WO2023246459A1 - 一种确定软岩内摩擦角的方法 - Google Patents
一种确定软岩内摩擦角的方法 Download PDFInfo
- Publication number
- WO2023246459A1 WO2023246459A1 PCT/CN2023/097672 CN2023097672W WO2023246459A1 WO 2023246459 A1 WO2023246459 A1 WO 2023246459A1 CN 2023097672 W CN2023097672 W CN 2023097672W WO 2023246459 A1 WO2023246459 A1 WO 2023246459A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- soft rock
- angle
- internal friction
- rupture
- sample
- Prior art date
Links
- 239000011435 rock Substances 0.000 title claims abstract description 51
- 238000000034 method Methods 0.000 title claims abstract description 40
- 238000012360 testing method Methods 0.000 claims abstract description 33
- 238000012669 compression test Methods 0.000 claims abstract description 17
- 238000012545 processing Methods 0.000 claims abstract description 10
- 238000012512 characterization method Methods 0.000 claims abstract description 6
- 238000005553 drilling Methods 0.000 claims abstract description 5
- 238000004364 calculation method Methods 0.000 claims description 7
- 239000012528 membrane Substances 0.000 claims description 2
- 239000002689 soil Substances 0.000 description 7
- 230000003068 static effect Effects 0.000 description 4
- 238000010586 diagram Methods 0.000 description 3
- 238000002474 experimental method Methods 0.000 description 3
- 239000002734 clay mineral Substances 0.000 description 2
- 230000006378 damage Effects 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 230000035515 penetration Effects 0.000 description 2
- 239000011148 porous material Substances 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 1
- 239000004927 clay Substances 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 238000007596 consolidation process Methods 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 238000009795 derivation Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 230000036571 hydration Effects 0.000 description 1
- 238000006703 hydration reaction Methods 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 239000011229 interlayer Substances 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
- 238000012795 verification Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N3/00—Investigating strength properties of solid materials by application of mechanical stress
- G01N3/02—Details
- G01N3/06—Special adaptations of indicating or recording means
- G01N3/068—Special adaptations of indicating or recording means with optical indicating or recording means
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N3/00—Investigating strength properties of solid materials by application of mechanical stress
- G01N3/08—Investigating strength properties of solid materials by application of mechanical stress by applying steady tensile or compressive forces
- G01N3/18—Performing tests at high or low temperatures
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N3/00—Investigating strength properties of solid materials by application of mechanical stress
- G01N3/24—Investigating strength properties of solid materials by application of mechanical stress by applying steady shearing forces
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2203/00—Investigating strength properties of solid materials by application of mechanical stress
- G01N2203/0001—Type of application of the stress
- G01N2203/0003—Steady
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2203/00—Investigating strength properties of solid materials by application of mechanical stress
- G01N2203/0014—Type of force applied
- G01N2203/0016—Tensile or compressive
- G01N2203/0019—Compressive
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2203/00—Investigating strength properties of solid materials by application of mechanical stress
- G01N2203/0014—Type of force applied
- G01N2203/0025—Shearing
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2203/00—Investigating strength properties of solid materials by application of mechanical stress
- G01N2203/02—Details not specific for a particular testing method
- G01N2203/022—Environment of the test
- G01N2203/0222—Temperature
- G01N2203/0228—Low temperature; Cooling means
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2203/00—Investigating strength properties of solid materials by application of mechanical stress
- G01N2203/02—Details not specific for a particular testing method
- G01N2203/022—Environment of the test
- G01N2203/023—Pressure
- G01N2203/0232—High pressure
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2203/00—Investigating strength properties of solid materials by application of mechanical stress
- G01N2203/02—Details not specific for a particular testing method
- G01N2203/06—Indicating or recording means; Sensing means
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2203/00—Investigating strength properties of solid materials by application of mechanical stress
- G01N2203/02—Details not specific for a particular testing method
- G01N2203/06—Indicating or recording means; Sensing means
- G01N2203/0641—Indicating or recording means; Sensing means using optical, X-ray, ultraviolet, infrared or similar detectors
- G01N2203/0647—Image analysis
Definitions
- the invention belongs to the technical field of soft rock shear strength parameter testing in geotechnical engineering, and relates to a method for determining the internal friction angle of soft rock.
- Shear strength refers to the ultimate ability of rock and soil to resist shear damage caused by external forces. It is an important index for evaluating the mechanical properties of rock and soil. According to the Mohr-Coulomb strength theory, shear strength can be divided into friction strength and cohesion strength.
- soft rock has a microscopic structure and engineering properties that are different from soil and hard rock.
- clay minerals and pore defects inside soft rock. The composition of clay minerals and pore defects have a great influence on the contact friction properties between the mineral particle skeletons in soft rock. Friction between skeleton particles includes kinetic friction and static friction. The two do not occur independently. During the friction process, kinetic friction and static friction occur one after another.
- the methods for obtaining rock mass mechanical parameters include experimental methods, inversion calculation methods, "Engineering Rock Mass Quality Grading Standards" method, and engineering analogy methods.
- the experimental method is the main method to obtain the real mechanical parameters of rock mass.
- the experimental method is also the basis of other methods.
- Indoor testing and field testing The test has the advantages of simple operation and short time consumption. Therefore, conventional triaxial compression tests are carried out, and the shear strength parameters are obtained through the Mohr circle envelope according to the Mohr-Coulomb criterion, which is the best way to measure the internal friction angle. common channel diameter, but the triaxial test results are processed according to the Moore-Coulomb criterion to calculate the internal friction angle The process is also more cumbersome.
- CN201510435511.0 discloses a method of measuring rock cohesion c and internal friction angle by using nails. method, however, establishing the relationship between nail penetration and shear strength parameters not only requires a large number of triaxial tests, but also the uneven and weak interlayers in soft rock will affect the nail penetration.
- CN201310145434.6 disclosed a This method uses cross-plate in-situ testing to obtain soil shear strength parameters. However, this method is suitable for highly sensitive clayey soils and has limitations for soft rocks with higher strength and greater hardness. Therefore, a convenient and scientific way to determine the internal friction angle of soft rock is urgently needed. Methods.
- the present invention is designed to provide a convenient and scientific method for determining the internal friction angle of soft rock.
- a small-diameter core tube is selected to drill the undisturbed soft rock, and then the friction angle is determined based on the high-pressure and low-temperature hydrate triaxial test system.
- a triaxial compression test was carried out on the undisturbed soft rock, and then images of the specimen's fracture surface were collected and characterized based on PicPick digital image processing software to obtain the fracture angle.
- the internal friction angle was determined based on the relationship between the fracture angle and the internal friction angle. friction angle.
- Drilling undisturbed soft rock Use a small diameter drill bit with a diameter of 75mm and a core tube with a diameter of 73mm to drill the undisturbed soft rock to obtain an undisturbed soft rock with a diameter of 50mm, making it meet the requirements of uniaxial compressive strength and triaxial compression test diameter. ;
- Sample processing Use an art carving knife to carve the original soft rock bit by bit, and gently grind it off with a sharp-toothed wire saw blade. Repeat until the height of the original soft rock meets the standard sample size, and cut each piece into pieces. Samples are numbered;
- Rupture surface image collection After the triaxial compression test, take out the damaged specimens, place all specimens flatly on the work surface, and use a digital camera perpendicular to the rupture surface to collect rupture surface images;
- Characterization processing to obtain the rupture angle Use PicPick digital image software to process the rupture surface image of the sample, conduct characterization processing on the rupture surface image, and obtain the rupture angle ⁇ f between the sample failure surface and the large principal stress action surface;
- the high-pressure and low-temperature hydrate static triaxial test system of the present invention is produced by the British GDS Company, and its model is ETAS. It has a maximum confining pressure of 32MPa and a maximum axial force of 100kN.
- the method of the present invention is simple, easy to operate, does not require a large number of tests, and the determined internal friction angle is highly accurate.
- the method of measuring the internal friction angle using the Mohr circle envelope is subject to The accuracy of the triaxial instrument and the influence of test data, the error of data reading and the degree of discreteness of data fitting restrict the accuracy of the internal friction angle. Without reading the test data and fitting process, the rupture angle can be obtained directly, and the accuracy higher.
- Figure 1 is a specific flow chart of the method for determining the internal friction angle of soft rock according to the present invention
- Figure 2 is a diagram of the mudstone drilling process according to the embodiment of the present invention.
- Figure 3 shows some mudstone samples according to the embodiment of the present invention
- Figure 4 is a process diagram of the triaxial compression test of mudstone according to the embodiment of the present invention.
- Figure 5 is a triaxial test stress-strain curve of mudstone according to the embodiment of the present invention, in which (a) is the first group of samples and (b) is the second group of samples;
- Figure 6 is a collection image of the fracture surface of the sample according to the embodiment of the present invention.
- (a)-(h) in the figure are samples 1-1-1, 1-1-2, 1-1-3, and 1-1 in order. -4, 1-2-3, 2-1-2, 2-1-4, 2-2-2, 2-2-3;
- Figure 7 is a process diagram for obtaining the rupture angle ⁇ f according to the embodiment of the present invention.
- the drill bit is 75mm, the diameter of the core tube is 73mm, and the diameter of the original core taken out is exactly 50mm, which meets the requirements of uniaxial compressive strength and triaxial compression test diameter.
- This test is divided into two groups, the first group: 1-1-1, 1-1-2, 1-1 -3, 1-1-4, 1-2-1, 1-2-2, 1-2-3, 1-2-4; second group: 2-1-1, 2-1-2, 2 -1-3, 2-1-4, 2-2-1, 2-2-2, 2-2-3, 2-2-4; each group conducts two parallel tests corresponding to confining pressures of 0.5MPa, 1.0MPa, 1.5MPa, 2.0MPa, choose the more ideal result.
- the PicPick digital image software is used to process the sample fracture surface image.
- the principle is equivalent to measuring the angle with a protractor.
- the sample fracture surface image is characterized and the fracture angle ⁇ f of the sample failure is obtained.
- the processing process is shown in Figure 7, and the results are shown in the table. 1.
- a and b are the intercept and slope of the fitted straight line respectively, and the derivation can give formulas (5) and (6):
- Group 1 Group 2: average value: The internal friction angle of mudstone measured in this example and the calculation method in Example 1 They are 21.6° and 23.2° respectively, with a difference of only 6.9%. Comparative verification with the Mohr-Coulomb strength criterion method shows that the method proposed in this embodiment to determine the internal friction angle of soft rock is scientific and feasible.
Landscapes
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)
Abstract
一种确定软岩内摩擦角的方法,先选取小直径岩芯管钻取原状软岩,再基于高压低温水合物三轴试验系统对原状软岩开展三轴压缩试验,然后进行试样破裂面图像采集,并基于PicPick数字图像处理软件进行特征化处理,获取破裂角,最后根据破裂角与内摩擦角之间的关系式定断内摩擦角;其方法简单,操作方便,无需大量试验,不需读取试验数据及拟合过程,直接获取破裂角,精度更高。
Description
本申请要求于2022年6月24日提交中国专利局、申请号为202210731352.9、发明名称为“一种确定软岩内摩擦角的方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
本发明属于岩土工程中软岩抗剪强度参数测试技术领域,涉及一种确定软岩内摩擦角的方法。
抗剪强度是指岩土体抵抗外力剪切破坏的极限能力,是评价岩土体力学特性的一个重要指标。根据摩尔-库伦强度理论,抗剪强度可分为摩擦强度和黏聚强度,但是,软岩作为特殊的岩石,其细观结构与工程性质有别于土体及硬质岩体。软岩内部存在黏土矿物与孔隙缺陷,黏土矿物成分与孔隙缺陷对软岩中矿物颗粒骨架间的接触摩擦性质影响较大。骨架颗粒间的摩擦包括动摩擦与静摩擦,二者不是独立发生的,摩擦过程中动摩擦与静摩擦相继发生,这种复杂的摩擦性质宏观表现为摩擦强度,内摩擦角是反映摩擦强度的指标参数。因此,如何合理准确的测得软岩的内摩擦角是关键一环,准确测定内摩擦角有助于分析软岩的强度特性,这是对软岩的理论分析、设计计算、工程应用,以及数值模拟等工作的重要支撑。
目前,获取岩体力学参数的方法有试验法、反演计算法、《工程岩体质量分级标准》法,以及工程类比法等。其中,试验法是获取岩体真实力学参数的主要方法,同时,试验法也是其它方法的基础。室内试验与现场
试验相比具有操作简便、耗时短的优点。因此,开展常规三轴压缩试验,根据摩尔-库伦准则,通过莫尔圆包络线得到其抗剪强度参数,是测定内摩擦角的常用渠径,但是根据摩尔-库伦准则处理三轴试验结果,计算内摩擦角的过程也较为繁琐。针对此问题,现有技术CN201510435511.0公开了一种利用射钉测量岩石黏聚力c和内摩擦角的方法,但是,建立射钉贯入量与抗剪强度参数的关系不仅需要开展大量三轴试验,而且软岩存在的不均匀性软弱夹层会影响射钉贯入量,CN201310145434.6公开了一种十字板原位测试获取土体抗剪强度参数的方法,但是这种方法适用于灵敏度高的黏性土,对于强度较高、硬度较大的软岩具有局限性。因此,亟需一种便捷科学的确定软岩内摩擦角的方法。
发明内容
针对现有技术存在的不足,本发明设计提供了一种便捷科学的确定软岩内摩擦角的方法,先选取小直径岩芯管钻取原状软岩,再基于高压低温水合物三轴试验系统对原状软岩开展三轴压缩试验,然后进行试样破裂面图像采集,并基于PicPick数字图像处理软件进行特征化处理,获取破裂角,最后根据破裂角与内摩擦角之间的关系式定断内摩擦角。
为实现上述目的,本发明确定软岩内摩擦角的具体过程为:
钻取原状软岩:选用直径75mm的小直径钻头和直径73mm的岩芯管钻取原状软岩,得到直径50mm的原状软岩,使其符合单轴抗压强度及三轴压缩试验直径的要求;
试样处理:选用美术刻刀对原状软岩一点一点地削刻,并用锐齿钢丝锯条轻轻磨断,不断重复直至原状软岩高度满足标准试样尺寸,并将每一
试样进行编号处理;
开展三轴压缩试验:将试样表面套入橡皮膜后将装入高压低温水合物三轴试验系统的压力室,开展原状软岩三轴压缩试验,其中同等围压等级做两次平行试验;
破裂面图像采集:三轴压缩试验结束,取出破坏试样,将所有试样平整放置于工作台面,采用数字摄像机垂直于破裂面采集破裂面图像;
特征化处理获取破裂角:采用PicPick数字图像软件处理试样的破裂面图像,将破裂面图像进行特征化处理,获取试样破坏面与大主应力作用面的破裂角αf;
计算内摩擦角:根据破裂角αf与内摩擦角的关系式:
得到内摩擦角的计算公式:
根据式(2)得到软岩的内摩擦角
本发明所述高压低温水合物静三轴试验系统产自英国GDS公司,型号为ETAS,最大围压32MPa,最大轴向力100kN。
本发明与现有技术相比,其方法简单,操作方便,无需大量试验,而且确定的内摩擦角准确度高,对于软岩而言,莫尔圆包络线测定内摩擦角的方法受制于三轴仪的精度及试验数据的影响,数据读取的误差及数据拟合的离散程度制约着内摩擦角的准确度,而不需读取试验数据及拟合过程,直接获取破裂角,精度更高。
说明书附图
图1为本发明所述的确定软岩内摩擦角的方法具体流程图;
图2为本发明实施例所述泥岩钻取过程图;
图3为本发明实施例所述部分泥岩试样;
图4为本发明实施例所述泥岩三轴压缩试验过程图;
图5为本发明实施例所述泥岩三轴试验应力应变曲线,其中(a)为第一组试样,(b)为第二组试样;
图6为本发明实施例所述试样破裂面采集图像,图中(a)-(h)依次为试样1-1-1、1-1-2、1-1-3、1-1-4、1-2-3、2-1-2、2-1-4、2-2-2、2-2-3;
图7为本发明实施例所述破裂角αf获取过程图,图中(a)-(h)依次为试样1-1-1、1-1-2、1-1-3、1-1-4、1-2-3、2-1-2、2-1-4、2-2-2、2-2-3。
下下面通过具体实施例并结合附图对本发明作进一步说明。
实施例1:
本实施例确定内摩擦角的具体过程为:
(1)钻取原状泥岩:
由于泥岩极易扰动,制样存在崩解破坏的现象,为避免传统大直径岩芯制作试样带来的扰动,对内摩擦角计算造成误差,因此,选用勘察单位平时很少选用的小直径钻头75mm,岩芯管直径73mm,取出的原状岩芯直径恰好为50mm,符合单轴抗压强度及三轴压缩试验直径的要求。
(2)试样处理:
考虑到用于普通岩石的截断磨制方法不适用于易扰动的软岩,同时,
泥岩硬度较大,用于黏性土制样的削土刀、普通钢丝锯也不适用,因此,选用锋利的美术刻刀一点一点地削刻,用锐齿钢丝锯条轻轻磨断,不断重复直至原状岩芯高度满足标准试样尺寸,并将每一试样进行编号处理,本试验共分为两组,第一组:1-1-1、1-1-2、1-1-3、1-1-4、1-2-1、1-2-2、1-2-3、1-2-4;第二组:2-1-1、2-1-2、2-1-3、2-1-4、2-2-1、2-2-2、2-2-3、2-2-4;每组进行两次平行试验分别对应围压为0.5MPa、1.0MPa、1.5MPa、2.0MPa,结果取较理想的一次。
(3)开展三轴压缩试验:
由于普通岩石三轴仪压力等级较大,泥岩强度较小,未显示稳定读数就已经破坏,精度不足,因此,选用压力等级介于普通岩石三轴仪与土工三轴仪之间的高压低温水合物静三轴试验系统,该仪器产自英国GDS公司,型号为ETAS,最大围压32MPa,最大轴向力100kN,在该系统上能够进行标准三轴试验、应力路径试验和K0固结试验,满足本实施例的试验要求,同时为避免压力室加压介质液体油的侵入,在试样表面套入橡皮膜,随后将试样装入高压低温水合物三轴试验系统压力室,开展原状泥岩三轴压缩试验,因泥岩均质性差,同等围压等级做两次平行试验,采用结果理想的一次,计算内摩擦角度试样最终选取第一组试样1-1-1、1-1-2、1-1-3、1-1-4、1-2-3与第二组试样2-1-2、2-1-4、2-2-2、2-2-3进行分析。
(4)破裂面图像采集:
三轴压缩试验结束,取出破坏试样,将第一组试样1-1-1、1-1-2、1-1-3、1-1-4、1-2-3与第二组试样2-1-2、2-1-4、2-2-2、2-2-3全部平整放置于工作台面,采用数字摄像机垂直于破裂面采集图像,试样破裂面采集图像如
图6所示。
(5)特征化处理获取破裂角αf:
采用PicPick数字图像软件处理试样破裂面图像,原理相当于量角器测量角度,将试样破裂面图像特征化处理,获取试样破坏的破裂角αf,处理过程如图7所示,结果见表1。
(6)计算内摩擦角
三轴压缩试验中试样破坏面与大主应力作用面的破裂角αf与的内摩擦角的关系为:
根据上式得到内摩擦角的计算公式:
根据步骤(5)得到的试样破坏面与大主应力作用面的破裂角αf计算软岩内摩擦角结果见表1。
表1泥岩试样内摩擦角(单位:°)统计表
确定内摩擦角方法计算得到泥岩的内摩擦角为23.2°。
实施例2:
本实施例对实施例1的试样采用现有摩尔-库伦强度准则方法计算内摩擦角在统计三轴试验结果,利用破坏主应力线和莫尔强度包线的几何关系,大主应力σ1、小主应力σ3、内摩擦角三者之间的关系如式(3)所示:
根据三轴试验结果拟合大主应力σ1和小主应力σ3二者之间的关系,得到式(4):
σ1=a+bσ3 (4)。
σ1=a+bσ3 (4)。
式中a、b分别为拟合直线的截距与斜率,推导可得式(5)、(6):
由式(6)计算上述两组泥岩三轴试验结果分别为:
第1组:第2组:平均值:本实施例与实施例1计算方法测定的泥岩内摩擦角度分别为21.6°和23.2°,二者相差仅6.9%。通过与摩尔-库伦强度准则方法对比验证,表明本实施例提出的确定软岩内摩擦角的方法科学可行。
Claims (1)
- 一种确定软岩内摩擦角的方法,其特征在于,具体过程为:钻取原状软岩:选用直径75mm的小直径钻头和直径73mm的岩芯管钻取原状软岩,得到直径50mm的原状软岩,使其符合单轴抗压强度及三轴压缩试验直径的要求;试样处理:选用美术刻刀对原状软岩削刻,并用锐齿钢丝锯条磨断,不断重复直至原状软岩高度满足标准试样尺寸,并将每一试样进行编号处理;开展三轴压缩试验:将试样表面套入橡皮膜后将装入高压低温水合物三轴试验系统的压力室,开展原状软岩三轴压缩试验,其中同等围压等级做两次平行试验;破裂面图像采集:三轴压缩试验结束,取出破坏试样,将所有试样平整放置于工作台面,采用数字摄像机垂直于破裂面采集破裂面图像;特征化处理获取破裂角:采用PicPick数字图像软件处理试样的破裂面图像,将破裂面图像进行特征化处理,获取试样破坏面与大主应力作用面的破裂角αf;计算内摩擦角:根据破裂角αf与内摩擦角的关系式得到内摩擦角的计算公式:根据得到软岩的内摩擦角
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
GB2319807.0A GB2624982A (en) | 2022-06-24 | 2023-06-01 | Method for determining angle of internal friction of soft rock |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210731352.9 | 2022-06-24 | ||
CN202210731352.9A CN115266392A (zh) | 2022-06-24 | 2022-06-24 | 一种确定软岩内摩擦角的方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023246459A1 true WO2023246459A1 (zh) | 2023-12-28 |
Family
ID=83760737
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2023/097672 WO2023246459A1 (zh) | 2022-06-24 | 2023-06-01 | 一种确定软岩内摩擦角的方法 |
Country Status (3)
Country | Link |
---|---|
CN (1) | CN115266392A (zh) |
GB (1) | GB2624982A (zh) |
WO (1) | WO2023246459A1 (zh) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115266392A (zh) * | 2022-06-24 | 2022-11-01 | 青岛理工大学 | 一种确定软岩内摩擦角的方法 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102645383A (zh) * | 2012-04-06 | 2012-08-22 | 中冶集团资源开发有限公司 | 利用三轴压缩测量岩石不连续剪切面抗剪强度的方法 |
CN109141960A (zh) * | 2018-07-06 | 2019-01-04 | 绍兴文理学院 | 一种获取岩石参数的原位试验方法 |
CN112014240A (zh) * | 2020-09-01 | 2020-12-01 | 山东科技大学 | 一种基于原位表面单裂隙的岩体剪切参数评估方法 |
EP3904867A1 (de) * | 2020-04-29 | 2021-11-03 | voestalpine Stahl GmbH | Verfahren und vorrichtung zur bestimmung der bruchfläche einer probe |
CN115266392A (zh) * | 2022-06-24 | 2022-11-01 | 青岛理工大学 | 一种确定软岩内摩擦角的方法 |
-
2022
- 2022-06-24 CN CN202210731352.9A patent/CN115266392A/zh active Pending
-
2023
- 2023-06-01 WO PCT/CN2023/097672 patent/WO2023246459A1/zh unknown
- 2023-06-01 GB GB2319807.0A patent/GB2624982A/en active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102645383A (zh) * | 2012-04-06 | 2012-08-22 | 中冶集团资源开发有限公司 | 利用三轴压缩测量岩石不连续剪切面抗剪强度的方法 |
CN109141960A (zh) * | 2018-07-06 | 2019-01-04 | 绍兴文理学院 | 一种获取岩石参数的原位试验方法 |
EP3904867A1 (de) * | 2020-04-29 | 2021-11-03 | voestalpine Stahl GmbH | Verfahren und vorrichtung zur bestimmung der bruchfläche einer probe |
CN112014240A (zh) * | 2020-09-01 | 2020-12-01 | 山东科技大学 | 一种基于原位表面单裂隙的岩体剪切参数评估方法 |
CN115266392A (zh) * | 2022-06-24 | 2022-11-01 | 青岛理工大学 | 一种确定软岩内摩擦角的方法 |
Non-Patent Citations (2)
Title |
---|
HU, QIJUN; CAI, QIJIE; HE, LEPING; YANG, XIAOQIANG; YE, TAO: "Determination of Strength Parameters of Muddy Interlayer Based on Strain Failure Criterion", GONGYE JIANZHU, YEJIN-BU, CHINA, vol. 46, no. 7, 31 July 2016 (2016-07-31), China , pages 140 - 144, 177, XP009551950, ISSN: 1000-8993, DOI: 10.13204/j.gyjz201607024 * |
TAN, FAN; HUANG, BIN; RAO, XI-BAO; ZUO, YONG-ZHEN: "Experimental Demonstration and Discussion on Rupture Angle in Triaxial Test", NORTHWESTERN SEISMOLOGICAL JOURNAL, CN, vol. 33, no. Suppl. 1, 31 August 2011 (2011-08-31), CN, pages 181 - 184, XP009551955, ISSN: 1000-0844 * |
Also Published As
Publication number | Publication date |
---|---|
GB2624982A (en) | 2024-06-05 |
GB202319807D0 (en) | 2024-02-07 |
CN115266392A (zh) | 2022-11-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Peng et al. | Determination of confinement and plastic strain dependent post-peak strength of intact rocks | |
Wang et al. | Experimental study on cracking damage characteristics of a soil and rock mixture by UPV testing | |
Aydin et al. | The Schmidt hammer in rock material characterization | |
Shipton et al. | Transitional behaviour in sands with plastic and non-plastic fines | |
CN110398400B (zh) | 一种裂隙结构岩体的3d打印重构方法及裂隙结构岩体 | |
WO2023246459A1 (zh) | 一种确定软岩内摩擦角的方法 | |
Zhang et al. | Failure characterization of three typical coal-bearing formation rocks using acoustic emission monitoring and X-ray computed tomography techniques | |
CN107091623A (zh) | 隧道围岩松动圈厚度计算方法 | |
ZHANG et al. | Quantitative characterization and mesoscopic study of propagation and evolution of three-dimensional rock fractures based on CT | |
CN105547831A (zh) | 一种测定含复杂结构面岩体变形性质的模型试验方法 | |
Yu et al. | Experimental study on time-dependent behavior of silty mudstone from the Three Gorges Reservoir Area, China | |
CN113029746A (zh) | 一种通过细/微观力学测试来确定页岩宏观模量的方法 | |
CN114202160A (zh) | 一种岩石可钻性的模糊综合评价方法 | |
Sun et al. | Comparison of crack processes in single-flawed rock-like material using two bonded–particle models under compression | |
Liu et al. | Multiscale structural characterizations of anisotropic natural granite residual soil | |
He et al. | Improving measurement accuracy of Brazilian tensile strength of rock by digital image correlation | |
Shang et al. | The influence of dip angle of rock bridge on mechanical properties and fracture characteristics of fractured coal body at three-dimensional scale | |
Yang et al. | Quantifying the impact of 2D and 3D fractures on permeability in wellbore cement after uniaxial compressive loading | |
Zhang et al. | Particle strength of calcareous sand in nansha islands, south China sea | |
CN106679871A (zh) | 一种利用内摩擦角获得岩石单轴声发射条件下真实地应力值的方法 | |
CN107782620B (zh) | 一种考虑时间效应的岩石失稳临界应变的确定方法 | |
CN108918300A (zh) | 一种水力冲击混凝土裂纹扩展及ct尺度损伤研究方法 | |
Martin et al. | Core analysis workflow for evaluation of geomechanical heterogeneity and anisotropy in an Oligocene shale from the Gulf of Mexico | |
Qin et al. | Shear behaviors of rock masses containing nonpersistent joints affected by normal stress rebound under excavations and river incisions | |
Shen et al. | Impact of cyclic wetting and drying on slate properties in the Miaowei Reservoir area, southwest China |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 202319807 Country of ref document: GB Kind code of ref document: A Free format text: PCT FILING DATE = 20230601 |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23826108 Country of ref document: EP Kind code of ref document: A1 |