WO2023247745A1 - Plaque d'échange thermique pour pack batteries à plaque structurelle - Google Patents

Plaque d'échange thermique pour pack batteries à plaque structurelle Download PDF

Info

Publication number
WO2023247745A1
WO2023247745A1 PCT/EP2023/067088 EP2023067088W WO2023247745A1 WO 2023247745 A1 WO2023247745 A1 WO 2023247745A1 EP 2023067088 W EP2023067088 W EP 2023067088W WO 2023247745 A1 WO2023247745 A1 WO 2023247745A1
Authority
WO
WIPO (PCT)
Prior art keywords
plate
heat exchange
plates
series
exchange plate
Prior art date
Application number
PCT/EP2023/067088
Other languages
English (en)
Inventor
Lionel ROBILLON
Christian Casenave
Fabienne TOURNEUX
Original Assignee
Valeo Systemes Thermiques
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Valeo Systemes Thermiques filed Critical Valeo Systemes Thermiques
Publication of WO2023247745A1 publication Critical patent/WO2023247745A1/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23PMETAL-WORKING NOT OTHERWISE PROVIDED FOR; COMBINED OPERATIONS; UNIVERSAL MACHINE TOOLS
    • B23P15/00Making specific metal objects by operations not covered by a single other subclass or a group in this subclass
    • B23P15/26Making specific metal objects by operations not covered by a single other subclass or a group in this subclass heat exchangers or the like
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F19/00Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers
    • F28F19/02Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers by using coatings, e.g. vitreous or enamel coatings
    • F28F19/06Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers by using coatings, e.g. vitreous or enamel coatings of metal
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/613Cooling or keeping cold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/62Heating or cooling; Temperature control specially adapted for specific applications
    • H01M10/625Vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/64Heating or cooling; Temperature control characterised by the shape of the cells
    • H01M10/647Prismatic or flat cells, e.g. pouch cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/653Means for temperature control structurally associated with the cells characterised by electrically insulating or thermally conductive materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6554Rods or plates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6554Rods or plates
    • H01M10/6555Rods or plates arranged between the cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6556Solid parts with flow channel passages or pipes for heat exchange
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • H01M10/6567Liquids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2245/00Coatings; Surface treatments
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2275/00Fastening; Joining
    • F28F2275/04Fastening; Joining by brazing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/02Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations
    • F28F3/04Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being integral with the element
    • F28F3/042Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being integral with the element in the form of local deformations of the element
    • F28F3/046Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being integral with the element in the form of local deformations of the element the deformations being linear, e.g. corrugations

Definitions

  • the present invention relates to battery thermal regulation and more particularly to heat exchange plates for the thermal management of battery packs, particularly in the automotive field.
  • a device for regulating the temperature of the battery module In order to regulate the temperature of the batteries, it is known to add a device for regulating the temperature of the battery module.
  • These devices generally use heat transfer fluids circulating, for example by means of a pump, in a conduit circuit, said conduit circuit passing in particular under or inside a heat exchange plate in direct contact with the batteries .
  • the heat transfer fluids can thus absorb heat emitted by the battery(ies) in order to cool them and evacuate this heat at one or more heat exchangers such as for example a radiator or a refrigerant.
  • the heat transfer fluids can also, if necessary, provide heat to heat said batteries, for example if they are connected to an electrical resistance or to Positive Temperature Coefficient (PTC) heating.
  • PTC Positive Temperature Coefficient
  • the heat transfer fluids generally used are ambient air or liquids such as water. Liquids being better conductors of heat than gases, this is a preferred solution because it is more efficient.
  • the heat exchange plates in direct contact with the cells are placed under the batteries, said batteries thus resting on said heat exchange plates.
  • the heat exchange plates are generally made of metal and are composed of two metal plates stamped and brazed against each other so as to form one or more circuits of heat transfer fluid circulation conduits between an inlet and an outlet of the heat transfer fluid. fluid.
  • the latter In order to provide mechanical resistance to the battery packs, the latter, fitted with the battery cooler exchanger, must be connected to a structural element, and must be protected from external elements.
  • This so-called “structural” function is currently ensured by a set of beams, crosspieces and protections (structural panel positioned under the heat exchange plates).
  • Such a structural assembly allows resistance to crash tests, impacts, but also to loading of the battery modules on the battery cooler.
  • the elements constituting the structural function are manufactured in a known manner with materials offering very high mechanical properties, such as the elastic limit (Rp0.2) and the breaking limit (Rm).
  • One of the aims of the invention is to propose a heat exchange plate at least partially overcoming the drawbacks of the prior art and to propose a structural heat exchange plate, while respecting the objectives of recyclability and the search for carbon neutrality.
  • the present invention therefore relates to a heat exchange plate for thermal management of battery packs, comprising first and second plates, at least the first plate comprising at least one channel (the first plate comprises a relief forming at least one channel when associated to the second plate), the first and second plates being joined so that said channel partially delimits at least one conduit of a circulation circuit of a heat transfer fluid, and in which the first plate is made of a first material, the second plate is made of a second material different from the first material and giving the second plate a structural function.
  • Such a structural heat exchange plate makes it possible to reduce the number of crosspieces and elements (casing, attachment points, reinforcement, beams, etc.) necessary for the assembly of the battery modules and the mechanical resistance of the battery packs.
  • the structural heat exchange plate according to the invention makes it possible to obtain cost savings, mass savings and a reduction in CO 2 emissions for automobile manufacturers.
  • the first material has a lower elastic limit than the second material, making it possible to prevent the brazing step from causing deformation of the thermal plate, and therefore, allowing the planned dimensions of the thermal plate to be respected.
  • the second material has an elastic limit (Rp0.2) greater than 190 MPa, preferably greater than 200 MPa.
  • the second material has a breaking point (Rm) greater than 220 MPa, preferably greater than 240 MPa.
  • the second material has an elongation (A%) at break greater than 22%.
  • the first and second materials are metallic materials.
  • the first and second materials are aluminum alloys allowing assembly of the first plate and the second plate by a Nocolok® brazing process.
  • the second material mainly comprises an aluminum alloy of the 6000 series, preferably at least 95%.
  • the first material mainly comprises an aluminum alloy of the 3000 series, preferably at least 95%.
  • at least one of the faces of at least one of the plates includes an anti-corrosion layer.
  • the anti-corrosion layer is made of aluminum alloy from the 1000, 3000+Zn, or 7000 series.
  • the Zn concentration is between 0.5% and 1.8%.
  • at least one of the faces of the second plate comprises a magnesium barrier layer.
  • the barrier layer is made of aluminum alloy of the 1000 series, 3000+Zn, or
  • At least one of the faces of the second plate comprises a magnesium barrier layer, preferably made of aluminum alloy of the 1000, 3000+Zn, or 7000 series.
  • the barrier layer is made of aluminum alloy from the 3000+Zn series
  • the Zn concentration is between 0.5% and 1.8%.
  • at least one of the internal faces of at least one of the plates comprises a brazing layer.
  • the brazing layer is made of aluminum alloy of the 4000 series, preferably 4343 or 4045
  • the second plate (30) has on each of its faces a layer made of aluminum alloy of the 7000 series, preferably 7072 or 3000+Zn, for example 3003+Zn.
  • the Zn concentration is between 0.5% and 1.8%.
  • the invention also relates to a method of manufacturing a heat exchange plate as described above, comprising the following steps: i- production of the first plate using the first material, and production of the second plate using the second material ; ii- formation of at least one channel on at least one of the first and second plates preferably by stamping; iii- watertight assembly of the two plates; and iv- application of at least one artificial aging treatment of the assembled assembly, in order to improve structural performance, for example by means of heat treatment.
  • step ii) is carried out by means of a stamping process.
  • step iii) is carried out using a brazing process, preferably Nocolok® brazing.
  • step iv) comprises a heat treatment of the thermal plate.
  • the heat treatment includes a step of heating the thermal plate to 225°C for 45 minutes.
  • a second material is used, mainly comprising an aluminum alloy from the 6000 series.
  • step i) comprises a step of covering at least one of the faces of at least one of the plates with at least one functional layer, of the type anti-corrosion, magnesium barrier, and/or brazing.
  • FIG. 1 shows a schematic perspective representation of a heat exchange plate according to the invention
  • FIG. 2 is a detail of Figure 1 illustrating part of a channel of the heat exchange plate
  • FIG. 3 shows a schematic representation in exploded perspective of a heat exchange plate according to one embodiment
  • FIG. 4 is a set of figures (4A to 4C) illustrating examples of superposition of layers (anti-corrosion, brazing) around the core of the first plate,
  • FIG. 5 is a set of figures (5A to 5C) illustrating examples of superposition of layers (anti-corrosion, barrier) around the core of the second plate,
  • FIG. 6 is a diagram illustrating the different stages of an example of a process for manufacturing a thermal plate according to the invention.
  • the heat exchange plate 10 for the thermal management of battery packs 200 comprises a first plate 20 (“Chanel plate”) and a second plate 30 (“flat base”).
  • At least one of the first 20 and second 30 plates has channels 40. In the example of Figure 1, this is the first plate 20, which is then intended to come into contact with the battery pack 200.
  • the plates 20 and 30 of the thermal plate 10 have a substantially rectangular shape, 1700 mm long and 1300 mm wide. Each plate has a thickness between 0.5mm and 2mm.
  • the first 20 and second 30 plates are joined together so that the channels 40 delimit a conduit of a circulation circuit for a heat transfer fluid.
  • the conduit is U-shaped and extends between an inlet and an outlet of heat transfer fluid formed respectively by connection pipes.
  • the heat exchange plate 10 may also include holding elements (not shown) allowing said exchange plate to be fixed to the battery pack or to the battery.
  • the heat exchange plate 10 may also include a seal 50 placed between the first 20 and the second 30 plate in order to ensure sealing between the latter.
  • battery pack 200 we mean a set of cells electrically connected together and forming said battery pack 200, or a simple large battery.
  • the first plate 20 is made of a first material
  • the second plate 30 is made of a second material different from the first material and giving the second plate 30 a structural function.
  • a second material having an elastic limit (Rp0.2) greater than 190 MPa, preferably greater than 200 MPa.
  • the second material also has a breaking point (Rm) greater than 220 MPa, preferably greater than 240 MPa.
  • This breaking limit (Rm) is measured according to the standardized process ISO:6892-1.
  • the second material also has an elongation (A%) at break greater than 22%.
  • the first material it is chosen from materials having a lower elastic limit than the second material.
  • the value of the elastic limit is chosen so as to release at least part of the stresses caused by the second plate 30 with a structural function.
  • the first and second materials are chosen from metals.
  • the first and second materials are chosen to allow assembly of the two plates 20 and 30 by a Nocolok® brazing process.
  • the second material comprises mainly, preferably at least 95% (for recycling reasons in particular), an aluminum alloy from the 6000 series, the alloying elements of which are magnesium and silicon. .
  • this alloy offers mechanical properties superior to a 3000 series aluminum alloy, conventionally used to manufacture the two plates of a heat exchange plate.
  • type 6000 aluminum gives the thermal plate 1 a structural function.
  • the aluminum alloy of the 6000 series does not deform during the mechanical strength tests, the use of this material for the second plate 30 can result, depending on the design of the thermal plate 1, in a significant increase in local forces. , and thus cause non-compliance, or even ruptures, in mechanical resistance tests (cycled pressure, vibration, resistance to bursting, etc.).
  • a “harder” material with a low level of elongation (A%) at break sees its stress values locally increase, because it deforms less easily and allows less “lunging” of the part, and is therefore less resistant to fatigue tests.
  • the first material of the first plate 20 is an aluminum alloy of the 3000 series, making it possible to release at least part of the stresses caused by the second plate 30 with a structural function.
  • additional layers are applied to the plates 20 and 30. These embodiments are illustrated in Figures 4 and 5, and described below.
  • Anti-corrosion layers 80 According to one embodiment, illustrated in Figures 4 and 5, each plate 20, 30 is covered on at least one of the two faces, preferably on both faces, by an anti-corrosion layer 80, making it possible to protect the core of the plate 60, 70, made of first and second material.
  • Figure 4A illustrates the superposition of the layers forming the first plate 20, when the core 60 of first material is covered with a single anti-corrosion layer 80.
  • Figure 4B illustrates the superposition of the layers forming the first plate 20, when the core 60 of first material is covered with an anti-corrosion layer 80 on its two faces.
  • Figure 5A illustrates the superposition of the layers forming the second plate 30, when the core 70 of second material is covered with a single anti-corrosion layer 80.
  • Figure 5B illustrates the superposition of the layers forming the second plate 30, when the core 70 of second material is covered with an anti-corrosion layer 80 on its two faces.
  • the anti-corrosion layer 80 is made of aluminum alloy of the 1000, 3000+Zn, or 7000 series. This layer behaves like a sacrificial layer to combat internal and/or external corrosion.
  • the advantage of the 3000+Zn series layer is to retain the mechanical properties provided by the core alloy.
  • the thickness of the anti-corrosion layer 80 is between 2.5% and 10% of the plate thickness.
  • the magnesium When the second material is rich in magnesium, it is important, to preserve the structural properties of this material, that the magnesium remains in the core 70 as the second material. However, during the brazing step, necessary for assembling the two plates 20 and 30, the magnesium tends to escape and migrate out of the core 70 as a second material.
  • the second plate 30 is covered on at least one of its two faces, preferably on both faces, by a barrier layer 90, acting as a magnesium diffusion barrier during the brazing process.
  • the magnesium thus remains in the core of the second layer, made of a second material, and thus preserves its structural properties.
  • the barrier layer 90 is made, like the anti-corrosion layer 80, from an aluminum alloy of the 1000, 3000+Zn, or 7000 series.
  • the thickness of the barrier layer 90 is between 2.5% and 10% of the plate thickness.
  • At least one of the first and second plates 20, 30 is covered on one of its faces, the face positioned facing the other plate, by a brazing layer 100, allowing to optimize the brazing process.
  • the brazing layer 100 is made of aluminum alloy from the 4000 series, preferably 4343 or 4045.
  • the thickness of the brazing layer 100 is between 2.5% and 10% of the plate thickness.
  • Figure 4C illustrates the superposition of the layers forming the first plate 20, when the core 60 of first material is covered with an anti-corrosion layer 80 on its two faces, and with a brazing layer 100.
  • the anti-corrosion layer 80 is a 7000 series aluminum alloy, preferably
  • the anti-corrosion layer 80 is applied to the external face of the first plate 20 (not facing plate 30), and to the external face of the second plate 30 (not facing plate 20).
  • the internal face of the plate 20 is covered with a brazing layer of aluminum alloy from the 4000 series, preferably 4343 or 4045.
  • the core of the first plate is made of 3000 series aluminum alloy.
  • the core of the second plate is made of 6000 series aluminum alloy.
  • the first plate 20 conforms to that of example 1, but the second plate 30 is covered on these two faces by a layer that is both barrier and anti-corrosion made of aluminum alloy from the 1000, 3000+ series. Zn, or 7000.
  • the second plate 30 comprises a core of 6060 aluminum alloy covered with barrier layers of 1050 aluminum alloy.
  • Example 4
  • the second plate 30 comprises a core of 6000 series aluminum alloy covered with a layer of 7072 aluminum alloy acting as a barrier and anti-corrosion layer.
  • the 7072 aluminum alloy layer acts as a barrier layer, in order to provide a barrier to the migration of magnesium during the brazing process.
  • a layer of 7072 aluminum alloy acts as a sacrificial layer to meet corrosion requirements.
  • the use of a layer of 3000 + Zn can promote anti-corrosion protection and the maintenance of mechanical properties, particularly for reduced thicknesses.
  • the invention also relates to a method of manufacturing a heat exchange plate 1 for thermal management of battery packs 200 according to the invention.
  • the method comprises the following steps: i- production of the first plate using the first material, and production of the second plate using the second material; ii- formation of at least one channel 30 on at least one of the first 20 and second 30 plates, for example by means of a stamping process; iii- tight assembly of the two plates, for example by means of a brazing process, preferably Nocolok® brazing; iv- application of at least one artificial aging treatment of the assembled assembly, in order to improve structural performance, for example by means of heat treatment.
  • the heat treatment (step iv) consists of heating the thermal plate 1 to 225°C for 45 minutes.
  • a second material comprising mainly an aluminum alloy from the 6000 series, preferably at least 95%.
  • such an alloy is hardenable by aging, and therefore hardenable by the brazing process (step iv) used to assemble the two plates 20 and 30.
  • Brazing acts as a solution heat treatment.
  • the mechanical resistance of the second plate 30 is improved, high thanks to the artificial aging treatment (step v).
  • the method comprises, in step i) covering the plates 20 and/or 30 with functional layers:
  • the second plate 30 comprises a core 70 of 6060 aluminum alloy covered with barrier layers of 1050 aluminum alloy
  • the following mechanical properties are obtained for a plate 30 having a thickness of 2mm:
  • first plate (“Chanel plate”) of the heat exchange plate 10
  • second plate (“flat base”) of the heat exchange plate 10

Landscapes

  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Secondary Cells (AREA)
  • Battery Mounting, Suspending (AREA)
  • Sealing Battery Cases Or Jackets (AREA)

Abstract

L'invention concerne une plaque d'échange thermique (10) pour gestion thermique de pack batteries (200), comportant des première (20) et seconde (30) plaques, au moins la première (20) plaque comportant au moins un canal (40), les première (20) et seconde (30) plaques étant accolées de sorte que ledit canal (40) délimite en partie au moins un conduit d'un circuit de circulation d'un fluide caloporteur, caractérisé en ce que ladite première plaque (20) est réalisée en un premier matériau, ladite seconde plaque (30) est réalisée en un second matériau différent du premier matériau et conférant à ladite seconde plaque (30) une fonction structurelle.

Description

Description
Titre de l’invention :
PLAQUE D'ÉCHANGE THERMIQUE POUR PACK BATTERIES À PLAQUE STRUCTURELLE
La présente invention concerne la régulation thermique de batterie et plus particulièrement les plaques d'échange thermique pour la gestion thermique de pack batteries, notamment dans le domaine automobile.
La régulation thermique des batteries et pack batteries, notamment dans le domaine automobile et encore plus particulièrement des véhicules électriques et hybrides, est un point important car si les batteries sont soumises à des températures trop froides, leur autonomie peut décroitre fortement et si elles sont soumises à des températures trop importantes, il y a un risque d'emballement thermique pouvant aller jusqu'à la destruction de la batterie.
Afin de réguler la température des batteries, il est connu d'ajouter un dispositif de régulation de température du module de batterie. Ces dispositifs utilisent généralement des fluides caloporteurs circulant, par exemple au moyen d'une pompe, dans un circuit de conduit, ledit circuit de conduit passant notamment sous ou à l'intérieur d'une plaque d'échange thermique en contact direct avec les batteries.
Les fluides caloporteurs peuvent ainsi absorber de la chaleur émise par la ou les batteries afin de les refroidir et évacuer cette chaleur au niveau d'un ou plusieurs échangeurs thermiques comme par exemple un radiateur ou un réfrigérant. Les fluides caloporteurs peuvent également, si besoin est, apporter de la chaleur pour réchauffer lesdites batteries, par exemple s'ils sont reliés à une résistance électrique ou à un chauffage par Coefficient Positif de Température (CTP).
Les fluides caloporteurs généralement utilisés sont l'air ambiant ou des liquides comme par exemple l'eau. Les liquides étant meilleurs conducteurs de chaleur que les gaz, c'est une solution qui est privilégiée car plus efficace.
De façon générale, les plaques d'échange thermique en contact direct avec les cellules sont placées sous les batteries, lesdites batteries reposant ainsi sur lesdites plaques d'échange thermique. Les plaques d'échange thermique sont généralement réalisées en métal et sont composées de deux plaques métalliques embouties et brasées l'une contre l'autre de sorte à former un ou plusieurs circuits de conduits de circulation du fluide caloporteur entre une entrée et une sortie de fluide.
Afin de permettre une résistance mécanique des packs batteries, ces derniers, munis de l’échangeur refroidisseur de batteries, doivent être reliés à un élément structurel, et doivent être protégés d’éléments extérieurs. Cette fonction dite « structurelle », est actuellement assurée par un ensemble de poutres, traverses et de protections (panneau structurel positionné sous les plaques d'échange thermique). Un tel ensemble structurel permet la résistance aux crash tests, aux impacts, mais également aux chargements des modules de batterie sur le refroidisseur de batterie. Les éléments constituant la fonction structurelle sont fabriqués de façon connue avec des matériaux offrant des propriétés mécaniques, telles que la limite élastique (Rp0,2) et la limite à la rupture (Rm), très élevées.
Cependant, la fabrication d’un panneau structurel, et les éléments nécessaires à la fixation du pack batterie aux poutres, représentent un coût supplémentaire pour le constructeur automobile, et son utilisation alourdit le véhicule, et par conséquence augmente les émissions de CO2.
Un des buts de l'invention est de proposer une plaque d'échange thermique remédiant au moins partiellement aux inconvénients de l'art antérieur et de proposer une plaque d'échange thermique structurelle, tout en respectant les objectifs de recyclabilité et la recherche de la neutralité carbone.
La présente invention concerne donc une plaque d'échange thermique pour gestion thermique de pack batteries, comportant des première et seconde plaques, au moins la première plaque comportant au moins un canal (la première plaque comprend un relief formant au moins un canal lorsqu’associée à la seconde plaque), les première et seconde plaques étant accolées de sorte que ledit canal délimite en partie au moins un conduit d'un circuit de circulation d'un fluide caloporteur, et dans laquelle la première plaque est réalisée en un premier matériau, la seconde plaque est réalisée en un second matériau différent du premier matériau et conférant à la seconde plaque une fonction structurelle.
Une telle plaque d'échange thermique structurelle permet de réduire le nombre de traverses et d’éléments (casing, points d’attaches, renfort, poutres, ...) nécessaires à l’assemblage des modules de batteries et à la résistance mécanique des packs batteries.
Ainsi, la plaque d'échange thermique structurelle selon l’invention permet d’obtenir une économie de coût, un gain de masse et une réduction des émissions de CO2 pour les constructeurs automobiles.
Suivant d’autres caractéristiques optionnelles de la plaque thermique prises seules ou en combinaison : le premier matériau possède une limite élastique plus faible que le second matériau, permettant d’éviter que l’étape de brasage n’engendre des déformations de la plaque thermique, et donc, permettant de respecter les dimensions prévues de la plaque thermique. le second matériau possède une limite élastique (Rp0,2) supérieure à 190 MPa, de préférence supérieure à 200 MPa. le second matériau possède une limite à la rupture (Rm) supérieure à 220 MPa, de préférence supérieure à 240 MPa. le second matériau possède une élongation (A%) à rupture supérieure à 22%. les premier et second matériaux sont des matériaux métalliques. les premier et second matériaux sont des alliages d’aluminium permettant un assemblage de la première plaque et de la seconde plaque par un procédé de brasage Nocolok®. le second matériau comporte majoritairement un alliage d’aluminium de la série 6000, de préférence au moins 95%. le premier matériau comporte majoritairement un alliage d’aluminium de la série 3000, de préférence au moins 95%. au moins une des faces d’au moins une des plaques comporte une couche anticorrosion. la couche anti-corrosion est réalisée en alliage d’aluminium de la série 1000, 3000+Zn, ou 7000.
Lorsque la couche anti-corrosion est réalisée en alliage d’aluminium de la série 3000+Zn, la concentration en Zn est comprise entre 0.5% et 1 .8%. au moins une des faces de la seconde plaque comporte une couche barrière au magnésium. la couche barrière est réalisée en alliage d’aluminium de la série 1000, 3000+Zn, ou
7000. au moins une des faces de la seconde plaque comporte une couche barrière au magnésium, de préférence réalisée en alliage d’aluminium de la série 1000, 3000+Zn, ou 7000.
Lorsque la couche barrière est réalisée en alliage d’aluminium de la série 3000+Zn, la concentration en Zn est comprise entre 0.5% et 1 .8%. au moins une des faces internes d’au moins une des plaques comporte une couche de brasage. la couche de brasage est réalisée en alliage d’aluminium de la série 4000, de préférence 4343 ou 4045 la seconde plaque (30) présente sur chacune de ses faces une couche réalisée en alliage d’aluminium de la série 7000, de préférence 7072 ou 3000+Zn, par exemple 3003+Zn.
Lorsque chacune des faces de la seconde plaque (30) présente une couche réalisée en alliage d’aluminium de la série 3000+Zn, la concentration en Zn est comprise entre 0.5% et 1 .8%.
L’invention concerne également un procédé de fabrication d’une plaque d’échange thermique tel que décrit précédemment, comportant les étapes suivantes : i- réalisation de la première plaque au moyen du premier matériau, et réalisation de la seconde plaque au moyen du second matériau ; ii- formation d’au moins un canal sur au moins une des première et seconde plaques de préférence par emboutissage; iii- assemblage étanche des deux plaques ; et iv- application d’au moins un traitement de vieillissement artificiel de l’ensemble assemblé, afin d’améliorer les performances structurelles, par exemple au moyen d’un traitement thermique.
Suivant d’autres caractéristiques optionnelles du procédé prises seules ou en combinaison : l’étape ii) est réalisée au moyen d’un procédé d’estampage. l’étape iii) est réalisée au moyen d’un procédé de brasage, de préférence un brasage Nocolok®. l’étape iv) comporte un traitement thermique de la plaque thermique. le traitement thermique comporte une étape de chauffage de la plaque thermique à 225°C pendant 45mn. on utilise un second matériau comportant majoritairement un alliage d’aluminium de la série 6000. l’étape i) comporte une étape de recouvrement d’au moins une des faces d’au moins une des plaques par au moins une couche fonctionnelle, de type anti-corrosion, barrière au magnésium, et/ou de brasage.
Brève description des figures
D'autres caractéristiques et avantages de l'invention apparaîtront plus clairement à la lecture de la description suivante, donnée à titre d'exemple illustratif et non limitatif, et des dessins annexés parmi lesquels :
“ [Fig. 1] montre une représentation schématique en perspective d'une plaque d'échange thermique selon l’invention,
“ [Fig. 2] est un détail de la figure 1 illustrant une partie d’un canal de la plaque d'échange thermique,
“ [Fig. 3] montre une représentation schématique en perspective éclatée d'une plaque d'échange thermique selon un mode de réalisation,
“ [Fig. 4] est un ensemble de figures (4A à 4C) illustrant des exemples de superpositions de couches (anti-corrosion, de brasage) autour de l’âme de la première plaque,
“ [Fig. 5] est un ensemble de figures (5A à 5C) illustrant des exemples de superpositions de couches (anti-corrosion, barrière) autour de l’âme de la seconde plaque,
“ [Fig. 6] est un schéma illustrant les différentes étapes d’un exemple de procédé de fabrication d’une plaque thermique selon l’invention.
Les éléments identiques sur les différentes figures, portent les mêmes références.
Description détaillée Comme illustré sur les figures 1 et 2, la plaque d'échange thermique 10 pour la gestion thermique de pack batteries 200, comporte une première plaque 20 (« Chanel plate ») et une seconde plaque 30 (« base plate »).
Au moins une des première 20 et seconde 30 plaques comporte des canaux 40. Sur l’exemple de la figure 1 , il s’agît de la première plaque 20, qui est alors destinée à venir en contact du pack batteries 200.
Selon un exemple de réalisation, les plaques 20 et 30 de la plaque thermique 10 ont une forme sensiblement rectangulaire, de longueur 1700 mm et de largueur 1300 mm. Chaque plaque a une épaisseur comprise entre 0,5 mm et 2 mm.
Les première 20 et seconde 30 plaques sont accolées de sorte que les canaux 40 délimitent un conduit d'un circuit de circulation d'un fluide caloporteur. De préférence le conduit est de forme en U et s'étend entre une entrée et une sortie de fluide caloporteur formées respectivement par des tubulures de connexion.
La plaque d'échange thermique 10 peut également comporter des éléments de maintien (non représentés) permettant la fixation de la dite plaque d'échange au pack batteries ou à la batterie. La plaque d'échange thermique 10 peut en outre comporter un joint 50 placé entre la première 20 et la seconde 30 plaque afin d'assurer l'étanchéité entre ces dernières.
Par pack batteries 200 on entend un ensemble de cellules reliées électriquement entre elles et formant ledit pack batteries 200, ou alors une batterie simple de grande dimension.
Selon l’invention, la première plaque 20 est réalisée en un premier matériau, et la seconde plaque 30 est réalisée en un second matériau différent du premier matériau et conférant à la seconde plaque 30 une fonction structurelle.
Pour obtenir cette fonction structurelle, on utilise un second matériau possédant une limite élastique (Rp0,2) supérieure à 190 MPa, de préférence supérieure à 200 MPa.
Cette limite élastique (Rp0,2) est mesurée selon le procédé normé ISO:6892-1.
De préférence, le second matériau possède également une limite à la rupture (Rm) supérieure à 220 MPa, de préférence supérieure à 240 MPa.
Cette limite à la rupture (Rm) est mesurée selon le procédé normé ISO:6892-1 .
De préférence, le second matériau possède également une élongation (A%) à rupture supérieure à 22%.
Cette élongation à la rupture (Rm) est mesurée selon le procédé normé ISO:6892-1 .
Concernant le premier matériau, il est choisi parmi des matériaux ayant une limite élastique plus faible que le second matériau. La valeur de la limite élastique est choisie de façon à libérer au moins une partie des contraintes provoquées par la seconde plaque 30 à fonction structurelle.
De façon préférentielle, on utilise des matériaux compatibles avec le processus actuel de formage de plaques, l’emboutissage, et avec le processus actuel de fabrication des plaques d'échange thermiques : le brasage. Ainsi, les premier et second matériaux sont choisis parmi les métaux. De préférence, les premier et second matériaux sont choisis pour permettre un assemblage des deux plaques 20 et 30 par un procédé de brasage Nocolok®.
Selon un mode de réalisation préféré, le second matériau comporte majoritairement, de préférence au moins 95% (pour des raisons de recyclage notamment), un alliage d’aluminium de la série 6000, dont les éléments d’alliage sont le magnésium et le silicium. En effet, cet alliage offre des propriétés mécaniques supérieures à un alliage d’aluminium de la série 3000, classiquement utilisé pour fabriquer les deux plaques d’une plaque d'échange thermique.
De par ses propriétés mécaniques élevées, et notamment sa rigidité, l’aluminium type 6000 confère à la plaque thermique 1 une fonction structurelle. Toutefois, l’alliage d’aluminium de la série 6000 ne se déformant pas pendant les essais de résistance mécanique, l’utilisation de ce matériau pour la seconde plaque 30 peut engendrer selon le design de la plaque thermique 1 une augmentation importante des efforts locaux, et provoquer ainsi des non-conformités, voire des ruptures, aux essais de résistance mécanique (pression cyclée, vibration, résistance à l’éclatement,...). En Effet, il est connu, notamment lors des essais de fatigue, qu’un matériau plus “dur” avec un niveau d’élongation (A%) faible à la rupture, voit ses valeurs de contrainte localement augmenter, car celui-ci se déforme moins facilement et permet moins de “poumonnage” de la pièce, et est donc moins résistant aux essais de fatigue.
De ce fait, selon ce mode de réalisation préféré, le premier matériau de la première plaque 20 est un alliage d’aluminium de la série 3000, permettant de libérer au moins une partie des contraintes provoquées par la seconde plaque 30 à fonction structurelle.
Selon certains modes de réalisation, des couches supplémentaires sont appliquées au plaques 20 et 30. Ces modes de réalisation sont illustrés sur les figures 4 et 5, et décrits ci-après.
Couches anti-corrosion 80 Selon un mode de réalisation, illustré sur les figures 4 et 5 chaque plaque 20, 30 est recouverte sur au moins une des deux faces, de préférence sur les deux faces, par une couche anti-corrosion 80, permettant de protéger l’âme de la plaque 60, 70, réalisée en premier et second matériau.
La figure 4A illustre la superposition des couches formant la première plaque 20, lorsque l’âme 60 en premier matériau est recouverte d’une seule couche anti-corrosion 80.
La figure 4B illustre la superposition des couches formant la première plaque 20, lorsque l’âme 60 en premier matériau est recouverte d’une couche anti-corrosion 80 sur ses deux faces.
La figure 5A illustre la superposition des couches formant la seconde plaque 30, lorsque l’âme 70 en second matériau est recouverte d’une seule couche anti-corrosion 80.
La figure 5B illustre la superposition des couches formant la seconde plaque 30, lorsque l’âme 70 en second matériau est recouverte d’une couche anti-corrosion 80 sur ses deux faces.
Selon un exemple de réalisation, la couche anti-corrosion 80 est réalisée en alliage d’aluminium de la série 1000, 3000+Zn, ou 7000. Cette couche se comporte comme une couche sacrificielle pour lutter contre la corrosion interne et/ou externe. L’avantage de la couche de la série 3000+Zn est de conserver les propriétés mécaniques apportées par l’alliage d’âme.
L’épaisseur de la couche anti-corrosion 80 est comprise entre 2,5% et 10% de l’épaisseur plaque.
Couche 90 formant barrière de diffusion au magnésium (seconde plaque)
Lorsque le second matériau est riche en magnésium, il est important, pour conserver les propriétés structurelles de ce matériau, que le magnésium reste dans l’âme 70 en second matériau. Cependant, lors de l’étape de brasage, nécessaire à l’assemblage des deux plaques 20 et 30, le magnésium a tendance à s’échapper et migrer hors de l’âme 70 en second matériau.
Ainsi, selon un mode de réalisation, illustré sur la figure 5C la seconde plaque 30 est recouverte sur au moins une de ses deux faces, de préférence sur les deux faces, par une couche barrière 90, agissant comme barrière de diffusion au magnésium lors du processus de brasage. Le magnésium reste ainsi dans l’âme de la seconde couche, réalisée en second matériau, et préserve ainsi ses propriétés structurelles.
Selon un exemple de réalisation, la couche barrière 90 est réalisée, comme la couche anti-corrosion 80, en alliage d’aluminium de la série 1000, 3000+Zn, ou 7000. L’épaisseur de la couche barrière 90 est comprise entre 2,5% et 10% de l’épaisseur plaque.
Couches de brasage 100 (première plaque)
Selon un mode de réalisation, illustré sur la figure 4C, au moins une des première et seconde plaque 20, 30 est recouverte sur une de ses faces, la face positionnée en regard de l’autre plaque, par une couche de brasage 100, permettant d’optimiser le procédé de brasage.
Selon un exemple de réalisation, la couche de brasage 100 est réalisée en alliage d’aluminium de la série 4000, de préférence 4343 ou 4045.
L’épaisseur de la couche de brasage 100 est comprise entre 2,5% et 10% de l’épaisseur plaque.
La figure 4C illustre la superposition des couches formant la première plaque 20, lorsque l’âme 60 en premier matériau est recouverte d’une couche anti-corrosion 80 sur ses deux faces, et d’une couche de brasage 100.
Exemples de réalisation
Exemple 1
La couche anti-corrosion 80 est un alliage d’aluminium de la série 7000, de préférence
La couche anti-corrosion 80 est appliquée sur la face externe de la première plaque 20 (non en regard de la plaque 30), et sur la face externe de la seconde plaque 30 (non en regard de la plaque 20).
La face interne de la plaque 20 est recouverte d’une couche de brasage en alliage d’aluminium de la série 4000, de préférence 4343 ou 4045.
L’âme de la première plaque est réalisée en alliage d’aluminium de la série 3000.
L’âme de la seconde plaque est réalisée en alliage d’aluminium de la série 6000.
Exemple 2
La première plaque 20, est conforme à celle de l’exemple 1 , mais la seconde plaque 30 est recouverte sur ces deux faces par une couche à la fois barrière et anti-corrosion réalisée en alliage d’aluminium de la série 1000, 3000+Zn, ou 7000.
Exemple 3
La seconde plaque 30 comporte une âme en alliage d’aluminium 6060 recouverte de couches barrière en alliage d’aluminium 1050. Exemple 4
Dans certains modes de réalisation, la seconde plaque 30 comporte une âme en alliage d’aluminium de la série 6000 recouverte d’une couche d’alliage d’aluminium 7072 agissant en tant que couche barrière et anti-corrosion.
Avantageusement la couche d’alliage d’aluminium 7072 agît comme couche barrière, afin de faire barrière à la migration du magnésium lors du procédé de brasage.
Avantageusement couche d’alliage d’aluminium 7072 agît comme couche sacrificiel pour répondre aux exigences de corrosion.
Enfin, avantageusement la combinaison d’un alliage d’aluminium de la série 6000 et d’un alliage d’aluminium 7072 est préférée car, entre autres, favorable en termes de recyclabilité.
L’utilisation d’une couche de 3000 + Zn peut favoriser la protection anticorrosion et le maintien des propriétés mécaniques notamment pour les épaisseurs réduites.
Procédé de fabrication
L’invention concerne également un procédé de fabrication d’une plaque d'échange thermique 1 pour gestion thermique de pack batteries 200 selon l’invention. Comme illustré sur la figure 6 le procédé comporte les étapes suivantes : i- réalisation de la première 20 plaque au moyen du premier matériau, et réalisation de la seconde 30 plaque au moyen du second matériau ; ii- formation d’au moins un canal 30 sur au moins une des première 20 et seconde 30 plaques, par exemple au moyen d’un procédé d’estampage ; iii- assemblage étanche des deux plaques, par exemple au moyen d’un procédé de brasage, de préférence un brasage Nocolok® ; iv- application d’au moins un traitement de vieillissement artificiel de l’ensemble assemblé, afin d’améliorer les performances structurelles, par exemple au moyen d’un traitement thermique.
Selon un exemple, le traitement thermique (étape iv) consiste à chauffer la plaque thermique 1 à 225°C pendant 45mn.
Selon un mode de réalisation préféré, on utilise un second matériau comportant majoritairement un alliage d’aluminium de la série 6000, de préférence au moins 95%. En effet, un tel alliage est durcissable par vieillissement, et donc durcissable par le processus de brasage (étape iv) utilisé pour assembler les deux plaques 20 et 30. Le brasage agit comme un traitement thermique de mise en solution. De plus, la résistance mécanique de la seconde plaque 30 est améliorée, élevée grâce au traitement de vieillissement artificiel (étape v). De façon avantageuse, le procédé comporte, à l’étape i) un recouvrement des plaques 20 et/ou 30 par des couches fonctionnelles :
- recouvrement par une couche anti-corrosion 80, d’au moins une des faces d’au moins une des plaques 20 et 30 ; et/ou - recouvrement par une couche barrière 90 au magnésium, d’au moins une des faces de la seconde plaque 30 ; et/ou
- recouvrement par une couche de brasage 100, de la face interne (face en regard de l’autre plaque) d’au moins une des plaques 20 et 30.
Avec un tel traitement appliqué à la plaque thermique 1 de l’exemple 3 (la seconde plaque 30 comporte une âme 70 en alliage d’aluminium 6060 recouverte de couches barrière en alliage d’aluminium 1050), on obtient les propriétés mécaniques suivantes pour une plaque 30 ayant 2mm d’épaisseur :
- RpO,2 : 196 MPa
- Rm : 227 MPa - A50% : 9,8
Liste de références
10 plaque d'échange thermique pour la gestion thermique d’un pack batteries
20 première plaque (« Chanel plate ») de la plaque d'échange thermique 10 30 seconde plaque (« base plate ») de la plaque d'échange thermique 10
40 : canal de la plaque d'échange thermique 10
50 : joint de la plaque d'échange thermique 10
60 âme en premier matériau de la première plaque 20
70 âme en second matériau de la seconde plaque 30 80 : couche anti-corrosion
90 : couche barrière de diffusion au magnésium
100 : couche de brasage
200 : pack batteries

Claims

Revendications Plaque d'échange thermique (10) pour gestion thermique de pack batteries (200), comportant des première (20) et seconde (30) plaques, au moins la première (20) plaque comportant au moins un canal (40), les première (20) et seconde (30) plaques étant accolées de sorte que ledit canal (40) délimite en partie au moins un conduit d'un circuit de circulation d'un fluide caloporteur, caractérisé en ce que ladite première plaque (20) est réalisée en un premier matériau, ladite seconde plaque (30) est réalisée en un second matériau différent du premier matériau et conférant à ladite seconde plaque (30) une fonction structurelle. Plaque d’échange thermique (10) selon la revendication précédente, dans laquelle le premier matériau possède une limite élastique plus faible que le second matériau. Plaque d’échange thermique (10) selon l’une des revendications précédentes, dans laquelle ledit second matériau possède une limite élastique (Rp0,2) supérieure à 190 MPa, de préférence supérieure à 200 MPa. Plaque d’échange thermique (10) selon l’une des revendications précédentes, dans laquelle ledit second matériau possède une limite à la rupture (Rm) supérieure à 220 MPa, de préférence supérieure à 240 MPa. Plaque d’échange thermique (10) selon l’une des revendications précédentes, dans laquelle ledit second matériau possède une élongation (A%) à rupture supérieure à 22%. Plaque d’échange thermique (10) selon l’une des revendications précédentes, dans laquelle les premier et second matériaux sont des alliages d’aluminium permettant un assemblage de la première plaque (20) et de la seconde plaque (30) par un procédé de brasage Nocolok®. Plaque d’échange thermique (10) selon l’une des revendications précédentes, dans laquelle ledit second matériau comporte majoritairement un alliage d’aluminium de la série 6000, de préférence au moins 95%.
. Plaque d’échange thermique (10) selon l’une des revendications précédentes, dans laquelle ledit premier matériau comporte majoritairement un alliage d’aluminium de la série 3000, de préférence au moins 95%. . Plaque d’échange thermique (10) selon l’une des revendications précédentes, dans laquelle au moins une des faces d’au moins une des plaques (20, 30) comporte une couche anti-corrosion (80) de préférence réalisée en alliage d’aluminium de la série 1000, 3000+Zn ou 7000. 0. Plaque d’échange thermique (10) selon l’une des revendications précédentes, dans laquelle au moins une des faces de la seconde plaque (30) comporte une couche barrière (90) au magnésium, de préférence réalisée en alliage d’aluminium de la série 1000, 3000 ou 7000. 1 . Plaque d’échange thermique (10) selon l’une des revendications précédentes, dans laquelle au moins une des faces internes d’au moins une des plaques (20, 30) comporte une couche de brasage (100) de préférence réalisée en alliage d’aluminium de la série 4000, encore préférentiellement 4343 ou 4045. 2. Plaque d’échange thermique (10) selon l’une des revendications précédentes, dans laquelle la seconde plaque (30) présente sur chacune de ses faces une couche réalisée en alliage d’aluminium de la série 7000, de préférence 7072 ou un alliage de la série 3000+Zn. 3. Procédé de fabrication d’une plaque d’échange thermique (10) selon l’une des revendications précédentes, comportant les étapes suivantes : i- réalisation de la première (20) plaque au moyen du premier matériau, et réalisation de la seconde (30) plaque au moyen du second matériau, le second matériau comportant de préférence majoritairement un alliage d’aluminium de la série 6000 ; ii- formation d’au moins un canal (30) sur au moins une des première (20) et seconde (30) plaques, de préférence par emboutissage ; iii- assemblage étanche des deux plaques, de préférence par brasage, encore préférentiellement par brasage Nocolok® ; et iv- application d’au moins un traitement de vieillissement artificiel de l’ensemble assemblé, afin d’améliorer les performances structurelles, par exemple au moyen d’un traitement thermique. Procédé selon la revendication précédente, dans lequel l’étape i) comporte une étape de recouvrement d’au moins une des faces d’au moins une des plaques (20, 30) par au moins une couche fonctionnelle, de type anti-corrosion (80), barrière (90) au magnésium, et/ou de brasage (100).
PCT/EP2023/067088 2022-06-24 2023-06-23 Plaque d'échange thermique pour pack batteries à plaque structurelle WO2023247745A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR2206320A FR3137168B1 (fr) 2022-06-24 2022-06-24 Plaque d’échange thermique pour pack batteries à plaque structurelle
FRFR2206320 2022-06-24

Publications (1)

Publication Number Publication Date
WO2023247745A1 true WO2023247745A1 (fr) 2023-12-28

Family

ID=83188371

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2023/067088 WO2023247745A1 (fr) 2022-06-24 2023-06-23 Plaque d'échange thermique pour pack batteries à plaque structurelle

Country Status (2)

Country Link
FR (1) FR3137168B1 (fr)
WO (1) WO2023247745A1 (fr)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102018105526A1 (de) * 2018-03-09 2019-09-12 Benteler Automobiltechnik Gmbh Verfahren zum Herstellen eines Batterieträgers zur Halterung eines elektrischen Batteriemoduls
CN111086289A (zh) * 2019-12-26 2020-05-01 银邦金属复合材料股份有限公司 水冷板及其制造方法、包括水冷板的电池、新能源汽车
US20200388894A1 (en) * 2019-06-10 2020-12-10 Hyundai Motor Company Cooling block for a battery module and a manufacturing method thereof
WO2021204929A1 (fr) * 2020-04-08 2021-10-14 Hydro Aluminium Rolled Products Gmbh Matériau d'aluminium al-mg-si plaqué par brasure à haute résistance
CN113897523A (zh) * 2021-10-15 2022-01-07 华峰铝业有限公司 一种可钎焊的高强度铝合金复合板材及其制备方法和应用
KR20220040751A (ko) * 2020-09-24 2022-03-31 주식회사 포스코 배터리팩의 냉각플레이트

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102018105526A1 (de) * 2018-03-09 2019-09-12 Benteler Automobiltechnik Gmbh Verfahren zum Herstellen eines Batterieträgers zur Halterung eines elektrischen Batteriemoduls
US20200388894A1 (en) * 2019-06-10 2020-12-10 Hyundai Motor Company Cooling block for a battery module and a manufacturing method thereof
CN111086289A (zh) * 2019-12-26 2020-05-01 银邦金属复合材料股份有限公司 水冷板及其制造方法、包括水冷板的电池、新能源汽车
WO2021204929A1 (fr) * 2020-04-08 2021-10-14 Hydro Aluminium Rolled Products Gmbh Matériau d'aluminium al-mg-si plaqué par brasure à haute résistance
KR20220040751A (ko) * 2020-09-24 2022-03-31 주식회사 포스코 배터리팩의 냉각플레이트
CN113897523A (zh) * 2021-10-15 2022-01-07 华峰铝业有限公司 一种可钎焊的高强度铝合金复合板材及其制备方法和应用

Also Published As

Publication number Publication date
FR3137168B1 (fr) 2024-08-02
FR3137168A1 (fr) 2023-12-29

Similar Documents

Publication Publication Date Title
WO2012143120A1 (fr) Dispositif de gestion thermique d'un pack-batterie
WO2018104505A1 (fr) Dispositif de stockage d'énergie électrique pour véhicule automobile et pièce rapportée formant une partie du boîtier d'un tel dispositif de stockage d'énergie
WO2020178536A1 (fr) Dispositif de régulation thermique, notamment de refroidissement pour véhicule automobile
WO2019069020A1 (fr) Boîtier de protection d'un pack batterie intégrant des canaux de circulation d'un fluide caloporteur
EP3008772A1 (fr) Bloc batterie pour véhicule automobile
EP3262362B1 (fr) Dispositif de gestion thermique d'une unité de réserve d'énergie
FR3063137A1 (fr) Echangeur thermique et dispositif de regulation thermique d’au moins un element de stockage d’energie electrique
EP3278393B1 (fr) Module de batterie, notamment pour véhicule automobile, et échangeur thermique pour module de batterie correspondant
WO2023247745A1 (fr) Plaque d'échange thermique pour pack batteries à plaque structurelle
FR3086048A1 (fr) Dispositif de regulation thermique, notamment de refroidissement
WO2018020139A1 (fr) Echangeur de chaleur, notamment pour la regulation thermique d'une unite de reserve d'energie, et ensemble forme dudit echangeur et de ladite unite
FR3071104A1 (fr) Module de batterie
WO2022074144A1 (fr) Dispositif de régulation thermique, notamment de refroidissement pour véhicule automobile
WO2018002462A1 (fr) Batterie thermique à matériau à changement de phase
WO2019150028A1 (fr) Dispositif de régulation thermique formant couvercle d'un pack batterie
EP4441825A1 (fr) Systeme thermique pour batterie solide a electrolyte polymere, procede et vehicule sur la base d'un tel systeme
WO2024115299A1 (fr) Plaque de renfort pour un dispositif de régulation thermique
WO2022152719A1 (fr) Dispositif de gestion thermique d'un élément électrique et/ou électronique pour véhicule automobile
WO2022152718A1 (fr) Dispositif de gestion thermique d'un élément électrique et/ou électronique pour véhicule automobile
EP3837736B1 (fr) Bloc batteries avec refroidisseur
WO2020043960A1 (fr) Dispositif de régulation thermique, notamment de refroidissement
WO2024180137A1 (fr) Dispositif de regulation thermique, et dispositif de charge comprenant un dispositif de regulation thermique
WO2024180139A1 (fr) Dispositif de regulation thermique, et dispositif de charge comprenant un dispositif de regulation thermique
FR3088593A1 (fr) Compartiment pour dispositif de stockage d'energie electrique pour vehicule automobile
FR3088587A1 (fr) Compartiment pour module de stockage d'energie electrique pour vehicule automobile

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23732157

Country of ref document: EP

Kind code of ref document: A1