、一対の圧延ロール201,202と、これらを挟み込む一対の補強ロール203,204と、を有する。 The plate shape detection device 1 is provided between the rolling mill stands, and includes a front rolling stand 100 on the upstream side (left side in FIG. 1) and a rear rolling stand 200 on the downstream side (right side in FIG. 1). The plate shape of the metal plate S placed between the two rolling stands 100 and 200 is detected. The front rolling stand 100 includes a pair of rolling rolls 101 and 102, and a pair of reinforcing rolls 103 and 104 sandwiching these rolls. The rear rolling stand 200 includes a pair of rolling rolls 201 and 202, and a pair of reinforcing rolls 203 and 204 sandwiching these rolls.
 金属板Sは、圧延材であって、走行方向(図1における左右方向;X方向)を長辺方向とする帯板状に形成され、図1における奥行方向(Y方向)を幅方向とし、図1における上下方向(Z方向)を板厚方向とする。以下では、走行方向における上流側(図1における左側)又は下流側(図1における右側)を、それぞれ単に上流側又は下流側と呼ぶことがある。 The metal plate S is a rolled material and is formed into a strip shape with the long side direction in the running direction (left-right direction in FIG. 1; X direction), and the width direction in the depth direction (Y direction) in FIG. The vertical direction (Z direction) in FIG. 1 is the plate thickness direction. Hereinafter, the upstream side (the left side in FIG. 1) or the downstream side (the right side in FIG. 1) in the traveling direction may be simply referred to as the upstream side or the downstream side, respectively.
 板形状検出装置1は、図2に示すように、複数(本実施の形態では7個)の検出ユニット10A~10Gと、駆動モータ11に接続された支持軸部12と、支持軸部12に支持されたテーブル13と、形状演算部14と、移動機構と、を備える。 As shown in FIG. 2, the plate shape detection device 1 includes a plurality of (seven in this embodiment) detection units 10A to 10G, a support shaft portion 12 connected to a drive motor 11, and a support shaft portion 12 connected to the support shaft portion 12. It includes a supported table 13, a shape calculation section 14, and a moving mechanism.
 支持軸部12は、Y方向を軸方向として棒状に延在し、テーブル13をY方向から挟む位置に一対の軸受121が設けられており、軸受121が図示しないフレームに支持されている。テーブル13は、金属板Sをガイドするガイド部材131と、ガイド部材131を支持するガイド支持部材132と、を有する。ガイド部材131は、検出ユニット10A~10Gと同数だけ設けられるとともに、各々の検出ユニット10A~10Gに対応するように上流側に配置されている。 The support shaft portion 12 extends in a rod shape with the Y direction as the axial direction, and a pair of bearings 121 are provided at positions sandwiching the table 13 from the Y direction, and the bearings 121 are supported by a frame (not shown). The table 13 includes a guide member 131 that guides the metal plate S, and a guide support member 132 that supports the guide member 131. The guide members 131 are provided in the same number as the detection units 10A to 10G, and are arranged on the upstream side so as to correspond to each of the detection units 10A to 10G.
 複数の検出ユニット10A~10Gは、ガイド支持部材132の下流側に支持されるとともに、Y方向に並ぶように配置されている。検出ユニット10A~10Gは、図3にも示すように、それぞれ、ロール2と、一対の支持アーム3と、トルクメータ4と、固定部5と、を有する。 The plurality of detection units 10A to 10G are supported on the downstream side of the guide support member 132 and are arranged in line in the Y direction. As shown in FIG. 3, each of the detection units 10A to 10G includes a roll 2, a pair of support arms 3, a torque meter 4, and a fixing part 5.
 ロール2は、Y方向を軸方向として回転可能に設けられたものである。ロール2には、金属板Sが載置され、金属板Sが接触するとともに走行することにより、ロール2が回転する。ロール2は、半径が一定であるフラット部21と、フラット部21のY方向両側に設けられるとともに端部側に向かうにしたがって半径が小さくなる面取部22と、を有する(図5参照)。尚、以下においてロール2と金属板Sの端部S1との位置関係について説明する際、特に説明がない限りは、端部S1がロール2上に位置するとは、フラット部21上に位置することを意味し、端部S1が間隙Gに位置するとは、端部S1が面取部22に対応するように位置する状態も含むものとする。また、面取部22は、断面曲線状のものであってもよいし、断面直線状のものであってもよく、ロール2に面取部22が形成されていなくてもよい。 The roll 2 is rotatably provided with the Y direction as the axial direction. A metal plate S is placed on the roll 2, and the roll 2 rotates as the metal plate S contacts and travels. The roll 2 has a flat portion 21 having a constant radius, and chamfered portions 22 that are provided on both sides of the flat portion 21 in the Y direction and whose radius decreases toward the end (see FIG. 5). In addition, when explaining the positional relationship between the roll 2 and the end S1 of the metal plate S below, unless otherwise specified, when the end S1 is located on the roll 2, it does not mean that the end S1 is located on the flat part 21. This means that the end S1 is located in the gap G also includes a state in which the end S1 is located so as to correspond to the chamfered portion 22. Further, the chamfered portion 22 may have a curved cross section or a straight cross section, and the chamfered portion 22 does not need to be formed on the roll 2.
 一対の支持アーム3は、1つのロール2をY方向から挟み込むように配置され、一端3Aがロール2の軸を回転可能に支持するとともに他端3Bがトルクメータ4に支持される。トルクメータ4は、固定部5に設けられており、固定部5がガイド支持部材132に支持される。また、トルクメータ4は、例えばリング状のものであって、有線又は無線により形状演算部14に接続され、測定値を送信可能となっている。 The pair of support arms 3 are arranged to sandwich one roll 2 from the Y direction, and one end 3A rotatably supports the shaft of the roll 2, and the other end 3B is supported by the torque meter 4. The torque meter 4 is provided on a fixed part 5, and the fixed part 5 is supported by a guide support member 132. Further, the torque meter 4 is, for example, ring-shaped, and is connected to the shape calculation section 14 by wire or wirelessly, and is capable of transmitting measured values.
 図3に示す例では、金属板Sがロール2に接触することで、ロール2にはZ方向下方の力が作用する。これにより、支持アーム3には、他端3Bを軸として時計回りに回動する力が働き、他端3Bに設けられたトルクメータ4によってトルクが測定される。即ち、トルクメータ4は、金属板Sが各々のロール2に接触した際にロール2の両側の軸に作用する張力を検出する。 In the example shown in FIG. 3, when the metal plate S contacts the roll 2, a downward force in the Z direction acts on the roll 2. As a result, a force that rotates the support arm 3 clockwise about the other end 3B acts on the support arm 3, and the torque is measured by the torque meter 4 provided at the other end 3B. That is, the torque meter 4 detects the tension that acts on the shafts on both sides of the rolls 2 when the metal plate S comes into contact with each roll 2.
 形状演算部14は、例えば中央演算処理装置(CPU)を備えたマイクロコンピュータであって、複数のトルクメータ4から測定値を取得し、演算処理を実行することで金属板Sの形状を算出する。尚、形状演算部14は、他の演算処理も実行してもよい。 The shape calculation unit 14 is, for example, a microcomputer equipped with a central processing unit (CPU), and calculates the shape of the metal plate S by acquiring measured values from a plurality of torque meters 4 and performing calculation processing. . Note that the shape calculation unit 14 may also perform other calculation processing.
 形状演算部14が金属板Sの形状を算出するための演算処理としては、以下に説明する公知のChebyshevの多項式近似が例示される。以下の式(1)~(4)において、Δεは伸びひずみ偏差であり、xは板幅方向の位置を無次元化したのものであり、C0~C4は係数である。各々のトルクメータ4によって得られる測定値に基づき、Chebyshevの多項式を用いて張力分布を近似し、板形状として伸びひずみ偏差に変換する。 As the calculation process for the shape calculation unit 14 to calculate the shape of the metal plate S, the well-known Chebyshev polynomial approximation described below is exemplified. In the following equations (1) to (4), Δε is an elongation strain deviation, x is a dimensionless position in the sheet width direction, and C0 to C4 are coefficients. Based on the measured values obtained by each torque meter 4, the tension distribution is approximated using Chebyshev's polynomial and converted into an elongation strain deviation as a plate shape.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
 上記のように、一対の支持アーム3が1つのロール2をY方向から挟み込むように配置されていることから、Y方向に隣り合う2つのロール2の間には、支持アーム3を配置するための間隙Gが形成される。図4に示すように、複数の検出ユニット10A~10Gにおける合計7個のロール2は、ロールユニット20を構成する。複数の検出ユニット10A~10Gのそれぞれのロール2をロール2A~2Gとする。また、複数のロール2が並ぶY方向において、ロールユニット20の中央部Cに近づく方向(図4の矢印a方向)を中央部側と呼び、中央の検出ユニット10Dのロール2Dから離れる方向(図4の矢印b方向)を外側と呼ぶ。 As mentioned above, since the pair of support arms 3 are arranged to sandwich one roll 2 from the Y direction, the support arms 3 are arranged between two rolls 2 adjacent to each other in the Y direction. A gap G is formed. As shown in FIG. 4, a total of seven rolls 2 in the plurality of detection units 10A to 10G constitute a roll unit 20. The respective rolls 2 of the plurality of detection units 10A to 10G are referred to as rolls 2A to 2G. Further, in the Y direction in which the plurality of rolls 2 are lined up, the direction approaching the center C of the roll unit 20 (direction of arrow a in FIG. 4) is called the center section side, and the direction away from the roll 2D of the central detection unit 10D (the 4) is called the outside.
 移動機構は、7個のロール2の全てを一群のロール群としてY方向に沿って移動させるものである。移動機構は、7個のロール2を同時にY方向に移動可能なように連結する連結部と、Y方向の駆動力を発生させる駆動部(例えばアクチュエータ)と、を有する。尚、移動機構は、ロール2を、検出ユニット10A~10Gを構成する他の要素とともに移動させてもよい。 The moving mechanism moves all seven rolls 2 as one roll group along the Y direction. The moving mechanism includes a connecting part that connects the seven rolls 2 so that they can move in the Y direction at the same time, and a driving part (for example, an actuator) that generates a driving force in the Y direction. Note that the moving mechanism may move the roll 2 together with other elements constituting the detection units 10A to 10G.
 金属板Sが複数のロール2に載置される際の各部の位置関係の詳細について、Y方向における金属板Sの端部S1が外側のロール2A,2Gのフラット部21に位置する場合について説明する。このとき、金属板Sがロール2A,2Gのフラット部21に接触するY方向長さが、金属板Sが圧延中に横行(Y方向に移動)する長さ以上であれば、金属板Sは常にロール2A,2Gのフラット部21に接触し、検出ユニット10A,10G及びその内側に位置する検出ユニット10B,10Fにおける測定値の変動は生じにくい。 Regarding the details of the positional relationship of each part when the metal plate S is placed on a plurality of rolls 2, a case will be explained in which the end S1 of the metal plate S in the Y direction is located on the flat part 21 of the outer rolls 2A and 2G. do. At this time, if the length in the Y direction in which the metal plate S contacts the flat portions 21 of the rolls 2A and 2G is longer than the length in which the metal plate S travels laterally (moves in the Y direction) during rolling, the metal plate S The detection units 10A, 10G and the detection units 10B, 10F located inside the detection units 10A, 10G, which are always in contact with the flat portions 21 of the rolls 2A, 2G, are unlikely to fluctuate in measurement values.
 一方、金属板Sがロール2A,2Gのフラット部21に接触するY方向長さが、金属板Sが圧延中に横行する長さよりも短いと、金属板Sがロール2A,2Gのフラット部21に対して接離を繰り返すことがあり、検出ユニット10A,10G及びその内側に位置する検出ユニット10B,10Fにおける測定値の変動が生じ得る。 On the other hand, if the length in the Y direction in which the metal plate S contacts the flat part 21 of the rolls 2A, 2G is shorter than the length that the metal plate S traverses during rolling, the metal plate S contacts the flat part 21 of the rolls 2A, 2G. The detection units 10A, 10G and the detection units 10B, 10F located inside the detection units 10A, 10G may fluctuate in measured values.
 また、金属板Sの端部S1が、ロール2Aとロール2Bとの間、又は、ロール2Fとロール2Gとの間の間隙Gに位置する場合のように、金属板Sの端部S1が間隙Gに位置する場合もある。このとき、端部S1からロール2A,2Gのフラット部21までの間隔が、金属板Sが圧延中に横行する長さよりも長いと、金属板Sは常にロール2A,2Gのフラット部21から離れており、検出ユニット10A,10G及びその内側に位置する検出ユニット10B,10Fにおける測定値の変動は生じにくい。 In addition, as in the case where the end S1 of the metal plate S is located in the gap G between the rolls 2A and 2B or between the rolls 2F and 2G, the end S1 of the metal plate S It may also be located at G. At this time, if the distance from the end S1 to the flat part 21 of the rolls 2A, 2G is longer than the length that the metal plate S traverses during rolling, the metal plate S always separates from the flat part 21 of the rolls 2A, 2G. Therefore, fluctuations in the measured values in the detection units 10A, 10G and the detection units 10B, 10F located inside them are unlikely to occur.
 一方、端部S1からロール2A,2Gのフラット部21までの間隔が、金属板Sが圧延中に横行する長さ以下であると、金属板Sがロール2A,2Gのフラット部21に対して接離を繰り返すことがあり、検出ユニット10A,10G及びその内側に位置する検出ユニット10B,10Fにおける測定値の変動が生じ得る。 On the other hand, if the distance from the end S1 to the flat part 21 of the rolls 2A, 2G is less than the length that the metal plate S traverses during rolling, the metal plate S does not touch the flat part 21 of the rolls 2A, 2G. The contact and separation may be repeated, which may cause fluctuations in the measured values in the detection units 10A, 10G and the detection units 10B, 10F located inside them.
 以上のように、端部S1の位置によって、検出ユニット10A,10G及びその内側に位置する検出ユニット10B,10Fにおける測定値に変動が生じやすい場合と生じにくい場合とがある。このような測定値の変動は、板形状の検出結果に影響を及ぼす。このように、複数のロール2には、Y方向において、端部S1が配置された際に測定値の変動が生じやすい第1領域A1と、測定値の変動が生じにくい第2領域A2と、が交互に並ぶように形成される。 As described above, depending on the position of the end portion S1, there are cases in which variations are likely to occur in the measured values in the detection units 10A, 10G and the detection units 10B, 10F located inside thereof, and cases in which variations are difficult to occur. Such fluctuations in measured values affect the detection results of the plate shape. In this way, in the Y direction, the plurality of rolls 2 have a first region A1 where fluctuations in measured values are likely to occur when the end portion S1 is arranged, and a second region A2 where fluctuations in measured values are difficult to occur. are formed so that they are arranged alternately.
 各々のロール2において、第1領域A1がY方向中央部C側(a方向側)に配置され、その外側(b方向側)に第2領域A2が配置されている。これにより、ロールユニット20において、Y方向の中央部Cから外側に向かって(b方向において)、第1領域A1から第2領域A2に切り換わる第1境界部B1が、フラット部21に位置し、第2領域A2から第1領域A1に切り換わる第2境界部B2が、ロール2A~2Fのうち隣り合う2つのロール2同士の間隙Gに位置する。また、第2領域A2のY方向長さL2は、第1領域A1のY方向長さL1よりも長い。 In each roll 2, a first region A1 is arranged on the Y-direction center C side (a-direction side), and a second region A2 is arranged on the outside thereof (b-direction side). As a result, in the roll unit 20, the first boundary part B1 where the first area A1 switches to the second area A2 from the center part C in the Y direction toward the outside (in the b direction) is located in the flat part 21. , a second boundary B2 that switches from the second area A2 to the first area A1 is located in the gap G between two adjacent rolls 2 among the rolls 2A to 2F. Further, the length L2 of the second area A2 in the Y direction is longer than the length L1 of the first area A1 in the Y direction.
 移動機構が駆動部によってロール2を移動させる際の移動量Dは、第1領域A1のY方向長さL1と第2領域A2のY方向長さL2との合計長さの半分に設定されている。長さL2が長さL1よりも長いことから、移動量Dは、長さL1以上且つ長さL2未満となっている。移動機構は、例えばストッパを含むことで上記のような移動量Dが設定されていればよく、移動途中で停止可能である必要はない。 The moving amount D when the moving mechanism moves the roll 2 by the drive unit is set to half the total length of the Y-direction length L1 of the first area A1 and the Y-direction length L2 of the second area A2. There is. Since the length L2 is longer than the length L1, the movement amount D is greater than or equal to the length L1 and less than the length L2. The moving mechanism only needs to include a stopper to set the moving amount D as described above, and does not need to be able to stop during movement.
 ここで、上記の板形状検出装置1による板形状検出方法について、特に移動機構及び各部の位置関係に着目しつつ説明する。Y方向において、金属板Sの中央部がロールユニット20の中央部Cと一致する状態を第1状態とし、この際のロール群の位置を第1位置とする。移動機構は、このような第1状態から上記の移動量Dでロール2を移動させて第2位置とすることができるようになっており、移動後の状態を第2状態とする。 Here, a method for detecting a plate shape using the plate shape detection device 1 described above will be explained, paying particular attention to the moving mechanism and the positional relationship of each part. In the Y direction, a state in which the center portion of the metal plate S coincides with the center portion C of the roll unit 20 is defined as a first state, and the position of the roll group at this time is defined as a first position. The moving mechanism is capable of moving the roll 2 from the first state to the second position by the above-mentioned movement amount D, and the state after the movement is the second state.
 板形状検出装置1は、第1状態を基準として使用される。このような第1状態において金属板Sの端部S1がロール2A,2Gの第2領域A2に位置する場合、検出ユニット10A,10G及びその内側に位置する検出ユニット10B,10Fにおける測定値の変動は生じにくい。一方、第1状態において金属板Sの端部S1がロール2A,2Gにおいて第1領域A1に位置する場合(図5)、上記のように検出ユニット10A,10G及びその内側に位置する検出ユニット10B,10Fにおいて測定値の変動が生じやすくなる。尚、端部S1のY方向位置は、金属板Sの寸法及び板形状検出装置1の各部の寸法(特にロール2A~2Gの配置及び寸法)から幾何学的に算出されればよいが、位置を検出するための検出部を設けてもよい。 The plate shape detection device 1 is used with the first state as a reference. When the end S1 of the metal plate S is located in the second area A2 of the rolls 2A, 2G in such a first state, fluctuations in the measured values in the detection units 10A, 10G and the detection units 10B, 10F located inside the detection units 10A, 10G is unlikely to occur. On the other hand, when the end portion S1 of the metal plate S is located in the first region A1 of the rolls 2A and 2G in the first state (FIG. 5), the detection units 10A and 10G and the detection unit 10B located inside them as described above , 10F, fluctuations in measured values tend to occur. Note that the position of the end portion S1 in the Y direction may be calculated geometrically from the dimensions of the metal plate S and the dimensions of each part of the plate shape detection device 1 (particularly the arrangement and dimensions of the rolls 2A to 2G). A detection unit for detecting may be provided.
 図6における(A)に示すように、第1状態において端部S1が第1領域A1に位置する場合には、移動機構によってロール群を移動量Dだけ移動させ、図6における(B)に示すような第2状態とする。ロールユニット20において、移動前の中心部CをC01とし、移動後の中心部CをC02とする。このとき、作業者が移動機構を作動させてもよいし、制御部を設けておき、端部S1が第1領域A1に位置すると制御部が判断した場合に、制御部が移動機構を作動させてもよい。移動量Dが第1領域A1の長さL1以上且つ第2領域A2の長さL2であることから、第2状態においては、端部S1は必ず第2領域A2に位置する。 As shown in (A) in FIG. 6, when the end portion S1 is located in the first area A1 in the first state, the roll group is moved by the moving amount D by the moving mechanism, and as shown in (B) in FIG. The second state is as shown. In the roll unit 20, the center C before movement is C01, and the center C after movement is C02. At this time, the operator may operate the moving mechanism, or a control section may be provided, and when the control section determines that the end portion S1 is located in the first area A1, the control section may operate the moving mechanism. You can. Since the movement amount D is greater than or equal to the length L1 of the first region A1 and the length L2 of the second region A2, the end portion S1 is always located in the second region A2 in the second state.
 上記のような移動機構によるロール群の移動は、例えば圧延の開始前に実施される。これにより、圧延中(走行中)の移動によって金属板Sに板幅方向の力が作用することを抑制することができる。 The movement of the roll group by the movement mechanism as described above is performed, for example, before the start of rolling. Thereby, it is possible to suppress the force acting on the metal sheet S in the sheet width direction due to movement during rolling (during running).
 尚、図6に示す例では、第1状態においては左側の端部S1がロール2A上に位置し、右側の端部S1がロール2G上に位置している。第2状態においては、左側の端部S1がロール2A上に位置し、右側の端部S1がロール2F上に位置している。 In the example shown in FIG. 6, in the first state, the left end S1 is located on the roll 2A, and the right end S1 is located on the roll 2G. In the second state, the left end S1 is located on the roll 2A, and the right end S1 is located on the roll 2F.
 このような移動機構による移動前後の各部の位置関係の詳細について、図7,8を参照しつつ説明する。図7には、ロール2A側における移動前後の様子を示し、図8には、ロール2G側の移動前後の様子を示す。第1状態において端部S1が第1領域A1に位置する範囲をYS1とする。即ち、第1状態において範囲YS1は第1領域A1と一致する。 The details of the positional relationship of each part before and after movement by such a movement mechanism will be explained with reference to FIGS. 7 and 8. FIG. 7 shows the state before and after movement on the roll 2A side, and FIG. 8 shows the state before and after movement on the roll 2G side. The range in which the end portion S1 is located in the first region A1 in the first state is defined as YS1. That is, in the first state, range YS1 coincides with first area A1.
 ロール群が移動量Dだけ図中右側に移動して第2状態となると、第1領域A1及び第2領域A2は移動量Dだけ移動するものの、金属板Sは移動しないため範囲YS1は変化しない。このとき、第2領域A2の長さL2が第1領域A1の長さL1よりも長く、移動量Dが長さL1以上且つ長さL2未満であることから、ロール2A側およびロール2G側のいずれにおいても、第2状態において範囲YS1は第2領域A2に含まれることとなり、即ち端部S1が第2領域A2に位置する。 When the roll group moves to the right in the figure by the amount of movement D and enters the second state, the first area A1 and the second area A2 move by the amount of movement D, but the metal plate S does not move, so the range YS1 does not change. . At this time, since the length L2 of the second area A2 is longer than the length L1 of the first area A1 and the amount of movement D is greater than or equal to the length L1 and less than the length L2, the length L2 of the second area A2 is longer than the length L1 of the first area A1. In either case, the range YS1 is included in the second area A2 in the second state, that is, the end portion S1 is located in the second area A2.
 ここで、数値シミュレーションにて金属板Sの横行による板形状の検出結果の変動を見積もった結果を示す。図9,10には、金属板Sの横行量ΔY=0のときに、金属板Sの左側の端部S1の位置が、ロール2Aのフラット部21のうち中央部C側の端部である中央側端部211の位置となり、右側の端部S1の位置が、ロール2Gのフラット部21のうち中央部C側の端部である中央側端部211の位置となるような金属板Sの板幅において、金属板Sの横行量ΔYにより発生する誤差について見積もった結果を示す。図9には、板形状について、近似したChebyshevの多項式における一次成分の係数C1の誤差EC1と、金属板Sの横行量ΔYと、の関係の一例を示し、図10には、Chebyshevの多項式における二次成分の係数C2の誤差EC2と、金属板Sの横行量ΔYと、の関係の一例を示す。両図の横軸である横行量ΔYが負の値の場合には、金属板Sの左側の端部S1がロール2Aのフラット部21に位置し且つ右側の端部S1がロール2Gとその隣のロール2Fとの間の間隙Gに位置する。反対に、横行量ΔYが正の値の場合には、左側の端部S1がロール2Aとその隣のロール2Bとの間の間隙Gに位置し且つ右側の端部S1がロール2Gのフラット部21に位置する。尚、図9,10は、板厚3mmの金属板Sを用いた場合の例を示している。 Here, the results of estimating the variation in the detection result of the plate shape due to the horizontal movement of the metal plate S by numerical simulation are shown. 9 and 10, when the amount of traverse of the metal plate S is ΔY=0, the position of the left end S1 of the metal plate S is the end on the center C side of the flat part 21 of the roll 2A. The metal plate S is located at the center side end 211, and the right end S1 is at the center side end 211, which is the end on the center C side of the flat part 21 of the roll 2G. The results of estimating the error caused by the amount of traverse ΔY of the metal plate S in the plate width are shown. FIG. 9 shows an example of the relationship between the error E C1 of the first-order component coefficient C1 in the approximated Chebyshev polynomial and the amount of traverse ΔY of the metal plate S for the plate shape, and FIG. 10 shows the Chebyshev polynomial An example of the relationship between the error E C2 of the coefficient C2 of the secondary component in and the amount of traverse ΔY of the metal plate S is shown. When the traverse amount ΔY, which is the horizontal axis of both figures, is a negative value, the left end S1 of the metal plate S is located on the flat part 21 of the roll 2A, and the right end S1 is located on the roll 2G and its neighbor. It is located in the gap G between the roll 2F and the roll 2F. On the other hand, when the amount of traverse ΔY is a positive value, the left end S1 is located in the gap G between the roll 2A and the adjacent roll 2B, and the right end S1 is located in the flat part of the roll 2G. Located at 21. Note that FIGS. 9 and 10 show an example in which a metal plate S having a thickness of 3 mm is used.
 横行量ΔYの0前後において、一次成分の係数C1及び二次成分の係数C2の誤差EC1,EC2が大きく変動する。これは、横行量ΔY=0において、左側の端部S1がロール2Aのフラット部21に位置するか、又は、ロール2Aとその隣のロール2Bとの間の間隙Gに位置に位置するかが切り換わるとともに、反対に右側の端部S1がロール2Gとその隣のロール2Fとの間の間隙Gに位置するか、又は、ロール2Gのフラット部21に位置するかが切り換わるためであり、金属板Sの横行によって板形状の検出値が急変することを意味する。従って、板の横行によって金属板Sの端部S1の位置がロール2のフラット部21とロール間のギャップGとで切り替わるような位置に端部S1が配置された状態での板形状の検出が好ましくないことが確認できる。このような端部S1の位置の切り換わりを避けるためには、金属板Sの端部S1が、フラット部21の中心部C側の端部である中央側端部211を中心として、Y方向の両側に想定ずれ量σの半分の範囲に配置されていない必要がある(図11参照)。 When the amount of traverse ΔY is around 0, the errors E C1 and E C2 of the coefficient C1 of the first-order component and the coefficient C2 of the second-order component vary greatly. This depends on whether the left end S1 is located in the flat part 21 of the roll 2A or in the gap G between the roll 2A and the adjacent roll 2B when the amount of traverse ΔY=0. This is because, at the same time as switching, on the contrary, whether the right end portion S1 is located in the gap G between the roll 2G and the adjacent roll 2F, or located in the flat portion 21 of the roll 2G is switched. This means that the detected value of the plate shape changes suddenly due to the horizontal movement of the metal plate S. Therefore, it is possible to detect the shape of a plate in a state where the edge S1 of the metal plate S is placed at a position where the position of the edge S1 of the metal plate S changes between the flat part 21 of the roll 2 and the gap G between the rolls due to the horizontal movement of the plate. I can confirm that it is not desirable. In order to avoid such a change in the position of the end S1, the end S1 of the metal plate S should be moved in the Y direction around the center end 211, which is the end on the center C side of the flat part 21. It is necessary that they are not placed within a range that is half of the assumed deviation amount σ on both sides of (see FIG. 11).
 想定ずれ量σとは、金属板Sが走行する際にY方向に横行し得る量である。即ち、金属板Sを圧延機にセットした際、ガイド装置によってある程度は金属板SのY方向の動き(横行)は制限されるものの、金属板Sとガイド装置との間にクリアランスを設定する必要があり、両側合計のクリアランスが想定ずれ量σに相当する。このような片側のクリアランスは例えば20mmであればよく、この場合の想定ずれ量σは40mmとなる。この場合、第1領域A1のY方向中心は中央側端部211に位置し、長さL1は40mm以上となる。 The expected deviation amount σ is the amount by which the metal plate S may traverse in the Y direction when traveling. That is, when the metal plate S is set in the rolling mill, although the movement (traverse) of the metal plate S in the Y direction is limited to some extent by the guide device, it is necessary to set a clearance between the metal plate S and the guide device. , and the total clearance on both sides corresponds to the assumed deviation amount σ. Such one-sided clearance may be, for example, 20 mm, and the expected deviation amount σ in this case is 40 mm. In this case, the center of the first region A1 in the Y direction is located at the central end portion 211, and the length L1 is 40 mm or more.
 上記では、金属板Sがロール2A,2Gのフラット部21に対して接離を繰り返すことに起因する誤差について説明したが、他の要因によっても検出精度が低下し得る。即ち、接離の繰り返しが生じない場合であっても、端部S1が最も外側のロール2A,2Gに載置される長さが短い場合や、端部S1が間隙Gに配置されるとともに外側から2番目のロール2B,2Fからの突出量が大きい場合に、検出精度が低下する可能性がある。 Although the error caused by the metal plate S repeatedly coming into contact with and separating from the flat portions 21 of the rolls 2A and 2G has been described above, the detection accuracy may also be reduced due to other factors. That is, even if repeated contact and separation does not occur, there may be cases where the length of the end S1 placed on the outermost rolls 2A, 2G is short, or when the end S1 is placed in the gap G and placed on the outermost rolls 2A, 2G. When the amount of protrusion from the second roll 2B, 2F is large, there is a possibility that the detection accuracy will be reduced.
 図12に具体例を示す。図12には、金属板Sの幅を変化させて端部S1の位置を変え、金属板Sの幅方向における板形状の検出結果の誤差のうち絶対値が最も大きいものを最大誤差Emaxとして見積もった結果を示したものである。横軸である端部S1のセット位置(板端セット位置)Pは、横行量ΔYが0mmの場合の端部S1の位置を示す。左側の端部S1についてはロール2Aのフラット部21における中央側端部211を0とし、右側の端部S1についてはロール2Gのフラット部21における中央側端部211を0とし、左右両側とも中央部C側を負の値、外側を正の値として定義した。金属板Sの板厚が2mmの場合及び3mmの場合それぞれについて、横行量ΔYが0mmの場合及び±20mmの場合の結果を示す。横行量ΔYが0mmの場合は、ロール2Aに対する左側の端部S1の位置及びロール2Gに対する右側の端部S1の位置は、ロールユニット20の中央部Cを基準として対称であるが、横行量ΔYが0mmでない場合、金属板Sの中央部とロールユニット20の中央部Cとが一致しなくなるため,ロール2A,2Gに対する両側の端部S1の位置はロールユニット20の中央部Cを基準として対称ではなくなる。 A specific example is shown in FIG. In FIG. 12, the position of the end portion S1 is changed by changing the width of the metal plate S, and the error with the largest absolute value among the errors in the plate shape detection results in the width direction of the metal plate S is set as the maximum error E max . This shows the estimated results. The set position (board end set position) PY of the end S1, which is the horizontal axis, indicates the position of the end S1 when the traverse amount ΔY is 0 mm. For the left end S1, the central end 211 of the flat part 21 of the roll 2A is set to 0, and for the right end S1, the central end 211 of the flat part 21 of the roll 2G is set to 0, and both left and right sides are set at the center. The part C side was defined as a negative value, and the outside was defined as a positive value. The results are shown when the traverse amount ΔY is 0 mm and ±20 mm, respectively, when the thickness of the metal plate S is 2 mm and 3 mm. When the amount of traverse ΔY is 0 mm, the position of the left end S1 with respect to the roll 2A and the position of the right end S1 with respect to the roll 2G are symmetrical with respect to the center C of the roll unit 20, but the amount of traverse ΔY If is not 0 mm, the center of the metal plate S and the center C of the roll unit 20 will not match, so the positions of the ends S1 on both sides of the rolls 2A and 2G will be symmetrical with respect to the center C of the roll unit 20. It will no longer be.
 いずれの場合も、端板端セット位置Pがロール2B,2Fのフラット部21上に位置する場合には最大誤差Emaxは小さいものの、板端セット位置Pが間隙Gに位置しロール2B,2Fのフラット部21からの突出量が大きくなっていくにしたがって、最大誤差Emaxが大きくなっていく。板端セット位置Pがロール2A,2Gのフラット部21上に位置する場合でも、金属板Sとフラット部21との重なりが小さい場合には最大誤差Emaxが大きい。一方、金属板Sとフラット部21との重なりが所定値以上となると、この重なりが大きくなるにしたがって最大誤差Emaxが小さくなる。従って、左右の端部S1の位置を単にロールのフラット部21上に配置するだけでなく、フラット部21に対して所定値以上の重なりを有するように配置することが、正確な板形状の検出をする上で好ましい。 In either case, if the end plate end setting position PY is located on the flat part 21 of the rolls 2B, 2F, the maximum error E max is small, but if the plate end setting position PY is located in the gap G, the roll 2B , 2F from the flat portion 21 increases, the maximum error E max increases. Even when the plate end setting position PY is located on the flat part 21 of the rolls 2A, 2G, the maximum error E max is large if the overlap between the metal plate S and the flat part 21 is small. On the other hand, when the overlap between the metal plate S and the flat portion 21 exceeds a predetermined value, the maximum error E max becomes smaller as the overlap becomes larger. Therefore, it is important to accurately detect the plate shape by not only arranging the left and right end portions S1 on the flat portion 21 of the roll, but also arranging them so that they overlap with the flat portion 21 by a predetermined value or more. It is preferable to do this.
 圧延される金属板Sに求められる板形状を、例えば急峻度1%とし、これを伸び歪み偏差に換算すると約24.7i-unitとなる。そのため、端部S1の位置によって生じる誤差は、その1/10の2.47i-unit以下であることが好ましい。図12に示す例では、左側では、Y方向に隣り合う2つのロール2A,2Bのうちロール2Bが中央部C側に位置して中央側ロールとなり、ロール2Aが外側に位置して外側ロールとなる。その反対の右側では、Y方向に隣り合う2つのロール2F,2Gのうちロール2Fが中央部C側に位置して中央側ロールとなり、ロール2Gが外側に位置して外側ロールとなる。ロール2b,2Fのフラット部21の外側端部212から外側に50mm未満の位置と、ロール2A,2Gのフラット部21の中央側端部211から外側に50mmを超える位置と、において最大誤差Emaxが2.47i-unit以下となり、この範囲を第2領域A2とすればよい。換言すれば、外側端部212から外側に50mmの位置と、中央側端部211から外側に50mm以内の位置と、に亘る区間を第1領域A1とすればよい。 Assuming that the plate shape required for the metal plate S to be rolled is, for example, a steepness of 1%, this is converted into an elongation strain deviation of about 24.7 i-units. Therefore, it is preferable that the error caused by the position of the end portion S1 is 1/10 of the error, that is, 2.47 i-unit or less. In the example shown in FIG. 12, on the left side, among the two rolls 2A and 2B adjacent to each other in the Y direction, roll 2B is located on the center C side and becomes the center roll, and roll 2A is located on the outside and becomes the outside roll. Become. On the opposite right side, among the two rolls 2F and 2G adjacent to each other in the Y direction, roll 2F is located on the center C side and becomes a center roll, and roll 2G is located on the outside and becomes an outside roll. Maximum error E max at a position less than 50 mm outward from the outer end 212 of the flat part 21 of the rolls 2b, 2F and a position more than 50 mm outward from the central end 211 of the flat part 21 of the rolls 2A, 2G is 2.47i-unit or less, and this range may be set as the second area A2. In other words, a section extending from a position 50 mm outward from the outer end 212 and a position within 50 mm outward from the central end 211 may be defined as the first region A1.
 このように、本発明の実施の形態に係る板形状検出装置1によれば、移動機構が、ロール2A~2Gによって構成されるロール群が第1位置に位置する第1状態と、ロール群が第1位置から第1領域A1の長さL1以上且つ第2領域A2の長さL2未満の移動量DだけY軸方向に移動した第2位置に位置する第2状態と、を切り換え可能であることで、金属板Sの端部S1を第2領域A2に配置することができ、検出精度を向上させることができる。このとき、移動機構が複数のロール2A~2Gの全てをロール群としてY方向に沿って移動させることで、個々のロール2を独立に移動させる構成と比較して、装置の複雑化を抑制することができる。 As described above, according to the plate shape detection device 1 according to the embodiment of the present invention, the moving mechanism is in the first state in which the roll group constituted by the rolls 2A to 2G is located in the first position, and in the first state in which the roll group constituted by the rolls 2A to 2G is located in the first position. It is possible to switch between a second state in which the device is located at a second position moved in the Y-axis direction from the first position by a movement amount D that is greater than or equal to the length L1 of the first area A1 and less than the length L2 of the second area A2. By doing so, the end portion S1 of the metal plate S can be placed in the second area A2, and detection accuracy can be improved. At this time, the moving mechanism moves all of the plurality of rolls 2A to 2G as a roll group along the Y direction, thereby suppressing the complexity of the device compared to a configuration in which each roll 2 is moved independently. be able to.
 また、移動量Dが第1領域A1の長さL1と第2領域A2の長さL2との合計の半分であることで、板厚や材質等によって長さL1,L2が変化した場合であっても、長さL2が長さL1よりも長い限りは、金属板Sの端部S1を第2領域A2に配置することができ、検出精度を向上させることができる。即ち、金属板Sの種類によって移動量Dを調節する必要がなく、汎用性を向上させることができる。 Furthermore, since the amount of movement D is half of the sum of the length L1 of the first area A1 and the length L2 of the second area A2, it is possible to prevent the lengths L1 and L2 from changing depending on the plate thickness, material, etc. However, as long as the length L2 is longer than the length L1, the end S1 of the metal plate S can be placed in the second area A2, and detection accuracy can be improved. That is, there is no need to adjust the amount of movement D depending on the type of metal plate S, and versatility can be improved.
 また、第1領域A1が想定ずれ量σ以上の長さを有し、第1領域A1のY方向における中心がフラット部21の中央側端部211に位置することで、圧延開始前に端部S1を第2領域A2に配置しておけば、金属板Sが横行によって想定ずれ量σの半分だけ移動したとしても、端部S1がフラット部21に対して接離を繰り返すことが抑制される。 Furthermore, since the first region A1 has a length equal to or greater than the expected deviation amount σ, and the center of the first region A1 in the Y direction is located at the central end 211 of the flat portion 21, the end By arranging S1 in the second region A2, even if the metal plate S moves by half of the expected deviation amount σ due to traverse movement, the end portion S1 is prevented from repeatedly coming into contact with and separating from the flat portion 21. .
 また、第1領域A1が、隣り合う2つのロール2のうち中央側ロールのフラット部21における外側端部212から外側に50mmの位置と、外側ロールのフラット部21における中央側端部211から外側に50mmの位置と、に亘る区間であることで、金属板Sの端部S1の近傍がロール2に対して充分な長さだけ載置され、検出精度を向上させることができる。 In addition, the first region A1 is located at a position 50 mm outward from the outer end 212 of the flat portion 21 of the center roll of the two adjacent rolls 2 and outward from the center end 211 of the flat portion 21 of the outer roll. 50 mm, the vicinity of the end S1 of the metal plate S is placed on the roll 2 for a sufficient length, and detection accuracy can be improved.
 尚、本発明は上記の実施の形態に限定されず、本発明の目的が達成できる他の構成等を含み、以下に示すような変形等も本発明に含まれる。例えば、上記の実施の形態では、複数のロール2の全てを一群のロール群として移動させるものとしたが、複数のロール2のうち2以上を一群のロール群としてもよい。即ち、複数のロール2のうち例えば中央部C近傍に位置するロールは、端部S1が載置されないため移動しなくてもよく、端部S1が載置され得る外側のロール2のみを移動させてもよい。 Note that the present invention is not limited to the above-described embodiments, but includes other configurations that can achieve the object of the present invention, and the present invention also includes the following modifications. For example, in the above embodiment, all of the plurality of rolls 2 are moved as one roll group, but two or more of the plurality of rolls 2 may be moved as one roll group. That is, among the plurality of rolls 2, for example, the roll located near the center C does not need to be moved because the end portion S1 is not placed thereon, and only the outer rolls 2 on which the end portion S1 can be placed are moved. You can.
 また、上記の実施の形態では、移動量Dが第1領域A1の長さL1と第2領域A2の長さL2との合計の半分であるものとしたが、移動量Dは、第1領域A1の長さL1以上第2領域A2の長さL2未満であればよく、ロール2A~2Gの配置及び寸法や、対象となり得る金属板Sの板厚や材質等に応じて適宜に設定されればよい。 Further, in the above embodiment, the movement amount D is half of the sum of the length L1 of the first area A1 and the length L2 of the second area A2, but the movement amount D is It is sufficient that the length of A1 is greater than or equal to L1 and less than the length of second region A2, L2, and may be set appropriately depending on the arrangement and dimensions of the rolls 2A to 2G, the thickness and material of the metal plate S that may be the target, etc. Bye.
 また、上記の実施の形態では、第1領域A1が想定ずれ量σ以上の長さを有し、第1領域A1のY方向における中心がフラット部21の中央側端部211に位置し、さらに金属板Sの想定ずれ量σが40mmである場合を例示したが、想定ずれ量σは、対象となり得る金属板Sの板厚や材質等に応じた適宜な値であればよい。また、例えば金属板Sの両側の端部S1の位置に関し、第1状態におけるロールユニット20の中央部Cを基準として非対称性が存在する場合には、中央側端部211の位置が第1領域A1に含まれる限りは、第1領域A1の中心は中央側端部211からずれていてもよい。ここで、非対称性が存在する場合としては、例えば、圧延開始から金属板Sの中央部が第1状態におけるロールユニット20の中央部Cからずれている場合や、金属板SがY方向のいずれかに向かって横行しやすいような場合が挙げられる。 Further, in the above embodiment, the first region A1 has a length equal to or greater than the assumed deviation amount σ, the center of the first region A1 in the Y direction is located at the central end 211 of the flat portion 21, and Although the case where the expected deviation amount σ of the metal plate S is 40 mm is illustrated, the expected deviation amount σ may be any appropriate value according to the thickness, material, etc. of the metal plate S that can be the target. Further, for example, in the case where there is asymmetry in the positions of both ends S1 of the metal plate S with respect to the center C of the roll unit 20 in the first state, the position of the center side end 211 is in the first region. The center of the first area A1 may be shifted from the central end 211 as long as it is included in A1. Here, asymmetry exists, for example, when the center part of the metal sheet S is shifted from the center part C of the roll unit 20 in the first state from the start of rolling, or when the metal sheet S is shifted from the center part C in the Y direction. There are cases where it is easy to move towards the opposite direction.
 また、上記の実施の形態では、第1領域A1が、隣り合う2つのロール2のうち中央側ロールのフラット部21における外側端部212から外側に50mmの位置と、外側ロールのフラット部21における中央側端部211から外側に50mmの位置と、に亘る区間であるものとしたが、第1領域A1の範囲はこれに限定されない。即ち、第1領域A1の長さは、金属板Sの剛性に依存するため、金属板Sの板厚や材質等に応じて適宜に設定されればよい。 In the above embodiment, the first region A1 is located at a position 50 mm outward from the outer end 212 of the flat portion 21 of the center roll of the two adjacent rolls 2, and Although it is assumed that the area extends from the central end 211 to a position 50 mm outward, the range of the first area A1 is not limited to this. That is, since the length of the first region A1 depends on the rigidity of the metal plate S, it may be set appropriately according to the thickness, material, etc. of the metal plate S.
 また、上記の実施の形態では、板形状検出装置1がトルクメータ4とアーム3と形状演算部14とを備えるものとしたが、板形状検出装置は、間隙を形成しつつ並べられた複数のロールを用いて金属板Sの張力を計測して板形状を検出するものであればよく、適宜な構成で板形状を測定するものであればよい。 Furthermore, in the above embodiment, the plate shape detection device 1 includes the torque meter 4, the arm 3, and the shape calculation unit 14, but the plate shape detection device includes a plurality of Any device may be used as long as it measures the tension of the metal plate S using a roll to detect the plate shape, or any suitable configuration may be used to measure the plate shape.
 また、上記の実施の形態では、第1状態と第2状態とが切り換えられる、即ち2つの状態が切り換えられるものとしたが、移動機構は、少なくとも2つの状態を切り換え可能であればよく、3つ以上の状態を切り換え可能であってもよい。例えば、所定の第1状態を基準として、ロール群を軸方向の両側に対称に移動可能であることで、2つの第2状態に切り換え可能(即ち合計で3つの状態を切り換え可能)であってもよい。切り換え可能な状態の数を増やせば、金属板Sがロール2に接触する部位を分散することができ、ロール2表面に発生する摩耗による段差を低減することができる。 Further, in the above embodiment, the first state and the second state are switched, that is, the two states are switched, but the moving mechanism only needs to be able to switch between at least two states, It may be possible to switch between two or more states. For example, by being able to move the roll group symmetrically on both sides in the axial direction with respect to a predetermined first state, it is possible to switch to two second states (that is, to switch between three states in total). Good too. By increasing the number of switchable states, the portions where the metal plate S contacts the roll 2 can be distributed, and the level difference caused by wear occurring on the surface of the roll 2 can be reduced.
 以上、本発明の実施の形態について説明したが、本発明は上記本発明の実施の形態に係る板形状検出装置に限定されるものではなく、本発明の概念及び請求の範囲に含まれるあらゆる態様を含む。また、上述した課題及び効果の少なくとも一部を奏するように、各構成を適宜選択的に組み合わせてもよい。例えば、上記実施の形態における、各構成要素の形状、材料、配置、サイズ等は、本発明の具体的使用態様によって適宜変更され得る。 Although the embodiments of the present invention have been described above, the present invention is not limited to the plate shape detection device according to the above embodiments of the present invention, and can be applied to any aspect that falls within the concept of the present invention and the scope of the claims. including. Moreover, each structure may be selectively combined as appropriate so as to achieve at least some of the problems and effects described above. For example, the shape, material, arrangement, size, etc. of each component in the above embodiments may be changed as appropriate depending on the specific usage of the present invention.
1…板形状検出装置、2,2A~2G…ロール、20…ロールユニット、21…フラット部、3…アーム、4…トルクメータ、14…形状演算部、S…金属板、S1…端部、A1…第1領域、A2…第2領域、B1…第1境界部、B2…第2境界部、G…間隙 DESCRIPTION OF SYMBOLS 1...Plate shape detection device, 2,2A-2G...Roll, 20...Roll unit, 21...Flat part, 3...Arm, 4...Torque meter, 14...Shape calculation part, S...Metal plate, S1...End part, A1...first region, A2...second region, B1...first boundary part, B2...second boundary part, G...gap

Claims (12)

  1.  金属板の板形状を検出する板形状検出装置であって、
     前記金属板が載置される複数のロールを有するロールユニットと、
     前記複数のロールのうち2以上を一群のロール群として軸方向に沿って移動させる移動機構と、を備え、
     前記複数のロールは、前記金属板の幅方向を前記軸方向とし、前記軸方向において間隙を形成しつつ並べられることにより、第1領域と、前記第1領域よりも前記軸方向に長い第2領域と、が前記軸方向において交互に並ぶように形成され、
     前記ロールユニットにおいて、前記軸方向の中央部から外側に向かって、前記第1領域から前記第2領域に切り換わる第1境界部が、前記ロールのうち半径が一定であるフラット部に位置し、前記第2領域から前記第1領域に切り換わる第2境界部が、隣り合う前記ロール同士の間隙に位置し、
     前記移動機構は、前記ロール群が第1位置に位置する第1状態と、前記ロール群が前記第1位置から前記第1領域の長さ以上且つ前記第2領域の長さ未満だけ前記軸方向に移動した第2位置に位置する第2状態と、を切り換え可能であることを特徴とする板形状検出装置。
    A plate shape detection device for detecting the plate shape of a metal plate,
    a roll unit having a plurality of rolls on which the metal plate is placed;
    A moving mechanism that moves two or more of the plurality of rolls as a group of rolls along the axial direction,
    The plurality of rolls have the width direction of the metal plate as the axial direction, and are arranged with gaps in the axial direction, thereby forming a first region and a second region that is longer in the axial direction than the first region. and regions are formed so as to be arranged alternately in the axial direction,
    In the roll unit, a first boundary portion where the first region switches to the second region from the center portion in the axial direction toward the outside is located in a flat portion of the roll having a constant radius; A second boundary portion where the second region switches to the first region is located in a gap between the adjacent rolls,
    The moving mechanism has a first state in which the roll group is located at a first position, and a position in which the roll group moves from the first position in the axial direction by a length greater than or equal to the length of the first region and less than a length of the second region. 1. A plate shape detection device capable of switching between a second state and a second state in which the plate shape detection device is moved to a second position.
  2.  前記移動機構は、前記第1状態と前記第2状態とを切り換える際、前記軸方向における前記第1領域及び前記第2領域の合計長さの半分だけ前記ロール群を移動させることを特徴とする請求項1に記載の板形状検出装置。 The moving mechanism is characterized in that when switching between the first state and the second state, the moving mechanism moves the roll group by half the total length of the first region and the second region in the axial direction. The plate shape detection device according to claim 1.
  3.  前記第1領域は、前記軸方向における前記金属板の想定ずれ量以上の長さを有し、
     前記軸方向における前記第1領域の中心は、前記フラット部のうち前記軸方向の中央側端部に位置することを特徴とする請求項1又は2に記載の板形状検出装置。
    The first region has a length that is greater than or equal to an expected deviation amount of the metal plate in the axial direction,
    The plate shape detection device according to claim 1 or 2, wherein the center of the first region in the axial direction is located at an end of the flat portion on the central side in the axial direction.
  4.  前記想定ずれ量が40mmであることを特徴とする請求項3に記載の板形状検出装置。 The plate shape detection device according to claim 3, wherein the estimated deviation amount is 40 mm.
  5.  前記第1領域は、前記軸方向において、隣り合う2つの前記ロールのうち中央側ロールの前記フラット部における外側端部から外側に50mmの位置と、外側ロールの前記フラット部における中央側端部から外側に50mmの位置と、に亘る区間を含むことを特徴とする請求項1又は2に記載の板形状検出装置。 The first region is located at a position 50 mm outward from the outer end of the flat portion of the center roll of the two adjacent rolls in the axial direction, and from the center end of the flat portion of the outer roll. The plate shape detection device according to claim 1 or 2, further comprising a section extending 50 mm outward.
  6.  前記金属板が各々の前記ロールに接触した際に当該ロールの両側の軸に作用する張力を検出するトルクメータと、一端が前記ロールの軸を回転可能に支持するとともに他端が前記トルクメータに支持されるアームと、前記トルクメータの出力に基づいて前記金属板の形状を算出する形状演算部と、を備えることを特徴とする請求項1~5のいずれか1項に記載の板形状検出装置。 a torque meter that detects the tension acting on the shafts on both sides of the rolls when the metal plate contacts each of the rolls; one end rotatably supports the shafts of the rolls, and the other end is connected to the torque meter; Plate shape detection according to any one of claims 1 to 5, comprising a supported arm and a shape calculation section that calculates the shape of the metal plate based on the output of the torque meter. Device.
  7.  金属板が載置される複数のロールを有するロールユニットによって前記金属板の板形状を検出する板形状検出方法であって、
     前記複数のロールを、前記金属板の幅方向を軸方向として当該軸方向において間隙を形成しつつ並べることにより、第1領域と、前記第1領域よりも前記軸方向に長い第2領域と、を前記軸方向において交互に並ぶように形成し、
     前記ロールユニットにおいて、前記軸方向の中央部から外側に向かって、前記第1領域から前記第2領域に切り換わる第1境界部を、前記ロールのうち半径が一定であるフラット部に設定し、前記第2領域から前記第1領域に切り換わる第2境界部を、2つの前記ロール同士の間隙に設定し、
     前記金属板の端部が前記第1領域に位置する場合に、前記第1領域の長さ以上且つ前記第2領域の長さ未満だけ、前記複数のロールのうち2以上を一群のロール群として軸方向に沿って移動させることを特徴とする板形状検出方法。
    A plate shape detection method for detecting the plate shape of a metal plate using a roll unit having a plurality of rolls on which the metal plate is placed, the method comprising:
    By arranging the plurality of rolls with the width direction of the metal plate as the axial direction and forming a gap in the axial direction, a first region and a second region longer in the axial direction than the first region, are formed so as to be arranged alternately in the axial direction,
    In the roll unit, a first boundary portion where the first region switches to the second region from the center portion in the axial direction toward the outside is set to a flat portion of the roll having a constant radius; A second boundary part where the second area switches to the first area is set in the gap between the two rolls,
    When the end of the metal plate is located in the first region, two or more of the plurality of rolls are set as one roll group by a length that is greater than or equal to the length of the first region and less than the length of the second region. A plate shape detection method characterized by moving along an axial direction.
  8.  前記ロール群を移動させる際の移動量が、前記軸方向における前記第1領域及び前記第2領域の合計長さの半分であることを特徴とする請求項7に記載の板形状検出方法。 8. The plate shape detection method according to claim 7, wherein the amount of movement when moving the roll group is half the total length of the first region and the second region in the axial direction.
  9.  前記第1領域を、前記軸方向における前記金属板の想定ずれ量以上の長さを有するように設定し、
     前記軸方向における前記第1領域の中心を、前記フラット部のうち前記ロールユニット全体における前記軸方向の中央部側の端部に位置するように設定することを特徴とする請求項7又は8に記載の板形状検出方法。
    The first region is set to have a length equal to or greater than an expected deviation amount of the metal plate in the axial direction,
    According to claim 7 or 8, the center of the first region in the axial direction is set to be located at an end of the flat portion on the central side in the axial direction of the entire roll unit. The plate shape detection method described.
  10.  前記想定ずれ量を40mmとすることを特徴とする請求項9に記載の板形状検出方法。 The plate shape detection method according to claim 9, wherein the estimated deviation amount is 40 mm.
  11.  前記第1領域を、前記軸方向において、隣り合う2つの前記ロールのうち中央側ロールの前記フラット部における外側端部から外側に50mmの位置と、外側ロールの前記フラット部における中央側端部から外側に50mmの位置と、に亘る区間を含むように設定することを特徴とする請求項7又は8に記載の板形状検出方法。 The first region is defined in the axial direction at a position 50 mm outward from the outer end of the flat part of the center roll of the two adjacent rolls, and from the center end of the flat part of the outer roll. 9. The plate shape detection method according to claim 7, wherein the plate shape detection method is set to include a position 50 mm outward.
  12.  前記金属板が各々の前記ロールに接触した際に当該ロールの両側の軸に作用する張力を検出するトルクメータと、一端が前記ロールの軸を回転可能に支持するとともに他端が前記トルクメータに支持されるアームと、前記トルクメータの出力に基づいて前記金属板の形状を算出する形状演算部と、を用いて前記金属板の板形状を検出することを特徴とする請求項7~11のいずれか1項に記載の板形状検出方法。 a torque meter that detects the tension acting on the shafts on both sides of the rolls when the metal plate contacts each of the rolls; one end rotatably supports the shafts of the rolls, and the other end is connected to the torque meter; The shape of the metal plate is detected using a supported arm and a shape calculation unit that calculates the shape of the metal plate based on the output of the torque meter. The plate shape detection method according to any one of the items.
PCT/JP2022/025202 2022-06-23 2022-06-23 Sheet shape detecting device and sheet shape detecting method WO2023248448A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/025202 WO2023248448A1 (en) 2022-06-23 2022-06-23 Sheet shape detecting device and sheet shape detecting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/025202 WO2023248448A1 (en) 2022-06-23 2022-06-23 Sheet shape detecting device and sheet shape detecting method

Publications (1)

Publication Number Publication Date
WO2023248448A1 true WO2023248448A1 (en) 2023-12-28

Family

ID=89379319

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/025202 WO2023248448A1 (en) 2022-06-23 2022-06-23 Sheet shape detecting device and sheet shape detecting method

Country Status (1)

Country Link
WO (1) WO2023248448A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10137831A (en) * 1996-11-01 1998-05-26 Ishikawajima Harima Heavy Ind Co Ltd Shape measuring roller
JP2001249009A (en) * 2000-03-07 2001-09-14 Sumitomo Heavy Ind Ltd Shape detector for metal band plate
JP2006095528A (en) * 2004-09-28 2006-04-13 Ishikawajima Harima Heavy Ind Co Ltd Shape controller for rolling mill
JP2006346714A (en) * 2005-06-17 2006-12-28 Mitsubishi-Hitachi Metals Machinery Inc Shape detecting device and its method
WO2012086043A1 (en) * 2010-12-24 2012-06-28 三菱日立製鉄機械株式会社 Hot rolling equipment and hot rolling method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10137831A (en) * 1996-11-01 1998-05-26 Ishikawajima Harima Heavy Ind Co Ltd Shape measuring roller
JP2001249009A (en) * 2000-03-07 2001-09-14 Sumitomo Heavy Ind Ltd Shape detector for metal band plate
JP2006095528A (en) * 2004-09-28 2006-04-13 Ishikawajima Harima Heavy Ind Co Ltd Shape controller for rolling mill
JP2006346714A (en) * 2005-06-17 2006-12-28 Mitsubishi-Hitachi Metals Machinery Inc Shape detecting device and its method
WO2012086043A1 (en) * 2010-12-24 2012-06-28 三菱日立製鉄機械株式会社 Hot rolling equipment and hot rolling method

Similar Documents

Publication Publication Date Title
US8973419B2 (en) Rolling mill and method of zero adjustment of rolling mill
KR101574032B1 (en) Sheet metal rolling device
KR101461043B1 (en) Roller leveler and method for leveling plate using same
CN101977833A (en) Film transport apparatus and film transport control method
KR101639145B1 (en) Sheet metal rolling dece
EP2656934B1 (en) Multi-high rolling mill equipped with work roll shift function
JP6212732B2 (en) Meander control method and meander control apparatus
WO2023248448A1 (en) Sheet shape detecting device and sheet shape detecting method
JP4504874B2 (en) Shape detection apparatus and method
JP5905322B2 (en) Rolling mill with work roll shift function
JP7226402B2 (en) Metal strip rolling control method, rolling control device, and manufacturing method
CN111902223B (en) Rolling mill and control method thereof
WO2012008030A1 (en) Rolling machine and tandem rolling facility equipped with same
US4680978A (en) Rolling mill strip tension monitoring and shapemeter assembly
JP7314921B2 (en) Method for controlling meandering of hot-rolled steel strip, meandering control device, and hot rolling equipment
JP3589226B2 (en) Meandering control method for rolled material
CN110382127B (en) Intersection angle recognition method, intersection angle recognition device and rolling mill
JPH06269818A (en) Mill
JP7078020B2 (en) Serpentine control method for hot-rolled steel strips, meandering control device and hot-rolling equipment
KR102178681B1 (en) Apparatus and method for diagnosing misalignment in rolling mill line
KR20040058742A (en) Optimal target shape decision system and its method for improving flatness of cold rolled strip
JP3453957B2 (en) Method and apparatus for rolling section steel
CN113056337B (en) Rolling equipment and rolling method
JP2021016888A (en) Meandering control method of hot-rolled steel strip, meandering control device, and hot-rolling equipment
JP6035999B2 (en) Steel plate meander control method and meander control device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22948009

Country of ref document: EP

Kind code of ref document: A1