WO2023246540A1 - 通过硝酸磷肥装置联产磷酸铁的方法、产品及系统 - Google Patents

通过硝酸磷肥装置联产磷酸铁的方法、产品及系统 Download PDF

Info

Publication number
WO2023246540A1
WO2023246540A1 PCT/CN2023/099633 CN2023099633W WO2023246540A1 WO 2023246540 A1 WO2023246540 A1 WO 2023246540A1 CN 2023099633 W CN2023099633 W CN 2023099633W WO 2023246540 A1 WO2023246540 A1 WO 2023246540A1
Authority
WO
WIPO (PCT)
Prior art keywords
solution
phosphate
solid
liquid separation
extraction
Prior art date
Application number
PCT/CN2023/099633
Other languages
English (en)
French (fr)
Inventor
黄德明
赵国军
刘法安
方进
黄仕英
程静
张凌云
冯军强
华建青
Original Assignee
贵州芭田生态工程有限公司
深圳市芭田生态工程股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 贵州芭田生态工程有限公司, 深圳市芭田生态工程股份有限公司 filed Critical 贵州芭田生态工程有限公司
Publication of WO2023246540A1 publication Critical patent/WO2023246540A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B25/00Phosphorus; Compounds thereof
    • C01B25/16Oxyacids of phosphorus; Salts thereof
    • C01B25/26Phosphates
    • C01B25/37Phosphates of heavy metals
    • C01B25/375Phosphates of heavy metals of iron
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B25/00Phosphorus; Compounds thereof
    • C01B25/16Oxyacids of phosphorus; Salts thereof
    • C01B25/26Phosphates
    • C01B25/28Ammonium phosphates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F11/00Compounds of calcium, strontium, or barium
    • C01F11/36Nitrates
    • C01F11/44Concentrating; Crystallisating; Dehydrating; Preventing the absorption of moisture or caking
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F11/00Compounds of calcium, strontium, or barium
    • C01F11/46Sulfates
    • CCHEMISTRY; METALLURGY
    • C05FERTILISERS; MANUFACTURE THEREOF
    • C05BPHOSPHATIC FERTILISERS
    • C05B11/00Fertilisers produced by wet-treating or leaching raw materials either with acids in such amounts and concentrations as to yield solutions followed by neutralisation, or with alkaline lyes
    • CCHEMISTRY; METALLURGY
    • C05FERTILISERS; MANUFACTURE THEREOF
    • C05BPHOSPHATIC FERTILISERS
    • C05B11/00Fertilisers produced by wet-treating or leaching raw materials either with acids in such amounts and concentrations as to yield solutions followed by neutralisation, or with alkaline lyes
    • C05B11/04Fertilisers produced by wet-treating or leaching raw materials either with acids in such amounts and concentrations as to yield solutions followed by neutralisation, or with alkaline lyes using mineral acid
    • C05B11/06Fertilisers produced by wet-treating or leaching raw materials either with acids in such amounts and concentrations as to yield solutions followed by neutralisation, or with alkaline lyes using mineral acid using nitric acid (nitrophosphates)
    • CCHEMISTRY; METALLURGY
    • C05FERTILISERS; MANUFACTURE THEREOF
    • C05BPHOSPHATIC FERTILISERS
    • C05B17/00Other phosphatic fertilisers, e.g. soft rock phosphates, bone meal
    • CCHEMISTRY; METALLURGY
    • C05FERTILISERS; MANUFACTURE THEREOF
    • C05DINORGANIC FERTILISERS NOT COVERED BY SUBCLASSES C05B, C05C; FERTILISERS PRODUCING CARBON DIOXIDE
    • C05D9/00Other inorganic fertilisers
    • C05D9/02Other inorganic fertilisers containing trace elements

Definitions

  • the present invention relates to the technical field of phosphate rock processing, and in particular to a method, product and system for co-producing iron phosphate through a nitric acid phosphate fertilizer device.
  • the production of iron phosphate generally adopts the reaction preparation of iron source and phosphorus source, and uses the prepared iron source and phosphoric acid to prepare iron phosphate.
  • the present invention can realize the preparation of iron phosphate through two routes through nitric acid phosphate fertilizer equipment, one One route is to prepare ammonium phosphate salt to prepare iron phosphate, and the other route is to prepare phosphoric acid to prepare iron phosphate. Both routes make full use of the nitric acid phosphate fertilizer device to produce iron phosphate.
  • One embodiment of the present invention proposes a method for co-producing iron phosphate through a nitric acid phosphate fertilizer device, which includes the following steps:
  • the acidolysis solution is frozen and crystallized, and solid-liquid separation is performed to obtain the first solution;
  • Ammonia is added to the third solution A for neutralization. After neutralization, the solution is solid separated to obtain an ammonium phosphate salt solution. An iron source is added to the ammonium phosphate salt solution for reaction to prepare iron phosphate;
  • pre-processing and extracting the third solution B with an extraction solvent to obtain an extraction phase
  • performing post-processing and back-extraction on the extraction phase to obtain a phosphoric acid solution
  • reacting an iron source with the phosphoric acid solution Get Iron Phosphate.
  • the third solution B is extracted to remove metal ions to obtain a phosphoric acid solution.
  • the acid hydrolysis liquid is obtained by directly filtering and separating the liquid phase components in the acid hydrolysis slurry; or in some embodiments, the acid hydrolysis liquid includes directly filtering and separating the liquid phase components in the acid hydrolysis slurry, and It is obtained by combining the washing liquid of one or more washings of the solid phase components decomposed by acid hydrolysis with process water.
  • the acidolysis solution of phosphate concentrate mainly contains phosphate obtained by acidolysis with nitric acid, and impurity metals, such as calcium ions, nitrate, etc.
  • the nitric acid added during the acidolysis process may be relatively excessive to complete the reaction of the phosphate rock raw materials.
  • the acid-insoluble matter obtained by solid-liquid separation mainly contains calcium silicate and magnesium salts; in a preferred embodiment, based on the effective utilization of the elements contained in the acid-insoluble matter, the acid-insoluble matter obtained by acid hydrolysis can be prepared Soil conditioner products for soil improvement.
  • the temperature at which the acidolysis solution is frozen and crystallized is -10°C to -5°C. In this temperature range, 60 to 85% of the calcium nitrate is precipitated in the form of Ca(NO 3 ) 2 ⁇ 4H 2 O crystals; The frozen solution is then filtered to promote the condensation and precipitation of crystal grains to obtain the first solution for removing impurity calcium for the first time.
  • the acidolysis solution is frozen to a temperature of -8°C to -5°C, and then directly sent to a double drum filter for filtration and separation.
  • the liquid phase component obtained after filtration is the first solution. .
  • the solid phase components obtained after filtration and separation are filtered to obtain a filter cake, and the filter cake is washed with frozen nitric acid and frozen water, and a part of the generated washing liquid is recycled and merged into the acidolysis solution.
  • the crystals are frozen and separated again, and another part of the washing liquid is added to the acidolysis tank for acidolysis.
  • a sulfate-containing solution such as at least one of sulfuric acid and ammonium sulfate, is added to the first solution.
  • the sulfate-containing solution is not excessive to avoid introducing sulfate impurities; that is, the molar amount of sulfate added does not exceed the molar amount of calcium ions in the first solution to prevent the second molar amount after decalcification.
  • Solution A contains sulfate which affects the quality of phosphoric acid.
  • the sulfate-containing solution is not excessive, and keeping the concentration of sulfate in the second solution below 0.5% after decalcification is beneficial for subsequent removal of impurities; a more preferred embodiment
  • the concentration of sulfate in the second solution is kept below 0.1% after decalcification; more preferably, the concentration of sulfate in the second solution is kept below 0.01% after decalcification.
  • the second solution A or the second solution B is subjected to denitrification treatment by evaporating and concentrating the second solution to remove nitric acid.
  • the evaporation temperature for removing nitric acid by evaporating and concentrating the second solution A or B is adjustable between 70-90°C, (vacuum degree 10-15kpa); more preferably In the embodiment, the temperature for evaporation and concentration to remove nitric acid is maintained at 70-90°C.
  • concentration of nitrate in the system is evaporated to less than 0.1%, it is beneficial to the subsequent removal of metal impurities and the generation of phosphoric acid; further, in a more preferred embodiment, evaporation is concentrated until the concentration of nitrate in the system is low. At 0.05%; more preferably, evaporation and concentration until the concentration of nitrate in the system is less than 0.01%.
  • the concentration of nitrate ions in the third solution after removing nitric acid by evaporating and concentrating the second solution is less than 0.05%. More preferably, the concentration of nitrate ions contained in the third solution is less than 0.01%.
  • the above extraction is a multi-stage cross-flow extraction; in order to make the extraction efficiency more sufficient.
  • multi-stage cross-flow extraction is a chemical industry term, which refers to the method of multi-stage cross-flow extraction in multi-stage equipment connected in series.
  • Each stage includes an extraction chamber and a re-extraction chamber.
  • the donor phase is in contact with the extraction solvent in the extraction chamber, and the latter is re-extracted when it comes into contact with the receiver phase in the re-extraction chamber.
  • the extraction solvent cross-flows the donor phase and the receiver phase in a suitable manner in the same stage. , while the donor phase and acceptor phase flow countercurrently through some or all stages.
  • it also includes:
  • the extraction phase obtained by the extraction is back-extracted to separate and obtain phosphoric acid and an extraction solvent that can be recycled for extraction.
  • the extraction solvent includes at least one of n-butanol, isoamyl alcohol and tributyl phosphate.
  • an extraction solvent is used to extract and remove the third solution B, and the volume ratio of the extraction solvent to the third solution B is 0.5 to 5:1.
  • the organic extraction solvent used in the above extraction step may include n-butanol, isoamyl alcohol, sulfonated kerosene, No. 260 solvent oil, 406# environmentally friendly solvent oil, tributyl phosphate, methane Commonly used metal ion extraction solvents such as base isobutyl ketone.
  • the extraction solvent used in step S50 is tributyl phosphate, and the ratio of tributyl phosphate in the mixed extraction solvent is 1:0.5-2, preferably 1:1.
  • the volume ratio of the added amount of the extraction solvent to the third solution B is 0.5 to 5:1; preferably, the volume ratio of the added amount of the extraction solvent to the third solution B is 1 to 2:1.
  • the method before performing the back-extraction step on the extraction phase, the method further includes:
  • it also includes:
  • the solution containing metal ions is used to prepare nitrophosphate fertilizer.
  • it also includes:
  • the acid used in the acidolysis of the phosphate rock is at least partially derived from the nitric acid obtained by subjecting the second solution A or the second solution B to evaporative denitrification treatment.
  • the iron source includes at least one of iron salts, ferrous salts or iron elements
  • the sulfate-containing solution is at least one of sulfuric acid solution and ammonium sulfate solution.
  • the pH value of the reaction system is controlled to be between 4 and 6.
  • the ammonia includes at least one of ammonia gas, liquid ammonia or ammonia water.
  • the present invention also provides an iron phosphate product prepared by co-producing iron phosphate through a nitric acid phosphate fertilizer device according to the above method.
  • the invention also provides a system for co-producing iron phosphate through a nitric acid phosphate fertilizer device, including:
  • Acid hydrolysis tank used for acid hydrolysis reaction of phosphate rock
  • a first solid-liquid separation device used for solid-liquid separation of the acid hydrolysis slurry after acid hydrolysis to obtain acid hydrolysis liquid
  • a freezing crystallization device for freezing and crystallizing the acidolysis solution
  • a second solid-liquid separation device used for solid-liquid separation of the frozen crystallized acidolysis solution to obtain the first solution
  • a decalcification reaction device used for decalcification reaction between the first solution and the solution containing sulfate radicals
  • the third solid-liquid separation device is also used to perform solid-liquid separation on the product of the decalcification reaction to obtain the second solution;
  • a denitrification device used to evaporate the second solution to remove nitrate radicals to obtain a concentrated denitrified third solution and nitric acid;
  • An extraction device for extracting the third solution with an extraction solvent to obtain an extraction phase
  • a back-extraction device is used to strip the extraction phase to obtain phosphoric acid
  • the system is provided with a neutralization device and a fourth solid-liquid separation device, and the neutralization device is used to The third solution and ammonium perform a neutralization reaction to obtain a neutralization reaction solution, and the fourth solid-liquid separation device is used to perform solid-liquid separation of the neutralization reaction solution to obtain an ammonium phosphate salt solution.
  • the denitrification device is connected to an acidolysis tank, so that the nitric acid removed by the denitrification device enters the acidolysis tank.
  • the first solid-liquid separation device and/or the second solid-liquid separation device and/or the third solid-liquid separation device and/or the fourth solid-liquid separation device are a settling tank, a filter press or a suction pump.
  • a type of filter is a type of filter.
  • the first solid-liquid separation device, the second solid-liquid separation device, the third solid-liquid separation device and the fourth solid-liquid separation device are the same solid-liquid separation device that is recycled.
  • it also includes:
  • a back-extraction device is used to back-extract the extraction phase of the extraction device.
  • it also includes:
  • a washing device is located between the extraction device and the stripping device, and is used for washing the extraction phase of the extraction device to obtain a washing liquid containing metal ions.
  • the first concentration device concentrates the washing liquid containing metal ions to obtain medium and trace element fertilizer products.
  • the extraction device includes one of a rotating disk extraction tower, a multi-stage centrifugal extraction tower, a vibrating sieve plate tower or a sieve plate extraction tower.
  • it also includes:
  • the second concentration device is used to concentrate the extraction phase of the stripping device.
  • the above preparation method uses nitric acid phosphate fertilizer equipment to prepare iron phosphate, and produces high-purity iron phosphate from phosphate rock raw materials.
  • the by-products in the production process can be directly used in fertilizer preparation or as independent products, without waste, and nitric acid is used.
  • Phosphate fertilizer equipment produces iron phosphate through two routes, namely the ammonium phosphate route and the phosphoric acid route to produce iron phosphate, and both routes are produced and prepared through nitric acid phosphate fertilizer equipment. The two routes can be carried out separately or at the same time.
  • the product calcium sulfate is of high quality and can meet the application of industrial calcium sulfate such as building materials.
  • the medium and trace metal ions in the by-product extract and the neutralized precipitate metal phosphate can be used as raw materials for the preparation of fertilizers, and can also be directly used as In fertilizer production, the by-product nitric acid can be recycled for phosphate rock decomposition, and can also be used for the preparation of iron sources, such as the preparation of ferric nitrate or ferrous nitrate.
  • Figure 1 is a schematic diagram of a method for co-producing iron phosphate through a nitric acid phosphate fertilizer device in one embodiment
  • Figure 2 is a schematic diagram of the preparation of iron source in one embodiment
  • Figure 3 is a schematic diagram of multi-stage cross-flow extraction, washing and stripping to obtain phosphoric acid in an embodiment
  • Figure 4 is a schematic diagram of a system for co-producing iron phosphate through a nitric acid phosphate fertilizer device in one embodiment
  • Figure 5 is a schematic diagram of a method for co-producing iron phosphate from a nitric acid phosphate fertilizer device in yet another embodiment
  • Figure 6 is a schematic diagram of a system for co-producing iron phosphate through a nitric acid phosphate fertilizer device in yet another embodiment.
  • One embodiment of the present invention proposes a method for co-producing iron phosphate through a nitric acid phosphate fertilizer device; the method uses phosphate rock and iron sources as raw materials to prepare and obtain iron phosphate.
  • the phosphate rock or phosphate concentrate raw material used to prepare iron phosphate can be high-grade phosphate rock obtained from natural mining, and the phosphate concentrate is a phosphorus concentrate obtained by removing impurities or purifying medium-low-grade phosphate rock. mine.
  • Figure 1 shows a schematic diagram of a method for co-producing iron phosphate in one embodiment.
  • the method includes:
  • the second solution is concentrated to evaporate excess nitric acid from the second solution, thereby obtaining a concentrated and denitrified third solution;
  • step S50 extract the third solution obtained in step S40 to separate phosphoric acid and part of the metal ions from the third solution into the extraction phase; then wash to remove the metal ions from the extraction phase; and, wash the washed
  • the extraction phase is back-extracted to return the phosphoric acid from the organic extraction solvent to the aqueous phase to obtain a phosphoric acid solution;
  • step S60 phosphorus is prepared by reacting the iron source with the phosphoric acid solution obtained in step S50.
  • Iron acid In some specific embodiments, the iron source includes at least one of iron salts such as iron sulfate, ferrous sulfate, iron nitrate, ferrous nitrate, ferric chloride, or elemental iron such as iron powder.
  • the iron source is an iron salt solution obtained by dissolving and filtering the ferrous sulfate heptahydrate raw material with a mass fraction of 85%, and then adding 25% ammonia water to further filter and remove impurities.
  • the iron source is added to the phosphoric acid solution obtained in step S50, and the pH of the reaction system is preferably controlled in the range of 4 to 6 during the reaction process. On the one hand, it avoids the large-scale precipitation of other metal impurities and insoluble ferrous phosphate when the pH of the reaction system is higher than 6; on the other hand, it avoids the difficulty in precipitating iron phosphate when the pH of the reaction system is lower than 4.
  • the reaction product of the iron source and the phosphoric acid solution in step S60 is subjected to solid-liquid separation.
  • the solid phase component is iron phosphate containing crystal water, and is further dried to remove the crystal water to obtain anhydrous products with higher purity. Iron phosphate products.
  • the liquid phase component of the solid-liquid separation of the reaction product in step S60 also contains phosphate, nitrate, and other unprecipitated metal ions.
  • the method further includes:
  • the liquid phase component of the solid-liquid separation in step S60 is used as the raw material of nitric acid phosphate fertilizer to prepare nitric acid phosphate fertilizer.
  • the acid hydrolysis liquid in step S10 is obtained by directly filtering and separating the liquid phase components in the acid hydrolysis slurry; or in some other embodiments, the acid hydrolysis liquid includes directly filtering and separating the liquid phase components in the acid hydrolysis slurry, And it is obtained by combining the washing liquid of one or more washings of the solid phase components decomposed by acid hydrolysis with process water;
  • the acidolysis solution of phosphate concentrate mainly contains phosphate obtained by acidolysis with nitric acid, and impurity metals such as calcium ions, nitrate, etc.
  • the nitric acid added during the acidolysis process may be relatively excessive to complete the reaction of the phosphate rock raw materials.
  • the acid-insoluble matter obtained by solid-liquid separation mainly contains acid-insoluble salts of calcium silicate and magnesium; in a preferred embodiment, based on the effective utilization of the elements contained in the acid-insoluble matter, the acid-insoluble matter obtained by acid hydrolysis can be The insolubles are prepared into soil conditioner products for soil improvement.
  • step S20 the acidolysis solution is frozen to crystallize calcium nitrate, and the crystallized calcium nitrate is filtered out to obtain the first solution; specifically, in step S20, by first freezing and crystallizing the acidolysis solution, a large amount of calcium ions and Some metal ions such as magnesium are precipitated in the crystal form of nitrate; for example, the temperature of the acidolysis solution when frozen is -10°C to -5°C, preferably -8°C to -5°C, and 60 to 85% of the calcium nitrate is dissolved in the form of Ca (NO 3 ) 2 ⁇ 4H 2 O is precipitated in the form of crystals; it is then directly sent to a vacuum filter for filtration and separation. The liquid phase component obtained after filtration is the first solution.
  • the solid phase components obtained after filtration and separation such as the filter cake obtained by filtration by filtration, are washed with frozen nitric acid and frozen water, and part of the generated washing liquid is used for system circulation and merged into The acidolysis liquid is frozen and crystallized again, and the other part of the washing liquid is added to the acidolysis tank for acidolysis.
  • step S30 add sulfuric acid solution to the first solution, so that the remaining calcium ions in the first solution are precipitated as slightly soluble or insoluble calcium sulfate, and solid-liquid separation is performed; the obtained solid phase component contains a certain amount of moisture.
  • calcium sulfate such as calcium sulfate hemihydrate, and a second solution that further removes calcium.
  • the sulfate-containing solution is not excessive to avoid introducing sulfate impurities; that is, the molar amount of sulfate in the added sulfuric acid solution does not exceed the molar amount of calcium ions in the first solution to prevent decalcification.
  • the second solution contains sulfate which affects the quality of phosphoric acid.
  • the sulfate-containing solution is not excessive, and keeping the concentration of sulfate in the second solution below 0.5% after decalcification is beneficial for subsequent removal of impurities; in a more preferred embodiment, in The concentration of sulfate in the second solution is maintained below 0.1% after decalcification; more preferably, the concentration of sulfate in the second solution is maintained below 0.01% after decalcification.
  • step S40 the second solution is concentrated to evaporate excess nitric acid from the second solution, thereby obtaining a concentrated and denitrated third solution.
  • the evaporation temperature of the second solution to remove nitric acid is adjustable between 120 and 180°C; in a more preferred embodiment, the evaporation concentration to remove nitric acid is The temperature is maintained at 160 ⁇ 177°C.
  • concentration of nitrate in the system is evaporated to less than 0.5%, it is beneficial to the subsequent removal of metal impurities and the generation of phosphoric acid; further in a more preferred embodiment, evaporation and concentration until the concentration of nitrate in the system is less than 0.1 %; more preferably, evaporation and concentration until the concentration of nitrate in the system is less than 0.01%.
  • the concentration of nitrate ions in the third solution after removing nitric acid by evaporating and concentrating the second solution is less than 0.5%. More preferably, the concentration of nitrate ions contained in the third solution is less than 0.1%.
  • the process method also reabsorbs or recovers the nitric acid removed in step S40, and then uses it to acidolyze the phosphate rock raw material in step S10.
  • the third solution after concentrating and removing nitric acid mainly includes phosphoric acid and some impurities and metal ions.
  • step S50 extract the third solution obtained in step S40 to combine phosphoric acid and Part of the metal ions are separated from the third solution into the extraction phase; and then the metal ions are removed from the extraction phase by washing; and the washed extraction phase is back-extracted to return the phosphoric acid from the organic extraction solvent to the aqueous phase. Get the phosphoric acid solution.
  • extraction and “stripping” are basic technical terms in the chemical industry. Among them, the term “extraction” is a process that uses the difference in solubility or partition coefficient of substances in two mutually immiscible (or slightly soluble) solvents to transfer solute substances from one solvent to another. The term “stripping” is the opposite of “extraction” and is the return of solute material from the extraction solvent.
  • the organic extraction solvent used in the above extraction step can include n-butanol, isoamyl alcohol, sulfonated kerosene, No. 260 solvent oil, 406# environmentally friendly solvent oil and other commonly used metal ion extraction solvents.
  • the extraction solvent used in step S50 is a mixture of n-butanol and isoamyl alcohol.
  • the ratio of n-butanol and isoamyl alcohol in the mixed extraction solvent is 1:0.5 ⁇ 2.
  • n-butanol and isoamyl alcohol are The ratio of alcohol is 1:1.
  • the volume ratio of the extraction solvent to the third solution is 0.5 to 5:1.
  • the phosphoric acid solution separated after stripping is also decolorized or concentrated.
  • the organic matter or fluorine element in the solution is further removed, and on the other hand, the appearance, color and concentration of the product are improved. etc., to obtain standardized products of high-purity industrial phosphoric acid.
  • the mass percentage of P 2 O 5 in the final high-purity phosphoric acid solution after decolorization and concentration is 61.58%.
  • the extraction solvent in addition to obtaining phosphoric acid through stripping, the extraction solvent can also be reduced and purified so that the extraction solvent can be recycled.
  • the above extraction method uses multi-stage cross-flow extraction to make the extraction efficiency more sufficient.
  • multi-stage cross-flow extraction is a chemical industry term, which refers to the method of multi-stage cross-flow extraction in multi-stage equipment connected in series.
  • Each stage includes an extraction chamber and a re-extraction chamber.
  • the donor phase is in contact with the extraction solvent in the extraction chamber, and the latter is re-extracted when it comes into contact with the receiver phase in the re-extraction chamber.
  • the extraction solvent cross-flows the donor phase and the receiver phase in a suitable manner in the same stage. , while the donor phase and acceptor phase flow countercurrently through some or all stages.
  • Figure 3 shows a schematic diagram of multi-stage cross-flow extraction in a specific embodiment; in this embodiment, multi-stage extraction, multi-stage washing and multiple back-extraction are used to improve the separation efficiency of the components in each step. This maximizes the purity of the final separated and prepared products.
  • the solution containing metal ion impurities obtained by washing contains medium and trace amounts of metal elements such as calcium, magnesium, manganese, etc., and is then added to phosphate fertilizer or fertilizer products to supplement medium and trace elements; or the metal-containing solution
  • the solution of ionic impurities is concentrated and added to prepare an independent medium and trace element fertilizer product.
  • FIG. 4 Another embodiment of the present invention also provides a system for co-producing industrial phosphoric acid through a nitric acid phosphate fertilizer device.
  • the system for co-producing industrial phosphoric acid is shown in Figure 4, including:
  • Acidolysis reaction device for acidolysis of phosphate rock raw materials with nitric acid or mixed acid
  • the first solid-liquid separation device is used for solid-liquid separation of the acid slurry after acid hydrolysis to obtain acid hydrolysis liquid;
  • Freezing crystallization device used for freezing and crystallizing acidolysis solution
  • the second solid-liquid separation device is used for solid-liquid separation of the acidolysis solution of the freezing crystallization device to obtain the first solution and the solid phase calcium nitrate crystal hydrate;
  • a decalcification reaction device for reacting the first solution with the nitric acid solution
  • the third solid-liquid separation device is also used to perform solid-liquid separation on the product of the decalcification reaction to obtain the second solution and solid phase calcium sulfate;
  • a denitrification device used to concentrate and denitrify the second solution to obtain a concentrated and denitrified third solution and nitric acid
  • An extraction device used to extract the third solution with an organic extraction solvent to remove metal ions therein;
  • the washing device is located between the extraction device and the back-extraction device, and is used to wash the extraction phase after extraction by the extraction device; after combining the washing liquid and the raffinate phase, it is the phosphoric acid solution;
  • a back-extraction device is used to back-extract the organic extraction solvent containing metal ions, that is, the extraction phase, to obtain a phosphoric acid solution;
  • An iron phosphate reaction device is used to react phosphoric acid solution with an iron source to generate iron phosphate
  • the fourth solid-liquid separation device performs solid-liquid separation on the reaction product of the iron phosphate reaction device, and the solid phase component is taken as the iron phosphate product containing crystal water.
  • the denitrification device is connected to the acidolysis reaction device to allow the nitric acid generated in the evaporative denitrification to enter the acidolysis tank for acidolysis.
  • the above system also includes:
  • a calcining device used to calcine the solid phase components separated by the fourth solid-liquid separation device to obtain Anhydrous iron phosphate products.
  • the extraction device includes one of a rotating disk extraction tower, a multi-stage centrifugal extraction tower, a vibrating sieve plate tower or a sieve plate extraction tower.
  • the first solid-liquid separation device, the second solid-liquid separation device, and the third solid-liquid separation device are independent separation devices or equipment; or in some embodiments, the first solid-liquid separation device, The second solid-liquid separation device and the third solid-liquid separation device are common separation devices or equipment, and the first solid-liquid separation device, the second solid-liquid separation device, and the third solid-liquid separation are respectively executed in different steps.
  • the separation process of the device may include a settling tank, a filter press, a suction filter, etc.
  • the above system of the present invention partially utilizes and improves the existing nitric acid phosphate fertilizer system to produce and prepare high-purity iron phosphate; the by-products in the production process can be directly used for fertilizer preparation or as independent products, without waste. .
  • the method for co-producing iron phosphate in another embodiment of the present invention is shown in Figure 5.
  • the method includes:
  • the second solution is concentrated to evaporate excess nitric acid from the second solution, thereby obtaining a concentrated and denitrified third solution;
  • step S50 add ammonia, such as ammonia gas, liquid ammonia or ammonia water, to the third solution obtained in step S40, perform a neutralization reaction, and obtain an ammonium phosphate solution after filtration;
  • ammonia such as ammonia gas, liquid ammonia or ammonia water
  • step S60 Add an iron source to the ammonium phosphate salt solution obtained in step S50 for reaction, and obtain an iron phosphate product after solid-liquid separation.
  • step S60 use at least one of iron sources such as ferric sulfate, ferrous sulfate, ferric nitrate, ferrous nitrate, ferric chloride, or elemental iron such as iron powder, and the ammonium phosphate salt solution obtained in step S50. reaction to obtain iron phosphate.
  • iron sources such as ferric sulfate, ferrous sulfate, ferric nitrate, ferrous nitrate, ferric chloride, or elemental iron such as iron powder
  • step S60 it is best to control the pH of the reaction system in the range of 4 to 6.
  • the neutralization reaction by adding ammonia in step S50 can generate the desired target product ammonium phosphate salt through neutralization; on the other hand, the pH of the system gradually increases during the neutralization reaction, and some Metal ions such as calcium, magnesium, manganese, etc. will form solid phase precipitation, which helps to reduce and reduce impurities in ammonium phosphate products. Then, after filtering and impurity removal, and concentrating, ammonium phosphate salt with higher purity can be obtained.
  • the solid phase components separated by filtration in step S50 are mainly phosphates containing calcium, magnesium, and manganese; these are then used as elements of nitric phosphate fertilizer to prepare nitric phosphate fertilizer.
  • step S50 ammonia gas is passed into the third solution to perform a neutralization reaction until the pH of the system reaches 6 or above.
  • impurity metal ions in the system such as calcium, magnesium, manganese, etc. will form precipitates in the form of phosphates, which is beneficial to reducing impurities and improving the purity of ammonium phosphate salts.
  • step S50 ammonia is added to the third solution to neutralize the pH of the reaction system, and the ammonium dihydrogen phosphate, monoammonium phosphate and triammonium phosphate in the ammonium phosphate salt product prepared according to the requirements
  • the proportion or demand of the neutralization reaction system is different, so that the pH of the neutralization reaction system is adjustable between 4 and 7; by adjusting the pH range of the neutralization reaction system to different intervals, the prepared products can contain ammonium dihydrogen phosphate and monophosphate.
  • the proportion of ammonium hydrogen and triammonium phosphate is adjustable.
  • FIG. 5 Another embodiment of the present invention also proposes a system for co-producing iron phosphate, as shown in Figure 5, which includes:
  • Acidolysis reaction device for acidolysis of phosphate rock raw materials with nitric acid or mixed acid
  • the first solid-liquid separation device is used for solid-liquid separation of the acid slurry after acid hydrolysis to obtain acid hydrolysis liquid;
  • Freezing crystallization device used for freezing and crystallizing acidolysis solution
  • the second solid-liquid separation device is used for solid-liquid separation of the acidolysis solution of the freezing crystallization device to obtain the first solution and the solid phase calcium nitrate crystal hydrate;
  • a decalcification reaction device for reacting the first solution with a solution containing sulfate radicals such as sulfuric acid or ammonium sulfate;
  • the third solid-liquid separation device is also used to perform solid-liquid separation on the product of the decalcification reaction to obtain the second solution and solid phase calcium sulfate;
  • a denitrification device used to concentrate and denitrify the second solution to obtain a concentrated and denitrified third solution. and nitric acid;
  • Neutralization device used for neutralizing the third solution and ammonia
  • the fourth solid-liquid separation device is used to filter and separate the system after the neutralization reaction.
  • the liquid phase is ammonium phosphate solution
  • An iron phosphate reaction device is used to react ammonium phosphate solution with an iron source to generate iron phosphate;
  • the fifth solid-liquid separation device performs solid-liquid separation on the reaction product of the iron phosphate reaction device to obtain the solid phase component, which is an iron phosphate product containing crystal water.
  • the denitrification device is connected to the acidolysis reaction device to allow the nitric acid generated in the evaporative denitrification to enter the acidolysis tank for acidolysis.
  • the first solid-liquid separation device, the second solid-liquid separation device, the third solid-liquid separation device, the fourth solid-liquid separation device, and the fifth solid-liquid separation device are separate separation devices or equipment that are independent of each other; or In some embodiments, the first solid-liquid separation device, the second solid-liquid separation device, the third solid-liquid separation device, the fourth solid-liquid separation device, and the fifth solid-liquid separation device are common separation devices or equipment. In the steps, the separation processes of the first solid-liquid separation device, the second solid-liquid separation device, the third solid-liquid separation device, the fourth solid-liquid separation device, and the fifth solid-liquid separation device are respectively executed.
  • the first solid-liquid separation device, the second solid-liquid separation device, the third solid-liquid separation device, the fourth solid-liquid separation device, and the fifth solid-liquid separation device may include a settling tank and a filter press. , suction filter, etc.
  • the denitrification device at least includes: a receiving chamber, used to receive or accommodate the second solution; and a heater, used to heat and evaporate the second solution.
  • the heater is a resistance heater; and is configured in operation to heat the second solution to 120-180°C for evaporation.
  • the above system also includes:
  • the calcining device is used to calcine the solid phase components separated by the fifth solid-liquid separation device to obtain anhydrous iron phosphate product.
  • Example 1 shows the material usage and output of the preparation process in a specific embodiment, including:
  • Percent nitric acid 2.4t (0.53tN) Carry out acid hydrolysis and separate the solid and liquid of the acid hydrolysis slurry to obtain 0.09t of acid-insoluble matter (containing silicon calcium magnesium raw materials) and acid hydrolysis liquid; and wash the acid-insoluble matter 2 to 3 times with water, and merge the washing liquid into the acid hydrolysis liquid liquid;
  • step S50 React the iron salt solution with the phosphoric acid solution separated by stripping in step S50. Control the pH of the reaction system at 4-6. After the reaction is completely precipitated, solid-liquid separation is performed by press filtration. The filtrate is concentrated and crystallized to obtain 0.66t of ammonium sulfate product, which is reslurried twice. Solid-liquid separation resulted in a solid phase filter cake containing 1.24t of iron phosphate containing crystal water (containing 0.48t of P 2 O 5 );
  • step S70 Concentrate the liquid phase components obtained by the solid-liquid separation in step S60 and prepare nitric acid phosphate fertilizer.
  • Example 2 shows the material usage and output of the preparation process in a specific embodiment, including:
  • the second solution is concentrated and denitrated, and 0.473t of 100% nitric acid and the third solution are recovered;
  • step S50 Gradually add the iron salt solution to the ammonium phosphate solution in step S50, and control the pH of the reaction system at 4-6.
  • solid-liquid separation is performed by press filtration. The filtrate is concentrated and crystallized to obtain 0.66t of ammonium sulfate product, which is reslurried twice.
  • Solid-liquid separation the solid phase filter cake obtained is 1.24t of iron phosphate containing crystal water (containing P 2 O 5 is 0.48t); after further calcination to remove the crystal water, 1 t of anhydrous iron phosphate iron phosphate product (containing P 2 O 5 is 48%).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Fertilizers (AREA)

Abstract

本发明公开一种通过硝酸磷肥装置联产磷酸铁的方法、产品及系统;其中,方法包括:用硝酸将磷矿进行酸解,并分离酸不溶物获取酸解液;将酸解液进行冷冻结晶,并固液分离获取第一溶液;将第一溶液加入含硫酸根的溶液进行反应,获取第二溶液;将第二溶液进行脱硝酸根处理,获取第三溶液;向第三溶液中加入氨进行中和,中和后溶液进行固液分离获取磷酸铵盐溶液,向磷酸铵盐溶液中加入铁源进行反应制备得到磷酸铁。本发明由磷矿原料生产制备获取高纯度的磷酸铁,生产过程中的副产物能直接用于肥料制备或作为独立产品,无废弃物。

Description

通过硝酸磷肥装置联产磷酸铁的方法、产品及系统 技术领域
本发明涉及磷矿加工技术领域,尤其涉及一种通过硝酸磷肥装置联产磷酸铁的方法、产品及系统。
背景技术
磷酸铁的生产一般情况下采用铁源和磷源进行反应制备,采用已经制备好的铁源和磷酸进行磷酸铁的制备,但是本发明通过硝酸磷肥设备能够实现通过两条路线制备磷酸铁,一条路线是制备磷酸铵盐制备磷酸铁,另一条路线是磷酸制备磷酸铁,两条路线充分利用了硝酸磷肥装置来生产磷酸铁。
发明内容
本发明的一个实施例提出一种通过硝酸磷肥装置联产磷酸铁的方法,包括如下步骤:
用硝酸将磷矿或磷精矿进行酸解,并分离酸不溶物获取酸解液;
将所述酸解液进行冷冻结晶,并固液分离获取第一溶液;
将所述第一溶液加入含硫酸根的溶液进行脱钙,获取第二溶液A,和/或将所第一溶液加入硫酸进行反应,并固液分离获取第二溶液B;
将所述第二溶液A和/或第二溶液B进行脱硝酸根处理,获取第三溶液A或第三溶液B;
向第三溶液A中加入氨进行中和,中和后溶液进行固体分离获取磷酸铵盐溶液,向磷酸铵盐溶液中加入铁源进行反应制备得到磷酸铁;
和/或,通过萃取溶剂对所述第三溶液B进行前处理、萃取,获取萃取相;对所述萃取相进行后处理、反萃,获取磷酸溶液;通过铁源与所述磷酸溶液反应,获取磷酸铁。
对所述第三溶液B进行萃取以将金属离子去除,获取磷酸溶液。
在一些实施方式中,酸解液是直接过滤分离酸解浆中的液相成分获取的;或者在又一些中,酸解液包括直接过滤分离酸解浆中的液相成分、以及 将酸解分解的固相成分用工艺水进行一次或多次洗涤的洗涤液合并获取的。
在一些实施方式中,磷精矿的酸解液中,主要含有硝酸酸解获取的磷酸根、杂质金属例如包括钙离子等、硝酸根等。在优选的实施方式中,酸解过程中添加的硝酸可以是相对过量的,以使磷矿原料反应完全。
在一些实施方式中,固液分离获取的酸不溶物中主要含有硅钙镁盐;在优选的实施方式中,基于有效利用酸不溶物所含有的元素,可将酸解获取的酸不溶物制备成土壤调理剂产品,以用于改良土壤。
在一些实施方式中,将酸解液冷冻结晶的温度为-10℃~-5℃,在该温度范围下60~85%的硝酸钙以Ca(NO3)2·4H2O结晶形式析出;然后再将冷冻溶液进行过滤,促进晶粒的凝结和析出,获取第一次脱除杂质钙的第一溶液。
更加优选的实施方式中,冷冻到酸解液的温度为-8℃~-5℃,然后再直接送入双转鼓过滤机进行过滤分离,过滤后获取的液相成分即为获取第一溶液。
或者在具体的优选实施细节中,过滤分离后获取的固相成分如过滤方式过滤获取的过滤饼,用冷冻硝酸和冷冻水进行滤饼洗涤,产生的洗涤液一部分循环合并至酸解液中进行再次冷冻结晶分离,洗涤液的另一部分加入酸解槽中进行酸解。
在一些实施方式中,向所述第一溶液中加入含硫酸根的溶液,例如硫酸、硫酸铵中的至少一种。
在更加实施方式中,含硫酸根的溶液是不过量的,以避免引入硫酸根杂质;即加入的硫酸根的摩尔量不超过第一溶液中钙离子的摩尔量,以防止脱钙后的第二溶液A中含有影响磷酸质量的硫酸根。
在在另一个实施方式中,含硫酸根的溶液是不过量的,在脱钙之后保持第二溶液中的硫酸根的浓度低于0.5%对于后续杂质的去除是有利的;更加优选的实施方式中,在脱钙之后保持第二溶液中的硫酸根的浓度低于0.1%;更加优选地,脱钙之后保持第二溶液中的硫酸根的浓度低于0.01%。
优选的实施方式中,将所述第二溶液A或第二溶液B进行脱硝酸根处理,是通过对所述第二溶液进行蒸发浓缩以脱除硝酸。
以及在优选的实施方式中,通过对所述第二溶液A或B进行蒸发浓缩以脱除硝酸的蒸发温度在70-90℃,(真空度10-15kpa)之间可调;在更加优选 的实施方式中,蒸发浓缩以脱除硝酸的温保持70-90℃。当蒸发至体系中硝酸根的浓度低于0.1%,对后续的金属杂质的去除和磷酸的生成是有利的;进一步的,在更加优选的实施方式中,蒸发浓缩至体系中硝酸根的浓度低于0.05%;更加优选地,蒸发浓缩至体系中硝酸根的浓度低于0.01%。
以及在优选的实施方式中,通过对所述第二溶液进行蒸发浓缩以脱除硝酸后的第三溶液中,含有的硝酸根离子浓度低于0.05%。更加优选地,第三溶液中含有的硝酸根离子浓度低于0.01%。
优选的实施方式中,以上的萃取是多级错流萃取;以使萃取的效率更加充分。
术语“多级错流萃取”是化工术语,是指在多级串联的设备中进行多级错流萃取的方法。每级包括一萃取室和一再萃取室。在萃取室中给予体相与萃取溶剂进行接触,后者在再萃取室中与接收体相接触时被再萃取,萃取溶剂在同一级中以适宜方式对给予体相和接收体相呈交叉流动,而给予体相和接受体相呈逆流流过某些或全部级。
优选的实施方式中,还包括:
对所述萃取获取的萃取相进行反萃,分离获取磷酸和可循环利用于进行萃取的萃取溶剂。
优选的实施方式中,所述萃取溶剂包括正丁醇、异戊醇和磷酸三丁酯中的至少一种。
优选的实施方式中,采用萃取溶剂萃取去除所述第三溶液B中,所述萃取溶剂与所述所述第三溶液B的体积比为0.5~5:1。
以及,在一些具体的实施方式中,以上萃取步骤中采用的有机萃取溶剂可以包括正丁醇、异戊醇、磺化煤油、260号溶剂油、406#环保溶剂油、磷酸三丁酯、甲基异丁基酮等常用的金属离子萃取溶剂。在具体的优选实施方式中,步骤S50中采用的萃取溶剂是磷酸三丁酯,混合萃取溶剂中磷酸三丁酯的比例是1:0.5~2,优选1:1。并且萃取中,萃取溶剂的添加量与第三溶液B的体积比为0.5~5:1;优选地萃取溶剂的添加量与第三溶液B的体积比为1~2:1。
优选的实施方式中,对所述萃取相进行反萃步骤之前,还包括:
将所述萃取相进行洗涤,获取含有金属离子的溶液;
并将含有金属离子的溶液进行浓缩,获取中微量元素肥料产品或作为肥料生产的原料。
优选的实施方式中,还包括:
将所述含有金属离子的溶液用于制备硝酸磷肥。
优选的实施方式中,还包括:
将所述磷矿进行酸解中的酸,至少部分源自于将所述第二溶液A或第二溶液B进行蒸发脱硝酸根处理获取的硝酸。
优选的实施方式中,所述铁源包括铁盐、亚铁盐或铁单质中的至少一种,所述含硫酸根的溶液为硫酸溶液、硫酸铵溶液中的至少一种。
优选的实施方式中,所述通过铁源与所述磷酸溶液反应中,控制反应体系的pH值介于4~6之间。
优选的实施方式中,所述氨包括氨气、液氨或氨水中的至少一种。
本发明还提供了一种根据上述方法通过硝酸磷肥装置联产磷酸铁的方法制备的磷酸铁产品。
本发明还提提供了一种通过硝酸磷肥装置联产磷酸铁的系统,包括:
酸解槽,用于对磷矿进行酸解反应;
第一固液分离装置,用于对所述酸解后的酸解浆进行固液分离,以获取酸解液;
冷冻结晶装置,用于对所述酸解液进行冷冻结晶;
第二固液分离装置,用于对冷冻结晶的酸解液进行固液分离,以获取第一溶液;
脱钙反应装置,用于供所述第一溶液和含硫酸根的溶液进行脱钙反应;
第三固液分离装置,还用于对所述脱钙反应的产物进行固液分离,以获取第二溶液;
脱硝装置,用于对所述第二溶液进行蒸发以脱除硝酸根,以获取浓缩脱硝的第三溶液和硝酸;
萃取装置,用于对第三溶液用萃取溶剂进行萃取,以获取萃取相;
反萃装置,用于对所述萃取相进行反萃,获取磷酸;
和/或,所述系统设置中和装置和第四固液分离装置,所述中和装置用于 第三溶液和铵进行中和反应得到中和反应溶液,所述第四固液分离装置用于中和反应溶液进行固液分离获得磷酸铵盐溶液。
在优选的实施方式中,所述脱硝装置与酸解槽连接,以供所述脱硝装置脱除的硝酸进入至所述酸解槽。
优选的实施方式中,所述第一固液分离装置和/或第二固液分离装置和/或第三固液分离装置和/或第四固液分离装置是沉降槽、压滤机或抽滤机中的一种。
优选的实施方式中,所述第一固液分离装置、第二固液分离装置、第三固液分离和第四固液分离装置是循环使用的同一固液分离装置。
优选的实施方式中,还包括:
反萃装置,用于对所述萃取装置的萃取相进行反萃。
优选的实施方式中,还包括:
洗涤装置,位于所述萃取装置和反萃装置之间,以用于对所述萃取装置的萃取相进行洗涤,获取含有金属离子的洗涤液。
第一浓缩装置,将所述含有金属离子的洗涤液进行浓缩,获取中微量元素肥料产品。
优选的实施方式中,所述萃取装置包括转盘萃取塔、多级离心萃取塔、振动筛板塔或筛板萃取塔中的一种。
优选的实施方式中,还包括:
第二浓缩装置,用于对所述反萃装置的萃出相进行浓缩。
以上制备方法,利用硝酸磷肥的设备制备磷酸铁,由磷矿原料生产制备获取高纯度的磷酸铁,生产过程中的副产物能直接用于肥料制备或作为独立产品,无废弃物,而且应用硝酸磷肥设备通过两个途径制备磷酸铁,分别是磷酸铵盐路径和磷酸路径生产磷酸铁,而这两条路线均通过硝酸磷肥设备生产制备,两条路线可分别进行,也可同时进行,副产的产品硫酸钙质量高,能够满足建材等工业硫酸钙的应用,副产的萃取物中的中微量金属离子和中和的沉淀物磷酸金属盐都能够用作制备肥料的原料,也能够直接作为肥料生产,副产的硝酸可循环用于磷矿分解,也可以用于铁源的制备,例如制备硝酸铁或硝酸亚铁。
附图说明
图1是一个实施例中通过硝酸磷肥装置联产磷酸铁的方法的示意图;
图2是一个实施例中铁源的制备示意图;
图3是一个实施例中多级错流萃取、洗涤和反萃获取磷酸的示意图;
图4是一个实施例中通过硝酸磷肥装置联产磷酸铁的系统的示意图;
图5是又一个实施例中硝酸磷肥装置联产磷酸铁的方法的示意图;
图6是又一个实施例中通过硝酸磷肥装置联产磷酸铁的系统的示意图。
具体实施方式
本发明目的的实现、功能特点及优点将结合实施例,参照附图做进一步说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
本发明的一个实施例提出一种通过硝酸磷肥装置联产磷酸铁的方法;该方法以磷矿和铁源为原料制备获取磷酸铁。
在一些实施方式中,用于制备磷酸铁的磷矿或磷精矿原料是可以是自然采掘获取的高品位磷矿,磷精矿为中低品位磷矿经除杂或纯化所获取的磷精矿。
进一步图1示出了一个实施例中联产磷酸铁的方法的示意图,方法包括:
S10,将磷矿或磷精矿原料用硝酸或含有硝酸的混酸酸解,并分离去除酸不溶物获取酸解液;
S20,将酸解液进行冷冻结晶硝酸钙,滤除结晶硝酸钙获取第一溶液;
S30,向第一溶液中加入硫酸溶液,进一步脱除钙获取第二溶液;
S40,将第二溶液进行浓缩处理,使多余的硝酸从第二溶液中挥发逸出,进而获取浓缩脱硝的第三溶液;
S50,对步骤S40获取的第三溶液进行萃取,以将磷酸和部分金属离子从第三溶液中分离至萃取相中;而后再通过洗涤从萃取相中洗涤去除金属离子;以及,将洗涤后的萃取相进行反萃,使磷酸从有机萃取溶剂中回到水相中即获取磷酸溶液;
S60,通过磷酸溶液和铁源反应,制备获取磷酸铁。
在步骤S60中,通过铁源与步骤S50获取的磷酸溶液反应,制备获取磷 酸铁。其中,在一些具体的实施方式中,铁源包括铁盐例如硫酸铁、硫酸亚铁、硝酸铁、硝酸亚铁、氯化铁,或者是单质铁例如铁粉等中的至少一种。
例如图2的一个具体实施例中,铁源是由质量分数85%的七水硫酸亚铁原料溶解过滤后,再加入25%的氨水进一步过滤除杂后的铁盐溶液。
在具体的实施方式中,通过将铁源加入至步骤S50获取的磷酸溶液中,并在反应过程中优选将反应体系的pH控制在4~6的范围内为最佳。一方面避免当反应体系的pH高于6时大量沉淀其他金属杂质和难溶的磷酸亚铁,另一方面避免当反应体系的pH低于4时,引起磷酸铁较难沉淀。
以及在具体的实施方式中,将步骤S60铁源与磷酸溶液的反应产物进行固液分离,固相成分即为含有结晶水的磷酸铁,进一步再干燥去除结晶水后获取纯度更高的无水磷酸铁产品。以及步骤S60反应的产物进行固液分离的液相成分中,还含有磷酸根、硝酸根、以及其他未沉淀的金属离子。则进一步在更加优选的实施方式中,方法还包括:
将步骤S60固液分离的液相成分,作为硝酸磷肥原料制备成硝酸磷肥。
在一些实施方式中,步骤S10中的酸解液是直接过滤分离酸解浆中的液相成分获取的;或者在又一些中,酸解液包括直接过滤分离酸解浆中的液相成分、以及将酸解分解的固相成分用工艺水进行一次或多次洗涤的洗涤液合并获取的;
磷精矿的酸解液中,主要含有硝酸酸解获取的磷酸根、杂质金属例如包括钙离子等、硝酸根等。在优选的实施方式中,酸解过程中添加的硝酸可以是相对过量的,以使磷矿原料反应完全。
在该实施方式中,固液分离获取的酸不溶物中主要含有硅钙镁的酸不溶盐;在优选的实施方式中,基于有效利用酸不溶物所含有的元素,可将酸解获取的酸不溶物制备成土壤调理剂产品,以用于改良土壤。
以及在步骤S20中,将酸解液进行冷冻结晶硝酸钙,滤除结晶硝酸钙获取第一溶液;具体地,步骤S20中通过先将酸解液冷冻结晶,冷冻结晶的过程中大量钙离子和部分金属离子例如镁以硝酸盐的结晶形式析出;例如冷冻到酸解液的温度为-10℃~-5℃中优选地是-8℃~-5℃,60~85%的硝酸钙以Ca(NO3)2·4H2O结晶形式析出;然后再直接送入真空过滤机进行过滤分离,过滤后获取的液相成分即为获取第一溶液。
或者在具体的优选实施细节中,过滤分离后获取的固相成分如压滤方式过滤获取的压滤饼,用冷冻硝酸和冷冻水进行滤饼洗涤,产生的洗涤液一部分用于系统循环合并至酸解液中进行再次冷冻结晶分离,洗涤液的另一部分加入酸解槽中进行酸解。
以及在步骤S30中,向第一溶液中加入硫酸溶液,使第一溶液中剩余的钙离子以微溶或难溶的硫酸钙析出,并进行固液分离;获取的固相成分为含一定水分的硫酸钙例如半水硫酸钙,以及进一步脱除钙的第二溶液。
在实施方式中,含硫酸根的溶液是不过量的,以避免引入硫酸根杂质;即加入的硫酸溶液中的硫酸根的摩尔量不超过第一溶液中钙离子的摩尔量,以防止脱钙后的第二溶液中含有影响磷酸质量的硫酸根。
在实施方式中,含硫酸根的溶液是不过量的,在脱钙之后保持第二溶液中的硫酸根的浓度低于0.5%对于后续杂质的去除是有利的;更加优选的实施方式中,在脱钙之后保持第二溶液中的硫酸根的浓度低于0.1%;更加优选地,脱钙之后保持第二溶液中的硫酸根的浓度低于0.01%。
以及在步骤S40中,将第二溶液进行浓缩处理,使多余的硝酸从第二溶液中挥发逸出,进而获取浓缩脱硝的第三溶液。
以及在优选的实施方式中,通过对所述第二溶液进行蒸发浓缩以脱除硝酸的蒸发温度在120~180℃之间可调;在更加优选的实施方式中,蒸发浓缩以脱除硝酸的温保持160~177℃。当蒸发至体系中硝酸根的浓度低于0.5%,对后续的金属杂质的去除和磷酸的生成是有利的;进一步在更加优选的实施方式中,蒸发浓缩至体系中硝酸根的浓度低于0.1%;更加优选地,蒸发浓缩至体系中硝酸根的浓度低于0.01%。
以及在实施方式中,通过对所述第二溶液进行蒸发浓缩以脱除硝酸后的第三溶液中,含有的硝酸根离子浓度低于0.5%。更加优选地,第三溶液中含有的硝酸根离子浓度低于0.1%。
以及在优选的实施方式中,工艺方法还将该步骤S40中脱除的硝酸重新吸收或回收之后,用于步骤S10中对磷矿原料进行酸解。
以及浓缩去除硝酸之后的第三溶液中,主要包括磷酸和部分杂质和金属离子。
以及在步骤S50中,对步骤S40获取的第三溶液进行萃取,以将磷酸和 部分金属离子从第三溶液中分离至萃取相中;而后再通过洗涤从萃取相中洗涤去除金属离子;以及,将洗涤后的萃取相进行反萃,使磷酸从有机萃取溶剂中回到水相中即获取磷酸溶液。
术语“萃取”和“反萃”均是是化工领域基础技术术语。其中,术语“萃取”是利用物质在两种互不相溶(或微溶)的溶剂中溶解度或分配系数的不同,使溶质物质从一种溶剂内转移到另外一种溶剂中的过程。术语“反萃”的过程与“萃取”相反,是溶质物质从萃取溶剂返回的过程。
以及,在一些具体的实施方式中,以上萃取步骤中采用的有机萃取溶剂可以包括正丁醇、异戊醇、磺化煤油、260号溶剂油、406#环保溶剂油等常用的金属离子萃取溶剂。在具体的优选实施方式中,步骤S50中采用的萃取溶剂是正丁醇和异戊醇的混合,混合萃取溶剂中正丁醇和异戊醇的比例是1:0.5~2,优选的,正丁醇和异戊醇的比例是1:1。并且萃取中,萃取溶剂的添加量按照与第三溶液的体积比为0.5~5:1。
进一步在更加优选实施,在反萃步骤之后,还对反萃后分离的磷酸溶液进行脱色或浓缩等,一方面进一步除去溶液中的有机质或氟元素,另一方面提升产品的外观、色泽和浓度等,获取标准化产品的高纯度工业磷酸。在一个具体的实施方式中,通过脱色和浓缩的最终高纯度磷酸溶液中含有P2O5的质量百分数为61.58%。
另一方面,通过反萃获取磷酸之外,还能将萃取溶剂进行还原净化使萃取溶剂能循环使用。
在优选的实施方式中,以上萃取的方式多级错流萃取;以使萃取的效率更加充分。
术语“多级错流萃取”是化工术语,是指在多级串联的设备中进行多级错流萃取的方法。每级包括一萃取室和一再萃取室。在萃取室中给予体相与萃取溶剂进行接触,后者在再萃取室中与接收体相接触时被再萃取,萃取溶剂在同一级中以适宜方式对给予体相和接收体相呈交叉流动,而给予体相和接受体相呈逆流流过某些或全部级。
例如图3中示出了一个具体实施例中进行多级错流萃取的示意图;在该实施例中通过多级萃取、多级洗涤和多次反萃,以提升各步骤中成分的分离效率,从而尽可能提升最终分离和制备的产品纯度。
以及在一些具体的实施方式中,洗涤获取含有金属离子杂质的溶液中,含有中微量的金属元素例如钙、镁、锰等,进而添加到磷肥或肥料产品中补充中微量元素;或者将含有金属离子杂质的溶液浓缩、添加后制备成独立的中微量元素肥料产品。
本发明的又一个实施例还提出一种通过硝酸磷肥装置联产工业磷酸的系统。在该优选的实施方式中,联产工业磷酸的系统如图4所示,包括:
酸解反应装置,供磷矿原料用硝酸或混酸进行酸解;
第一固液分离装置,用于对酸解后的酸解浆进行固液分离,以获取酸解液;
冷冻结晶装置,用于对酸解液进行冷冻结晶;
第二固液分离装置,用于对冷冻结晶装置的酸解液进行固液分离,以获取第一溶液和固相的硝酸钙结晶水合物;
脱钙反应装置,用于供第一溶液和硝酸溶液反应;
第三固液分离装置,还用于对脱钙反应的产物进行固液分离,以获取第二溶液和固相的硫酸钙;
脱硝装置,用于对第二溶液进行浓缩脱硝,以获取浓缩脱硝的第三溶液和硝酸;
萃取装置,用于对第三溶液用有机萃取溶剂进行萃取,以去除其中的金属离子;
洗涤装置,位于萃取装置和反萃装置之间,用于对萃取装置萃取后的萃取相进行洗涤;合并洗涤液和萃余相后,即为磷酸溶液;
反萃装置,用于对含有金属离子的有机萃取溶剂即萃取相进行反萃,获取磷酸溶液;
磷酸铁反应装置,供磷酸溶液与铁源反应,生成磷酸铁;
第四固液分离装置,对磷酸铁反应装置的反应产物进行固液分离,取固相成分即为含有结晶水的磷酸铁产品。
脱硝装置,与酸解反应装置连接,以供蒸发脱硝中生成的硝酸进入至酸解槽中进行酸解。
进一步地以上系统还包括:
煅烧装置,用于对第四固液分离装置分离的固相成分进行煅烧,以获取 无水磷酸铁产品。
以及在一些实施方式中,萃取装置包括转盘萃取塔、多级离心萃取塔、振动筛板塔或筛板萃取塔中的一种。
在一些实施方式中,第一固液分离装置、第二固液分离装置、和第三固液分离装置是彼此独立的分离装置或设备;或者在又一些实施方式中第一固液分离装置、第二固液分离装置、和第三固液分离装置是共用的分离装置或设备,在不同的步骤中依次分别执行第一固液分离装置、第二固液分离装置、和第三固液分离装置的分离过程。在一些具体的实施方式中,第一固液分离装置、第二固液分离装置、和第三固液分离装置可以包括沉降槽、压滤机、抽滤机等。
本发明的以上系统,通过对现有的硝酸磷肥系统进行部分利用和改进,以生产制备获取高纯度的磷酸铁;生产过程中的副产物能直接用于肥料制备或作为独立产品,无废弃物。
本发明的又一个实施例中联产磷酸铁的方法参见图5所示,方法包括:
S10,将磷矿原料用硝酸或含有硝酸的混酸酸解,并分离去除酸不溶物获取酸解液;
S20,将酸解液进行冷冻结晶硝酸钙,滤除结晶硝酸钙获取第一溶液;
S30,向第一溶液中加入含硫酸根的溶液,进一步脱除钙获取第二溶液;
S40,将第二溶液进行浓缩处理,使多余的硝酸从第二溶液中挥发逸出,进而获取浓缩脱硝的第三溶液;
S50,向步骤S40获取的第三溶液中加入氨例如通氨气、液氨或氨水等,进行中和反应,并过滤后即获取磷酸铵盐的溶液;
S60,向步骤S50获取的磷酸铵盐溶液中加入铁源进行反应,固液分离后获取磷酸铁产品。
以及步骤S60中,通过铁源例如硫酸铁、硫酸亚铁、硝酸铁、硝酸亚铁、氯化铁,或者是单质铁例如铁粉等中的至少一种,与步骤S50获取的磷酸铵盐溶液反应,即获取磷酸铁。
同样地步骤S60的反应过程中,优选将反应体系的pH控制在4~6的范围内为最佳。
以及在优选的实施方式中,步骤S50中通过加入氨进行中和反应能通过中和生成所需的目标产物磷酸铵盐;另一方面在中和反应的过程中体系的pH逐渐升高,部分金属离子如钙、镁、锰等会形成固相析出,有助于降低和减少磷酸铵盐产品中的杂质,而后再经过滤除杂、浓缩后即获取纯度较高的磷酸铵盐。
进一步在更加优选的实施方式中,步骤S50中过滤分离的固相成分主要是含有钙、镁、锰的磷酸盐;进而将它们作为硝酸磷肥的元素制备成硝酸磷肥。
进一步在更加优选的实施方式中,步骤S50中向第三溶液中通入氨气进行中和反应,直至体系的pH达到6以上。优选的当体系的pH达到6以上时,体系中的杂质金属离子如钙、镁、锰等会以磷酸盐的形式形成沉淀,对于降低杂质提升磷酸铵盐的纯度是有利的。
进一步地在又一些实施方式中,步骤S50中向第三溶液中加入氨进行中和反应体系的pH,根据所需制备的磷酸铵盐产品中磷酸二氢铵、磷酸一氢铵和磷酸三铵的比例或需求不同,使中和反应体系的pH是在4~7之间可调的;通过调整中和反应体系的pH范围至不同的区间,使制备的产品中磷酸二氢铵、磷酸一氢铵和磷酸三铵的占比可调。
本发明的又一个实施例还提出一种联产磷酸铁的系统参见图5所示,包括:
酸解反应装置,供磷矿原料用硝酸或混酸进行酸解;
第一固液分离装置,用于对酸解后的酸解浆进行固液分离,以获取酸解液;
冷冻结晶装置,用于对酸解液进行冷冻结晶;
第二固液分离装置,用于对冷冻结晶装置的酸解液进行固液分离,以获取第一溶液和固相的硝酸钙结晶水合物;
脱钙反应装置,用于供第一溶液和含硫酸根的溶液例如硫酸或硫酸铵等反应;
第三固液分离装置,还用于对脱钙反应的产物进行固液分离,以获取第二溶液和固相的硫酸钙;
脱硝装置,用于对第二溶液进行浓缩脱硝,以获取浓缩脱硝的第三溶液 和硝酸;
中和装置,用于供第三溶液和氨进行中和反应;
第四固液分离装置,用于对中和反应后的体系进行过滤分离,液相为磷酸铵盐溶液;
磷酸铁反应装置,供磷酸铵盐溶液与铁源反应,生成磷酸铁;
第五固液分离装置,对磷酸铁反应装置的反应产物进行固液分离,获取固相成分即为含有结晶水的磷酸铁产品。
脱硝装置,与酸解反应装置连接,以供蒸发脱硝中生成的硝酸进入至酸解槽中进行酸解。
在一些实施方式中,第一固液分离装置、第二固液分离装置、第三固液分离装置、第四固液分离装置、第五固液分离装置是彼此独立的分离装置或设备;或者在又一些实施方式中第一固液分离装置、第二固液分离装置、第三固液分离装置、第四固液分离装置、第五固液分离装置是共用的分离装置或设备,在不同的步骤中依次分别执行第一固液分离装置、第二固液分离装置、第三固液分离装置、第四固液分离装置、第五固液分离装置的分离过程。在一些具体的实施方式中,第一固液分离装置、第二固液分离装置、第三固液分离装置、第四固液分离装置、第五固液分离装置可以包括沉降槽、压滤机、抽滤机等。
优选的实施方式中,脱硝装置至少包括:容纳腔,用于接收或容纳第二溶液;以及加热器,用于对所述第二溶液进行加热蒸发。
在更加优选的实施方式中,加热器是电阻加热器;并且在工作中被配置为将第二溶液加热至120~180℃进行蒸发。
进一步地以上系统还包括:
煅烧装置,用于对第五固液分离装置分离的固相成分进行煅烧,以获取无水磷酸铁产品。
为体现本发明制备磷酸铁产品的效率,以下实施例1示出了一个具体实施方式中制备过程的物料使用和产量情况,包括:
S10,将质量2t含有34%P2O5的磷精矿(含杂质钙约40.58%,含杂质镁约0.77%,其他杂质如铁、铝、硅、氟共约1~5%)用折百硝酸2.4t(0.53tN) 进行酸解,并将酸解浆固液分离,获取酸不溶物0.09t(含有硅钙镁原料)和酸解液;以及酸不溶物用水洗涤2~3次,并将洗涤液合并至酸解液;
S20,将酸液液冷冻到温度为-10℃~-5℃中进行结晶,再将冷冻溶液于-2~1℃下进行真空过滤,分离得到60%粗硝钙液晶体3.54t,以及2.186t的第一溶液(0.635tP2O5);
S30,向第一溶液中加入硫酸0.349t,深度固液分离获取半水硫酸钙0.51t、以及2.055t第二溶液(0.635tP2O5)
S40,对第二溶液于80~85℃中进行蒸发浓缩脱硝酸,直至浓缩至体系中的硝酸根离子低于0.01%停止反应,回收得到折百硝酸0.473t、以及第三溶液;
S50,用第三溶液1倍体积的有机萃取溶剂(正丁醇和异戊醇1:1体积混合)对第三溶液于萃取塔中进行多级错流萃取,并将萃取相用水洗涤,最终再用纯水进行反萃,反萃后分离即获取磷酸溶液;
S60,制备铁源:将购买的重量为2.3t的85%的七水硫酸亚铁用纯水溶解,并过滤除杂后向溶液中和加入25%氨水0.93t,再次过滤除杂后获取铁盐溶液;
将铁盐溶液与步骤S50反萃分离的磷酸溶液反应,控制反应体系pH于4~6,反应完全充分沉淀后通过压滤固液分离,滤液浓缩结晶得到0.66t硫酸铵产品,两次再浆固液分离,分离得到固相滤饼为含结晶水磷酸铁1.24t(其中含0.48t的P2O5);
进一步对含结晶水磷酸铁干燥,去除结晶水后获取的无水磷酸铁1t;无水磷酸铁中P2O5含量为48%,约0.48tP2O5
S70,将步骤S60的固液分离获取的液相成分浓缩后制备成硝酸磷肥。
以下实施例2示出了一个具体实施方式中制备过程的物料使用和产量情况,包括:
S10,将质量2t含有34%P2O5的磷精矿用折百硝酸2.4t(0.53tN)进行酸解,并将酸解浆固液分离,获取酸不溶物0.09t(含有硅钙镁原料)和酸解液;以及酸不溶物用水洗涤2~3次,并将洗涤液合并至酸解液;
S20,将酸液液冷冻到温度为-10℃~-5℃中进行结晶,再将冷却溶液于 -2~1℃下进行真空过滤,分离得到60%粗硝钙液晶体3.54t,以及2.186t的第一溶液(0.635tP2O5);
S30,向第一溶液中加入硫酸0.349t,深度固液分离获取半水硫酸钙0.51t、以及2.055t第二溶液(0.635tP2O5)
S40,对第二溶液进行浓缩脱硝,回收得到折百硝酸0.473t、以及第三溶液;
S50,向第三溶液中逐步加入氨0.19t进行中和反应,直至中和反应体系的pH达到7.0后待沉降完全,分离净化,液相成分为磷酸铵盐溶液;
S60,制备铁源:将购买的重量为2.3t的85%的七水硫酸亚铁用纯水溶解,并过滤除杂后向溶液中和加入25%氨水0.93t,再次过滤除杂后获取铁盐溶液;
向步骤S50的磷酸铵盐溶液中逐步加入铁盐溶液,控制反应体系pH于4~6,反应完全充分沉淀后通过压滤固液分离,滤液浓缩结晶得到0.66t硫酸铵产品,两次再浆固液分离,分离得到固相滤饼为含结晶水磷酸铁1.24t(含P2O5为0.48t);进一步煅烧去除结晶水后,获取无水磷酸铁磷酸铁产品1t(含P2O5为48%)。
以上实施例及具体方案描述,并非因此限制本发明的专利保护范围,凡是利用本发明说明书内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围内。

Claims (8)

  1. 一种通过硝酸磷肥装置联产磷酸铁的方法,其特征在于,包括如下步骤:
    用硝酸将磷矿或磷精矿进行酸解,并分离酸不溶物获取酸解液;
    将所述酸解液进行冷冻结晶,并固液分离获取第一溶液;
    将所述第一溶液加入含硫酸根的溶液进行反应,并固液分离获取第二溶液A;和/或将所第一溶液加入硫酸进行反应,并固液分离获取第二溶液B;
    将所述第二溶液A和/或第二溶液B进行脱硝酸根处理,获取第三溶液A和/或第三溶液B;
    向第三溶液A中加入氨进行中和,中和后溶液进行固体分离获取磷酸铵盐溶液,向磷酸铵盐溶液中加入铁源进行反应制备得到磷酸铁;
    和/或,通过萃取溶剂对所述第三溶液B进行预处理、萃取,获取萃取相;对所述萃取相进行后处理、反萃,获取磷酸溶液;通过铁源与所述磷酸溶液反应,获取磷酸铁。
  2. 如权利要求1所述的通过硝酸磷肥装置联产磷酸铁的方法,其特征在于,所述铁源包括铁盐、亚铁盐或铁单质中的至少一种,所述含硫酸根的溶液为硫酸溶液、硫酸铵溶液中的至少一种。
  3. 如权利要求1或2所述的通过硝酸磷肥装置联产磷酸铁的方法,其特征在于,所述通过铁源与所述磷酸铵盐溶液反应中,控制反应体系的pH值介于4~6之间;所述通过铁源与所述磷酸溶液反应中,控制反应体系的pH值介于4~6之间。
  4. 如权利要求1或2所述的通过硝酸磷肥装置联产磷酸铁的方法,其特征在于,所述第三溶液A和第三溶液B中的硝酸根的浓度低于0.1%;更加优选地,所述第三溶液中的硝酸根的浓度低于0.05%;更加优选地,所述第三溶液中的硝酸根的浓度低于0.01%。
  5. 如权利要求1或2所述的通过硝酸磷肥装置联产磷酸铁的方法,其特征在于,通过萃取溶剂对所述第三溶液B进行萃取中,所述萃取溶剂与所述第三溶液B的体积比为0.5~5:1。
  6. 如权利要求1所述的通过硝酸磷肥装置联产磷酸铁的方法,其特征在于,所述氨包括氨气、液氨或氨水中的至少一种。
  7. 一种根据权利要求1至6任一项所述的通过硝酸磷肥装置联产磷酸铁的方法制备的磷酸铁产品。
  8. 一种通过硝酸磷肥装置联产磷酸铁的系统,其特征在于,包括:
    酸解反应装置,用于硝酸对磷矿进行酸解反应;
    第一固液分离装置,用于对所述酸解后的酸解浆进行固液分离,以获取酸解液;
    冷冻结晶装置,用于对所述酸解液进行冷冻结晶;
    第二固液分离装置,用于对冷冻结晶的酸解液进行固液分离,以获取第一溶液;
    脱钙反应装置,用于供所述第一溶液和含硫酸根的溶液进行反应;
    第三固液分离装置,还用于对所述脱钙反应装置的产物进行固液分离,以获取第二溶液;
    脱硝装置,用于对所述第二溶液进行蒸发以脱除硝酸根,以获取第三溶液;
    萃取装置,用于对第三溶液用萃取溶剂进行前处理、萃取,以获取萃取相;
    反萃装置,用于对所述萃取相进行后处理、反萃,获取磷酸;
    磷酸铁反应装置,用于供铁源与所述磷酸或磷酸铵盐溶液反应制备磷酸铁,
    和/或者,所述系统设置中和装置和第四固液分离装置,所述中和装置用于第三溶液和氨进行中和反应得到中和反应溶液,所述第四固液分离装置用于中和反应溶液进行固液分离获得磷酸铵盐溶液。
PCT/CN2023/099633 2022-06-20 2023-06-12 通过硝酸磷肥装置联产磷酸铁的方法、产品及系统 WO2023246540A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210698909 2022-06-20
CN202210698909.3 2022-06-20

Publications (1)

Publication Number Publication Date
WO2023246540A1 true WO2023246540A1 (zh) 2023-12-28

Family

ID=88974765

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/099633 WO2023246540A1 (zh) 2022-06-20 2023-06-12 通过硝酸磷肥装置联产磷酸铁的方法、产品及系统

Country Status (4)

Country Link
JP (1) JP2024000517A (zh)
KR (1) KR20230174165A (zh)
DE (1) DE102023205544A1 (zh)
WO (1) WO2023246540A1 (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3342580A (en) * 1962-11-09 1967-09-19 Stamicarbon Production of phosphates from phosphate rock by solvent extraction
CN102351590A (zh) * 2011-07-18 2012-02-15 贵州省化工研究院 硝酸分解磷矿硝酸钙冷冻法生产高水溶性硝酸磷肥的方法
CN114408889A (zh) * 2022-01-30 2022-04-29 贵州芭田生态工程有限公司 一种磷酸铁制备方法、产品及系统
CN114436229A (zh) * 2022-01-29 2022-05-06 贵州芭田生态工程有限公司 一种通过磷矿制备磷酸并副产硝酸磷肥的制备方法
CN114572952A (zh) * 2022-01-29 2022-06-03 贵州芭田生态工程有限公司 应用冷冻硝酸磷肥工艺制备磷酸并副产肥料的方法
CN114572948A (zh) * 2022-01-30 2022-06-03 贵州芭田生态工程有限公司 一种降低磷酸铁生产原料磷铵中杂质金属含量的方法
CN217350773U (zh) * 2022-01-05 2022-09-02 贵州芭田生态工程有限公司 一种通过硝酸磷肥装置联产磷酸铁的系统
CN116443832A (zh) * 2022-01-05 2023-07-18 贵州芭田生态工程有限公司 一种通过硝酸磷肥装置联产磷酸铁的方法、产品及系统

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3342580A (en) * 1962-11-09 1967-09-19 Stamicarbon Production of phosphates from phosphate rock by solvent extraction
CN102351590A (zh) * 2011-07-18 2012-02-15 贵州省化工研究院 硝酸分解磷矿硝酸钙冷冻法生产高水溶性硝酸磷肥的方法
CN217350773U (zh) * 2022-01-05 2022-09-02 贵州芭田生态工程有限公司 一种通过硝酸磷肥装置联产磷酸铁的系统
CN116443832A (zh) * 2022-01-05 2023-07-18 贵州芭田生态工程有限公司 一种通过硝酸磷肥装置联产磷酸铁的方法、产品及系统
CN114436229A (zh) * 2022-01-29 2022-05-06 贵州芭田生态工程有限公司 一种通过磷矿制备磷酸并副产硝酸磷肥的制备方法
CN114572952A (zh) * 2022-01-29 2022-06-03 贵州芭田生态工程有限公司 应用冷冻硝酸磷肥工艺制备磷酸并副产肥料的方法
CN114408889A (zh) * 2022-01-30 2022-04-29 贵州芭田生态工程有限公司 一种磷酸铁制备方法、产品及系统
CN114572948A (zh) * 2022-01-30 2022-06-03 贵州芭田生态工程有限公司 一种降低磷酸铁生产原料磷铵中杂质金属含量的方法

Also Published As

Publication number Publication date
DE102023205544A1 (de) 2023-12-21
JP2024000517A (ja) 2024-01-05
KR20230174165A (ko) 2023-12-27

Similar Documents

Publication Publication Date Title
AU2009347055B2 (en) Production of ammonium phosphates
CN217350773U (zh) 一种通过硝酸磷肥装置联产磷酸铁的系统
US2608465A (en) Process of producing lithium sulfate from lithium phosphates
EP2864249B1 (en) Production of ammonium phosphates
CN106745156B (zh) 一种硝酸分解磷矿联产硝酸钾及硝酸磷钾复合肥的方法
CN114436229A (zh) 一种通过磷矿制备磷酸并副产硝酸磷肥的制备方法
CN110642282A (zh) 一种利用二氧化碳制备氟化钙与碳酸氢钾的方法
US2914380A (en) Production of ca(h2po4)2
CN217350771U (zh) 通过硝酸磷肥装置联产磷酸的系统
CN114408889A (zh) 一种磷酸铁制备方法、产品及系统
WO2023246540A1 (zh) 通过硝酸磷肥装置联产磷酸铁的方法、产品及系统
CN116443832A (zh) 一种通过硝酸磷肥装置联产磷酸铁的方法、产品及系统
US3785797A (en) Production of nitrophosphate fertilizer
JPS5827206B2 (ja) フツソオガンユウシナイリンサンエンノセイゾウホウホウ
JPS5924725B2 (ja) 湿式法燐酸の精製方法
CN104401953B (zh) 一种利用湿法磷酸生产的磷酸二铵及其生产方法
US3667904A (en) Process for the separation of mixtures of phosphoric and nitric acid
US3446583A (en) Process of preparing water-soluble phosphates
EP3927659A1 (en) Process for recovering phosphoric acid from solid phosphorus sources
CN217149021U (zh) 一种通过硝酸磷肥装置联产磷酸铵盐的系统
CN116443829A (zh) 通过硝酸磷肥装置联产磷酸的方法、产品及系统
CN118206087B (zh) 一种使用湿法磷酸制备肥料级和电池级磷酸一铵的方法
CA1199471A (en) Method of separating magnesium from wet process superphosphoric acid
CN116444300A (zh) 一种通过硝酸磷肥装置联产磷酸铵盐的方法、产品及系统
CN115872377A (zh) 一种高镁磷酸脱除杂质的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23826189

Country of ref document: EP

Kind code of ref document: A1