WO2023246524A1 - 一种制备木质素胶粘剂的方法及其产品 - Google Patents

一种制备木质素胶粘剂的方法及其产品 Download PDF

Info

Publication number
WO2023246524A1
WO2023246524A1 PCT/CN2023/099361 CN2023099361W WO2023246524A1 WO 2023246524 A1 WO2023246524 A1 WO 2023246524A1 CN 2023099361 W CN2023099361 W CN 2023099361W WO 2023246524 A1 WO2023246524 A1 WO 2023246524A1
Authority
WO
WIPO (PCT)
Prior art keywords
lignin
mixed solution
lignin adhesive
pretreatment
organic
Prior art date
Application number
PCT/CN2023/099361
Other languages
English (en)
French (fr)
Inventor
黄晨
梁芳敏
周雪莲
程金元
詹云妮
刘旭泽
邓拥军
房桂干
Original Assignee
中国林业科学研究院林产化学工业研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国林业科学研究院林产化学工业研究所 filed Critical 中国林业科学研究院林产化学工业研究所
Publication of WO2023246524A1 publication Critical patent/WO2023246524A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J197/00Adhesives based on lignin-containing materials
    • C09J197/005Lignin
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08HDERIVATIVES OF NATURAL MACROMOLECULAR COMPOUNDS
    • C08H6/00Macromolecular compounds derived from lignin, e.g. tannins, humic acids

Definitions

  • the invention relates to the technical field of clean separation and efficient comprehensive utilization of lignocellulosic raw materials, and specifically relates to a method for preparing lignin adhesive and its products.
  • Phenolic resin adhesives are mainly produced by the reaction of phenol and formaldehyde. They have the advantages of long bonding time and strong waterproofness. They are widely used in various wood products, metal products, plastic products and other fields. It is widely used, but formaldehyde poses certain threats to human life and health, and phenol derived from the petrochemical industry can easily cause pollution and other problems. In recent years, there has been extensive research on using environmentally friendly and renewable raw materials to prepare adhesives to replace traditional phenolic resin adhesives. Among them, soybean-based adhesives derived from biomass have achieved industrial production due to their advantages such as low price, environmental protection, non-toxicity, and biodegradability.
  • soybean-based adhesives have low solid content, high viscosity, and weak overall adhesion.
  • There are shortcomings such as long hot pressing time and unstable bonding strength after hot pressing.
  • the production of adhesives similar to traditional phenolic resins using lignin as raw material has been extensively studied.
  • Lignin is the most widely sourced phenolic compound in nature. Its basic building blocks (syringyl, guaiacyl and p-hydroxyphenyl) are similar to the phenol structure in phenolic resin adhesives, and it has the potential to replace phenolic resin adhesives. .
  • the content of lignin in lignocellulosic raw materials is 15-35%, and it has the advantages of large reserves, renewable, and easy degradation.
  • Lignin adhesive is a type of lignin-based polymer that has strong adhesion properties and can bond wood, metal, and plastic products. Therefore, it has good application prospects in the fields of construction, home furnishing, and materials.
  • the research on lignin-based adhesives is still in its infancy. This is mainly because traditional industrial lignin has a complex structure, low purity, few reaction sites, and large steric hindrance. It requires relevant chemical modifications during use. , such as phenolation, demethylation, etc., have shortcomings such as complex preparation process, high energy consumption, and large amounts of chemicals. These shortcomings lead to high production costs and difficulty in industrialization.
  • the technical problem to be solved by this application is to provide a clean method for preparing lignin adhesives. During the lignin separation process, the lignin directly passes through a series of cross-linking reactions. Convert to adhesive. Another technical problem to be solved by this application is to provide a lignin adhesive obtained by the above method.
  • a method for preparing lignin adhesives A mixed solution is used to treat lignocellulosic raw materials. After the treatment, an organic solvent is added for stirring and solid-liquid separation. The obtained liquid is rotary evaporated to remove the organic solvent. The product is washed and dried to obtain a lignin adhesive. ; Wherein, the mixed solution is a uniform transparent liquid composed of hydrogen bond acceptors, polyols and organic polybasic acids.
  • the hydrogen bond acceptor is selected from choline chloride, benzyltrimethylammonium chloride, betaine, etc.
  • the polyhydric alcohol is selected from polyhydric alcohols such as 1,2-butanediol, 1,2-pentanediol, 1,5-pentanediol, 1,3-propanediol, 1,5-butanediol, etc.
  • the organic polybasic acid is selected from maleic acid, succinic acid, malonic acid and other polybasic acids.
  • the molar ratio of the hydrogen bond acceptor to the polyhydric alcohol and the organic polybasic acid is 0.1 ⁇ 5:0.1 ⁇ 5:0.1 ⁇ 5.
  • the mass ratio of the lignocellulosic raw material and the mixed solution is 1:1-1:20.
  • the mixture is reacted at 80-140°C for 10-60 minutes.
  • the organic solvent is an aqueous solution of ethanol or acetone with a volume concentration of 10-100%, and the added amount of the organic solvent is 2-10 times the volume of the mixed solution.
  • the method for preparing lignin adhesive has the following steps:
  • the hydrogen bond acceptor is selected from choline chloride, benzyl trichloride Methyl ammonium chloride, betaine, etc.
  • the polyol is selected from 1,2-butanediol, 1,2-pentanediol, 1,5-pentanediol, 1,3propanediol, 1,5-butanediol and other polyhydric alcohols
  • the organic polybasic acid is selected from maleic acid, succinic acid, malonic acid, etc.
  • the molar ratio of hydrogen bond acceptor to polyhydric alcohol and organic polybasic acid is 0.1 ⁇ 5:0.1 ⁇ 5:0.1 ⁇ 5 ;
  • Solid-liquid separation is performed to obtain lignin-rich pretreatment liquid and pretreatment materials; the pretreatment materials are washed with distilled water until neutral and then recycled; the lignin-rich pretreatment liquid is rotary evaporated to remove organic solvents and supplement with appropriate deionizers. Ionized water precipitates lignin and centrifuges to obtain lignin adhesive.
  • step 3 the pretreatment liquid recovers lignin and then evaporates to remove the moisture, which can be recycled.
  • the lignin adhesive obtained by the method for preparing lignin adhesive obtained by the method for preparing lignin adhesive.
  • the lignocellulosic raw materials include agricultural wastes such as wheat straw, rice straw, and corn straw, forest biomass such as poplar and fir, and fast-growing grasses such as reeds and bamboos.
  • the preparation of lignin adhesive requires the separation of lignin first.
  • polyols (1,2-butanediol, 1,2-pentanediol, 1,5-pentanediol, 1,
  • the mixed solution formed by 3-propylene glycol, 1,5-butanediol, etc.) and choline chloride has almost no effect on the component separation of lignocellulosic raw materials, but adding organic polybasic acids (maleic acid, malic acid, Citric acid, succinic acid, malonic acid, etc.)
  • the separated lignin polymer is a lignin adhesive that can be directly used, avoiding the chemical re-modification of lignin and the introduction of toxic substances in the preparation process of conventional methods. It is a Novel, efficient method for preparing lignin adhesives.
  • This application can remove a large amount of lignin from lignocellulosic raw materials at a lower temperature, and during the lignin removal process, the solvent cross-linking reaction in the same system becomes a lignin adhesive, realizing the separation and formation of lignin.
  • the lignin adhesive is processed simultaneously, and the method is simple, low-cost, and high-yield, and can achieve large-scale preparation of lignin adhesive and efficient lignin removal.
  • the lignin adhesive prepared in this application can bond polypropylene, pigskin, rubber, glass, stainless steel, metal and other materials.
  • the shear strength after bonding is 1.42 ⁇ 216.99 kPa, which is an obvious and excellent adhesive. of lignin glue.
  • Figure 1 is the lignin removal rate result chart (a) and the lignin adhesive recovery rate result chart (b) of the method of Example 1;
  • Figure 2 shows the tensile load changes with displacement of lignin adhesives of different polyol systems (a) and the shear strength results (b);
  • Figure 3 is the lignin removal rate result chart (a) and the lignin recovery rate result chart (b) of the pretreatment process in Example 2;
  • Figure 4 is the change of tensile load with displacement after lignin adhesives in different pretreatment temperature systems are bonded to different materials (a) and the shear strength results (b)
  • a method for preparing lignin adhesive the steps are as follows:
  • the lignin-rich pretreatment liquid is rotary evaporated at 65°C to remove ethanol, and appropriate deionized water is added to precipitate the lignin.
  • the pretreatment liquid after removing ethanol was centrifuged to obtain lignin adhesive for analysis.
  • the lignin removal rate increased from 53.98% (choline chloride/maleic acid/1,2-pentanediol) Increased to 59.21% (1,2-butanediol), 62.79% (choline chloride/maleic acid/1,4-butanediol) and 64.71% (choline chloride/maleic acid/1,5 -pentanediol), indicating that different polyols and different isomers (hydroxyl positions) of the same polyol have a greater impact on the lignin removal rate.
  • lignin recovery rate is shown in Figure 1b. It can be seen from the figure that the recovery rate of lignin glue (relative to the lignin removed from the system) is more than 6 times that of the removed lignin, indicating that the removed lignin and hydrogen donors such as polyols and maleic acid in the mixed solution Grafting reaction occurs, and its trend is first rising and then falling, and reaches the maximum value in the 1,2-butanediol system, which is 703.99%. This shows that there are certain differences in the degree of reaction between lignin and the hydrogen donor in different mixed solutions.
  • a microcomputer-controlled material universal testing machine was used to conduct a tensile test on the obtained lignin adhesive.
  • the tensile material was polypropylene plastic-polypropylene plastic.
  • the polypropylene plastic sheet was cut into strips with a width of 25 mm and a length of 100 mm.
  • the lignin glue coating area is 25 mm ⁇ 25 mm, and the thickness is 0.2 mm.
  • the bonding strength of lignin adhesives recovered after pretreatment of different polyol-based mixed solutions to polypropylene plastics is quite different, among which choline chloride/1,4-butanediol/maleic acid mixture
  • the lignin adhesive recovered in the solution has the best effect, with a maximum load of 135.62 N and a shear strength of 216.785 kPa; when changed to the choline chloride/1,5-pentanediol/maleic acid system, the maximum load It is significantly lower at 31.84 N, and the shear strength decreases to 51.08 kPa; when the isomers of the above-mentioned polyols are used, the adhesive for recycling lignin (choline chloride/1,2-butanediol/horse
  • the maximum tensile load after bonding polypropylene plastic with lenic acid and choline chloride/1,2-pentanediol/maleic acid decreased to 7.39 N and 0.89
  • the above experimental results show that the bonding strength of the lignin adhesive recovered after mixed solution pretreatment is mainly affected by the polyol structure, among which the position of the hydroxyl group has a more obvious influence. This is because the polyol with two hydroxyl groups at both ends is more likely to undergo an esterification reaction with the maleic acid in the mixed solution during the pretreatment process, and is more likely to be grafted to the ⁇ position of the aliphatic side chain of lignin. These reactions are beneficial to the lignin.
  • the branching of the protein molecular chain is conducive to increasing its adhesion properties.
  • a method for preparing lignin adhesive the steps are as follows:
  • the lignin-rich pretreatment liquid is rotary evaporated at 65°C to remove ethanol, and appropriate deionized water is added to precipitate the lignin.
  • the pretreatment liquid after removing ethanol was centrifuged to obtain lignin adhesive for analysis.
  • the recovery rate of the lignin glue (relative to the lignin removed from the system) is shown in Figure 3b, and Similar to different polyol systems, the recovery rate of lignin glue after pretreatment is more than 600%, and as the temperature increases, it first decreases and then increases, with a maximum of 689.57%.
  • a microcomputer-controlled material universal testing machine was used to conduct a tensile test on the obtained lignin adhesive.
  • the tensile materials were polypropylene plastic-polypropylene plastic, pigskin-pigskin, and pigskin-polypropylene plastic, and polypropylene plastic, pig
  • the leather is cut into strips with a width of 25 mm and a length of 100 mm.
  • the lignin glue coating area is 25 mm ⁇ 25 mm and the thickness is 0.2 mm.
  • the reaction between lignin and 1,4-butanediol and maleic acid branch chain in the system is less, and the adhesiveness of the resulting lignin glue is The bonding strength is weak; as the pretreatment intensity increases, the branch-chain reaction between lignin in the system and 1,4-butanediol and maleic acid increases, resulting in an increase in the bonding strength of the lignin glue; when the temperature continues to increase , the depolymerization reaction of lignin is enhanced at high temperatures, and the degree of lignin fragmentation increases, resulting in the shortening of the molecular chain of lignin glue, which in turn reduces the bonding strength.
  • the lignin glue recovered at 110°C which has the best bonding effect on polypropylene plastic, was selected to conduct bonding experiments on pigskin-pigskin and pigskin-polypropylene plastic (the method is the same as above).
  • the results show that the bonding effect between polypropylene plastics is the best, with the maximum load and shear strength being 135.62 N and 180.38 kPa respectively; the bonding effect between pig skin is second, with 25.37 N and 40.59 kPa; pig skin and The worst among polypropylene plastics is 9.02 N and 14.43 kPa.
  • the lignin-rich pretreatment solution is rotary evaporated at 65°C to remove ethanol, and appropriate deionized water is added to precipitate the lignin.
  • the pretreatment liquid after removing ethanol is centrifuged to obtain lignin.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Compounds Of Unknown Constitution (AREA)

Abstract

本发明公开了一种制备木质素胶粘剂的方法及其产品,该方法采用混合溶液处理木质纤维原料,处理结束后加入有机溶剂搅拌并固液分离,对获得的液体进行旋转蒸发除去有机溶剂,产物经水洗、干燥,获得木质素胶粘剂。本申请在较低温度下能够大量脱除木质纤维原料中的木质素,并且在木质素脱除过程中,同体系中的溶剂交联反应成为木质素胶粘剂,实现了木质素分离与形成木质素胶粘剂同步进行,且该方法简单、成本低、得率高,可实现木质素胶粘剂的大规模制备以及木质素高效脱除。

Description

一种制备木质素胶粘剂的方法及其产品 技术领域
本发明涉及木质纤维原料清洁分离和高效综合利用技术领域,具体涉及一种制备木质素胶粘剂的方法及其产品。
背景技术
目前,工业用胶粘剂以酚醛树脂基胶粘剂为主,酚醛树脂胶粘剂主要由苯酚和甲醛反应制得,具有粘结时间长、防水性强等优点,在各种木制品、金属制品、塑料制品等领域应用广泛,但甲醛对人类生命健康造成一定威胁,并且石化工业来源的苯酚易造成污染等问题。近年来,利用环保可再生的原料制备胶粘剂以取代传统的酚醛树脂类胶粘剂研究广泛。其中,生物质来源的大豆基胶粘剂因价格低廉、环保无毒、可生物降解等优势已实现工业化生产,但是大豆基胶粘剂固含量低、粘度高、整体的粘附性较弱,在实际生产过程中存在着热压时间长、热压后粘结强度不稳定等缺点。为克服以上大豆基胶粘剂的缺点,以木质素为原料生产类似于传统酚醛树脂的胶粘剂得到了广泛的研究。
木质素是自然界中来源最广泛的酚类化合物,其基本组成单元(紫丁香基、愈创木基和对羟苯基)与酚醛树脂类胶粘剂中的苯酚结构类似,具备取代酚醛树脂胶粘剂的潜力。木质素在木质纤维原料中的含量为15-35%,具备储量大、可再生、易降解等优点。全球每年约有5000万吨工业木质素废弃物(主要来源于制浆造纸和生物质精炼),现阶段对木质素的利用率较低,主要以燃烧供热为主,仅有2%的木质素得到有效利用,因此寻求高效木质素应用途径,有利于提高木质纤维类生物质的高附加值利用。
木质素胶粘剂是一类木质素基的聚合物,其具备较强的黏附性能,能够实现对木材、金属、塑料的制品的粘结,因而在建筑、家居、材料等领域具有良好的应用前景。目前,木质素基胶粘剂的研究仍处于起步阶段,这主要是因为传统工业木质素结构复杂、纯度低、反应位点少、空间位阻大等,在使用过程中需对其进行相关的化学修饰,比如酚化、去甲基化等,存在制备过程复杂、能耗高、化学品用量大等缺点,这些缺点导致其生产成本高,难以产业化。此外,此过程通常仍需要使用甲醛、乙二醛、戊二醛等有毒化学品,仍难以被广泛消费者接受。因此,寻求一种更为简单、绿色、低成本的木质素胶粘剂制备方法是其工业化的关键。
技术问题
针对现有木质素胶粘剂制备方法成本高、毒性大的问题,本申请所要解决的技术问题是提供一种清洁制备木质素胶粘剂的方法,在木质素分离过程中,木质素通过系列交联反应直接转化为胶粘剂。本申请所要解决的另一技术问题是提供一种上述方法所获得的木质素胶粘剂。
技术解决方案
为解决以上技术问题,本发明采用的技术方案如下:
一种制备木质素胶粘剂的方法,采用混合溶液处理木质纤维原料,处理结束后加入有机溶剂搅拌并固液分离,对获得的液体进行旋转蒸发除去有机溶剂,产物经水洗、干燥,获得木质素胶粘剂;其中,混合溶液由氢键受体、多元醇和有机多元酸组成的均一透明液体。
所述的氢键受体选自氯化胆碱、苄基三甲基氯化铵、甜菜碱等。
所述的多元醇选自1,2-丁二醇、1,2-戊二醇、1,5-戊二醇、1,3丙二醇、1,5-丁二醇等多羟基醇类。
所述的有机多元酸选自马来酸、丁二酸、丙二酸等多元酸。
所述的氢键受体和多元醇及有机多元酸的摩尔比为0.1~5:0.1~5:0.1~5。
所述的木质纤维原料与混合溶液的质量比为1:1-1:20。
所述的木质纤维原料与混合溶液混合后,于80-140℃下反应10-60 min。
所述有机溶剂为体积浓度为10-100%乙醇或丙酮水溶液,有机溶剂添加量为混合溶液体积的2-10倍。
所述的制备木质素胶粘剂的方法,步骤如下:
1)混合溶液的制备
取氢键受体、多元醇和有机多元酸混合后,在50-110℃下加热并不断搅拌,直至形成澄清、均一的混合溶液;其中,氢键受体选自氯化胆碱、苄基三甲基氯化铵、甜菜碱等,多元醇选自1,2-丁二醇、1,2-戊二醇、1,5-戊二醇、1,3丙二醇、1,5-丁二醇等多羟基醇类,有机多元酸选自马来酸、丁二酸、丙二酸等,氢键受体和多元醇及有机多元酸的摩尔比为0.1~5:0.1~5:0.1~5;
2)木质纤维原料的处理
称取木质纤维原料按比例与混合溶液混合后,于90-140 ℃下反应,反应结束后,向体系中加入有机溶剂,充分搅拌后,过滤使固液分离,获得预处理物料和预处理液。
3)木质素胶粘剂的分离
固液分离,获得富含木质素的预处理液和预处理物料;预处理物料以蒸馏水洗涤至中性后回收使用;富含木质素的预处理液旋转蒸发,除去有机溶剂,并补充适当去离子水使木质素沉析,离心分离,获得木质素胶粘剂。
步骤3)中,预处理液回收木质素后蒸发去除其中的水分可循环使用。
所述的制备木质素胶粘剂的方法所获得的木质素胶粘剂。
所述的木质纤维原料包括麦草、稻草、玉米秸秆等农业废弃物和杨木、杉木等森林生物质以及芦苇、竹子等速生禾本科。
木质素胶粘剂的制备,首先需要进行木质素的分离,本申请人经过研究发现,多元醇(1,2-丁二醇、1,2-戊二醇、1,5-戊二醇、1,3丙二醇、1,5-丁二醇等)与氯化胆碱形成的混合溶液对木质纤维原料的组分分离几乎没有效果,但在上述体系中添加有机多元酸(马来酸、苹果酸、柠檬酸、丁二酸、丙二酸等),分离得到的木质素聚合物为可直接利用的木质素胶粘剂,避免了常规方法制备过程中木质素化学再修饰及有毒物质的引入,是一种新型、高效的制备木质素胶粘剂的方法。
有益效果
与现有木质素胶粘剂制备技术相比,本申请具有以下技术优势:
1)本申请在较低温度下能够大量脱除木质纤维原料中的木质素,并且在木质素脱除过程中,同体系中的溶剂交联反应成为木质素胶粘剂,实现了木质素分离与形成木质素胶粘剂同步进行,且该方法简单、成本低、得率高,可实现木质素胶粘剂的大规模制备以及木质素高效脱除。
2)本申请所制备的木质素胶粘剂,可实现对聚丙烯、猪皮、橡胶、玻璃、不锈钢金属等材料的粘接,粘接后的剪切强度为1.42~216.99 kPa,是一种明优良的木质素胶。
附图说明
图1是是实施例1方法的木质素脱除率结果图(a)及木质素胶粘剂回收率结果图(b);
图2是不同多元醇体系木质素胶粘剂拉伸载荷随位移的变化结果图(a)及其剪切强度结果图(b);
图3是实施例2的预处理过程木质素脱除率结果图(a)和木质素回收率结果图(b);
图4是不同预处理温度体系木质素胶粘剂粘结不同材质后拉伸载荷随位移的变化结果图(a)及其剪切强度结果图(b)
本发明的实施方式
以下结合具体实施例对本发明作进一步阐述。实施例实为说明而非限制本发明。本领域中任何普通科技人员能够理解这些实施例不以任何方式限制本发明,可做适当的修改而不违背本发明的实质和偏离本发明的范围。
实施例1
一种制备木质素胶粘剂的方法,步骤如下:
1)氯化胆碱、多元醇(1,2-丁二醇、1,2-戊二醇、1,5-戊二醇、1,4-丁二醇)和马来酸按摩尔比1:1:1混合,在80℃下加热,直至形成均一、透明的混合溶液。
2)按质量比1:10将竹粉与混合溶液混合,在110℃下反应4 h,预处理结束后加入5倍体积的乙醇/水溶液(乙醇体积分为50%),搅拌1 h。
3)固液分离,获得富含木质素的预处理液和预处理物料。预处理物料以蒸馏水洗涤至中性后,分析其主要组分含量,并计算木质素脱除率。
4)富含木质素的预处理液在65℃下旋转蒸发,除去其中的乙醇,并补充适当去离子水使木质素沉析。对去除乙醇后的预处理液进行离心分离,获得木质素胶粘剂,用于分析。
如图1a所示,经过不同的氯化胆碱/马来酸/多元醇预处理后,木质素脱除率由53.98%(氯化胆碱/马来酸/1,2-戊二醇)增加到59.21%(1,2-丁二醇),62.79%(氯化胆碱/马来酸/1,4-丁二醇)和64.71%(氯化胆碱/马来酸/1,5-戊二醇),表明不同的多元醇以及同一种多元醇的不同同分异构体(羟基位置)对木质素脱除率影响较大。此外,经过对预处理液旋转蒸发,去除丙酮并补加适量去离子水后离心,获得分离的木质素,木质素回收率如图1b所示。由图可知,木质素胶回收率(相对于体系中脱除的木质素)为脱除木质素的6倍以上,说明脱除的木质素与混合溶液中的多元醇和马来酸等氢供体发生接枝反应,其趋势呈先上升后下降趋势,并且在1,2-丁二醇体系中达到最大值,为703.99%。说明不同的混合溶液中木质素与其中的氢供体的反应程度存在一定的差异。
采用微机控制材料万能试验机对获得的木质素胶粘剂进行拉伸试验,拉伸材料选用聚丙烯塑料-聚丙烯塑料,将聚丙烯塑料片裁切成宽度为25 mm,长度为100 mm的长条,木质素胶涂层面积为25 mm×25 mm,厚度为0.2 mm。
如图2所示,不同多元醇基混合溶液预处理后回收所得木质素胶粘剂对聚丙烯塑料的粘结强度差异较大,其中氯化胆碱/1,4-丁二醇/马来酸混合溶液中回收的木质素胶粘剂效果最佳,其最大载荷可达135.62 N,剪切强度为216.785 kPa;当改变为氯化胆碱/1,5-戊二醇/马来酸体系时,最大载荷显著较低为31.84 N,剪切强度下降为51.08 kPa;当采用以上所述多元醇的同分异构体时,回收木质素的胶粘剂(氯化胆碱/1,2-丁二醇/马来酸和氯化胆碱/1,2-戊二醇/马来酸)对聚丙烯塑料的粘结后的最大拉伸载荷分别下降为7.39 N和0.89 N,最大剪切强度下降为11.99 kPa 和1.44 kPa;以上实验结果表明混合溶液预处理后回收的木质素胶粘剂粘结强度主要受多元醇结构的影响,其中,羟基的位置的影响较为明显。是由于两个羟基位于两端的多元醇在混合溶液预处理过程中更易于和其中的马来酸发生酯化反应,且更易于嫁接到木质素脂肪族侧链的α位,这些反应有利于木质素分子链的支联化,有利于增加其黏附性能。
实施例2
一种制备木质素胶粘剂的方法,步骤如下:
1)氯化胆碱、1,4-丁二醇和马来酸按摩尔比1:1:1混合,在80℃下加热,直至形成均一、透明的混合溶液。
2)按质量比1:10将竹粉与混合溶液混合,在110℃下反应4 h,预处理结束后加入5倍体积的乙醇/水溶液(乙醇体积分为50%),搅拌1h。
3)固液分离,获得富含木质素的预处理液体和预处理物料。预处理物料以蒸馏水洗涤至中性后,分析其主要组分含量,并计算木质素脱除率。
4)富含木质素的预处理液在65℃下旋转蒸发,除去其中的乙醇,并补充适当去离子水使木质素沉析。对去除乙醇后的预处理液进行离心分离,获得木质素胶粘剂,用于分析。
如图3a所示,预处理过程中,随着温度从100℃升高到120℃,木质素脱除率由56.01%(100℃)升高至63.29%(110℃)和67.85%(120℃),表明温度的升高有利于木质素的降解。此外,经过对预处理液旋转蒸发,去除乙醇并补加适当去离子水后沉析出木质素胶,木质素胶的回收率(相对于体系中脱除的木质素)如图3b所示,与不同多元醇体系类似,预处理后木质素胶回收率为600%以上,且随着温度升高呈现先下降后升高的趋势,最大为689.57%。
采用微机控制材料万能试验机对获得的木质素胶粘剂进行拉伸试验,拉伸材料选用聚丙烯塑料-聚丙烯塑料、猪皮-猪皮、猪皮-聚丙烯塑料,并将聚丙烯塑料、猪皮裁切成宽度为25 mm,长度为100 mm的长条,木质素胶涂层面积为25 mm×25 mm,厚度为0.2 mm。
如图4所示,当预处理温度由100 ℃增加到120 ℃,木质素胶的粘结性能先升高后下降。其对聚丙烯塑料-聚丙烯塑料的粘结最大载荷由112.73 N(100 ℃)增加到135.62 N(110 ℃)后下降为59.77 N(120 ℃);剪切强度由180.38 kPa增加到216.99 kPa后降低为95.64 kPa。表明预处理温度对木质素的粘结性能影响较大,预处理温度较低时木质素与体系中的1,4-丁二醇、马来酸支链反应较少,所得木质素胶的粘结强度较弱;随着预处理强度增加,体系中的木质素与1,4-丁二醇、马来酸支链反应增加,导致木质素胶的粘结强度增大;当温度继续增加时,木质素在高温下解聚反应增强,木质素碎片化程度增加,导致木质素胶的分子链变短,进而使粘结强度下降。
选用本实例中回收所得木质素胶对聚丙烯塑料粘结效果最好的110 ℃下所得木质素胶,对猪皮-猪皮以及猪皮-聚丙烯塑料进行粘结实验(方法同上)。结果显示,聚丙烯塑料之间的粘结效果最佳,最大载荷及剪切强度分别为135.62 N和180.38 kPa;猪皮之间的粘结效果次之,为25.37 N和40.59 kPa;猪皮和聚丙烯塑料之间的最差,为9.02 N和14.43 kPa。
比较例1
其他多元醇和有机酸体系下分离的木质素的性质,步骤如下:
1)氯化胆碱/1,4-丁二醇/柠檬酸及氯化胆碱/1,4-丁二醇/草酸按摩尔比1:1:1混合,在80°C下加热,不断搅拌直至形成均一、澄清液体。
2)按质量比1:10将竹粉与混合溶液混合,在110 ℃下反应4 h,预处理结束后加入5倍体积的乙醇/水溶液(乙醇体积分为50%),搅拌1 h。
3)固液分离,获得富含木质素的预处理液体和预处理物料。预处理物料以蒸馏水洗涤至中性后,分析其主要组分含量,并计算木质素脱除率。
4)富含木质素的预处理液在65 ℃下旋转蒸发,除去其中的乙醇,并补充适当去离子水使木质素沉析。对去除乙醇后的预处理液进行离心分离,获得木质素。
结果表明,氯化胆碱/1,4-丁二醇/柠檬酸及氯化胆碱/1,4-丁二醇/草酸体系虽然能够实现竹材中木质素的大量脱除,但脱除的木质素主要以粉末的形式存在,没有胶粘剂性能。

Claims (10)

  1. 一种制备木质素胶粘剂的方法,其特征在于,采用混合溶液处理木质纤维原料,处理结束后加入有机溶剂搅拌并固液分离,对获得的液体进行旋转蒸发除去有机溶剂,产物经水洗、干燥,获得木质素胶粘剂;其中,混合溶液由氢键受体、多元醇和有机多元酸组成的均一透明液体。
  2. 根据权利要求1所述的制备木质素胶粘剂的方法,其特征在于,所述的氢键受体选自氯化胆碱、苄基三甲基氯化铵、甜菜碱等。
  3. 根据权利要求1所述的制备木质素胶粘剂的方法,其特征在于,所述的多元醇选自1,2-丁二醇、1,2-戊二醇、1,5-戊二醇、1,3丙二醇、1,5-丁二醇等含有多个羟基的醇类。
  4. 根据权利要求1所述的制备木质素胶粘剂的方法,其特征在于,所述的有机多元酸选自马来酸、丁二酸、丙二酸等多元有机酸。
  5. 根据权利要求1所述的制备木质素胶粘剂的方法,其特征在于,所述的氢键受体和多元醇及有机多元酸的摩尔比为0.1~5:0.1~5:0.1~5。
  6. 根据权利要求1所述的制备木质素胶粘剂的方法,其特征在于,所述的木质纤维原料与混合溶液的质量比为1:1-1:20。
  7. 根据权利要求1所述的制备木质素胶粘剂的方法,其特征在于,所述的木质纤维原料与混合溶液混合后,于80-140℃下反应10-300min。
  8. 根据权利要求1所述的制备木质素胶粘剂的方法,其特征在于,所述有机溶剂为体积浓度为10-100%乙醇或丙酮水溶液,有机溶剂添加量为混合溶液体积的2-10倍。
  9. 根据权利要求1所述的制备木质素胶粘剂的方法,其特征在于,步骤如下:
    1)混合溶液的制备
    取氢键受体、多元醇和有机多元酸混合后,在50-110℃下加热并不断搅拌,直至形成澄清、均一的混合溶液;其中,氢键受体选自氯化胆碱、苄基三甲基氯化铵、甜菜碱等;多元醇选自1,2-丁二醇、1,2-戊二醇、1,5-戊二醇、1,3丙二醇、1,5-丁二醇等含有多羟基的醇类;有机多元酸选自马来酸、丁二酸、丙二酸等多元酸;氢键受体和多元醇及有机多元酸的摩尔比为0.1~5:0.1~5:0.1~5;
    2)木质纤维原料的处理
    称取木质纤维原料按比例与混合溶液混合后,于90-140 ℃下反应10-300min,反应结束后,向体系中加入有机溶剂,充分搅拌后,过滤使固液分离,获得预处理物料和预处理液;
    3)木质素胶粘剂的分离
    固液分离,获得富含木质素的预处理液和预处理物料;预处理物料以蒸馏水洗涤至中性后回收使用;富含木质素的预处理液旋转蒸发,除去有机溶剂,并补充适当去离子水使木质素沉析,离心分离,获得木质素胶粘剂。
  10. 权利要求1-9任一项所述的制备木质素胶粘剂的方法所获得的木质素胶粘剂。
PCT/CN2023/099361 2022-06-24 2023-06-09 一种制备木质素胶粘剂的方法及其产品 WO2023246524A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210733525.0A CN115029104B (zh) 2022-06-24 2022-06-24 一种制备木质素胶粘剂的方法及其产品
CN202210733525.0 2022-06-24

Publications (1)

Publication Number Publication Date
WO2023246524A1 true WO2023246524A1 (zh) 2023-12-28

Family

ID=83127298

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/099361 WO2023246524A1 (zh) 2022-06-24 2023-06-09 一种制备木质素胶粘剂的方法及其产品

Country Status (2)

Country Link
CN (1) CN115029104B (zh)
WO (1) WO2023246524A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115029104B (zh) * 2022-06-24 2023-04-11 中国林业科学研究院林产化学工业研究所 一种制备木质素胶粘剂的方法及其产品

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5021531A (en) * 1989-04-03 1991-06-04 Colorado State University Research Foundation Method for recovering and using lignin in adhesive resins by extracting demethylated lignin
US20040220368A1 (en) * 2003-03-20 2004-11-04 State Of Oregon Acting By And Through The Oregon State Board Of Higher Education On Behalf Adhesive compositions and methods of using and making the same
CN103031108A (zh) * 2011-10-08 2013-04-10 中国科学院青岛生物能源与过程研究所 一种木质素基胶粘剂的制备方法
US20140163142A1 (en) * 2011-02-23 2014-06-12 Fpinnovations Process for fungal modification of lignin and preparing wood adhesives with the modified lignin and wood composites made from such adhesives
CN112778539A (zh) * 2021-01-04 2021-05-11 中国林业科学研究院林产化学工业研究所 一种从纤维原料中制备高羧基含量的氧化木质素的方法
CN113307983A (zh) * 2021-05-21 2021-08-27 北京林业大学 一种绿色溶剂快速、高得率分离木质素的方法
CN113426388A (zh) * 2021-07-01 2021-09-24 中国林业科学研究院林产化学工业研究所 一种制备尺寸可控的木质素微球的方法
CN113666471A (zh) * 2021-08-27 2021-11-19 华东理工大学 一种木质素/甜菜碱聚合物的制备方法及产品应用
CN115029104A (zh) * 2022-06-24 2022-09-09 中国林业科学研究院林产化学工业研究所 一种制备木质素胶粘剂的方法及其产品

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63112678A (ja) * 1986-10-29 1988-05-17 Oji Kenzai Kogyo Kk リグニン樹脂接着剤
US7252735B2 (en) * 2002-05-13 2007-08-07 State Of Oregon Acting By And Through The Oregon State Board Of Higher Education On Behalf Of Oregon State University Formaldehyde-free lignocellulosic adhesives and composites made from the adhesives
CN100381534C (zh) * 2006-05-09 2008-04-16 山东泉林纸业有限责任公司 一种木质素环保型粘合剂及其制备方法
CN112410388B (zh) * 2020-12-03 2022-06-03 中国林业科学研究院林产化学工业研究所 一种利用低共熔溶剂对木质纤维原料进行预处理的方法及其使用的低共熔溶剂

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5021531A (en) * 1989-04-03 1991-06-04 Colorado State University Research Foundation Method for recovering and using lignin in adhesive resins by extracting demethylated lignin
US20040220368A1 (en) * 2003-03-20 2004-11-04 State Of Oregon Acting By And Through The Oregon State Board Of Higher Education On Behalf Adhesive compositions and methods of using and making the same
US20140163142A1 (en) * 2011-02-23 2014-06-12 Fpinnovations Process for fungal modification of lignin and preparing wood adhesives with the modified lignin and wood composites made from such adhesives
CN103031108A (zh) * 2011-10-08 2013-04-10 中国科学院青岛生物能源与过程研究所 一种木质素基胶粘剂的制备方法
CN112778539A (zh) * 2021-01-04 2021-05-11 中国林业科学研究院林产化学工业研究所 一种从纤维原料中制备高羧基含量的氧化木质素的方法
CN113307983A (zh) * 2021-05-21 2021-08-27 北京林业大学 一种绿色溶剂快速、高得率分离木质素的方法
CN113426388A (zh) * 2021-07-01 2021-09-24 中国林业科学研究院林产化学工业研究所 一种制备尺寸可控的木质素微球的方法
CN113666471A (zh) * 2021-08-27 2021-11-19 华东理工大学 一种木质素/甜菜碱聚合物的制备方法及产品应用
CN115029104A (zh) * 2022-06-24 2022-09-09 中国林业科学研究院林产化学工业研究所 一种制备木质素胶粘剂的方法及其产品

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
MAJOVÁ VERONIKA, JABLONSKÝ MICHAL, LELOVSKÝ MAREK: "Delignification of unbleached pulp by ternary deep eutectic solvents", GREEN PROCESSING AND SYNTHESIS, vol. 10, no. 1, 1 January 2021 (2021-01-01), pages 666 - 676, XP093119846, ISSN: 2191-9550, DOI: 10.1515/gps-2021-0066 *
PANPAN XIE, LIAN HAILAN; SUN XIANG: "Modification of lignin-phenol-formaldehyde adhesive with Ch Cl/Glycerol deep-eutectic solvent ", JOURNAL OF FORESTRY ENGINEERING, CN, vol. 1, no. 4, 5 July 2016 (2016-07-05), CN , pages 107 - 113, XP093119844, ISSN: 2096-1359 *

Also Published As

Publication number Publication date
CN115029104A (zh) 2022-09-09
CN115029104B (zh) 2023-04-11

Similar Documents

Publication Publication Date Title
Guo et al. Integration of facile deep eutectic solvents pretreatment for enhanced enzymatic hydrolysis and lignin valorization from industrial xylose residue
Zhang et al. A review of preparation of binderless fiberboards and its self-bonding mechanism
Wörmeyer et al. Comparison of different pretreatment methods for lignocellulosic materials. Part II: Influence of pretreatment on the properties of rye straw lignin
US10919985B2 (en) Nanocellulose compositions and processes to produce same
Sathitsuksanoh et al. Bamboo saccharification through cellulose solvent-based biomass pretreatment followed by enzymatic hydrolysis at ultra-low cellulase loadings
Cui et al. Fractional precipitation of softwood kraft lignin: isolation of narrow fractions common to a variety of lignins
Hou et al. Effect of constituents molar ratios of deep eutectic solvents on rice straw fractionation efficiency and the micro-mechanism investigation
da Costa Lopes et al. Pre-treatment of lignocellulosic biomass using ionic liquids: wheat straw fractionation
WO2023246524A1 (zh) 一种制备木质素胶粘剂的方法及其产品
Liu et al. Removal of inhibitors from pre-hydrolysis liquor of kraft-based dissolving pulp production process using adsorption and flocculation processes
Podschun et al. Structure–function relationships in the phenolation of lignins from different sources
Shimizu et al. Integrated process for total utilization of wood components by steam-explosion pretreatment
Gong et al. A review on lignin‐based phenolic resin adhesive
Zhong et al. Rapid and efficient microwave-assisted guanidine hydrochloride deep eutectic solvent pretreatment for biological conversion of castor stalk
Yang et al. Treatment of different parts of corn stover for high yield and lower polydispersity lignin extraction with high-boiling alkaline solvent
Ma et al. An approach to improve the application of acid-insoluble lignin from rice hull in phenol–formaldehyde resin
Yan et al. Recycling of deep eutectic solvent for sustainable and efficient pretreatment of corncob
Jafari et al. Construction and demolition lignocellulosic wastes to bioethanol
Wang et al. Efficient fractionation of woody biomass hemicelluloses using cholinium amino acids-based deep eutectic solvents and their aqueous mixtures
CN105504191A (zh) 一种低共熔离子液改性木质素-酚醛树脂的制备方法
Chen et al. Characterization of lignins isolated with alkali from the hydrothermal or dilute-acid pretreated rapeseed straw during bioethanol production
Li et al. Separation and recovery of cellulose from Zoysia japonica by 1-allyl-3-methylimidazolium chloride
CN105713050B (zh) 一种选择性降解玉米芯半纤维素提高木糖得率的方法
AT513670A1 (de) Verfahren zur Herstellung von Phenol-Formaldehyd-Harz-analogen Polymeren
Wang et al. Characterization of high-boiling-solvent lignin from hot-water-extracted bagasse

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23826173

Country of ref document: EP

Kind code of ref document: A1