WO2019150028A1 - Dispositif de régulation thermique formant couvercle d'un pack batterie - Google Patents
Dispositif de régulation thermique formant couvercle d'un pack batterie Download PDFInfo
- Publication number
- WO2019150028A1 WO2019150028A1 PCT/FR2019/050182 FR2019050182W WO2019150028A1 WO 2019150028 A1 WO2019150028 A1 WO 2019150028A1 FR 2019050182 W FR2019050182 W FR 2019050182W WO 2019150028 A1 WO2019150028 A1 WO 2019150028A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- base plate
- control device
- thermal
- stamped
- thermal control
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/60—Heating or cooling; Temperature control
- H01M10/65—Means for temperature control structurally associated with the cells
- H01M10/655—Solid structures for heat exchange or heat conduction
- H01M10/6556—Solid parts with flow channel passages or pipes for heat exchange
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/20—Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
- H01M50/271—Lids or covers for the racks or secondary casings
- H01M50/273—Lids or covers for the racks or secondary casings characterised by the material
- H01M50/276—Inorganic material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/60—Heating or cooling; Temperature control
- H01M10/61—Types of temperature control
- H01M10/613—Cooling or keeping cold
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/60—Heating or cooling; Temperature control
- H01M10/65—Means for temperature control structurally associated with the cells
- H01M10/656—Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
- H01M10/6567—Liquids
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/20—Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
- H01M50/204—Racks, modules or packs for multiple batteries or multiple cells
- H01M50/207—Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
- H01M50/209—Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for prismatic or rectangular cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Definitions
- Thermal regulating device forming a cover of a battery pack.
- the invention relates to the field of thermal regulation of battery modules, in particular for a motor vehicle whose propulsion is supplied in whole or in part by an electric motor, located in a protective case forming, with the battery modules, a battery pack.
- the invention relates to the field of thermal regulation devices of these battery modules, and the structure of such a protective housing.
- the electric energy storage cells are interconnected in order to create an electrical generator of desired voltage and capacity, and positioned in a battery module (called “module” in which follows).
- modules are enclosed in a rigid and waterproof protection case (called “casing” in English) that protects the modules of the external environment.
- the protective case and the modules form a set generally called "battery pack".
- the battery pack generally disposed at the floor of the vehicle, covers a more and more consistent surface of the vehicle floor and sometimes even the bottom of the body it.
- the battery modules may be subject to temperature variations that may in some cases cause their damage or even their destruction. Therefore, the thermal regulation of the modules is essential in order, on the one hand, to maintain them in good condition and, on the other hand, to ensure the reliability, autonomy, and performance of the vehicle.
- one or more thermal control devices for regulating the temperature of the modules are implemented to provide the heating and / or cooling functions of the modules and thus optimize the operation of the modules.
- These devices are traversed by a heat transfer fluid that can absorb the heat emitted by each module to cool or as needed, it can bring him heat if the temperature of the module is insufficient for its proper operation.
- the thermal regulation devices are generally arranged at the bottom of the battery pack, under the modules.
- Another disadvantage of this approach lies in the fact that the space allocated to the reception of the battery modules within the battery pack is reduced because of the presence of the thermal regulation devices.
- thermal regulation device (s) and / or electrical modules are complex because it is necessary to disassemble the sealed cover of the battery pack, and then remove the thermal control devices for accessing the modules, or conversely, removing the modules to access the thermal control device (s).
- the thermal regulation device When the thermal regulation device is disposed outside the battery pack, the heat exchanges between the thermal regulation device and the modules are impaired due to the presence of the wall of the protective housing between the thermal control device and the modules.
- the present invention aims to solve these problems of the state of the art and provides a thermal control device, including cooling, at least one electrical energy storage element housed in a protective housing.
- the thermal regulation device comprises a base plate on which is secured at least one stamped plate delimiting a circulation circuit of a heat transfer fluid able to thermally regulate said at least one element for storing electrical energy, said thermal control device forming a cover for closing said protective case.
- the invention thus proposes a thermal regulation device of the battery modules of a hybrid or electric vehicle, which combines two functions, namely, a conventional thermal regulation function of the battery modules and a new and inventive function of closing the case. protection of the battery modules.
- the base plate which is a cut sheet metal, has dimensions equal to those of the battery pack.
- the vehicle battery pack formed by the protective housing in which the battery modules are housed, is sealed by the thermal regulation device.
- the internal space of the protective case is totally allocated to the reception of battery modules, which allows, for a protective case of dimensions equal to the prior art, to receive a larger number of battery modules and therefore maximize the autonomy and the electric power of the vehicle.
- This particular implementation also makes it possible to facilitate the maintenance of the electrical modules since it suffices to remove the thermal regulation device forming a cover from the protection box in order to have access to the electrical modules.
- the maintenance of the thermal control device is also simplified since the device is easily accessible and does not require removal of the electrical modules.
- a change of the thermal control device in case of damage is also easy since it is only necessary to change the cover of the protective housing.
- the surface of said base plate oriented towards the inside of the housing is intended to be in thermal contact with said at least one electrical energy storage element.
- the thermal control device is therefore in thermal contact (direct or indirect) with the battery modules housed in the housing.
- the heat exchanges between the thermal control device and the battery modules are optimized.
- said base plate has a housing for receiving said at least one stamped plate.
- the base plate thus has at least two levels, so that a first level of the base plate, on which is affixed said at least one stamped plate, is in contact with the battery modules, while a second level of the base plate is at the height of the joint plane between the cover (formed by the base plate) and the protective housing.
- said base plate comprises at least one hole configured to allow the passage of sealed fastening means of said base plate on said protective housing.
- said fixing means comprise at least one fastening screw associated with at least one seal.
- the base plate has holes (or recesses) passage allowing the insertion of fixing screws from fixing the base plate on the protective housing.
- the fastening screws have a screw head equipped with a sealing means (an integrated seal, for example) intended to guarantee the seal between the interior and the outside of the protective case and thus protect the battery modules from the external environment to the protective case.
- a sealing means an integrated seal, for example
- said base plate is made of aluminum material and has a thickness less than or equal to 2 mm.
- said base plate is made of aluminum material and has a thickness less than or equal to 1.5 mm.
- the base plate is made of a thermally conductive material.
- aluminum has been chosen for its thermally conductive properties but also for reasons of weight and ease of assembly with said at least one stamped plate.
- said base plate and said at least one stamped plate are secured by brazing.
- the stamped plate or plates are brazed together and on the base plate.
- This inexpensive joining technique ensures the device of the invention a high mechanical strength and good sealing of the heat transfer fluid circulation circuit.
- said base plate and said at least one stamped plate are crimped or riveted prior to brazing.
- the base plate and said at least one stamped plate are pre-bonded so as to facilitate soldering and further improve the mechanical strength of the assembly.
- said base plate and / or said at least one stamped plate has an anticorrosive coating.
- Such a surface treatment for example a cataphoresis treatment or the application of a layer of paint or a protective coating, makes it possible to protect the plate (s) from corrosion with air and from impurities outside the protective casing.
- a thermal interface material is interposed between said base plate and said at least one electrical energy storage element.
- a thermal interface material for example, makes it possible on the one hand to optimize heat exchange between the thermal regulation device and the battery modules, and on the other hand , to compensate for any differences in level between the battery modules and the bottom surface of the base plate so as to optimize the thermal contact between them.
- the thermal regulation device comprises at least two juxtaposed stamped plates delimiting with said base plate a circulation circuit of a heat transfer fluid within the thermal regulation device, said thermal regulation device comprising in addition, a single inlet and a single fluid outlet in the circulation circuit of the coolant.
- the thermal regulation device forming the battery pack cover, thus implements a single base plate on which is secured a plurality of juxtaposed stamped plates.
- the base plate which is a cut sheet metal, has dimensions equal to those of the battery pack while each stamped plate of the device may have dimensions equal to those of a cell or a group of electric cells (it can be provided a plate pressed by cell or group of electric cells to thermally regulate).
- the temperature control device of the invention is flexible and can be adapted to the size and dimensions of the battery modules to be cooled.
- said coolant circulation circuit comprises two spiral-shaped channels nested one inside the other, said channels being fluidly connected to each other in the center of the double spiral .
- the heat transfer fluid circulation circuit may thus comprise one or more double spiral ducts interconnected in the same fluid circuit, which does not require connection pipes.
- a double spiral shape of the circulation duct in each stamped plate allows:
- spiral shapes of the channels also allow a good definition of the walls of the conduit.
- the distribution of the mass of the battery on the heat exchange plate is optimized, which is an advantage to have a good coefficient of heat exchange between these two elements.
- said coolant circulation circuit is "I" or "U”.
- This type of circulation circuit has the advantage of being simple to implement.
- said stamped plates have distribution pads of the coolant.
- the pads make it possible to stiffen the device so that it can withstand the mechanical stresses experienced during brazing and the fluid pressure stresses experienced during the operation of the device.
- the stamped plates constituting the control device are also simple and inexpensive to manufacture. According to a particular aspect of the invention, said at least two juxtaposed stamped plates overlap partially.
- This aspect makes it possible, on the one hand, to facilitate soldering of all the plates together and, on the other hand, to ensure the sealing of the coolant circulation circuit in the device.
- connection ducts for plates stamped together.
- the opposite surfaces of said base plate are planar.
- the invention also proposes a battery pack comprising a protection case sealed by a thermal regulation device as described above.
- FIG. 1 is a front view of a module thermal regulation device of a battery according to a first embodiment of the invention
- Figure 2 is a detailed view of the connection between two stamped plates of the thermal control device of Figure 1;
- FIG. 3 is a top perspective view of the thermal control device of Figure 1;
- FIG. 4 is a perspective bottom view of the thermal control device of FIG. 1 in which the modules of the battery are partially illustrated;
- FIG. 5 is a perspective view of a module thermal regulation device of a battery according to a second embodiment of the invention.
- Figure 6 is a partial sectional view of a battery pack implementing a thermal control device according to a third embodiment of the invention.
- the thermal control device of the invention is intended to form the cover of a protective housing in which are housed the battery modules of a hybrid or electric vehicle.
- This battery is, for example, a large battery.
- this battery can occupy the entire bottom of the vehicle (order of magnitude as an example without limitation: lm30 x lm70)
- the protection box forms, with the modules, what is called a battery pack.
- the thermal regulation device fulfills two functions, namely a conventional function of regulating the temperature of the modules of the battery, and an additional function of closing the protective case in which these modules are housed.
- the thermal control device comprises a base plate, closing the protective housing, on which a plurality of stamped plates are secured thereby defining a circulation circuit of a heat transfer fluid.
- the battery modules housed in the protective case are in thermal contact with the base plate of the thermal regulation device, which is therefore oriented towards the inside of the protective case.
- the stamped plates are intended to be located outside the protective casing
- Figure 1 is a front view of a thermal control device 1, according to a first embodiment of the invention, comprising a base plate 10 and three stamped plates 11 juxtaposed.
- the base plate 10 is a sheet whose shape and dimensions correspond to those of the open upper surface of the battery protection module B of the battery modules 3 to be thermally regulated (visible in FIG. 6).
- the base plate 10 is made of a thermo-conductive material, preferably aluminum, for reasons of weight and ease of assembly, and has a thickness less than or equal to 2 mm.
- the thickness of the base plate 10 is adapted to withstand the mechanical stresses experienced during its attachment to the stamped plates 11 and during operation of the thermal control device 1, once the latter mounted on the protective housing.
- the base plate 10 must thus have a thickness making it possible to maintain the flatness of the opposite surfaces of the base plate 10 under the pressure of the coolant circulating in the circulation circuit of a heat-transfer fluid formed between the base plate and the plates. pressed
- the base plate 10 is substantially rectangular.
- the base plate 10 is stamped (or “stamped") so as to form a wall 100 bordered by a curved edge 101 extending around the periphery of the wall 100, perpendicular to the latter .
- the flange 101 is intended to cover the peripheral edges of the protective housing B (not shown) when the thermal control device 1 closes the protective housing B.
- the base plate 10 thus forms a cover which is placed on the protective housing B and which sealingly closes the latter.
- the wall 100 comprises a central portion 102 and a peripheral portion 103 extending between the central portion 102 and the flange 101.
- the peripheral portion 103 of the wall 100 is raised relative to the central portion 102.
- the central portion 102 is recessed and thus extends to the bottom of a housing 104, of rectangular shape in this example, bordered by the peripheral portion 103.
- the housing 104 is obtained by stamping the base plate 10, and dimensioned to receive several stamped plates 11 (which will be described in more detail later).
- the outer face of the central portion 102 is intended to support these stamped plates 11 and its inner face is intended to come into direct contact with the modules 3 of the battery housed in the protective housing B.
- the inner face of the peripheral portion 103 comes into contact with the peripheral edge of the protection box B
- the upper surface of the modules 3 of the battery does not flush with the peripheral edge of the protection box B but extends in a plane lower than the peripheral edge.
- the depth of the housing 104 is sized to compensate for the level difference between the upper surface of the modules 3 of the battery and the open top surface of the protective housing B.
- the hollow shape of the base plate 10 allows positioning of the latter on the peripheral edge of the protective housing B so as to close the latter, while ensuring contact of the inner surface of the base plate 10 with the modules 3 of the battery for the purpose of thermally regulating these.
- the thermal control device 1 forming a cover is part of the structure of the protective housing B, and cools the modules on their upper part.
- the base plate 10 has, in addition, a plurality of through holes 109a distributed over the peripheral portion 103.
- a plurality of through holes 109b are also provided in the central portion 102.
- the holes 109b extend between two rows of modules 3, that is to say between two stamped plates 11, as illustrated in FIG.
- the holes 109a and 109b are configured to allow the passage of sealing means of the thermal control device 1 on the housing B of the battery pack.
- the fixing means are, for example, in the form of fixing screws.
- the fixing screws use sealing means, for example, in the form of a seal integrated with the head of the fixing screw.
- the fixing screws cooperating with the holes 109a are spaced by a maximum of 80 mm, while the fastening screws cooperating with the holes 109b located between two rows of modules 3 are spaced apart by at most 200 mm.
- the base plate 10 is secured to the protective housing B by means of six fixing screws placed on the peripheral portion 103 and a fixing screw placed on the central portion 102.
- the base plate 10 of the thermal control device 1 thus makes it possible to seal the protective box B enclosing the modules 3 of the battery so that the latter are protected from any form of external aggression.
- three stamped plates 11 are secured to the central portion 102 of the base plate 10 at the bottom of the housing 104.
- Each stamped plate 11 forms with the base plate 10 a heat exchange plate, the heat exchange plates being intended to thermally regulate the modules 3.
- the stamped plates 11 have internal walls delimiting conduits 12 for circulating a heat transfer fluid, or cooling ducts, when they are assembled on the central portion 102 of the base plate 10.
- the circulation of the coolant is only illustrated by broken lines for the stamped plate 11 located on the right in FIG. 1, on the side of the input connector E and the heat transfer fluid outlet connector S in the thermal regulation device 1.
- each duct 12 comprises two channels 121, 122 of spiral shape nested one inside the other, the channels 121, 122 being fluidly connected to one another at the center C of the double spiral.
- the channels 121, 122 of spiral shape are nested one inside the other in order to allow a homogeneous distribution of the temperature over the entire surface of the heat exchange plate and thus improve the heat exchange with the modules 3 of the battery over the entire surface of these.
- Such a design of the heat exchange plate also allows an improved heat exchange between the incoming fluid and the fluid leaving the heat exchange plate.
- the coolant circulation circuit is disposed outside the housing prevents the modules from being damaged in the event of fluid leakage. In this case, only the lid is to be changed.
- the thermal control device 1 comprises a single heat transfer fluid inlet and a single heat transfer fluid outlet, the single inlet and the single outlet being connected to each of the three heat transfer fluid circulation ducts.
- the heat transfer fluid inlets of the plurality of heat exchange plates are connected to a common heat transfer fluid inlet or inlet, and the heat transfer fluid outlets of the plurality of heat exchange plates are connected to an evacuation or outlet of common heat transfer fluid.
- the inlet connector E and the outlet connector S of the heat transfer fluid are arranged on the same side edge of the thermal control device 1. Their location is not limited to this example.
- the thermal control device 1 is thus obtained by the assembly of stamped plates 11 juxtaposed forming a first half-shell and a base plate 10, forming a second half-shell, intended to close the protective case of the battery pack .
- the base plate 10 is preferably made of aluminum so as to allow the brazing of the stamped plates 11 on the latter.
- the stamped plates 11, preferably made of aluminum, are intended to be secured by brazing on the base plate 10.
- the input and output connectors S are intended to be soldered together on both the base plate 10 and the stamped plate 11 located on the right in FIG.
- the base plate 10 is not “clad” while one face of the stamped plates 11 is “clad”.
- the joining of the stamped plates 11 to each other and to the base plate 10 is achieved by a contribution of external material, by means of a clad strip, for example.
- the input connectors E and S of the heat transfer fluid in the thermal control device 1 are preferably not “clad” in order to ensure an optimal surface condition at the connector.
- these connectors are "clad” and a recovery machining is performed to ensure an optimal surface condition.
- the stamped plates 11 and the input connectors E and output S are previously mechanically connected to the base plate 10.
- This preliminary connection can be obtained by crimping or riveting, for example.
- the stamped plates 11 adjacent may overlap partially.
- Such an overlap can also be implemented between the stamped plate 11 of the right and the input connectors E and output S.
- Figure 2 which is a detail view of Figure 1, illustrates such overlap between two adjacent stamped plates 11.
- This overlapping one of the other stamped plates 11 ensures a joint plane suitable for brazing and ensure, once the plates bonded by soldering, the sealing of the coolant circulation circuit within the device Thermal regulation 1.
- FIG. 5 illustrates a second embodiment of the thermal control device of the invention in which the base plate 10 is a laser cut flat sheet, for example, whose shape and dimensions correspond to those of the open top surface. battery box B protection.
- the thermal regulation device 1 is arranged on the battery pack's protection case and then secured to the latter by means of fixing screws cooperating with peripheral holes 109a and central holes 109b of the base plate 10.
- the upper surface of the modules 3 of the battery is flush (that is to say that it extends in the same plane) with the open top surface of the protective housing B so that the temperature control device 1 is in direct thermal contact with the upper surface of the modules 3.
- stamped plates 11 are brazed to the base plate 10 to form circulation circuits 12 of a heat transfer fluid for regulating the temperature of the modules 3 of the battery in thermal contact with the base plate 10.
- FIG. 6 is a partial view, in section, of a battery pack P showing a thermal regulation device 1 according to a third embodiment of the invention.
- the battery pack P comprises a protective casing B in which twelve battery cells 3 are housed in a juxtaposed manner.
- the thermal control device 1 is also obtained by securing stamped plates 11 on a base plate 10 closing the open surface of the protective housing B.
- the base plate 10 has a shape substantially identical to the base plate 10 described in connection with the first embodiment, except that it does not have a curved rim 101.
- the base plate 10 thus comprises a wall 100 comprising a central portion 102 defined in a housing 104 and bordered by a peripheral portion 103.
- the inner surface of the central portion 102 is, as before, in thermal contact with the battery cells 3 intended to be thermally regulated, while the lateral portion 103 comes into contact with the rim of the protective housing B.
- a thermal interface material (not shown) is implemented between the base plate 10 and the cells 3 of the battery.
- the thermal interface material which may be in the form of a thermal grease or a pad, is intended to ensure that play is restored between the base plate 10 and the cells 3. .
- These sets are, for example, mounting sets and / or due to flatness defects of the base plate 10 or the upper surface of the cells 3.
- the thermal interface material makes it possible to optimize the thermal contact between the base plate 10 and the cells 3 of the battery so as to promote heat exchange between the latter and to allow optimal thermal regulation of the cells.
- thermal interface material in the form of a cushion or a filler ("gap filler" in English), can be inserted between each of the cells 3 and / or between the cells 3 and the inner walls of the protective housing B so as to ensure the assembly playovers and tolerance dispersions between the modules 3 and the protective housing B.
- the faces of the thermal control device 1 and the protective housing B facing outwardly of the housing B may be subject to an anticorrosive surface treatment.
- Such a surface treatment may consist of a cataphoresis treatment or the application of a paint or a protective coating.
- the base plate 10 and the stamped plates 11 are made of stainless steel.
- the base plate is made of stainless steel and the stamped plates are made of plastic or composite material.
- none of the plates is "clad".
- the fastening of the stamped plates 11 on the base plate 10 is achieved by a bonding process.
- the bonding process is not limited to the type of adhesive (epoxy, silicone, polyurethane, mono / bi-components), nor to a curing process (called “curing” in English) at room temperature or at a predetermined temperature.
- the base plate 10 can be stamped so as to have shapes to stiffen the latter and thus ensure better mechanical resistance to deformation.
- the formation of gripping elements may be provided to facilitate handling / maintenance operations.
- the thermal control device 1 comprises a base plate 10 on which is secured at least one stamped plate 11 having a circulation circuit in "I” or "U", a single input connector E and a single output connector S.
- the thermal control device 1 comprises a base plate 10 on which is secured at least one stamped plate 11 having a plurality of distribution pads (called “dimples" in English) , a single input connector E and a single output connector S.
- the pads also make it possible to stiffen the thermal regulation device 1 so that it can withstand the mechanical stresses experienced during brazing and the pressure stresses of the fluid during the operation of the thermal regulation device 1.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Inorganic Chemistry (AREA)
- Secondary Cells (AREA)
- Battery Mounting, Suspending (AREA)
Abstract
La présente invention concerne un dispositif de régulation thermique (1), notamment de refroidissement, d'au moins un élément de stockage d'énergie électrique (3) logé dans un boîtier (B) de protection. Selon l'invention, le dispositif de régulation thermique (1) comprend une plaque de base (10) sur laquelle est solidarisée au moins une plaque emboutie (11) délimitant un circuit (12) de circulation d'un fluide caloporteur apte à réguler thermiquement ledit au moins un élément de stockage d'énergie électrique (3), ledit dispositif de régulation thermique (1) formant un couvercle destiné à fermer ledit boîtier (B) de protection.
Description
Dispositif de régulation thermique formant couvercle d'un pack batterie.
1. Domaine de l'invention
L'invention se rapporte au domaine de la régulation thermique de modules de batterie, notamment pour un véhicule automobile dont la propulsion est fournie en tout ou partie par une motorisation électrique, situées dans un boîtier de protection formant, avec les modules de batterie, un pack batterie.
Plus précisément, l'invention se rapporte au domaine des dispositifs de régulation thermique de ces modules de batterie, ainsi qu'à la structure d’un tel boîtier de protection.
2. Art antérieur
Dans le domaine des véhicules électriques et hybrides, les cellules de stockage d’énergie électrique sont reliées entre elles de façon à créer un générateur électrique de tension et de capacité désirée, et positionnées dans un module de batterie (appelé "module" dans ce qui suit).
Plusieurs modules reliés entre eux forment la batterie du véhicule.
Généralement, ces modules sont enfermés dans un boîtier de protection rigide et étanche (appelée « casing » en anglais) qui protège les modules de l'environnement extérieur.
Le boîtier de protection et les modules forment un ensemble généralement appelé "pack batterie".
Les constructeurs automobiles cherchent aujourd'hui à fournir des véhicules électriques ou hybrides plus puissants et dont l'autonomie électrique est augmentée.
Pour cela, un nombre de plus en plus important de modules est embarqué dans les véhicules.
Ainsi, le pack batterie, généralement disposé au niveau du plancher du véhicule, couvre une surface de plus en plus conséquente du plancher du véhicule et forme même parfois le fond de caisse ce dernier.
Par ailleurs, lors du fonctionnement du véhicule, les modules de batterie peuvent être soumis à des variations de température pouvant provoquer dans certains cas leur endommagement, voire leur destruction.
Par conséquent, la régulation thermique des modules est essentielle afin, d'une part, de les maintenir en bon état et, d'autre part, d'assurer la fiabilité, l’autonomie, et la performance du véhicule.
Pour ce faire, un ou plusieurs dispositifs de régulation thermique destinés à réguler la température des modules sont mis en oeuvre pour assurer les fonctions de chauffage et/ou de refroidissement des modules et ainsi optimiser le fonctionnement des modules.
Ces dispositifs sont parcourus par un fluide caloporteur qui peut absorber la chaleur émise par chaque module afin de le refroidir ou selon les besoins, il peut lui apporter de la chaleur si la température du module est insuffisante pour son bon fonctionnement.
Les dispositifs de régulation thermique sont généralement disposés au fond du pack batterie, sous les modules.
Ils sont parfois disposés indirectement au contact des modules, à l'extérieur du pack batterie.
Ces approches ne sont toutefois pas totalement satisfaisantes.
En effet, lorsque le dispositif de régulation thermique est disposé à l'intérieur du pack batterie, il existe un risque de destruction des modules en cas de fuites du fluide caloporteur dans l'enceinte intérieure du pack batterie.
Un autre inconvénient de cette approche réside dans le fait que l'espace alloué à la réception des modules de batterie au sein du pack batterie est réduit du fait de la présence des dispositifs de régulation thermique.
Ainsi, la puissance et l'autonomie électrique du véhicule ne sont pas maximisées.
Encore un autre inconvénient de cette approche est que la maintenance ou le remplacement du ou des dispositifs de régulation thermique et/ou des modules électriques est complexe du fait qu'il est nécessaire de démonter le couvercle étanche du pack batterie, puis de retirer le ou les dispositifs de régulation thermique pour accéder aux modules, ou inversement, de retirer les modules pour accéder au(x) dispositif(s) de régulation thermique.
Lorsque le dispositif de régulation thermique est disposé à l'extérieur du pack batterie, les échanges thermiques entre le dispositif de régulation thermique et les
modules sont altérés du fait de la présence de la paroi du boîtier de protection entre le dispositif de régulation thermique et les modules.
Ainsi, la régulation thermique des modules au sein du pack batterie n'est pas optimale.
En outre, l'encombrement d'un pack batterie auquel on ajoute celui d'un dispositif de régulation thermique externe limite l'espace disponible pour l’intégration d’autres composants du véhicule, ce qui n'est pas non plus satisfaisant.
3. Résumé de l'invention
La présente invention a pour objet de résoudre ces problèmes de l’état de l’art et propose un dispositif de régulation thermique, notamment de refroidissement, d’au moins un élément de stockage d'énergie électrique logé dans un boîtier de protection.
Selon l'invention, le dispositif de régulation thermique comprend une plaque de base sur laquelle est solidarisée au moins une plaque emboutie délimitant un circuit de circulation d'un fluide caloporteur apte à réguler thermiquement ledit au moins un élément de stockage d'énergie électrique, ledit dispositif de régulation thermique formant un couvercle destiné à fermer ledit boîtier de protection.
L'invention propose ainsi un dispositif de régulation thermique des modules de batterie d'un véhicule hybride ou électrique, qui combine deux fonctions, à savoir, une fonction classique de régulation thermique des modules de batterie et une fonction nouvelle et inventive de fermeture du boîtier de protection des modules de batterie.
La plaque de base, qui est une tôle métallique découpée, présente des dimensions égales à celles du pack-batterie. De cette façon, le pack batterie du véhicule, formé par le boîtier de protection dans lequel sont logés les modules de batterie, est fermé de façon étanche par le dispositif de régulation thermique.
Ainsi, l'espace intérieur du boîtier de protection est totalement alloué à la réception de modules de batterie, ce qui permet, pour un boîtier de protection de dimensions égales à l'art antérieur, de recevoir un plus grand nombre de modules de batterie et donc de maximiser l'autonomie et la puissance électrique du véhicule.
Cette mise en oeuvre particulière permet en outre de faciliter la maintenance des modules électriques puisqu'il suffit de retirer le dispositif de régulation thermique formant couvercle du boîtier de protection pour avoir accès aux modules électriques. La
maintenance du dispositif de régulation thermique est également simplifiée puisque le dispositif est aisément accessible et ne nécessite pas de retirer les modules électriques.
Un changement du dispositif de régulation thermique en cas d'endommagement est également aisé puisqu'il suffit uniquement de changer le couvercle du boîtier de protection.
Selon un aspect de l'invention, la surface de ladite plaque de base orientée vers l’intérieur du boîtier est destinée à être en contact thermique avec ledit au moins un élément de stockage d'énergie électrique.
Le dispositif de régulation thermique est donc en contact thermique (direct ou indirect) avec les modules de batterie logés dans le boîtier. Ainsi, les échanges thermiques entre le dispositif de régulation thermique et les modules de batterie sont optimisés.
Selon un autre aspect de l'invention, ladite plaque de base présente un logement destiné à recevoir ladite au moins une plaque emboutie.
La plaque de base présente ainsi au moins deux niveaux, de sorte qu'un premier niveau de la plaque de base, sur lequel est solidarisée ladite au moins une plaque emboutie, est en contact avec les modules de batterie, tandis qu'un deuxième niveau de la plaque de base se situe à la hauteur du plan de joint entre le couvercle (formé par la plaque de base) et le boîtier de protection.
Ainsi, les écarts de hauteur/niveau entre le haut des modules de batterie et le bord supérieur du boîtier de protection sont compensés.
Selon un aspect particulier de l'invention, ladite plaque de base comprend au moins un trou configuré pour permettre le passage de moyens de fixation étanches de ladite plaque de base sur ledit boîtier de protection.
Selon un autre aspect particulier de l'invention, lesdits moyens de fixation comprennent au moins une vis de fixation associée à au moins un joint d'étanchéité.
Ainsi, la plaque de base comporte des trous (ou évidements) de passage permettant l'insertion de vis de fixation venant fixer la plaque de base sur le boîtier de protection.
Les vis de fixation possèdent une tête de vis équipée d'un moyen d'étanchéité (un joint intégré, par exemple) destiné à garantir l'étanchéité entre l'intérieur et
l'extérieur du boîtier de protection et donc protéger les modules de batterie de l'environnement extérieur au boîtier de protection.
Selon un aspect particulier de l'invention, ladite plaque de base est fabriquée en matériau aluminium et présente une épaisseur inférieure ou égale à 2 mm.
Selon un autre aspect particulier de l'invention, ladite plaque de base est fabriquée en matériau aluminium et présente une épaisseur inférieure ou égale à 1,5 mm.
Ainsi, la plaque de base est fabriquée dans un matériau thermo-conducteur.
Plus particulièrement, l'aluminium a été choisi pour ses propriétés thermo conductrices mais également pour des raisons de poids et de facilité d'assemblage avec ladite au moins une plaque emboutie.
Selon un autre aspect particulier de l'invention, ladite plaque de base et ladite au moins une plaque emboutie sont solidarisées par brasage.
Ainsi, la ou les plaques embouties sont brasées entre elles et sur la plaque de base.
Cette technique de solidarisation peu coûteuse permet d'assurer au dispositif de l'invention une forte résistance mécanique et une bonne étanchéité du circuit de circulation du fluide caloporteur.
Selon encore un autre aspect particulier de l'invention, ladite plaque de base et ladite au moins une plaque emboutie sont serties ou rivetées préalablement au brasage.
Ainsi, la plaque de base et ladite au moins une plaque emboutie sont pré-liées de sorte à faciliter le brasage et améliorer encore la tenue mécanique de l'ensemble.
Selon un aspect de l'invention, ladite plaque de base et/ou ladite au moins une plaque emboutie présente un revêtement anticorrosion.
Un tel traitement de surface, par exemple un traitement par cataphorèse ou l'application d'une couche de peinture ou d'un revêtement de protection, permet de protéger la (les) plaque(s) de la corrosion avec l'air et des impuretés extérieures au boîtier de protection.
Selon un autre aspect particulier de l'invention, un matériau d'interface thermique est intercalé entre ladite plaque de base et ledit au moins un élément de stockage d'énergie électrique.
La mise en œuvre d'un matériau d'interface thermique, une graisse ou un pad thermique par exemple, permet d'une part d'optimiser les échanges thermiques entre le dispositif de régulation thermique et les modules de batterie, et d'autre part, de compenser les éventuels écarts de niveau entre les modules de batterie et la surface inférieure de la plaque de base de sorte à optimiser le contact thermique entre ces derniers.
Selon un aspect particulier de l'invention, le dispositif de régulation thermique comprend au moins deux plaques embouties juxtaposées délimitant avec ladite plaque de base un circuit de circulation d'un fluide caloporteur au sein du dispositif de régulation thermique, ledit dispositif de régulation thermique comprenant en outre une unique entrée et une unique sortie de fluide dans le circuit de circulation du fluide caloporteur.
Le dispositif de régulation thermique, formant le couvercle du pack batterie, met donc en œuvre une unique plaque de base sur laquelle est solidarisée une pluralité de plaques embouties juxtaposées.
La plaque de base, qui est une tôle métallique découpée, présente des dimensions égales à celles du pack-batterie tandis que chaque plaque emboutie du dispositif peut présenter des dimensions égales à celles d'une cellule ou d'un groupement de cellules électriques (il peut ainsi être prévu une plaque emboutie par cellule ou groupement de cellules électriques à réguler thermiquement).
Des presses de grande taille ne sont donc plus nécessaires pour emboutir les plaques, ce qui réduit les coûts de fabrication du dispositif de l'invention.
Du fait qu’il soit réalisé par assemblage d'une pluralité de plaques embouties sur une plaque de base, le dispositif de régulation thermique de l'invention est modulable et peut être adapté à la taille et aux dimensions des modules de batterie à refroidir.
Cette solution permet de fabriquer aisément et à un coût relativement faible des dispositifs de régulation thermique de grande taille et de forme complexe adaptés aux pack-batteries présentant des grandes surfaces.
Selon un autre aspect particulier de l'invention, ledit circuit de circulation du fluide caloporteur comprend deux canaux de forme spiralée imbriqués l’un dans l’autre, lesdits canaux étant reliés fluidiquement l’un à l’autre au centre de la double spirale.
Le circuit de circulation du fluide caloporteur peut ainsi comprendre un ou plusieurs conduits en double spirale reliés entre eux dans un même circuit fluidique, ce qui ne nécessite pas de tubulures de raccordement.
Une forme en double spirale du conduit de circulation dans chaque plaque emboutie permet :
- un échange thermique amélioré entre le fluide entrant et le fluide sortant de chaque plaque d'échange thermique, et
- une répartition homogène de la température sur toute la surface de la plaque d'échange thermique et ainsi améliore les échanges thermiques avec la batterie sur l'ensemble de la surface de cette dernière.
De plus, avec un conduit formé de deux canaux en spirale imbriqués l'un dans l'autre, à taille de plaque d'échange thermique équivalente, la surface d'échange thermique entre la batterie et le fluide caloporteur est augmentée, ce qui augmente d'autant l'efficacité de la plaque d'échange thermique.
Les formes spiralées des canaux permettent également une bonne définition des parois du conduit.
Ainsi, la répartition de la masse de la batterie sur la plaque d'échange thermique est optimisée, ce qui est un avantage pour avoir un bon coefficient d'échange thermique entre ces deux éléments.
Selon encore un autre aspect particulier de l'invention, ledit circuit de circulation du fluide caloporteur est en "I "ou en "U".
Ce type de circuit de circulation présente l'avantage d'être simple à mettre en oeuvre.
Selon un autre aspect particulier de l'invention, lesdites plaques embouties présentent des plots de répartition du fluide caloporteur.
Ces plots permettent de répartir et de distribuer le fluide caloporteur au sein et entre les plaques embouties du dispositif.
En outre, les plots permettent de rigidifier le dispositif de sorte qu'il puisse résister aux contraintes mécaniques subies lors du brasage et aux contraintes de pression du fluide subies lors du fonctionnement du dispositif.
Les plaques embouties constituant le dispositif de régulation sont en outre simples et peu coûteuses à fabriquer.
Selon un aspect particulier de l'invention, lesdites au moins deux plaques embouties juxtaposées se chevauchent partiellement.
Cet aspect permet d'une part de faciliter le brasage de l'ensemble des plaques entre elles et d'autre part d'assurer l'étanchéité du circuit de circulation du fluide caloporteur dans le dispositif.
Cela permet en outre de s'affranchir de l'utilisation de conduits de raccordement des plaques embouties entre elles.
Ainsi, l’assemblage est simplifié et les risques de fuite du fluide caloporteur sont diminués.
Selon un autre aspect particulier de l'invention, les surfaces opposées de ladite plaque de base sont planes.
Afin d'optimiser les échanges thermiques, il est nécessaire que les surfaces destinées à venir en contact thermique avec les modules de batterie soient planes.
On choisit de mettre en contact la plaque de base, plutôt que les plaques embouties, avec les modules de batterie car il est plus simple et moins coûteux d'assurer la planéité de la plaque de base que celle des plaques embouties.
L'invention propose également un pack batterie comprenant un boîtier de protection fermé de façon étanche par un dispositif de régulation thermique tel que décrit précédemment.
4. Figures
D’autres caractéristiques et avantages apparaîtront plus clairement à la lecture de la description détaillée suivante de modes de réalisation particuliers de l'invention, donnés à titre de simples exemples illustratifs et non limitatifs, et des dessins annexés, parmi lesquels :
la figure 1 est une vue de face d'un dispositif de régulation thermique de modules d'une batterie selon un premier mode de réalisation de l'invention ; la figure 2 est une vue de détail de la connexion entre deux plaques embouties du dispositif de régulation thermique de la figure 1 ;
la figure 3 est une vue de dessus en perspective du dispositif de régulation thermique de la figure 1 ;
la figure 4 est une vue de dessous en perspective du dispositif de régulation thermique de la figure 1 dans laquelle les modules de la batterie sont illustrés partiellement ;
la figure 5 est une vue en perspective d'un dispositif de régulation thermique de modules d'une batterie selon un deuxième mode de réalisation de l'invention ;
la figure 6 est une vue en coupe partielle d'un pack batterie mettant en oeuvre un dispositif de régulation thermique selon un troisième mode de réalisation de l'invention.
5. Description détaillée de modes de réalisation
Les éléments identiques sur les différentes figures, portent les mêmes références.
Le dispositif de régulation thermique de l'invention est destiné à former le couvercle d’un boîtier de protection dans lequel sont logés les modules de la batterie d’un véhicule hybride ou électrique.
Cette batterie est, par exemple, une batterie de grande taille.
Par exemple, cette batterie peut occuper tout le fond de caisse du véhicule (ordre de grandeur à titre d'exemple sans limitation : lm30 x lm70)
Le boîtier de protection forme, avec les modules, ce que l'on appelle un pack batterie.
Selon l'invention, le dispositif de régulation thermique remplit deux fonctions, à savoir une fonction classique de régulation de la température des modules de la batterie, et une fonction additionnelle de fermeture du boîtier de protection dans lequel sont logés ces modules.
Pour ce faire, le dispositif de régulation thermique comprend une plaque de base, venant obturer le boîtier de protection, sur laquelle une pluralité de plaques embouties sont solidarisées délimitant ainsi un circuit de circulation d'un fluide caloporteur.
Les modules de batterie logés dans le boîtier de protection sont en contact thermique avec la plaque de base du dispositif de régulation thermique, qui est donc
orientée vers l'intérieur du boîtier de protection. Les plaques embouties sont destinées à être situées à l'extérieur du boîtier de protection
La figure 1 est une vue de face d'un dispositif de régulation thermique 1, selon un premier mode de réalisation de l'invention, comprenant une plaque de base 10 et trois plaques embouties 11 juxtaposées.
La plaque de base 10 est une tôle dont la forme et les dimensions correspondent à celles de la surface supérieure ouverte du boîtier B de protection des modules 3 de batterie devant être régulés thermiquement (visible sur la figure 6).
La plaque de base 10 est fabriquée dans un matériau thermo-conducteur, de préférence en aluminium, pour des questions de poids et de facilité d'assemblage, et présente une épaisseur inférieure ou égale à 2mm. L'épaisseur de la plaque de base 10 est adaptée pour supporter les efforts mécaniques subis lors de sa solidarisation avec les plaques embouties 11 et lors du fonctionnement du dispositif de régulation thermique 1, une fois ce dernier monté sur le boîtier de protection.
La plaque de base 10 doit ainsi présenter une épaisseur permettant de maintenir la planéité des surfaces opposées de la plaque de base 10 sous la pression du fluide caloporteur circulant dans le circuit de circulation d'un fluide caloporteur ménagé entre la plaque de base et les plaques embouties
Dans cet exemple, la plaque de base 10 est sensiblement rectangulaire.
Comme illustré sur les figures 3 et 4, la plaque de base 10 est emboutie (ou "stampée") de sorte à former une paroi 100 bordée par un rebord 101 recourbé s'étendant sur le pourtour de la paroi 100, perpendiculairement à cette dernière.
Le rebord 101 est destiné à venir recouvrir les bords périphériques du boîtier B de protection (non illustré) lorsque le dispositif de régulation thermique 1 vient fermer le boîtier B de protection.
La plaque de base 10 forme ainsi un couvercle qui vient se placer sur le boîtier B de protection et qui obture de façon étanche ce dernier.
La paroi 100 comprend une partie centrale 102 et une partie périphérique 103, s'étendant entre la partie centrale 102 et le rebord 101.
La partie périphérique 103 de la paroi 100 est surélevée par rapport à la partie centrale 102.
La partie centrale 102 est en creux et s'étend ainsi au fond d'un logement 104, de forme rectangulaire dans cet exemple, bordé par la partie périphérique 103.
Le logement 104 est obtenu par emboutissage de la plaque de base 10, et dimensionné pour recevoir plusieurs plaques embouties 11 (qui seront décrites plus en détail par la suite).
La face extérieure de la partie centrale 102 est destinée à supporter ces plaques embouties 11 et sa face intérieure est destinée à venir en contact direct avec les modules 3 de la batterie logés dans le boîtier B de protection.
La face intérieure de la partie périphérique 103 vient en contact avec le bord périphérique du boîtier B de protection
Classiquement, la surface supérieure des modules 3 de la batterie n'affleure pas avec le bord périphérique du boîtier B de protection mais s'étend dans un plan situé plus bas que le bord périphérique.
La profondeur du logement 104 est dimensionnée pour compenser l'écart de niveau entre la surface supérieure des modules 3 de la batterie et la surface supérieure ouverte du boîtier B de protection.
La forme en creux de la plaque de base 10 permet de positionner cette dernière sur le bord périphérique du boîtier B de protection de sorte à obturer ce dernier, tout en assurant un contact de la surface intérieure de la plaque de base 10 avec les modules 3 de la batterie dans le but de réguler thermiquement ces derniers.
Le dispositif de régulation thermique 1 formant couvercle fait partie de la structure du boîtier B de protection, et refroidit les modules sur leur partie supérieure.
La plaque de base 10 présente, en outre, une pluralité de trous 109a traversants répartis sur la partie périphérique 103.
Une pluralité de trous 109b traversants sont également ménagés dans la partie centrale 102.
Les trous 109b s'étendent entre deux rangées de modules 3, c'est-à-dire entre deux plaques embouties 11, comme illustré sur la figure 1.
Les trous 109a et 109b sont configurés pour permettre le passage de moyens de fixation étanche du dispositif de régulation thermique 1 sur le boîtier B de protection du pack batterie.
Les moyens de fixation se présentent, par exemple, sous la forme de vis de fixation.
Afin d'assurer l'étanchéité entre l'intérieur et l'extérieur du pack batterie, les vis de fixation mettent en oeuvre des moyens d'étanchéité, se présentant, par exemple, sous la forme d'un joint d'étanchéité intégré à la tête de la vis de fixation.
Dans cet exemple, les vis de fixation coopérant avec les trous 109a sont espacées d'au maximum 80 mm, tandis que les vis de fixations coopérant avec les trous 109b situés entre deux rangées de modules 3 sont espacées d'au maximum 200 mm.
A minima, la plaque de base 10 est solidarisée sur le boîtier B de protection au moyen de six vis de fixation placées sur la partie périphérique 103 et d’une vis de fixation placée sur la partie centrale 102.
On comprend bien évidemment que ces valeurs peuvent varier en fonction de l'épaisseur de la plaque de base, de la taille des modules, des dimensions du boîtier de protection et de l'éventuelle mise en oeuvre d'un matériau d'interface thermique entre la surface intérieure de la plaque de base 10 et les modules 3 de la batterie.
La plaque de base 10 du dispositif de régulation thermique 1 permet donc de fermer de façon étanche le boîtier B de protection enfermant les modules 3 de la batterie de sorte que ces derniers soient protégés de toute forme d'agression extérieure.
Sur la surface extérieure de la plaque de base 10 sont solidarisées des plaques embouties 11 juxtaposées.
Dans cet exemple, trois plaques embouties 11 sont solidarisées sur la partie centrale 102 de la plaque de base 10, au fond du logement 104.
Chaque plaque emboutie 11 forme avec la plaque de base 10 une plaque d’échange thermique, les plaques d’échange thermique étant destinées à réguler thermiquement les modules 3.
En l’espèce, neuf modules 3 sont disposés en vis-à-vis de chaque plaque emboutie 11, comme illustré sur la figure 4.
Les plaques embouties 11 présentent des parois internes délimitant des conduits 12 de circulation d'un fluide caloporteur, ou conduits de refroidissement, lorsqu'elles sont assemblées sur la partie centrale 102 de la plaque de base 10.
La circulation du fluide caloporteur est uniquement illustrée par des traits interrompus pour la plaque emboutie 11 située à droite sur la figure 1, du côté du connecteur d'entrée E et du connecteur de sortie S de fluide caloporteur dans le dispositif de régulation thermique 1.
Dans cet exemple, chaque conduit 12 comprend deux canaux 121, 122 de forme spiralée imbriqués l'un dans l'autre, les canaux 121, 122 étant reliés fluidiquement l'un à l'autre au centre C de la double spirale.
Les canaux 121, 122 de forme spiralée sont imbriqués l'un dans l'autre afin de permettre une répartition homogène de la température sur toute la surface de la plaque d'échange thermique et ainsi améliorer les échanges thermiques avec les modules 3 de la batterie sur l'ensemble de la surface de ces derniers.
Une telle conception de la plaque d'échange thermique permet en outre un échange thermique amélioré entre le fluide entrant et le fluide sortant de la plaque d'échange thermique.
De plus, avec une forme spiralée des canaux 121, 122, à taille de plaque d'échange thermique équivalente, la surface d'échange thermique entre la batterie et le fluide caloporteur est augmentée, ce qui augmente d'autant l'efficacité de la plaque d'échange thermique.
Le fait que le circuit de circulation du fluide caloporteur soit disposé à l'extérieur du boîtier évite que les modules soient détériorés en cas de fuite de fluide. Dans ce cas, seul le couvercle est à changer.
Par ailleurs, le dispositif de régulation thermique 1 comprend une unique entrée de fluide caloporteur et une unique sortie de fluide caloporteur, l'unique entrée et l'unique sortie étant reliées à chacun des trois conduits 12 de circulation du fluide caloporteur.
En d'autres termes, les entrées de fluide caloporteur de la pluralité de plaques d'échange thermique sont reliées à une arrivée ou entrée de fluide caloporteur commune, et les sorties de fluide caloporteur de la pluralité de plaques d'échange thermique sont reliées à une évacuation ou sortie de fluide caloporteur commune.
Dans l'exemple illustré, le connecteur d'entrée E et le connecteur de sortie S du fluide caloporteur sont disposés sur un même bord latéral du dispositif de régulation thermique 1.
Leur emplacement n'est toutefois pas limité à cet exemple.
Le dispositif de régulation thermique 1 est donc obtenu par l'assemblage de plaques embouties 11 juxtaposées formant une première demi-coque et d'une plaque de base 10, formant une deuxième demi-coque, destinée à fermer le boîtier de protection du pack batterie.
La mise en oeuvre de plaques embouties 11, sur une unique plaque de base 10 plane formant couvercle, permet une grande modularité du dispositif de régulation thermique 1 de sorte qu'il puisse présenter une forme complexe et des dimensions relativement importantes s'adaptant à tout type de pack batterie.
On comprend bien évidemment que le nombre et le type de plaques embouties, présentant des formes et/ou des circuits de circulation de fluide différents (en I ou en U, par exemple), peuvent être mis en oeuvre sans s'écarter du principe général de l'invention.
Comme indiqué précédemment, la plaque de base 10 est préférentiellement fabriquée en aluminium de façon à permettre le brasage des plaques embouties 11 sur cette dernière.
Les plaques embouties 11, fabriquées de préférence en aluminium, sont destinées à être solidarisées par brasage sur la plaque de base 10.
Les connecteurs d'entrée E et de sortie S, fabriqués de préférence en aluminium, sont destinés à être solidarisés par brasage, à la fois sur la plaque de base 10 et la plaque emboutie 11 située à droite sur la figure 1.
Afin de faciliter les opérations de brasage, la plaque de base 10 est non « cladée » tandis qu'une face des plaques embouties 11 est « cladée ».
Dans une variante, c'est la plaque de base 10 qui est « cladée » tandis que les plaques embouties 11 ne le sont pas.
Dans ce dernier cas de figure, la solidarisation des plaques embouties 11 entre elles et sur la plaque de base 10 est réalisée par un apport de matière extérieure, au moyen d'un feuillard de clad, par exemple.
Les connecteurs d'entrée E et de sortie S du fluide caloporteur dans le dispositif de régulation thermique 1 sont, de préférence, non « cladés » afin de garantir un état de surface optimal au niveau de la connectique.
Dans une variante, ces connecteurs sont « cladés » et une reprise en usinage est effectuée afin de garantir un état de surface optimal.
Avantageusement, les plaques embouties 11 et les connecteurs d'entrée E et de sortie S sont préalablement liés mécaniquement à la plaque de base 10.
Cette liaison préalable peut être obtenue par sertissage ou par rivetage, par exemple.
Afin de garantir l'étanchéité du circuit de circulation du fluide caloporteur ménagée dans le dispositif de régulation thermique 1 après brasage, les plaques embouties 11 adjacentes peuvent se chevaucher partiellement.
Un tel chevauchement peut également être mis en oeuvre entre la plaque emboutie 11 de droite et les connecteurs d'entrée E et de sortie S.
La figure 2, qui est une vue de détail de la figure 1, illustre un tel chevauchement entre deux plaques embouties 11 adjacentes.
Ce chevauchement l’une sur l’autre des plaques embouties 11 permet d'assurer un plan de joint adapté au brasage et de garantir, une fois les plaques liées par brasage, l'étanchéité du circuit de circulation du fluide caloporteur au sein du dispositif de régulation thermique 1.
Ce chevauchement permet de s'affranchir de la mise en oeuvre de conduits de raccordement additionnels et de joints d'étanchéité entre les plaques embouties, qui, de façon connue, augmentent les risques de fuite du fluide caloporteur.
Ainsi, le brasage des plaques embouties 11 entre elles, mais également sur la plaque de base 10, permet de supprimer, ou tout le moins de limiter, le risque de fuite du fluide caloporteur hors du dispositif de régulation thermique 1.
La figure 5 illustre un deuxième mode de réalisation du dispositif de régulation thermique de l'invention dans lequel la plaque de base 10 est une tôle plane découpée au laser, par exemple, dont la forme et les dimensions correspondent à celles de la surface supérieure ouverte du boîtier B de protection du pack batterie.
Ainsi, le dispositif de régulation thermique 1 est disposé sur le boîtier de protection du pack batterie puis solidarisé à ce dernier par le biais de vis de fixation coopérant avec des trous périphériques 109a et centraux 109b de la plaque de base 10.
On comprend bien évidemment que dans ce cas, la surface supérieure des modules 3 de la batterie affleure (c'est-à-dire qu'elle s'étend dans le même plan) avec la
surface supérieure ouverte du boîtier B de protection de sorte que le dispositif de régulation thermique 1 soit en contact thermique direct avec la surface supérieure des modules 3.
De façon similaire au premier mode de réalisation décrit, des plaques embouties 11 sont brasées sur la plaque de base 10 afin de former des circuits de circulation 12 d'un fluide caloporteur permettant de réguler la température des modules 3 de la batterie en contact thermique avec la plaque de base 10.
La figure 6 est une vue partielle, en coupe, d’un pack batterie P montrant un dispositif de régulation thermique 1 selon un troisième mode de réalisation de l'invention.
Comme illustré, le pack batterie P comprend un boîtier B de protection dans lequel sont logés de manière juxtaposée douze cellules 3 de batterie.
Le dispositif de régulation thermique 1 est également obtenu par solidarisation de plaques embouties 11 sur une plaque de base 10 obturant la surface ouverte du boîtier B de protection.
La plaque de base 10 présente une forme sensiblement identique à la plaque de base 10 décrite en lien avec le premier mode de réalisation, si ce n'est qu'elle ne présente pas de rebord 101 recourbé.
Dans ce troisième mode de réalisation, la plaque de base 10 comprend ainsi une paroi 100 comprenant une portion centrale 102 définit dans un logement 104 et bordé par une portion périphérique 103.
La surface intérieure de la portion centrale 102 est, comme précédemment, en contact thermique avec les cellules 3 de batterie destinés à être régulés thermiquement, tandis que la portion latérale 103 vient au contact du rebord du boîtier B de protection.
Ces modes de réalisation sont donnés à titre de simples exemples illustratifs et non limitatifs.
Une combinaison de certains de ces modes de réalisation entre eux ne peut être exclue.
Selon un aspect particulier de l'invention, un matériau d'interface thermique (non illustré) est mis en oeuvre entre la plaque de base 10 et les cellules 3 de la batterie.
Le matériau d'interface thermique, qui peut se présenter sous la forme d'une graisse thermique ou d'un coussin (« pad » en anglais), est destiné à assurer les reprises de jeux entre la plaque de base 10 et les cellules 3.
Ces jeux sont, par exemple, des jeux de montage et/ou dus à des défauts de planéité de la plaque de base 10 ou de la surface supérieure des cellules 3.
En d'autres termes, le matériau d'interface thermique permet d'optimiser le contact thermique entre la plaque de base 10 et les cellules 3 de la batterie de sorte à favoriser les échanges thermiques entre ces derniers et permettre une régulation thermique optimale des cellules 3.
Un autre matériau d'interface thermique, se présentant sous la forme d'un coussin ou d'un remplisseur (« gap filler » en anglais), peut être inséré entre chacun des cellules 3 et/ou entre les cellules 3 et les parois intérieures du boîtier de protection B de sorte à assurer les reprises de jeux d'assemblage et les dispersions de tolérance entre les modules 3 et le boîtier B de protection.
Il est à noter que les faces du dispositif de régulation thermique 1 et du boîtier de protection B orientées vers l'extérieur du boîtier B peuvent faire l’objet d’un traitement de surface anticorrosion.
Un tel traitement de surface peut consister en un traitement par cataphorèse ou en l'application d'une peinture ou d'un revêtement de protection.
Dans une variante, la plaque de base 10 et les plaques embouties 11 sont fabriquées en acier inoxydable.
Il n'est donc plus nécessaire de mettre en oeuvre un tel traitement de surface.
Dans une autre variante, la plaque de base est fabriquée en acier inoxydable et les plaques embouties sont en matériau plastique ou composite.
Il n'est donc pas non plus nécessaire de mettre en oeuvre un tel traitement de surface.
Dans une variante des modes de réalisation décrits précédemment, aucune des plaques n'est « cladée ».
Dans encore une autre variante, la solidarisation des plaques embouties 11 sur la plaque de base 10 est réalisée par un procédé de collage.
Le procédé de collage ne se limite au type de colle (époxy, silicone, polyuréthane, mono/bi composants), ni à un procédé de durcissement (appelé "curing" en anglais) à température ambiante ou à une température prédéterminée.
Il est à noter que la plaque de base 10 peut être emboutie de sorte à présenter des formes permettant de raidir cette dernière et ainsi assurer une meilleure tenue mécanique à la déformation.
Lors de l'emboutissage de la plaque de base 10, on peut prévoir la formation d'éléments de préhension en vue de faciliter les opérations de manipulation/maintenance.
Dans une variante de l'invention (non illustrée), le dispositif de régulation thermique 1 comprend une plaque de base 10 sur laquelle est solidarisée au moins une plaque emboutie 11 présentant un circuit de circulation en "I" ou en "U", un unique connecteur d'entrée E et un unique connecteur de sortie S.
La mise en oeuvre de plaques embouties 11 formant un circuit de circulation en
"I "ou en "U" permet de fabriquer aisément et à moindre coût, un dispositif de régulation thermique formant couvercle du boîtier de protection, présentant une forme complexe et de grandes dimensions.
Dans une autre variante de l'invention (non illustrée), le dispositif de régulation thermique 1 comprend une plaque de base 10 sur laquelle est solidarisée au moins une plaque emboutie 11 présentant une pluralité de plots de répartition (appelés « dimples » en anglais), un unique connecteur d'entrée E et un unique connecteur de sortie S.
La mise en oeuvre de tels plots permet de répartir et de distribuer le fluide caloporteur au sein et entre les plaques embouties du dispositif.
Les plots permettent, en outre, de rigidifier le dispositif de régulation thermique 1 de sorte qu'il puisse résister aux contraintes mécaniques subies lors du brasage et aux contraintes de pression du fluide lors du fonctionnement du dispositif de régulation thermique 1.
Ces variantes sont données à titre de simples exemples illustratifs et non limitatifs.
Bien que non décrits, d'autres variantes ou une combinaison de certains de ces modes de réalisation entre eux ne peuvent être exclus.
Claims
1. Dispositif de régulation thermique (1), notamment de refroidissement, d'au moins un élément de stockage d'énergie électrique (3) logé dans un boîtier (B) de protection,
caractérisé en ce qu'il comprend une plaque de base (10) sur laquelle est solidarisée au moins une plaque emboutie (11) délimitant un circuit (12) de circulation d'un fluide caloporteur apte à réguler thermiquement ledit au moins un élément de stockage d'énergie électrique (3),
et en ce qu’il forme un couvercle destiné à fermer ledit boîtier (B) de protection.
2. Dispositif de régulation thermique (1) selon la revendication 1, caractérisé en ce que la surface de ladite plaque de base (10) orientée vers l’intérieur du boîtier (B) de protection est destinée à être en contact thermique avec ledit au moins un élément de stockage d'énergie électrique (3).
3. Dispositif de régulation thermique (1) selon la revendication 1 ou 2, caractérisé en ce que ladite plaque de base (10) présente un logement (104) destiné à recevoir ladite au moins une plaque emboutie (11).
4 Dispositif de régulation thermique (1) selon l'une des revendications 1 à 3, caractérisé en ce que ladite plaque de base (10) est fabriquée en aluminium et présente une épaisseur inférieure ou égale à 2 mm.
5. Dispositif de régulation thermique (1) selon l'une des revendications 1 à 4, caractérisé en ce que ladite plaque de base (10) et ladite au moins une plaque emboutie (11) sont solidarisées par brasage.
6. Dispositif de régulation thermique (1) selon l'une des revendications 1 à 5, caractérisé en ce qu’il comprend au moins deux plaques embouties (11) juxtaposées délimitant avec ladite plaque de base (10) un circuit (12) de circulation d'un fluide caloporteur, ledit dispositif de régulation thermique (1) comprenant en outre une
unique entrée (E) et une unique sortie (S) de fluide communiquant avec le circuit (12) de circulation du fluide caloporteur.
7. Dispositif de régulation thermique (1) selon l'une des revendications 1 à 6, caractérisé en ce que ledit circuit (12) de circulation du fluide caloporteur comprend deux canaux (121, 122) de forme spiralée imbriqués l'un dans l'autre, lesdits canaux (121, 122) étant reliés fluidiquement l'un à l'autre au centre de la double spirale.
8. Dispositif de régulation thermique (1) selon l'une des revendications 1 à 6, caractérisé en ce que ledit circuit (12) de circulation du fluide caloporteur est un circuit en "I "ou en "U".
9. Dispositif de régulation thermique (1) selon l'une des revendications 6 à 8, caractérisé en ce que lesdites au moins deux plaques embouties (11) juxtaposées se chevauchent partiellement.
10. Pack batterie comprenant un boîtier (B) de protection fermé de façon étanche par un dispositif de régulation thermique (1) selon l’une des revendications 1 à 9.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR1850805A FR3077427A1 (fr) | 2018-01-31 | 2018-01-31 | Dispositif de regulation thermique formant couvercle d’un pack batterie. |
FR1850805 | 2018-01-31 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019150028A1 true WO2019150028A1 (fr) | 2019-08-08 |
Family
ID=62455635
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/FR2019/050182 WO2019150028A1 (fr) | 2018-01-31 | 2019-01-29 | Dispositif de régulation thermique formant couvercle d'un pack batterie |
Country Status (2)
Country | Link |
---|---|
FR (1) | FR3077427A1 (fr) |
WO (1) | WO2019150028A1 (fr) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR3111974A1 (fr) * | 2020-06-30 | 2021-12-31 | Valeo Systemes Thermiques | Dispositif de régulation thermique pour le refroidissement d’organes de stockage d’énergie électrique. |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR3016479A1 (fr) * | 2014-01-15 | 2015-07-17 | Valeo Systemes Thermiques | Plaque d'echange thermique pour gestion thermique de batterie et procede de fabrication associe |
DE102014008847A1 (de) * | 2014-06-14 | 2015-12-17 | Daimler Ag | Energiespeichervorrichtung für einen Kraftwagen |
US20160164148A1 (en) * | 2014-12-04 | 2016-06-09 | Lg Chem, Ltd. | Battery pack |
US20170229746A1 (en) * | 2016-02-10 | 2017-08-10 | Atieva, Inc. | EV Battery Pack Cooling System |
WO2018104505A1 (fr) * | 2016-12-09 | 2018-06-14 | Valeo Systemes Thermiques | Dispositif de stockage d'énergie électrique pour véhicule automobile et pièce rapportée formant une partie du boîtier d'un tel dispositif de stockage d'énergie |
-
2018
- 2018-01-31 FR FR1850805A patent/FR3077427A1/fr not_active Withdrawn
-
2019
- 2019-01-29 WO PCT/FR2019/050182 patent/WO2019150028A1/fr active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR3016479A1 (fr) * | 2014-01-15 | 2015-07-17 | Valeo Systemes Thermiques | Plaque d'echange thermique pour gestion thermique de batterie et procede de fabrication associe |
DE102014008847A1 (de) * | 2014-06-14 | 2015-12-17 | Daimler Ag | Energiespeichervorrichtung für einen Kraftwagen |
US20160164148A1 (en) * | 2014-12-04 | 2016-06-09 | Lg Chem, Ltd. | Battery pack |
US20170229746A1 (en) * | 2016-02-10 | 2017-08-10 | Atieva, Inc. | EV Battery Pack Cooling System |
WO2018104505A1 (fr) * | 2016-12-09 | 2018-06-14 | Valeo Systemes Thermiques | Dispositif de stockage d'énergie électrique pour véhicule automobile et pièce rapportée formant une partie du boîtier d'un tel dispositif de stockage d'énergie |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR3111974A1 (fr) * | 2020-06-30 | 2021-12-31 | Valeo Systemes Thermiques | Dispositif de régulation thermique pour le refroidissement d’organes de stockage d’énergie électrique. |
Also Published As
Publication number | Publication date |
---|---|
FR3077427A1 (fr) | 2019-08-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
FR3105382A1 (fr) | Dispositif de régulation thermique et procédé d’assemblage correspondant | |
WO2018104505A1 (fr) | Dispositif de stockage d'énergie électrique pour véhicule automobile et pièce rapportée formant une partie du boîtier d'un tel dispositif de stockage d'énergie | |
WO2019069020A1 (fr) | Boîtier de protection d'un pack batterie intégrant des canaux de circulation d'un fluide caloporteur | |
EP3925018A1 (fr) | Unité de batterie et véhicule automobile équipé d'au moins une telle unité | |
WO2019150028A1 (fr) | Dispositif de régulation thermique formant couvercle d'un pack batterie | |
WO2019008000A1 (fr) | Dispositif de régulation thermique de modules de batterie | |
EP3278393B1 (fr) | Module de batterie, notamment pour véhicule automobile, et échangeur thermique pour module de batterie correspondant | |
FR3067171A1 (fr) | Dispositif de regulation thermique de cellules de stockage d’energie electrique d'un pack-batterie de grande surface | |
WO2018083431A1 (fr) | Module unitaire pour bloc batterie, et bloc batterie | |
WO2020053490A1 (fr) | Echangeur de chaleur pour composant électrique de véhicule automobile et système de régulation thermique associé | |
FR3054730A1 (fr) | Dispositif de regulation thermique pour une batterie d'un vehicule par contact indirect | |
FR3071961A1 (fr) | Boitier de protection d'un pack batterie integrant des canaux de transport d'un fluide caloporteur | |
WO2019234351A1 (fr) | Dispositif de regulation thermique de cellules de stockage d'energie electrique d'un pack-batterie de grande surface | |
WO2019115973A1 (fr) | Echangeur thermique comprenant des moyens d'égalisation de potentiel électrique | |
FR2955976A1 (fr) | Bac de stockage et de refroidissement de modules de batteries d'accumulateurs | |
WO2020089537A1 (fr) | Module de stockage d'energie electrique | |
WO2019115942A1 (fr) | Dispositif de régulation thermique à plaques pour module de batteries | |
EP3837736B1 (fr) | Bloc batteries avec refroidisseur | |
WO2022214575A1 (fr) | Echangeur de chaleur modulable pour la gestion thermique des batteries | |
EP3707772B1 (fr) | Élément de refroidissement d'un dispositif de stockage électrique pour véhicule automobile | |
FR3138202A1 (fr) | Dispositif de régulation thermique, notamment pour véhicule automobile, et ensemble de régulation thermique correspondant | |
WO2024126266A1 (fr) | Batterie electrique integrant un dispositif de traitement thermique d'un element d'un groupe motopropulseur | |
FR3103967A1 (fr) | Dispositif de refroidissement comportant des canaux de circulation d’un fluide de refroidissement | |
FR3075336A1 (fr) | Echangeur de chaleur pour la gestion thermique d'une batterie electrique | |
FR3130076A1 (fr) | Module pour batterie comprenant une membrane. |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19708349 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19708349 Country of ref document: EP Kind code of ref document: A1 |