WO2023246588A1 - 一种通信方法及装置 - Google Patents

一种通信方法及装置 Download PDF

Info

Publication number
WO2023246588A1
WO2023246588A1 PCT/CN2023/100208 CN2023100208W WO2023246588A1 WO 2023246588 A1 WO2023246588 A1 WO 2023246588A1 CN 2023100208 W CN2023100208 W CN 2023100208W WO 2023246588 A1 WO2023246588 A1 WO 2023246588A1
Authority
WO
WIPO (PCT)
Prior art keywords
pdcch
drx cycle
drx
time domain
domain position
Prior art date
Application number
PCT/CN2023/100208
Other languages
English (en)
French (fr)
Inventor
薛祎凡
窦凤辉
张彦清
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2023246588A1 publication Critical patent/WO2023246588A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0225Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal
    • H04W52/0248Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal dependent on the time of the day, e.g. according to expected transmission activity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/28Discontinuous transmission [DTX]; Discontinuous reception [DRX]

Definitions

  • the present application relates to the field of wireless communications, and in particular, to a communication method and device.
  • the first aspect is to provide a communication method.
  • the execution subject of this method may be a terminal device or a chip applied in the terminal device.
  • the following description takes the execution subject being a terminal device as an example.
  • the method includes: the terminal device receives the PDCCH from the network device in each DRX cycle of L non-continuous reception DRX cycles. Among them, L is a positive integer. Then, the terminal equipment determines the time domain position to start monitoring the PDCCH in the L+1th DRX cycle based on the time domain position of the PDCCH in each of the L DRX cycles.
  • the terminal equipment determines the time domain position of one PDCCH (i.e., the above-mentioned first PDCCH) in each DRX cycle in the first L DRX cycles. , to predict the time domain position where the PDCCH starts to be monitored in the L+1th DRX cycle, with high accuracy to avoid the terminal equipment in the L+1th DRX cycle. Start monitoring the PDCCH prematurely in +1 DRX cycle, thereby reducing the power consumption of the terminal equipment.
  • one PDCCH i.e., the above-mentioned first PDCCH
  • the first PDCCH is the first PDCCH received by the terminal device in the first DRX cycle.
  • the terminal equipment predicts the time domain in which to start monitoring the PDCCH in the L+1th DRX cycle based on the time domain position of the first PDCCH (i.e., the above-mentioned first PDCCH) received in each DRX cycle in the previous L DRX cycles. location, high accuracy.
  • the first PDCCH i.e., the above-mentioned first PDCCH
  • the time domain positions at which the terminal equipment can receive the PDCCH in each DRX cycle will not be too different.
  • the first PDSCH is the PDSCH with the earliest ACK feedback from the terminal device, so the first PDCCH scheduled for the first PDSCH is the PDCCH successfully received by the terminal device.
  • the terminal equipment predicts the time domain position where PDCCH starts to be monitored in the L+1th DRX cycle based on the time domain position of the first PDCCH in each DRX cycle in the previous L DRX cycles, with high accuracy.
  • the time domain position at which PDCCH monitoring starts in the L+1 DRX cycle is determined based on the second time point.
  • the second time point is determined based on the first duration and the time domain position of the first PDCCH in each of the L DRX cycles, and the first duration is configured or indicated by the network device.
  • the time domain position at which the PDCCH starts to be monitored in the L+1 DRX cycle is the later of the first time point and the second time point.
  • the first time point is the starting position of the duration OnDuration in the L+1th DRX cycle.
  • the starting position of the duration in the L+1th DRX cycle is determined based on the DRX cycle length and the DRX starting offset value. of.
  • the terminal equipment also takes into account the first time point (that is, the starting position of the duration (OnDuration) in the L+1th DRX cycle) and performs further protection processing. For example, when the DRX cycle matches or approximately matches the service cycle, if the first time point is later than the second time point, the time domain position at which the terminal equipment starts monitoring the PDCCH in the L+1th DRX cycle is the a time point to avoid premature monitoring of PDCCH, thereby saving energy.
  • the first time point that is, the starting position of the duration (OnDuration) in the L+1th DRX cycle
  • the second time point can better characterize the time domain position of the PDCCH in the L+1 DRX cycle, so even if the DRX duration timer has been started at the first time point, the terminal The equipment does not monitor the PDCCH either, and the terminal equipment does not start monitoring the PDCCH until the second time point. In this way, in a scenario where data is scheduled to arrive late, the terminal device can avoid monitoring the PDCCH prematurely, thereby reducing its own power consumption.
  • the time domain position at which PDCCH monitoring starts in the L+1 DRX cycle is the second time point. That is to say, since the second time point can better characterize the time domain position of the PDCCH in the L+1th DRX cycle, the terminal equipment starts monitoring the PDCCH at the second time point to reduce power consumption.
  • the second time point is the starting position of OnDuration of the L+1th DRX cycle.
  • the time domain position at which PDCCH monitoring is stopped in the L+1 DRX cycle is the earlier one of the third time point and the fourth time point.
  • the third time point is the end position of the duration in L+1 DRX cycles.
  • the fourth time point is determined based on the second duration and the time domain position of the first PDCCH in each of the L DRX cycles.
  • the second duration is configured or indicated by the network device.
  • the terminal equipment stops monitoring the time domain of the PDCCH in the L+1th DRX cycle.
  • the position is the third time point to reduce power consumption and prevent missed detection of PDCCH. If the fourth time point is earlier than the third time point, the fourth time point can better characterize the time domain position of the PDCCH in the L+1th DRX cycle, so the terminal equipment stops monitoring the PDCCH at the fourth time point to reduce power consumption.
  • the terminal equipment determines the time domain position to start monitoring the PDCCH in the L+1 DRX cycle based on the time domain position of the PDCCH in each of the L DRX cycles, including:
  • the terminal equipment determines to start monitoring the PDCCH at the starting position of the duration in the L+1th DRX cycle.
  • the starting position of the duration in the L+1th DRX cycle is determined based on the DRX cycle length and the DRX starting offset value.
  • the first condition includes at least one of the following: First item, downlink control information DCI is lost in at least one DRX cycle among the L DRX cycles.
  • the second item the time domain position of the first PDCCH in the second DRX cycle is later than the fifth time point.
  • the second DRX cycle is at least one DRX cycle among the L DRX cycles.
  • the fifth time point is determined based on the following: the time domain position of the first PDCCH in each DRX cycle of L DRX cycles before the second DRX cycle, and the second duration.
  • the second duration is configured or indicated by the network device.
  • the terminal equipment If the first condition is met and the terminal equipment recognizes that DCI loss occurred in one or more DRX cycles in the first L DRX cycles, the terminal equipment will start the duration in the L+1 DRX cycle. The location starts monitoring PDCCH to reduce data transmission delay.
  • the terminal equipment If the second condition is met and the time domain position of the first PDCCH of one or more DRX cycles in the first L DRX cycles is later than the fifth time point of the corresponding DRX cycle, then the terminal equipment is in the L+1th time point. Start monitoring the PDCCH from the beginning of the duration in each DRX cycle. In this way, even if the jitter of the data frame has a large mutation during the actual network transmission process, the terminal equipment no longer determines the time domain position to start monitoring the PDCCH in the L+1th DRX cycle based on the sudden jitter. This will cause the terminal equipment to If the PDCCH is monitored too late in the L+1 DRX cycle, and the terminal equipment starts monitoring the PDCCH from the beginning of the duration in the L+1 DRX cycle, the data transmission delay can be reduced.
  • the occurrence of DCI loss in at least one DRX cycle among the L DRX cycles is determined based on the following: the data allocation indication DAI field of the second DCI; or the hybrid automatic repeat request process number HPN of the second DCI fields, new data indication NDI field and redundancy version RV field.
  • the second DCI is after the lost DCI.
  • the terminal device recognizes that DCI loss has occurred in the DRX cycle based on the fields in the subsequent DCI (ie, the second DCI).
  • the second DCI is received through the first PDCCH in the third DRX cycle.
  • the third DRX cycle is one DRX cycle among L DRX cycles.
  • the terminal equipment recognizes that DCI loss has occurred in the DRX cycle based on the DCI in the first PDCCH (ie, the above-mentioned second DCI).
  • the method also includes: when the DRX duration timer times out, the terminal equipment stops monitoring the PDCCH in the L+1 DRX cycle to reduce the computational complexity on the terminal equipment side.
  • the method further includes: when the DRX inactivation timer times out, the terminal equipment stops monitoring the PDCCH in the L+1th DRX cycle to reduce the computational complexity on the terminal equipment side.
  • the third aspect is to provide a communication method.
  • the execution subject of this method may be a network device or a chip applied in the network device.
  • the following description takes the execution subject being a network device as an example.
  • the method includes: the network device sends a physical downlink control channel PDCCH to the terminal device in each DRX cycle of L discontinuous reception DRX cycles.
  • L is a positive integer.
  • the network device determines the time domain position at which the terminal equipment starts monitoring the PDCCH in the L+1th DRX cycle based on the time domain position of the PDCCH in each of the L DRX cycles.
  • the time domain position at which the terminal equipment starts monitoring the PDCCH in the L+1 DRX cycle is the later of the sixth time point and the seventh time point.
  • the sixth time point is the starting position of the duration OnDuration in the L+1th DRX cycle.
  • the starting position of the duration in the L+1th DRX cycle is determined based on the DRX cycle length and the DRX starting offset value. of.
  • the seventh time point is the starting position of OnDuration of the L+1th DRX cycle.
  • the time domain position at which the terminal equipment stops monitoring the PDCCH in the L+1 DRX cycle is the earlier one of the eighth time point and the ninth time point.
  • the eighth time point is the end position of the duration in L+1 DRX cycles.
  • the ninth time point is determined based on the second duration and the time domain position of the second PDCCH in each of the L DRX cycles.
  • the second duration is configured or indicated by the network device for the terminal device.
  • the network device determines the starting position of the duration in the L+1 DRX cycle and the terminal device starts monitoring the PDCCH. Among them, the starting position of the duration in the L+1 DRX cycle is determined based on the DRX cycle and the DRX starting offset value.
  • the network device determines the time domain position at which the terminal device starts monitoring the PDCCH in the L+1 DRX cycle based on the time domain position of the PDCCH in each of the L DRX cycles, including: When downlink control information DCI is lost in at least one of the L DRX cycles, the network device determines the time domain position of the first PDCCH in the L+1th DRX cycle based on the time domain position of the first PDCCH in each of the L DRX cycles. The terminal equipment starts to monitor the time domain position of the PDCCH.
  • the occurrence of DCI loss in at least one DRX cycle among the L DRX cycles is determined based on the following: the terminal device transmits DTX non-continuously at the resource location of the hybrid automatic repeat request HARQ.
  • HARQ is at least used to feedback the reception status of the lost DCI.
  • the first PDCCH in the third DRX cycle is after the lost DCI.
  • the third DRX cycle is one DRX cycle among L DRX cycles.
  • the method also includes: the network device determines that when the DRX duration timer times out, the terminal device stops monitoring the PDCCH in the L+1 DRX cycle; or, the network device determines that when the DRX inactive timer The operation times out, and the terminal equipment stops monitoring PDCCH in the L+1 DRX cycle.
  • the network device determines the time domain position of the PDCCH in the L+1th DRX cycle after the terminal device starts monitoring the PDCCH according to the time domain position of the PDCCH in each of the L DRX cycles. It also includes: the network device determines that the PDCCH is not sent during the duration of the L+1 DRX cycle; the network device determines that the terminal device continues to monitor the PDCCH during the L+1 DRX cycle.
  • the network device determines that the terminal device continues to monitor the PDCCH in the L+1th DRX cycle, including: the network device determines that the terminal device continues to monitor the PDCCH within the first time window.
  • the first time window is within the L+1th DRX cycle, and the starting position of the first time window is not earlier than the end position of the duration in the L+1th DRX cycle.
  • the first duration is determined based on the first jitter range.
  • the first duration is determined based on the first jitter range and the first interval.
  • the first jitter range is the statistical result determined by the network device, or the A jitter range is the information a network device obtains from other network devices.
  • the first interval is the time interval for the network device to obtain adjacent data frames (or adjacent PDU sets).
  • the second duration is determined based on the first jitter range.
  • the second duration is determined based on the first jitter range and the first interval.
  • the first jitter range is a statistical result determined by the network device, or the first jitter range is information obtained by the network device from other network devices.
  • the first interval is the time interval for the network device to obtain adjacent data frames (or adjacent PDU sets).
  • the fourth aspect is to provide a communication method.
  • the execution subject of this method may be a network device or a chip applied in the network device.
  • the following description takes the execution subject being a network device as an example.
  • the method includes: the network device sends a physical downlink control channel PDCCH to the terminal device in each DRX cycle of L discontinuous reception DRX cycles. Among them, L is a positive integer.
  • the network device sends first instruction information to the terminal device.
  • the first indication information indicates the time domain position of the terminal equipment to start monitoring the PDCCH in the L+1 DRX cycle, and the time domain position indicated by the first indication information is based on the time domain position of the PDCCH in each DRX cycle of the L DRX cycles. The location is determined.
  • the second PDCCH is the first PDCCH sent by the network device in the first DRX cycle.
  • the second PDCCH is the PDCCH that schedules the first physical downlink shared channel PDSCH
  • the first PDSCH is the earliest PDSCH among which the network device receives the acknowledgment information ACK in the first DRX cycle.
  • the target time domain position is the later of the sixth time point and the seventh time point.
  • the sixth time point is the starting position of the duration OnDuration in the L+1th DRX cycle.
  • the starting position of the duration in the L+1th DRX cycle is determined based on the DRX cycle length and the DRX starting offset value. of.
  • the target temporal position is the seventh time point.
  • the method further includes: the network device sends second indication information to the terminal device.
  • the second indication information indicates the time domain position at which the terminal equipment stops monitoring the PDCCH in the L+1 DRX cycle, and the time domain position indicated by the second indication information is the earlier one of the eighth time point and the ninth time point.
  • the eighth time point is the end position of the duration in L+1 DRX cycles.
  • the ninth time point is determined based on the second duration and the time domain position of the second PDCCH in each of the L DRX cycles.
  • the second duration is configured or indicated by the network device for the terminal device.
  • the network device determines the time domain of the PDCCH in each of the L DRX cycles.
  • Position, determining the target time domain position includes: the network device determines that the time domain position of the second PDCCH in the second DRX cycle is later than the tenth time point.
  • the second DRX cycle is at least one DRX cycle among the L DRX cycles, and the tenth time point is determined according to the following: the time domain position of the second PDCCH in each of the L DRX cycles before the second DRX cycle. , and a second duration, the second duration is configured or instructed by the network device for the terminal device.
  • the network device determines the target time domain position as the starting position of the duration in the L+1th DRX cycle.
  • the starting position of the duration in the L+1th DRX cycle is determined based on the DRX cycle length and the DRX starting offset value. .
  • the network device determines the target time domain position based on the time domain position of the PDCCH in each of the L DRX cycles, including: downlink control information DCI occurs in at least one DRX cycle among the L DRX cycles. In the case of loss, the network device determines the target time domain position based on the time domain position of the first PDCCH in each of the L DRX cycles.
  • the first PDCCH is the first PDCCH received by the terminal equipment in the first DRX cycle; or, the first PDCCH is the PDCCH that schedules the first PDSCH, and the first PDSCH is the PDSCH that the terminal equipment feeds back ACK in the first DRX cycle.
  • the first DRX cycle is any one of the L DRX cycles.
  • the first PDCCH in the third DRX cycle is after the lost DCI.
  • the third DRX cycle is one DRX cycle among L DRX cycles.
  • a communication device in a fifth aspect, includes: a processor; the processor is coupled to a memory, and is used to read instructions in the memory and execute them, so that the communication device performs any of the above aspects or any possible design of any aspect.
  • the method executed by the terminal device may be a terminal device in the above-mentioned first aspect or any possible design of the first aspect, or a terminal device in the above-mentioned second aspect or any possible design of the second aspect, or implement the above-mentioned terminal device.
  • Functional chip in the above-mentioned first aspect or any possible design of the first aspect, or a terminal device in the above-mentioned second aspect or any possible design of the second aspect, or implement the above-mentioned terminal device.
  • a sixth aspect provides a chip.
  • the chip includes processing circuits and input and output interfaces. Among them, the input and output interfaces are used to communicate with modules outside the chip.
  • the chip may be a chip that implements the functions of the terminal device in the first aspect or any possible design of the first aspect.
  • the processing circuit is used to run computer programs or instructions to implement the method in the above first aspect or any possible design of the first aspect.
  • the chip may be a chip that implements the functions of the terminal device in the above second aspect or any possible design of the second aspect.
  • the processing circuit is used to run computer programs or instructions to implement the above second aspect or any method in the possible design of the second aspect.
  • a communication device in a seventh aspect, includes: a processor; the processor is coupled to a memory, and is used to read instructions in the memory and execute them, so that the communication device performs any of the above aspects or any possible design of any aspect.
  • the method performed by the network device may be a network device in the above third aspect or any possible design of the third aspect, or a network device in any possible design of the above fourth aspect or the fourth aspect, or implement the above network device Functional chip.
  • An eighth aspect provides a chip.
  • the chip includes processing circuits and input and output interfaces. Among them, the input and output interface Used to communicate with modules outside the chip.
  • the chip may be a chip that implements the network device function in the above third aspect or any possible design of the third aspect.
  • the processing circuit is used to run computer programs or instructions to implement the method in the above third aspect or any possible design of the third aspect.
  • the chip may be a chip that implements the network device function in the fourth aspect or any possible design of the fourth aspect.
  • the processing circuit is used to run computer programs or instructions to implement the above fourth aspect or any method in the possible design of the fourth aspect.
  • a computer-readable storage medium stores instructions, which when run on a computer, enable the computer to perform any of the methods in any of the above aspects.
  • a tenth aspect provides a computer program product containing instructions that, when run on a computer, enable the computer to perform any of the methods of any of the above aspects.
  • Figure 1 is a schematic architectural diagram of a communication system provided by an embodiment of the present application.
  • Figure 2b is a schematic diagram of resource distribution of feedback information provided by an embodiment of the present application.
  • Figure 3a is a schematic diagram of a DRX mechanism configuration provided by an embodiment of the present application.
  • Figure 3b is a schematic diagram of yet another DRX mechanism configuration provided by an embodiment of the present application.
  • Figure 4a is a schematic diagram of a data scheduling scenario provided by an embodiment of the present application.
  • Figure 4c is a schematic diagram of another data scheduling scenario provided by an embodiment of the present application.
  • Figure 5a is a schematic diagram of a jitter range provided by an embodiment of the present application.
  • Figure 5b is a schematic diagram of a DRX configuration scenario provided by an embodiment of the present application.
  • Figure 6 is a schematic flow chart of a communication method provided by an embodiment of the present application.
  • FIG. 7 is a schematic flowchart of yet another communication method provided by an embodiment of the present application.
  • Figure 8a is a schematic diagram of another DRX configuration scenario provided by the embodiment of the present application.
  • Figure 8b is a schematic diagram of another DRX configuration scenario provided by the embodiment of the present application.
  • Figure 8c is a schematic diagram of another DRX configuration scenario provided by the embodiment of the present application.
  • Figure 8d is a schematic diagram of another DRX configuration scenario provided by the embodiment of the present application.
  • Figure 9a is a schematic diagram of another DRX configuration scenario provided by an embodiment of the present application.
  • Figure 9b is a schematic diagram of another DRX configuration scenario provided by the embodiment of the present application.
  • Figure 9c is a schematic diagram of another DRX configuration scenario provided by the embodiment of the present application.
  • Figure 10 is a schematic flow chart of another communication method provided by an embodiment of the present application.
  • Figure 11 is a schematic diagram of another DRX configuration scenario provided by the embodiment of the present application.
  • Figure 12a is a schematic diagram of another DRX configuration scenario provided by the embodiment of the present application.
  • Figure 12b is a schematic diagram of another DRX configuration scenario provided by the embodiment of the present application.
  • Figure 12c is a schematic diagram of another DRX configuration scenario provided by the embodiment of the present application.
  • Figure 13 is a schematic flow chart of another communication method provided by an embodiment of the present application.
  • Figure 15 is a schematic flow chart of another communication method provided by an embodiment of the present application.
  • the functions of the network device may also be executed by modules (such as chips) in the network device, or may be executed by a control subsystem that includes the functions of the network device.
  • the control subsystem here that includes network equipment functions can be the control center in the above application scenarios such as smart grid, industrial control, smart transportation, smart city, etc.
  • the functions of the terminal equipment can also be performed by modules in the terminal equipment (such as chips or modems), or can be performed by devices containing the functions of the terminal equipment.
  • the number of bits of the HARQ-ACK codebook fed back in a semi-static form is generally determined by configuration parameters (such as uplink format, downlink format, K1 set, time domain resource allocation (TDRA) table).
  • the configuration parameters can Carried by signaling, such as higher layer signaling.
  • NR new radio interface
  • the terminal device determines to use a semi-static form to feed back the HARQ-ACK codebook, it uses a method similar to "backtracking", that is, it feeds back the HARQ-ACK codebook in time slot n.
  • the number of bits of the HARQ-ACK codebook fed back in a dynamic form generally depends on the actual or current scheduling situation. Specifically, when the terminal device determines to use the dynamic HARQ-ACK codebook, the downlink control information (DCI) received by the terminal device includes a data assignment indication (data assignment indication, DAI) field.
  • the DAI field indicates the number of scheduled data packets (ie, PDSCH). This field can be understood as a counter.
  • the DAI count result indicates the number of bits in the HARQ-ACK codebook.
  • the HARQ-ACK information of three time slots must be fed back in the same time slot.
  • the DAI field in the DCI of each time slot indicates 1/2/3 respectively.
  • the terminal device can determine the feedback HARQ -The number of bits in the ACK codebook is 3.
  • the DAI field can be further divided into count DAI (counter DAI) and total DAI (total DAI).
  • the function of counter DAI is consistent with the DAI introduced earlier, that is, it is used to indicate that the current schedule is before a feedback
  • total DAI is used to indicate how many data packets (or PDSCHs) are scheduled before a feedback.
  • the value of total DAI contained in the DCI of each scheduling data is the same.
  • the size of the HARQ-ACK codebook can be determined based on the value indicated by total DAI.
  • the terminal equipment needs to be activated during the DRX duration timer, DRX inactivation timer, downlink (DL) DRX retransmission timer and uplink (uplink, UL) DRX retransmission timer. Monitor PDCCH, these times are also collectively called activation time (Active Time). The remaining time is collectively referred to as outside Active Time. Outside the activation time, the terminal device does not need to monitor the PDCCH. At this time, the terminal device can enter the sleep state to save power consumption.
  • the above-mentioned DRX duration timer indicates the length of time for the terminal equipment to continuously monitor the PDCCH at the beginning of the DRX cycle.
  • the above-mentioned DRX inactivation timer indicates how long the terminal equipment starts (or restarts) the timer and keeps monitoring the PDCCH continuously when it detects that the PDCCH is used to schedule the initial transmission of uplink or downlink data.
  • the DRX cycle can be understood to be determined based on drx-LongCycleStartOffset and/or shortDRX; the DRX start offset value can be understood to be determined based on drx-LongCycleStartOffset and/or drx-SlotOffset.
  • the terminal equipment After entering a DRX cycle, during the duration (on duration) period, the terminal equipment begins to continuously monitor the PDCCH:
  • the terminal device receives the data according to the received scheduling information (i.e. Receive PDSCH) and start the DRX inactivation timer.
  • the DRX inactivation timer is started (or restarted) once.
  • the terminal equipment is in the DRX inactivation timer period.
  • the PDCCH is continuously monitored until the DRX inactivation timer times out and the terminal device enters the sleep period, as shown in Figure 3b.
  • the terminal equipment periodically monitors the PDCCH within a time period of each duration, and the time periods of the duration are represented by solid line squares in Figures 3a and 3b.
  • a protocol data unit set includes business data in a frame (frame) data frame.
  • PDU set is defined from the MAC layer perspective.
  • a data frame can also be replaced by a PDU set.
  • the network device can configure the DRX cycle length for the terminal device that is relatively close to the data frame arrival time interval, for example, it can be 16 ms or 17 ms.
  • the network device can configure the DRX cycle length equal to the data frame arrival time interval for the terminal device, that is, 16.67ms.
  • the starting position of the duration in the DRX cycle may coincide with the service cycle of the XR service (as shown by the dotted line position). In this case, it can also be described as that the DRX cycle matches the business cycle. Alternatively, the starting position of the duration in the DRX cycle may not coincide with the business cycle of the XR service (such as the position shown by the dotted line), and the difference is within a certain range. Or, in some DRX cycles, the starting position of the duration coincides with the business cycle of the XR service (as shown by the dotted line), and the starting position of the duration in its DRX cycle coincides with the business cycle of the XR service ( As shown by the dotted line, the gap is within a certain range. In this case, it can also be described as that the DRX cycle approximately matches the business cycle. In the embodiment of this application, the matching of the DRX cycle and the service cycle is taken as an example for introduction.
  • the application server processes different data frames at different speeds, and the routing methods of different data frames from the application server through the Internet and the core network to network equipment (such as base stations) are different.
  • the time when the data frame actually arrives at the network device may have jitter.
  • jitter may also occur in the time when the data frame reaches the terminal device.
  • the duration of jitter may be 0 to 8ms.
  • the arrival time of the data frame may be delayed by 0 to 8ms, that is, the time interval between the arrival of the data frame fluctuates between 16.67ms and 24.67ms.
  • the terminal device If the actual arrival time of the data frame is outside the duration of the DRX cycle, that is, the terminal device does not receive the data schedule within the duration, the terminal device does not monitor the PDCCH after the duration. In this case, the network device delays the data frame until the next DRX cycle for scheduling. Since the length of the DRX cycle is about 16ms to 17ms, delaying scheduling in the next DRX cycle results in a large delay in the data frame of the XR service on the terminal device side, which may cause lag and affect the user experience of the XR service.
  • the network device can configure the duration in the DRX cycle to be longer, which can solve the problem of delayed arrival of data frames due to jitter and make the arrival time of the data frame within the duration as much as possible.
  • the DRX duration configuration is too long, the activation time of the terminal equipment will be too long. In this way, the terminal equipment performs invalid PDCCH monitoring in the period before the PDCCH arrives (that is, it monitors the PDCCH but does not receive the data scheduling information), which is difficult to achieve. Energy saving effect.
  • Figure 5a shows the jitter size of a service.
  • the horizontal axis is the index of the data frame of the XR service
  • the vertical axis is the size of the jitter. It can be seen from Figure 5a that the jitter value of each data frame fluctuates around 0.
  • the jitter range of all data frames in Figure 5a is the range indicated by the vertical double arrow c, or the range indicated by the two horizontal dashed lines in Figure 5a.
  • this jitter range is described as the second
  • the jitter range can also be understood as the estimation result of the jitter range of a certain service during a sustained period of time by communication equipment (such as terminal equipment and network equipment).
  • the jitter range of data frames within a period of time is relatively small.
  • the variation amplitude of the jitter of the data frame in a short period of time is smaller than that in a long period of time, and there is a "slow change" trend as a whole (as shown by the dotted curve in Figure 5a).
  • the terminal device can use the arrival position of the current data frame as a reference and combine it with the first jitter range to determine the fluctuation range of the arrival position of the next data frame.
  • the terminal equipment can only monitor the PDCCH within the small fluctuation range (that is, the fluctuation range of the arrival position of the data frame determined in conjunction with the first jitter range) instead of monitoring the PDCCH within the second jitter range, thereby reducing the difficulty of the terminal equipment monitoring the PDCCH. power consumption.
  • the interval between the dotted box identified by prediction 1 and PDCCH1 is equal to the length of one DRX cycle (or equal to the length of one XR data frame arrival cycle).
  • the terminal device monitors the PDCCH in the predicted arrival position range, and the terminal device receives PDCCH2 from the network device.
  • the terminal equipment uses the time domain position of PDCCH2 as a reference to predict the arrival position range of PDCCH in DRX cycle 3, that is, the position range marked by the dotted double arrow in DRX cycle 3.
  • the center of the dotted double arrow in DRX cycle 3 matches the dotted box identified by prediction 2.
  • the dotted double arrow in DRX cycle 3 indicates the first jitter range.
  • the interval between the dotted box identified by prediction 2 and PDCCH2 is equal to the length of one DRX cycle (or equal to the length of one XR data frame arrival cycle).
  • the terminal device receives the PDCCH from the network device in each of the L DRX cycles.
  • L is a positive integer.
  • the terminal equipment determines the time domain position to start monitoring the PDCCH in the L+1th DRX cycle based on the time domain position of the PDCCH in each of the L DRX cycles.
  • the network device sends the PDCCH to the terminal device in each of the L DRX cycles.
  • the terminal device receives the PDCCH from the network device in each of the L DRX cycles.
  • L is a positive integer.
  • the L DRX cycles may be continuous or discontinuous in the time domain, which is not limited in the embodiment of the present application.
  • the terminal equipment determines the time domain position at which to start monitoring the PDCCH in the L+1th DRX cycle based on the time domain position of the PDCCH in each of the L DRX cycles.
  • S602 includes S602a:
  • the first PDCCH is one of the PDCCHs received by the terminal device in the first DRX cycle, and the first DRX cycle is any one of the L DRX cycles. It is easy to understand that in the embodiment of the present application, each of the L DRX cycles has one first PDCCH, and correspondingly, the number of first PDCCHs is also L.
  • the first DRX cycle is each of the 10 DRX cycles mentioned above. Specifically, when the first DRX cycle is the above-mentioned DRX cycle 1, one of the above-mentioned PDCCH1 and PDCCH2 is the first PDCCH; when the first DRX cycle is the above-mentioned DRX cycle 2, one of the above-mentioned PDCCH3 and PDCCH4 One PDCCH is the first PDCCH; ...; when the first DRX cycle is the above-mentioned DRX cycle 10, one PDCCH among the above-mentioned PDCCH19 and PDCCH20 is the first PDCCH. That is to say, when the number of DRX cycles is 10, the number of first PDCCHs is also 10.
  • the first PDCCH is the PDCCH that schedules the first PDSCH
  • the first PDSCH is the earliest PDSCH for which the terminal device feeds back ACK in the first DRX cycle. It is easy to understand that in the embodiment of the present application, the terminal equipment receives the PDCCH in each of the L DRX cycles, then receives the PDSCH scheduled by the PDCCH, and then feeds back the HARQ-ACK information in the corresponding DRX cycle to indicate Its own reception status of PDSCH.
  • the PDCCH that schedules the first PDSCH is the first PDCCH of the DRX cycle, which can be recorded as ACKed-PDCCH.
  • the time domain position at which monitoring of the PDCCH starts in the L+1 DRX cycle is the starting position of the duration.
  • the network device determines the time domain position at which the terminal equipment starts monitoring the PDCCH in the L+1 DRX cycle based on the time domain position of the PDCCH in each of the L DRX cycles.
  • S603 includes S603a:
  • the terminal device sends PDCCH2; the network device sends PDCCH3 to the terminal device on time slot 3 of DRX cycle 2, and sends PDCCH4 to the terminal device on time slot 4 of DRX cycle 2; ...; the network device sends PDCCH3 to the terminal device on time slot 19 of DRX cycle 10 PDCCH19 is sent to the terminal device, and PDCCH20 is sent to the terminal device on time slot 20 of DRX cycle 10.
  • the first DRX cycle is each of the 10 DRX cycles mentioned above.
  • the terminal equipment will In other words, the first PDCCH and the second PDCCH are the same PDCCH.
  • the second PDCCH is located before the first PDCCH.
  • the time domain position at which the terminal equipment starts monitoring PDCCH in S603a is introduced as follows:
  • the sixth time point is the starting position of the duration (OnDuration) in the L+1 DRX cycle.
  • the starting position of the duration in the L+1 DRX cycle is based on the DRX cycle length and DRX starting offset. If the value is determined, please refer to the introduction of method E1 below for details, which will not be described here.
  • the sixth time point is the same time point as the first time point.
  • the time domain position at which the terminal equipment starts monitoring the PDCCH in the L+1 DRX cycle is the starting position of the duration.
  • the network device determines the time domain position of the first PDCCH in each DRX cycle in the first L DRX cycles. In the L+1 DRX cycle, the terminal equipment starts to monitor the time domain position of the PDCCH. Even if the terminal equipment suffers DCI loss, the network equipment and the terminal equipment can select the same reference PDCCH (i.e., the first PDCCH mentioned above) to predict the PDCCH monitoring position accurately. High sex.
  • the terminal equipment when the terminal equipment loses DCI in at least one DRX cycle among the L DRX cycles, if the second PDCCH is the first PDCCH sent by the network equipment in the first DRX cycle, the second PDCCH may be earlier than the first PDCCH. 1PDCCH.
  • the first PDCCH sent by the network device is PDCCH1, that is, PDCCH1 is the second PDCCH in DRX cycle 1.
  • the terminal equipment loses DCI in time slot 1 of DRX cycle 1, that is, the DCI contained in PDCCH1 is lost.
  • the terminal equipment determines the time domain position to start monitoring the PDCCH in the L+1th DRX cycle based on the time domain position of the PDCCH in each DRX cycle of the first L DRX cycles, without taking into account the first time point ( That is, the starting position of the duration (OnDuration) in the L+1 DRX cycle) for further protection processing.
  • the time domain position at which the PDCCH starts to be monitored in the L+1th DRX cycle is the later one of the first time point and the second time point. That is to say, at the later time point between the first time point and the second time point, the terminal equipment starts to monitor the PDCCH of the L+1th DRX cycle. It can be understood that the terminal equipment not only "determines the time domain position to start monitoring the PDCCH in the L+1th DRX cycle based on the time domain position of the PDCCH in each DRX cycle of the first L DRX cycles", but also takes into account the first time Point (that is, the starting position of the duration (OnDuration) in the L+1 DRX cycle) has been further protected.
  • the first time point is the starting position of the duration (OnDuration) in the L+1 DRX cycle.
  • the starting position of the duration in the L+1 DRX cycle is determined based on the DRX cycle length and the DRX starting offset value. of.
  • the DRX start offset value is determined according to one or more parameters in drx-LongCycleStartOffset and drx-SlotOffset.
  • the cycle length of DRX is determined based on one or more parameters of drx-LongCycleStartOffset and shortDRX.
  • the first time point can be recorded as X.
  • the second time point is determined based on the first duration and the time domain position of the first PDCCH in each of the L DRX cycles.
  • the first duration is configured or indicated by the network device.
  • the second time point is introduced through two situations:
  • the time domain position of the first PDCCH in each of the L DRX cycles is an absolute time domain position.
  • the first duration is recorded as T1.
  • T1 represents the first duration
  • a represents the first interval
  • b represents the length of the first jitter range.
  • the first interval is introduced as follows: the first interval is the time interval for the network device to obtain adjacent data.
  • the data involved in the first interval may include data frames, video frames, etc.
  • adjacent data refers to adjacent data frames, or adjacent video frames.
  • the first interval can be understood as the frame interval, such as 16.67ms above.
  • the data involved in the first interval may include PDU set.
  • adjacent data refers to adjacent PDU sets.
  • the first interval can be understood as the interval between two adjacent PDU sets.
  • T1 represents the first duration
  • b represents the length of the first jitter range.
  • configuration process of the first duration is introduced as follows: for the network device, the network device sends configuration parameter 2 to the terminal device.
  • the terminal device receives the configuration parameter 2 from the network device.
  • configuration Parameter 2 is used to configure the first duration.
  • configuration parameter 2 includes the above-mentioned parameter T1, and the terminal device can determine the first duration based on parameter T1.
  • the configuration parameter 2 includes the above parameter b, and the terminal device can determine the first duration based on the parameter b and formula (3), which is not limited in the embodiment of the present application.
  • T start2 P-T1 formula (4)
  • T start2 represents the second time point
  • T1 represents the first duration
  • P represents the parameters related to the offset
  • P is a parameter determined based on the time domain position of the first PDCCH in each DRX cycle of L DRX cycles.
  • P represents the parameters related to the offset
  • O 1 represents the offset of the first PDCCH in the first DRX cycle of L DRX cycles (that is, the time domain position of the first PDCCH in the first DRX cycle relative to the first DRX cycle offset of the starting position of the medium duration)
  • O 2 represents the offset of the first PDCCH in the second DRX cycle of L DRX cycles (that is, the relative time domain position of the first PDCCH in the second DRX cycle offset from the starting position of the duration in the second DRX cycle)
  • O L represents the offset of the first PDCCH in the L-th DRX cycle in L DRX cycles (i.e.
  • i ⁇ j, w i ⁇ w j that is, the farther away the first PDCCH is from the L+1th DRX cycle, the smaller the corresponding weighting factor value is.
  • the first jitter range corresponding to parameter b is [-2,2]ms (equivalent to the first jitter range is [0,4]ms), the subcarrier spacing of the system is 30kHz, and the time slot length is 0.5 ms, assuming that in each of the first L DRX cycles, the time domain position of the first PDCCH is offset by 8 slots (i.e. offset by 4ms) relative to the starting position of the duration in the DRX cycle, then in In the L+1 DRX cycle, the terminal equipment starts monitoring the PDCCH at a position offset by 4 time slots (ie, offset by 2 ms) relative to the starting position of the duration.
  • the second time point may be t0 in Figure 9a. Therefore, the terminal equipment starts monitoring PDCCH from t0.
  • the L+1th DRX cycle is DRX cycle 3.
  • the second time point may be t3 in Figure 9a. The terminal equipment starts monitoring the PDCCH in DRX cycle 3 from a certain position during the duration (t3 in Figure 9a).
  • the L+1th DRX cycle is DRX cycle 2.
  • the first time point may be t1 in Figure 9a
  • the second time point may be t0 in Figure 9a. Since t1 is later than t0, the terminal equipment starts monitoring the PDCCH from the starting position of the duration (t1 in Figure 9a) in DRX cycle 2.
  • the current L DRX cycles are DRX weeks In the case of period 2, the L+1th DRX cycle is DRX cycle 3.
  • the first time point may be t2 in Figure 9a, and the second time point may be t3 in Figure 9a. Since t3 is later than t2, the terminal equipment starts monitoring the PDCCH from a certain position during the duration (t3 in Figure 9a) in DRX cycle 3.
  • the terminal device since the DRX cycle matches or approximately matches the service cycle, when the first time point is later than the second time point, the terminal device is in the Lth
  • the time domain position where PDCCH starts to be monitored in +1 DRX cycle is the first time point to avoid premature monitoring of PDCCH and thus save energy.
  • the second time point can better characterize the time domain position of the PDCCH in the L+1th DRX cycle. Therefore, even if the DRX duration timer is set at the first time point has been started, the terminal equipment does not monitor the PDCCH until the second time point. The terminal equipment does not start monitoring the PDCCH until the second time point. In this way, in the scenario where the data schedule arrives late, the terminal equipment can avoid prematurely monitoring the PDCCH, thereby reducing its own power consumption. .
  • the time domain position at which PDCCH monitoring starts in the L+1 DRX cycle is the second time point. That is to say, at the second time point, the terminal equipment starts to monitor the PDCCH of the L+1th DRX cycle.
  • the second time point may be t0 in Figure 9a.
  • the terminal equipment starts monitoring the PDCCH at the second time point in DRX cycle 2 (ie, t0 in Figure 9b).
  • the second time point is the starting position of the duration in the L+1th DRX cycle. That is to say, in mode A2, the period length of the DRX cycle is not fixed, and the interval length between the durations of adjacent DRX cycles is no longer fixed. In this case, the network device may not configure the parameter of the DRX cycle length for the terminal device.
  • the second time point can better characterize the time domain position of the PDCCH in the L+1th DRX cycle. Therefore, the terminal equipment starts monitoring the PDCCH at the second time point to reduce power consumption.
  • the starting position of OnDuration in the current DRX cycle is no longer determined based on the configured DRX cycle and DRX starting offset value, but based on the timing of the PDCCH in the previous L DRX cycles.
  • the starting position of the duration in the L+1th DRX cycle is determined based on the DRX cycle length and the DRX starting offset value.
  • the first time point in method A1 please refer to the introduction of the first time point in method A1, which will not be described again here. .
  • the first condition includes at least one of the following:
  • Condition a1 DCI loss occurs in at least one DRX cycle among L DRX cycles.
  • Condition a2 the time domain position of the first PDCCH in the second DRX cycle is later than the fifth time point.
  • the first condition includes condition a1 and/or condition a2. It should be understood that when the first condition includes condition a1 and does not include condition a2, satisfying the first condition can be understood as satisfying condition a1. When the first condition includes condition a2 and does not include condition a1, satisfying the first condition can be understood as satisfying condition a2. In the case where the first condition includes conditions a1 and a2, satisfying the first condition can be understood as satisfying condition a1 and/or satisfying condition a2.
  • condition a1 that is, DCI loss occurs in at least one DRX cycle among L DRX cycles.
  • DCI loss in the third DRX cycle is determined by the terminal device based on at least one of the following:
  • the first item refers to the data assignment indication (DAI) field of DCI.
  • DAI data assignment indication
  • the reference DCI is received through the first PDCCH in the third DRX cycle.
  • the terminal device receives the reference DCI through the first PDCCH of the third DRX cycle, if the value indicated by the DAI field of the reference DCI is greater than the first preset value, such as If the DAI field indicates a value greater than 0, the terminal device considers that DCI loss occurs in the third DRX cycle.
  • the second item refers to DCI's Hybrid Automatic Repeat Request Process Number (HARQ process number, HPN) field, new data indicator (new data indicator, NDI) field and redundancy version (redundancy version, RV) field.
  • HARQ process number HPN
  • new data indicator new data indicator
  • redundancy version redundancy version
  • condition a2 that is, the time domain position of the first PDCCH in the second DRX cycle is later than the fifth time point
  • the second DRX cycle is at least one DRX cycle among the L DRX cycles. That is to say, any DRX cycle in which "the time domain position of the first PDCCH is later than the fifth time point" among the L DRX cycles is recorded as the second DRX cycle.
  • the fifth time point is determined based on the following: the time domain position of the first PDCCH in each DRX cycle of L DRX cycles before the second DRX cycle, and the second duration.
  • the second duration is configured or instructed by the network device. Below, the fifth time point is introduced through two situations:
  • the time domain position of the first PDCCH in each of the L DRX cycles is an absolute time domain position.
  • the second duration is recorded as T2.
  • T2 represents the second duration.
  • a represents the first interval.
  • b represents the length of the first jitter range.
  • the configuration process of the second duration is introduced as follows: for the network device, the network device sends configuration parameter 3 to the terminal device. Correspondingly, the terminal device receives the configuration parameter 3 from the network device. Among them, configuration parameter 3 is used to configure the second duration.
  • configuration parameter 3 includes the above-mentioned parameter T2, and the terminal device can determine the second duration based on parameter T2.
  • configuration parameter 3 includes the above parameter a and parameter b, and the terminal device is based on parameter a and parameter b.
  • b, and formula (6) the second duration can be determined, which is not limited in the embodiment of the present application.
  • the relationship between the first duration and the second duration is as follows: the first duration and the second duration are different durations, and the second duration is longer than the first duration. For details, please refer to formula (2) and formula (6), here No longer.
  • T end5 n+T2 formula (7)
  • T end5 represents the fifth time point
  • n represents the time domain position of the first PDCCH, such as the slot index
  • T2 represents the second duration
  • condition a2 there is a monitoring time domain position of the predicted PDCCH in each of the L DRX cycles.
  • the time domain position where the PDCCH is expected to be monitored can be recorded as ⁇ n+T1, n+T2 ⁇ .
  • ⁇ n+T1, n+T2 ⁇ can be understood as the time domain position where the PDCCH is expected to be monitored in the second DRX cycle: from the moment "n+T1" to the moment "n+T2" time period in between.
  • the L+1th DRX cycle is DRX cycle 2.
  • the fifth time point may be t1 in Figure 9c.
  • the expected arrival time of the first PDCCH by the terminal equipment in DRX cycle 2 is t0 ⁇ t1.
  • the terminal equipment monitors the first PDCCH after t1 of DRX cycle 2, such as PDCCH2 in Figure 9c. That is to say, in DRX cycle 2, due to network congestion, sudden jitter occurs in data scheduling.
  • the terminal device does not receive the first PDCCH within the expected arrival time of the first PDCCH, but receives the first PDCCH after the expected arrival time. PDCCH.
  • the terminal equipment determines the time domain position to start monitoring the PDCCH in DRX cycle 3
  • it will start from a certain position during the duration in DRX cycle 3 (as shown in Figure 9c t3) starts monitoring the PDCCH, which causes the terminal equipment to start monitoring the PDCCH too late in DRX cycle 3, resulting in excessive transmission delay and affecting user experience.
  • the terminal equipment starts monitoring the PDCCH from the starting position of the duration (t2 in Figure 9c) in DRX cycle 3 to reduce the data transmission delay.
  • the time domain position of the first PDCCH in each of the L DRX cycles is a relative time domain position, that is, an offset relative to the starting position of the duration in the DRX cycle where the first PDCCH is located.
  • the first L DRX cycles are one or more DRX cycles.
  • the second duration is recorded as T2.
  • T2 represents the second duration
  • b represents the length of the first jitter range.
  • the configuration process of the second duration is introduced as follows: for the network device, the network device sends configuration parameter 4 to the terminal device. Correspondingly, the terminal device receives the configuration parameter 4 from the network device. Among them, configuration parameter 4 is used to configure the second duration.
  • the configuration parameter 4 includes the above-mentioned parameter T2, and the terminal device can determine the second duration based on the parameter T2.
  • the configuration parameter 4 includes the above parameter b, and the terminal device can determine the second duration based on the parameter b and formula (8), which is not limited in the embodiment of the present application.
  • the relationship between the first duration and the second duration is as follows: the first duration and the second duration are equal durations. For details, see formula (3) and formula (8). However, the first duration and the second duration have different uses. For example, In the method A1, the first time period is used to determine the second time point, and in the method A3, the second time period is used to determine the fifth time point, which will not be described again here.
  • T end5 P+T2 formula (9)
  • T end5 represents the fifth time point
  • T2 represents the second duration
  • P represents the parameters related to the offset
  • P is based on For parameters determined by the time domain position of the first PDCCH in each of the L DRX cycles, the parameter P can be found in the introduction of formula (5) and will not be described again here.
  • condition a2 there is a monitoring time domain position of the expected first PDCCH in each of the L DRX cycles.
  • the time domain position where the first PDCCH is expected to be monitored can be recorded as ⁇ P-T1, P+T2 ⁇ .
  • ⁇ P-T1, P+T2 ⁇ can be understood as the time domain position where the first PDCCH is expected to be monitored in the second DRX cycle: from the moment "P-T1" to the moment "P+T2" The period of time between moments.
  • the fifth time point can better characterize the expected latest time point of the first PDCCH in the second DRX cycle. Therefore, the terminal equipment monitors the third time point after the fifth time point of the second DRX cycle. In the case of one PDCCH, it means that there is an abnormality in the second DRX cycle, such as a jitter abnormal point caused by instantaneous network fluctuations. The terminal equipment starts monitoring the PDCCH from the start of the duration in the L+1 DRX cycle to avoid excessive The problem of excessive data transmission delay caused by late monitoring of PDCCH.
  • the terminal equipment no longer determines the time domain position to start monitoring the PDCCH in the L+1th DRX cycle based on the sudden jitter. This will cause the terminal equipment to If the PDCCH is monitored too late in the L+1 DRX cycle, and the terminal equipment starts monitoring the PDCCH from the beginning of the duration in the L+1 DRX cycle, the data transmission delay can be reduced.
  • the terminal device also performs S606:
  • the terminal equipment determines the time domain position at which to stop monitoring the PDCCH in the L+1th DRX cycle.
  • time domain position of stopping monitoring PDCCH in S606 is introduced through three methods (method B1, method B2 and method B3):
  • the time domain position at which PDCCH monitoring is stopped in the L+1th DRX cycle is the earlier one of the third time point and the fourth time point. That is to say, at the earlier time point between the third time point and the fourth time point, the terminal equipment stops monitoring the PDCCH of the L+1th DRX cycle.
  • the third time point is the end position of the duration in L+1 DRX cycles, such as the position where the DRX duration timer times out, or the position where the DRX inactivation timer times out.
  • the third time point can be recorded as Y.
  • the fourth time point is determined based on the second duration and the time domain position of the first PDCCH in each of the L DRX cycles.
  • the second duration is configured or indicated by the network device. Below, the fourth time point is introduced through two situations:
  • the time domain position of the first PDCCH in each of the L DRX cycles is an absolute time domain position.
  • the second duration is recorded as T2.
  • the second duration T2 satisfies formula (6), which will not be described again here.
  • T end4 represents the fourth time point
  • n represents the time domain position of the first PDCCH, such as the timeslot index
  • T2 represents the Two hours.
  • n+T2 represents the fourth time point.
  • Y represents the third time point.
  • the time domain position of the first PDCCH in each of the L DRX cycles is a relative time domain position, that is, an offset relative to the starting position of the duration in the DRX cycle where the first PDCCH is located.
  • L ⁇ 1 that is, the first L DRX cycles are one or more DRX cycles.
  • the second duration is recorded as T2.
  • T2 satisfies formula (8), which will not be described again here.
  • T end4 represents the fourth time point
  • T2 represents the second duration
  • P represents the parameter related to the offset
  • P is a parameter determined based on the time domain position of the first PDCCH in each DRX cycle of L DRX cycles.
  • the parameter P can be found in the introduction of formula (5) and will not be repeated here.
  • the third time point is the end position of the duration (OnDuration) in the L+1th DRX cycle. Since the DRX cycle matches or approximately matches the business cycle, in the third time point If the time point is earlier than the fourth time point, the terminal equipment stops monitoring the time domain position of the PDCCH at the third time point in the L+1th DRX cycle to reduce power consumption and prevent missed detection of the PDCCH. In the case where the fourth time point is earlier than the third time point, since the fourth time point can better characterize the time domain position of the PDCCH in the L+1th DRX cycle, the terminal equipment stops monitoring the PDCCH at the fourth time point, to reduce power consumption.
  • the time domain position where PDCCH monitoring is stopped in the L+1 DRX cycle is the end position of the duration, such as the position where the DRX duration timer times out, or the position where the DRX inactivation timer times out.
  • the terminal equipment stops monitoring the PDCCH in the L+1 DRX cycle.
  • the configuration parameters of the DRX duration timer can be provided by the network device. For details, please refer to related technologies, which will not be described again here.
  • the DRX inactivation timer takes the DRX inactivation timer as an example.
  • the terminal equipment stops monitoring the PDCCH in the L+1 DRX cycle.
  • the configuration parameters of the DRX inactivation timer can be provided by the network device. For details, please refer to related technologies, which will not be described again here.
  • the terminal equipment stops monitoring the PDCCH at the end of the duration in the L+1th DRX cycle, so as to reduce the computational complexity on the terminal equipment side.
  • the interval between the time domain position where the PDCCH is stopped to be monitored in the L+1th DRX cycle and the time domain position where the PDCCH is started to be monitored is equal to the first parameter.
  • the first parameter indicates the duration of the first jitter range.
  • the duration indicated by the first parameter is recorded as the third duration.
  • the terminal equipment continuously monitors the After PDCCH for a period of time, the terminal equipment stops monitoring the PDCCH of the L+1 DRX cycle.
  • the duration of continuous monitoring of the PDCCH in the L+1 DRX cycle is equal to the duration indicated by the first parameter (ie, the third duration).
  • the first parameter includes parameter b.
  • the network device sends the first parameter to the terminal device.
  • the terminal device receives the first parameter from the network device.
  • the first parameter is used to configure the duration for which the terminal equipment continuously monitors the PDCCH in the L+1 DRX cycle (ie, the third duration).
  • the terminal equipment can determine the length of time (ie, the third duration) that it will continue to monitor the PDCCH in the L+1th DRX cycle. Then, the terminal equipment determines the time domain position at which it stops monitoring the PDCCH in the L+1th DRX cycle based on the time domain position at which it starts monitoring the PDCCH in the L+1th DRX cycle and the parameter b.
  • the length of the duration (OnDuration) in the L+1th DRX cycle can be configured as 4ms. This means that the terminal equipment continuously monitors the PDCCH in the L+1 DRX cycle for 4ms.
  • the terminal equipment after the terminal equipment starts monitoring the PDCCH in the L+1th DRX cycle, it determines the time domain position to stop monitoring the PDCCH based on the duration indicated by the first reference (ie, the third duration). Moreover, the duration of continuously monitoring the PDCCH is equal to the first jitter range, which is less than the entire duration. This means that the terminal equipment does not need to continuously monitor the PDCCH throughout the duration to reduce power consumption.
  • the terminal device may execute S606 first and then S604, or may execute S604 and S606 at the same time, which is not limited in the embodiment of the present application.
  • Solution 1 includes method A1 and method B1. That is to say, for the L+1th period, the terminal equipment determines the time domain position to start monitoring the PDCCH according to the second time point. For example, at a later time point between the first time point and the second time point, or at the second time point, the terminal equipment starts monitoring the PDCCH of the L+1th DRX cycle. For the first time point and the second time point, please refer to the introduction of method A1. At the earlier of the third time point and the fourth time point, the terminal equipment stops monitoring the PDCCH of the L+1th DRX cycle. For the third time point and the fourth time point, please refer to the introduction of method B1.
  • the first time point may be t0 in Figure 12a
  • the second time point may be t1 in Figure 12a.
  • the third time point may be t3 in Figure 12a, and the fourth time point may be t2 in Figure 12a. Since t2 is earlier than t3, the terminal equipment stops monitoring the PDCCH in DRX cycle 2 at another position during the duration (t2 in Figure 12a).
  • Solution 2 includes method A1 and method B2. That is to say, for the L+1th period, the terminal equipment determines the time domain position to start monitoring the PDCCH according to the second time point. For example, at a later time point between the first time point and the second time point, or at the second time point, the terminal equipment starts monitoring the PDCCH of the L+1th DRX cycle. For the first time point and the second time point, please refer to the introduction of method A1. When the DRX duration timer times out, the terminal equipment stops monitoring the PDCCH in the L+1 DRX cycle. Please refer to the introduction of method B2. Or, when the DRX inactivation timer times out, the terminal equipment stops monitoring the PDCCH in the L+1 DRX cycle (not shown in Figure 12a out), please refer to the introduction of method B2.
  • the terminal equipment starts to monitor the time domain position of the PDCCH in DRX cycle 2. Please refer to the introduction of Scheme 1, which will not be described again here. Based on the introduction of method B2 above, when the DRX duration timer times out, such as at t3 in Figure 12a, the terminal equipment stops monitoring the PDCCH in the L+1th DRX cycle.
  • Option 3 includes method A1 and method B3. That is to say, for the L+1th period, the terminal equipment determines the time domain position to start monitoring the PDCCH according to the second time point. For example, at a later time point between the first time point and the second time point, or at the second time point, the terminal equipment starts monitoring the PDCCH of the L+1th DRX cycle. For the first time point and the second time point, please refer to the introduction of method A1. Then, the terminal equipment determines the time domain position at which it stops monitoring the PDCCH in the L+1th DRX cycle based on the time domain position at which it starts monitoring the PDCCH in the L+1th DRX cycle and the duration indicated by the first parameter.
  • the terminal equipment starts to monitor the time domain position of the PDCCH in DRX cycle 2.
  • the terminal equipment starts to monitor the time domain position of the PDCCH in the L+1th DRX cycle, such as t1 in Figure 12a, and the duration indicated by the first parameter, that is, the duration corresponding to the first jitter range, To determine the time domain position at which to stop monitoring the PDCCH in the L+1 DRX cycle, that is, t2 in Figure 12a.
  • Solution 4 includes method A2 and method B1. That is to say, for the L+1th cycle, at the second time point, the terminal equipment starts to monitor the PDCCH of the L+1th DRX cycle. For the second time point, please refer to the introduction of method A2. The second time point serves as the starting position of the activator in the L+1 DRX cycle. At the earlier of the third time point and the fourth time point, the terminal equipment stops monitoring the PDCCH of the L+1th DRX cycle. For the third time point and the fourth time point, please refer to the introduction of method B1.
  • the second time point may be t1 in Figure 12b. Therefore, the terminal equipment starts monitoring the PDCCH at t1. Moreover, the second time point serves as the starting position of the duration in DRX cycle 2. Based on the introduction of the above method B1, the third time point may be t3 in Figure 12b, and the fourth time point may be t2 in Figure 12b. Since t2 is earlier than t3, the terminal equipment stops monitoring the PDCCH at a position during the duration in DRX cycle 2 (t2 in Figure 12b).
  • Option 5 includes method A2 and method B2. That is to say, for the L+1th cycle, at the second time point, the terminal equipment starts to monitor the PDCCH of the L+1th DRX cycle.
  • the second time point please refer to the introduction of method A2.
  • the second time point serves as the starting position of the activator in the L+1 DRX cycle.
  • the terminal equipment stops monitoring the PDCCH in the L+1 DRX cycle.
  • the introduction of method B2 Alternatively, when the DRX inactivation timer times out, the terminal equipment stops monitoring the PDCCH in the L+1th DRX cycle (not shown in Figure 12b). Please refer to the introduction of method B2.
  • the terminal equipment starts to monitor the time domain position of the PDCCH in DRX cycle 2. Please refer to the introduction of Scheme 4, which will not be described again here.
  • the terminal equipment stops monitoring the PDCCH in the L+1th DRX cycle.
  • Solution 6 includes method A2 and method B3. That is to say, for the L+1th cycle, at the second time point, the terminal equipment starts to monitor the PDCCH of the L+1th DRX cycle.
  • the second time point please refer to the introduction of method A2.
  • the second time point serves as the starting position of the activator in the L+1 DRX cycle.
  • the terminal equipment determines the L+1th DRX cycle based on the time domain position where it starts monitoring the PDCCH in the L+1th DRX cycle and the duration indicated by the first parameter. Stop monitoring the time domain position of the PDCCH in DRX cycles.
  • the terminal equipment starts to monitor the time domain position of the PDCCH in DRX cycle 2.
  • the terminal equipment starts to monitor the time domain position of the PDCCH in the L+1th DRX cycle, such as t1 in Figure 12b, and the duration indicated by the first parameter, that is, the duration corresponding to the first jitter range, To determine the time domain position at which to stop monitoring the PDCCH in the L+1 DRX cycle, that is, t2 in Figure 12b.
  • Solution 7 includes method A3 and method B1. That is to say, when the time domain position of the first PDCCH in L DRX cycles meets the first condition, the terminal equipment determines to start monitoring the PDCCH at the starting position of the duration in the L+1th DRX cycle. See the method. Introduction to A3. At the earlier of the third time point and the fourth time point, the terminal equipment stops monitoring the PDCCH of the L+1th DRX cycle. For the third time point and the fourth time point, please refer to the introduction of method B1.
  • the terminal equipment starts monitoring the PDCCH from the starting position of the duration (t0 in Figure 12c) in DRX cycle 2.
  • the third time point may be t3 in Figure 12c
  • the fourth time point may be t2 in Figure 12c. Since t2 is earlier than t3, the terminal equipment stops monitoring the PDCCH at a position during the duration in DRX cycle 2 (t2 in Figure 12c).
  • Solution 8 includes method A3 and method B2. That is to say, when the time domain position of the first PDCCH in L DRX cycles meets the first condition, the terminal equipment determines to start monitoring the PDCCH at the starting position of the duration in the L+1th DRX cycle. See the method. Introduction to A3. When the DRX duration timer times out, the terminal equipment stops monitoring the PDCCH in the L+1 DRX cycle. Please refer to the introduction of method B2. Alternatively, when the DRX inactivation timer times out, the terminal equipment stops monitoring the PDCCH in the L+1th DRX cycle (not shown in Figure 12c). Please refer to the introduction of method B2.
  • the terminal equipment starts to monitor the time domain position of the PDCCH in DRX cycle 2. Please refer to the introduction of Scheme 7, which will not be described again here. Based on the introduction of method B2 above, when the DRX duration timer times out, such as at t3 in Figure 12c, the terminal equipment stops monitoring the PDCCH in the L+1 DRX cycle.
  • Solution 9 includes method A3 and method B3. That is to say, when the time domain position of the first PDCCH in L DRX cycles meets the first condition, the terminal equipment determines to start monitoring the PDCCH at the starting position of the duration in the L+1th DRX cycle. See the method. Introduction to A3. Then, the terminal equipment determines the time domain position at which it stops monitoring the PDCCH in the L+1th DRX cycle based on the time domain position at which it starts monitoring the PDCCH in the L+1th DRX cycle and the duration indicated by the first parameter.
  • the terminal equipment starts to monitor the time domain position of the PDCCH in DRX cycle 2.
  • the terminal equipment starts to monitor the time domain position of the PDCCH in the L+1th DRX cycle, such as t0 in Figure 12c, and the duration indicated by the first parameter, that is, the duration corresponding to the first jitter range, To determine the time domain position at which to stop monitoring the PDCCH in the L+1 DRX cycle, that is, t2 in Figure 12c.
  • the time domain position at which the terminal equipment starts monitoring the PDCCH in the L+1 DRX cycle is determined based on the seventh time point. For example, in the first example of method E1, the time domain position at which the terminal equipment starts monitoring the PDCCH in the L+1th DRX cycle is the seventh time point.
  • the time domain position at which the terminal equipment starts monitoring the PDCCH in the L+1th DRX cycle is the later of the sixth time point and the seventh time point. That is to say, at the later of the sixth time point and the seventh time point, the network device determines that the terminal device starts monitoring the PDCCH of the L+1th DRX cycle.
  • the sixth time point is the starting position of the duration (OnDuration) in the L+1 DRX cycle.
  • the starting position of the duration in the L+1 DRX cycle is based on the DRX cycle length and DRX starting offset. The value is determined. It should be understood that when the second PDCCH and the first PDCCH in the same DRX cycle are the same, the sixth time point is the same as the first time point. For details, please refer to the introduction of mode A1.
  • the seventh time point is determined based on the first duration and the time domain position of the second PDCCH in each of the L DRX cycles.
  • the first duration is configured or instructed by the network device for the terminal device. It should be understood that when the second PDCCH and the first PDCCH in the same DRX cycle are the same, the seventh time point is the same as the second time point. For details, please refer to the introduction of mode A1.
  • the time domain position at which the terminal equipment starts monitoring the PDCCH in the L+1 DRX cycle is the seventh time point. That is to say, the network device determines that the terminal device starts monitoring the PDCCH of the L+1th DRX cycle at the seventh time point.
  • the seventh time point is the starting position of the duration of the L+1th DRX cycle. That is to say, in mode E2, the period length of the DRX cycle is not fixed, and the interval length between the durations of adjacent DRX cycles is no longer fixed. In this case, the network device may not configure the parameter of the DRX cycle length for the terminal device.
  • the time domain position at which the terminal equipment starts monitoring the PDCCH in the L+1 DRX cycle is the starting position of the duration.
  • S603a performed by the network device includes step 1 and step 2:
  • Step 1 The network device determines that the time domain position of the second PDCCH in the second DRX cycle is later than the tenth time point.
  • the second DRX cycle is at least one DRX cycle among the L DRX cycles.
  • the tenth time point is determined based on the following: the time domain position of the second PDCCH in each DRX cycle of L DRX cycles before the second DRX cycle, and the second duration. It should be understood that when the second PDCCH and the first PDCCH in the same DRX cycle are the same, the tenth time point is the same as the fifth time point.
  • mode A3 The second duration is configured or instructed by the network device for the terminal device.
  • method A3 is configured or instructed by the network device for the terminal device.
  • Step 2 The network device determines the starting position of the duration in the L+1 DRX cycle and the terminal device starts monitoring the PDCCH.
  • the starting position of the duration in the L+1th DRX cycle is determined based on the DRX cycle and the DRX starting offset value.
  • the network device also performs S607:
  • the network device determines the time domain position at which the terminal device stops monitoring the PDCCH in the L+1 DRX cycle.
  • the terminal equipment in S607 stops monitoring PDCCH through three methods (method F1, method F2 and method F3).
  • the time domain position is introduced:
  • the time domain position at which the terminal equipment stops monitoring the PDCCH in the L+1 DRX cycle is the earlier one of the eighth time point and the ninth time point. That is to say, at an earlier time point between the eighth time point and the ninth time point, the network device determines that the terminal device stops monitoring the PDCCH of the L+1th DRX cycle.
  • the eighth time point is the end position of the duration in L+1 DRX cycles, such as the position where the DRX duration timer runs out, or the position where the DRX inactivation timer runs out. It should be understood that when the second PDCCH and the first PDCCH in the same DRX cycle are the same, the eighth time point is the same as the third time point. For details, please refer to the introduction of mode B1.
  • the ninth time point is determined based on the second duration and the time domain position of the second PDCCH in each of the L DRX cycles.
  • the second duration is configured or indicated by the network device for the terminal device. It should be understood that when the second PDCCH and the first PDCCH in the same DRX cycle are the same, the ninth time point is the same as the fourth time point. For details, please refer to the introduction of mode B1.
  • Method F2 in the L+1 DRX cycle, the time domain position where the terminal equipment stops monitoring the PDCCH is the end position of the duration, such as the position where the DRX duration timer runs out, or the position where the DRX inactivation timer runs out,
  • the end position of the duration such as the position where the DRX duration timer runs out, or the position where the DRX inactivation timer runs out.
  • the interval between the time domain position where the terminal equipment stops monitoring the PDCCH and the time domain position where the terminal equipment starts monitoring the PDCCH in the L+1 DRX cycle is equal to the first parameter.
  • the first parameter indicates the duration of the first jitter range, such as the third duration. For details, please refer to the introduction of method B3.
  • the network device may execute S607 first and then S604, or may execute S604 and S607 at the same time, which is not limited in the embodiment of the present application.
  • the combination relationship between the time domain positions (that is, the time domain position at which PDCCH starts to be monitored and the time domain position at which PDCCH is stopped) can be found in the introduction of solutions 1 to 9 above.
  • network fluctuations may cause individual data frames to have sudden large jitters, causing the data frames to arrive at the network device later than the end of the duration (OnDuration) in the DRX cycle.
  • the network device delays the data frame for scheduling in the next DRX cycle, resulting in long data transmission delays and affecting user experience.
  • the terminal device can perform S1301 and S1302:
  • the terminal equipment determines that the PDCCH is not monitored during the duration of the target DRX cycle.
  • the terminal device may first execute S601 and S602, and then execute S1301.
  • the target DRX cycle in S1301 is the L+1th DRX cycle in S602.
  • the terminal device may also perform the steps in FIG. 13 instead of performing the steps in FIG. 6 .
  • the target DRX cycle in S1301 is any DRX cycle in the PDCCH monitored by the terminal equipment.
  • the target DRX cycle is DRX cycle 1.
  • the end position of the duration in DRX cycle 1 is t0.
  • the terminal equipment does not detect the PDCCH before t0.
  • the terminal equipment continues to monitor the PDCCH in the target DRX cycle.
  • the target DRX cycle in S1302 is consistent with the target DRX cycle in S1301, and will not be described again here.
  • the terminal equipment continues to monitor the PDCCH within the first time window.
  • the first time window is within the target DRX cycle, and the starting position of the first time window is not earlier than the end position of the duration in the target DRX cycle.
  • the starting position of the first time window is equal to the end position of the duration in the target DRX cycle.
  • the end positions coincide with each other, or the starting position of the first time window is at the target After the end position of the duration in the DRX cycle.
  • the configuration parameters of the first time window may be provided by the network device to the terminal device, so that the terminal device determines the time domain position of the first time window.
  • the first time window may be the time period from t0 to t1, that is, the starting position of the first time window coincides with the end position of the duration.
  • the terminal equipment continues to monitor the PDCCH during the time period from t0 to t1.
  • the steps in Figure 6 and Figure 13 are independent of each other and have no coupling relationship with each other.
  • the terminal device may perform the steps in Figure 6 but not the steps in Figure 13 to reduce the duration of ineffectively monitoring the PDCCH, thereby reducing its own power consumption.
  • the terminal device may also perform the steps in Figure 13 instead of performing the steps in Figure 6 to solve the problem of large data transmission delay caused by large jitter in the data frame.
  • the terminal equipment can also perform the steps in Figure 6 and Figure 13, which can not only reduce the duration of invalid PDCCH monitoring, thereby reducing its own power consumption, but also solve the problem of large data transmission delay caused by large jitter in the data frame. .
  • the network device also performs S1303 and S1304:
  • the network device determines that the PDCCH is not sent during the duration of the target DRX cycle.
  • the target DRX cycle in S1303 is consistent with the target DRX cycle in S1301, and will not be described again here.
  • the network device determines that the terminal device continues to monitor the PDCCH in the target DRX cycle.
  • the network device determines that the terminal device continues to monitor the PDCCH within the first time window.
  • the first time window please refer to the introduction of S1302, which will not be described again here.
  • the network device sends the PDCCH to the terminal device in the target DRX cycle.
  • the terminal device receives the PDCCH from the network device in the target DRX cycle.
  • the network device sends the PDCCH to the terminal device within the first time window.
  • the terminal device executes S1302
  • the terminal device continues to monitor the PDCCH. Therefore, the terminal device receives the PDCCH from the network device within the first time window.
  • the network device sends PDCCH1 within the first time window.
  • the terminal equipment continues to monitor the PDCCH during the time period from t0 to t1, and can therefore monitor PDCCH1.
  • the target DRX cycle in S1305 is consistent with the target DRX cycle in S1301, and will not be described again here.
  • the network device can send the PDCCH after the duration of the DRX cycle and schedule the later arriving data frame (or PDU set) instead of rescheduling the data frame in the next DRX cycle. (or PDU set) to reduce data transmission delay.
  • the network device sends the PDCCH to the terminal device in each of the L DRX cycles.
  • L is a positive integer.
  • the network device sends the first indication information to the terminal device.
  • the first indication information indicates the time domain position of the terminal equipment to start monitoring the PDCCH in the L+1 DRX cycle, and the time domain position indicated by the first indication information is based on the time domain position of the PDCCH in each DRX cycle of the L DRX cycles. The location is determined.
  • the network equipment is based on the PDCCH of each DRX cycle in the first L DRX cycles.
  • the time domain position is used to predict the time domain position of monitoring the PDCCH in the L+1th DRX cycle, and then the first indication information is used to set the time domain position for the terminal.
  • the equipment indicates the time domain position of monitoring the PDCCH, so that the terminal equipment does not need to continuously monitor the PDCCH during the entire duration, thereby reducing the power consumption of the terminal equipment monitoring the PDCCH.
  • the communication method 1500 proposed in the embodiment of the present application includes the following steps:
  • the network device sends the PDCCH to the terminal device in each of the L DRX cycles.
  • the terminal device receives the PDCCH from the network device in each of the L DRX cycles.
  • the network device sends the first instruction information to the terminal device.
  • the terminal device receives the first indication information from the network device.
  • the first indication information indicates the time domain position at which the terminal equipment starts monitoring the PDCCH in the L+1th DRX cycle.
  • the time domain position indicated by the first indication information is determined by the network device based on the time domain position of the PDCCH in each of the L DRX cycles.
  • S1505 For the specific process, please refer to the introduction of S1505, which will not be described here.
  • the first indication information is used to indicate the index of a time unit.
  • the first indication information may directly indicate the index of a time unit.
  • the first indication information includes the index of a certain time slot in the L+1th DRX cycle.
  • the first indication information can also indirectly indicate the index of a time unit.
  • the first indication information occupies three bits, and there is a certain mapping relationship between the value represented by the first indication information and the time unit index, as shown in Table 1 Shown:
  • the first indication information is "000”, which represents the time unit of index 2 indicated by the first indication information, and the first indication information is "001", which represents the time unit of index 3 indicated by the first indication information.
  • One indication information is "010”, which represents the time unit of index 4 indicated by the first indication information. It should be understood that the first indication information can also indicate the index of the time unit in other ways, which will not be described again here.
  • the first indication information may be carried in physical layer signaling.
  • the terminal device After receiving the first indication information, the terminal device executes S1503:
  • the terminal equipment determines the time domain position at which to start monitoring the PDCCH in the L+1th DRX cycle according to the first indication information.
  • the terminal equipment uses the time domain position indicated by the first indication information as the time domain position at which it starts monitoring the PDCCH in the L+1th DRX cycle.
  • the network device sends the PDCCH to the terminal device in the L+1 DRX cycle.
  • the terminal equipment receives the PDCCH from the network equipment in the L+1th DRX cycle.
  • the network device starts sending the PDCCH to the terminal device at the time domain position indicated by the first indication information.
  • the network device sends the PDCCH to the terminal device after the time domain position indicated by the first indication information.
  • the terminal equipment starts monitoring the PDCCH at the time domain position indicated by the first indication information, and thus can receive the PDCCH from the network equipment.
  • the network device instructs the terminal device to start monitoring the time domain position of the PDCCH in the L+1th DRX cycle, so as to reduce the computational complexity and power consumption of the terminal device.
  • S1501 After the network device executes S1501, it first executes S1505 and then executes S1502. Among them, the introduction of S1505 is as follows:
  • the network device determines the target time domain position based on the time domain position of the PDCCH in each of the L DRX cycles.
  • the target time domain position is used to determine the time domain position indicated by the first indication information.
  • the target time domain position in S1505 is the time domain position indicated by the first indication information.
  • S1505 includes: the network device determines the target time domain position according to the time domain position of the second PDCCH in each of the L DRX cycles.
  • the target time domain position is determined based on the seventh time point.
  • the target time domain position may be the seventh time point.
  • the target time domain position may be the later of the sixth time point and the seventh time point.
  • the sixth time point and the seventh time point can be found in the introduction of method E1 and method E2.
  • the target time domain position can also be the starting position of the duration in the L+1th DRX cycle. Please refer to the introduction of method E3, which will not be described again here.
  • S1505 includes: when DCI loss occurs in the DRX cycle among the L DRX cycles, the network device determines the target based on the time domain position of the first PDCCH in each of the L DRX cycles. Time domain position.
  • the first PDCCH please refer to the introduction of S603b.
  • the network device sends the second instruction information to the terminal device.
  • the terminal device receives the second indication information from the network device.
  • the second indication information indicates the time domain position at which the terminal equipment stops monitoring the PDCCH in the L+1th DRX cycle.
  • the time domain position indicated by the second indication information is the earlier one of the eighth time point and the ninth time point.
  • For the eighth time point and the ninth time point please refer to the introduction of mode F1.
  • the second indication information is used to indicate the index of a time unit.
  • the second indication information may directly indicate the index of a time unit or indirectly indicate the index of a time unit.
  • the time domain position indicated by the second indication information is later than the time domain position indicated by the first indication information.
  • the third indication information indicates that when the DRX duration timer times out, the terminal equipment stops monitoring the PDCCH in the L+1th DRX cycle. Please refer to the introduction of method F2.
  • the third indication information indicates that when the DRX inactivation timer times out, the terminal equipment stops monitoring the PDCCH in the L+1th DRX cycle. Please refer to the introduction of method F2.
  • the terminal device After receiving the second indication information, the terminal device executes S1507:
  • the terminal equipment determines the time domain position at which to stop monitoring the PDCCH in the L+1th DRX cycle according to the second instruction information.
  • the terminal equipment uses the time domain position indicated by the second indication information as the time domain position at which it stops monitoring the PDCCH in the L+1th DRX cycle.
  • the network device instructs the terminal device to stop monitoring the time domain position of the PDCCH in the L+1th DRX cycle, so as to reduce the computational complexity of the terminal device.
  • the duration The length of the interval may be equal to the second jitter range.
  • the network sets the duration (OnDuration) configured by the terminal device to 8ms.
  • embodiments of the present application also provide a communication device.
  • the communication device may be the network element in the above method embodiment, or a device including the above network element, or a component that can be used for the network element.
  • the communication device includes corresponding hardware structures and/or software modules for performing each function.
  • the present application can be implemented in the form of hardware or a combination of hardware and computer software. Whether a function is performed by hardware or computer software driving the hardware depends on the specific application and design constraints of the technical solution. Skilled artisans may implement the described functionality using different methods for each specific application, but such implementations should not be considered beyond the scope of this application.
  • FIG. 17 shows a schematic structural diagram of a communication device 1700.
  • the communication device 1700 includes: a processor 1701, a communication interface 1702, and a memory 1703.
  • the communication device may also include a bus 1704.
  • the communication interface 1702, the processor 1701 and the memory 1703 can be connected to each other through the bus 1704;
  • the bus 1704 can be a peripheral component interconnect standard (peripheral component interconnect, PCI) bus or an extended industry standard architecture (EISA) bus etc.
  • PCI peripheral component interconnect
  • EISA extended industry standard architecture
  • the bus 1704 can be divided into an address bus, a data bus, a control bus, etc. For ease of presentation, only one thick line is used in Figure 17, but it does not mean that there is only one bus or one type of bus.
  • the processor 1701 can be a CPU, a general-purpose processor, an application specific integrated circuit (ASIC), a field programmable gate array (FPGA) or other programmable logic devices, transistor logic devices, Hardware components or any combination thereof. It may implement or execute the various illustrative logical blocks, modules, and circuits described in connection with this disclosure.
  • the processor can also be a combination that implements computing functions, such as a combination of one or more microprocessors, a combination of DSP and microprocessors, and so on.
  • the communication device 1700 in Figure 17 can be a terminal device in the communication method 600 of this embodiment of the application, and the processor 1701 is used to support the terminal device to perform processing operations.
  • the communication interface 1702 is used to support the terminal device to perform sending and receiving operations.
  • the communication device 1700 in Figure 17 may be a network device in the communication method 600 in this embodiment of the present application, and the processor 1701 is used to support the network device to perform processing operations.
  • the communication interface 1702 is used to support network devices to perform sending and receiving operations.
  • the communication device 1700 in Figure 17 may be a terminal device in the communication method 1500 in this embodiment of the present application, and the processor 1701 is used to support the terminal device to perform processing operations.
  • the communication interface 1702 is used to support the terminal device to perform sending and receiving operations.
  • the communication device 1700 in Figure 17 may be a network device in the communication method 1500 in this embodiment of the present application, and the processor 1701 is used to support the network device to perform processing operations.
  • the communication interface 1702 is used to support network devices to perform sending and receiving operations.
  • embodiments of the present application also provide a computer program product carrying computer instructions.
  • the computer instructions When the computer instructions are run on a computer, they cause the computer to execute the method described in the above embodiments.
  • embodiments of the present application also provide a computer-readable storage medium that stores computer instructions.
  • the computer instructions When the computer instructions are run on a computer, they cause the computer to execute the method described in the above embodiments.
  • the embodiment of the present application also provides a chip, including: a processing circuit and a transceiver circuit.
  • the processing circuit and the transceiver circuit are used to implement the method introduced in the above embodiment.
  • the processing circuit is used to perform the processing actions in the corresponding method, and the transceiver circuit is used to perform the receiving/transmitting actions in the corresponding method.
  • the above embodiments it may be implemented in whole or in part by software, hardware, firmware, or any combination thereof.
  • software it may be implemented in whole or in part in the form of a computer program product.
  • said computer program product package Contains one or more computer instructions.
  • the computer program instructions When the computer program instructions are loaded and executed on a computer, the processes or functions described in the embodiments of the present application are generated in whole or in part.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, or other programmable device.
  • the computer instructions may be stored in or transmitted from one computer-readable storage medium to another, e.g., the computer instructions may be transferred from a website, computer, server, or data center Transmission to another website, computer, server or data center through wired (such as coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless (such as infrared, wireless, microwave, etc.) means.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server or data center integrated with one or more available media.
  • the available media may be magnetic media (eg, floppy disk, hard disk, tape), optical media (eg, digital video disc (DVD)), or semiconductor media (eg, solid state drive (SSD)) wait.
  • the disclosed systems, devices and methods can be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of modules is only a logical function division. In actual implementation, there may be other division methods.
  • multiple modules or components may be combined or can be integrated into another system, or some features can be ignored, or not implemented.
  • the coupling or direct coupling or communication connection between each other shown or discussed may be through some interfaces, indirect coupling or communication connection of devices or modules, and may be in electrical or other forms.
  • the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in one place, or they may be distributed to multiple devices. Some or all of the units can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • the present application can be implemented by means of software plus necessary general hardware. Of course, it can also be implemented by hardware, but in many cases the former is a better implementation. . Based on this understanding, the essence or the contribution part of the technical solution of the present application can be embodied in the form of a software product.
  • the computer software product is stored in a readable storage medium, such as a computer floppy disk, a hard disk or an optical disk. etc., including several instructions to cause a computer device (which may be a personal computer, a server, or a network device, etc.) to execute the methods described in various embodiments of the present application.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供了一种通信方法及装置,涉及无线通信技术领域,能够减少无效监测物理下行控制信道PDCCH的时长,从而降低终端设备的功耗。该方法包括:终端设备在L个非连续接收DRX周期的每个DRX周期中接收来自网络设备的PDCCH。其中,L为正整数。然后,终端设备根据前L个DRX周期的每个DRX周期中PDCCH的时域位置,确定在第L+1个DRX周期中开始监测PDCCH的时域位置。

Description

一种通信方法及装置
本申请要求于2022年06月24日提交国家知识产权局、申请号为202210729727.8、发明名称为“一种PDCCH监测增强的方法、终端设备、网络设备”的中国专利申请的优先权,以及2022年07月25日提交国家知识产权局、申请号为202210878680.1、发明名称为“一种通信方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及无线通信领域,尤其涉及一种通信方法及装置。
背景技术
在通信系统中,终端设备需要监测物理下行控制信道(physical downlink control channel,PDCCH),以确定网络设备是否有调度信息。网络设备可以为终端设备配置非连续接收(discontinuous reception,DRX)机制来降低终端设备的功耗。
发明内容
在扩展现实(extended reality,XR)业务中,不同数据帧在应用服务器和接入网设备之间的路由方式不同,所以数据帧到达接入网设备的时间发生抖动(jitter)。在数据帧的传输周期与DRX机制的周期匹配的情况下,若DRX周期(DRX cycle)中的持续时间(on duration)设置不合理,则终端设备在监测到PDCCH前,所执行的PDCCH监测无意义,浪费功耗。
本申请提供一种通信方法及装置,能够减少无效监测PDCCH的时长,从而降低终端设备的功耗。为达到上述目的,本申请采用如下技术方案:
第一方面,提供一种通信方法。该方法的执行主体可以是终端设备,也可以是应用于终端设备中的芯片。下面以执行主体是终端设备为例进行描述。该方法包括:终端设备在L个非连续接收DRX周期的每个DRX周期中接收来自网络设备的PDCCH。其中,L为正整数。然后,终端设备根据L个DRX周期的每个DRX周期中PDCCH的时域位置,确定在第L+1个DRX周期中开始监测PDCCH的时域位置。
如此,由于相邻或相近PDCCH的时域位置之间的抖动取值差别不会太大,具有一定的相关性,所以终端设备基于前L个DRX周期中每个DRX周期的PDCCH的时域位置,来预测第L+1个DRX周期中开始监测PDCCH的时域位置,使得终端设备无需在整个持续时间期间持续监测PDCCH,如可以在持续时间的起始位置之后的时间开始监测PDCCH,从而减少无效监测PDCCH的时长,以降低终端设备的功耗。
在一种可能的设计中,L个DRX周期的每个DRX周期中PDCCH的时域位置,包括:L个DRX周期的每个DRX周期中第一PDCCH的时域位置。其中,第一PDCCH为终端设备在第一DRX周期内接收的PDCCH中的一个,第一DRX周期是L个DRX周期中的任意一个DRX周期。
也就是说,由于相邻或相近PDCCH的时域位置之间具有一定的相关性,所以终端设备根据前L个DRX周期中每个DRX周期的一个PDCCH(即上述第一PDCCH)的时域位置,来预测第L+1个DRX周期中开始监测PDCCH的时域位置,准确性高,以避免终端设备在第 +1个DRX周期中过早地开始监测PDCCH,从而降低终端设备的功耗。
在一种可能的设计中,第一PDCCH为终端设备在第一DRX周期内接收的第一个PDCCH。
也就是说,由于相邻或相近PDCCH的时域位置之间具有一定的相关性,所以终端设备在每个DRX周期中开始接收PDCCH的时域位置差别不会太大。基于此,终端设备根据前L个DRX周期中每个DRX周期接收的第一个PDCCH(即上述第一PDCCH)的时域位置,来预测第L+1个DRX周期中开始监测PDCCH的时域位置,准确性高。
在一种可能的设计中,第一PDCCH为调度第一物理下行共享信道PDSCH的PDCCH。其中,第一PDSCH为终端设备在第一DRX周期内反馈确认应答信息ACK的PDSCH中最早的一个。
也就是说,由于相邻或相近PDCCH的时域位置之间具有一定的相关性,所以终端设备在每个DRX周期中能够接收PDCCH的时域位置差别不会太大。基于此,针对前L个DRX周期中的每个DRX周期,第一PDSCH是终端设备反馈ACK最早的PDSCH,所以调度该第一PDSCH的第一PDCCH是终端设备成功接收的PDCCH。终端设备根据前L个DRX周期中每个DRX周期的第一PDCCH的时域位置,来预测第L+1个DRX周期中开始监测PDCCH的时域位置,准确性高。
在一种可能的设计中,第L+1个DRX周期中开始监测PDCCH的时域位置是根据第二时间点确定的。其中,第二时间点是根据第一时长和L个DRX周期的每个DRX周期中第一PDCCH的时域位置确定的,第一时长为网络设备配置或指示的。
在一种可能的设计中,第L+1个DRX周期中开始监测PDCCH的时域位置为第一时间点和第二时间点中较晚的一个。其中,第一时间点为第L+1个DRX周期中持续时间OnDuration的起始位置,第L+1个DRX周期中持续时间的起始位置是根据DRX周期长度和DRX起始偏移值确定的。
也就是说,终端设备还兼顾第一时间点(即第L+1个DRX周期中持续时间(OnDuration)的起始位置)做了进一步的保护处理。例如,在DRX周期与业务周期是匹配的或近似匹配的情况下,若第一时间点晚于第二时间点,终端设备在第L+1个DRX周期中开始监测PDCCH的时域位置为第一时间点,以避免过早监测PDCCH,从而节能。若第二时间点晚于第一时间点,第二时间点更能够表征第L+1个DRX周期中PDCCH的时域位置,所以即使在第一时间点上DRX持续时间定时器已启动,终端设备也不监测PDCCH,直至第二时间点,终端设备才开始监测PDCCH。如此,在数据调度到达较晚的场景下,终端设备能够避免过早地监测PDCCH,从而降低自身功耗。
在一种可能的设计中,第L+1个DRX周期中开始监测PDCCH的时域位置为第二时间点。也就是说,由于第二时间点更能够表征第L+1个DRX周期中PDCCH的时域位置,所以,终端设备在第二时间点开始监测PDCCH,以降低功耗。
在一种可能的设计中,第二时间点为第L+1个DRX周期的持续时间OnDuration的起始位置。
在一种可能的设计中,第L+1个DRX周期中停止监测PDCCH的时域位置为第三时间点和第四时间点中较早的一个。其中,第三时间点为L+1个DRX周期中持续时间的结束位置。第四时间点是根据第二时长和L个DRX周期的每个DRX周期中第一PDCCH的时域位置确定的,第二时长为网络设备配置或指示的。
也就是说,在DRX周期与业务周期是匹配的或近似匹配的情况下,若第三时间点早于第四时间点,则终端设备在第L+1个DRX周期中停止监测PDCCH的时域位置为第三时间点,以降低功耗,也能够防止PDCCH漏检。若第四时间点早于第三时间点,第四时间点更能够表征第L+1个DRX周期中PDCCH的时域位置,所以终端设备在第四时间点停止监测PDCCH,以降低功耗。
在一种可能的设计中,终端设备根据L个DRX周期的每个DRX周期中PDCCH的时域位置,确定在第L+1个DRX周期中开始监测PDCCH的时域位置,包括:
在L个DRX周期中第一PDCCH的时域位置满足第一条件的情况下,终端设备确定在第L+1个DRX周期中持续时间的起始位置开始监测PDCCH。其中,第L+1个DRX周期中持续时间的起始位置是根据DRX周期长度和DRX起始偏移值确定的。
第一条件包括以下至少一项:第一项,L个DRX周期中至少一个DRX周期发生下行控制信息DCI丢失。第二项,第二DRX周期中第一PDCCH的时域位置晚于第五时间点。其中,第二DRX周期是L个DRX周期中的至少一个DRX周期。第五时间点是根据以下确定的:第二DRX周期之前L个DRX周期的每个DRX周期中第一PDCCH的时域位置,以及第二时长,第二时长为网络设备配置或指示的。
在满足第一项条件的情况下,终端设备识别出自身在前L个DRX周期中有一个或多个DRX周期发生DCI丢失,则终端设备在第L+1个DRX周期中持续时间的起始位置开始监测PDCCH,来降低数据传输时延。
在满足第二项条件的情况下,前L个DRX周期中有一个或多个DRX周期的第一PDCCH的时域位置晚于相应DRX周期的第五时间点,则终端设备在第L+1个DRX周期中持续时间的起始位置开始监测PDCCH。如此,即使实际网络传输过程中数据帧的抖动有较大的突变,终端设备不再基于突变的抖动,来确定第L+1个DRX周期中开始监测PDCCH的时域位置,这样会导致终端设备在第L+1个DRX周期中过晚地开始监测PDCCH,而终端设备在第L+1个DRX周期中从持续时间的起始位置开始监测PDCCH,也就能够降低数据传输时延。
在一种可能的设计中,L个DRX周期中至少一个DRX周期发生DCI丢失是根据以下确定的:第二DCI的数据分配指示DAI字段;或者,第二DCI的混合自动重传请求过程号HPN字段、新数据指示NDI字段和冗余版本RV字段。其中,第二DCI在丢失的DCI之后。
也就是说,在前L个DRX周期的某一DRX周期中,终端设备根据在后DCI(即上述第二DCI)中的字段,来识别自身在该DRX周期中发生DCI丢失。
在一种可能的设计中,第二DCI是通过第三DRX周期中的第一PDCCH接收的。其中,第三DRX周期是L个DRX周期中的一个DRX周期。
也就是说,在前L个DRX周期的某一DRX周期中,终端设备根据第一PDCCH中的DCI(即上述第二DCI),来识别自身在该DRX周期中发生DCI丢失。
在一种可能的设计中,该方法还包括:当DRX持续时间定时器运行超时,终端设备在第L+1个DRX周期中停止监测PDCCH,以降低终端设备侧的运算复杂度。或者,该方法还包括:当DRX非激活定时器运行超时,终端设备在第L+1个DRX周期中停止监测PDCCH,以降低终端设备侧的运算复杂度。
在一种可能的设计中,终端设备根据L个DRX周期的每个DRX周期中PDCCH的时域位置,确定在第L+1个DRX周期中开始监测PDCCH的时域位置之后,该方法还包括:终端 设备确定在第L+1个DRX周期的持续时间未监测到PDCCH。然后,终端设备在第L+1个DRX周期中继续监测PDCCH。
由于DRX周期与业务周期是匹配的或近似匹配的,在每个DRX周期中必然会传输一个数据帧的数据。如此,即使网络波动造成数据帧的抖动存在较大突变,如数据帧到达时间晚于网络设备配置的持续时间的结束时刻,若终端设备在该DRX周期的持续时间中未监测到PDCCH,仍继续监测PDCCH,则网络设备可以在该DRX周期的持续时间之后发送PDCCH,调度较晚到达的数据帧,而不是在下一个DRX周期再调度该数据帧,以降低数据传输时延。
在一种可能的设计中,终端设备在第L+1个DRX周期中继续监测PDCCH,包括:终端设备在第一时间窗内继续监测PDCCH。其中,第一时间窗在第L+1个DRX周期内,第一时间窗的起始位置不早于第L+1个DRX周期中持续时间的结束位置。
第二方面,提供一种通信方法。该方法的执行主体可以是终端设备,也可以是应用于终端设备中的芯片。下面以执行主体是终端设备为例进行描述。该方法包括:终端设备确定在非连续接收DRX周期的持续时间未监测到物理下行控制信道PDCCH。然后,终端设备在DRX周期中继续监测PDCCH。
在一种可能的设计中,终端设备在DRX周期中继续监测PDCCH,包括:终端设备在第一时间窗内继续监测PDCCH。其中,第一时间窗位于DRX周期内,第一时间窗的起始位置不早于DRX周期中持续时间的结束位置。
第三方面,提供一种通信方法。该方法的执行主体可以是网络设备,也可以是应用于网络设备中的芯片。下面以执行主体是网络设备为例进行描述。该方法包括:网络设备在L个非连续接收DRX周期的每个DRX周期中向终端设备发送物理下行控制信道PDCCH。其中,L为正整数。网络设备根据L个DRX周期的每个DRX周期中PDCCH的时域位置,确定在第L+1个DRX周期中终端设备开始监测PDCCH的时域位置。
在一种可能的设计中,L个DRX周期的每个DRX周期中PDCCH的时域位置,包括:L个DRX周期的每个DRX周期中第二PDCCH的时域位置。其中,第二PDCCH为网络设备在第一DRX周期内发送的PDCCH中的一个,第一DRX周期是L个DRX周期中的任意一个DRX周期。
在一种可能的设计中,第二PDCCH为网络设备在第一DRX周期内发送的第一个PDCCH。
在一种可能的设计中,第二PDCCH为调度第一物理下行共享信道PDSCH的PDCCH。其中,第一PDSCH为网络设备在第一DRX周期内接收确认应答信息ACK的PDSCH中最早的一个。
在一种可能的设计中,第L+1个DRX周期中开始监测PDCCH的时域位置是根据第七时间点确定的。其中,第七时间点是根据第一时长和L个DRX周期的每个DRX周期中第二PDCCH的时域位置确定的,第一时长为网络设备配置或指示的。
在一种可能的设计中,第L+1个DRX周期中终端设备开始监测PDCCH的时域位置为第六时间点和第七时间点中较晚的一个。其中,第六时间点为第L+1个DRX周期中持续时间OnDuration的起始位置,第L+1个DRX周期中持续时间的起始位置是根据DRX周期长度和DRX起始偏移值确定的。
在一种可能的设计中,第L+1个DRX周期中终端设备开始监测PDCCH的时域位置为第七时间点。
在一种可能的设计中,第七时间点为第L+1个DRX周期的持续时间OnDuration的起始位置。
在一种可能的设计中,第L+1个DRX周期中终端设备停止监测PDCCH的时域位置为第八时间点和第九时间点中较早的一个。其中,第八时间点为L+1个DRX周期中持续时间的结束位置。第九时间点是根据第二时长和L个DRX周期的每个DRX周期中第二PDCCH的时域位置确定的,第二时长是网络设备为终端设备配置或指示的。
在一种可能的设计中,网络设备根据L个DRX周期的每个DRX周期中PDCCH的时域位置,确定在第L+1个DRX周期中终端设备开始监测PDCCH的时域位置,包括:网络设备确定第二DRX周期中第二PDCCH的时域位置晚于第十时间点。其中,第二DRX周期是L个DRX周期中的至少一个DRX周期,第十时间点是根据以下确定的:第二DRX周期之前L个DRX周期的每个DRX周期中第二PDCCH的时域位置,以及第二时长,第二时长是网络设备为终端设备配置或指示的。网络设备确定在第L+1个DRX周期中持续时间的起始位置终端设备开始监测PDCCH。其中,第L+1个DRX周期中持续时间的起始位置是根据DRX周期和DRX起始偏移值确定。
在一种可能的设计中,网络设备根据L个DRX周期的每个DRX周期中PDCCH的时域位置,确定在第L+1个DRX周期中终端设备开始监测PDCCH的时域位置,包括:在L个DRX周期中至少一个DRX周期发生下行控制信息DCI丢失的情况下,网络设备根据L个DRX周期的每个DRX周期中第一PDCCH的时域位置,确定在第L+1个DRX周期中终端设备开始监测PDCCH的时域位置。其中,第一PDCCH为终端设备在第一DRX周期内接收的第一个PDCCH;或者,第一PDCCH为调度第一PDSCH的PDCCH,第一PDSCH为终端设备在第一DRX周期内反馈ACK的PDSCH中最早的一个;第一DRX周期是L个DRX周期中的任意一个DRX周期。
在一种可能的设计中,L个DRX周期中至少一个DRX周期发生DCI丢失是根据以下确定的:终端设备在混合自动重传请求HARQ的资源位置上发生非连续发射DTX。其中,HARQ至少用于反馈丢失的DCI的接收状况。
在一种可能的设计中,第三DRX周期中的第一PDCCH在丢失的DCI之后。其中,第三DRX周期是L个DRX周期中的一个DRX周期。
在一种可能的设计中,该方法还包括:网络设备确定当DRX持续时间定时器运行超时,第L+1个DRX周期中终端设备停止监测PDCCH;或者,网络设备确定当DRX非激活定时器运行超时,第L+1个DRX周期中终端设备停止监测PDCCH。
在一种可能的设计中,网络设备根据L个DRX周期的每个DRX周期中PDCCH的时域位置,确定在第L+1个DRX周期中终端设备开始监测PDCCH的时域位置之后,该方法还包括:网络设备确定在第L+1个DRX周期的持续时间未发送PDCCH;网络设备确定在第L+1个DRX周期中终端设备继续监测PDCCH。
在一种可能的设计中,网络设备确定在第L+1个DRX周期中终端设备继续监测PDCCH,包括:网络设备确定在第一时间窗内终端设备继续监测PDCCH。其中,第一时间窗在第L+1个DRX周期内,第一时间窗的起始位置不早于第L+1个DRX周期中持续时间的结束位置。
在一种可能的设计中,第一时长是基于第一抖动范围确定的。或者,第一时长是基于第一抖动范围和第一间隔确定的。其中,第一抖动范围为网络设备确定的统计结果,或者,第 一抖动范围为网络设备从其他网络设备获取的信息。第一间隔为网络设备获取相邻数据帧(或相邻PDU set)所间隔的时长。
在一种可能的设计中,第二时长是基于第一抖动范围确定的。或者,第二时长是基于第一抖动范围和第一间隔确定的。其中,第一抖动范围为网络设备确定的统计结果,或者,第一抖动范围为网络设备从其他网络设备获取的信息。第一间隔为网络设备获取相邻数据帧(或相邻PDU set)所间隔的时长。
第四方面,提供一种通信方法。该方法的执行主体可以是网络设备,也可以是应用于网络设备中的芯片。下面以执行主体是网络设备为例进行描述。该方法包括:网络设备在L个非连续接收DRX周期的每个DRX周期中向终端设备发送物理下行控制信道PDCCH。其中,L为正整数。网络设备向终端设备发送第一指示信息。其中,第一指示信息指示第L+1个DRX周期中终端设备开始监测PDCCH的时域位置,第一指示信息指示的时域位置是根据L个DRX周期的每个DRX周期中PDCCH的时域位置确定的。
也就是说,网络设备为终端设备指示第L+1个DRX周期中开始监测PDCCH的时域位置,以降低终端设备的运算复杂度和功耗。
在一种可能的设计中,该方法还包括:网络设备根据L个DRX周期的每个DRX周期中PDCCH的时域位置,确定目标时域位置。其中,目标时域位置用于确定第一指示信息指示的时域位置。
在一种可能的设计中,L个DRX周期的每个DRX周期中PDCCH的时域位置,包括:L个DRX周期的每个DRX周期中第二PDCCH的时域位置。其中,第二PDCCH为网络设备在第一DRX周期内发送的PDCCH中的一个,第一DRX周期是L个DRX周期中的任意一个DRX周期。
在一种可能的设计中,第二PDCCH为网络设备在第一DRX周期内发送的第一个PDCCH。或者,第二PDCCH为调度第一物理下行共享信道PDSCH的PDCCH,第一PDSCH为网络设备在第一DRX周期内接收确认应答信息ACK的PDSCH中最早的一个。
在一种可能的设计中,目标时域位置是根据第七时间点确定的。其中,第七时间点是根据第一时长和L个DRX周期的每个DRX周期中第二PDCCH的时域位置确定的,第一时长是网络设备为终端设备配置或指示的。
在一种可能的设计中,目标时域位置为第六时间点和第七时间点中较晚的一个。其中,第六时间点为第L+1个DRX周期中持续时间OnDuration的起始位置,第L+1个DRX周期中持续时间的起始位置是根据DRX周期长度和DRX起始偏移值确定的。
在一种可能的设计中,目标时域位置为第七时间点。
在一种可能的设计中,第七时间点为第L+1个DRX周期的持续时间OnDuration的起始位置。
在一种可能的设计中,该方法还包括:网络设备向终端设备发送第二指示信息。其中,第二指示信息指示第L+1个DRX周期中终端设备停止监测PDCCH的时域位置,第二指示信息指示的时域位置为第八时间点和第九时间点中较早的一个。第八时间点为L+1个DRX周期中持续时间的结束位置。第九时间点是根据第二时长和L个DRX周期的每个DRX周期中第二PDCCH的时域位置确定的,第二时长是网络设备为终端设备配置或指示的。
在一种可能的设计中,网络设备根据L个DRX周期的每个DRX周期中PDCCH的时域 位置,确定目标时域位置,包括:网络设备确定第二DRX周期中第二PDCCH的时域位置晚于第十时间点。其中,第二DRX周期是L个DRX周期中的至少一个DRX周期,第十时间点是根据以下确定的:第二DRX周期之前L个DRX周期的每个DRX周期中第二PDCCH的时域位置,以及第二时长,第二时长是网络设备为终端设备配置或指示的。网络设备确定目标时域位置为第L+1个DRX周期中持续时间的起始位置,第L+1个DRX周期中持续时间的起始位置是根据DRX周期长度和DRX起始偏移值确定。
在一种可能的设计中,网络设备根据L个DRX周期的每个DRX周期中PDCCH的时域位置,确定目标时域位置,包括:在L个DRX周期中至少一个DRX周期发生下行控制信息DCI丢失的情况下,网络设备根据L个DRX周期的每个DRX周期中第一PDCCH的时域位置,确定目标时域位置。其中,第一PDCCH为终端设备在第一DRX周期内接收的第一个PDCCH;或者,第一PDCCH为调度第一PDSCH的PDCCH,第一PDSCH为终端设备在第一DRX周期内反馈ACK的PDSCH中最早的一个。第一DRX周期是L个DRX周期中的任意一个DRX周期。
在一种可能的设计中,L个DRX周期中至少一个DRX周期发生DCI丢失是根据以下确定的:终端设备在混合自动重传请求HARQ的资源位置上发生非连续发射DTX。其中,HARQ至少用于反馈丢失的DCI的接收状况。
在一种可能的设计中,第三DRX周期中的第一PDCCH在丢失的DCI之后。其中,第三DRX周期是L个DRX周期中的一个DRX周期。
在一种可能的设计中,该方法还包括:网络设备向终端设备发送第三指示信息。其中,第三指示信息指示当DRX持续时间定时器运行超时(expire),第L+1个DRX周期中终端设备停止监测PDCCH;或者,第三指示信息指示当DRX非激活定时器运行超时,第L+1个DRX周期中终端设备停止监测PDCCH。
第五方面,提供了一种通信装置。该通信装置包括:处理器;所述处理器与存储器耦合,用于读取存储器中的指令并执行,以使该通信装置执行如上述任一方面或任一方面任一种可能的设计中的终端设备所执行的方法。该通信装置可以为上述第一方面或第一方面任一种可能的设计中的终端设备,或者为上述第二方面或第二方面任一种可能的设计中的终端设备,或者实现上述终端设备功能的芯片。
第六方面,提供一种芯片。该芯片包括处理电路和输入输出接口。其中,输入输出接口用于与芯片之外的模块通信。例如,该芯片可以为实现上述第一方面或第一方面任一种可能的设计中的终端设备功能的芯片。处理电路用于运行计算机程序或指令,以实现以上第一方面或第一方面任一种可能的设计中的方法。再如,该芯片可以为实现上述第二方面或第二方面任一种可能的设计中的终端设备功能的芯片。处理电路用于运行计算机程序或指令,以实现以上第二方面或第二方面任一种可能的设计中的方法。
第七方面,提供了一种通信装置。该通信装置包括:处理器;所述处理器与存储器耦合,用于读取存储器中的指令并执行,以使该通信装置执行如上述任一方面或任一方面任一种可能的设计中的网络设备所执行的方法。该通信装置可以为上述第三方面或第三方面任一种可能的设计中的网络设备,或者为上述第四方面或第四方面任一种可能的设计中的网络设备,或者实现上述网络设备功能的芯片。
第八方面,提供一种芯片。该芯片包括处理电路和输入输出接口。其中,输入输出接口 用于与芯片之外的模块通信。例如,该芯片可以为实现上述第三方面或第三方面任一种可能的设计中的网络设备功能的芯片。处理电路用于运行计算机程序或指令,以实现以上第三方面或第三方面任一种可能的设计中的方法。再如,该芯片可以为实现上述第四方面或第四方面任一种可能的设计中的网络设备功能的芯片。处理电路用于运行计算机程序或指令,以实现以上第四方面或第四方面任一种可能的设计中的方法。
第九方面,提供一种计算机可读存储介质。该计算机可读存储介质中存储有指令,当其在计算机上运行时,使得计算机可以执行上述任一方面中任一项的方法。
第十方面,提供一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机可以执行上述任一方面中任一项的方法。
第十一方面,提供一种电路系统。电路系统包括处理电路,处理电路被配置为执行如上述任一方面中任一项的方法。
其中,第五方面至第十一方面中任一种设计所带来的技术效果可参考上文所提供的对应的方法中的有益效果,此处不再赘述。
附图说明
图1为本申请实施例提供的一种通信系统的架构示意图;
图2a为本申请实施例提供的一种资源分布示意图;
图2b为本申请实施例提供的一种反馈信息的资源分布示意图;
图3a为本申请实施例提供的一种DRX机制配置示意图;
图3b为本申请实施例提供的再一种DRX机制配置示意图;
图4a为本申请实施例提供的一种数据调度的场景示意图;
图4b为本申请实施例提供的再一种数据调度的场景示意图;
图4c为本申请实施例提供的又一种数据调度的场景示意图;
图5a为本申请实施例提供的一种抖动范围示意图;
图5b为本申请实施例提供的一种DRX配置的场景示意图;
图6为本申请实施例提供的一种通信方法的流程示意图;
图7为本申请实施例提供的再一种通信方法的流程示意图;
图8a为本申请实施例提供的再一种DRX配置的场景示意图;
图8b为本申请实施例提供的又一种DRX配置的场景示意图;
图8c为本申请实施例提供的又一种DRX配置的场景示意图;
图8d为本申请实施例提供的又一种DRX配置的场景示意图;
图9a为本申请实施例提供的又一种DRX配置的场景示意图;
图9b为本申请实施例提供的又一种DRX配置的场景示意图;
图9c为本申请实施例提供的又一种DRX配置的场景示意图;
图10为本申请实施例提供的又一种通信方法的流程示意图;
图11为本申请实施例提供的又一种DRX配置的场景示意图;
图12a为本申请实施例提供的又一种DRX配置的场景示意图;
图12b为本申请实施例提供的又一种DRX配置的场景示意图;
图12c为本申请实施例提供的又一种DRX配置的场景示意图;
图13为本申请实施例提供的又一种通信方法的流程示意图;
图14为本申请实施例提供的又一种DRX配置的场景示意图;
图15为本申请实施例提供的又一种通信方法的流程示意图;
图16为本申请实施例提供的又一种通信方法的流程示意图;
图17为本申请实施例提供的一种通信装置的结构示意图。
具体实施方式
本申请的说明书以及附图中的术语“第一”和“第二”等是用于区别不同的对象,或者用于区别对同一对象的不同处理,而不是用于描述对象的特定顺序。此外,本申请的描述中所提到的术语“包括”和“具有”以及它们的任何变形,意图在于覆盖不排他的包含。例如包含了一系列步骤或单元的过程、方法、系统、产品或设备没有限定于已列出的步骤或单元,而是可选地还包括其他没有列出的步骤或单元,或可选地还包括对于这些过程、方法、产品或设备固有的其它步骤或单元。应理解,本申请实施例中,“示例性的”或者“例如”等词用于表示作例子、例证或说明。本申请实施例中被描述为“示例性的”或者“例如”的任何实施例或设计方案不应被解释为比其它实施例或设计方案更优选或更具优势。确切而言,使用“示例性的”或者“例如”等词旨在以具体方式呈现相关概念。在本申请实施例中,两个以上包括两个本身。多个可以包括两个,也可以包括三个,还可以包括更多。
图1是本申请的实施例应用的通信系统1000的架构示意图。如图1所示,该通信系统1000包括至少一个网络设备(如图1中的110a和110b)和至少一个终端设备(如图1中的120a-120j)。终端设备通过无线的方式与网络设备相连。图1只是示意图,该通信系统还可以包括其它网络设备,如无线中继设备和无线回传设备(图1中未示出)。
网络设备可以是基站(base station)、演进型基站(evolved NodeB,eNodeB)、发送接收点(transmission reception point,TRP)、第五代(5th generation,5G)移动通信系统中的下一代基站(next generation NodeB,gNB)、第六代(6th generation,6G)移动通信系统中的下一代基站、未来移动通信系统中的基站或无线保真(wireless fidelity,WiFi)系统中的接入节点等;也可以是完成基站部分功能的模块或单元。例如,可以是集中式单元(central unit,CU),也可以是分布式单元(distributed unit,DU)。这里的CU完成基站的无线资源控制(radio resource control,RRC)协议和分组数据汇聚层协议(packet data convergence protocol,PDCP)的功能,还可以完成业务数据适配协议(service data adaptation protocol,SDAP)的功能;DU完成基站的无线链路控制(radio link conrtol,RLC)层和介质访问控制(medium access control,MAC)层的功能,还可以完成部分物理层或全部物理层的功能。有关上述各个协议层的具体描述,可以参考第三代合作伙伴计划(3rd generation partnership project,3GPP)的相关技术规范。网络设备可以是宏基站(如图1中的110a),也可以是微基站或室内站(如图1中的110b),还可以是中继节点或施主节点等。本申请的实施例对网络设备所采用的具体技术和具体设备形态不做限定。为了便于描述,下文以网络设备为例进行描述。
终端设备也可以称为终端、用户设备(user equipment,UE)、移动台、移动终端等。终端设备可以广泛应用于各种场景。例如,设备到设备(device-to-device,D2D)、车物(vehicle to everything,V2X)通信、机器类通信(machine-type communication,MTC)、物联网(internet of things,IOT)、虚拟现实、增强现实、工业控制、自动驾驶、远程医疗、智能电网、智能家具、智能办公、智能穿戴、智能交通、智慧城市等。终端设备可以是手机、平板电脑、带无线收发功能的电脑、可穿戴设备、车辆、无人机、直升机、飞机、轮船、机器人、机械臂、智能 家居设备等。本申请的实施例对终端设备所采用的具体技术和具体设备形态不做限定。
网络设备和终端设备可以是固定位置的,也可以是可移动的。网络设备和终端设备可以部署在陆地上,包括室内或室外、手持或车载;也可以部署在水面上;还可以部署在空中的飞机、气球和人造卫星上。本申请的实施例对网络设备和终端设备的应用场景不做限定。
网络设备和终端设备的角色可以是相对的。例如,图1中的直升机或无人机120i可以被配置成移动基站,对于那些通过120i接入到无线接入网的终端设备120j来说,终端设备120i是网络设备;但对于网络设备110a来说,120i是终端设备,即110a与120i之间是通过无线空口协议进行通信的。当然,110a与120i之间也可以是通过基站与基站之间的接口协议进行通信的,此时相对于110a来说,120i也是网络设备。因此,网络设备和终端设备都可以统一称为通信装置,图1中的110a和110b可以称为具有网络设备功能的通信装置,图1中的120a-120j可以称为具有终端设备功能的通信装置。
网络设备和终端设备之间、网络设备和网络设备之间、终端设备和终端设备之间可以通过授权频谱进行通信,也可以通过免授权频谱进行通信,也可以同时通过授权频谱和免授权频谱进行通信;可以通过6千兆赫兹(gigahertz,GHz)以下的频谱进行通信,也可以通过6GHz以上的频谱进行通信,还可以同时使用6GHz以下的频谱和6GHz以上的频谱进行通信。本申请的实施例对无线通信所使用的频谱资源不做限定。
在本申请的实施例中,网络设备的功能也可以由网络设备中的模块(如芯片)来执行,也可以由包含有网络设备功能的控制子系统来执行。这里的包含有网络设备功能的控制子系统可以是智能电网、工业控制、智能交通、智慧城市等上述应用场景中的控制中心。终端设备的功能也可以由终端设备中的模块(如芯片或调制解调器)来执行,也可以由包含有终端设备功能的装置来执行。
在本申请中,网络设备向终端设备发送下行信号或下行信息,下行信息承载在下行信道上;终端设备向网络设备发送上行信号或上行信息,上行信息承载在上行信道上。终端设备为了与网络设备进行通信,需要与网络设备控制的小区建立无线连接。与终端设备建立了无线连接的小区称为该终端设备的服务小区。当终端设备与该服务小区进行通信的时候,还会受到来自邻区的信号的干扰。
为了便于理解本申请实施例,下面先对本申请实施例中涉及的术语做简单说明。应理解,这些说明仅为便于理解本申请实施例,而不应对本申请构成任何限定。
1、混合自动重传请求(hybrid automatic repeat request,HARQ)技术
在无线通信系统中,网络设备与终端设备之间通常采用HARQ技术来提高数据传输的可靠性。在网络设备向终端设备发送数据包(承载于PDSCH内)之后,网络设备接收来自终端设备的HARQ反馈状态,来获知终端设备的数据包接收状况(即PDSCH是否解码成功)。其中,HARQ反馈状态包括:确认应答(positive acknowledgement,ACK)状态,否定应答(negative acknowledgement,NACK)状态,既不反馈ACK也不反馈NACK的非连续传输(discontinuous transmission,DTX)。具体的,若终端设备接收到来自网络设备的调度信息及数据包且数据包的校验成功,则终端设备认为数据包传输成功,向网络设备反馈ACK;若终端设备接收到来自网络设备的调度信息及数据包但数据包的校验失败,则终端设备认为数据传输失败,向网络设备反馈NACK,以使网络设备收到NACK后重传该数据包;若终端设备未收到网络设备所发送的调度信息及数据包,则终端设备既不反馈ACK,也不反馈NACK, 即会出现DTX的状态。此种情况下,网络设备在该收到反馈的时频位置未收到反馈(即网络设备识别到了DTX),网络设备会重传该数据包。其中,ACK和NACK均被称为HARQ-ACK信息。另外,HARQ-ACK信息的数量和排列顺序,可以参见HARQ-ACK码本设计的内容。HARQ-ACK码本的大小为该码本包括的HARQ-ACK信息的比特数,HARQ-ACK码本的大小也被称为HARQ-ACK码本尺寸(HARQ-ACK codebook size)。
终端设备在反馈HARQ-ACK信息的时候,可以将多个物理下行共享信道(physical downlink shared channel,PDSCH)对应的HARQ-ACK信息在同一资源进行反馈。如图2a所示,3个PDSCH在同一反馈资源(如物理上行控制信道(physical uplink control channel,PUCCH))反馈HARQ-ACK信息。此种情况下,HARQ-ACK码本的大小就是3比特,3个比特的顺序可以是根据PDSCH接收的顺序来安排。
应理解,在图2a中,3个PDSCH的K0值都是0,K1值分别为1,2,3。三个PDSCH在时隙内所占用的时域资源的起始符号位置以及符号数量互不相同。其中,K0值表示PDCCH与PDSCH之间的时隙间隔的数量,K1值表示PDCCH与HARQ-ACK信息的上行反馈资源(如PUCCH)之间的时隙间隔的数量。
HARQ-ACK码本的反馈形式:包括半静态形式和动态形式。
其中,通过半静态形式反馈HARQ-ACK码本的比特数一般由配置参数(如上行格式,下行格式,K1集合,时域资源分配(time domain resource allocation,TDRA)表格)决定,该配置参数可以由信令,例如高层信令所携带。在新空口(new radio,NR)中,终端设备在确定采用半静态形式反馈HARQ-ACK码本的情况下,使用一种类似于“回溯”的方式,即在时隙n上要反馈HARQ-ACK信息时,会针对每一个可能的K1值,看在每个时隙n-K1上,是否可能有PDSCH发送,以及可能有多少个PDSCH发送,从而最终确定反馈HARQ-ACK码本的比特数。
通过动态形式反馈HARQ-ACK码本的比特数一般取决于实际或当前调度情况。具体的,终端设备在确定采用动态HARQ-ACK码本的情况下,终端设备接收的下行控制信息(downlink control information,DCI)包括数据分配指示(data assignment indication,DAI)字段。DAI字段指示被调度的数据包(即PDSCH)数量。该字段可以被理解为一个计数器,终端设备在反馈HARQ-ACK码本之前,DAI的计数结果指示了HARQ-ACK码本的比特数。如图2b所示,3个时隙的HARQ-ACK信息要在同一个时隙反馈。每个时隙的DCI中DAI字段分别指示1/2/3,终端设备在反馈HARQ-ACK码本时,若最后一个DCI中DAI字段指示的取值等于3,则终端设备即可确定反馈HARQ-ACK码本的比特数为3。在另一种设计中,DAI字段可以进一步被分为计数DAI(counter DAI)和总数DAI(total DAI),counter DAI与前面介绍的DAI的功能一致,即用来指示当前调度的是一次反馈之前的第几个数据包(或第几个PDSCH)。total DAI用于指示在一次反馈之前被调度的数据包(或第几个PDSCH)有多少个,通常在一次反馈之前,各个调度数据的DCI中包含的total DAI的取值相同。此时,可以根据total DAI指示的值确定HARQ-ACK码本的大小。
2、DRX机制
为了降低终端设备的功耗,网络设备可以向终端设备配置DRX机制。DRX机制可以分为两种:空闲态(idle)的DRX和连接态的非连续接收(connected mode discontinuous reception,C-DRX),这两种实现机制有所不同,具体介绍如下:
在空闲态的DRX下,终端设备主要监听网络设备的寻呼,终端设备在一个DRX周期(DRX cycle)监听一次寻呼时机(paging occasion)。
在C-DRX机制下,参见图3a,终端设备可以周期性的进入睡眠状态,不需要监测PDCCH。一个DRX周期至少包括一个DRX持续时间定时器(drx-on Duration Timer)的时间和可能的一段休眠(opportunity for drx)的时间。其中,一个DRX持续时间定时器的时间又称为“持续时间(on duration)”。网络设备通过RRC信令向终端设备配置DRX参数,如DRX周期长度(DRX cycle length)、DRX持续时间定时器、DRX非激活定时器(drx-InactivityTimer)、DRX混合自动重传请求往返时间定时器(drx-hybrid auto repeat request round trip timer,drx-HARQ-RTT-Timer)、DRX重传定时器(drx-RetransmissionTimer)等参数。其中,终端设备在DRX持续时间定时器、DRX非激活定时器、下行链路(downlink,DL)的DRX重传定时器和上行链路(uplink,UL)的DRX重传定时器启动期间均需要监测PDCCH,这些时间也统称为激活时间(Active Time)。其余时间被统称为在激活时间之外(outside Active Time)。在激活时间外,终端设备无需监测PDCCH,此时终端设备可以进入睡眠状态,以节省功耗。
应理解,上述DRX持续时间定时器,指示了终端设备在DRX周期开始时连续监测PDCCH的时长。上述DRX非激活定时器,指示了当终端设备监测到PDCCH用于调度上行链路或下行链路初传数据时,启动(或重启)该定时器并保持持续监测PDCCH的时长。
另外,DRX参数还包括DRX长周期和起始偏移(drx-LongCycleStartOffset),该参数用于配置长DRX周期的长度以及一个DRX周期(无论是长DRX周期还是短DRX周期)的起始位置的偏移值。其中,长DRX周期的长度以毫秒(ms)为单位,起始偏移的配置粒度为1ms。此外,DRX参数还包括DRX时隙偏移值(drx-SlotOffset),该参数用于配置启动drx-onDurationTimer之前的延迟值,其配置粒度为1/32ms,取值范围为0~31,即0ms~31/32ms。当网络设备为终端设备使能DRX短周期时,DRX参数还可以包括短周期(shortDRX),该参数用于配置短DRX周期的长度。在上述参数中,drx-LongCycleStartOffset和/或shortDRX可以用于确定DRX周期,drx-LongCycleStartOffset和/或drx-SlotOffset可以用于确定DRX的起始偏移值。在本申请实施例中,DRX周期,可以理解是根据drx-LongCycleStartOffset和/或shortDRX确定的;DRX起始偏移值,可以理解是根据drx-LongCycleStartOffset和/或drx-SlotOffset确定的。
示例性的,C-DRX机制中支持的周期长度介绍如下:长DRX周期的长度为{10,20,32,……}ms,可以理解为,长DRX周期的长度为10ms,20ms,或32ms等。短DRX周期的长度为{2,3,4,5,6,7,8,10,14,16,20,30,32,……}ms,可以理解为,短DRX周期的长度为2ms,3ms,4ms,5ms,6ms,7ms,8ms,10ms,14ms,16ms,20ms,30ms,或32ms等。
以下行传输为例,DRX的大致过程:进入一个DRX周期后,在持续时间(on duration)的时间段内,终端设备开始持续监测PDCCH:
如果在持续时间的时间段内未监测到PDCCH,终端设备在持续时间的时间段结束后直接进入休眠期,如图3a所示。
如果在持续时间的时间段内监测到PDCCH,且该PDCCH用于调度新传的数据(即PDCCH用于传输初传调度的调度信息),那么,终端设备按照接收到的调度信息接收数据(即接收PDSCH),并且启动DRX非激活定时器,每当终端设备监测到初传调度的调度信息,该DRX非激活定时器就被启动(或重启)一次,终端设备在DRX非激活定时器定时期间, 持续监测PDCCH,直至DRX非激活定时器超时(expire),终端设备进入休眠期,如图3b所示。
应理解,终端设备周期性的在各个持续时间的时间段内监测PDCCH,图3a和图3b中以实线方格表示持续时间的时间段。
3、XR
XR,是指通过计算机技术和可穿戴设备产生的一个真实与虚拟组合的、可人机交互的环境。XR是在增强现实(augmented reality,AR),虚拟现实(virtual reality,VR)和混合现实(mixed reality,MR)基础上提出的。换句话说,为了避免概念混淆,XR其实是一个总称,包括了AR,VR和MR。XR业务的目的是利用高速网络,加上360度影像等技术,达到交互式的沉浸体验效果。XR业务具有如下特点:业务量较大,传输时延要求较高(即需要尽可能降低传输时延),数据帧到达间隔较短,或业务周期性比较明显等。
在网络设备向终端设备传输XR或类似XR业务的数据帧场景中,当XR业务的数据帧率为60每秒帧数(frame per second,fps)时,相邻两帧数据帧对应的业务数据的到达时间间隔平均为16.67ms。终端设备侧数据帧的理想到达时间间隔可以为16.67ms。应理解,数据帧是从应用层角度所定义的,一个数据帧也可以替换为一个视频帧。一个协议数据单元集合(protocol data unit set,PDU set)包括一帧(frame)数据帧中的业务数据。PDU set是从MAC层角度所定义的。一个数据帧也可以替换为一个PDU set。
如图4a所示,网络设备可以为该终端设备配置比较接近数据帧到达时间间隔的DRX周期长度,例如可以为16ms,或者为17ms。或者,如图4b所示,网络设备可以为该终端设备配置等于数据帧到达时间间隔的DRX周期长度,即16.67ms。
应理解,DRX周期中持续时间的起始位置可以与XR业务的业务周期(如虚线所示的位置)是重合的。此种情况下,也可以描述为,DRX周期与业务周期是匹配的。或者,DRX周期中持续时间的起始位置也可以与XR业务的业务周期(如虚线所示的位置)是不重合的,且差距在一定的范围内。或者,在某些DRX周期中持续时间的起始位置与XR业务的业务周期(如虚线所示的位置)是重合的,在其DRX周期中持续时间的起始位置与XR业务的业务周期(如虚线所示的位置)差距在一定的范围内。此种情况下,也可以描述为,DRX周期与业务周期是近似匹配的。在本申请实施例中,以DRX周期与业务周期匹配为例,进行介绍。
虽然XR业务从总体上看具有较为明显的周期性,但是由于应用服务器对不同数据帧的处理速度不同,并且不同数据帧从应用服务器通过互联网以及核心网到达网络设备(如基站)的路由方式不同,数据帧实际到达网络设备(如基站)的时间可能出现抖动(jitter)现象。相应的,数据帧达到终端设备的时间也可能出现抖动。例如,抖动的时长可能为0~8ms。如图4b所示,数据帧的到达时间可能会延迟0~8ms,即数据帧到达的时间间隔在16.67ms~24.67ms之间波动。若数据帧实际到达时间处于DRX周期的持续时间之外,即终端设备在持续时间内未收到数据调度,则在持续时间之后终端设备不监测PDCCH。此种情况下,网络设备将数据帧延迟到下一个DRX周期内进行调度。由于DRX周期长度约为16ms~17ms,延迟到下一个DRX周期内进行调度导致终端设备侧XR业务的数据帧延迟较大,可能造成卡顿现象,影响XR业务的用户体验。
在一些实施例中,网络设备可以将DRX周期中的持续时间配置得较长,可以解决由于抖动引起的数据帧延迟到达的问题,尽可能使得数据帧到达时间处于持续时间内。如图4c所示, 将持续时间的起始位置配置在数据帧可能达到的最早位置,将持续时间的长度配置为可以覆盖到最大抖动范围,使得持续时间的长度足以覆盖数据帧到达的所有可能时间段,如持续时间配置为8ms。但是,DRX的持续时间配置过长会导致终端设备的激活时间过长,如此终端设备在PDCCH到达之前的时段内进行无效的PDCCH监测(即监测了PDCCH但是没有收到数据调度信息),难以达到节能的效果。
有鉴于此,本申请实施例提供两种通信方法,该方法可以应用于图1的通信系统。下面,先介绍本申请实施例通信方法所依赖的基础假设。参见图5a,图5a示出了一种业务的抖动大小。以XR业务为例,在图5a中,横轴为XR业务的数据帧的索引(index),纵轴为抖动的大小。从图5a可知,各个数据帧的抖动的取值在0附近波动。并且,图5a中的所有数据帧的抖动范围为纵向双箭头c指示的范围,或者说为图5a中两条横虚线所表示的范围,本申请实施例中将此抖动范围,描述为第二抖动范围,也可以理解为,通信设备(如终端设备、网络设备)对某一业务在持续时段内的抖动范围估计结果。而从局部来看,在一段时间内的数据帧(如相邻的几十个数据帧)的抖动范围相对较小。例如,图5a中靠左的纵向双箭头a和纵向双箭头b所示。即,数据帧的抖动在短时间内的变化幅度相比在长时间内的变化幅度更小,并且,整体上存在一个“慢变”的趋势(如图5a中虚曲线所示),本申请实施例中将双箭头a和纵向双箭头b所示的抖动范围,描述为第一抖动范围;也可以理解为,通信设备(如终端设备、网络设备)对某一业务在第一时段内的抖动范围估计结果。其中,第一时段为上述业务持续时段的一部分。容易理解的是,第一抖动范围小于第二抖动范围。
也就是说,相邻或相近的数据帧之间的抖动取值差别不会太大,具有一定的相关性。基于此,终端设备可以将当前数据帧的到达位置作为参考,再结合第一抖动范围,来确定下一个数据帧的到达位置的波动范围。终端设备可以仅在该小的波动范围内(即结合第一抖动范围所确定的数据帧到达位置的波动范围)监测PDCCH,而不用在第二抖动范围内监测PDCCH,从而降低终端设备监测PDCCH的功耗。
如图5b所示,在DRX周期1中,终端设备接收来自网络设备的PDCCH1。然后,终端设备以PDCCH1的时域位置作为参考,预测在DRX周期2中PDCCH的到达位置范围,即DRX周期2中虚线双箭头所标识的位置范围。其中,DRX周期2中虚线双箭头的心中与预测1所标识的虚线方框匹配,如DRX周期2中虚线双箭头的心中与预测1所标识的虚线方框中心重合。DRX周期2中虚线双箭头表示第一抖动范围。预测1所标识的虚线方框与PDCCH1之间的间隔等于一个DRX周期长度(或等于一个XR数据帧到达周期的长度)。终端设备在预测的达到位置范围上监测PDCCH,终端设备接收来自网络设备的PDCCH2。
类似的,终端设备以PDCCH2的时域位置作为参考,预测在DRX周期3中PDCCH的到达位置范围,即DRX周期3中虚线双箭头所标识的位置范围。其中,DRX周期3中虚线双箭头的心中与预测2所标识的虚线方框匹配。DRX周期3中虚线双箭头表示第一抖动范围。预测2所标识的虚线方框与PDCCH2之间的间隔等于一个DRX周期长度(或等于一个XR数据帧到达周期的长度)。如此,终端设备无需在持续时间的起始位置就开始监测PDCCH,而是可以在持续时间的起始位置之后的时间开始监测PDCCH,从而减少无效监测PDCCH的时长,以降低终端设备的功耗。
应理解,本申请下述实施例中各个设备之间的消息名字或消息中各参数的名字等只是一 个示例,具体实现中也可以是其他的名字,本申请实施例对此不作具体限定。
在本申请实施例提供的第一种通信方法中,终端设备在L个DRX周期的每个DRX周期中接收来自网络设备的PDCCH。其中,L为正整数。然后,终端设备根据L个DRX周期的每个DRX周期中PDCCH的时域位置,确定在第L+1个DRX周期中开始监测PDCCH的时域位置。这样一来,由于相邻或相近PDCCH的时域位置之间的抖动取值差别不会太大,具有一定的相关性,所以基于前L个DRX周期中每个DRX周期的PDCCH的时域位置,来预测第L+1个DRX周期中监测PDCCH的时域位置,而无需在整个持续时间期间持续监测PDCCH,从而降低终端设备监测PDCCH的功耗。
下面,结合图6至图12c,对本申请实施例提出的第一种通信方法进行详细介绍。本申请实施例提出的通信方法600包括如下步骤:
S601、网络设备在L个DRX周期的每个DRX周期中向终端设备发送PDCCH。相应的,终端设备在L个DRX周期的每个DRX周期中接收来自网络设备的PDCCH。
其中,L为正整数。L个DRX周期在时域上可以连续,也可以不连续,本申请实施例对此不作限定。
示例性的,在L=10的情况下,10个DRX周期分别记为:DRX周期1,DRX周期2,…,DRX周期10。网络设备侧执行过程包括:网络设备在DRX周期1的时间单元1上向终端设备发送PDCCH,在DRX周期2的时间单元2上向终端设备发送PDCCH,…,在DRX周期10的时间单元10上向终端设备发送PDCCH。终端设备侧执行过程包括:终端设备在DRX周期1的时间单元1上接收来自网络设备的PDCCH,在DRX周期2的时间单元2上接收来自网络设备的PDCCH,…,在DRX周期10的时间单元10上接收来自网络设备的PDCCH。其中,时间单元的说明如下:一个时间单元可以为一个或若干个符号,一个或若干个时隙(slot),一个或若干个微时隙(mini-slot),一个或若干个子帧,或一个或若干个帧等,本申请实施例对此不作限定。
本申请实施例中的符号、微时隙、时隙、子帧、帧的定义可以参考第三代合作伙伴计划(3rd generation partnership project,3GPP)的相关技术规范。
应理解,网络设备在上述10个DRX周期的每个DRX周期中发送的PDCCH数量为一个或多个。
对于终端设备而言,终端设备在L个DRX周期的每个DRX周期接收PDCCH之后,执行S602:
S602、终端设备根据L个DRX周期的每个DRX周期中PDCCH的时域位置,确定在第L+1个DRX周期中开始监测PDCCH的时域位置。
其中,S602中的L个DRX周期与S601中的L个DRX周期一致,此处不再赘述。S602中的L个DRX周期早于第L+1个DRX周期。
在一些实施例中,如图7所示,S602包括S602a:
S602a、终端设备根据L个DRX周期的每个DRX周期中第一PDCCH的时域位置,确定在第L+1个DRX周期中开始监测PDCCH的时域位置。
其中,第一PDCCH为终端设备在第一DRX周期内接收的PDCCH中的一个,第一DRX周期是L个DRX周期中的任意一个DRX周期。容易理解的是,在本申请实施例中,L个DRX周期中每个DRX周期具备一个第一PDCCH,相应的,第一PDCCH数量也是L个。
示例性的,仍以L=10为例,终端设备在上述10个DRX周期的每个DRX周期中接收一个或多个PDCCH。以网络设备在每个DRX周期中发送两个PDCCH为例,终端设备侧执行过程包括:终端设备在DRX周期1的时隙1上接收来自网络设备的PDCCH1,在DRX周期1的时隙2上接收来自网络设备的PDCCH2;终端设备在DRX周期2的时隙3上接收来自网络设备的PDCCH3,在DRX周期2的时隙4上接收来自网络设备的PDCCH4;…;终端设备在DRX周期10的时隙19上接收来自网络设备的PDCCH19,在DRX周期10的时隙20上接收来自网络设备的PDCCH20。第一DRX周期是上述10个DRX周期中的每个周期。具体地,在第一DRX周期是上述DRX周期1的情况下,上述PDCCH1和PDCCH2中的一个PDCCH为第一PDCCH;在第一DRX周期是上述DRX周期2的情况下,上述PDCCH3和PDCCH4中的一个PDCCH为第一PDCCH;…;在第一DRX周期是上述DRX周期10的情况下,上述PDCCH19和PDCCH20中的一个PDCCH为第一PDCCH。也就是说,在DRX周期数量是10个的情况下,第一PDCCH的数量也是10个。
进一步地,再通过两个示例(示例1和示例2)对第一PDCCH进行示例性介绍:
示例1,第一PDCCH为终端设备在第一DRX周期内接收的第一个PDCCH。容易理解的是,在本申请实施例中,终端设备在L个DRX周期中每个DRX周期接收的第一个PDCCH,即为该DRX周期的第一PDCCH。
示例性的,参见图8a,仍以上述10个DRX周期为例,在时隙1早于时隙2的情况下,DRX周期1中的PDCCH1为第一PDCCH;在时隙3早于时隙4的情况下,DRX周期2中的PDCCH3为第一PDCCH;…;在时隙19早于时隙20的情况下,DRX周期10中的PDCCH19为第一PDCCH。
示例2,第一PDCCH为调度第一PDSCH的PDCCH,第一PDSCH为终端设备在第一DRX周期内反馈ACK的PDSCH中最早的一个。容易理解的是,在本申请实施例中,终端设备在L个DRX周期的每个DRX周期中接收PDCCH,再接收PDCCH所调度的PDSCH,然后在相应DRX周期中反馈HARQ-ACK信息,以指示自身对PDSCH的接收状况。针对终端设备在一个DRX周期中接收的一个或多个PDCCH,调度第一PDSCH的PDCCH,即为该DRX周期的第一PDCCH,可以记为ACKed-PDCCH。
示例性的,参见图8b,仍以10个DRX周期为例,网络设备在每个DRX周期中发送两个PDCCH,终端设备侧执行过程包括:终端设备在DRX周期1的时隙1上发生DCI丢失,未接收到来自网络设备的PDCCH1,在DRX周期1的时隙2上接收来自网络设备的PDCCH2;终端设备在DRX周期2~DRX周期10上的接收状况,可以参见图8a的介绍。上述10个DRX周期中每个DRX周期的PDCCH调度一个PDSCH,若终端设备接收一个PDCCH所调度的PDSCH成功,则反馈ACK。第一DRX周期是上述10个DRX周期中的每个周期。具体地,在第一DRX周期是上述DRX周期1的情况下,上述PDCCH2所调度的PDSCH为第一PDSCH,即终端设备针对DRX周期1反馈ACK的PDSCH中最早的一个。相应的,PDCCH2为第一PDCCH;在第一DRX周期是上述DRX周期2的情况下,上述PDCCH3所调度的PDSCH为第一PDSCH,即终端设备针对DRX周期2反馈ACK的PDSCH中最早的一个。相应的,PDCCH3为第一PDCCH;…;在第一DRX周期是上述DRX周期10的情况下,上述PDCCH19所调度的PDSCH为第一PDSCH,即终端设备针对DRX周期10反馈ACK的PDSCH中最早的一个。相应的,PDCCH19为第一PDCCH。
如此,在终端设备无法获知自身发生了DCI丢失,或者,即使终端设备能够获知自身发生了DCI丢失,也无法获知丢失DCI的时域位置的情况下,终端设备和网络设备能够确定第一PDCCH的时域位置,即对于终端设备反馈了HARQ-ACK信息的第一PDSCH而言,调度该第一PDSCH的第一PDCCH在时域上的位置是确定的,终端设备和网络设备基于同一参考点(即上述第一PDCCH)来确定第L+1个DRX周期中监测PDCCH的时域位置,准确性高。
其中,S602a中开始监测PDCCH的时域位置介绍如下:
在一些实施例中,第L+1个DRX周期中开始监测PDCCH的时域位置是根据第二时间点确定的。其中,第二时间点是根据第一时长和L个DRX周期的每个DRX周期中第一PDCCH的时域位置确定的,第一时长为网络设备配置或指示的。例如,第L+1个DRX周期中开始监测PDCCH的时域位置为第二时间点,详见下述方式A1和方式A2的介绍。再如,第L+1个DRX周期中开始监测PDCCH的时域位置为第一时间点和第二时间点中较晚的一个。其中,第一时间点为第L+1个DRX周期中持续时间(OnDuration)的起始位置,第L+1个DRX周期中持续时间的起始位置是根据DRX周期长度和DRX起始偏移值确定的,详见下述方式A1的介绍,此处暂不赘述。
在一些实施例中,第L+1个DRX周期中开始监测PDCCH的时域位置为持续时间的起始位置,详见下述方式A3的介绍,此处暂不赘述。
应理解,上述时域位置,也可以有其他描述,如时间位置。在本申请实施例中,以时域位置为例,进行介绍。由于PDCCH中包含了DCI,所以,PDCCH的时域位置,也可以等价替换为,DCI的时域位置,在本申请实施例中,以PDCCH的时域位置为例进行介绍。类似的,DCI丢失(DCI missing),也可以等价替换为,PDCCH丢失,在本申请实施例中,以DCI丢失为例进行介绍。
对于网络设备而言,网络设备在L个DRX周期的每个DRX周期发送PDCCH之后,执行S603:
S603、网络设备根据L个DRX周期的每个DRX周期中PDCCH的时域位置,确定在第L+1个DRX周期中终端设备开始监测PDCCH的时域位置。
其中,S603中的L个DRX周期与S601中的L个DRX周期一致,此处不再赘述。S603中的L个DRX周期早于第L+1个DRX周期。网络设备确定了在第L+1个DRX周期中终端设备开始监测PDCCH的时域位置后,会在该时域位置之后才发送PDCCH。即使在第L+1个DRX周期中数据帧到达网络设备的时间早于该时域位置,网络设备也不会在该时域位置之前发送PDCCH,因为即使网络设备在该时域位置之前发送PDCCH,终端设备也无法接收到,这样会浪费网络设备的功耗,浪费空口资源。
下面,通过两种情况(下述情况1和情况2)对S603进行介绍:
情况1,网络设备不感知终端设备是否发生DCI丢失。如图7所示,S603包括S603a:
S603a、网络设备根据L个DRX周期的每个DRX周期中第二PDCCH的时域位置,确定在第L+1个DRX周期中终端设备开始监测PDCCH的时域位置。
其中,第二PDCCH为网络设备在第一DRX周期内发送的PDCCH中的一个,第一DRX周期是L个DRX周期中的任意一个DRX周期。容易理解的是,在本申请实施例中,L个DRX周期中每个DRX周期具备一个第二PDCCH,相应的,第二PDCCH数量也是L个。
示例性的,仍以L=10为例,网络设备在上述10个DRX周期的每个DRX周期中发送一 个或多个PDCCH。以网络设备在每个DRX周期中发送两个PDCCH为例,网络设备侧执行过程包括:网络设备在DRX周期1的时隙1上向终端设备发送PDCCH1,在DRX周期1的时隙2上向终端设备发送PDCCH2;网络设备在DRX周期2的时隙3上向终端设备发送PDCCH3,在DRX周期2的时隙4上向终端设备发送PDCCH4;…;网络设备在DRX周期10的时隙19上向终端设备发送PDCCH19,在DRX周期10的时隙20上向终端设备发送PDCCH20。第一DRX周期是上述10个DRX周期中的每个周期。具体地,在第一DRX周期是上述DRX周期1的情况下,上述PDCCH1和PDCCH2中的一个PDCCH为第二PDCCH;在第一DRX周期是上述DRX周期2的情况下,上述PDCCH3和PDCCH4中的一个PDCCH为第二PDCCH;…;在第一DRX周期是上述DRX周期10的情况下,上述PDCCH19和PDCCH20中的一个PDCCH为第二PDCCH。也就是说,在DRX周期数量是10个的情况下,第二PDCCH的数量也是10个。
进一步地,再通过三个示例(示例3和示例4)对第二PDCCH进行示例性介绍:
示例3,第二PDCCH为网络设备在第一DRX周期内发送的第一个PDCCH。容易理解的是,在本申请实施例中,网络设备在L个DRX周期中每个DRX周期发送的第一个PDCCH,即为该DRX周期的第二PDCCH。
示例性的,参见图8c,仍以上述10个DRX周期为例,在时隙1早于时隙2的情况下,DRX周期1中的PDCCH1为第二PDCCH;在时隙3早于时隙4的情况下,DRX周期2中的PDCCH3为第二PDCCH;…;在时隙19早于时隙20的情况下,DRX周期10中的PDCCH19为第二PDCCH。
应理解,针对示例1中的第一PDCCH和示例3中的第二PDCCH,终端设备在某一DRX周期中未发生DCI丢失的情况下,就该DRX周期中的第一PDCCH和第二PDCCH而言,第一PDCCH和第二PDCCH是同一个PDCCH。终端设备在某一DRX周期中发生DCI丢失的情况下,就该DRX周期中的第一PDCCH和第二PDCCH而言,第二PDCCH位于第一PDCCH之前。
示例4,第二PDCCH为调度第一PDSCH的PDCCH,第一PDSCH为终端设备在第一DRX周期内反馈ACK的PDSCH中最早的一个。
应理解,针对示例2中的第一PDCCH和示例4中的第二PDCCH,无论终端设备是否发生DCI丢失,就同一DRX周期中的第一PDCCH和第二PDCCH而言,第一PDCCH和第二PDCCH是同一个PDCCH。示例4中的第二PDCCH,可以参见示例2中的第一PDCCH的介绍,此处不再赘述。
其中,S603a中终端设备开始监测PDCCH的时域位置介绍如下:
在一些实施例中,第L+1个DRX周期中终端设备开始监测PDCCH的时域位置是根据第七时间点确定的。其中,第七时间点是根据第一时长和L个DRX周期的每个DRX周期中第一PDCCH的时域位置确定的,第一时长是网络设备为终端设备配置或指示的。例如,第L+1个DRX周期中开始监测PDCCH的时域位置为第七时间点,详见下述方式E1和方式E2的介绍。再如,第L+1个DRX周期中开始监测PDCCH的时域位置为第六时间点和第七时间点中较晚的一个。其中,第六时间点为第L+1个DRX周期中持续时间(OnDuration)的起始位置,第L+1个DRX周期中持续时间的起始位置是根据DRX周期长度和DRX起始偏移值确定的,详见下述方式E1的介绍,此处暂不赘述。第六时间点与第一时间点是同一时间点。
在一些实施例中,第L+1个DRX周期中终端设备开始监测PDCCH的时域位置为持续时间的起始位置,详见下述方式E3的介绍,此处暂不赘述。
也就是说,网络设备结合前L个DRX周期中每个DRX周期的第二PDCCH的时域位置,来确定第L+1个DRX周期中终端设备开始监测PDCCH的时域位置。
情况2,网络设备感知终端设备是否发生DCI丢失。如图7所示,S603包括S603b:
S603b、在L个DRX周期中至少一个DRX周期发生DCI丢失的情况下,网络设备根据L个DRX周期的每个DRX周期中第一PDCCH的时域位置,确定在第L+1个DRX周期中终端设备开始监测PDCCH的时域位置。
其中,S603b中的第一PDCCH可以参见S602a中第一PDCCH的介绍,此处不再赘述。
其中,L个DRX周期中至少一个DRX周期发生DCI丢失是网络设备根据以下确定的:终端设备在HARQ的资源位置上发生DTX。其中,HARQ至少用于反馈丢失的DCI的接收状况,即HARQ-ACK信息。所谓DTX,可以理解为,终端设备在应该发送HARQ-ACK信息的资源位置未发送反馈,或者,网络设备在终端设备应该发送HARQ-ACK信息的资源位置上未检测到反馈信息(即HARQ-ACK信息)。
示例性的,在频分双工(frequency division duplex,FDD)的通信系统中,每个时隙都既有上行资源又有下行资源,所以,每个时隙都有PUCCH资源用于反馈HARQ-ACK信息,或者,每个下行时隙发送的PDSCH都有对应的PUCCH资源用于反馈HARQ-ACK信息。此种情况下,网络设备可以通过监测终端设备是否发送了HARQ-ACK信息,来确定终端设备是否发生DCI丢失。
示例性的,参见图8d,网络设备在每个DRX周期中发送两个PDCCH,终端设备侧执行过程包括:终端设备在DRX周期1的时隙1上发生DCI丢失,未接收到来自网络设备的PDCCH1,在DRX周期1的时隙2上接收来自网络设备的PDCCH2。相应的,终端设备反馈HARQ-ACK信息。其中,HARQ-ACK信息指示PDCCH2所调度PDSCH的接收状况,不指示PDCCH1所调度PDSCH的接收状况。由于终端设备未反馈PDCCH1所调度PDSCH的接收状况,网络设备确定终端设备未接收到PDCCH1。也就是说,在DRX周期1中,网络设备发送的第一个PDCCH为PDCCH1,但终端设备未接收到PDCCH1,终端设备侧接收的第一个PDCCH为PDCCH2。此种情况下,网络设备将PDCCH2作为第一PDCCH,以DRX周期1中的PDCCH2作为参考,来确定DRX周期2中终端设备开始监测PDCCH的时域位置。
应理解,在本申请实施例的L个DRX周期中,将发生DCI丢失的DRX周期,记为第三DRX周期。第三DRX周期中的第一PDCCH在丢失的DCI之后。示例性的,以图8d(或图8b)为例,在DRX周期1中,终端设备在DRX周期1的时隙1上发生DCI丢失,即丢失了PDCCH1所包含的DCI,终端设备在DRX周期1的时隙2上接收PDCCH2,即PDCCH2是DRX周期1中的第一PDCCH。PDCCH1(终端设备侧发生DCI丢失)所在的时隙1早于PDCCH2(终端设备侧所确定的第一PDCCH)所在的时隙2。
也就是说,在网络设备识别出终端设备在前L个DRX周期中发生DCI丢失的情况下,网络设备结合前L个DRX周期中每个DRX周期的第一PDCCH的时域位置,来确定第L+1个DRX周期中终端设备开始监测PDCCH的时域位置,即使终端设备发生DCI丢失,也能够使得网络设备与终端设备选择同一参考PDCCH(即上述第一PDCCH)来预测PDCCH监测位置,准确性高。
应理解,终端设备在L个DRX周期中至少一个DRX周期发生DCI丢失的情况下,若第二PDCCH为网络设备在第一DRX周期内发送的第一个PDCCH,则第二PDCCH可以早于第一PDCCH。示例性的,以图8d(或图8b)为例,在DRX周期1中,网络设备发送的第一个PDCCH为PDCCH1,即PDCCH1是DRX周期1中的第二PDCCH。终端设备在DRX周期1的时隙1上发生DCI丢失,即丢失了PDCCH1所包含的DCI,终端设备在DRX周期1的时隙2上接收PDCCH2,即PDCCH2是DRX周期1中的第一PDCCH。PDCCH1(网络设备侧所确定的第二PDCCH)所在的时隙1早于PDCCH2(终端设备侧所确定的第一PDCCH)所在的时隙2。
对于网络设备而言,网络设备确定在第L+1个DRX周期中终端设备开始监测PDCCH的时域位置之后,执行S604:
S604、网络设备在第L+1个DRX周期向终端设备发送PDCCH。相应的,终端设备在第L+1个DRX周期接收来自网络设备的PDCCH。
示例性的,网络设备在第L+1个DRX周期中终端设备开始监测PDCCH的时域位置之后,向终端设备发送PDCCH,以使终端设备在第L+1个DRX周期接收到PDCCH。
应理解,本申请实施例通信方法600可以基于网络设备的配置来使能。即,网络设备发送配置信息之后,终端设备才能够执行S602,即根据L个DRX周期的每个DRX周期中PDCCH的时域位置,确定在第L+1个DRX周期中开始监测PDCCH的时域位置。反之,如果网络设备未发送配置信息,终端设备可以根据OnDuration的配置,来监测PDCCH,如图4a、图4b或图4c所示的过程,此处不再赘述。
接下来,以终端设备的角度,通过三种方式(方式A1、方式A2和方式A3)对S602a中开始监测PDCCH的时域位置进行介绍:
方式A1,第L+1个DRX周期中开始监测PDCCH的时域位置是根据第二时间点确定的。例如,在方式A1的第一种示例中,第L+1个DRX周期中开始监测PDCCH的时域位置为第二时间点。也就是说,在第二时间点上,终端设备开始监测第L+1个DRX周期的PDCCH。可以理解为,终端设备根据前L个DRX周期的每个DRX周期中PDCCH的时域位置,确定在第L+1个DRX周期中开始监测PDCCH的时域位置,并未兼顾第一时间点(即第L+1个DRX周期中持续时间(OnDuration)的起始位置)做进一步的保护处理。
再如,在方式A1的第二种示例中,第L+1个DRX周期中开始监测PDCCH的时域位置为第一时间点和第二时间点中较晚的一个。也就是说,在第一时间点和第二时间点中较晚的一个时间点上,终端设备开始监测第L+1个DRX周期的PDCCH。可以理解为,终端设备既“根据前L个DRX周期的每个DRX周期中PDCCH的时域位置,确定在第L+1个DRX周期中开始监测PDCCH的时域位置”,又兼顾第一时间点(即第L+1个DRX周期中持续时间(OnDuration)的起始位置)做了进一步的保护处理。
其中,第一时间点的介绍如下:
第一时间点为第L+1个DRX周期中持续时间(OnDuration)的起始位置,第L+1个DRX周期中持续时间的起始位置是根据DRX周期长度和DRX起始偏移值确定的。示例性的,DRX起始偏移值根据drx-LongCycleStartOffset和drx-SlotOffset中的一个或多个参数确定。DRX的周期长度根据drx-LongCycleStartOffset和shortDRX的一个或多个参数确定。示例性 的,第一时间点可以记为X。
其中,第二时间点的介绍如下:
第二时间点是根据第一时长和L个DRX周期的每个DRX周期中第一PDCCH的时域位置确定的,第一时长为网络设备配置或指示的。下面,通过两个情况对第二时间点进行介绍:
第一种情况,L个DRX周期的每个DRX周期中第一PDCCH的时域位置是绝对的时域位置。例如,在L=1的情况下,即,前L个DRX周期为一个DRX周期。此种情况下,第一时长记为T1。其中,第一时长T1满足:
T1=a-b/2      公式(1)
其中,T1表示第一时长,a表示第一间隔,b表示第一抖动范围的长度。
其中,第一间隔的介绍如下:第一间隔为网络设备获取相邻数据所间隔的时长。其中,第一间隔所涉及的数据,可以包括数据帧、视频帧等。相应的,相邻数据,是指相邻数据帧,或者,相邻视频帧。第一间隔可以理解为帧间隔,如上述16.67ms。或者,第一间隔所涉及的数据,可以包括PDU set。相应的,相邻数据,是指相邻PDU set。第一间隔可以理解为相邻两个PDU set之间的间隔。
应理解,在第一种情况下,第一时长的配置过程介绍如下:对于网络设备而言,网络设备向终端设备发送配置参数1。相应的,终端设备接收来自网络设备的配置参数1。其中,配置参数1用于配置第一时长。示例性的,配置参数1包括上述参数T1,终端设备基于参数T1,即可确定第一时长。或者,配置参数1包括上述参数a和参数b,终端设备基于参数a和参数b,以及公式(1),即可确定第一时长,本申请实施例对此不作限定。
第二时间点满足:
Tstart2=n+T1      公式(2)
其中,Tstart2表示第二时间点,n表示第一PDCCH的时域位置,如时隙索引,T1表示第一时长。
容易理解的是,在方式A1中,第L+1个DRX周期中开始监测PDCCH的时域位置可以记为max{n+T1,X}。其中,n+T1表示第二时间点,具体参见公式(2)的介绍,X表示第一时间点。
另外,补充一种第二时间点的确定方式:以L=1为例,当前L个DRX周期为DRX周期1的情况下,第L+1个DRX周期为DRX周期2。DRX周期2中的预测可能出现的PDCCH(即图9a中的预测1所标识的PDCCH)与DRX周期1中的PDCCH1之间的间隔等于参数a,再以DRX周期2中的预测的PDCCH为起点向前推b/2,即可得到时刻t0对应的第二时间点。其中,图9a中的带双向箭头的虚线表示第一抖动范围b。
第二种情况,L个DRX周期的每个DRX周期中第一PDCCH的时域位置是相对的时域位置,即相对于该第一PDCCH所在DRX周期中持续时间起始位置的偏移量。在L≥1的情况下,即,前L个DRX周期为一个或多个DRX周期。此种情况下,第一时长记为T1。其中,第一时长T1满足:
T1=b/2      公式(3)
其中,T1表示第一时长,b表示第一抖动范围的长度。
应理解,在第二种情况下,第一时长的配置过程介绍如下:对于网络设备而言,网络设备向终端设备发送配置参数2。相应的,终端设备接收来自网络设备的配置参数2。其中,配置 参数2用于配置第一时长。示例性的,配置参数2包括上述参数T1,终端设备基于参数T1,即可确定第一时长。或者,配置参数2包括上述参数b,终端设备基于参数b,以及公式(3),即可确定第一时长,本申请实施例对此不作限定。
第二时间点满足:
Tstart2=P-T1      公式(4)
其中,Tstart2表示第二时间点,T1表示第一时长,P表示与偏移量相关的参数,P是根据L个DRX周期的每个DRX周期中第一PDCCH的时域位置所确定的参数,参数P满足:
P=f(O1,O2,…,OL-1,OL)      公式(5)
其中,P表示与偏移量相关的参数,f()表示函数运算,如取平均值运算,即f(O1,O2,…,OL-1,OL)=(O1+O2,…+OL-1+OL)/L或 表示向下取整运算,O1表示L个DRX周期中第一个DRX周期中第一PDCCH的偏移量(即第一个DRX周期中第一PDCCH的时域位置相对于第一个DRX周期中持续时间的起始位置的偏移量),O2表示L个DRX周期中第二个DRX周期中第一PDCCH的偏移量(即第二个DRX周期中第一PDCCH的时域位置相对于第二个DRX周期中持续时间的起始位置的偏移量),OL表示L个DRX周期中第L个DRX周期中第一PDCCH的偏移量(即第L个DRX周期中第一PDCCH的时域位置相对于第L个DRX周期中持续时间的起始位置的偏移量)。另一个示例中,该函数运算可以为取加权平均,即f(O1,O2,…,OL-1,OL)=(w1O1+w2O2,…+wL-1OL-1+wLOL)/L或 其中,w1~wL为加权因子。可选的,当i<j时,wi≤wj,即距离第L+1个DRX周期越远的第一PDCCH,对应的加权因子取值越小。
示例性的,参数b对应的第一抖动范围为[-2,2]ms(等价于第一抖动范围为[0,4]ms),系统的子载波间隔为30kHz,时隙长度为0.5ms时,假设前L个DRX周期的每个DRX周期中,第一PDCCH的时域位置相对于所在DRX周期中持续时间的起始位置偏移8个时隙(即偏移4ms),则在第L+1个DRX周期中,终端设备在相对于持续时间的起始位置偏移4个时隙(即偏移2ms)的位置,开始监测PDCCH。
容易理解的是,在方式A1中,第L+1个DRX周期中开始监测PDCCH的时域位置可以记为max{P-T1,X}。其中,P-T1表示第二时间点,具体参见公式(4)的介绍,X表示第一时间点。
下面,再结合图9a对方式A1,进行示例性介绍:
如图9a所示,以L=1为例,当前L个DRX周期为DRX周期1的情况下,第L+1个DRX周期为DRX周期2。基于上述方式A1中第一种示例的介绍,第二时间点可以是图9a中的t0。所以,终端设备从t0开始监测PDCCH。当前L个DRX周期为DRX周期2的情况下,第L+1个DRX周期为DRX周期3。基于上述方式A1中第一种示例的介绍,第二时间点可以是图9a中的t3。终端设备在DRX周期3中从持续时间期间的某一位置(如图9a中的t3)开始监测PDCCH。
如图9a所示,以L=1为例,当前L个DRX周期为DRX周期1的情况下,第L+1个DRX周期为DRX周期2。基于上述方式A1中第二种示例的介绍,第一时间点可以是图9a中的t1,第二时间点可以是图9a中的t0。由于t1晚于t0,所以,终端设备在DRX周期2中从持续时间的起始位置(如图9a中的t1)开始监测PDCCH。当前L个DRX周期为DRX周 期2的情况下,第L+1个DRX周期为DRX周期3。基于上述方式A1中第二种示例的介绍,第一时间点可以是图9a中的t2,第二时间点可以是图9a中的t3。由于t3晚于t2,所以,终端设备在DRX周期3中从持续时间期间的某一位置(如图9a中的t3)开始监测PDCCH。
也就是说,在方式A1的第二种示例中,由于DRX周期与业务周期是匹配的或近似匹配的,所以,在第一时间点晚于第二时间点的情况下,终端设备在第L+1个DRX周期中开始监测PDCCH的时域位置为第一时间点,以避免过早监测PDCCH,从而节能。在第二时间点晚于第一时间点的情况下,第二时间点更能够表征第L+1个DRX周期中PDCCH的时域位置,所以,即使在第一时间点上DRX持续时间定时器已启动,终端设备也不监测PDCCH,直至第二时间点,终端设备才开始监测PDCCH,如此,在数据调度到达较晚的场景下,终端设备能够避免过早地监测PDCCH,从而降低自身功耗。
方式A2,第L+1个DRX周期中开始监测PDCCH的时域位置为第二时间点。也就是说,在第二时间点上,终端设备开始监测第L+1个DRX周期的PDCCH。
其中,第二时间点可以参见方式A1的介绍,此处不再赘述。
如图9b所示,以L=1为例,在前L个DRX周期为DRX周期1的情况下,第L+1个DRX周期为DRX周期2。基于上述方式A2的介绍,第二时间点可以是图9a中的t0。终端设备在DRX周期2中第二时间点(即图9b中的t0)开始监测PDCCH。
在方式A2中,进一步地,第二时间点为第L+1个DRX周期中持续时间的起始位置。也就是说,在方式A2中,DRX周期的周期长度是不固定的,相邻DRX周期的持续时间之间间隔时长不再固定。此种情况下,网络设备可以为终端设备不配置DRX周期的周期长度这一参数。
也就是说,在方式A2中,第二时间点更能够表征第L+1个DRX周期中PDCCH的时域位置,所以,终端设备在第二时间点开始监测PDCCH,以降低功耗。
容易理解的是,在方式A2中,当前的DRX周期中OnDuration的起始位置不再是根据配置的DRX周期和DRX起始偏移值确定的,而是根据前L个DRX周期中PDCCH的时域位置(或描述为调度信息)递推的,会随着数据帧的达到位置而变化。具体的,假设L=1,若终端设备在DRX周期1中的时隙n开始收到调度信息,则DRX周期2中OnDuration的起始位置为时隙n+T1。终端设备在DRX周期2中OnDuration的起始位置,开始监测PDCCH。
方式A3,第L+1个DRX周期中开始监测PDCCH的时域位置为持续时间的起始位置。此种情况下,在L个DRX周期中第一PDCCH的时域位置满足第一条件的情况下,终端设备确定在第L+1个DRX周期中持续时间的起始位置开始监测PDCCH。
其中,第L+1个DRX周期中持续时间的起始位置是根据DRX周期长度和DRX起始偏移值确定的,具体可以参见方式A1中对第一时间点的介绍,此处不再赘述。
其中,第一条件包括以下至少一项:
条件a1,L个DRX周期中至少一个DRX周期发生DCI丢失。
条件a2,第二DRX周期中第一PDCCH的时域位置晚于第五时间点。
也就是说,第一条件包括条件a1和/或条件a2。应理解,在第一条件包括条件a1,不包括条件a2的情况下,满足第一条件,可以理解为,满足条件a1。在第一条件包括条件a2,不包括条件a1的情况下,满足第一条件,可以理解为,满足条件a2。在第一条件包括条件a1和a2的情况下,满足第一条件,可以理解为,满足条件a1,和/或,满足条件a2。
其中,条件a1(即L个DRX周期中至少一个DRX周期发生DCI丢失)的介绍如下:
将L个DRX周期中发生DCI丢失的任意一个DRX周期,记为第三DRX周期。其中,第三DRX周期发生DCI丢失是终端设备根据以下至少一项确定的:
第一项,参考DCI的数据分配指示(data assignment indication,DAI)字段。其中,参考DCI是通过第三DRX周期中的第一PDCCH接收的。示例性的,通过动态形式反馈HARQ-ACK信息的情况下,终端设备通过第三DRX周期的第一PDCCH接收参考DCI之后,若参考DCI的DAI字段指示的取值大于第一预设值,如DAI字段指示了大于0的值,则终端设备认为第三DRX周期发生DCI丢失。
第二项,参考DCI的混合自动重传请求过程号(HARQ process number,HPN)字段、新数据指示(new data indicator,NDI)字段和冗余版本(redundancy version,RV)字段。示例性的,终端设备通过第三DRX周期的第一PDCCH接收参考DCI之后,若参考DCI的NDI字段指示第一HARQ进程所传输的数据更新,并且,参考DCI的RV字段指示的取值大于第二预设值,则终端设备认为第三DRX周期发生DCI丢失。其中,第一HARQ进程用于传输XR业务的数据,可以由HPN字段来指示第一HARQ进程的进程号。
应理解,在正常情况下,若为初传,则参考DCI的RV字段指示的取值为0,若为重传,则参考DCI的RV字段指示的取值大于0。若终端设备针对一个HPN接收到NDI toggled DCI(即上述参考DCI中的NDI字段指示的取值发生转换),且指示RV>0,则终端设备确定该DRX周期出现了DCI丢失。
在满足条件a1的情况下,终端设备确定在第L+1个DRX周期中持续时间的起始位置开始监测PDCCH。可以理解为,终端设备识别出自身在前L个DRX周期中有一个或多个DRX周期发生DCI丢失,则终端设备在第L+1个DRX周期执行回退(fallback)方案,即在第L+1个DRX周期中持续时间的起始位置开始监测PDCCH,来降低数据传输时延。
其中,条件a2(即第二DRX周期中第一PDCCH的时域位置晚于第五时间点)的介绍如下:
第二DRX周期是L个DRX周期中的至少一个DRX周期。也就是说,将L个DRX周期中“第一PDCCH的时域位置晚于第五时间点”的任意一个DRX周期,记为第二DRX周期。第五时间点是根据以下确定的:第二DRX周期之前L个DRX周期的每个DRX周期中第一PDCCH的时域位置,以及第二时长。其中,第二时长为网络设备配置或指示的。下面,通过两个情况对第五时间点进行介绍:
第一种情况,L个DRX周期的每个DRX周期中第一PDCCH的时域位置是绝对的时域位置。例如,在L=1的情况下,即,前L个DRX周期为一个DRX周期。此种情况下,第二时长记为T2。其中,第二时长T2满足:
T2=a+b/2      公式(6)
其中,T2表示第二时长。a表示第一间隔。b表示第一抖动范围的长度,具体可以参见公式(1)的介绍,此处不再赘述。
应理解,在第一种情况下,第二时长的配置过程介绍如下:对于网络设备而言,网络设备向终端设备发送配置参数3。相应的,终端设备接收来自网络设备的配置参数3。其中,配置参数3用于配置第二时长。示例性的,配置参数3包括上述参数T2,终端设备基于参数T2,即可确定第二时长。或者,配置参数3包括上述参数a和参数b,终端设备基于参数a和参数 b,以及公式(6),即可确定第二时长,本申请实施例对此不作限定。另外,第一时长与第二时长的关系如下:第一时长与第二时长是不同的时长,并且,第二时长大于第一时长,具体可以参见公式(2)和公式(6),此处不再赘述。
第五时间点满足:
Tend5=n+T2      公式(7)
其中,Tend5表示第五时间点,n表示第一PDCCH的时域位置,如时隙索引,T2表示第二时长。
容易理解的是,在条件a2中,L个DRX周期的每个DRX周期存在一个预测PDCCH的监测时域位置。以任意一个DRX周期,如第二DRX周期为例,预期监测PDCCH的时域位置可以记为{n+T1,n+T2}。其中,{n+T1,n+T2},可以理解为,第二DRX周期中预期监测到PDCCH的时域位置为:从“n+T1”这一时刻到“n+T2”这一时刻之间的时间段。
如图9c所示,以L=1为例,在前L个DRX周期为DRX周期1的情况下,第L+1个DRX周期为DRX周期2。基于上述条件a2的介绍,第五时间点可以是图9c中的t1。终端设备在DRX周期2中对第一PDCCH的预期到达时间为t0~t1。终端设备在DRX周期2的t1之后监测到第一PDCCH,如图9c中的PDCCH2。也就是说,在DRX周期2中,由于网络拥塞导致数据调度出现突变的抖动,导致终端设备在第一PDCCH的预期到达时间内未接收到第一PDCCH,而在预期到达时间后接收到第一PDCCH。此种情况下,当终端设备确定DRX周期3中开始监测PDCCH的时域位置时,假若终端设备仍根据公式(2),在DRX周期3中从持续时间期间的某一个位置(如图9c中的t3)开始监测PDCCH,则导致终端设备在DRX周期3中开始监测PDCCH的时刻过晚,导致传输时延过大,影响用户体验。而终端设备基于上述条件a2的介绍,终端设备在DRX周期3中从持续时间的起始位置(如图9c中的t2)开始监测PDCCH,以降低数据传输时延。
第二种情况,L个DRX周期的每个DRX周期中第一PDCCH的时域位置是相对的时域位置,即相对于该第一PDCCH所在DRX周期中持续时间起始位置的偏移量。在L≥1的情况下,即,前L个DRX周期为一个或多个DRX周期。此种情况下,第二时长记为T2。其中,第二时长T2满足:
T2=b/2      公式(8)
其中,T2表示第二时长,b表示第一抖动范围的长度。
应理解,在第二种情况下,第二时长的配置过程介绍如下:对于网络设备而言,网络设备向终端设备发送配置参数4。相应的,终端设备接收来自网络设备的配置参数4。其中,配置参数4用于配置第二时长。示例性的,配置参数4包括上述参数T2,终端设备基于参数T2,即可确定第二时长。或者,配置参数4包括上述参数b,终端设备基于参数b,以及公式(8),即可确定第二时长,本申请实施例对此不作限定。第一时长与第二时长的关系如下:第一时长与第二时长是相等的时长,具体可以参见公式(3)和公式(8),但第一时长与第二时长的用途不同,例如,在方式A1中,第一时长用于确定第二时间点,在方式A3中,第二时长用于确定第五时间点,此处不再赘述。
第五时间点满足:
Tend5=P+T2      公式(9)
其中,Tend5表示第五时间点,T2表示第二时长,P表示与偏移量相关的参数,P是根据 L个DRX周期的每个DRX周期中第一PDCCH的时域位置所确定的参数,参数P可以参见公式(5)的介绍,此处不再赘述。
容易理解的是,在条件a2中,L个DRX周期的每个DRX周期存在一个预期第一PDCCH的监测时域位置。以任意一个DRX周期,如第二DRX周期为例,预期监测第一PDCCH的时域位置可以记为{P-T1,P+T2}。其中,{P-T1,P+T2},可以理解为,第二DRX周期中预期监测到第一PDCCH的时域位置为:从“P-T1”这一时刻到“P+T2”这一时刻之间的时间段。
也就是说,在方式A3中,第五时间点更能够表征第二DRX周期中第一PDCCH的预期达到最晚时间点,所以,终端设备在第二DRX周期的第五时间点之后监测到第一PDCCH的情况下,意味着,第二DRX周期存在异常,如瞬时网络波动导致的抖动异常点,终端设备在第L+1个DRX周期中从持续时间起始位置开始监测PDCCH,以避免过晚监测PDCCH所导致的数据传输时延过大问题。
在满足条件a2的情况下,终端设备确定在第L+1个DRX周期中持续时间的起始位置开始监测PDCCH。可以理解为,前L个DRX周期中有一个或多个DRX周期的第一PDCCH的时域位置晚于相应DRX周期的第五时间点,则终端设备在第L+1个DRX周期执行回退(fallback)方案,即在第L+1个DRX周期中持续时间的起始位置开始监测PDCCH。如此,即使实际网络传输过程中数据帧的抖动有较大的突变,终端设备不再基于突变的抖动,来确定第L+1个DRX周期中开始监测PDCCH的时域位置,这样会导致终端设备在第L+1个DRX周期中过晚地开始监测PDCCH,而终端设备在第L+1个DRX周期中从持续时间的起始位置开始监测PDCCH,也就能够降低数据传输时延。
以上,以终端设备的角度,对S602a中开始监测PDCCH的时域位置进行了介绍。
以下,以终端设备的角度,对停止监测PDCCH的时域位置进行介绍:
在一些实施例中,如图10所示,终端设备还执行S606:
S606、终端设备确定在第L+1个DRX周期中停止监测PDCCH的时域位置。
下面,通过三种方式(方式B1、方式B2和方式B3)对S606中停止监测PDCCH的时域位置进行介绍:
方式B1,第L+1个DRX周期中停止监测PDCCH的时域位置为第三时间点和第四时间点中较早的一个。也就是说,在第三时间点和第四时间点中较早的一个时间点上,终端设备停止监测第L+1个DRX周期的PDCCH。
其中,第三时间点为L+1个DRX周期中持续时间的结束位置,如DRX持续时间定时器运行超时的位置,或者,DRX非激活定时器运行超时的位置。示例性的,第三时间点可以记为Y。第四时间点是根据第二时长和L个DRX周期的每个DRX周期中第一PDCCH的时域位置确定的,第二时长为网络设备配置或指示的。下面,通过两个情况对第四时间点进行介绍:
第一种情况,L个DRX周期的每个DRX周期中第一PDCCH的时域位置是绝对的时域位置。在L=1的情况下,即,前L个DRX周期为一个DRX周期。此种情况下,第二时长记为T2。其中,第二时长T2满足公式(6),此处不再赘述。
第四时间点满足:
Tend4=n+T2      公式(10)
其中,Tend4表示第四时间点,n表示第一PDCCH的时域位置,如时隙索引,T2表示第 二时长。
容易理解的是,在方式B1中,第L+1个DRX周期中停止监测PDCCH的时域位置可以记为min{n+T2,Y}。其中,n+T2表示第四时间点,具体参见公式(10)的介绍,Y表示第三时间点。
如图11所示,以L=1为例,在前L个DRX周期为DRX周期1的情况下,第L+1个DRX周期为DRX周期2。基于上述方式B1的介绍,第三时间点可以是图11中的t2,第四时间点可以是图11中的t1。由于t1时刻早于t2时刻,所以,终端设备在DRX周期2中的时刻t1,停止监测PDCCH,以降低功耗。
第二种情况,L个DRX周期的每个DRX周期中第一PDCCH的时域位置是相对的时域位置,即相对于该第一PDCCH所在DRX周期中持续时间起始位置的偏移量。在L≥1的情况下,即,前L个DRX周期为一个或多个DRX周期。此种情况下,第二时长记为T2。其中,T2满足公式(8),此处不再赘述。
第四时间点满足:
Tend4=P+T2      公式(11)
其中,Tend4表示第四时间点,T2表示第二时长,P表示与偏移量相关的参数,P是根据L个DRX周期的每个DRX周期中第一PDCCH的时域位置所确定的参数,参数P可以参见公式(5)的介绍,此处不再赘述。
容易理解的是,在方式B1中,第L+1个DRX周期中停止监测PDCCH的时域位置可以记为min{P+T2,Y}。其中,P+T2表示第四时间点,具体参见公式(11)的介绍,Y表示第三时间点。
也就是说,在方式B1中,第三时间点为第L+1个DRX周期中持续时间(OnDuration)的结束位置,由于DRX周期与业务周期是匹配的或近似匹配的,所以,在第三时间点早于第四时间点的情况下,终端设备在第L+1个DRX周期中停止监测PDCCH的时域位置为第三时间点,以降低功耗,也能够防止PDCCH漏检。在第四时间点早于第三时间点的情况下,由于第四时间点更能够表征第L+1个DRX周期中PDCCH的时域位置,所以,终端设备在第四时间点停止监测PDCCH,以降低功耗。
方式B2,第L+1个DRX周期中停止监测PDCCH的时域位置为持续时间的结束位置,如DRX持续时间定时器运行超时的位置,或者,DRX非激活定时器运行超时的位置。
例如,以DRX持续时间定时器为例,当DRX持续时间定时器运行超时,终端设备在第L+1个DRX周期中停止监测PDCCH。其中,DRX持续时间定时器的配置参数,可以由网络设备提供,具体可以参见相关技术,此处不再赘述。
再如,以DRX非激活定时器为例,当DRX非激活定时器运行超时,终端设备在第L+1个DRX周期中停止监测PDCCH。其中,DRX非激活定时器的配置参数,可以由网络设备提供,具体可以参见相关技术,此处不再赘述。
也就是说,在方式B2中,终端设备在第L+1个DRX周期中持续时间的结束位置,停止监测PDCCH,以降低终端设备侧的运算复杂度。
方式B3,第L+1个DRX周期中停止监测PDCCH的时域位置,与开始监测PDCCH的时域位置之间的间隔等于第一参数。其中,第一参数指示第一抖动范围的时长。示例性的,第一参数指示的时长记为第三时长。也就是说,终端设备在第L+1个DRX周期中持续监测 PDCCH一段时长之后,终端设备停止监测第L+1个DRX周期的PDCCH。其中,第L+1个DRX周期中持续监测PDCCH的时长,等于第一参数指示的时长(即第三时长)。
示例性的,第一参数包括参数b。对于网络设备而言,网络设备向终端设备发送第一参数。相应的,终端设备接收来自网络设备的第一参数。其中,第一参数用于配置终端设备在第L+1个DRX周期中持续监测PDCCH的时长(即第三时长)。终端设备基于参数b,即可确定自身在第L+1个DRX周期中持续监测PDCCH的时长(即第三时长)。然后,终端设备基于在第L+1个DRX周期中开始监测PDCCH的时域位置,以及参数b,来确定自身在第L+1个DRX周期中停止监测PDCCH的时域位置。
示例性的,参数b所对应的第一抖动范围是[-2,2]ms时,第L+1个DRX周期中持续时间(OnDuration)的长度可以配置为4ms。意味着,终端设备在第L+1个DRX周期中持续监测PDCCH的时长为4ms。
也就是说,在方式B3中,终端设备在第L+1个DRX周期中开始监测PDCCH之后,基于第一参考所指示的时长(即第三时长),来确定停止监测PDCCH的时域位置。并且,持续监测PDCCH的时长等于第一抖动范围,小于整个持续时间的长度。意味着,终端设备无需在整个持续时间持续监测PDCCH,以降低功耗。
应理解,S606的执行顺序说明如下:终端设备可以先执行S606,再执行S604,还可以同时执行S604和S606,本申请实施例对此不作限定。
最后,以终端设备的角度,对时域位置(即开始监测PDCCH的时域位置、停止监测PDCCH的时域位置)之间的组合关系进行介绍:
下面,通过9种方案(下述方案1~方案9)对时域位置组合关系,进行介绍:
方案1,方案1包括方式A1和方式B1。也就是说,针对第L+1个周期,终端设备根据第二时间点确定开始监测PDCCH的时域位置。例如,在第一时间点和第二时间点中较晚的一个时间点上,或者,在第二时间点上,终端设备开始监测第L+1个DRX周期的PDCCH。其中,第一时间点和第二时间点可以参见方式A1的介绍。在第三时间点和第四时间点中较早的一个时间点上,终端设备停止监测第L+1个DRX周期的PDCCH。其中,第三时间点和第四时间点可以参见方式B1的介绍。
示例性的,如图12a中方案1所示,以L=1为例,在前L个DRX周期为DRX周期1的情况下,第L+1个DRX周期为DRX周期2。基于上述方式A1的介绍,第一时间点可以是图12a中的t0,第二时间点可以是图12a中的t1。以在第一时间点和第二时间点中较晚的一个时间点上开始监测PDCCH为例,由于t1晚于t0,所以,终端设备在DRX周期2中从持续时间期间的一个位置(如图12a中的t1)开始监测PDCCH。基于上述方式B1的介绍,第三时间点可以是图12a中的t3,第四时间点可以是图12a中的t2。由于t2早于t3,所以,终端设备在DRX周期2中在持续时间期间的另一个位置(如图12a中的t2)停止监测PDCCH。
方案2,方案2包括方式A1和方式B2。也就是说,针对第L+1个周期,终端设备根据第二时间点确定开始监测PDCCH的时域位置。例如,在第一时间点和第二时间点中较晚的一个时间点上,或者,在第二时间点上,终端设备开始监测第L+1个DRX周期的PDCCH。其中,第一时间点和第二时间点可以参见方式A1的介绍。当DRX持续时间定时器运行超时,终端设备在第L+1个DRX周期中停止监测PDCCH,可以参见方式B2的介绍。或者,当DRX非激活定时器运行超时,终端设备在第L+1个DRX周期中停止监测PDCCH(图12a未示 出),可以参见方式B2的介绍。
示例性的,如图12a中方案2所示,终端设备在DRX周期2中开始监测PDCCH的时域位置,可以参见方案1的介绍,此处不再赘述。基于上述方式B2的介绍,当DRX持续时间定时器运行超时,如图12a中的t3时刻,终端设备在第L+1个DRX周期中停止监测PDCCH。
方案3,方案3包括方式A1和方式B3。也就是说,针对第L+1个周期,终端设备根据第二时间点确定开始监测PDCCH的时域位置。例如,在第一时间点和第二时间点中较晚的一个时间点上,或者,在第二时间点上,终端设备开始监测第L+1个DRX周期的PDCCH。其中,第一时间点和第二时间点可以参见方式A1的介绍。然后,终端设备根据第L+1个DRX周期中开始监测PDCCH的时域位置,以及第一参数指示的时长,来确定第L+1个DRX周期中停止监测PDCCH的时域位置。
示例性的,如图12a中方案3所示,终端设备在DRX周期2中开始监测PDCCH的时域位置,可以参见方案1的介绍,此处不再赘述。基于上述方式B3的介绍,终端设备根据第L+1个DRX周期中开始监测PDCCH的时域位置,如图12a中的t1,以及第一参数指示的时长,即第一抖动范围对应的时长,来确定第L+1个DRX周期中停止监测PDCCH的时域位置,即图12a中的t2。
方案4,方案4包括方式A2和方式B1。也就是说,针对第L+1个周期,在第二时间点上,终端设备开始监测第L+1个DRX周期的PDCCH。其中,第二时间点可以参见方式A2的介绍。第二时间点作为第L+1个DRX周期中激活器的起始位置。在第三时间点和第四时间点中较早的一个时间点上,终端设备停止监测第L+1个DRX周期的PDCCH。其中,第三时间点和第四时间点可以参见方式B1的介绍。
示例性的,如图12b中方案4所示,以L=1为例,在前L个DRX周期为DRX周期1的情况下,第L+1个DRX周期为DRX周期2。基于上述方式A2的介绍,第二时间点可以是图12b中的t1。所以,终端设备在t1开始监测PDCCH。并且,第二时间点作为DRX周期2中持续时间的起始位置。基于上述方式B1的介绍,第三时间点可以是图12b中的t3,第四时间点可以是图12b中的t2。由于t2早于t3,所以,终端设备在DRX周期2中在持续时间期间的一个位置(如图12b中的t2)停止监测PDCCH。
方案5,方案5包括方式A2和方式B2。也就是说,针对第L+1个周期,在第二时间点上,终端设备开始监测第L+1个DRX周期的PDCCH。其中,第二时间点可以参见方式A2的介绍。第二时间点作为第L+1个DRX周期中激活器的起始位置。当DRX持续时间定时器运行超时,终端设备在第L+1个DRX周期中停止监测PDCCH,可以参见方式B2的介绍。或者,当DRX非激活定时器运行超时,终端设备在第L+1个DRX周期中停止监测PDCCH(图12b未示出),可以参见方式B2的介绍。
示例性的,如图12b中方案5所示,终端设备在DRX周期2中开始监测PDCCH的时域位置,可以参见方案4的介绍,此处不再赘述。基于上述方式B2的介绍,当DRX持续时间定时器运行超时,如图12b中的t3时刻,终端设备在第L+1个DRX周期中停止监测PDCCH。
方案6,方案6包括方式A2和方式B3。也就是说,针对第L+1个周期,在第二时间点上,终端设备开始监测第L+1个DRX周期的PDCCH。其中,第二时间点可以参见方式A2的介绍。第二时间点作为第L+1个DRX周期中激活器的起始位置。然后,终端设备根据第L+1个DRX周期中开始监测PDCCH的时域位置,以及第一参数指示的时长,来确定第L+1 个DRX周期中停止监测PDCCH的时域位置。
示例性的,如图12b中方案6所示,终端设备在DRX周期2中开始监测PDCCH的时域位置,可以参见方案4的介绍,此处不再赘述。基于上述方式B3的介绍,终端设备根据第L+1个DRX周期中开始监测PDCCH的时域位置,如图12b中的t1,以及第一参数指示的时长,即第一抖动范围对应的时长,来确定第L+1个DRX周期中停止监测PDCCH的时域位置,即图12b中的t2。
方案7,方案7包括方式A3和方式B1。也就是说,在L个DRX周期中第一PDCCH的时域位置满足第一条件的情况下,终端设备确定在第L+1个DRX周期中持续时间的起始位置开始监测PDCCH,可以参见方式A3的介绍。在第三时间点和第四时间点中较早的一个时间点上,终端设备停止监测第L+1个DRX周期的PDCCH。其中,第三时间点和第四时间点可以参见方式B1的介绍。
示例性的,如图12c中方案7所示,以L=1为例,在前L个DRX周期为DRX周期1的情况下,第L+1个DRX周期为DRX周期2。基于上述方式A3的介绍,终端设备在DRX周期2中从持续时间的起始位置(如图12c中的t0)开始监测PDCCH。基于上述方式B1的介绍,第三时间点可以是图12c中的t3,第四时间点可以是图12c中的t2。由于t2早于t3,所以,终端设备在DRX周期2中在持续时间期间的一个位置(如图12c中的t2)停止监测PDCCH。
方案8,方案8包括方式A3和方式B2。也就是说,在L个DRX周期中第一PDCCH的时域位置满足第一条件的情况下,终端设备确定在第L+1个DRX周期中持续时间的起始位置开始监测PDCCH,可以参见方式A3的介绍。当DRX持续时间定时器运行超时,终端设备在第L+1个DRX周期中停止监测PDCCH,可以参见方式B2的介绍。或者,当DRX非激活定时器运行超时,终端设备在第L+1个DRX周期中停止监测PDCCH(图12c未示出),可以参见方式B2的介绍。
示例性的,如图12c中方案8所示,终端设备在DRX周期2中开始监测PDCCH的时域位置,可以参见方案7的介绍,此处不再赘述。基于上述方式B2的介绍,当DRX持续时间定时器运行超时,如图12c中的t3时刻,终端设备在第L+1个DRX周期中停止监测PDCCH。
方案9,方案9包括方式A3和方式B3。也就是说,在L个DRX周期中第一PDCCH的时域位置满足第一条件的情况下,终端设备确定在第L+1个DRX周期中持续时间的起始位置开始监测PDCCH,可以参见方式A3的介绍。然后,终端设备根据第L+1个DRX周期中开始监测PDCCH的时域位置,以及第一参数指示的时长,来确定第L+1个DRX周期中停止监测PDCCH的时域位置。
示例性的,如图12c中方案9所示,终端设备在DRX周期2中开始监测PDCCH的时域位置,可以参见方案7的介绍,此处不再赘述。基于上述方式B3的介绍,终端设备根据第L+1个DRX周期中开始监测PDCCH的时域位置,如图12c中的t0,以及第一参数指示的时长,即第一抖动范围对应的时长,来确定第L+1个DRX周期中停止监测PDCCH的时域位置,即图12c中的t2。
接下来,以网络设备的角度,通过三种方式(方式E1、方式E2和方式E3)对S603a中终端设备开始监测PDCCH的时域位置进行介绍:
方式E1,第L+1个DRX周期中终端设备开始监测PDCCH的时域位置是根据第七时间点确定的。例如,在方式E1的第一种示例中,第L+1个DRX周期中终端设备开始监测PDCCH的时域位置为第七时间点。
再如,在方式E1的第二种示例中,第L+1个DRX周期中终端设备开始监测PDCCH的时域位置为第六时间点和第七时间点中较晚的一个。也就是说,在第六时间点和第七时间点中较晚的一个时间点上,网络设备确定终端设备开始监测第L+1个DRX周期的PDCCH。
其中,第六时间点为第L+1个DRX周期中持续时间(OnDuration)的起始位置,第L+1个DRX周期中持续时间的起始位置是根据DRX周期长度和DRX起始偏移值确定的。应理解,在同一DRX周期中的第二PDCCH与第一PDCCH相同时,第六时间点与第一时间点相同,具体可以参见方式A1的介绍。
其中,第七时间点是根据第一时长和L个DRX周期的每个DRX周期中第二PDCCH的时域位置确定的,第一时长是网络设备为终端设备配置或指示的。应理解,在同一DRX周期中的第二PDCCH与第一PDCCH相同时,第七时间点与第二时间点相同,具体可以参见方式A1的介绍。
方式E2,第L+1个DRX周期中终端设备开始监测PDCCH的时域位置为第七时间点。也就是说,网络设备确定终端设备在第七时间点上,开始监测第L+1个DRX周期的PDCCH。
其中,第七时间点可以参见方式E1的介绍,此处不再赘述。
在方式E2中,进一步地,第七时间点为第L+1个DRX周期的持续时间的起始位置。也就是说,在方式E2中,DRX周期的周期长度是不固定的,相邻DRX周期的持续时间之间间隔时长不再固定。此种情况下,网络设备可以为终端设备不配置DRX周期的周期长度这一参数。
方式E3,第L+1个DRX周期中终端设备开始监测PDCCH的时域位置为持续时间的起始位置。此种情况下,网络设备所执行的S603a包括步骤1和步骤2:
步骤1、网络设备确定第二DRX周期中第二PDCCH的时域位置晚于第十时间点。
其中,第二DRX周期是L个DRX周期中的至少一个DRX周期。第十时间点是根据以下确定的:第二DRX周期之前L个DRX周期的每个DRX周期中第二PDCCH的时域位置,以及第二时长。应理解,在同一DRX周期中的第二PDCCH与第一PDCCH相同时,第十时间点与第五时间点相同,具体可以参见方式A3的介绍。第二时长是网络设备为终端设备配置或指示的,具体可以参见方式A3的介绍。
步骤2、网络设备确定在第L+1个DRX周期中持续时间的起始位置终端设备开始监测PDCCH。
其中,第L+1个DRX周期中持续时间的起始位置是根据DRX周期和DRX起始偏移值确定,具体可以参见方式A3的介绍。
以上,以网络设备的角度,对S603a中终端设备开始监测PDCCH的时域位置进行了介绍。
以下,以网络设备的角度,对终端设备停止监测PDCCH的时域位置进行介绍:
在一些实施例中,如图10所示,网络设备还执行S607:
S607、网络设备确定在第L+1个DRX周期中终端设备停止监测PDCCH的时域位置。
下面,通过三种方式(方式F1、方式F2和方式F3)对S607中终端设备停止监测PDCCH 的时域位置进行介绍:
方式F1,第L+1个DRX周期中终端设备停止监测PDCCH的时域位置为第八时间点和第九时间点中较早的一个。也就是说,在第八时间点和第九时间点中较早的一个时间点上,网络设备确定终端设备停止监测第L+1个DRX周期的PDCCH。
其中,第八时间点为L+1个DRX周期中持续时间的结束位置,如DRX持续时间定时器运行超时的位置,或者,DRX非激活定时器运行超时的位置。应理解,在同一DRX周期中的第二PDCCH与第一PDCCH相同时,第八时间点与第三时间点相同,具体可以参见方式B1的介绍。
其中,第九时间点是根据第二时长和L个DRX周期的每个DRX周期中第二PDCCH的时域位置确定的,第二时长是网络设备为终端设备配置或指示的。应理解,在同一DRX周期中的第二PDCCH与第一PDCCH相同时,第九时间点与第四时间点相同,具体可以参见方式B1的介绍。
方式F2,第L+1个DRX周期中终端设备停止监测PDCCH的时域位置为持续时间的结束位置,如DRX持续时间定时器运行超时的位置,或者,DRX非激活定时器运行超时的位置,具体可以参见方式B2的介绍。
方式F3,第L+1个DRX周期中终端设备停止监测PDCCH的时域位置,与终端设备开始监测PDCCH的时域位置之间的间隔等于第一参数。其中,第一参数指示第一抖动范围的时长,如第三时长,具体可以参见方式B3的介绍。
应理解,S607的执行顺序说明如下:网络设备可以先执行S607,再执行S604,还可以同时执行S604和S607,本申请实施例对此不作限定。
最后,对于网络设备而言,时域位置(即开始监测PDCCH的时域位置、停止监测PDCCH的时域位置)之间的组合关系,可以参见上述方案1~方案9的介绍。
应理解,在DRX机制中,网络波动可能有个别数据帧有突发的较大抖动,导致数据帧到达网络设备的时间晚于DRX周期中持续时间(OnDuration)的结束时刻。此种情况下,网络设备将数据帧延迟到下一个DRX周期内进行调度,导致数据传输时延大,影响用户体验。
有鉴于此,如图13所示,对于终端设备而言,终端设备可以执行S1301和S1302:
S1301、终端设备确定在目标DRX周期的持续时间未监测到PDCCH。
示例性的,终端设备可以先执行S601和S602,再执行S1301。此种情况下,S1301中的目标DRX周期,为S602中的第L+1个DRX周期。终端设备也可以不执行图6中的步骤,而执行图13中的步骤。此种情况下,S1301中的目标DRX周期,是终端设备监测PDCCH中的任意一个DRX周期。
示例性的,如图14所示,目标DRX周期为DRX周期1。DRX周期1中持续时间的结束位置为t0。终端设备在t0之前未监测到PDCCH。
S1302、终端设备在目标DRX周期中继续监测PDCCH。
其中,S1302中的目标DRX周期,与S1301中的目标DRX周期一致,此处不再赘述。
示例性的,终端设备在第一时间窗内继续监测PDCCH。其中,第一时间窗在目标DRX周期内,第一时间窗的起始位置不早于目标DRX周期中持续时间的结束位置,如第一时间窗的起始位置与目标DRX周期中持续时间的结束位置重合,或者,第一时间窗的起始位置在目 标DRX周期中持续时间的结束位置之后。第一时间窗的配置参数,可以由网络设备向终端设备提供,以使终端设备确定第一时间窗的时域位置。
示例性的,如图14所示,第一时间窗可以是t0~t1这一时间段,即第一时间窗的起始位置与持续时间的结束位置重合。终端设备在t0~t1这一时间段,继续监测PDCCH。
应理解,图6和图13中的步骤是相互独立的,彼此并无耦合关系。具体地,终端设备可以执行图6中的步骤,但不执行图13中的步骤,以减少无效监测PDCCH的时长,从而降低自身的功耗。终端设备也可以不执行图6中的步骤,而执行图13中的步骤,以解决数据帧有较大抖动时所导致的数据传输时延大的问题。终端设备还可以执行图6和图13中的步骤,既能够减少无效监测PDCCH的时长,从而降低自身的功耗,又能够解决数据帧有较大抖动时所导致的数据传输时延大的问题。
如图13所示,对于网络设备而言,网络设备还执行S1303和S1304:
S1303、网络设备确定在目标DRX周期的持续时间未发送PDCCH。
其中,S1303中的目标DRX周期,与S1301中的目标DRX周期一致,此处不再赘述。
S1304、网络设备确定在目标DRX周期中终端设备继续监测PDCCH。
示例性的,网络设备确定终端设备在第一时间窗内继续监测PDCCH。其中,第一时间窗可以参见S1302的介绍,此处不再赘述。
对于网络设备而言,网络设备在执行S1304之后,若有数据帧到达,则执行S1305:
S1305、网络设备在目标DRX周期中向终端设备发送PDCCH。相应的,终端设备在目标DRX周期中接收来自网络设备的PDCCH。
示例性的,网络设备在第一时间窗内向终端设备发送PDCCH。相应的,终端设备执行S1302之后,终端设备继续监测PDCCH,所以,终端设备在第一时间窗内接收来自网络设备的PDCCH。
示例性的,如图14所示,网络设备在第一时间窗内发送PDCCH1。相应的,终端设备在t0~t1这一时间段,继续监测PDCCH,也就能够监测到PDCCH1。
其中,S1305中的目标DRX周期,与S1301中的目标DRX周期一致,此处不再赘述。
在本实施例中,由于DRX周期与业务周期是匹配的或近似匹配的,在每个DRX周期中必然会传输一个数据帧(或一个PDU set)的数据。如此,即使网络波动造成数据帧的抖动存在较大突变,如数据帧(或PDU set)到达时间晚于网络设备配置的持续时间(OnDuration)的结束时刻,若终端设备在该DRX周期的持续时间中未监测到PDCCH,仍继续监测PDCCH,则网络设备可以在该DRX周期的持续时间之后发送PDCCH,调度较晚到达的数据帧(或PDU set),而不是在下一个DRX周期再调度该数据帧(或PDU set),以降低数据传输时延。
在本申请实施例提供的第二种通信方法中,网络设备在L个DRX周期的每个DRX周期中向终端设备发送PDCCH。其中,L为正整数。然后,网络设备向终端设备发送第一指示信息。其中,第一指示信息指示第L+1个DRX周期中终端设备开始监测PDCCH的时域位置,第一指示信息指示的时域位置是根据L个DRX周期的每个DRX周期中PDCCH的时域位置确定的。这样一来,由于相邻或相近PDCCH的时域位置之间的抖动取值差别不会太大,具有一定的相关性,所以,网络设备基于前L个DRX周期中每个DRX周期的PDCCH的时域位置,来预测第L+1个DRX周期中监测PDCCH的时域位置,再通过第一指示信息为终端设 备指示监测PDCCH的时域位置,使得终端设备无需在整个持续时间期间持续监测PDCCH,从而降低终端设备监测PDCCH的功耗。
下面,结合图15至图16,对本申请实施例提出的通信方法1500进行详细介绍。本申请实施例提出的通信方法1500包括如下步骤:
S1501、网络设备在L个DRX周期的每个DRX周期中向终端设备发送PDCCH。相应的,终端设备在L个DRX周期的每个DRX周期中接收来自网络设备的PDCCH。
其中,S1501的实现过程,可以参见S601的介绍,此处不再赘述。
S1502、网络设备向终端设备发送第一指示信息。相应的,终端设备接收来自网络设备的第一指示信息。
其中,第一指示信息指示第L+1个DRX周期中终端设备开始监测PDCCH的时域位置。第一指示信息指示的时域位置是网络设备根据L个DRX周期的每个DRX周期中PDCCH的时域位置确定的,具体过程可以参见S1505的介绍,此处暂不赘述。
示例性的,第一指示信息用于指示一个时间单元的索引。具体的,第一指示信息可以直接指示一个时间单元的索引,如第一指示信息包括第L+1个DRX周期中某一时隙的索引。或者,第一指示信息也可以间接指示一个时间单元的索引,如第一指示信息占用三个比特,第一指示信息所表示的取值与时间单元索引之间存在一定的映射关系,如表1所示:
表1
在表1中,第一指示信息为“000”,表征第一指示信息指示的索引2的时间单元,第一指示信息为“001”,表征第一指示信息指示的索引3的时间单元,第一指示信息为“010”,表征第一指示信息指示的索引4的时间单元。应理解,第一指示信息还可以通过其他方式来指示时间单元的索引,此处不再一一赘述。
示例性的。第一指示信息可以承载于物理层信令。
对于终端设备而言,终端设备接收第一指示信息之后,执行S1503:
S1503、终端设备根据第一指示信息,确定第L+1个DRX周期中开始监测PDCCH的时域位置。
示例性的,终端设备将第一指示信息指示的时域位置,作为第L+1个DRX周期中开始监测PDCCH的时域位置。
对于网络设备而言,网络设备发送第一指示信息之后,若有数据帧到达,则执行S1504:
S1504、网络设备在第L+1个DRX周期中向终端设备发送PDCCH。相应的,终端设备在第L+1个DRX周期中接收来自网络设备的PDCCH。
示例性的,网络设备在第一指示信息指示的时域位置开始,向终端设备发送PDCCH。或者,针对第L+1个周期,网络设备在第一指示信息指示的时域位置之后,向终端设备发送PDCCH。相应的,终端设备在第一指示信息指示的时域位置开始监测PDCCH,也就能够接收到来自网络设备的PDCCH。
也就是说,网络设备为终端设备指示第L+1个DRX周期中开始监测PDCCH的时域位置,以降低终端设备的运算复杂度和功耗。
在一些实施例中,如图16所示,网络设备执行S1501之后,先执行S1505,再执行S1502。其中,S1505的介绍如下:
S1505、网络设备根据L个DRX周期的每个DRX周期中PDCCH的时域位置,确定目标时域位置。
其中,目标时域位置用于确定第一指示信息指示的时域位置。
示例性的,S1505中的目标时域位置,为第一指示信息指示的时域位置。
作为第一种可能的实现方式,S1505包括:网络设备根据L个DRX周期的每个DRX周期中第二PDCCH的时域位置,确定目标时域位置。其中,第二PDCCH可以参见S603a的介绍。相应的,目标时域位置是根据第七时间点确定的。例如,目标时域位置可以为第七时间点。再如,目标时域位置可以为第六时间点和第七时间点中较晚的一个。其中,第六时间点和第七时间点可以参见方式E1和方式E2的介绍。目标时域位置还可以为第L+1个DRX周期中持续时间的起始位置,可以参见方式E3的介绍,此处不再赘述。
作为第二种可能的实现方式,S1505包括:在L个DRX周期中DRX周期发生DCI丢失的情况下,网络设备根据L个DRX周期的每个DRX周期中第一PDCCH的时域位置,确定目标时域位置。其中,第一PDCCH可以参见S603b的介绍。
在一些实施例中,如图16所示,网络设备执行S1501之后,还执行S1506。其中,S1506的介绍如下:
S1506、网络设备向终端设备发送第二指示信息。相应的,终端设备接收来自网络设备的第二指示信息。
其中,作为一种可能的实现方式,第二指示信息指示第L+1个DRX周期中终端设备停止监测PDCCH的时域位置。第二指示信息指示的时域位置为第八时间点和第九时间点中较早的一个,第八时间点和第九时间点可以参见方式F1的介绍。
示例性的,第二指示信息用于指示一个时间单元的索引,第二指示信息可以直接指示一个时间单元的索引,也可以间接指示一个时间单元的索引,详见第一指示信息的介绍,此处不再赘述。其中,第二指示信息指示的时域位置,晚于第一指示信息指示的时域位置。
其中,作为另一种可能的实现方式,第三指示信息指示当DRX持续时间定时器运行超时,第L+1个DRX周期中终端设备停止监测PDCCH,可以参见方式F2的介绍。或者,第三指示信息指示当DRX非激活定时器运行超时,第L+1个DRX周期中终端设备停止监测PDCCH,可以参见方式F2的介绍。
对于终端设备而言,终端设备接收第二指示信息之后,执行S1507:
S1507、终端设备根据第二指示信息,确定第L+1个DRX周期中停止监测PDCCH的时域位置。
示例性的,终端设备将第二指示信息指示的时域位置,作为第L+1个DRX周期中停止监测PDCCH的时域位置。
也就是说,网络设备为终端设备指示第L+1个DRX周期中停止监测PDCCH的时域位置,以降低终端设备的运算复杂度。
应理解,在本申请实施例中,若DRX周期中持续时间的长度由网络设备配置,则持续时 间的长度可以等于第二抖动范围。例如,第二抖动范围是[-4,4]ms(等价于第二抖动范围为[0,8]ms)时,网络设为终端设备配置的持续时间(OnDuration)的长度为8ms。
上述主要从各个网元之间交互的角度对本申请实施例提供的方案进行了介绍。相应的,本申请实施例还提供了通信装置,该通信装置可以为上述方法实施例中的网元,或者包含上述网元的装置,或者为可用于网元的部件。可以理解的是,该通信装置为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,本申请能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
示例性的,图17示出了一种通信装置1700的结构示意图。该通信装置1700包括:处理器1701、通信接口1702、存储器1703。可选的,通信装置还可以包括总线1704。其中,通信接口1702、处理器1701以及存储器1703可以通过总线1704相互连接;总线1704可以是外设部件互连标准(peripheral component interconnect,PCI)总线或扩展工业标准结构(extended industry standard architecture,EISA)总线等。所述总线1704可以分为地址总线、数据总线、控制总线等。为便于表示,图17中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
其中,处理器1701可以是CPU,通用处理器,专用集成电路(application specific integrated circuit,ASIC),现场可编程逻辑门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、晶体管逻辑器件、硬件部件或者其任意组合。其可以实现或执行结合本申请公开内容所描述的各种示例性的逻辑方框,模块和电路。处理器也可以是实现计算功能的组合,例如包含一个或多个微处理器组合,DSP和微处理器的组合等等。
示例性的,图17的通信装置1700可以为本申请实施例通信方法600中的终端设备,处理器1701用于支持终端设备执行处理操作。通信接口1702用于支持终端设备执行收发操作。或者,图17的通信装置1700可以为本申请实施例通信方法600中的网络设备,处理器1701用于支持网络设备执行处理操作。通信接口1702用于支持网络设备执行收发操作。
或者,图17的通信装置1700可以为本申请实施例通信方法1500中的终端设备,处理器1701用于支持终端设备执行处理操作。通信接口1702用于支持终端设备执行收发操作。或者,图17的通信装置1700可以为本申请实施例通信方法1500中的网络设备,处理器1701用于支持网络设备执行处理操作。通信接口1702用于支持网络设备执行收发操作。
可选的,本申请实施例还提供一种携带计算机指令的计算机程序产品,当该计算机指令在计算机上运行时,使得计算机执行上述实施例所介绍的方法。
可选的,本申请实施例还提供一种计算机可读存储介质,所述计算机可读存储介质存储计算机指令,当该计算机指令在计算机上运行时,使得计算机执行上述实施例所介绍的方法。
可选的,本申请实施例还提供一种芯片,包括:处理电路和收发电路,处理电路和收发电路用于实现上述实施例所介绍的方法。其中,处理电路用于执行相应方法中的处理动作,收发电路用于执行相应方法中的接收/发送的动作。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包 括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包括一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,数字视频光盘(digital video disc,DVD))、或者半导体介质(例如固态硬盘(solid state drive,SSD))等。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统,装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述模块的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个模块或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或模块的间接耦合或通信连接,可以是电性或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个设备上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
通过以上的实施方式的描述,所属领域的技术人员可以清楚地了解到本申请可借助软件加必需的通用硬件的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本申请的技术方案本质上或者说做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在可读取的存储介质中,如计算机的软盘,硬盘或光盘等,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述的方法。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,在本申请揭露的技术范围内的变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (27)

  1. 一种通信方法,其特征在于,包括:
    终端设备在L个非连续接收DRX周期的每个DRX周期中接收来自网络设备的物理下行控制信道PDCCH,其中,L为正整数;
    所述终端设备根据所述L个DRX周期的每个DRX周期中PDCCH的时域位置,确定在第L+1个DRX周期中开始监测PDCCH的时域位置。
  2. 根据权利要求1所述的方法,其特征在于,
    所述L个DRX周期的每个DRX周期中PDCCH的时域位置,包括:
    所述L个DRX周期的每个DRX周期中第一PDCCH的时域位置;
    其中,所述第一PDCCH为所述终端设备在第一DRX周期内接收的PDCCH中的一个,所述第一DRX周期是所述L个DRX周期中的任意一个DRX周期。
  3. 根据权利要求2所述的方法,其特征在于,
    所述第一PDCCH为所述终端设备在所述第一DRX周期内接收的第一个PDCCH;或者,
    所述第一PDCCH为调度第一物理下行共享信道PDSCH的PDCCH,所述第一PDSCH为所述终端设备在所述第一DRX周期内反馈确认应答信息ACK的PDSCH中最早的一个。
  4. 根据权利要求2或3所述的方法,其特征在于,所述第L+1个DRX周期中开始监测PDCCH的时域位置是根据第二时间点确定的;
    其中,所述第二时间点是根据第一时长和所述L个DRX周期的每个DRX周期中第一PDCCH的时域位置确定的,所述第一时长为所述网络设备配置或指示的。
  5. 根据权利要求4所述的方法,其特征在于,所述第L+1个DRX周期中开始监测PDCCH的时域位置为第一时间点和所述第二时间点中较晚的一个;
    其中,所述第一时间点为所述第L+1个DRX周期中持续时间OnDuration的起始位置,所述第L+1个DRX周期中持续时间的起始位置是根据DRX周期长度和DRX起始偏移值确定的。
  6. 根据权利要求4所述的方法,其特征在于,所述第L+1个DRX周期中开始监测PDCCH的时域位置为所述第二时间点。
  7. 根据权利要求6所述的方法,其特征在于,所述第二时间点为所述第L+1个DRX周期的持续时间OnDuration的起始位置。
  8. 根据权利要求1-7任一项所述的方法,其特征在于,所述终端设备根据所述L个DRX周期的每个DRX周期中PDCCH的时域位置,确定在第L+1个DRX周期中开始监测PDCCH的时域位置之后,所述方法还包括:
    所述终端设备确定在所述第L+1个DRX周期的持续时间未监测到PDCCH;
    所述终端设备在所述第L+1个DRX周期中继续监测PDCCH。
  9. 一种通信方法,其特征在于,包括:
    网络设备在L个非连续接收DRX周期的每个DRX周期中向终端设备发送物理下行控制信道PDCCH,其中,L为正整数;
    所述网络设备根据所述L个DRX周期的每个DRX周期中PDCCH的时域位置,确定在第L+1个DRX周期中所述终端设备开始监测PDCCH的时域位置。
  10. 根据权利要求9所述的方法,其特征在于,
    所述L个DRX周期的每个DRX周期中PDCCH的时域位置,包括:
    所述L个DRX周期的每个DRX周期中第二PDCCH的时域位置;
    其中,所述第二PDCCH为所述网络设备在第一DRX周期内发送的PDCCH中的一个,所述第一DRX周期是所述L个DRX周期中的任意一个DRX周期。
  11. 根据权利要求10所述的方法,其特征在于,
    所述第二PDCCH为所述网络设备在所述第一DRX周期内发送的第一个PDCCH;或者,
    所述第二PDCCH为调度第一物理下行共享信道PDSCH的PDCCH,所述第一PDSCH为所述网络设备在所述第一DRX周期内接收确认应答信息ACK的PDSCH中最早的一个。
  12. 根据权利要求10或11所述的方法,其特征在于,所述第L+1个DRX周期中开始监测PDCCH的时域位置是根据第七时间点确定的;
    其中,所述第七时间点是根据第一时长和所述L个DRX周期的每个DRX周期中第二PDCCH的时域位置确定的,所述第一时长为所述网络设备配置或指示的。
  13. 根据权利要求12所述的方法,其特征在于,所述第L+1个DRX周期中所述终端设备开始监测PDCCH的时域位置为第六时间点和所述第七时间点中较晚的一个;
    其中,所述第六时间点为所述第L+1个DRX周期中持续时间OnDuration的起始位置,所述第L+1个DRX周期中持续时间的起始位置是根据DRX周期长度和DRX起始偏移值确定的。
  14. 根据权利要求12所述的方法,其特征在于,所述第L+1个DRX周期中所述终端设备开始监测PDCCH的时域位置为所述第七时间点。
  15. 根据权利要求14所述的方法,其特征在于,所述第七时间点为所述第L+1个DRX周期的持续时间OnDuration的起始位置。
  16. 根据权利要求9-15任一项所述的方法,其特征在于,所述网络设备根据所述L个DRX周期的每个DRX周期中PDCCH的时域位置,确定在第L+1个DRX周期中所述终端设备开始监测PDCCH的时域位置之后,所述方法还包括:
    所述网络设备确定在所述第L+1个DRX周期的持续时间未发送PDCCH;
    所述网络设备确定在所述第L+1个DRX周期中所述终端设备继续监测PDCCH。
  17. 一种通信方法,其特征在于,包括:
    网络设备在L个非连续接收DRX周期的每个DRX周期中向终端设备发送物理下行控制信道PDCCH,其中,L为正整数;
    所述网络设备向所述终端设备发送第一指示信息,其中,所述第一指示信息指示第L+1个DRX周期中所述终端设备开始监测PDCCH的时域位置,所述第一指示信息指示的时域位置是根据所述L个DRX周期的每个DRX周期中PDCCH的时域位置确定的。
  18. 根据权利要求17所述的方法,其特征在于,所述方法还包括:
    所述网络设备根据所述L个DRX周期的每个DRX周期中PDCCH的时域位置,确定目标时域位置,其中,所述目标时域位置用于确定所述第一指示信息指示的时域位置。
  19. 根据权利要求18所述的方法,其特征在于,
    所述L个DRX周期的每个DRX周期中PDCCH的时域位置,包括:
    所述L个DRX周期的每个DRX周期中第二PDCCH的时域位置;
    其中,所述第二PDCCH为所述网络设备在第一DRX周期内发送的PDCCH中的一个,所述第一DRX周期是所述L个DRX周期中的任意一个DRX周期。
  20. 根据权利要求19所述的方法,其特征在于,
    所述第二PDCCH为所述网络设备在所述第一DRX周期内发送的第一个PDCCH;或者,
    所述第二PDCCH为调度第一物理下行共享信道PDSCH的PDCCH,所述第一PDSCH为所述网络设备在所述第一DRX周期内接收确认应答信息ACK的PDSCH中最早的一个。
  21. 根据权利要求19或20所述的方法,其特征在于,
    所述目标时域位置是根据第七时间点确定的;
    其中,所述第七时间点是根据第一时长和所述L个DRX周期的每个DRX周期中第二PDCCH的时域位置确定的,所述第一时长是所述网络设备为所述终端设备配置或指示的。
  22. 根据权利要求21所述的方法,其特征在于,
    所述目标时域位置为第六时间点和所述第七时间点中较晚的一个;
    其中,所述第六时间点为所述第L+1个DRX周期中持续时间OnDuration的起始位置,所述第L+1个DRX周期中持续时间的起始位置是根据DRX周期长度和DRX起始偏移值确定的。
  23. 根据权利要求21所述的方法,其特征在于,所述目标时域位置为所述第七时间点。
  24. 根据权利要求23所述的方法,其特征在于,所述第七时间点为所述第L+1个DRX周期的持续时间OnDuration的起始位置。
  25. 一种通信装置,其特征在于,包括:处理器和存储器,所述处理器和所述存储器耦合,所述存储器存储有程序指令,当所述存储器存储的程序指令被所述处理器执行时,使得所述通信装置执行如权利要求1-24中任意一项所述的方法。
  26. 一种芯片,其特征在于,包括处理器和输入输出接口,所述输入输出接口用于接收来自所述芯片之外的其它装置的信号并传输至所述处理器或将来自所述处理器的信号发送给所述芯片之外的其它装置,所述处理器通过逻辑电路或执行代码指令用于实现如权利要求1-24中任意一项所述的方法。
  27. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质存储有计算机程序,当所述计算机程序在通信装置上运行时,使得所述通信装置执行如权利要求1-24中任意一项所述的方法。
PCT/CN2023/100208 2022-06-24 2023-06-14 一种通信方法及装置 WO2023246588A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202210729727 2022-06-24
CN202210729727.8 2022-06-24
CN202210878680.1 2022-07-25
CN202210878680.1A CN117336827A (zh) 2022-06-24 2022-07-25 一种通信方法及装置

Publications (1)

Publication Number Publication Date
WO2023246588A1 true WO2023246588A1 (zh) 2023-12-28

Family

ID=89274252

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/100208 WO2023246588A1 (zh) 2022-06-24 2023-06-14 一种通信方法及装置

Country Status (2)

Country Link
CN (1) CN117336827A (zh)
WO (1) WO2023246588A1 (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111757498A (zh) * 2019-03-29 2020-10-09 电信科学技术研究院有限公司 一种监听pdcch的方法及装置
US20210377866A1 (en) * 2020-05-29 2021-12-02 Qualcomm Incorporated User equipment (ue)-based discontinuous control channel monitoring

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111757498A (zh) * 2019-03-29 2020-10-09 电信科学技术研究院有限公司 一种监听pdcch的方法及装置
US20210377866A1 (en) * 2020-05-29 2021-12-02 Qualcomm Incorporated User equipment (ue)-based discontinuous control channel monitoring

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
CATT: "Evaluation results of XR performance", 3GPP TSG RAN WG1 #106-E R1-2106951, 7 August 2021 (2021-08-07), XP052038124 *
CATT: "NR enhancement for XR capacity improvement", 3GPP TSG RAN WG1 #109-E R1-2203485, 29 April 2022 (2022-04-29), XP052153014 *
ERICSSON: "Discussion on power saving enhancements for XR", 3GPP TSG-RAN WG1 MEETING #109-E R1-2203638, 29 April 2022 (2022-04-29), XP052153086 *
ZTE, SANECHIPS: "Discussion on XR specific power saving techniques", 3GPP TSG RAN WG1 #109-E R1-2203606, 29 April 2022 (2022-04-29), XP052153071 *

Also Published As

Publication number Publication date
CN117336827A (zh) 2024-01-02

Similar Documents

Publication Publication Date Title
JP7018499B2 (ja) 自律アップリンク送信および再送信のための方法
WO2019192342A1 (zh) 非连续接收的通信方法、装置、通信设备和通信系统
JP6247333B2 (ja) 装置、プログラム、ユーザ機器(ue)、装置およびコンピュータ可読記録媒体
US20200245395A1 (en) Enhanced connected mode drx procedures for nr
KR102301474B1 (ko) Lte 라이센스 지원형 액세스 동작에서의 drx 핸들링
US10594447B2 (en) Data transmission method, terminal, and ran device
EP2543219B1 (en) Method, apparatus and user equipment for use in a mobile communications system comprising a relay node
JP2017528082A (ja) Lte−uにおける媒体アクセス制御
CN108811151B (zh) 一种发送上行信息的方法、终端设备以及接入网设备
WO2021170136A1 (zh) 一种通信方法及装置
WO2021244501A1 (zh) 通信方法及装置
WO2022032596A1 (zh) 天线面板管理方法、装置及系统
US11252783B2 (en) Systems and methods of communicating between a MAC layer and a PHY layer for transmissions
CN113170498A (zh) 用于针对被配置sps和drx的ue启用下行链路调度的方法和网络节点
WO2021027551A9 (zh) 一种通信方法及装置
WO2023246588A1 (zh) 一种通信方法及装置
WO2024032077A1 (zh) 上行传输方法和通信装置
US20240040651A1 (en) Method of avoiding survival time failure and related devices
WO2024007882A1 (zh) 一种通信方法以及通信装置
US20230284274A1 (en) Apparatuses, methods, and systems for increasing the transmission reliability for transmissions of a duplication bearer in a shared spectrum
WO2024001790A1 (zh) 一种非连续接收的配置方法及装置
WO2023165449A1 (zh) 一种通信方法及装置
WO2023134394A1 (zh) 一种非连续接收定时器控制方法、装置、终端及网络设备
WO2023207568A1 (zh) 一种通信方法及装置
WO2023066102A1 (zh) 一种无线通信的方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23826237

Country of ref document: EP

Kind code of ref document: A1