WO2023246498A1 - 资源管理方法、电子设备和计算机可读存储介质 - Google Patents

资源管理方法、电子设备和计算机可读存储介质 Download PDF

Info

Publication number
WO2023246498A1
WO2023246498A1 PCT/CN2023/098540 CN2023098540W WO2023246498A1 WO 2023246498 A1 WO2023246498 A1 WO 2023246498A1 CN 2023098540 W CN2023098540 W CN 2023098540W WO 2023246498 A1 WO2023246498 A1 WO 2023246498A1
Authority
WO
WIPO (PCT)
Prior art keywords
target
node
bearer node
inactivity time
time
Prior art date
Application number
PCT/CN2023/098540
Other languages
English (en)
French (fr)
Inventor
杜高鹏
吴枫
司伟
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2023246498A1 publication Critical patent/WO2023246498A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/15Setup of multiple wireless link connections
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices

Definitions

  • the present disclosure relates to the field of communications, and in particular to resource management methods, electronic devices and computer-readable storage media.
  • New Radio enables independent networking (SA, Stand Alone) terminals to access the 5G frequency range 1 (FR1) side through the NR dual connectivity (NR-DC, NR-NR Dual Connectivity) function.
  • SA Stand Alone
  • NR-DC NR-NR Dual Connectivity
  • SA Stand Alone
  • NR-DC NR-NR Dual Connectivity
  • SA Stand Alone
  • NR-DC NR-NR Dual Connectivity
  • SA Stand Alone
  • NR-DC NR-NR Dual Connectivity
  • NR(FR1) connects to the 5G core network (5GC, 5G Core Network) through the NG interface, connects to the NR(FR2) through the XN interface, and NR(FR2) connects to the 5GC through the NG-U interface.
  • the UE is connected to an NR, which contains multiple distributed units (DU, Distributed Unit), one DU (FR1) as the MN, and one DU (FR2) as the SN.
  • the NR is connected to the 5GC through the NG interface.
  • the resources of the access network are limited, and the number of users that can be admitted is also limited. This phenomenon often occurs when the existing network is running:
  • the session or flow established by the user does not have any user data for a long time.
  • PDU Packet Data Unit
  • Session Session
  • Flow flow
  • user connection is released.
  • the present disclosure provides a resource management method.
  • the resource management method includes: determining whether the remaining inactivity time of the user equipment UE for the target bearer node has been exhausted; and if the UE's remaining inactivity time for the target bearer node is exhausted; When the remaining inactivity time is exhausted, the resources allocated for the UE are released.
  • the remaining inactivity time includes the total preset inactivity time minus the sum of the sustained inactivity time of the UE at all nodes, so The total duration of the preset inactive time corresponds to the target bearer node.
  • the present disclosure provides an electronic device, including: at least one processor; and a memory having at least one computer program stored thereon, and when the at least one computer program is executed by the at least one processor, the The at least one processor implements the resource management method according to the first aspect; and at least one I/O interface is connected between the processor and the memory and is configured to implement information interaction between the processor and the memory.
  • the present disclosure provides a computer-readable storage medium.
  • a computer program is stored on the computer-readable storage medium.
  • the resource management method according to the first aspect is implemented. .
  • Figure 1 is a flow chart of a resource management method provided by an embodiment of the present disclosure.
  • Figure 2 is a flow chart with MN as the main body in a resource management method provided by an embodiment of the present disclosure.
  • Figure 3 is a flow chart with MN as the main body in a resource management method provided by an embodiment of the present disclosure.
  • Figure 4 is a flow chart with SN as the main body in a resource management method provided by an embodiment of the present disclosure.
  • Figure 5 is a flow chart with SN as the main body in a resource management method provided by an embodiment of the present disclosure.
  • Figure 6 is a schematic diagram of the current user inactivity processing flow of NR-DC provided by an embodiment of the present disclosure.
  • Figure 7 is a flow chart of the UE's continued inactivity time transfer in the NR-DC scenario provided by an embodiment of the present disclosure (taking SN addition as an example).
  • Figure 8 is a flow chart of changing an MCG bearer to an SCG bearer according to an embodiment of the present disclosure.
  • Figure 9 is a flow chart of changing the MN terminal bearer (MN Terminal bearer) to the SN Terminal bearer (SN Terminal bearer) provided by the embodiment of the present disclosure.
  • Figure 10 is a flow chart of changing the SN terminal bearer (SN Terminal bearer) to the MN Terminal bearer (MN Terminal bearer) provided by an embodiment of the present disclosure.
  • Figure 11 is a flowchart for transmitting the UE's continued inactivity time when the SN is changed according to an embodiment of the present disclosure.
  • Figure 12 is a schematic diagram of an electronic device provided by an embodiment of the present disclosure.
  • Figure 13 is a schematic diagram of a computer-readable storage medium provided by an embodiment of the present disclosure.
  • the MN initiates an SN addition request message, which includes bearer type and PDCP bearer type (such as MN terminal, SN terminal) information.
  • MN initiates SN add request test Triggered by volume, the MN maintains the UE inactivity timer for the Session or Flow of the UE that existed before adding the SN, but does not carry the remaining inactivity timer time to the SN through a message when adding the SN.
  • the SN receives the bearer service message from the MN, establishes the corresponding bearer, and replies with a confirmation response to the MN. If it is SN terminal bearer, the service may be changed from the primary cell group (MCG, Master Cell Group) bearer to the secondary cell group (SCG, Secondary Cell Group) bearer, and the UE inactivity timer is restarted on the target bearer node.
  • MCG Primary Cell Group
  • SCG Secondary Cell Group
  • the SN reports the UE inactivity status periodically or event-triggered according to the local inactivity timer mechanism. If the reported SN activity notification message carries a UE inactivity indication, the MN will decide the UE's inactivity release strategy. If the reported SN activity notification message carries a UE reactivation indication, the status is reversed and the MN reactivates the SN side service bearer. Since the SN's inactivity timer is maintained by the SN, it is not known how long the UE has been inactive on the MN. It is not updated based on the UE's inactivity status before the SN was added. Therefore, the total duration of the UE's inactivity may be too long. long question.
  • the inactivity time experienced by the UE is not transferred to the new bearer node when the bearer is changed, causing the inactivity status of the UE to be reset after the bearer is changed. This results in increased business power consumption and waste of air interface resources.
  • the MN bears the control user inactivity timer. The SN only reports whether the UE status is active or inactive, and the MN decides whether to release it.
  • the UE inactivity timer cannot be continued under the original MN bearer, resulting in the need to restart the timer after the bearer is changed, and the protocol stipulates
  • the range of user inactivity timer is [1s, over 30 days]. If the relevant counters are not inherited during the dual connection bearer change process, it will inevitably have a greater impact on the user experience. If the user inactivity timer is too long, it will not only consume a lot of power, but also consume precious wireless system air interface resources.
  • the current standard protocol stipulates Xn port switching within the SA system.
  • the source gNB transmits the ue-InactiveTime information element to the target gNB through the Xn port container (Container). After receiving it, the target gNB continues the UE inactive state, improving air interface resource utilization and terminal power saving.
  • the 3GPP agreement failed to consider this issue.
  • the UE maintains connections with two NR-DC base stations at the same time. During the service When the bearer is changed from one base station to another, the user's inactivity time mechanism cannot be effectively transmitted. Therefore, migrating services to a new bearer requires setting a new counter, which is likely to increase the UE's connected state time. When the user has no business requirements, it increases the terminal's connected state time and also consumes wireless air interface resources.
  • the present disclosure proposes that the management of air interface resources can be optimized through UE-InactiveTime transfer under NR-DC dual connection, so as to achieve the effect of saving air interface resources and reducing power consumption.
  • an embodiment of the present disclosure provides a resource management method. As shown in FIG. 1 , the resource management method includes the following steps S100 and S200.
  • step S100 it is determined whether the remaining inactivity time of the user equipment (UE) for the target bearer node has been exhausted.
  • step S200 if the remaining inactive time of the UE for the target bearer node is exhausted, the resources allocated for the UE are released.
  • the remaining inactive time includes the total preset inactive time minus the The sum of the sustained inactivity time of the UE at all nodes, and the total preset inactivity time corresponds to the target bearer node.
  • the inactivity time that the UE has continued on the source bearer node will be transferred to the target bearer node, and the total preset inactivity time will be used at the target bearer node. Subtract the inactive time that the UE has continued on the source bearer node to obtain the remaining inactive time of the UE on the target bearer node.
  • the MN can pass the UE inactivity timer to the SN to continue the timer configured on the MN side.
  • the SN can also pass the UE inactivity timer to the MN to continue the timer configured on the SN side.
  • the UE inactivity time is passed on each time the bearer changes, what is subtracted from the target bearer node each time is the sum of the continuous inactivity times of all source bearer nodes that previously carried UE services. If the result after the subtraction is less than or equal to 0, it is directly considered that the remaining inactive time of the UE for the target bearer node has been exhausted; if the result after the subtraction is greater than 0, the result is regarded as the UE for the target.
  • the remaining inactivity time of the hosting node continues to count. When the remaining inactivity time is exhausted, the MN is triggered to decide to release the resources allocated to the UE.
  • Figure 7 is a flow chart of the UE's continued inactivity time transfer in the NR-DC scenario (taking SN addition as an example). Compared with the current NR-DC scene processing process described above:
  • the MN initiates an SN add request message.
  • the message content includes bearer type and PDCP bearer type (MN terminal, SN terminal) information.
  • the MN initiates an SN add request measurement trigger.
  • the MN maintains the UE inactivity timer for the existing Session or Flow before adding the SN.
  • the MN brings the remaining inactivity timer time of the UE to the SN.
  • the SN receives the bearer service message of the MN, establishes the corresponding bearer, and replies with a response to the MN. If it is an SN terminal bearer, the service may be changed from an MCG bearer to an SCG bearer.
  • the SN side can make a decision.
  • the SN can inherit the UE's remaining inactivity timer or set a new timer time by itself.
  • the SN reports the UE inactivity status periodically or event-triggered according to the UE inactivity timer passed by the MN. If it carries a UE inactivity indication, the MN decides the inactivity release strategy of the UE. If it carries a UE reactivation indication, the status is reversed and the MN reactivates the SN side service bearer. Since the SN inactivity timer is maintained uniformly by the MN and the remaining inactivity timer is inherited after the SN is added, the overall inactivity duration of the UE can be more accurately controlled.
  • the bearer change process between MCG, Split, and SCG MN Terminal bearer (MN Terminal bearer) to SN Terminal bearer (SN Terminal bearer) bearer type change, SN Terminal bearer (SN Terminal bearer) to MN Terminal bearer (MN Terminal bearer) bearer type change, and one SN to another SN
  • the change process, etc. can also adopt the resource management method proposed in this disclosure and adopt the ue-InactiveTime transfer scheme, which not only optimizes the management of air interface resources, but also reduces power consumption.
  • T1 is the total preset inactivity time on the MN
  • T2 is the total preset inactivity time on the SN
  • t is the continued inactivity time passed when the bearer changes.
  • the current node is the master node (MN)
  • the source bearer node of the UE's service is the MN
  • the target bearer node is the target secondary node (SN).
  • the resource management method further includes steps S310 and S320.
  • step S310 the sustained inactivity time of the UE on the source bearer node is determined.
  • step S320 send a message carrying the UE's continued inactivity time at the source bearer node to the target SN, so that the target SN can determine the target SN according to the UE's continued inactivity time at the source bearer node. Determine the remaining inactivity time of the UE for the target bearer node.
  • the UE's sustained inactivity time on the source bearer node can be transferred to the target bearer node.
  • the duration of the UE's continued inactivity on the source bearer node can be transmitted through the messages previously exchanged between the source bearer node and the target bearer node when the bearer changes, so that the source bearer node and the target bearer node can synchronize the length of time the UE has been inactive for the UE.
  • sending a message carrying the UE's continued inactivity time at the source bearer node to the target SN includes:
  • sending a message carrying the UE's continued inactivity time at the source bearer node to the target SN includes:
  • the resource management method further includes steps S330 and S340.
  • step S330 a message carrying the continued inactivity time of the UE at the source bearer node is received from the target SN.
  • step S340 the remaining inactivity time of the UE for the target bearer node is obtained by subtracting the continued inactivity time of the source bearer node from the preset total inactivity time on the MN.
  • the MN may involve the change of the service being carried by the MN to being carried by the SN (as described above), or it may involve the change of the service being carried by the SN back by the MN.
  • the SN serves as the source bearer node and the MN serves as the target. Hosting node.
  • the MN is the master node, since the service is carried by the SN, the MN cannot know in real time how long the UE's service has been idle on the SN.
  • the SN needs to pass the UE's continued inactivity time on the SN to the MN.
  • the remaining inactivity time of the UE on the MN is obtained by subtracting the continued inactivity time of the source bearer node from the total preset inactivity time on the MN.
  • the first SN when the service is carried from the first SN to the second SN, since there is no message interaction between SNs, the first SN also needs to pass the continued inactivity time to the MN first. , and then the MN transfers the continued inactivity time to the newly added second SN.
  • the UE's continued inactivity time on the source bearer node can be passed to Target hosting node.
  • the continuous inactivity time of the UE on the source bearer node is transmitted through the messages previously exchanged between the source bearer node and the target bearer node when the bearer changes, so as to realize the synchronization of the duration of the UE's continuous inactivity between the source bearer node and the target bearer node.
  • receiving the message carrying the UE's continued inactivity time at the source bearer node from the target SN includes:
  • An SN modification request message carrying the UE's continued inactivity time at the source bearer node is received from the target SN.
  • receiving the message carrying the UE's continued inactivity time at the source bearer node from the target SN includes:
  • An SN release request message carrying the UE's continued inactivity time at the source bearer node is received from the target SN.
  • determining whether the remaining inactivity time of the user equipment UE for the target bearer node has been exhausted includes:
  • the MN detects whether the UE's remaining inactive time for the target bearer node has been exhausted.
  • determining whether the remaining inactivity time of the user equipment UE for the target bearer node has been exhausted includes:
  • the MN receives the SN activity notification message carrying the inactivity indication of the UE, it is determined that the UE has remaining inactivity for the target bearer node. Active time expired.
  • the UE's services may be carried between nodes, the UE's services may currently be carried on the MN or on the SN.
  • the MN If the UE's service is currently carried by the MN, since the MN is the master node, it can decide to release the UE. Therefore, as long as the MN locally detects that the remaining inactive time of the UE on the MN has been exhausted, it can decide to release the resources allocated for the UE.
  • the MN cannot sense in real time whether the UE is active or whether the remaining inactive time has been exhausted. Therefore, the SN needs to send a notification to the MN when detecting that the remaining inactive time of the UE on the SN has been exhausted.
  • the existing SN activity notification message carrying the UE's inactivity indication can be used to indicate that the UE's remaining inactivity time has been exhausted on the SN, or other message elements can be used to carry specific fields. It indicates that the remaining inactive time of the UE has been exhausted on the SN, and the MN can be notified in time to release the resources of the UE.
  • the resource management method further includes:
  • the release decision made for the UE is revoked.
  • the SN has sent an SN activity notification message carrying the UE's inactivity indication to the MN, and the MN has multiple Sessions or Flows due to some reasons (for example, the UE has multiple Sessions or Flows. (or there is still an active Session or Flow in the Flow) and the resources allocated for the UE are not released.
  • the SN receives the service traffic related to the UE, indicating that the service of the UE carried by the SN is reactivated and should be reset. The remaining inactivity time of the UE will be reset to zero, and a reactivation instruction will be sent to the MN to notify the MN to revoke the release decision made on the UE.
  • the current node is the target SN
  • the source bearer node of the UE's service is the MN
  • the target bearer node is the target SN
  • the target bearer node is the target SN in the UE.
  • the resource management method further includes steps S410 and S420.
  • step S410 a message carrying the continued inactivity time of the UE at the source bearer node is received from the MN.
  • step S420 the remaining inactivity time of the UE for the target bearer node is obtained by subtracting the continued inactivity time of the UE on the source bearer node from the total preset inactivity time on the target SN. .
  • the above description is still followed, that is, as long as the process of changing the UE's service bearer is involved, the UE's sustained inactivity time on the source bearer node can be transferred to the target bearer node.
  • the continuous inactivity time of the UE on the source bearer node is transmitted through the messages previously exchanged between the source bearer node and the target bearer node when the bearer changes, so as to realize the synchronization of the duration of the UE's continuous inactivity between the source bearer node and the target bearer node.
  • the message sent by the MN to the SN will carry the duration of inactivity of the UE on the MN, and the SN will receive the message carrying the duration of the UE on the MN.
  • the inactivity time will be determined according to the local preset time.
  • the remaining inactivity time of the UE for the SN is obtained by subtracting the UE's continued inactivity time in the MN from the total time period, and the SN continues to detect whether the remaining inactivity time has been exhausted.
  • receiving a message from the MN carrying the UE's continued inactivity time at the source bearer node includes:
  • An SN addition request message carrying the UE's continued inactivity time at the source bearer node is received from the MN.
  • receiving a message from the MN carrying the UE's continued inactivity time at the source bearer node includes:
  • An SN modification request message carrying the UE's continued inactivity time at the source bearer node is received from the MN.
  • the resource management method further includes:
  • an SN activity notification message carrying an inactivity indication of the UE is sent to the MN.
  • the SN After the SN receives the message carrying the UE's continued inactivity time on the MN, the SN subtracts the UE's continued inactivity time on the MN based on the locally preset total inactivity time to obtain the UE's response to the MN's continued inactivity time. The remaining inactive time of the SN, the SN continues to detect whether the remaining inactive time has been exhausted through the timer.
  • the result after the subtraction is less than or equal to 0, it is directly considered that the remaining inactive time of the UE for the target bearer node has been exhausted; if the result after the subtraction is greater than 0, the result is regarded as the UE for the target.
  • the remaining inactivity time of the hosting node continues to count.
  • the SN detects that the remaining inactive time has been exhausted, it sends an indication that the UE is inactive to the MN, triggering the MN to decide to release the resources allocated to the UE.
  • the resource management method after sending the SN activity notification message carrying the inactivity indication of the UE to the MN, the resource management method further includes:
  • the remaining inactivity time will be cleared, and the total preset inactivity time will be used as the remaining inactivity of the UE for the target bearer node. active time;
  • the SN has sent a message carrying the UE to the MN.
  • the SN activity notification message indicates inactivity, and when the MN has not released the resources allocated to the UE due to some reasons, the SN has received the service traffic related to the UE.
  • the service traffic at this time indicates that the UE is active again.
  • the remaining inactivity time of the UE should be reset and the continued inactivity time should be cleared.
  • a reactivation instruction should be sent to the MN to notify the MN to cancel the operation on the UE. release decision.
  • the resource management method further includes steps S430 and S440.
  • step S430 the sustained inactivity time of the UE on the source bearer node is determined.
  • step S440 a message carrying the UE's sustained inactivity time at the source bearer node is sent to the MN, so that the MN determines the UE's continued inactivity time at the source bearer node. The remaining inactive time of the UE for the target bearer node.
  • the change of the service being carried by the MN to being carried by the SN may also involve the change of the service being carried by the SN back to being carried by the MN, or the service being changed from being carried by the first SN to being carried by the second SN.
  • the latter two processes both use the SN as the source bearer node and the MN as the target bearer node. They still follow the previous description, that is, as long as the process of changing the UE service bearer is involved, the UE can be changed on the source bearer node.
  • the active time is passed to the target hosting node.
  • the continuous inactivity time of the UE on the source bearer node is transmitted through the messages previously exchanged between the source bearer node and the target bearer node when the bearer changes, so as to realize the synchronization of the duration of the UE's continuous inactivity between the source bearer node and the target bearer node.
  • sending a message carrying the UE's continued inactivity time at the source bearer node to the MN includes:
  • sending a message carrying the UE's continued inactivity time at the source bearer node to the MN includes:
  • Example 1 introduces the transfer process of the UE's continuous inactive time in the MCG to SCG bearer change process.
  • the schematic diagram is shown in Figure 8.
  • Step 101 the MN establishes the MCG bearer and issues SN measurement control, and the MN triggers the SN addition process. Before the SN is added, the MN starts ue-InactiveTime T1 according to the service type, such as 10 minutes (less than infinity).
  • Step 102 The UE reports the B1/B2 measurement report, and the MN triggers the add SN process.
  • Step 103 Add a message to the SN to establish the SCG bearer of the SN terminal, trigger the change from the MCG bearer to the SCG bearer, and carry the UE's continued inactivity time t (such as 2 minutes, less than infinity). It is assumed that the UE is inactive on the MCG bearer. It has lasted 8 minutes.
  • Step 104 The SN receives the add request message and establishes the relevant bearer. If the T2 timer configured by the SN is greater than t, the SN starts the timer as (T2-t). See the timer setting principles in Table 3.
  • Steps 105 to 106 After the bearer is changed to the SCG bearer, the SN continues for the remaining UE inactive time. SN internal CU-C delivers the timer (T2-t) to CU-U and DU.
  • the SN If the UE has been in the inactive state, after the (T2-t) timer times out, the SN sends an SN activity notification to the MN, carrying the UE inactive (Inactive) status indication.
  • the SN immediately sends an SN activity notification to the MN, carrying the UE re-activated (re-actived) status indication.
  • Steps 107 to 108 The UE has been in the inactive state and continues to trigger the sending of SN activity notification to the MN, carrying the UE Inactive status indication.
  • the MN decides whether to release the resources allocated to the UE. If the MN bearer also meets the release conditions, it initiates the release of air interface resources.
  • Example 2 introduces the transfer process of the UE's continuous inactive time in the bearer type change process from MN Terminal bearer to SN Terminal bearer.
  • the schematic diagram is shown in Figure 9.
  • Step 201 the MN establishes the MCG bearer and issues SN measurement control, and the MN triggers the SN addition process. Before the SN is added, the MN starts ue-InactiveTime T1 according to the service type, such as 10 minutes (less than infinity).
  • Step 202 The UE reports the B1/B2 measurement report, and the MN triggers the add SN process.
  • Step 203 Add a message to the SN to establish the MN terminal bearer, and carry the UE's continued inactivity time t1 in the MN (such as 7 minutes, less than infinity). It is assumed that the UE inactivity timer has been maintained on the MCG bearer for 3 minutes.
  • Step 204 The SN receives the add request message and establishes the relevant bearer. If the T2 timer configuration of the SN is greater than t1, the SN starts the timer as (T2-t1). Please refer to the timer setting principle.
  • Steps 205 to 206 Due to resource configuration reasons, the MN triggers a modification request from the MN terminal bearer to the SN terminal bearer, and carries the UE's continued inactivity time t2 in the MN.
  • Steps 207 to 208 After the bearer is changed to SN terminal, if the T2 timer configured in the SN is greater than t2, the SN starts the timer as (T2-t2). See the timer setting principles in Table 3.
  • an SN activity notification is sent to the MN, carrying the UE Inactive status indication.
  • an SN activity notification is immediately sent to the MN, carrying the UE re-actived status.
  • Steps 209 to 210 The UE has been in an inactive state and continues to trigger the sending of SN activity notifications to the MN, carrying the UE Inactive status indication.
  • the MN decides whether to release the resources allocated to the UE. If the MN bearer also meets the release conditions, it initiates the release of air interface resources.
  • Example 3 introduces the transfer process of the UE's continuous inactive time in the bearer type change process from SN Terminal bearer to MN Terminal bearer.
  • the schematic diagram is shown in Figure 10.
  • Step 301 the MN establishes the bearer side and issues SN measurement control, and the MN triggers the SN addition process. Before the SN is added, the MN starts ue-InactiveTime T1 according to the service type, such as 60 seconds (less than infinity).
  • Step 302. The UE reports the B1/B2 measurement report, and the MN triggers the add SN process.
  • Step 303 The MN sends an SN add message to the SN to establish the MN terminal bearer, and carries the UE's continued inactivity time t1 in the MN (such as 30 seconds, less than infinity).
  • Step 304 The SN receives the add request message and establishes the relevant bearer.
  • the SN configures a new time T2 (such as 40 seconds) according to the service bearer type.
  • T2 is less than or equal to t1
  • the timer is not started, and the SN immediately notifies the MN that the Session or Flow is in the user inactive state.
  • T2 is greater than t1
  • the timer is started, and the time is (T2-t1).
  • the MN configures a new time T1 (such as 60 seconds) according to the service bearer type, and the effective timer (T1-t2).
  • MN When T1 is less than or equal to t2, MN does not start the timer. Since the UE may have multiple services in the SN, the SN will immediately notify the MN that the Session or Flow is in the user inactive state when transferring the bearer.
  • T1 is greater than t2
  • the timer is started, and the time is (T1-t).
  • an SN activity notification is sent to the MN, carrying the UE Inactive status indication.
  • an SN activity notification is immediately sent to the MN, carrying the UE re-actived status.
  • Steps 309 to 310 The UE has been in an inactive state, triggering the SN activity notification to be sent to the MN, carrying the UE Inactive status indication.
  • the MN decides whether to release the resources allocated to the UE. If the MN bearer also meets the release conditions, it initiates the release of air interface resources.
  • Example 4 introduces the delivery process of the UE's continuous inactive time in the SN change process.
  • the schematic diagram is shown in Figure 11.
  • Step 401 the service starts by establishing an MCG bearer, issuing SN1 measurement control, and triggering the SN1 addition process.
  • the MN starts ue-InactiveTime T1 according to the service type, such as 5 minutes.
  • Step 402. The UE reports the B1/B2 measurement report, and the MN triggers the add SN1 process, and carries the UE's continued inactivity time t1 in the MN (such as 2 minutes, less than infinity) in the SN1 add message.
  • Step 404 Because the bearer is directly transferred from SN1 to SN2, instead of first being transferred to the MN and then from the MN to SN2, the MN carries the UE's continued inactivity time t2 in SN1 during the new SN2 addition process, and the SN2 settings are updated.
  • the inactivity timer (T3-t2), when T3 is less than or equal to t2, the timer is not started, and SN2 immediately notifies the MN that the Session or Flow is in the user inactive state.
  • T3 is greater than t2, the timer is started, and the time is (T3-t2).
  • Step 406 If the UE status is reversed, immediately send an SN activity notification to the MN, carrying the UE re-actived status indication.
  • the subsequent steps are similar to the previous example and will not be repeated here.
  • an embodiment of the present disclosure provides an electronic device, as shown in Figure 12, including: at least one processor 501; a memory 502 with at least one computer program stored thereon. When the at least one computer program is processed by at least one processor When executed, at least one processor is caused to implement the resource management method of the first aspect; and at least one I/O interface 503 is connected between the processor and the memory, and is configured to implement information interaction between the processor and the memory.
  • the processor 501 is a device with data processing capabilities, including but not limited to a central processing unit (CPU), etc.;
  • the memory 502 is a device with data storage capabilities, including but not limited to random access memory (RAM, more specifically such as SDRAM, DDR etc.), read-only memory (ROM), electrically erasable programmable read-only memory (EEPROM), flash memory (FLASH);
  • the I/O interface (read-write interface) 503 is connected between the processor 501 and the memory 502, and can realize processing Information interaction between the device 501 and the memory 502, including but not limited to the data bus (Bus) wait.
  • Bus data bus
  • processor 501, memory 502, and I/O interface 503 are connected to each other and, in turn, to other components of the computing device via bus 504.
  • embodiments of the present disclosure provide a computer-readable storage medium. As shown in Figure 13, a computer program is stored on the computer-readable storage medium. When the computer program is executed by a processor, the resource management method of the first aspect is implemented. .
  • the method of transmitting ue-InactiveTime under NR-DC dual connection proposes the UE's continued inactive time between the source bearer node and the destination bearer node, so that the source
  • the bearer node and the target bearer node can synchronize the idle time of the UE, realize the timely release of UE resources, optimize the management of air interface resources, save valuable system resources, and also achieve the effect of significantly reducing the power consumption of terminals and system equipment. .
  • All or some steps in the methods disclosed above and functional modules/units in the equipment can be implemented as software, firmware, hardware, and appropriate combinations thereof.
  • the division between functional modules/units mentioned in the above description does not necessarily correspond to the division of physical components; for example, one physical component may have multiple functions, or one function or step may consist of several physical components. Components execute cooperatively. Some or all of the physical components may be implemented as software executed by a processor, such as a central processing unit, a digital signal processor, or a microprocessor, or as hardware, or as an integrated circuit, such as an application specific integrated circuit. circuit. Such software may be distributed on computer-readable media, which may include computer storage media (or non-transitory media) and communication media (or transitory media).
  • computer storage media includes volatile and nonvolatile media implemented in any method or technology for storage of information such as computer readable instructions, data structures, program modules or other data. removable, removable and non-removable media.
  • Computer storage media includes, but is not limited to, RAM, ROM, EEPROM, flash memory or other memory technology, CD-ROM, Digital Versatile Disk (DVD) or other optical disk storage, magnetic cassettes, tapes, disk storage or other magnetic storage devices, or may Any other medium used to store the desired information and that can be accessed by a computer.
  • communication media typically embodies computer readable instructions, data structures, program modules, or modulated data such as a carrier wave or other transport mechanism. other data in the signal and may include any information delivery medium.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开提供一种资源管理方法、一种电子设备和一种计算机可读存储介质。所述资源管理方法包括:确定用户设备UE针对目标承载节点的剩余不活跃时间是否用尽;以及若所述UE针对所述目标承载节点的剩余不活跃时间用尽,释放为所述UE分配的资源,所述剩余不活跃时间包括预设不活跃时间总时长减去所述UE在所有节点处发生的已持续不活跃时间之和,所述预设不活跃时间总时长与所述目标承载节点相对应。

Description

资源管理方法、电子设备和计算机可读存储介质
相关申请的交叉引用
本申请要求于2022年6月22日提交的中国专利申请NO.202210710621.3的优先权,该中国专利申请的内容通过引用的方式整体合并于此。
技术领域
本公开涉及通信领域,尤其涉及资源管理方法、电子设备和计算机可读存储介质。
背景技术
新空口(NR,New Radio)通过NR双连接(NR-DC,NR-NR Dual Connectivity)功能,使得独立组网(SA,Stand Alone)终端能够在5G频率范围1(FR1)侧接入,同时建立5G(FR1)空口连接,下行数据可以经过5G(FR1)或者5G频率范围2(FR2)空口传输,上行数据经过5G(FR1)或5G(FR2)空口投递至NR,NR再通过NG接口传递给核心网。有两种框架:(1)UE分别连接到一个NR作为主节点(MN,Master Node),一个NR作为辅节点(SN,Secondary Node)。NR(FR1)通过NG接口连接5G核心网(5GC,5G Core Network),通过XN接口连接NR(FR2),NR(FR2)通NG-U接口连接5GC。(2)UE连接到一个NR,该NR包含多个分布式单元(DU,Distributed Unit),一个DU(FR1)作为MN,一个DU(FR2)作为SN,该NR通过NG接口连接5GC。
在NR-DC系统中,同独立组网(SA)一样,接入网的资源是有限的,可接纳的用户数也是有限的。现网运行时往往会发生这样的现象:下一代基站(gNB,next Generation Node B)在运行期间,用户建立的会话(Session)或流(Flow),长期没有任何用户数据, 为了节约宝贵的系统资源,特别是在系统负荷较重的情况下为了提高资源利用率,把有限资源让给真正需要的用户,运营商需要精准且快速地把无任何数据需要传输的分组数据单元(PDU,Packet Data Unit)的会话(Session)和流(Flow)、用户连接释放掉。
公开内容
第一方面,本公开提供了一种资源管理方法,所述资源管理方法包括:确定用户设备UE针对目标承载节点的剩余不活跃时间是否用尽;以及若所述UE针对所述目标承载节点的剩余不活跃时间用尽,释放为所述UE分配的资源,所述剩余不活跃时间包括预设不活跃时间总时长减去所述UE在所有节点处发生的已持续不活跃时间之和,所述预设不活跃时间总时长与所述目标承载节点相对应。
第二方面,本公开提供了一种电子设备,包括:至少一个处理器;存储器,其上存储有至少一个计算机程序,当所述至少一个计算机程序被所述至少一个处理器执行时,使得所述至少一个处理器实现根据第一方面中所述的资源管理方法;以及至少一个I/O接口,连接在所述处理器与存储器之间,配置为实现所述处理器与存储器的信息交互。
第三方面,本公开提供了一种计算机可读存储介质,所述计算机可读存储介质上存储有计算机程序,所述计算机程序被处理器执行时实现根据第一方面中所述的资源管理方法。
附图说明
图1是本公开实施例提供的一种资源管理方法的流程图。
图2是本公开实施例提供的一种资源管理方法中以MN为主体的流程图。
图3是本公开实施例提供的一种资源管理方法中以MN为主体的流程图。
图4是本公开实施例提供的一种资源管理方法中以SN为主体的流程图。
图5是本公开实施例提供的一种资源管理方法中以SN为主体的流程图。
图6是本公开实施例提供的NR-DC目前的用户不活跃处理流程示意图。
图7是本公开实施例提供的NR-DC场景下UE的已持续不活跃时间传递流程图(以SN添加为例)。
图8是本公开实施例提供的MCG承载向SCG承载变更的流程图。
图9是本公开实施例提供的MN终端承载(MN Terminal bearer)向SN终端承载(SN Terminal bearer)变更的流程图。
图10是本公开实施例提供的SN终端承载(SN Terminal bearer)向MN终端承载(MN Terminal bearer)变更的流程图。
图11是本公开实施例提供的SN变更时UE的已持续不活跃时间传递的流程图。
图12是本公开实施例提供的一种电子设备的示意图。
图13是本公开实施例提供的一种计算机可读存储介质的示意图。
具体实施方式
应当理解,此处所描述的具体实施例仅仅用以解释本公开,并不用于限定本公开。
在后续的描述中,使用用于表示元件的诸如“模块”、“部件”或“单元”的后缀仅为了有利于本公开的说明,其本身没有特有的意义。因此,“模块”、“部件”或“单元”可以混合地使用。
在现有的SA系统中,无论是终端还是系统设备,耗电量大都是亟待解决的问题,尤其NR-DC系统在低频和高频进行组网时,高频的NR耗电和终端耗电急需尽快降低,当PDU Session或者Flow流在高频侧无数据时,需要尽快释放,以达到系统节能或者终端省电的目的。对于无数据的Session或者Flow,通过用户不活跃功能可以进行处理,但是目前在NR-DC场景下存在以下3个问题,如图6所示。
1).MN发起SN添加请求消息,内容包括了承载类型和PDCP承载类型(如MN terminal、SN terminal)信息。MN发起SN添加请求测 量触发,MN对于添加SN之前已存在的UE的Session或者Flow,维护了UE不活跃定时器,但在添加SN时并未通过消息将剩余的不活跃定时器时间携带给SN。
2).SN收到MN的承载业务消息,建立相应的承载,并且向MN回复确认响应。如果是SN terminal承载,业务可能从主小区组(MCG,Master Cell Group)承载变更为辅小区组(SCG,Secondary Cell Group)承载,并且在目标承载节点上重新启动了UE不活跃定时器。
3).SN根据本地的不活跃定时器机制,周期上报或者事件触发上报UE不活跃状态。如果上报的SN活动通知消息中携带的是UE不活跃指示,MN会决策UE的不活跃释放策略。如果上报的SN活动通知消息中携带的是UE重新激活指示,则状态反转,MN重新激活SN侧业务承载。由于SN的不活跃定时器是SN维护,不知道MN上UE已经持续多久处于不活跃状态,并未根据SN添加前的UE不活跃状态来更新,因此可能会存在UE不活跃状态持续总时长过长的问题。
针对上述问题,一些研究发现:相关NR-DC双连接技术中,承载变更时并未将UE已经历的不活跃时间传递到新的承载节点,造成承载变更后UE的不活跃状态被重置,导致业务耗电增加以及空口资源浪费。在NR-DC场景下,MN承载控制用户不活跃定时器,SN只是上报UE的状态是活跃或不活跃,由MN来决策是否释放。当承载从MCG承载变更为SCG承载(或者由MN terminal承载到SN terminal承载变更)时,在原MN承载下UE不活跃定时器不能够延续传递,导致承载变更之后需要重新启动定时器,而协议规定的用户不活跃定时器(ue-InactiveTime)的范围是[1s,超30天]。如果双连接承载变更过程不继承相关的计数器,势必对用户体验有较大影响,如用户不活跃定时器超长不但会非常耗电,而且会消耗宝贵的无线系统空口资源。
当前标准协议规定SA系统内Xn口切换,源gNB通过Xn口容器(Container)传递ue-InactiveTime信元给目标gNB,目标gNB收到后延续UE不活跃状态,提高空口资源利用和终端节电。而3GPP协议未能考虑此问题。UE同时和两个NR-DC基站保持连接,在业务 承载从一个基站变更到另外一个基站时,未能有效传递用户的不活跃时间机制。因此,业务迁移到新承载需要设置新的计数器,很可能增加UE连接态时间,在用户无业务需求状态下,增加了终端的连接态时间,同时也耗费了无线空口资源。
基于以上分析,本公开提出可以通过NR-DC双连接下ue-InactiveTime传递的方式来优化对空口资源的管理,以达到节省空口资源和减少耗电的效果。
作为本公开的第一方面,本公开实施例提供一种资源管理方法,如图1所示,所述资源管理方法包括如下步骤S100和S200。
在步骤S100中,确定用户设备(UE)针对目标承载节点的剩余不活跃时间是否用尽。
在步骤S200中,若所述UE针对所述目标承载节点的剩余不活跃时间用尽,释放为所述UE分配的资源,所述剩余不活跃时间包括预设不活跃时间总时长减去所述UE在所有节点处发生的已持续不活跃时间之和,所述预设不活跃时间总时长与所述目标承载节点相对应。
无论当前承载UE业务的是MN还是SN,在承载变化时,均将该UE在源承载节点上已经持续的不活跃时间传递到目标承载节点上,在目标承载节点用预设不活跃时间总时长减去UE在源承载节点上已持续的不活跃时间,得到UE在目标承载节点上的剩余不活跃时间。MN可以传递UE不活跃定时器给SN,延续MN侧配置的定时器,同样SN也可以传递UE不活跃定时器给MN,延续SN侧配置的定时器。
由于每次承载变化时都会将UE不活跃时间传递继承下来,因此,每次在目标承载节点上减去的是此前所有承载UE业务的源承载节点的已持续不活跃时间之和。若相减后的结果已经小于或等于0,则直接认为该UE针对该目标承载节点上的剩余不活跃时间已用尽;若相减后的结果大于0,则将该结果作为UE针对该目标承载节点的剩余不活跃时间继续计时。当此剩余不活跃时间用尽时,触发MN决策释放为UE分配的资源。
图7为NR-DC场景下UE的已持续不活跃时间传递流程图(以SN添加为例)。与前文所述的目前NR-DC场景处理过程相对比:
1).MN发起SN添加请求消息,消息内容包括了承载类型和PDCP承载类型(MN terminal,SN terminal)信息。MN发起SN添加请求测量触发,MN对于SN添加之前已存在的Session或Flow,维护了UE不活跃定时器,在添加SN时,MN把UE的剩余不活跃定时器时间带给SN。
2).SN收到MN的承载业务消息,建立相应的承载,并且向MN回复响应。如果是SN terminal承载,业务可能会从MCG承载变更为SCG承载,SN侧可以做判决,SN可以继承UE的剩余不活跃定时器,也可以自己设置新的定时器时间。
3).SN根据MN传递过来的UE不活跃定时器,周期上报或者事件触发上报UE不活跃状态。如果是携带UE不活跃指示,MN决策UE的不活跃释放策略。如果是携带UE重新激活指示,状态反转,MN重新激活SN侧业务承载。由于SN不活跃定时器是MN统一维护,并且在SN添加之后继承了剩余不活跃定时器,因此能够更加精准地控制UE总体的不活跃时长。
需要指出的是,除此上述SN添加场景之外,在NR-DC双连接场景的其他承载变更流程中,如表1和表2所列,MCG、Split、SCG三者之间的承载变更流程、MN终端承载(MN Terminal bearer)向SN终端承载(SN Terminal bearer)承载类型变更、SN终端承载(SN Terminal bearer)向MN终端承载(MN Terminal bearer)承载类型变更、以及一个SN到另一个SN的变更流程等,也均可采用本公开所提出的资源管理方法,采用ue-InactiveTime传递方案,不但优化了对空口资源的管理,也减少了耗电。
表1 MCG/SCG/SPLIT承载的变更
表2 MN/SN terminal承载的变更

在传递继承UE的已持续不活跃时间的过程中,可以采用如下表3中的计算原则。T1为MN上预设不活跃时间总时长,T2为SN上预设不活跃时间总时长,t为承载变化时传递的已持续不活跃时间。
表3定时器的计算原则(以MN作为源承载节点、SN作为目标承载节点为例)
在一些实施方式中,如图2所示,当前节点为主节点(MN),所述UE的业务的源承载节点为所述MN,所述目标承载节点为目标辅节点(SN),在所述UE针对所述目标承载节点的剩余不活跃时间用尽之前,所述资源管理方法还包括步骤S310和S320。
在步骤S310中,确定所述UE在源承载节点上发生的已持续不活跃时间。
在步骤S320中,向所述目标SN发送携带有所述UE在源承载节点的已持续不活跃时间的消息,以使所述目标SN根据所述UE在源承载节点的已持续不活跃时间,确定所述UE针对所述目标承载节点的剩余不活跃时间。
对于MN来说,只要涉及到UE业务承载变化的流程,均可将UE在源承载节点上发生的已持续不活跃时间传递给目标承载节点。可以通过承载变化时源承载节点与目标承载节点之前交互的消息来传递UE在源承载节点上发生的已持续不活跃时间,实现源承载节点与目标承载节点对UE已持续不活跃的时长同步。
在一些实施方式中,所述向目标SN发送携带有所述UE在源承载节点的已持续不活跃时间的消息包括:
向所述目标SN发送携带有所述UE在源承载节点的已持续不活跃时间的SN添加请求消息。
前文在对图7的描述中已经对SN添加场景做了介绍,在此不再赘述。
在一些实施方式中,所述向目标SN发送携带有所述UE在源承载节点的已持续不活跃时间的消息包括:
向所述目标SN发送携带有所述UE在源承载节点的已持续不活跃时间的SN修改请求消息。
在一些实施方式中,如图3所示,当前节点为MN,所述UE的业务的源承载节点为目标SN,所述目标承载节点为所述MN,在所述UE针对所述目标承载节点的剩余不活跃时间用尽之前,所述资源管理方法还包括步骤S330和S340。
在步骤S330中,从目标SN收到携带有所述UE在源承载节点的已持续不活跃时间的消息。
在步骤S340中,根据所述MN上的预设不活跃时间总时长减去所述在源承载节点的已持续不活跃时间,得到所述UE针对所述目标承载节点的剩余不活跃时间。
对于MN来说,可能会涉及到业务由MN承载变为由SN承载(前文已介绍描述),也可能涉及到业务由SN承载变回由MN承载,此时SN作为源承载节点,MN作为目标承载节点。MN虽然是主节点,但由于业务是由SN承载,所以MN并不能实时的知道UE的业务在SN上空闲了多久,需要由SN将UE在SN上已持续的不活跃时间传递给MN,MN根据MN上的预设不活跃时间总时长减去所述在源承载节点的已持续不活跃时间,得到UE在MN上的剩余不活跃时间。
除此之外,在业务由第一个SN承载变为由第二个SN承载的情况下,由于SN之间没有消息交互,因此也需要第一个SN将已持续不活跃时间先传递给MN,然后再由MN将该已持续不活跃时间转给新添加的第二个SN。
这几种流程仍遵循前文所述,即,只要涉及到UE业务承载变化的流程,均可将UE在源承载节点上发生的已持续不活跃时间传递给 目标承载节点。通过承载变化时源承载节点与目标承载节点之前交互的消息来传递UE在源承载节点上发生的已持续不活跃时间,实现源承载节点与目标承载节点对UE已持续不活跃的时长同步。
在一些实施方式中,所述从目标SN收到携带有所述UE在源承载节点的已持续不活跃时间的消息包括:
从目标SN收到携带有所述UE在源承载节点的已持续不活跃时间的SN修改请求消息。
在一些实施方式中,所述从目标SN收到携带有所述UE在源承载节点的已持续不活跃时间的消息包括:
从目标SN收到携带有所述UE在源承载节点的已持续不活跃时间的SN释放请求消息。
在一些实施方式中,所述确定用户设备UE针对目标承载节点的剩余不活跃时间是否用尽包括:
若所述UE的业务当前由所述MN承载,由所述MN检测所述UE针对所述目标承载节点的剩余不活跃时间是否用尽。
在一些实施方式中,所述确定用户设备UE针对目标承载节点的剩余不活跃时间是否用尽包括:
若所述UE的业务当前由所述目标SN承载,在所述MN收到携带有所述UE的不活跃指示的SN活动通知消息时,确定为所述UE针对所述目标承载节点的剩余不活跃时间用尽。
由于NR-DC场景下,UE的业务可能在各节点间发生承载变化,UE的业务当前可能是承载在MN上,也可能是承载在SN上。
若UE的业务当前由所述MN承载,因为MN是主节点可以决策UE的释放,因此只要MN本地检测到UE在MN上的剩余不活跃时间用尽,就可以决定释放为UE分配的资源。
若UE的业务当前由所述SN承载,MN并不能实时地感知UE是否活跃、剩余不活跃时间是否已用尽。因此需要SN在检测到所述UE在SN上的剩余不活跃时间用尽时,向MN发出通知。此处可以利用已有的携带有UE的不活跃指示的SN活动通知消息表示UE的剩余不活跃时间在SN上已经用尽,也可以通过其他消息信元携带特定字段来 表示UE的剩余不活跃时间在SN上已经用尽,以及时通知MN可以将该UE的资源释放。
在一些实施方式中,所述资源管理方法还包括:
在所述释放为所述UE分配的资源之前,若从所述目标SN收到携带有所述UE的重激活指示的SN活动通知消息,则撤销对所述UE做出的释放决策。
在一些特殊时序的场景中,即SN已经向MN发出了携带有UE的不活跃指示的SN活动通知消息,而在MN因为一些原因(例如该UE存在多个Session或Flow,存在的多个Session或Flow中仍有活跃的Session或Flow)并不释放为该UE分配的资源时,此时SN又收到了该UE相关的业务流量,表明SN所承载的该UE的业务重新活跃,应该重置该UE的剩余不活跃时间,并将已持续不活跃时间清零,同时还要向MN发出重激活指示通知MN撤销对所述UE做出的释放决策。
在一些实施方式中,如图4所示,当前节点为目标SN,所述UE的业务的源承载节点为MN,所述目标承载节点为所述目标SN,在所述UE针对所述目标承载节点的剩余不活跃时间用尽之前,所述资源管理方法还包括步骤S410和S420。
在步骤S410中,从所述MN收到携带有所述UE在源承载节点的已持续不活跃时间的消息。
在步骤S420中,根据所述目标SN上的预设不活跃时间总时长减去所述UE在源承载节点的已持续不活跃时间,得到所述UE针对所述目标承载节点的剩余不活跃时间。
对于SN来说,仍遵循前文所述,即,只要涉及到UE业务承载变化的流程,均可将UE在源承载节点上发生的已持续不活跃时间传递给目标承载节点。通过承载变化时源承载节点与目标承载节点之前交互的消息来传递UE在源承载节点上发生的已持续不活跃时间,实现源承载节点与目标承载节点对UE已持续不活跃的时长同步。
当UE的业务由MN承载变为由SN承载时,MN发往SN的消息中会携带有所述UE在MN上的已持续不活跃时间,SN收到携带有所述UE在MN上的已持续不活跃时间的消息后,根据本地预设的不活跃时 间总时长减去所述UE在MN的已持续不活跃时间,得到所述UE针对SN的剩余不活跃时间,由SN继续检测剩余不活跃时间是否已用尽。
在一些实施方式中,所述从MN收到携带有所述UE在源承载节点的已持续不活跃时间的消息包括:
从所述MN收到携带有所述UE在源承载节点的已持续不活跃时间的SN添加请求消息。
在一些实施方式中,所述从MN收到携带有所述UE在源承载节点的已持续不活跃时间的消息包括:
从所述MN收到携带有所述UE在源承载节点的已持续不活跃时间的SN修改请求消息。
在一些实施方式中,所述资源管理方法还包括:
若在所述SN上检测到所述UE针对所述目标承载节点的剩余不活跃时间用尽,向所述MN发出携带有所述UE的不活跃指示的SN活动通知消息。
SN收到携带有所述UE在MN上的已持续不活跃时间的消息后,根据本地预设的不活跃时间总时长减去所述UE在MN的已持续不活跃时间,得到所述UE针对SN的剩余不活跃时间,由SN继续通过定时器检测剩余不活跃时间是否已用尽。
若相减后的结果已经小于或等于0,则直接认为该UE针对该目标承载节点上的剩余不活跃时间已用尽;若相减后的结果大于0,则将该结果作为UE针对该目标承载节点的剩余不活跃时间继续计时。当此SN检测到剩余不活跃时间已用尽时,向MN发出所述UE不活跃的指示,触发MN决策释放为UE分配的资源。
在一些实施方式中,在所述向所述MN发出携带有所述UE的不活跃指示的SN活动通知消息之后,所述资源管理方法还包括:
若为所述UE分配的资源被释放之前出现了所述UE的业务数据,将剩余不活跃时间清零,重新将预设不活跃时间总时长作为所述UE针对所述目标承载节点的剩余不活跃时间;以及
向MN发送携带有所述UE的重激活指示的SN活动通知消息。
在一些特殊时序的场景中,即SN已经向MN发出了携带有UE的 不活跃指示的SN活动通知消息,而在MN因为一些原因尚未释放为该UE分配的资源的时候,SN又收到了该UE相关的业务流量。此时的业务流量表明该UE重新活跃,应该重置该UE的剩余不活跃时间,并将已持续不活跃时间清零,同时还要向MN发出重激活指示,通知MN撤销对所述UE做出的释放决策。
在一些实施方式中,如图5所示,当前节点为目标SN,所述UE的业务的源承载节点为目标SN,所述目标承载节点为所述MN,在所述UE针对所述目标承载节点的剩余不活跃时间用尽之前,所述资源管理方法还包括步骤S430和S440。
在步骤S430中,确定所述UE在源承载节点上发生的已持续不活跃时间。
在步骤S440中,向所述MN发送携带有所述UE在源承载节点的已持续不活跃时间的消息,以使所述MN根据所述UE在源承载节点的已持续不活跃时间,确定所述UE针对所述目标承载节点的剩余不活跃时间。
如前文所述,除了业务由MN承载变为由SN承载,也可能涉及到业务由SN承载变回由MN承载,或业务由第一个SN承载变为由第二个SN承载。后两种流程都是SN作为源承载节点,MN作为目标承载节点,仍遵循前文所述,即,只要涉及到UE业务承载变化的流程,均可将UE在源承载节点上发生的已持续不活跃时间传递给目标承载节点。通过承载变化时源承载节点与目标承载节点之前交互的消息来传递UE在源承载节点上发生的已持续不活跃时间,实现源承载节点与目标承载节点对UE已持续不活跃的时长同步。
在一些实施方式中,所述向所述MN发送携带有所述UE在源承载节点的已持续不活跃时间的消息包括:
向所述MN发送携带有所述UE在源承载节点的已持续不活跃时间的SN修改请求消息。
在一些实施方式中,所述向所述MN发送携带有所述UE在源承载节点的已持续不活跃时间的消息包括:
向所述MN发送携带有所述UE在源承载节点的已持续不活跃时 间的SN释放请求消息。
下面结合4个实例,分别对本公开第一个方面所述的资源管理方法在4种流程中的具体应用进行介绍。
实例1
实例1介绍MCG向SCG承载变更流程中UE已持续不活跃时间的传递流程,示意图如图8所示。
步骤101.在NR-DC场景下,MN建立MCG承载并下发SN测量控制,MN触发SN添加流程。SN未添加前MN根据业务类型启动ue-InactiveTime T1,比如10分钟(小于无穷大)。
步骤102.UE上报B1/B2测量报告,MN触发添加SN流程。
步骤103.在SN添加消息建立SN terminal的SCG承载,触发MCG承载到SCG承载变更,并携带UE的已持续不活跃时间t(如2分钟,小于无穷大),假设在MCG承载上UE不活跃状态已经维持了8分钟。
步骤104.SN收到添加请求消息,建立相关承载,如SN配置的T2定时器大于t,则SN启动定时器为(T2-t),参见表3中的定时器设置原则。
步骤105至106.承载变更为SCG承载之后,SN继续剩下的UE不活跃时间。SN内部CU-C传递定时器(T2-t)给CU-U和DU。
若UE一直在不活跃状态,在(T2-t)定时器超时后,SN给MN发送SN活动通知,携带UE不活跃(Inactive)状态指示。
若UE此时又出现Session或Flow,状态发生反转,SN给MN即刻发送SN活动通知,携带UE重激活(re-actived)状态指示。
步骤107至108.UE一直在不活跃状态,继续触发给MN发送SN活动通知,携带UE Inactive状态指示。MN决策是否释放为UE分配的资源,若MN承载也满足释放条件,则发起空口资源释放。
实例2
实例2介绍MN Terminal bearer承载向SN Terminal bearer承载类型变更流程中UE已持续不活跃时间的传递流程,示意图如图9所示。
步骤201.在NR-DC场景下,MN建立MCG承载并且下发SN测量控制,MN触发SN添加流程。SN未添加前MN根据业务类型启动ue-InactiveTime T1,比如10分钟(小于无穷大)。
步骤202.UE上报B1/B2测量报告,MN触发添加SN流程。
步骤203.在SN添加消息建立MN terminal承载,并携带UE在MN的已持续不活跃时间t1(如7分钟,小于无穷大),假设在MCG承载上UE不活跃定时器已经维持了3分钟。
步骤204.SN收到添加请求消息,建立相关承载,如SN的T2定时器配置大于t1,则SN启动定时器为(T2-t1),参见定时器的设置原则。
步骤205至206.由于资源配置原因,MN触发MN terminal承载到SN terminal承载的修改请求,并且携带UE在MN的已持续不活跃时间t2。
步骤207至208.承载变更为SN terminal之后,如SN配置的T2定时器大于t2,则SN启动定时器为(T2-t2),参见表3的定时器设置原则。
若UE一直在不活跃状态,在(T2-t2)定时器超时后,给MN发送SN活动通知,携带UE Inactive状态指示。
若UE状态发生反转,给MN即刻发送SN活动通知,携带UE re-actived状态。
步骤209至210.UE一直在不活跃状态,继续触发给MN发送SN活动通知,携带UE Inactive状态指示。MN决策是否释放为UE分配的资源,若MN承载也满足释放条件,则发起空口资源释放。
实例3
实例3介绍SN Terminal bearer承载向MN Terminal bearer承载类型变更流程中UE已持续不活跃时间的传递流程,示意图如图10所示。
步骤301.在NR-DC场景下,MN建立承载侧并下发SN测量控制,MN触发SN添加流程。SN未添加前MN根据业务类型启动ue-InctiveTime T1,比如60秒(小于无穷大)。
步骤302.UE上报B1/B2测量报告,MN触发添加SN流程。
步骤303.MN向SN发送SN添加消息建立MN terminal承载,并携带UE在MN的已持续不活跃时间t1(如30秒,小于无穷大)。
步骤304.SN收到添加请求消息,建立相关承载。SN根据业务承载类型配置新的时间T2(如40秒)。
当T2小于或等于t1时,不启动定时器,SN立即通知MN该Session或者Flow处于用户不活跃状态。
当T2大于t1时,启动定时器,时间为(T2-t1)。
步骤305至306.由于资源配置原因,SN触发SN terminal到MN terminal修改请求,并且携带UE在SN的已持续不活跃时间t2(如6秒)。
步骤307至308.承载变更为MN terminal之后,MN根据业务承载类型配置新的时间T1(如60秒),生效定时器(T1-t2)。
当T1小于或等于t2时,MN不启动定时器。由于UE可能存在多条业务在SN,因此SN在转移承载时还会立即通知MN该Session或者Flow处于用户不活跃状态。
当T1大于t2时,启动定时器,时间为(T1-t)。
若UE一直在不活跃状态,在(T1-t)定时器超时后,给MN发送SN活动通知,携带UE Inactive状态指示。
若UE状态发生反转,给MN即刻发送SN活动通知,携带UE re-actived状态。
步骤309至310.UE一直在不活跃状态,触发给MN发送SN活动通知,携带UE Inactive状态指示。MN决策是否释放为UE分配的资源,若MN承载也满足释放条件,则发起空口资源释放。
实例4
实例4介绍SN变更流程中UE已持续不活跃时间的传递流程,示意图如图11所示。
步骤401.在NR-DC场景下,业务开始都是建立MCG承载,并下发SN1测量控制,触发SN1添加流程。SN1未添加前MN根据业务类型启动ue-InactiveTime T1,比如5分钟。
步骤402.UE上报B1/B2测量报告,MN触发添加SN1流程,在SN1添加消息中携带UE在MN的已持续不活跃时间t1(如2分钟,小于无穷大)。
步骤403.由于空口测量原因,原SN1不能提供服务,需要变更到新的SN2。MN释放SN1。由于MN并不知道UE在SN1上的已持续不活跃时间,因此需要SN1在释放请求消息交互中携带UE在SN1的已持续不活跃时间t2(如3分钟,小于无穷大)。
步骤404.因为承载由SN1直接转移到SN2,而不是先转移到MN再由MN转移到SN2,所以MN在新的SN2添加过程中,携带UE在SN1的已持续不活跃时间t2,SN2设置更新的不活跃定时器(T3-t2),当T3小于或等于t2时,不启动定时器,SN2立即通知MN该Session或者Flow处于用户不活跃状态。当T3大于t2时,启动定时器,时间为(T3-t2)。
步骤405.若UE一直在不活跃状态,在(T3-t2)定时器超时后,给MN发送SN活动通知,携带UE Inactive状态指示。
步骤406.若UE状态发生反转,给MN即刻发送SN活动通知,携带UE re-actived状态指示。后续步骤与前面实例相似,此处不再赘述。
第二方面,本公开实施例提供一种电子设备,如图12所示,包括:至少一个处理器501;存储器502,其上存储有至少一个计算机程序,当至少一个计算机程序被至少一个处理器执行时,使得至少一个处理器实现如上述第一方面的资源管理方法;以及至少一个I/O接口503,连接在处理器与存储器之间,配置为实现处理器与存储器的信息交互。
处理器501为具有数据处理能力的器件,包括但不限于中央处理器(CPU)等;存储器502为具有数据存储能力的器件,包括但不限于随机存取存储器(RAM,更具体如SDRAM、DDR等)、只读存储器(ROM)、带电可擦可编程只读存储器(EEPROM)、闪存(FLASH);I/O接口(读写接口)503连接在处理器501与存储器502间,能实现处理器501与存储器502的信息交互,包括但不限于数据总线(Bus) 等。
在一些实施方式中,处理器501、存储器502和I/O接口503通过总线504相互连接,进而与计算设备的其它组件连接。
第三方面,本公开实施例提供一种计算机可读存储介质,如图13所示,计算机可读存储介质上存储有计算机程序,计算机程序被处理器执行时实现上述第一方面的资源管理方法。
本公开实施例提出的NR-DC双连接下ue-InactiveTime传递的方式,当Session或者Flow流在无数据时,在源承载节点与目的承载节点之间传递UE的已持续不活跃时间,使源承载节点与目标承载节点对UE空闲时长得以同步,实现了UE资源的及时释放,优化对空口资源的管理,节省了宝贵的系统资源的同时,还得到了大幅减少终端和系统设备耗电的效果。本领域普通技术人员可以理解,上文中所公开方法中的全部或某些步骤、设备中的功能模块/单元可以被实施为软件、固件、硬件及其适当的组合。
在硬件实施方式中,在以上描述中提及的功能模块/单元之间的划分不一定对应于物理组件的划分;例如,一个物理组件可以具有多个功能,或者一个功能或步骤可以由若干物理组件合作执行。某些物理组件或所有物理组件可以被实施为由处理器(如中央处理器、数字信号处理器或微处理器)执行的软件,或者被实施为硬件,或者被实施为集成电路,如专用集成电路。这样的软件可以分布在计算机可读介质上,计算机可读介质可以包括计算机存储介质(或非暂时性介质)和通信介质(或暂时性介质)。如本领域普通技术人员公知的,术语计算机存储介质包括在用于存储信息(诸如计算机可读指令、数据结构、程序模块或其他数据)的任何方法或技术中实施的易失性和非易失性、可移除和不可移除介质。计算机存储介质包括但不限于RAM、ROM、EEPROM、闪存或其他存储器技术、CD-ROM、数字多功能盘(DVD)或其他光盘存储、磁盒、磁带、磁盘存储或其他磁存储装置、或者可以用于存储期望的信息并且可以被计算机访问的任何其他的介质。此外,本领域普通技术人员公知的是,通信介质通常包含计算机可读指令、数据结构、程序模块或者诸如载波或其他传输机制之类的调制数 据信号中的其他数据,并且可包括任何信息递送介质。
以上参照附图说明了本公开的部分实施例,并非因此局限本公开的权利范围。本领域技术人员不脱离本公开的范围和实质内所作的任何修改、等同替换和改进,均应在本公开的权利范围之内。

Claims (20)

  1. 一种资源管理方法,包括:
    确定用户设备(UE)针对目标承载节点的剩余不活跃时间是否用尽;以及
    若所述UE针对所述目标承载节点的剩余不活跃时间用尽,释放为所述UE分配的资源,其中,所述剩余不活跃时间包括预设不活跃时间总时长减去所述UE在所有节点处发生的已持续不活跃时间之和,所述预设不活跃时间总时长与所述目标承载节点相对应。
  2. 根据权利要求1所述的资源管理方法,其中,当前节点为主节点(MN),所述UE的业务的源承载节点为所述MN,所述目标承载节点为目标辅节点(SN),所述方法还包括:
    在所述UE针对所述目标承载节点的剩余不活跃时间用尽之前,确定所述UE在源承载节点上发生的已持续不活跃时间;以及
    向所述目标SN发送携带有所述UE在源承载节点的已持续不活跃时间的消息,以使所述目标SN根据所述UE在源承载节点的已持续不活跃时间,确定所述UE针对所述目标承载节点的剩余不活跃时间。
  3. 根据权利要求2所述的资源管理方法,其中,所述向目标SN发送携带有所述UE在源承载节点的已持续不活跃时间的消息包括:
    向所述目标SN发送携带有所述UE在源承载节点的已持续不活跃时间的SN添加请求消息。
  4. 根据权利要求2所述的资源管理方法,其中,所述向目标SN发送携带有所述UE在源承载节点的已持续不活跃时间的消息包括:
    向所述目标SN发送携带有所述UE在源承载节点的已持续不活跃时间的SN修改请求消息。
  5. 根据权利要求1所述的资源管理方法,其中,当前节点为MN,所述UE的业务的源承载节点为目标SN,所述目标承载节点为所述MN,所述方法还包括:
    在所述UE针对所述目标承载节点的剩余不活跃时间用尽之前, 从目标SN收到携带有所述UE在源承载节点的已持续不活跃时间的消息;以及
    根据所述MN上的预设不活跃时间总时长减去所述在源承载节点的已持续不活跃时间,得到所述UE针对所述目标承载节点的剩余不活跃时间。
  6. 根据权利要求5所述的资源管理方法,其中,所述从目标SN收到携带有所述UE在源承载节点的已持续不活跃时间的消息包括:
    从目标SN收到携带有所述UE在源承载节点的已持续不活跃时间的SN修改请求消息。
  7. 根据权利要求5所述的资源管理方法,其中,所述从目标SN收到携带有所述UE在源承载节点的已持续不活跃时间的消息包括:
    从目标SN收到携带有所述UE在源承载节点的已持续不活跃时间的SN释放请求消息。
  8. 根据权利要求2至7中任意一项所述的资源管理方法,其中,所述确定用户设备UE针对目标承载节点的剩余不活跃时间是否用尽包括:
    若所述UE的业务当前由所述MN承载,由所述MN检测所述UE针对所述目标承载节点的剩余不活跃时间是否用尽。
  9. 根据权利要求2至7中任意一项所述的资源管理方法,其中,所述确定用户设备UE针对目标承载节点的剩余不活跃时间是否用尽包括:
    若所述UE的业务当前由所述目标SN承载,在所述MN收到携带有所述UE的不活跃指示的SN活动通知消息时,确定为所述UE针对所述目标承载节点的剩余不活跃时间用尽。
  10. 根据权利要求9所述的资源管理方法,还包括:
    在所述释放为所述UE分配的资源之前,若从所述目标SN收到携带有所述UE的重激活指示的SN活动通知消息,则撤销对所述UE做出的释放决策。
  11. 根据权利要求1所述的资源管理方法,其中,当前节点为目标SN,所述UE的业务的源承载节点为MN,所述目标承载节点为所述目标SN,所述方法还包括:
    在所述UE针对所述目标承载节点的剩余不活跃时间用尽之前,从所述MN收到携带有所述UE在源承载节点的已持续不活跃时间的消息;以及
    根据所述目标SN上的预设不活跃时间总时长减去所述UE在源承载节点的已持续不活跃时间,得到所述UE针对所述目标承载节点的剩余不活跃时间。
  12. 根据权利要求11所述的资源管理方法,其中,所述从MN收到携带有所述UE在源承载节点的已持续不活跃时间的消息包括:
    从所述MN收到携带有所述UE在源承载节点的已持续不活跃时间的SN添加请求消息。
  13. 根据权利要求11所述的资源管理方法,其中,所述从MN收到携带有所述UE在源承载节点的已持续不活跃时间的消息包括:
    从所述MN收到携带有所述UE在源承载节点的已持续不活跃时间的SN修改请求消息。
  14. 根据权利要求11至13中任意一项所述的资源管理方法,还包括:
    若在所述SN上检测到所述UE针对所述目标承载节点的剩余不活跃时间用尽,向所述MN发出携带有所述UE的不活跃指示的SN活动通知消息。
  15. 根据权利要求14所述的资源管理方法,还包括:
    在所述向所述MN发出携带有所述UE的不活跃指示的SN活动通知消息之后,若为所述UE分配的资源被释放之前出现了所述UE的业务数据,将剩余不活跃时间清零,重新将预设不活跃时间总时长作为所述UE针对所述目标承载节点的剩余不活跃时间;以及
    向MN发送携带有所述UE的重激活指示的SN活动通知消息。
  16. 根据权利要求1所述的资源管理方法,其中,当前节点为 目标SN,所述UE的业务的源承载节点为目标SN,所述目标承载节点为所述MN,所述方法还包括:
    在所述UE针对所述目标承载节点的剩余不活跃时间用尽之前,确定所述UE在源承载节点上发生的已持续不活跃时间;以及
    向所述MN发送携带有所述UE在源承载节点的已持续不活跃时间的消息,以使所述MN根据所述UE在源承载节点的已持续不活跃时间,确定所述UE针对所述目标承载节点的剩余不活跃时间。
  17. 根据权利要求16所述的资源管理方法,其中,所述向所述MN发送携带有所述UE在源承载节点的已持续不活跃时间的消息包括:
    向所述MN发送携带有所述UE在源承载节点的已持续不活跃时间的SN修改请求消息。
  18. 根据权利要求16所述的资源管理方法,其中,所述向所述MN发送携带有所述UE在源承载节点的已持续不活跃时间的消息包括:
    向所述MN发送携带有所述UE在源承载节点的已持续不活跃时间的SN释放请求消息。
  19. 一种电子设备,包括:
    至少一个处理器;
    存储器,其上存储有至少一个计算机程序,当所述至少一个计算机程序被所述至少一个处理器执行时,使得所述至少一个处理器实现根据权利要求1至18中任意一项所述的资源管理方法;以及
    至少一个I/O接口,连接在所述处理器与存储器之间,配置为实现所述处理器与存储器的信息交互。
  20. 一种计算机可读存储介质,所述计算机可读存储介质上存储有计算机程序,所述计算机程序被处理器执行时实现根据权利要求1至18中任意一项所述的资源管理方法。
PCT/CN2023/098540 2022-06-22 2023-06-06 资源管理方法、电子设备和计算机可读存储介质 WO2023246498A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210710621.3A CN117336874A (zh) 2022-06-22 2022-06-22 资源管理方法、电子设备和计算机可读存储介质
CN202210710621.3 2022-06-22

Publications (1)

Publication Number Publication Date
WO2023246498A1 true WO2023246498A1 (zh) 2023-12-28

Family

ID=89281647

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/098540 WO2023246498A1 (zh) 2022-06-22 2023-06-06 资源管理方法、电子设备和计算机可读存储介质

Country Status (2)

Country Link
CN (1) CN117336874A (zh)
WO (1) WO2023246498A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111148257A (zh) * 2018-11-02 2020-05-12 中兴通讯股份有限公司 状态上报、消息接收方法及装置、存储介质、电子装置
US20200163144A1 (en) * 2018-11-21 2020-05-21 Samsung Electronics Co., Ltd. Method and apparatus for transmitting and receiving signals in wireless communication system
CN113873689A (zh) * 2020-06-30 2021-12-31 中兴通讯股份有限公司 一种双连接释放用户方法、装置、设备和存储介质

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111148257A (zh) * 2018-11-02 2020-05-12 中兴通讯股份有限公司 状态上报、消息接收方法及装置、存储介质、电子装置
US20200163144A1 (en) * 2018-11-21 2020-05-21 Samsung Electronics Co., Ltd. Method and apparatus for transmitting and receiving signals in wireless communication system
CN113873689A (zh) * 2020-06-30 2021-12-31 中兴通讯股份有限公司 一种双连接释放用户方法、装置、设备和存储介质

Also Published As

Publication number Publication date
CN117336874A (zh) 2024-01-02

Similar Documents

Publication Publication Date Title
US11611949B2 (en) Keeping the UE awake
US11778550B2 (en) Methods and apparatus relating to inactive mode in a wireless communications network
US11627625B2 (en) UE behavior with rejection of resume request
EP2637365B1 (en) Method for controlling internet services, and relevant device and system
KR101944556B1 (ko) 무선부에서의 절전 모드 제어 방법
WO2022205381A1 (zh) 广播多播业务传输方法、装置及存储介质
WO2017118179A1 (zh) 一种寻呼处理方法、装置和寻呼系统
WO2015070758A1 (zh) D2d链路资源的辅助管理方法和装置、以及管理方法和装置
CN113938945B (zh) 数据包发送的方法、装置
WO2018001281A1 (zh) 传输方式的转换方法和装置
WO2015042911A1 (zh) 寻呼方法、网络设备和通信系统
WO2022053003A1 (zh) 一种rrc连接释放的方法及装置
US20230292271A1 (en) Handling Reference Time Delivery Failure in a Time-Sensitive Network (TSN)
WO2020088091A1 (zh) 状态上报、消息接收方法及装置、存储介质、电子装置
JP2023532697A (ja) 状態切替方法、接続状態mtchの指示方法および装置、ならびに記憶媒体、端末および基地局
WO2023246498A1 (zh) 资源管理方法、电子设备和计算机可读存储介质
WO2022127386A1 (zh) 状态迁移的方法、网络设备及存储介质
WO2018087034A1 (en) Infrequent small data for battery saving wireless devices
CN113873689A (zh) 一种双连接释放用户方法、装置、设备和存储介质
WO2012024992A1 (zh) 承载释放方法及服务网关
CN114390725A (zh) 节点、用户设备及其方法
WO2024055815A1 (zh) 管理边缘psa的方法、电子设备、计算机可读介质
WO2022028477A1 (zh) 数据传输方法、装置、存储介质、芯片及相关设备
WO2024020759A1 (zh) 一种QoS流的控制方法、装置及计算机存储介质
WO2024020760A1 (zh) 一种QoS流的控制方法、装置及计算机存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23826147

Country of ref document: EP

Kind code of ref document: A1