WO2023246349A1 - 用于联络通道掘进施工的顶推系统及使用其的施工方法 - Google Patents

用于联络通道掘进施工的顶推系统及使用其的施工方法 Download PDF

Info

Publication number
WO2023246349A1
WO2023246349A1 PCT/CN2023/093092 CN2023093092W WO2023246349A1 WO 2023246349 A1 WO2023246349 A1 WO 2023246349A1 CN 2023093092 W CN2023093092 W CN 2023093092W WO 2023246349 A1 WO2023246349 A1 WO 2023246349A1
Authority
WO
WIPO (PCT)
Prior art keywords
force
reaction frame
ejection system
main tunnel
force transmission
Prior art date
Application number
PCT/CN2023/093092
Other languages
English (en)
French (fr)
Inventor
朱瑶宏
朱寰
Original Assignee
宁波用躬科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202221615796.8U external-priority patent/CN218953333U/zh
Priority claimed from CN202210730498.1A external-priority patent/CN115059487B/zh
Priority claimed from CN202221605897.7U external-priority patent/CN218093079U/zh
Priority claimed from CN202222604286.7U external-priority patent/CN218093039U/zh
Priority claimed from CN202222854350.7U external-priority patent/CN218780355U/zh
Priority claimed from CN202320180839.2U external-priority patent/CN219910759U/zh
Priority claimed from CN202320348669.4U external-priority patent/CN219197335U/zh
Application filed by 宁波用躬科技有限公司 filed Critical 宁波用躬科技有限公司
Priority to AU2023285921A priority Critical patent/AU2023285921A1/en
Publication of WO2023246349A1 publication Critical patent/WO2023246349A1/zh

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21DSHAFTS; TUNNELS; GALLERIES; LARGE UNDERGROUND CHAMBERS
    • E21D11/00Lining tunnels, galleries or other underground cavities, e.g. large underground chambers; Linings therefor; Making such linings in situ, e.g. by assembling
    • E21D11/04Lining with building materials
    • E21D11/08Lining with building materials with preformed concrete slabs
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21DSHAFTS; TUNNELS; GALLERIES; LARGE UNDERGROUND CHAMBERS
    • E21D11/00Lining tunnels, galleries or other underground cavities, e.g. large underground chambers; Linings therefor; Making such linings in situ, e.g. by assembling
    • E21D11/14Lining predominantly with metal
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21DSHAFTS; TUNNELS; GALLERIES; LARGE UNDERGROUND CHAMBERS
    • E21D11/00Lining tunnels, galleries or other underground cavities, e.g. large underground chambers; Linings therefor; Making such linings in situ, e.g. by assembling
    • E21D11/40Devices or apparatus specially adapted for handling or placing units of linings or supporting units for tunnels or galleries
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21DSHAFTS; TUNNELS; GALLERIES; LARGE UNDERGROUND CHAMBERS
    • E21D15/00Props; Chocks, e.g. made of flexible containers filled with backfilling material
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21DSHAFTS; TUNNELS; GALLERIES; LARGE UNDERGROUND CHAMBERS
    • E21D15/00Props; Chocks, e.g. made of flexible containers filled with backfilling material
    • E21D15/14Telescopic props
    • E21D15/44Hydraulic, pneumatic, or hydraulic-pneumatic props
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21DSHAFTS; TUNNELS; GALLERIES; LARGE UNDERGROUND CHAMBERS
    • E21D9/00Tunnels or galleries, with or without linings; Methods or apparatus for making thereof; Layout of tunnels or galleries
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21DSHAFTS; TUNNELS; GALLERIES; LARGE UNDERGROUND CHAMBERS
    • E21D9/00Tunnels or galleries, with or without linings; Methods or apparatus for making thereof; Layout of tunnels or galleries
    • E21D9/14Layout of tunnels or galleries; Constructional features of tunnels or galleries, not otherwise provided for, e.g. portals, day-light attenuation at tunnel openings

Definitions

  • the present application relates to the technical field of underground engineering, specifically, to a jacking system used for tunnel excavation construction and a construction method using the same.
  • a connecting channel when the continuous length of the tunnel between two single-line interval tunnels is greater than 600m, a connecting channel should be set up.
  • Most of the communication channels of subway tunnels and municipal highway tunnels adopt the mining method.
  • the freezing method is usually used for reinforcement, and then the mining method is used for excavation of communication channels.
  • the freezing method construction can easily lead to adverse consequences such as frost heaving and melting settlement, which usually causes a certain amount of ground subsidence. When the ground subsidence is large, there may even be a risk of collapse. This is especially difficult for urban core areas with complex geological conditions and high environmental protection requirements. adapt.
  • this construction method has a long construction period, usually requiring more than 100 days of freezing before excavation can begin, making the construction period often as long as 4-6 months.
  • the freezing method is not very effective, is prone to accidents, has a great impact on the environment, and is very risky.
  • the pre-support trolley needs to be opened and supported on the main tunnel segments in the upper, lower, left and right directions to form a full-circle integrated pre-support structure, and the reaction frame is supported at the departure point.
  • the main tunnel segment on the opposite side uses the backrest as a pushing device to bear the thrust.
  • the inner diameter of the tunnel is usually 5.5m to 6m, and in some projects it can even be expanded to 8.1m or larger. For tunnel construction operations in other projects, the inner diameter of the tunnel may be larger or smaller.
  • the current pre-supported structure can adapt to the changing needs of tunnel inner diameters between 5.5m and 7.1m.
  • the tunnel diameter is greater than 7.1m, for example, when it increases to 8.1m, using the same support method will result in a very large pre-supported structure system. And as the diameter of the tunnel becomes larger, the adaptability and stability of the main tunnel segment structure and support structure, as well as the stress changes and structural strength during the construction process, need to be re-researched. Current construction methods offer no lessons.
  • the entire main tunnel space is pre-supported
  • the support structure is occupied, vehicles cannot pass, and both sides of the construction site cannot be connected. This means that only after the construction of one communication channel is completed, the construction of other communication channels or other construction of the main tunnel can be carried out. Multiple construction processes cannot be carried out simultaneously, resulting in the extension of the construction progress.
  • the main components in the existing technology, the backrest and push-pull systems can only rely on manual on-site adjustment of the angle of the planned propulsion line.
  • the purpose of this application is to provide a jacking system for the excavation construction of T-shaped communication passages in tunnel groups and a construction method using the jacking system to achieve simultaneous construction of multiple processes, improve construction efficiency, shorten the construction period, and Reduce equipment manufacturing costs and construction costs.
  • a jacking system used for the excavation construction of a T-shaped communication channel in a tunnel group includes a reaction frame and a force-transmitting component.
  • the communication channel is used to communicate with at least one main tunnel.
  • the force-transmitting component connects the force-transmitting component to the tunnel group.
  • the reaction frame is connected to the main tunnel segment located on the side of the reaction frame facing the communication channel and surrounding the starting end of the communication channel, and the reaction frame is used to provide tunneling equipment with Support, wherein the support force is transmitted to the main tunnel segment surrounding the originating end of the communication channel via the force transmission member in a tensile force-bearing manner.
  • the force transmission member includes a plurality of force transmission tie rods arranged at circumferential intervals around the communication channel.
  • At least a portion of the force-transmitting tie rods are directly connected to the main tunnel segment surrounding the originating end of the communication channel.
  • the originating end of the communication channel is provided with an originating sleeve connected to the main tunnel segment, and at least a part of the force transmission rod is connected to the originating sleeve.
  • the force-transmitting tie rod is configured as a non-powered tie rod.
  • the force-transmitting pull rod is configured as a power pull rod capable of providing driving force.
  • the power pull rod is a reverse pull oil ejector pull rod.
  • each of the power drawbars has an independent control unit.
  • the pushing system further includes a slide rail extending along the central axis of the communication channel, and the reaction frame is movable along the slide rail.
  • one end of the force-transmitting tie rod is pivotably connected to the reaction frame, and/or the other end of the force-transmitting tie rod is connected to the main tunnel segment or to the The origin sleeves of the main tunnel segments are pivotably connected.
  • the pivot axis of the force-transmitting pull rod is perpendicular to the axial direction of the communication channel.
  • one end of the force-transmitting tie rod is detachably connected to the reaction frame, and/or the other end of the force-transmitting tie rod is connected to the main tunnel segment or to the main tunnel.
  • the starting sleeves of the segments are detachably connected.
  • the force-transmitting tie rod is detachably provided through a coupling device, and the coupling device includes:
  • a mounting base the mounting base has two relatively spaced side walls, and the end of the force transmission rod is disposed between the two side walls;
  • Pins are provided with mounting holes at the ends of the mounting base and the force-transmitting pull rod, and the pins pass through the mounting holes of the mounting base and the force-transmitting pull rod.
  • the mounting seat is fixedly provided on the reaction frame, or the mounting seat is fixed on the main tunnel segment, or the pushing system includes a connection with the main tunnel segment.
  • the launching sleeve is fixedly connected, and the mounting seat is fixed on the launching sleeve.
  • the end of the force-transmitting pull rod is provided with a fine-tuning structure
  • the mounting hole passes through the fine-tuning structure
  • the fine-tuning structure has a drum-shaped outer convex peripheral surface surrounding the mounting hole.
  • the force transmission member is configured as a cylindrical structure arranged around the originating end of the communication channel.
  • the cylindrical structure and the surrounding communication channel The main tunnel segments at the origin are directly connected.
  • the originating end of the communication channel is provided with an originating sleeve connected to the main tunnel segment, and the cylindrical structure is connected to the originating sleeve.
  • the axial end of the cylindrical structure is provided with a flange extending radially outward, and the cylindrical structure is connected and fixed by the flange.
  • connection method of the cylindrical structure includes welding, bolting and/or riveting.
  • the side walls of the cylindrical structure are provided with reinforcing ribs.
  • the side wall of the cylindrical structure is provided with a through-hole for material transportation.
  • the cylindrical structure is an integrally formed structure, or is assembled from at least two separate structures.
  • the at least two separate structures are identical to each other.
  • a push drive unit is provided on a side of the reaction frame facing the communication channel, and the push drive unit includes a push drive unit that is spaced in a quadrant-symmetrical manner around the central axis of the communication channel. Multiple hydraulic cylinders.
  • one end of the plurality of hydraulic cylinders is connected to the reaction frame, and the other end is connected to an annular abutment piece.
  • the abutment piece is used to connect to the pipe of the excavation equipment or the communication channel. The pieces touch.
  • the hydraulic cylinder is mounted on the reaction frame and is at least partially disposed inside the reaction frame.
  • supporting equipment of the push drive unit is provided inside the reaction frame, and the supporting equipment at least includes hydraulic control components, oil pipes, oil tanks and/or valves.
  • the hydraulic cylinder includes a cylinder barrel and a piston.
  • the front end of the cylinder barrel is provided with a flange and the flange flange is used to abut against the reaction frame in the direction of excavation. superior.
  • the flange flange is connected to the reaction force by fasteners shelf.
  • the surface of the reaction frame is provided with a boss that abuts against the flange flange.
  • the hydraulic cylinder includes a cylinder barrel and a piston, and the bottom of the cylinder barrel abuts on the reaction frame.
  • the pushing system further includes a trolley disposed at the starting end, and the reaction frame is supported by the trolley, wherein the reaction frame is provided with a device for adjusting the reaction frame.
  • the adjustment unit includes an adjustment drive cylinder arranged along three mutually orthogonal adjustment directions, one of the adjustment directions being the excavation direction.
  • the reaction force frame is provided with lugs on both left and right sides in the excavation direction, and at least a part of the adjustment driving cylinder is provided on the lugs.
  • the adjustment unit includes a first adjustment drive cylinder and a second adjustment drive cylinder at least in the excavation direction, and the adjustment stroke of the second adjustment drive cylinder is greater than the adjustment stroke of the first adjustment drive cylinder. journey.
  • the second adjustment driving cylinder is provided at the bottom of the reaction frame.
  • a passage space penetrating along the extension direction of the main tunnel is provided on a side of the reaction frame away from the communication channel.
  • a passage platform is laid in the passage space.
  • the passage platform is provided with a passage track extending along the extension direction of the main tunnel.
  • the ejection system further includes an operation platform erected on the main tunnel segment below the ejection system, and the reaction frame and/or the passage platform are supported on the operation platform. .
  • the ejection system further includes an additional force transmission member that connects the reaction frame to the main tunnel located on a side of the reaction frame away from the communication channel. segment, the force exerted by the excavation equipment on the reaction frame is transmitted to the main tunnel segment via the force transmission member and the additional force transmission member, the The passage space extends through the additional force-transmitting member.
  • the additional force transmission member includes a plurality of support rods distributed around the axis of the communication channel.
  • the plurality of support rods include an upper support rod part and a lower support rod part.
  • the passage space is provided with Between the upper support rod section and the lower support rod section.
  • the ejection system further includes a platform, the platform has a surface that can fit the main tunnel segment in shape, and the support rod is connected to the platform and passes through the platform.
  • the cap platform is supported on the main tunnel segment.
  • the support rod includes at least two sub-sections arranged along the length direction, and adjacent sub-sections are detachably connected and fixed through connectors.
  • the reaction frame is provided with a material transport hole penetrating the reaction frame at a position corresponding to the communication channel.
  • a method for using a jacking system to perform excavation construction of a T-shaped communication channel in a tunnel group includes:
  • the method before the step of transporting the jacking system, excavation equipment and supporting equipment to and fixing the location where the communication channel is to be excavated, the method further includes:
  • the supporting equipment, the pushing system and the excavation equipment are combined into an integrated structure.
  • the supporting equipment includes an originating sleeve, and the method further includes:
  • the starting sleeve is connected to the main tunnel segment, and the reaction frame is connected to the starting sleeve through a force transmission member.
  • the excavation equipment is a shield excavation machine, and before the steps of excavation and assembling the communication passage assembly unit, the method further includes:
  • the excavation equipment is a pipe-jacking tunnel boring machine
  • the force transmission component is an unpowered force transmission tie rod
  • the communication passage assembly unit is a pipe section.
  • the method is used in excavation and assembly of the communication passage. The steps in the unit also include:
  • the steps of digging and assembling the communication channel assembly unit include:
  • the excavation equipment is a pipe-jacking tunnel boring machine
  • the force transmission member is a force transmission tie rod capable of providing driving force
  • the communication channel assembly unit is a pipe section
  • the excavation and assembly communication channel assembly Unit steps include:
  • the force transmission pull rod is driven in the reverse direction to make the reaction force frame retract.
  • the method before the step of driving the force-transmitting pull rod in the reverse direction and retracting the reaction frame, the method further includes:
  • the pipe section closest to the reaction frame is fixed by a backstop device.
  • a jacking system for the excavation construction of a T-shaped communication channel in a tunnel group includes a reaction frame and a plurality of force-transmitting tie rods.
  • the communication channel is used to communicate at least at the receiving end along the excavation direction.
  • Main tunnel one end of the force-transmitting tie rod is connected to the reaction frame, and the other end passes through the rock and soil layer and is connected to the main tunnel segment surrounding the receiving end of the communication channel.
  • the reaction frame is used in the excavation direction.
  • the upper part provides support for the excavation equipment, wherein the support force is transmitted to the main tunnel segment surrounding the receiving end of the communication channel via the force transmission tie rod.
  • a platform is provided on the inner surface of the main tunnel segment surrounding the receiving end of the communication channel, and the force transmission tie rod passes through the main tunnel segment and is connected to the platform.
  • the platform is a structure provided separately from the main tunnel segment, and the platform has side surfaces that can fit in shape with the inner surface of the main tunnel segment.
  • the platform is made of steel.
  • the cap is a prefabricated reinforced concrete structure integrated with the main tunnel segment.
  • the end of the force-transmitting tie rod passes through the platform and is locked by a fastener.
  • the end of the force-transmitting pull rod is provided with a slot perpendicular to its own axis, and the fastener is configured as a clamping plate fixed on the platform, and the clamping plate is connected to the clamping plate.
  • the slot snaps into place.
  • the end of the force-transmitting pull rod is provided with a threaded structure, and the fastener is configured as a locking nut threadedly engaged with the threaded structure.
  • a washer is provided between the locking nut and the platform.
  • the end of the force transmission pull rod is provided with a through hole penetrating in a direction perpendicular to its own axial direction, and the fastener is configured as a lock pin that passes through the through hole.
  • multiple force-transmitting tie rods are connected to the same platform.
  • each tie rod includes a plurality of sub-sections arranged along its own axial direction, and adjacent sub-sections are connected and fixed by connectors.
  • the structural strength of the connector is no less than the structural strength of the sub-section.
  • the force-transmitting tie rod includes a hollow tube and a force-transmitting cable running through the hollow tube, wherein the hollow tube is disposed in the rock and soil layer, and the force-transmitting cable is used to Connected to the reaction frame and the main tunnel segment surrounding the receiving end of the communication channel.
  • the force-transmitting tie rod is made of rebar.
  • a sealing structure for waterproofing is provided on the main tunnel segment at the position where the force-transmitting tie rod passes.
  • Figure 1 is a perspective view of a pushing system according to a first preferred embodiment of the present application
  • Figure 2 is a side view of the push system shown in Figure 1;
  • Figure 3 is a perspective view of a pushing system according to another preferred embodiment of the present application.
  • Figure 4 is a perspective view of the reaction frame of the push system shown in Figure 3;
  • Figure 5 is a schematic diagram of the preparation state of the jacking system according to the present application before starting excavation
  • Figures 6 to 9 are schematic diagrams of different states of the jacking system during the excavation process according to the present application.
  • Figure 10 is the stress analysis model of the main tunnel segment and the contact tunnel door ring
  • Figures 11 and 12 are respectively the stress analysis results of the main tunnel segment and the contact channel door ring under different pushing pressures
  • Figure 13 is a schematic diagram of the main tunnel section when the jacking system according to the present application is used for mechanical contact channel construction;
  • Figure 14 shows the fine-tuning structure of the force-transmitting tie rod
  • Figure 15 is a perspective view of the push system according to the second preferred embodiment of the present invention.
  • Figure 16 is a side view of the push system shown in Figure 15;
  • Figure 17 is a perspective view of the force transmission component of the push system shown in Figure 15;
  • Figure 18 is a perspective view of the push system according to the third preferred embodiment of the present invention.
  • Figure 19 is a perspective view of a drive cylinder used in the reaction frame of the ejection system shown in Figure 18;
  • Figure 20 is a partial view of the reaction frame of the push system shown in Figure 18;
  • Figure 21 is a perspective view of the ejection system shown in Figure 18 from another angle, showing the main tunnel segment and the trolley;
  • Figure 22 is a perspective view of the ejection system according to the fourth preferred embodiment of the present invention.
  • Figure 23 is a side view of the push system shown in Figure 22;
  • Figure 24 is a side view of the ejection system shown in Figure 22, showing another configuration of the force-transmitting tie rod;
  • Figures 25 to 27 respectively show schematic diagrams of the ends of the force-transmitting pull rods of the ejection system shown in Figure 22 being locked by different fasteners;
  • Figure 28 is a side view of the ejection system according to the fifth preferred embodiment of the present invention.
  • Figure 29 is an improved scheme of the pushing system shown in Figure 28.
  • T-shaped connecting tunnels In order to realize underground space network interconnection, a large number of T-shaped connecting tunnels need to be built. For example: subway, highway inter-section communication channels, subway entrances and air shafts, municipal pipe corridor inspection shafts, long tunnel intermediate air shafts, water tunnel connection lines, etc.
  • This application provides an ejection system suitable for mechanical method construction of T-shaped communication passages in tunnel groups.
  • the contact passage and the main tunnel can be assembled tunnels composed of assembled units such as segments or pipe sections.
  • This communication channel can be used to connect one or two main subway tunnels.
  • a pushing system 100 includes a reaction frame 11 and a force transmission member.
  • the jacking system 100 is fixed in the completed part of the main tunnel 1 at a position corresponding to the communication channel to be excavated.
  • the force transmission member is used to connect the reaction frame 11 with the corresponding segment of the main tunnel 1 surrounding the starting end of the communication channel (which may be called the main tunnel segment) in a manner that bears tensile force. That is, the force transmission member connects the reaction frame to the main tunnel segment located on the side of the reaction frame 11 facing the communication channel.
  • the reaction frame 11 is used to provide support for the excavation equipment. Among them, the supporting force is finally transmitted to the main tunnel segment surrounding the origin end of the communication channel through the force transmission member. Therefore, the force supporting the forward boring of the boring equipment is provided by the main tunnel segment located on the side of the reaction frame 11 facing the communication channel.
  • the force transmission member located on the side of the reaction frame away from the communication channel is supported between the reaction frame and the main tunnel segment.
  • the force that supports the excavation equipment to drive forward is transmitted to the main tunnel segment through the reaction frame and force transmission member.
  • the force-transmitting members have the tendency to push the main tunnel segments outward. This supporting force is ultimately borne by the soil outside the main tunnel segment. Under this stress model, the main tunnel segment is actually squeezed by the force-transmitting components on both sides and the soil outside.
  • the extrusion force experienced by the main tunnel segment is much smaller than the compressive strength of the materials (such as concrete, steel bars, etc.) that constitute it, so it will not have an adverse effect on the structure of the main tunnel segment.
  • the force used to support the excavation equipment to drive forward is finally transmitted to the main tunnel segment through the reaction frame and the force transmission member.
  • the force-transmitting members have the tendency to pull the main tunnel segments inward.
  • the support force of the reaction frame is completely borne by the main tunnel segments.
  • Figures 10 to 12 show that under this stress model, when a communication channel with a diameter of R2 is opened on the main tunnel segment with a diameter of R1, the Stress analysis results of the main tunnel segment and the door ring forming the communication channel.
  • the results show that using the above-mentioned ejection system 100, the local concentrated stress of the main tunnel segment is up to 10MPa ⁇ 20MPa, and is mainly concentrated around the force transmission components.
  • the structural strength can be increased by locally reinforcing the periphery of the force transmission components. response. Under the action of the thrust distribution force of 250kPa ⁇ 450kPa, the maximum horizontal lateral displacement of the opening of the communication channel reaches -1.0mm ⁇ -1.5mm, and it is a transverse inward convergence trend. For other uncut sections adjacent to the main tunnel segment The whole ring segment has less influence.
  • the stress analysis results of the main tunnel segment and the door ring forming the communication channel are shown in Figures 11 and 12 respectively. It can be seen that when subjected to a maximum thrust force of 450kPa, the maximum displacement and deformation of the main tunnel segment is -1.2mm, and the maximum displacement and deformation of the door ring forming the communication channel is -1.2mm. Therefore, it is feasible to use the ejection system 100 according to the present application to carry out mechanical communication channel construction, which can satisfy the stress redistribution of the main tunnel segment during the communication channel tunneling process and ensure the safety and stability of the structural stress. It is also applicable even for large diameter tunnels (such as 8.0m and above diameter).
  • the force transmission member located on the side of the reaction frame away from the communication channel in the conventional jacking system can be transferred to the side of the reaction frame facing the communication channel.
  • the maximum distance between the side of the reaction frame away from the communication channel and the main tunnel segment on that side can be set to no less than one-third of the radial size of the main tunnel to ensure that the passage space has sufficient size. Accessible. When the diameter of the main tunnel is large, the maximum distance of the passage space can even be set to no less than the main tunnel diameter. One-half the radial dimension of the tunnel.
  • the jacking system according to the present application can be applied to two construction methods: shield tunneling method and pipe jacking method.
  • the excavation equipment is a shield boring machine (ie, a shield boring machine) and a pipe jacking boring machine.
  • the assembly unit is a segment.
  • the assembly unit is a pipe section.
  • the reaction frame 11 is made of rigid materials, such as steel or composite materials. The size of the reaction frame 11 is adapted to the size of the excavation equipment used to excavate the communication channel, and the stiffness is set to meet the requirements for resistance to deformation during jacking excavation construction.
  • the reaction frame 11 is shown as having a substantially rectangular shape. However, it can be understood that, as an alternative embodiment, the reaction frame 11 may be configured in a circular shape, an annular shape, or any other shape that meets construction requirements.
  • the force-transmitting member may be configured in the form of a force-transmitting tie rod 12 .
  • the force transmission tie rods 12 are provided in multiple numbers and are spaced along the circumferential direction around the communication channel to provide a balanced force transmission effect.
  • the force-transmitting pull rod 12 is a non-powered pull rod, which only serves to connect and transmit force without providing any driving function.
  • the unpowered tie rod can be a steel structure tie rod, specifically, it can be round steel, square steel, steel pipe or shaped steel, etc.
  • the push drive unit 14 is provided on the side of the reaction frame 11 facing the communication channel.
  • the ejection drive unit 14 may be a hydraulic cylinder.
  • the ejection drive unit 14 includes a plurality of hydraulic cylinders arranged in a quadrant-symmetrical manner around the central axis of the communication channel to provide uniform driving force for the excavation equipment in the circumferential direction.
  • the push drive unit 14 can also adjust the angle of the excavation direction of the excavation equipment relative to the central axis of the communication channel, so that the excavation direction is consistent with the central axis, or to meet other angle adjustment needs.
  • the push driving unit 14 can be used as an angle adjustment unit. Since it is not necessary to provide a very large driving force, a correspondingly smaller size and specification of the hydraulic cylinder can be selected.
  • abutment pieces 141 respectively connected to one end of the hydraulic cylinder facing away from the reaction frame 11 may also be provided.
  • the angle adjustment unit is connected to the excavation equipment or communication channel through the abutment piece 141.
  • the segments are in contact.
  • the contact member 141 may be an annular top iron.
  • FIG. 3 shows an embodiment in which the force-transmitting tie rod 12 is a power tie rod capable of providing driving force.
  • the force-transmitting tie rod 12 can be a counter-pull oil jacking tie rod, specifically a hydraulic jack system that provides counter-pull force as the main power.
  • the length of the center rod and the counter-pull force can meet the requirements for promoting the tunneling of the pipe-jacking tunnel boring machine. That is, the force-transmitting tie rod 12 is configured to provide a driving force for pushing the excavation equipment by pulling the reaction frame 11 to move. In this way, there is no need to provide a power device on the back side of the reaction frame 11 to push it forward.
  • each force-transmitting tie rod 12 has an independent control unit and can independently extend or retract. Therefore, the angular relationship between the excavation direction of the excavation equipment and the central axis of the communication channel can be fine-tuned by adjusting the strokes of different force-transmitting tie rods 12, so the angle adjustment unit can be omitted.
  • the angle adjustment unit may also be retained to provide an auxiliary angle adjustment function or an auxiliary driving function.
  • the force-transmitting tie rod 12 can be configured as an expandable and telescopic multi-section structure.
  • the driving force can also be adjusted by adjusting the number of force transmission pull rods 12 .
  • the reaction force frame 11 is always maintained in a fixed position.
  • the reaction frame 11 reciprocates along the central axis of the communication channel as the force-transmitting tie rod 12 provides driving force.
  • the ejection system 100 is provided with a slide rail 15 , which can be made of rigid material such as steel, fixedly arranged and extending along the central axis of the communication channel. The reaction frame 11 can move along the slide rail 15, and the slide rail 15 provides lateral limiting and longitudinal guidance.
  • the reaction frame 11 and the slide rail 15 can be guided and limited through the structure of the protrusion and the slide groove.
  • the bottom of the reaction frame 11 is provided with a recess as a slide groove, and the slide rail 15 is accommodated in the recess as a protrusion.
  • a chute extending along the central axis of the communication channel may be provided on the slide rail 11 , and corresponding protrusions may be provided on the reaction frame 11 .
  • the matching cross section of the chute and the protrusion can be annular, circular, rectangular, etc.
  • the starting end of the communication channel is provided with a starting sleeve 13, which is fixedly connected to the main tunnel segment.
  • the fixed connection method can be embedded, welded, bolted, casing connected, etc.
  • one end of the force transmission rod 12 facing the communication channel can be connected to the starting sleeve 13 .
  • the force transmission tie rod 12 passes through the starting The sleeve 13 indirectly connects the reaction frame 11 to the main tunnel segment.
  • the force transmission tie rod 12 can also be directly connected to the main tunnel segment.
  • part of the force-transmitting tie rods 12 may be connected to the main tunnel segment, and part of the force-transmitting tie rods 12 may be connected to the originating sleeve 13 .
  • the force-transmitting pull rod 12 and the originating sleeve 13 or the main tunnel segment can be pivotably connected through a coupling device, wherein the pivot axis is perpendicular to the length direction of the force-transmitting pull rod 12 .
  • the force transmission tie rod 12 and the reaction frame 11 can also be connected in the same manner through a coupling device.
  • the coupling device may specifically be a pin and a structure mated with the pin.
  • the pin may be disposed in a detachable manner, so that the force transmission tie rod 12 is detachable from the starting sleeve 13 or the main tunnel segment and/or from the reaction frame 11 .
  • Such a connection method can be used to adjust the relative positional relationship between the jacking system and the main tunnel, fit the design angle, and facilitate the normal operation of the excavation equipment and jacking system.
  • the structure that cooperates with the pin may be a fixed mounting base 16 .
  • the mounting base 16 and the end of the force transmission pull rod 12 have mounting holes for the pins to pass through.
  • the mounting base 16 includes two spaced side walls, and the mounting holes on the two side walls are respectively aligned.
  • the end of the force-transmitting pull rod 12 is accommodated in the space between the two side walls, and then the pins are passed through the respective mounting holes to complete the pivotable connection of the force-transmitting pull rod 12 . It can be understood that the force-transmitting tie rod 12 can be removed by taking out the pin from the mounting hole.
  • the mounting base 16 can be arranged in different positions.
  • the mounting seat 16 is fixed on the outside of the originating sleeve 13; in the embodiment where the force transmission rod 12 is connected to the main tunnel segment, the mounting seat 16 16 is fixed on the main tunnel segment.
  • the mounting base 16 can also be fixed on the reaction force frame 11 .
  • the end of the force-transmitting pull rod 12 for pivotal connection is provided with a fine-tuning structure 121 .
  • the fine-tuning structure 121 is movably arranged so that the posture of the force-transmitting pull rod 12 can be fine-tuned by deflecting relative to the pivot axis.
  • the fine-tuning structure 121 may have an oblate shape, the mounting hole 122 passes through the fine-tuning structure 121 along the oblate axial direction, and the axial outer circumferential surface surrounding the mounting hole 122 is formed into a convex drum-shaped surface.
  • the radial dimension of the middle part of the oblate shape is larger than Radial dimensions at both ends.
  • the force transmission member of the ejection system 100 is configured as a cylindrical structure 12', such as a cylindrical structure.
  • the cross-section perpendicular to the axial direction of the cylindrical structure 12' can also be in other shapes, such as rectangle, ellipse, etc.
  • the force transmission member configured as a cylindrical structure is similar to the above-mentioned unpowered pull rod, which itself only transmits support force and cannot provide any driving force or pushing force.
  • the driving force required for forward excavation can be provided by the jacking drive system 14 on the reaction frame.
  • the cylindrical structure 12' is connected to the reaction frame 11 and the segment surrounding the starting end of the communication channel of the main tunnel 1 through its two axial ends, respectively, to achieve the function of transmitting supporting force.
  • the cylindrical structure 12' can be directly connected to the main tunnel segment.
  • main tunnel segments designed for excavation of communication channels may include specially designed steel structures for added strength.
  • the cylindrical structure 12' can preferably be made of steel.
  • the cylindrical structure 12' can thus be connected directly to the main tunnel segment using, for example, welding.
  • the end of the cylindrical structure 12' facing the starting end of the communication channel is configured in the shape of a spatial curve to fit the arc shape of the corresponding main tunnel segment.
  • connection of the cylindrical structure 12' with the main tunnel segment at any desired position along the circumferential direction of the cylindrical structure 12'.
  • other connection methods such as bolted connection, riveting, etc. can also be used individually or in combination to connect the cylindrical structure 12' to the main tunnel segment.
  • the originating end of the communication channel can be provided with an originating sleeve 13, and one end of the cylindrical structure 12' facing the communication channel can be connected to the originating sleeve 13.
  • the cylindrical structure 12' indirectly connects the reaction frame 11 to the main tunnel segment through the origin sleeve 13.
  • connection methods such as welding, bolting and riveting can also be used individually or in combination to connect the cylindrical structure 12' to the starting sleeve 13.
  • the cylindrical structure 12' may be constructed in one piece. That is, the cylindrical structure 12' itself is an integral component, which is conducive to reducing the number of parts of the ejection system, thereby reducing the assembly process, and is conducive to improving the intensification of the ejection system. And compared with the force transmission member formed by multiple dispersed parts, the integrally formed cylindrical structure 12' can reduce the freedom of installation of the reaction frame 11 relative to the main tunnel segment. Compared with connecting through multiple dispersed parts, it can effectively reduce Errors accumulate. In other embodiments, the cylindrical structure 12' can also be assembled from at least two separate structures, which can reduce the processing, transportation and storage problems caused by the excessive overall size of the cylindrical structure 12'. Difficulties.
  • the at least two separate structures may preferably be axially symmetrical structures relative to the axis of the cylindrical structure 12', or may also be small cylindrical structures 12' segmented along the axis of the cylindrical structure 12'.
  • each split structure is identical to each other. In this way, the separate structures are interchangeable with each other and have no specific assembly positions, which can reduce the possibility of installation errors.
  • both ends of the cylindrical structure 12' are provided with flanges 121', which generally extend outward along the radial direction of the cylindrical structure 12'.
  • the cylindrical structure 12' is connected to the reaction frame 11 and the main tunnel segment or origin sleeve 13 through flanges 121'.
  • a similar flange 131 can also be provided at the end of the launching sleeve 13.
  • the flanging facilitates quick alignment of the originating sleeve 13 and the cylindrical structure 12' during assembly, and the flanging can increase the contact area at the connection location, which is beneficial to increasing the connection strength and reducing the risk of damage caused by the connection. stress.
  • the cylindrical structure 12' is also provided with reinforcing ribs 123' to increase its structural strength.
  • the reinforcing ribs 123' are provided on the outer side of the wall of the cylindrical structure 12', preferably extend along the axial direction, and are provided in plurality at intervals along the circumferential direction of the cylindrical structure 12'. It can be understood that in other embodiments, the reinforcing ribs 123' can also be configured in other forms, such as extending in the circumferential direction, or providing staggered reinforcing ribs extending in the circumferential direction and axial direction, etc.
  • Material transport holes 122' are also provided on the wall of the cylindrical structure 12'. During the excavation process of the communication channel, materials such as segments or pipe sections used to assemble the communication channel can be transported to the assembly position through the material transport hole 122'. Preferably, on the premise of ensuring the structural strength of the cylindrical structure 12', multiple material transport holes 122' can be provided at intervals along the circumference of the cylindrical structure 12', and the intervals are preferably uniform. In this way, the force transmission member configured as a cylindrical structure has multiple possible installation positions. When assembling the force transmission member, it is only necessary to make any one of the material transport holes 122' face the direction of the incoming material, that is, any one of the installation positions is satisfied. Just install and position it, so it can be positioned quickly.
  • the construction of the mechanical communication channel also requires supporting equipment, such as the transportation system 2 shown in Figure 5 for transporting materials.
  • the jacking system 100, excavation equipment 3, starting sleeve 13, transportation system 2, etc. can be combined into an integrated structure.
  • the complete monolithic structure can then be transported to the location in the main tunnel where the contact tunnel is to be excavated.
  • the entire one-piece structure is held in place using fixed legs and other auxiliary structures.
  • the overall positional relationship of the starting sleeve 13, the excavation equipment 3 and the ejection system 100 is adjusted to the intended excavation direction through the starting adjustment platform. Then, one end of the starting sleeve 13 and the force transmission tie rod 12 facing the communication channel to be excavated is connected to the main tunnel segment.
  • all the force-transmitting tie rods 12 can be connected to the starting sleeve 13, or all the force-transmitting tie rods 12 can be directly connected to the main tunnel segment.
  • the launching sleeve 13 may be omitted.
  • the adjustment of the starting direction of the excavation equipment 3 is completed. And connect one end of the force transmission pull rod 12 facing the reaction force frame 11 with the reaction force frame 11, and use a fixing mechanism to lock the front end and the rear end of the force transmission pull rod 12.
  • the entire integrated structure is connected with the main tunnel 1 to form a fixed whole. Then the excavation equipment 3 can be moved to the planned starting point through the auxiliary device. Location.
  • the above preparation process is applicable to the jacking system in which the force-transmitting tie rod 12 is a powered tie rod or a non-powered tie rod, as well as to construction methods using the shield tunneling method and the pipe jacking method.
  • the subsequent steps are the same.
  • the initial excavation is carried out, and the communication channel assembly unit S (ie, the segment) is sequentially excavated and assembled, and the cycle is repeated until the communication channel construction is completed.
  • the reaction frame 11 is provided with a material transport hole 111 passing through it. Materials such as contact channel segments required for assembly during the tunneling process during shield tunneling construction can be transported to the tunneling equipment 3 through the material transport holes 111 .
  • the jacking drive unit 14 needs to be installed. Act directly on the reaction frame 11. Then, the initial excavation is carried out, and the push driving unit 14 is pressed against the excavation equipment 3 to drive it forward by a distance of one pipe section (ie, the assembly unit S) along the intended excavation direction.
  • the pipe jacking method needs to be assembled at the position of the jacking system 100, and the communication channel pipe sections need to be transported from the side of the jacking system 100 to be in place.
  • the pushing drive unit 14 is retracted, and then the pipe segments to be assembled are transported to the position through the transportation system 2, and the assembly is completed. After that, the pushing drive unit 14 is extended to closely contact with the assembled communication channel pipe section. Return the force transmission tie rod 12 to the connected state.
  • the push drive unit 14 is used again to drive the excavation equipment 3 forward along the intended excavation direction by a distance of one pipe section, and the above steps are repeated to complete the excavation and assembly of each contact channel pipe section until the construction of the contact channel is completed.
  • the force transmission tie rod 12 is a power tie rod
  • the jacking system 100 is adjusted to the precise position according to the planned route of the planned excavation communication channel
  • first the transmission link that interferes with the pipe section transportation channel is The force releases at least one of the two ends of the tie rod 12 and moves it away.
  • the way to remove it can be to pull up the reverse pull oil
  • the rod retracts, or pivots about the end that remains connected to a position that does not interfere with the segment transport channel. Then the pipe sections to be assembled are transported to the position through the transportation system 2, and the assembly is completed.
  • the launching sleeve 13 is provided with a backstop device. After completing the excavation of this pipe section, you can first use the anti-retraction device to fix the pipe section, and then drive the force transmission rod 12 in the reverse direction to drive the reaction frame 11 back to prevent the pipe section from retreating under pressure.
  • Figure 18 shows an ejection system with an intensive reaction frame.
  • the arrangement of most of the mechanisms is generally similar to the arrangement of the corresponding mechanisms in the ejection system shown in Figures 1 and 2, where mechanisms with similar structures or functions are are given the same reference numerals.
  • the difference is that most of the hydraulic cylinders constituting the push drive unit 24 are arranged inside the reaction frame 21 , for example, the hydraulic cylinders are installed on the reaction frame 21 along the excavation direction.
  • supporting equipment of the push drive unit 24 is also provided inside the reaction frame 21 , where the supporting equipment may be hydraulic control components, oil pipes, oil tanks, valves, etc.
  • Such an arrangement is conducive to reducing the size of the reaction frame 21 in the thickness direction, making the entire system more intensive, and allows the hydraulic cylinder to be installed in a large workshop and other places before the ejection system 200 is hoisted into the main tunnel. and related supporting equipment are pre-installed on the reaction frame 21, which can greatly reduce the workload of connecting pipelines and installing hydraulic devices on site in the small space in the main tunnel, and at the same time facilitates hoisting and transportation.
  • the connection arrangement of the hydraulic pipelines and control components of the push drive unit 24 is very complicated. The environment at the construction site is relatively harsh, and the entire hydraulic system of the push drive unit 24 is exposed to the harsh construction environment, which can easily lead to a higher failure rate. According to this embodiment, most of the equipment of the push drive unit 24 is hidden in the reaction frame 21 and is protected by the reaction frame 21, which is beneficial to reducing the failure rate and ensuring construction efficiency.
  • FIG. 19 shows a perspective view of the hydraulic cylinder constituting the ejection drive unit 24 .
  • the hydraulic cylinder includes a cylinder barrel 241 and a piston 242 telescopically provided in the cylinder barrel 241 .
  • a flange flange 243 is provided at the front end of the cylinder tube 241 .
  • a mounting hole can be provided on the reaction frame 21, and the cylinder barrel 241 of the hydraulic cylinder can be inserted into the mounting hole so that the flange flange 243 abuts the reaction frame 21 in the opposite direction of the excavation direction. .
  • the reaction frame 21 can provide support for the hydraulic cylinder.
  • FIG. 19 shows a perspective view of the hydraulic cylinder constituting the ejection drive unit 24 .
  • the hydraulic cylinder includes a cylinder barrel 241 and a piston 242 telescopically provided in the cylinder barrel 241 .
  • a flange flange 243 is provided at the front end of the cylinder tube 241 .
  • the surface of the reaction frame 21 facing the communication channel may be provided with a boss 212 surrounding the mounting hole, and the flange flange 243 abuts on the boss 212 .
  • fasteners 26 can also be used to fasten the flange flange 243 and the boss 212 .
  • the fasteners 26 may be screws or rivets.
  • the flange flange can be omitted, and the bottom of the cylinder 241 directly abuts the reaction frame 21 so that the reaction frame 21 provides support.
  • the reaction frame 21 is provided with a material transport hole 211 passing through it.
  • the required materials such as the communication channel segments for assembly can be transported to the excavation equipment through the material transport holes 211.
  • a plurality of hydraulic cylinders may be arranged in a quadrant-symmetrical manner around the material transport hole 211 with respect to the central axis of the communication channel.
  • an annular abutment piece (not shown) can be provided, and the free ends of the plurality of hydraulic cylinders (ie, the pistons 242 The end) is connected to the abutment piece at the same time, and abuts with the excavation equipment or assembly unit through the abutment piece.
  • the abutment piece can increase the contact area with the excavation equipment or assembly unit. Even if the hydraulic cylinder and the excavation equipment or assembly unit are not accurately aligned, a good fit can be achieved to transmit the pushing driving force.
  • the abutting member may be an annular top iron.
  • the trolley 27 can be arranged at this position in advance. After the trolley 27 is moved into place, it can be fixed on the main tunnel segment through structural support such as its own support column and hydraulic support system. Then the starting sleeve 13, reaction frame 21 and other structures can be hoisted into place. After being installed and fixed, the trolley 27 can provide support for the reaction frame 21.
  • the reaction frame 21 is provided with an adjustment unit 28 , which may include an adjustment drive cylinder to finely adjust the position of the reaction frame 21 relative to the trolley 27 .
  • the adjustment unit 28 includes adjustment drive cylinders arranged along three mutually orthogonal adjustment directions.
  • the adjustment direction may include a front-rear adjustment direction along the excavation direction, an up-down adjustment direction along the vertical direction, and a left-right adjustment direction orthogonal to these two directions.
  • the adjustment unit 28 includes a front and rear adjustment drive cylinder 281 , an up and down adjustment drive cylinder 282 , and a left and right adjustment drive cylinder 283 .
  • the adjustment drive cylinder can be installed on the reaction frame 21, and the reaction frame 21 can be relative to each other by supporting the trolley 27 (for example, a baffle can be provided on the trolley 27 at a position corresponding to the drive adjustment cylinder to provide support). Due to the relative movement of the trolley 27, fine adjustment of the position is achieved.
  • the reaction frame 21 is provided with left and right protruding lug portions 213 respectively on both sides along the left and right adjustment direction.
  • the lug portion 213 can be used to install the above-mentioned adjustment driving cylinder, thereby saving the installation space of the portion of the reaction frame 21 facing the communication channel.
  • the front and rear adjustment drive cylinder 281 and the up and down adjustment drive cylinder 282 are mounted on the lug portion 213 .
  • the adjustment drive cylinder can also be installed on the main body of the reaction frame 21 .
  • the left and right adjustment drive cylinders 283 are disposed below the reaction frame 21 and close to the side.
  • the left and right adjustment drive cylinders 283 are provided inside the reaction frame 21 .
  • the adjustment unit 28 may be symmetrically provided with two sets of adjustment drive cylinders in each adjustment direction.
  • the two sets of adjusting driving cylinders are respectively arranged on the left and right sides of the reaction frame 21 relative to the excavation direction.
  • the left and right adjustment driving cylinders 283 are provided on the left and right sides of the reaction frame 21 in opposite pushing directions, so as to provide adjustment driving forces in the left and right directions respectively.
  • the up and down adjustment driving cylinder 282 is provided in the same pushing direction on the left and right sides of the reaction frame 21 , for example, used to push the reaction frame 21 upward.
  • the front and rear adjustment driving cylinder 281 may include a forward adjustment driving cylinder that pushes the reaction force frame 21 toward the direction closer to the starting sleeve 13 and a forward adjustment driving cylinder that pushes the reaction force frame 21 away from the starting sleeve. Push in direction 13 to adjust the drive cylinder backward.
  • the front and rear adjustment drive cylinder 281 may only include a one-way drive cylinder, the cylinder barrel and the piston of which are fixedly connected to the reaction frame 21 and the trolley 27 respectively, to achieve both pushing and pulling in the front and rear directions. an adjustment function.
  • the adjustment driving cylinders are all small-stroke driving cylinders, which are used to finely adjust the position of the reaction frame 21 .
  • the demand for adjustment amplitude of the reaction frame 21 in the front-to-back direction is greater than the demand in the other two adjustment directions. Therefore, the adjustment unit 28 also includes an additional adjustment drive cylinder 284 arranged in the front-rear direction, which has a larger stroke than the front-rear adjustment drive cylinder 281, and therefore can adjust the position of the reaction frame 21 over a larger displacement.
  • the additional adjustment driving cylinder 284 may be a push-pull oil cylinder, one end of which is connected to the reaction frame 21 , and the other end may be connected to the trolley 27 , for example, to the bracket of the trolley 27 .
  • the additional adjustment driving cylinder 284 can be preferably disposed at the bottom, so as not to interfere with operations such as material transportation during the excavation process.
  • a large-stroke adjustment driving cylinder similar to the additional adjustment driving cylinder 284 can also be provided in the other direction.
  • Figures 22 to 27 show a jacking system that is particularly suitable for the excavation construction of a communication channel that is connected to the main tunnel at its receiving end.
  • the ejection system 300 includes a reaction frame 31 and a force-transmitting member composed of a plurality of force-transmitting tie rods 32 .
  • a plurality of force-transmitting tie rods 32 are arranged at intervals along the circumferential direction of the communication channel.
  • One end of each force-transmitting tie rod 32 is connected to the reaction frame 31, and the other end passes through the rock and soil layer from the starting position and is connected to the main tunnel segment 4 surrounding the receiving end of the communication channel.
  • the reaction frame 31 is used to provide support for the excavation equipment, and the reaction force of the excavation equipment acting on the reaction frame 31 is finally transmitted to the main tunnel segment surrounding the receiving end of the communication channel through the force transmission tie rod 32. Therefore, the back support system of the reaction frame 31 can be omitted, so that the back support space of the reaction frame 31 is released.
  • the released back space that is, the space between the reaction frame 31 and the main tunnel segment 1 at the starting end on its back side
  • the released back space can allow vehicles, personnel, materials Waiting for passage in the main tunnel allows a variety of construction processes to be carried out simultaneously, especially the construction of multiple contact passages at different locations in the completed main tunnel, which can greatly shorten the construction period.
  • the rock and soil layer can provide support for the main tunnel segment 4 to balance the force transmission rod 32 acting on the receiving end surrounding the communication channel.
  • the tensile force on the main tunnel segment 4 can thereby avoid the deformation of the main tunnel segment 4 connected to the force transmission tie rod 32 due to the tensile force.
  • the ejection system 10 includes four groups of force-transmitting tie rods arranged in quadrant symmetry around the central axis of the communication channel, and each group is composed of three force-transmitting tie rods 32 .
  • the number of groups of force-transmitting tie rods and the number of each group of force-transmitting tie rods can be flexibly selected according to actual conditions.
  • the force-transmitting tie rods can also function individually instead of being arranged in groups.
  • the force-transmitting tie rod 32 may be specifically made of rebar (hot-rolled ribbed steel bar), such as precision-rolled rebar.
  • the force transmission tie rod can also be made of other suitable materials other than rebar.
  • each force-transmitting tie rod 32 can use a single full-length structure.
  • the length of a single force-transmitting tie rod may not meet the requirements for connecting to the main tunnel segment surrounding the receiving end.
  • multiple sub-sections 321 can be provided throughout the entire length of a force-transmitting tie rod 32 , and adjacent sub-sections 321 can be connected and fixed through connectors 322 .
  • the structural strength of the connector 322 and the connection strength between the connector 322 and the sub-section 321 are not lower than the structural strength of each sub-section 321 itself.
  • the connector 322 and each sub-section 321 of the force transmission rod 32 can be connected and fixed through threaded connection, welding, etc.
  • Each fixing method can also be combined, for example, it can be connected by threaded connection first, and then the connection strength can be increased by welding.
  • the thread structure used for threaded connection may be a thread structure specially provided at its end through thread rolling or other processing techniques.
  • its threaded ribs can also be used as the threaded structure connected to the connector 322 .
  • Figure 24 shows another structure of the force-transmitting tie rod 32a, which includes a hollow tube 324 disposed in the rock and soil layer and passing through the hollow tube 324 to be connected to the reaction frame 31 and the main tunnel segment 4 surrounding the receiving end.
  • Force transmission cable 325 During specific construction, you can drill holes first, arrange the hollow pipe 324 in the rock and soil layer through the drill holes, and then connect the force transmission cable 325 from the hollow Pass through the core tube 324, and connect and fix its two ends with the reaction frame 31 and the main tunnel segment 4 surrounding the receiving end respectively.
  • the hollow tube 324 provides a channel for the force-transmitting cable 325 to pass through, and can serve as a sheath for protection.
  • the force transmission cable 325 transmits the tensile force between the reaction frame 31 and the main tunnel segment 4 surrounding the receiving end.
  • Hollow tube 324 may be a steel tube.
  • the force-transmitting cable 325 may preferably be a steel wire rope, steel strand, or other flexible structure relative to the hollow tube 324 .
  • the above-mentioned connector 322 can also be used for the force transmission rod 32a shown in Figure 24.
  • the connector 322 can connect the hollow tubes 324 on both sides. Since the force-transmitting cable 325 can be cut to a predetermined length as needed, it can have a full-length structure extending from the reaction frame 31 to the main tunnel segment 4 surrounding the receiving end without having to be arranged in sections.
  • the connector 322 can also be used to connect the segmented force transmission cable 325 to increase its length.
  • a waterproof sealing device is provided at the position where the force-transmitting tie rods pass through in the main tunnel segment to prevent groundwater from leaking from between the force-transmitting tie rods and the main tunnel segment. Oozing from the cracks.
  • water-stop gaskets may be provided, or grouting may be performed in boreholes passing through the main tunnel segments to form a waterproof structure.
  • the inner surface of the main tunnel segment 4 corresponding to the communication channel is provided with a platform 5 and a force transmission tie rod 32 (or a force transmission cable 325)
  • the segment 4 passes through the main tunnel and is fixedly connected to the cap 5.
  • the platform 5 has a large size and contact area, which can disperse and transmit the tensile force of the force transmission rod 32 to the main tunnel segment 4 to avoid stress concentration on the main tunnel segment 4 .
  • the platform 5 has a larger size, so that at least part or all of the force-transmitting tie rod 32 is fixedly connected to the same platform 5 .
  • the platform 5 may be a structure that is provided separately from the main tunnel segment 4 , and its side facing the main tunnel segment 4 is configured to fit with the inner surface of the main tunnel segment 4 shape, such as a convex arc surface, to maximize the contact area between the cap platform 5 and the main tunnel segment 4 and reduce the local pressure between the two.
  • the platform 5 can be a steel structure.
  • the platform 5 can also be a structure integrally provided on the main tunnel segment 4, For example, prefabricated reinforced concrete structures, etc.
  • the fastener 323 is configured as a clamping plate 323 a.
  • the end of the force-transmitting pull rod 32 is provided with a slot (not shown), and the slot extends substantially perpendicularly to the axial direction of the force-transmitting pull rod 32 .
  • the clamping plate 323a engages with the slot of the force-transmitting pull rod 32, so that the force-transmitting pull rod 32 cannot be retracted, thereby achieving locking.
  • the clamping plate 323a can preferably be fixed on the platform 5 through additional fasteners 324 such as anti-separation screws.
  • the engagement between the clamping plate 323a and the clamping groove is arranged symmetrically around the axial center of the force-transmitting pull rod 32 .
  • the fastener 323 is configured as a lock nut 323b.
  • the end of the force-transmitting pull rod 32 is provided with a threaded structure (not shown).
  • the thread structure may be a thread-type convex rib of the fine-rolled rebar itself, or may be a thread specially rolled on the end of the force-transmitting tie rod 32 .
  • the locking nut 323b is coupled with the threaded structure at the end of the force-transmitting tie rod 32 through a threaded connection, so that the force-transmitting tie rod 32 cannot be retracted.
  • a washer 325 can be provided between the lock nut 323b and the platform 5 to improve the stability of the lock nut and reduce the possibility of loosening.
  • the fastener 323 is configured as a locking pin 323c.
  • the end of the force-transmitting tie rod 32 is provided with a through hole (not shown), which passes through the force-transmitting tie rod 32 generally along the radial direction of the force-transmitting tie rod 32 (that is, the direction perpendicular to the axial direction).
  • the lock pin 323c passes through the through hole, and its externally exposed part abuts against the platform 5, locking the force-transmitting rod 32 relative to the platform 5 so that it cannot be retracted. Back.
  • the pushing system according to the above embodiment is suitable for the excavation construction of the communication channel connected with the main tunnel at the receiving end.
  • the origin of the communication channel it can be set up in another main tunnel, that is, the communication channel to be excavated is used to connect two different main tunnels. It can also be applied to other construction environments other than the main tunnel, such as The communication channel and the main tunnel at its receiving end form a T-shaped tunnel structure, etc.
  • Figures 28 and 29 further illustrate an embodiment that fully utilizes the passage space on the back side of the ejection system.
  • the structure of the pushing system is substantially the same as that of the embodiment shown in FIGS. 1 and 2 , and mechanisms with similar structures or functions are given the same reference numerals.
  • a working platform 46 is provided in the main tunnel 1, which is erected on the main tunnel segment below the ejection system 400 to provide overall support for structures such as the reaction frame 11.
  • the working platform 46 Through the support of the working platform 46, on the one hand, it is helpful to align the excavation equipment with the position of the communication channel to be excavation, and on the other hand, the working surface of the jacking operation is raised to a horizontal position with a larger radial size in the main tunnel, which can Provide a spacious working environment.
  • the reaction frame 11 of the pushing system 400 is connected to the main tunnel segment located on the side of the reaction frame 11 facing the communication channel through a force transmission member (such as a force transmission tie rod 12), so that on the side of the reaction frame 11 away from the communication channel
  • a traffic space 45 is formed between one side of the tunnel and the segments of the main tunnel 1.
  • a passage platform 451 can be set up in the passage space to provide support for passing vehicles, personnel, materials, etc.
  • the access platform 451 can be supported on the working platform 46 through supports 453 .
  • a traffic track 452 along the extension direction of the main tunnel may also be provided on the traffic platform 451. In this way, the traffic track 452 can provide guidance for vehicle movement, thereby improving traffic efficiency.
  • Figure 29 shows an improved configuration of the ejection system 400.
  • the pushing system 400 in addition to the force-transmitting tie rod 12, the pushing system 400 also includes additional force-transmitting components, which are arranged on the back side of the reaction frame 11 and supported between the reaction frame 11 and the main tunnel segment.
  • the jacking system can increase the tension provided by the force-transmitting member located on the front side of the reaction frame.
  • the additional force transmission member on the back side of the force frame provides support, which is beneficial to providing greater pushing driving force for the excavation equipment.
  • the additional force transmission member can preferably be configured as a plurality of dispersed support rods 47, which are supported between the reaction frame 11 and the main tunnel segment, and are generally arranged around the axis of the communication channel. arranged in such a way as to provide a roughly evenly distributed support force for the reaction frame 11.
  • the support rod 47 can be a steel rod, or a component made of other materials with sufficient strength, and its structural shape can be flexibly selected according to needs. This type of support rod only plays the role of transmitting support force and does not provide driving force itself. It can be called an unpowered support rod, that is, the additional force transmission member is an unpowered force transmission member.
  • connection method of the support rod 47 at both ends with the reaction frame 11 and the main tunnel segment may include one or a combination of welding, bolting, hinged or riveting. Especially when the hinged connection method is adopted, the position of the reaction frame 11 can be finely adjusted relative to the opening of the communication channel, making the excavation position and direction more accurate.
  • the ejection system 400 is also provided with a platform 473, which has a larger size, and is provided with a shape that can fit with the inner surface of the main tunnel segment on the side facing the main tunnel segment, such as an outer convex. arc surface.
  • the support rod 47 is connected to the platform 473 and interacts with the main tunnel segment in a supporting or abutting manner through the platform 473 .
  • the cap 473 can increase the contact area with the main tunnel segment and reduce the local pressure acting on the main tunnel segment.
  • the platform 473 may be a steel structure.
  • the cap 473 may also be a structure integrally provided on the main tunnel segment, such as a prefabricated reinforced concrete structure.
  • the cap platform 473 can be omitted, and a steel structure can be pre-embedded in the main tunnel segment, and the support rods 47 can be connected or supported on the steel structure.
  • the additional force transmission member may also be configured as a single member, such as a cylinder whose axial ends are respectively connected to the reaction frame and the main tunnel segment. structure, etc.
  • This construction method can reduce the number of parts, thereby reducing the installation process and time. Compared with connecting through multiple scattered support rods, it can effectively reduce the accumulation of errors.
  • the cylindrical structure may be provided with material transport holes that pass through it in the radial direction to facilitate the transport of materials.
  • the additional force transmission member may also be configured as a device capable of providing driving force, such as a pressure cylinder driven by pneumatic or hydraulic pressure, specifically a hydraulic cylinder, and therefore may be called a powered force transmission member.
  • the connection mode and arrangement mode of the powered force transmission components can be roughly the same as those of the non-powered force transmission components.
  • the reaction frame 11 when the diameter of the main tunnel is larger (for example, 8.0 m and above diameter), the reaction frame 11 is farther from the main tunnel segment, so that the overall length of the additional force transmission member is also larger.
  • the length of the additional force-transmitting member can be predetermined through calculation or measurement during engineering design, so that a single unit with a fixed length is used in the length direction.
  • a member is connected from the reaction frame 11 to the main tunnel segment.
  • the additional force-transmitting member can also be configured as a split structure including two or more sub-sections along the length direction, and adjacent sub-sections along the length direction are connected and fixed through connectors.
  • the length of the additional force transmission member can be flexibly adjusted according to the actual conditions of the construction site, which is very beneficial when the installation error of the ejection system is large.
  • the length of each sub-section of the additional force transmission member is smaller, which can also reduce difficulties in disassembly, storage and transportation.
  • the plurality of support rods 47 include an upper support rod part 471 and a lower support rod part 472, which are spaced apart in the up and down direction, leaving enough space to form the passage space 45. In this way, the effect of additional force transmission components not affecting traffic is achieved.
  • the access platform 451 may be laid above the lower support rod portion 472 .
  • the material transport hole can also be used to form a passage space.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Structural Engineering (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Environmental & Geological Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Lining And Supports For Tunnels (AREA)
  • Thiazole And Isothizaole Compounds (AREA)
  • Liquid Crystal Substances (AREA)

Abstract

本申请提供一种用于联络通道掘进施工的顶推系统及使用其的施工方法。顶推系统包括反力架和传力构件。传力构件将反力架连接至位于反力架的面向联络通道的一侧并围绕联络通道的始发端的主隧道管片。反力架用于在掘进方向上为掘进设备提供支撑,其中,支撑力经由传力构件传递至围绕联络通道的始发端的主隧道管片。根据申请的顶推系统取消了背靠支撑,不仅简化了结构,使整个系统集约化,而且将反力架的背靠空间释放,为多条联络通道同步施工、联络通道与主隧道施工同步进行提供了空间便利。这种顶推系统不仅制造成本低,而且由于其操作方便,节约施工空间,可以使多道施工工序同步进行,从而使施工成本明显降低。

Description

用于联络通道掘进施工的顶推系统及使用其的施工方法 技术领域
本申请涉及地下工程技术领域,具体而言,涉及一种用于联络通道掘进施工的顶推系统及使用其的施工方法。
背景技术
根据《地铁设计规范》规定:两条单线区间隧道之间,当隧道连贯长度大于600m时,应设联络通道。地铁隧道及市政公路隧道的联络通道大都采用矿山法。例如在地下水较为丰富的区域,通常采用冻结法加固,然后采用矿山法进行联络通道开挖施工。然而,冻结法施工容易导致冻胀、融沉等不良后果,通常会引起一定的地面沉降,地面沉降较大时甚至发生垮塌危险,这对地质条件复杂、环境保护要求高的城市核心区域尤其难以适应。并且这一施工方法建设工期长,通常需要超过100天的冰冻,然后才能开始开挖,使建设工期经常长达4-6个月。另外,对于有砂层和承压水的地层,冻结法效果并不好,容易出事故,对环境影响大、风险很高。
近些年提出了采用拼装式联络通道结构,并采用机械法联络通道施工的方法。在始发过程中,需要将预支撑台车张开,在上、下、左、右各个方向支撑于主隧道管片,形成全环整体式预支撑结构,并将反力架支撑在始发方向相对侧的主隧道管片上以作为顶推装置的背靠承担推力。以地铁隧道施工为例,隧道内径通常在5.5m至6m,有些项目中甚至能够扩大至8.1m或更大。对于其他工程的隧道施工作业,隧道内径可能有大有小。而当前的预支撑结构能够适应隧道内径在在5.5m至7.1m之间变化的需求。当隧道直径大于7.1m,例如增加到8.1m时,采用同样的支撑方式将会导致预支撑结构的体系十分庞大。并且由于隧道直径变大,主隧道管片结构与支撑结构的适应性和稳定性,以及在施工过程中的应力变化、结构强度等,均需重新研究。目前的施工方法并不能提供任何借鉴。
此外,采用全环整体式预支撑结构,整个主隧道的空间被预支 撑结构占用,车辆无法通行,施工位置两侧无法连通。这就导致只有在一条联络通道施工完毕之后才可以进行其他联络通道的施工或主隧道的其他施工,多个施工工序无法同步进行,导致施工进度延长。另一方面,现有技术中的主要构件,背靠与顶推系统只能依靠人工现场完成计划推进线的角度调整。
因此,需要提供一种用于联络通道掘进施工的顶推系统及使用该顶推系统的施工方法以至少部分地解决上述问题,同时控制设备制造成本和施工成本。
发明内容
本申请的目的在于,提供一种用于隧道群T型联络通道掘进施工的顶推系统及使用该顶推系统的施工方法,以实现多种工序的同步施工,提高施工效率,缩短工期,并降低设备制造成本和施工成本。
根据本申请的一个方面的用于隧道群T型联络通道掘进施工的顶推系统包括反力架和传力构件,所述联络通道用于联络至少一条主隧道,所述传力构件将所述反力架连接至位于所述反力架的面向所述联络通道的一侧并围绕所述联络通道的始发端的主隧道管片,所述反力架用于在掘进方向上为掘进设备提供支撑,其中,支撑力经由所述传力构件以承受拉力的方式传递至所述围绕所述联络通道的始发端的主隧道管片。
在部分实施方式中,所述传力构件包括多个围绕所述联络通道的周向间隔布置的传力拉杆。
在部分实施方式中,至少一部分所述传力拉杆与所述围绕所述联络通道的始发端的主隧道管片直接连接。
在部分实施方式中,所述联络通道的始发端设置有连接至所述主隧道管片的始发套筒,至少一部分所述传力拉杆与所述始发套筒连接。
在部分实施方式中,所述传力拉杆构造为无动力拉杆。
在部分实施方式中,所述传力拉杆构造为能够提供驱动力的动力拉杆。
在部分实施方式中,所述动力拉杆为反拉油顶拉杆。
在部分实施方式中,每个所述动力拉杆具有独立的控制单元。
在部分实施方式中,所述顶推系统还包括沿着所述联络通道的中心轴线延伸的滑轨,所述反力架沿所述滑轨可移动。
在部分实施方式中,所述传力拉杆的一端与所述反力架可枢转地连接,并且/或者,所述传力拉杆的另一端与所述主隧道管片或与连接至所述主隧道管片的始发套筒可枢转地连接。优选地,所述传力拉杆的枢转轴线垂直于所述联络通道的轴线方向。在部分实施方式中,所述传力拉杆的一端与所述反力架可拆卸地连接,并且/或者,所述传力拉杆的另一端与所述主隧道管片或连接至所述主隧道管片的始发套筒可拆卸地连接。
在部分实施方式中,所述传力拉杆通过联结装置可拆卸地设置,所述联结装置包括:
安装座,所述安装座具有两个相对间隔设置的侧壁,所述传力拉杆的端部设置在两个侧壁之间;和
销,所述安装座和所述传力拉杆的端部分别设置有安装孔,所述销穿过所述安装座和所述传力拉杆的所述安装孔。
在部分实施方式中,所述安装座固定设置在所述反力架上,或者,所述安装座固定在所述主隧道管片上,或者,所述顶推系统包括与所述主隧道管片固定连接的始发套筒,所述安装座固定在所述始发套筒上。
在部分实施方式中,所述传力拉杆的端部设置有微调结构,所述安装孔穿过所述微调结构,并且所述微调结构具有围绕所述安装孔的鼓形的外凸周面。
在部分实施方式中,所述传力构件构造为筒状结构,所述筒状结构布置为围绕所述联络通道的始发端。
在部分实施方式中,所述筒状结构与所述围绕所述联络通道的 始发端的主隧道管片直接连接。
在部分实施方式中,所述联络通道的始发端设置有连接至所述主隧道管片的始发套筒,所述筒状结构与所述始发套筒连接。
在部分实施方式中,所述筒状结构的轴向端部设置有沿径向向外延伸的翻边,所述筒状结构通过所述翻边连接固定。
在部分实施方式中,所述筒状结构的连接方式包括焊接、螺栓连接和/或铆接。
在部分实施方式中,所述筒状结构的侧壁设置有加强筋。
在部分实施方式中,所述筒状结构的侧壁设置有贯通的物料运输孔。
在部分实施方式中,所述筒状结构为一体成型的结构,或者由至少两个分体结构拼装而成。
在部分实施方式中,当所述筒状结构由至少两个分体结构拼装而成时,所述至少两个分体结构彼此相同。
在部分实施方式中,所述反力架的朝向所述联络通道的一侧设置有顶推驱动单元,所述顶推驱动单元包括围绕所述联络通道的中心轴线以象限对称的方式间隔设置的多个液压缸。
在部分实施方式中,所述多个液压缸的一端连接所述反力架,另一端与环形的抵接件连接,所述抵接件用于与所述掘进设备或所述联络通道的管片抵接。
在部分实施方式中,所述液压缸安装在所述反力架上并且至少部分地设置在所述反力架的内部。
在部分实施方式中,所述顶推驱动单元的配套设备设置在所述反力架的内部,所述配套设备至少包括液压控制元器件、油管、油箱和/或阀件。
在部分实施方式中,所述液压缸包括缸筒和活塞,所述缸筒的前端设置有法兰凸缘并通过所述法兰凸缘沿掘进方向的反向抵靠在所述反力架上。
在部分实施方式中,所述法兰凸缘通过紧固件连接至所述反力 架。
在部分实施方式中,所述反力架的表面设置有与所述法兰凸缘抵靠的凸台。
在部分实施方式中,所述液压缸的包括缸筒和活塞,所述缸筒的底部抵靠在所述反力架上。
在部分实施方式中,所述顶推系统还包括设置在所述始发端的台车,所述反力架由所述台车支撑,其中,所述反力架设置有调节所述反力架与所述台车的相对位置的调节单元。
在部分实施方式中,所述调节单元包括沿着三个相互正交的调节方向设置的调节驱动缸,所述调节方向之一为掘进方向。
在部分实施方式中,所述反力架在掘进方向上的左右两侧设置有凸耳部,至少一部分所述调节驱动缸设置在所述凸耳部上。
在部分实施方式中,所述调节单元至少在所述掘进方向上包括第一调节驱动缸和第二调节驱动缸,所述第二调节驱动缸的调节行程大于所述第一调节驱动缸的调节行程。
在部分实施方式中,所述第二调节驱动缸设置在所述反力架的底部。
在部分实施方式中,所述反力架的背离所述联络通道的一侧设置有沿所述主隧道的延伸方向贯通的通行空间。
在部分实施方式中,所述通行空间内铺设有通行平台。
在部分实施方式中,所述通行平台设置有沿所述主隧道的延伸方向延伸的通行轨道。
在部分实施方式中,所述顶推系统还包括架设在所述顶推系统的下方的主隧道管片上的作业平台,所述反力架和/或所述通行平台支撑在所述作业平台上。
在部分实施方式中,所述顶推系统还包括附加传力构件,所述附加传力构件将所述反力架连接至位于所述反力架的背离所述联络通道的一侧的主隧道管片,所述掘进设备作用于所述反力架的力经由所述传力构件和所述附加传力构件传递至所述主隧道管片,所述 通行空间延伸穿过所述附加传力构件。
在部分实施方式中,所述附加传力构件包括围绕所述联络通道的轴线分布设置的多个支撑杆,所述多个支撑杆包括上部支撑杆部分和下部支撑杆部分,所述通行空间设置在上部支撑杆部分和下部支撑杆部分之间。
在部分实施方式中,所述顶推系统还包括承台,所述承台具有能够在形状上与所述主隧道管片贴合的表面,所述支撑杆连接至所述承台并通过所述承台支撑在所述主隧道管片上。
在部分实施方式中,所述支撑杆包括沿长度方向设置的至少两个子段,相邻的子段之间通过连接器可拆卸地连接固定。
在部分实施方式中,所述反力架设置在与所述联络通道对应的位置设置有贯通所述反力架的物料运输孔。
根据本申请的一个方面的一种使用顶推系统进行隧道群T型联络通道掘进施工的方法,包括:
将顶推系统、掘进设备及配套设备运送至拟开挖联络通道的位置并固定;
根据拟掘进方向调整所述顶推系统和所述掘进设备的位置;
通过传力构件将反力架连接至主隧道管片;
将所述掘进设备移动至计划始发位置;
掘进和拼装联络通道拼装单元;
完成联络通道施工。
在部分实施方式中,所述方法在所述将顶推系统、掘进设备及配套设备运送至拟开挖联络通道的位置并固定的步骤之前还包括:
将所述配套设备、所述顶推系统和所述掘进设备组合为一体式结构。
在部分实施方式中,所述配套设备包括始发套筒,所述方法还包括:
将所述始发套筒与所述主隧道管片连接,所述反力架通过传力构件连接至所述始发套筒上。
在部分实施方式中,所述掘进设备为盾构法掘进机,所述方法在掘进和拼装联络通道拼装单元的步骤之前还包括:
安装始发前辅助管片及钢结构。
在部分实施方式中,所述掘进设备为顶管法掘进机,所述传力构件为无动力的传力拉杆,所述联络通道拼装单元为管节,所述方法在掘进和拼装联络通道拼装单元的步骤之前还包括:
安装顶推驱动单元,所述顶推驱动单元直接作用在所述反力架上。
在部分实施方式中,所述掘进和拼装联络通道拼装单元的步骤包括:
使用顶管法掘进机完成本节管节的空间推进;
将与管节运输通道干涉的至少部分的传力拉杆解除连接并从所述管节运输通道移开;
将顶推驱动单元缩回;
将本节管节运送至拼装位置完成拼装;
将顶推驱动单元伸出与完成拼装的管节密贴;
将传力拉杆恢复为连接状态。
在部分实施方式中,所述掘进设备为顶管法掘进机,所述传力构件为能够提供驱动力的传力拉杆,所述联络通道拼装单元为管节,所述掘进和拼装联络通道拼装单元的步骤包括:
将与管节运输通道干涉的传力拉杆解除连接并从所述管节运输通道上移开;
将管节运送至拼装位置完成拼装;
将所述传力拉杆恢复为连接状态;
驱动所述传力拉杆,通过所述反力架推动所述顶管法掘进机向前掘进,完成本管节掘进;
将所述传力拉杆反向驱动,使所述反力架退回。
在部分实施方式中,所述方法在将所述传力拉杆反向驱动,使所述反力架退回的步骤之前还包括:
通过止退装置将最靠近所述反力架的管节固定。
根据本发明的一个方面的一种用于隧道群T型联络通道掘进施工的顶推系统包括反力架和多个传力拉杆,所述联络通道用于至少在沿着掘进方向的接收端联络主隧道,所述传力拉杆的一端与所述反力架连接,另一端穿过岩土层连接至围绕所述联络通道的接收端的主隧道管片,所述反力架用于在掘进方向上为掘进设备提供支撑,其中,支撑力经由所述传力拉杆传递至所述围绕所述联络通道的接收端的主隧道管片。
在部分实施方式中,围绕所述联络通道的接收端的主隧道管片的内表面设置有承台,所述传力拉杆穿过所述主隧道管片并与所述承台连接。
在部分实施方式中,所述承台是与所述主隧道管片分体设置的结构,并且所述承台具有能够在形状上与所述主隧道管片的内表面相贴合的侧面。
在部分实施方式中,所述承台为钢制结构。
在部分实施方式中,所述承台是与所述主隧道管片一体设置的预制钢筋混凝土结构。
在部分实施方式中,所述传力拉杆的末端穿过所述承台并通过紧固件锁定。
在部分实施方式中,所述传力拉杆的末端设置有垂直于自身轴向的卡槽,所述紧固件构造为固定在所述承台上的卡板,所述卡板与所述卡槽卡合。
在部分实施方式中,所述传力拉杆的末端设置有螺纹结构,所述紧固件构造为与所述螺纹结构螺纹接合的锁紧螺母。
在部分实施方式中,所述锁紧螺母与所述承台之间设置有垫圈。
在部分实施方式中,所述传力拉杆的末端设置有沿着垂直于自身轴向的方向贯通的通孔,所述紧固件构造为穿设在所述通孔中的锁销。
在部分实施方式中,多个所述传力拉杆连接至同一个所述承台。
在部分实施方式中,每个拉杆包括沿自身轴向布置的多个子段,相邻的子段之间通过连接器连接固定。
在部分实施方式中,所述连接器的结构强度不低于所述子段的结构强度。
在部分实施方式中,所述传力拉杆包括空心管和穿设在所述空心管中的传力拉索,其中,所述空心管设置在岩土层中,所述传力拉索用于与所述反力架和所述围绕所述联络通道的接收端的主隧道管片连接。
在部分实施方式中,所述传力拉杆由螺纹钢制成。
在部分实施方式中,主隧道管片上由所述传力拉杆穿过的位置设置有用于防水的密封结构。
附图说明
为了更好地理解本申请的上述及其他目的、特征、优点和功能,可以参考附图中所示的优选实施方式。附图中相同的附图标记指代相同的部件。本领域技术人员应该理解,附图旨在示意性地阐明本申请的优选实施方式,对本申请的范围没有任何限制作用,其中,
图1根据本申请的第一优选实施方式的顶推系统的立体图;
图2为图1所示的顶推系统的侧视图;
图3为根据本申请的另一种优选实施方式的顶推系统的立体图;
图4为图3所示的顶推系统的反力架的立体图;
图5为根据本申请的顶推系统在始发掘进前的准备状态示意图;
图6至图9为根据本申请的顶推系统在掘进过程中的不同状态示意图;
图10为主隧道管片与联络通道洞门环的受力分析模型;
图11和图12分别为主隧道管片与联络通道洞门环在不同顶推压力下的受力分析结果;
图13为使用根据本申请的顶推系统进行机械法联络通道施工时主隧道断面的示意图;
图14示出了传力拉杆的微调结构;
图15为根据本实用新型的第二优选实施方式的顶推系统的立体图;
图16为图15所示的顶推系统的侧视图;
图17为图15所示的顶推系统的传力构件的立体图;
图18为根据本实用新型的第三优选实施方式的顶推系统的立体图;
图19为用于图18所示的顶推系统的反力架中的驱动缸的立体图;
图20为图18所示的顶推系统的反力架的局部图;
图21为图18所示的顶推系统的另一角度的立体图,其中示出了主隧道管片和台车;
图22为根据本实用新型的第四优选实施方式的顶推系统的立体图;
图23为图22所示的顶推系统的侧视图;
图24为图22所示的顶推系统的侧视图,其中示出了另一构型的传力拉杆;
图25至图27分别示出了图22所示的顶推系统的传力拉杆的末端通过不同紧固件锁定的示意图;
图28为根据本实用新型的第五优选实施方式的顶推系统的侧视图;以及
图29为图28所示的顶推系统的改进方案。
具体实施方式
现在参考附图,详细描述本申请的具体实施方式。这里所描述的仅仅是根据本申请的优选实施方式,本领域技术人员可以在所述优选实施方式的基础上想到能够实现本申请的其他方式,所述其他方式同样落入本申请的范围。
为了实现地下空间网络互通,需要建设大量的T字型连接隧道。 比如:地铁、公路区间联络通道、地铁出入口及风井、市政管廊检修井、长隧道中间风井、水务隧道连接线等等。本申请提供一种适用于机械法进行隧道群T型联络通道施工的顶推系统。其中,联络通道和主隧道可以是由管片或管节等拼装单元构成的拼装式隧道。该联络通道可以用于联络一条或两条地铁主隧道。
根据图1和图2所示,根据一种优选实施方式的顶推系统100包括反力架11和传力构件。在进行机械法联络通道施工时,顶推系统100固定在主隧道1的已经完成的部分中与拟掘进的联络通道相对应的位置。传力构件用于以承受拉力的方式将反力架11与围绕联络通道的始发端的主隧道1的相应管片(可以称为主隧道管片)连接。也即,传力构件将反力架连接至位于反力架11面向联络通道的一侧的主隧道管片。反力架11用于为掘进设备提供支撑。其中,支撑力最终通过传力构件传递至围绕联络通道的始发端的主隧道管片上。因此,支撑掘进设备向前掘进的力由位于反力架11的面向联络通道的一侧的主隧道管片提供。
可以理解,在常规的全环整体式预支撑结构中,位于反力架的背离联络通道一侧的传力构件支撑在反力架与主隧道管片之间。支撑掘进设备使其向前掘进的力经由反力架和传力构件传递至主隧道管片。传力构件具有将主隧道管片朝向外侧推出的趋势。该支撑力最终由主隧道管片外侧的土体承受。在这种受力模型下,主隧道管片实际上受到其两侧的传力构件与外侧土体的挤压。在实际的施工过程中,主隧道管片受到的挤压力远小于构成其的材料(例如混凝土、钢筋等)的抗压强度,因而不会对主隧道管片的结构造成不良影响。
而根据本申请的技术方案,支撑掘进设备使其向前掘进的力经由反力架和传力构件最终传递至主隧道管片。传力构件具有将主隧道管片朝向内侧拉动的趋势。在这种受力模型下,反力架的支撑力完全由主隧道管片承受。图10至图12示出了这种受力模型下,在直径为R1的主隧道管片上开设直径为R2的联络通道的情况下,对 主隧道管片和形成联络通道的洞门环的受力分析结果。结果显示,采用上述顶推系统100,主隧道管片的局部集中应力最高达10MPa~20MPa,且主要集中在传力构件周边,因此可通过对传力构件周边进行局部加固以增加结构强度的方式应对。在250kPa~450kPa顶推分布力作用下,联络通道开口位置的水平侧向位移最大达到-1.0mm~-1.5mm,且为横向向内收敛趋势,对邻近该主隧道管片的未切削的其他整环管片影响较小。
具体地,以R1为8.1m,R2为3.65m为例,主隧道管片和形成联络通道的洞门环的受力分析结果分别如图11和图12所示。可以看到,当承受最大450kPa的顶推力时,主隧道管片的最大位移变形为-1.2mm,形成联络通道的洞门环的最大位移变形为-1.2mm。因此,利用根据本申请的顶推系统100进行机械法联络通道施工能够满足联络通道破洞过程中的主隧道管片应力重分配,可保证结构受力的安全稳定,因此是可行的。即使对于大直径隧道(例如8.0m及以上直径),同样适用。
利用根据本申请的顶推系统100进行机械法联络通道施工,可以将常规的顶推系统中位于反力架的背离联络通道一侧的传力构件转移至反力架的朝向联络通道的一侧,因而可以省略在主隧道1的背离联络通道的一侧设置支撑结构(也即,反力架11是无背靠的反力架),从而能够在反力架的背离联络通道的一侧与主隧道管片之间形成足够的通行空间(参见图13)。车辆、人员、物料等可以利用位于反力架11的背离联络通道一侧的通行空间在主隧道1的不同位置之间转移,使得多种施工工序可以同步进行,尤其是可以在主隧道的已经完成部分的不同位置同时进行多条联络通道施工,也可以确保对主隧道正在继续掘进部分的施工的人员和物料供应,从而有利于大大缩短施工周期。优选地,反力架的背离联络通道一侧与该侧的主隧道管片之间的最大距离可以设置为不小于主隧道的径向尺寸的三分之一,以确保通行空间具有足够的尺寸可供通行。在主隧道直径较大时,该通行空间的最大距离甚至可以设置为不小于主 隧道径向尺寸的二分之一。
根据本申请的顶推系统可以适用于盾构法和顶管法两种施工方式。相对应地,掘进设备分别为盾构法掘进机(即盾构机)和顶管法掘进机。对应于盾构法,拼装单元为管片。对应于顶管法,拼装单元为管节。为了满足对掘进设备的支撑作用,反力架11为使用刚性材料制成,例如钢或复合材料等。反力架11的尺寸与用于开挖联络通道的掘进设备的尺寸相适应,并且刚度设置为能够满足顶推掘进施工时抗变形的要求。在附图中,反力架11示出为大致矩形的形状。然而,可以理解,作为替换实施方式,反力架11可以构造为圆形、圆环形或其他任何满足施工需求的形状。
在部分实施方式中,传力构件可以构造为传力拉杆12的形式。传力拉杆12设置为多个,并围绕联络通道沿着其周向间隔布置,以提供均衡的传力效果。在图1和图2示出的实施方式中,传力拉杆12为无动力拉杆,其仅起到连接和传力的作用,而不会提供任何驱动作用。优选地,无动力拉杆可以是钢结构拉杆,具体可以是圆钢、方钢、钢管或型钢等。
当掘进设备为顶管法掘进机时,掘进设备需要由顶推系统提供驱动力。因此,反力架11的朝向联络通道的一侧设置有顶推驱动单元14。在部分实施方式中,顶推驱动单元14可以是液压缸。优选地,顶推驱动单元14包括多个液压缸,其围绕联络通道的中心轴线以象限对称的方式布置,以便在圆周方向上为掘进设备提供均匀的驱动力。通过控制不同位置的液压缸的行程,顶推驱动单元14还能够调整掘进设备的掘进方向相对于联络通道的中心轴线的角度,以便使掘进方向与中心轴线一致,或满足其他角度调整的需求。此外,当掘进设备为盾构法掘进机时,掘进设备不需要由顶推系统提供驱动力。此时,顶推驱动单元14可以用作角度调节单元。由于不需要提供非常大的驱动力,相应地可以选择较小尺寸和规格的液压缸。进一步地,还可以设置分别与液压缸的背离反力架11的一端相连接的抵接件141。角度调节单元通过抵接件141与掘进设备或联络通道的 管片抵接。在部分实施方式中,抵接件141具体可以为环形的顶铁。
图3示出了传力拉杆12为能够提供驱动力的动力拉杆的实施方式。其中,传力拉杆12可以是反拉油顶拉杆,具体为一种以提供反拉力为主动力的液压千斤顶系统,中心杆长度与反拉力能够满足推动顶管法掘进机掘进的要求。即,传力拉杆12构造为能够以拉动反力架11移动的方式提供顶推所述掘进设备的驱动力。这样就不需要在反力架11的背侧设置推动其向前移动的动力装置。优选地,每个传力拉杆12具有独立的控制单元,可以独立地伸长或者回缩。由此可以通过调整不同的传力拉杆12的行程实现掘进设备的掘进方向与联络通道的中心轴线之间的角度关系的微调,因而可以省略角度调节单元。然而,可以理解,也可以保留角度调节单元以提供辅助角度调节功能或辅助驱动功能。优选地,传力拉杆12可以设置为可扩展和伸缩的多节式结构。另外还可以通过调整传力拉杆12的数量实现驱动力的调节。
可以理解,在传力拉杆12构造为无动力拉杆的实施方式中,反力架11始终保持在固定位置。而在传力拉杆12构造为动力拉杆的实施方式中,反力架11随着传力拉杆12提供驱动力而沿着联络通道的中心轴线往复移动。优选地,如图4所示,顶推系统100设置有滑轨15,其可以由钢等刚性材料制成,固定设置并沿着联络通道的中心轴线延伸。反力架11能够沿着滑轨15移动,由滑轨15提供横向限位和纵向引导。反力架11和滑轨15可以通过突出部和滑槽的结构实现引导和限位。例如,反力架11的底部设置有凹部作为滑槽,滑轨15作为突出部容纳在凹部中。或者也可以在滑轨11上设置沿联络通道的中心轴线延伸的滑槽,而在反力架11上设置相应的突出部。滑槽和突出部相配合的截面可以是圆环型、圆形、矩形等。
继续参考图1至图3,优选地,联络通道的始发端设置有始发套筒13,其与主隧道管片固定连接。固定连接的方式具体可以是预埋、焊接、栓接、套管连接等。进一步地,传力拉杆12的朝向联络通道的一端可以连接在始发套筒13上。换言之,传力拉杆12通过始发 套筒13将反力架11间接地连接至主隧道管片。当然,在另外的实施方式中,传力拉杆12也可以与主隧道管片直接连接。或者,还可以是部分传力拉杆12与主隧道管片连接,部分传力拉杆12与始发套筒13连接。
优选地,传力拉杆12与始发套筒13或主隧道管片之间可以通过联结装置以可枢转的方式连接,其中枢转轴线与传力拉杆12的长度方向垂直。并且/或者传力拉杆12与反力架11之间也可以通过联结装置以同样的方式连接。联结装置具体可以是销以及与销配合的结构。另外,销可以是以可拆卸的方式设置,使得传力拉杆12与始发套筒13或主隧道管片之间以及/或者与反力架11之间是可拆卸的。这样的连接方式可以用于调整顶推系统与主隧道的相对位置关系,拟合设计角度,方便掘进设备及顶推系统的正常工作。
具体地,如图1至图3所示,与销配合的结构可以是固定设置的安装座16。该安装座16和传力拉杆12的端部具有供销穿过的安装孔。优选地,安装座16包括两个间隔设置的侧壁,该两个侧壁上的安装孔各自对齐。传力拉杆12的端部容纳在两个侧壁之间的空间中,然后将销穿过各自的安装孔,完成传力拉杆12的可枢转连接。可以理解,将销从安装孔中取出,即可将传力拉杆12拆下。取决于传力拉杆12的连接位置,安装座16可以设置在不同的位置。例如,在传力拉杆12与始发套筒13连接的实施方式中,安装座16固定在始发套筒13的外侧;在传力拉杆12与主隧道管片连接的实施方式中,安装座16固定在主隧道管片上。当传力拉杆12与反力架11可枢转连接时,安装座16也可以固定在反力架11上。
另外,优选地,如图14所示,传力拉杆12的用于枢转连接的端部设置有微调结构121。该微调结构121可活动地设置,使得传力拉杆12能够以相对于枢转轴线偏转的方式对其姿态进行微调。具体地,该微调结构121可以具有扁圆形的形状,安装孔122沿扁圆形的轴向贯通微调结构121,其围绕安装孔122的轴向的外周面形成为外凸的鼓形面。即,沿着轴向,扁圆形形状的中部的径向尺寸大于 两端的径向尺寸。这样的结构允许传力拉杆12在围绕枢转轴线枢转的同时,还允许其相对于枢转轴线在一定范围内轻微偏转,由此实现对传力拉杆12的微调。
如图15至图17所示,在部分实施方式中,顶推系统100的传力构件构造为筒状结构12’,例如圆筒状的结构。可以理解,除了圆形,筒状结构12’的垂直于轴向的截面也可以是其他形状,例如矩形、椭圆形等。其中,构造为筒状结构的传力构件与上述无动力拉杆类似,其本身只传递支撑力,而不能提供任何驱动力或推动力。当用于顶管法施工时,可以通过反力架上的顶推驱动系统14提供向前掘进所需的驱动力。
筒状结构12’通过自身的两个轴向端部分别与反力架11和主隧道1的围绕联络通道的始发端的管片连接,以实现传递支撑力的作用。其中,在主隧道管片的一侧,筒状结构12’可以直接与主隧道管片连接。可以理解,被设计为用于开挖联络通道的主隧道管片可以包括专门设计的钢制结构,以增加强度。筒状结构12’优选地可以采用钢制结构。因而可以使用例如焊接的方式将筒状结构12’直接连接至主隧道管片。优选地,筒状结构12’的朝向联络通道始发端的端部构造为空间曲线的形状,以贴合对应的主隧道管片的弧形形状。这样有利于在沿着筒状结构12’的周向的任意期望位置对筒状结构12’与主隧道管片进行连接。为了确保连接强度,优选地可以在筒状结构12’的整个周向进行连续地连接。此外,诸如螺栓联接、铆接等的其他连接方式也可以单独地或组合地用在筒状结构12’与主隧道管片的连接中。
优选地,联络通道的始发端可以设置始发套筒13,并且筒状结构12’的朝向联络通道的一端可以连接在始发套筒13上。换言之,筒状结构12’通过始发套筒13将反力架11间接地连接至主隧道管片。此时,只需要将始发套筒13的与主隧道管片连接的一端设置为与弧形贴合的空间曲线形状即可,而始发套筒13与筒状结构12’两者相连接的端部只需要设置为较为常见的平面圆形或其他平面结构 (取决于两者垂直于轴向截面的形状)即可,因而无需对筒状结构12’进行特殊的设置,结构设计及生产制造都较为简单。可以理解,诸如焊接、螺栓连接和铆接等的连接方式同样可以单独地或组合地用在筒状结构12’与始发套筒13的连接中。
优选地,筒状结构12’可以构造为一体成型。即筒状结构12’本身为整体式构件,这有利于减少顶推系统的零部件数量,从而减少组装工序,有利于提升顶推系统的集约化。并且相比多个分散部件形成的传力构件,一体成型的筒状结构12’能够减少反力架11相对于主隧道管片的安装自由度,相比通过多个分散部件连接,可以有效减少误差累积。在另外的实施方式中,筒状结构12’还可以是由至少两个分体结构拼装而成,这样可以减小由于筒状结构12’整体尺寸过大而导致的加工、运输和储存等方面的困难。其中,该至少两个分体结构优选地可以是相对于筒状结构12’的轴线轴对称的结构,或者也可以是沿着筒状结构12’的轴线分段的小的筒状结构12’。优选地,每个分体结构彼此相同。以此方式,分体结构相互之间可替换,且没有特定的组装位置,可以减小安装错误发生的可能。
优选地,筒状结构12’的两端设置有翻边121’,其大致沿着筒状结构12’的径向向外延伸。筒状结构12’通过翻边121’与反力架11以及主隧道管片或始发套筒13连接。当筒状结构12’与始发套筒13连接时,同样可以在始发套筒13的端部设置类似的翻边131。以此方式,翻边方便在组装时将始发套筒13与筒状结构12’快速对准,并且翻边可以增加连接位置的接触面积,有利于增加连接强度,并减小因连接而导致的应力。
进一步,筒状结构12’还设置有加强筋123’,以增加其结构强度。在图示的实施方式中,加强筋123’设置在筒状结构12’的壁的外侧面,优选地沿着轴向延伸,并沿着筒状结构12’的周向间隔设置多个。可以理解,在另外的实施方式中,加强筋123’还可以构造为其他的形式,例如沿周向延伸,或者分别设置沿周向和沿轴向延伸并交错的加强筋等。
筒状结构12’的壁上还设置有物料运输孔122’。在联络通道掘进的过程中,用于拼装形成联络通道的管片或者管节等物料可以通过物料运输孔122’运输到拼装位置。优选地,在确保筒状结构12’的结构强度的前提下,物料运输孔122’可以沿筒状结构12’的周向间隔设置多个,该间隔优选地是均匀的。以此方式,构造为筒状结构的传力构件有多个可行的安装定位,在组装传力构件时,只需要使其中任意一个物料运输孔122’朝向来料方向即可,即满足任一安装定位即可,因而能够实现快速定位。
下面结合图5至图9对使用根据本申请的顶推系统进行联络通道掘进施工的方法,尤其是始发掘进之前的工序,进行介绍。
除了顶推系统100和掘进设备3,机械法联络通道施工还需要配套设备,例如图5中示出的用于运输物料的运输系统2等。在掘进之前,可以将顶推系统100、掘进设备3、始发套筒13和运输系统2等组合成一体式结构。然后可以将整套的一体式结构运送至主隧道中的拟开挖联络通道的位置。使用固定支腿及其他辅助结构将整套的一体式结构固定在该位置。
进一步地,通过始发调节平台将始发套筒13、掘进设备3及顶推系统100的总体位置关系调整至拟掘进方向。然后将始发套筒13及传力拉杆12的朝向拟开挖的联络通道的一端与主隧道管片进行连接。其中,可以将传力拉杆12全部连接至始发套筒13,也可以将传力拉杆12全部直接连接至主隧道管片。或者也可以是将部分传力拉杆12与始发套筒13连接,并将部分传力拉杆12与主隧道管片直接连接。另外,可以理解,在部分实施方式中,还可以省略始发套筒13。
进一步地,通过调整掘进设备3与反力架11的相对位置关系,完成掘进设备3的始发方向调整。并将传力拉杆12的朝向反力架11的一端与反力架11连接,并将传力拉杆12的前端和后端使用固定机构进行锁定。由此,整套的一体式结构与主隧道1连接成为一个固定的整体。然后可以通过辅助装置将掘进设备3平移至计划始发 位置。
上述准备工序对于传力拉杆12为动力拉杆或无动力拉杆的实施方式的顶推系统,以及通过盾构法和顶管法施工的方式,均适用。
对于采用盾构法施工的方式,不管传力拉杆12为无动力拉杆还是动力拉杆,其后续步骤相同。在依照拟掘进联络通道计划线路将顶推系统100调节到精确位置后,需要安装始发前辅助管片及钢结构。然后进行始发掘进,依次进行掘进并拼装联络通道拼装单元S(即管片),循环往复直至完成联络通道施工。优选地,如图4所示,反力架11上设置有贯通其的物料运输孔111。盾构法施工在掘进过程中所需的拼装用的联络通道管片等物料可以通过物料运输孔111输送至掘进设备3。
对于采用顶管法施工的方式,当传力拉杆12为无动力拉杆的情况下,在依照拟掘进联络通道计划线路将顶推系统100调节到精确位置后,需要安装顶推驱动单元14,其直接作用在反力架11上。然后进行始发掘进,将顶推驱动单元14抵靠在掘进设备3上,驱动其沿着拟掘进方向向前推进一节管节(即拼装单元S)的距离。相比盾构法施工,顶管法需要在顶推系统100的位置拼装,联络通道管节需要从顶推系统100的侧部运输到位。此时,首先将与管节运输通道干涉的传力拉杆12的两端的至少一个解除连接,并将其移开。同时将顶推驱动单元14缩回,然后通过运输系统2将待拼装的管节片运输到位,并完成拼装。之后再将顶推驱动单元14伸出与拼装完毕的联络通道管节密贴抵接。将传力拉杆12恢复为连接状态。再次使用顶推驱动单元14驱动掘进设备3沿着拟掘进方向向前推进一节管节的距离,重复上述步骤,完成每一节联络通道管节的掘进和拼装,直至完成联络通道施工。
对于采用顶管法施工的方式,当传力拉杆12为动力拉杆的情况下,在依照拟掘进联络通道计划线路将顶推系统100调节到精确位置后,首先将与管节运输通道干涉的传力拉杆12的两端中的至少一个解除连接,并将其移开。其中,移开的方式可以是将反拉油顶拉 杆缩回,或者绕保持连接的一端枢转至不与管节运输通道干涉的位置。然后通过运输系统2将待拼装的管节运输到位,并完成拼装。在始发掘进之前,将解除连接的传力拉杆12恢复为连接状态,然后驱动传力拉杆12带动反力架11,使其推动已拼装完成的联络通道管节和掘进设备3沿着拟掘进方向向前推进一节管节的距离。再然后将传力拉杆12反向驱动,带动反力架11退回。再重复上述步骤,完成每一片联络通道管节的掘进和拼装,直至完成联络通道施工。
优选地,始发套筒13设置有止退装置。在完成本节管节的掘进之后,可以先使用止退装置将管节固定,然后再将传力拉杆12反向驱动带动反力架11退回,防止管节在压力下退回。
图18示出了一种具有集约型反力架的顶推系统。在图18所示的顶推系统200中,大部分机构的布置方式与图1和图2示出的顶推系统中的相对应机构的布置方式大致类似,其中具有类似结构或功能的机构被赋予相同的附图标记。区别在于,构成顶推驱动单元24的液压缸大部分结构设置在反力架21的内部,例如液压缸沿掘进方向穿设在反力架21上。同时,顶推驱动单元24的配套设备也设置在反力架21的内部,其中,配套设备可以是液压控制元器件、油管、油箱和阀件等。
这样的设置方式有利于减小反力架21在厚度方向的尺寸,使整个系统更加集约化,并且允许在将顶推系统200吊装入主隧道之前,在空间较大的车间等场所将液压缸及相关配套设备预先安装在反力架21上,可以大大减少了在主隧道内的狭小空间中现场连接管路、安装液压装置的工作量,同时便于吊装运输等。另外,顶推驱动单元24的液压管路以及控制元器件的连接布置非常复杂。施工现场的环境较为恶劣,顶推驱动单元24的整套液压系统暴露在恶劣的施工环境中,容易导致较高的故障率。而根据本实施方式,顶推驱动单元24的大部分设备隐藏在反力架21中,由反力架21提供保护,有利于降低故障率,保证施工效率。
图19示出了构成顶推驱动单元24的液压缸的立体图。其中, 液压缸包括缸筒241和可伸缩地设置在缸筒241中的活塞242。另外,在缸筒241的前端设置有法兰凸缘243。相应地,可以在反力架21上设置安装孔位,将液压缸的缸筒241出入到安装孔位中,使法兰凸缘243沿着掘进方向的反向抵靠在反力架21上。由此,反力架21可以为液压缸提供支撑。优选地,参考图20,反力架21的朝向联络通道的表面可以设置一圈围绕安装孔位的凸台212,法兰凸缘243抵靠在凸台212上。进一步地,还可以使用紧固件26将法兰凸缘243和凸台212紧固连接。其中,紧固件26可以是螺钉或铆钉。在部分实施方式中,可以省略法兰凸缘,而使缸筒241的底部直接抵靠在反力架21上,以便由反力架21提供支撑。
类似地,如图18所示,反力架21上设置有贯通其的物料运输孔211。在盾构法施工过程中,所需的拼装用的联络通道管片等物料可以通过物料运输孔211输送至掘进设备。与图1和图2示出的实施方式类似,多个液压缸可以围绕物料运输孔211,相对于联络通道的中心轴线以象限对称的方式布置。优选地,为了提高液压缸与所抵接的掘进设备或拼装单元之间的贴合度,可以设置一个环形的抵接件(未示出),多个液压缸的自由端(也即活塞242的末端)同时与该抵接件连接,并通过抵接件与掘进设备或拼装单元抵接。抵接件可以增加与掘进设备或拼装单元之间的接触面积,即使液压缸与掘进设备或拼装单元未能精确对齐,也可以实现良好地贴合,以便传递顶推驱动力。在部分实施方式中,抵接件具体可以为环形的顶铁。
如图21所示,在将顶推系统200吊装至联络通道的始发位置之前,可以预先将台车27布置在该位置。台车27在移动到位之后可以通过自身的支撑柱及液压支撑系统等结构支撑在主隧道管片上进行固定。然后可以将始发套筒13、反力架21等结构吊装到位,安装固定之后,可以由台车27为反力架21提供支撑。优选地,反力架21设置有调节单元28,其可以包括调节驱动缸,以便相对于台车27对反力架21的位置进行微调。
优选地,调节单元28包括沿三个相互正交的调节方向设置的调节驱动缸。例如,调节方向可以包括沿着掘进方向的前后调节方向、沿竖直方向的上下调节方向,以及与这两个方向正交的左右调节方向。相应地,在图21示出的实施方式中,调节单元28包括前后调节驱动缸281、上下调节驱动缸282以及左右调节驱动缸283。调节驱动缸可以安装在反力架21上,通过支撑台车27的方式(例如可以在台车27的与驱动调节缸对应的位置设置挡板,以对其提供支撑)实现反力架21相对于台车27的相对移动,从而实现位置的微调。
优选地,反力架21在沿着左右调节方向的两侧分别设置有左侧和右侧凸出的凸耳部213。以此方式,可以利用凸耳部213安装上述调节驱动缸,节省反力架21的正对联络通道部分的安装空间。例如,在图示的实施方式中,前后调节驱动缸281和上下调节驱动缸282安装在凸耳部213。当然,在不影响其他零部件安装的情况下,调节驱动缸也可以安装在反力架21的主体部分,例如左右调节驱动缸283设置在反力架21的下方并靠近侧部的位置。并且,与用于施加顶推力的顶推驱动单元24的液压缸类似,左右调节驱动缸283设置在反力架21的内部。
优选地,调节单元28在每个调节方向上可以对称地设置两组调节驱动缸。该两组调节驱动缸分别设置在反力架21的相对于掘进方向的左右两侧。具体地,左右调节驱动缸283在反力架21的左右两侧以相反的顶推方向设置,以便分别在向左和向右两个方向上提供调节驱动力。对于上下调节驱动缸282,其在反力架21的左右两侧以相同的顶推方向设置,例如用于将反力架21向上顶推。对于前后调节驱动缸281,在部分实施方式中,其可以包括将反力架21朝向靠近始发套筒13的方向顶推的向前调节驱动缸和将反力架21朝向远离始发套筒13的方向顶推的向后调节驱动缸。在另外的部分实施方式中,前后调节驱动缸281可以仅包括单向驱动缸,其缸筒和活塞分别与反力架21和台车27固定连接,实现在前后方向上的顶推和拉动两种调节功能。
可以理解,上述调节驱动缸均为小行程的驱动缸,其用于对反力架21的位置进行微调。此外,反力架21在前后方向上对调节幅度的需求大于在另外两个调节方向上的需求。因此,调节单元28还包括沿前后方向设置的附加调节驱动缸284,其具有比前后调节驱动缸281更大的行程,因此能够在更大的位移上对反力架21的位置进行调节。附加调节驱动缸284具体可以是推拉油缸,其一端与反力架21连接,另一端可以与台车27连接,例如连接至台车27的托架。优选地,附加调节驱动缸284优选地可以设置在底部,这样不会对掘进过程中物料运输等操作产生干涉。当然,当反力架21在另外的方向对调节幅度具有较大的需求时,也可以在另外的方向上设置与附加调节驱动缸284类似的大行程调节驱动缸。
可以理解,对于联络通道,其始发掘进的一端为始发端,掘进完成的一端可以称为接收端。图22至图27示出了一种尤其适用于对在其接收端与主隧道连通的联络通道进行掘进施工的顶推系统。
如图22和图23所示,顶推系统300包括反力架31和由多个传力拉杆32构成的传力构件。其中,多个传力拉杆32沿联络通道的周向间隔排布。每个传力拉杆32的一端与反力架31连接,另一端从始发位置穿过岩土层连接至围绕联络通道的接收端的主隧道管片4上。
以此方式,反力架31用于为掘进设备提供支撑,而掘进设备作用在反力架31上的反作用力最终通过传力拉杆32传递至围绕联络通道的接收端的主隧道管片上。因而可以省略反力架31的背靠支撑系统,使得反力架31的背靠空间释放。特别是当始发位置位于另一条主隧道中时,释放的背靠空间(也即反力架31与其背侧的始发端的主隧道管片1之间的空间)可以允许车辆、人员、物料等在主隧道内通行,使得多种施工工序可以同步进行,尤其是可以在已经完成的主隧道的不同位置同时进行多条联络通道施工,可以大大缩短施工周期。另外,对于接收端的主隧道而言,岩土层可以为主隧道管片4提供支撑,以平衡传力拉杆32作用在围绕联络通道的接收端 的主隧道管片4上的拉力,从而可以避免与传力拉杆32连接的主隧道管片4由于受到拉力导致的变形。
优选地,在图22示出的实施方式中,顶推系统10包括围绕联络通道的中心轴线以象限对称的方式布置的四组传力拉杆,每组由三根传力拉杆32构成。可以理解,在不同的实施方式中,传力拉杆的组数以及每组传力拉杆的数量可以根据实际情况灵活选择。另外,传力拉杆也可以单独作用,而非成组布置。其中,传力拉杆32的具体可以是螺纹钢(热轧带肋钢筋)等,例如精轧螺纹钢。或者,传力拉杆也可以由除螺纹钢之外的其他适合的材料制成。
可以理解,图22和图23的实施方式只是示意性地表示出传力拉杆的连接结构,其图中尺寸并不代表实际施工环境中的实际长度。当传力拉杆32自身的长度能够满足从反力架31到接收端主隧道的整个联络通道的长度时,每个传力拉杆32可以使用单个通长的结构。而在某些施工环境中,当始发端与接收端的距离较大时,单个传力拉杆的长度可能无法满足连接至围绕接收端的主隧道管片的要求。
优选地,如图23所示,可以在一个传力拉杆32的整个长度范围内设置多个子段321,相邻的子段321之间可以通过连接器322连接固定。其中,连接器322的结构强度,以及连接器322与子段321之间的连接强度,均不低于每个子段321本身的结构强度。连接器322与传力拉杆32的各子段321之间可以通过螺纹连接、焊接等方式连接固定。各固定方式之间还可以进行组合,例如可以先通过螺纹连接的方式连接,然后再通过焊接增加连接强度。对于传力拉杆32的子段321而言,其用于螺纹连接的螺纹结构可以是在其端部通过滚丝等加工工艺专门设置的螺纹结构。当使用精轧螺纹钢时,还可以利用其螺纹型的凸肋作为与连接器322连接的螺纹结构。
图24示出了另一种结构的传力拉杆32a,其包括设置在岩土层内的空心管324以及穿过空心管324分别与反力架31和围绕接收端的主隧道管片4连接的传力拉索325。在具体施工时,可以先钻孔,将空心管324通过钻孔布置在岩土层中,然后将传力拉索325从空 心管324中穿过,并将其两端分别与反力架31和围绕接收端的主隧道管片4连接固定。其中,空心管324提供传力拉索325从中穿过的通道,并可以作为护套起到保护作用。传力拉索325在反力架31与围绕接收端的主隧道管片4之间传递拉力。空心管324可以是钢制的管。传力拉索325优选地可以是钢丝绳、钢绞线等相对与空心管324呈柔性的结构。
可以理解,当联络通道长度较长时,上述连接器322也可以用于图24所示的传力拉杆32a。其中,连接器322可以连接两侧的空心管324。由于传力拉索325可以根据需要截取预定的长度,因此其可以具有从反力架31延伸至围绕接收端的主隧道管片4的通长的结构,而不必分段设置。当然,在必要时,也可以使用连接器322连接分段设置的传力拉索325,以增加其长度。
另外,地下岩土层中往往有地下水存在。为了避免传力拉杆穿过而导致渗漏,优选地,在主隧道管片上传力拉杆穿过的位置设置有用于防水的密封装置,以避免地下水从传力拉杆与主隧道管片之间的缝隙渗出。例如,可以设置止水垫片,或者也可以在穿过主隧道管片的钻孔中进行注浆而形成防水结构。
继续参考图22和图23,在位于联络通道的接收端的主隧道内,与联络通道对应的主隧道管片4的内表面设置有承台5,传力拉杆32(或传力拉索325)穿过主隧道管片4与承台5固定连接。其中,承台5具有较大的尺寸和接触面积,其可以将传力拉杆32的拉力分散传递至主隧道管片4,避免在主隧道管片4上产生应力集中。优选地,承台5具有较大的尺寸,使得传力拉杆32的至少一部分或者全部与同一个承台5固定连接。在图示的实施方式中,承台5可以是与主隧道管片4分体设置的结构,其朝向主隧道管片4的一侧构造为能够与主隧道管片4的内表面相贴合的形状,例如外凸的弧面,以尽量增大承台5与主隧道管片4的接触面积,降低二者之间的局部压强。为了保证足够的强度,承台5可以是钢制结构。在另外的实施方式中,承台5还可以是一体地设置在主隧道管片4上的结构, 例如预制的钢筋混凝土结构等。
如图23所示,优选地,传力拉杆32在穿过主隧道管片4之后,继续穿过承台5,并且在末端设置紧固件323将传力拉杆32相对于承台5锁定,避免松脱。图25至图27示出了紧固件323的不同构型。
在图25示出的构型中,紧固件323构造为卡板323a。相应地,传力拉杆32的末端设置有卡槽(未示出),该卡槽大致垂直于传力拉杆32的轴向延伸。当传力拉杆32穿过承台5之后,卡板323a与传力拉杆32的卡槽卡合,使得传力拉杆32无法缩回,从而实现锁定。卡板323a优选地可以通过例如防脱螺钉等的附加紧固件324固定在承台5上。优选地,卡板323a与卡槽相卡合的配合按照围绕传力拉杆32的轴向圆心对称的方式布置。
在图26示出的构型中,紧固件323构造为锁紧螺母323b。相应地,传力拉杆32的末端设置有螺纹结构(未示出)。该螺纹结构可以是精轧螺纹钢本身的螺纹型凸肋,也可以是专门在传力拉杆32的末端滚丝加工的螺纹。当传力拉杆32穿过承台5之后,锁紧螺母323b通过螺纹连接的方式与传力拉杆32末端的螺纹结构结合,使得传力拉杆32无法缩回。优选地,可以在锁紧螺母323b与承台5之间设置垫圈325,以提高锁紧螺母的稳定性,减小松脱的可能。
在27示出的构型中,紧固件323构造为锁销323c。相应地,传力拉杆32的末端设置有通孔(未示出),其大致沿传力拉杆32的径向(即垂直于轴向的方向)贯通传力拉杆32。当传力拉杆32穿过承台5之后,锁销323c穿过通孔,其暴露在外部的部分抵靠在承台5上,将传力拉杆32相对于承台5锁定,使其无法缩回。
可以理解,根据上述实施方式的顶推系统适用于在接收端与主隧道连通的联络通道的掘进施工。而对于联络通道的始发端,其可以设置在另一条主隧道内,即该待开挖的联络通道用于联络两条不同的主隧道,也可以适用于非主隧道的其他施工环境,例如联络通道与位于其接收端的主隧道形成T型隧道结构等。
图28和图29进一步示出了对顶推系统背侧的通行空间进行充分利用的实施方式。其中,顶推系统的结构与图1和图2示出的实施方式大致相同,具有类似结构或功能的机构被赋予相同的附图标记。
如图28所示,主隧道1内设置有作业平台46,其架设在顶推系统400的下方的主隧道管片上,为反力架11等结构提供整体的支撑作用。通过作业平台46的支撑,一方面有利于使掘进设备与待掘进的联络通道的位置对齐,另一方面,将顶推作业的工作表面提升至主隧道中径向尺寸较大的水平位置,可以提供宽敞的工作环境。
顶推系统400的反力架11通过传力构件(例如传力拉杆12)连接至位于反力架11的面向联络通道的一侧的主隧道管片,因而在反力架11的背离联络通道的一侧与主隧道1的管片之间形成了通行空间45。可以在该通行空间内设置通行平台451,以便对通行的车辆、人员、物料等提供支撑。通行平台451可以通过支撑件453支撑在作业平台46上。进一步地,通行平台451上还可以设置沿着主隧道的延伸方向的通行轨道452。以此方式,通行轨道452可以为车辆移动提供导引作用,从而提高通行效率。
图29示出了顶推系统400的改进构型。其中,除了传力拉杆12之外,顶推系统400还包括附加传力构件,其设置在反力架11的背侧,并支撑在反力架11与主隧道管片之间。在大直径隧道(例如8.0m及以上直径)的施工环境中,通过增加附加传力构件,顶推系统可以在位于反力架前侧的传力构件提供的拉力的基础上,增加由位于反力架背侧的附加传力构件提供的支撑力,从而有利于为掘进设备提供更大的顶推驱动力。
为了便于形成通行空间45,附加传力构件优选地可以构造为多个分散设置的多个支撑杆47,其支撑在反力架11与主隧道管片之间,并大致以围绕联络通道的轴线的方式排布,为反力架11提供大致均匀分布的支撑力。支撑杆47可以是钢制杆件,或其他材质制成的具有足够强度的构件,并且其结构形状可以根据需要灵活选择。 此类支撑杆只起到传递支撑力的作用,其本身不提供驱动力,可以称为无动力支撑杆,即,附加传力构件为无动力传力构件。支撑杆47在两端与反力架11和主隧道管片的连接方式可以包括焊接、螺栓连接、铰接或铆接中的一种或多种的组合等。尤其是采用铰接的连接方式时,可以允许相对于联络通道的洞门对反力架11进行位置的微调,使掘进位置和方向更加准确。
优选地,顶推系统400还设置有承台473,其具有较大的尺寸,并且朝向主隧道管片的一侧设置为能够与主隧道管片的内表面相贴合的形状,例如外凸的弧面。支撑杆47连接至承台473,通过承台473以支撑或抵接的方式与主隧道管片相互作用。承台473可以增大与主隧道管片的接触面积,降低作用于主隧道管片的局部压强。为了保证足够的强度,承台473可以是钢制结构。在另外的实施方式中,承台473还可以是一体地设置在主隧道管片上的结构,例如预制的钢筋混凝土结构等。或者,还可以省略承台473,而在主隧道管片中预埋钢制结构,将支撑杆47连接或支撑在钢制结构上。
虽然附图中没有示出,在部分实施方式中,附加传力构件还可以构造为由单个构件构造而成的形式,例如其轴向两端分别与反力架和主隧道管片连接的筒状结构等。此构造方式可以减少零部件的数量,从而减少安装工序和时间,相比通过多个分散支撑杆进行连接,可以有效减少误差累积。优选地,筒状结构可以设置沿径向贯通其的物料运输孔,以便于转运物料。
在另外的实施方式中,附加传力构件还可以构造为能够提供驱动力的装置,例如由气压或液压驱动的压力缸等,具体可以是液压缸,因此可以称为有动力传力构件。有动力传力构件的连接方式和排布方式可以与无动力传力构件大致相同。
此外,可以理解,当主隧道直径较大(例如8.0m及以上直径)时,反力架11距离主隧道管片较远,使得附加传力构件的整体长度也较大。当然,可以在工程设计时通过计算或测量等方式预先确定附加传力构件的长度,使得在长度方向上并采用具有固定长度的单 一构件从反力架11连接至主隧道管片。优选地,在另外的实施方式中,还可以将附加传力构件设置为沿长度方向包括两个或多个子段的分体结构,沿长度方向相邻的子段之间通过连接器连接固定。以此方式,可以根据施工现场的实际状况灵活调整附加传力构件的长度,这在顶推系统的安装误差较大时非常有利。另外,附加传力构件的各个子段的长度较小,还可以减少拆除、储存和运输时的困难。
优选地,多个支撑杆47包括上部支撑杆部分471和下部支撑杆部分472,这两部分沿上下方向间隔,保留足够的空间,从而形成所述通行空间45。以此方式实现附加传力构件不影响通行的效果。优选地,通行平台451可以铺设在下部支撑杆部分472的上方。此外,在附加传力构件构造为筒状结构的实施方式中,还可以利用物料运输孔形成通行空间。
本申请的多种实施方式的以上描述出于描述的目的提供给相关领域的一个普通技术人员。不意图将本申请排他或局限于单个公开的实施方式。如上,在本领域中的普通技术人员将明白本申请的多种替代和变型。因此,虽然具体描述了一些替代实施方式,本领域普通技术人员将明白或相对容易地开发其他实施方式。本申请旨在包括这里描述的本申请的所有替代、改型和变型,以及落入以上描述的本申请的精神和范围内的其他实施方式。

Claims (70)

  1. 一种用于隧道群T型联络通道掘进施工的顶推系统,所述联络通道用于联络至少一条主隧道,其特征在于,所述顶推系统包括反力架(11)和传力构件,所述传力构件将所述反力架(11)连接至位于所述反力架(11)的面向所述联络通道的一侧并围绕所述联络通道的始发端的主隧道管片,所述反力架(11)用于在掘进方向上为掘进设备提供支撑,其中,支撑力经由所述传力构件以承受拉力的方式传递至所述围绕所述联络通道的始发端的主隧道管片。
  2. 根据权利要求1所述的顶推系统,其特征在于,所述传力构件包括多个围绕所述联络通道的周向间隔布置的传力拉杆(12)。
  3. 根据权利要求2所述的顶推系统,其特征在于,至少一部分所述传力拉杆(12)与所述围绕所述联络通道的始发端的主隧道管片直接连接。
  4. 根据权利要求2所述的顶推系统,其特征在于,所述联络通道的始发端设置有连接至所述主隧道管片的始发套筒(13),至少一部分所述传力拉杆(12)与所述始发套筒(13)连接。
  5. 根据权利要求2所述的顶推系统,其特征在于,所述传力拉杆(12)构造为无动力拉杆。
  6. 根据权利要求2所述的顶推系统,其特征在于,所述传力拉杆(12)构造为能够提供驱动力的动力拉杆。
  7. 根据权利要求6所述的顶推系统,其特征在于,所述动力拉杆为反拉油顶拉杆。
  8. 根据权利要求6所述的顶推系统,其特征在于,每个所述动力拉杆具有独立的控制单元。
  9. 根据权利要求6至8中任一项所述的顶推系统,其特征在于,所述顶推系统还包括沿着所述联络通道的中心轴线延伸的滑轨(15),所述反力架(11)沿所述滑轨(15)可移动。
  10. 根据权利要求2所述的顶推系统,其特征在于,所述传力拉 杆(12)的一端与所述反力架(11)可枢转地连接,并且/或者,所述传力拉杆(12)的另一端与所述主隧道管片或与连接至所述主隧道管片的始发套筒(13)可枢转地连接。
  11. 根据权利要求10所述的顶推系统,其特征在于,所述传力拉杆(12)的枢转轴线垂直于所述联络通道的轴线方向。
  12. 根据权利要求2所述的顶推系统,其特征在于,所述传力拉杆(12)的一端与所述反力架(11)可拆卸地连接,并且/或者,所述传力拉杆(12)的另一端与所述主隧道管片或连接至所述主隧道管片的始发套筒(13)可拆卸地连接。
  13. 根据权利要求10至12中任一项所述的顶推系统,其特征在于,所述传力拉杆(12)通过联结装置可拆卸地设置,所述联结装置包括:
    安装座,所述安装座具有两个相对间隔设置的侧壁,所述传力拉杆(12)的端部设置在两个侧壁之间;和
    销,所述安装座和所述传力拉杆(12)的端部分别设置有安装孔,所述销穿过所述安装座和所述传力拉杆(12)的所述安装孔。
  14. 根据权利要求13所述的顶推系统,其特征在于,所述安装座固定设置在所述反力架(11)上,或者,所述安装座固定在所述主隧道管片上,或者,所述顶推系统包括与所述主隧道管片固定连接的始发套筒,所述安装座固定在所述始发套筒上。
  15. 根据权利要求13所述的顶推系统,其特征在于,所述传力拉杆(12)的端部设置有微调结构,所述安装孔穿过所述微调结构,并且所述微调结构具有围绕所述安装孔的鼓形的外凸周面。
  16. 根据权利要求1所述的顶推系统,其特征在于,所述传力构件构造为筒状结构(12’),所述筒状结构(12’)布置为围绕所述联络通道的始发端。
  17. 根据权利要求16所述的顶推系统,其特征在于,所述筒状结构(12’)与所述围绕所述联络通道的始发端的主隧道管片直接连接。
  18. 根据权利要求16所述的顶推系统,其特征在于,所述联络通 道的始发端设置有连接至所述主隧道管片的始发套筒(13),所述筒状结构(12’)与所述始发套筒(13)连接。
  19. 根据权利要求17或18所述的顶推系统,其特征在于,所述筒状结构(12’)的轴向端部设置有沿径向向外延伸的翻边(121),所述筒状结构(12’)通过所述翻边(121)连接固定。
  20. 根据权利要求19所述的顶推系统,其特征在于,所述筒状结构(12’)的连接方式包括焊接、螺栓连接和/或铆接。
  21. 根据权利要求16所述的顶推系统,其特征在于,所述筒状结构(12’)的侧壁设置有加强筋(123’)。
  22. 根据权利要求16所述的顶推系统,其特征在于,所述筒状结构(12’)的侧壁设置有贯通的物料运输孔(122’)。
  23. 根据权利要求16所述的顶推系统,其特征在于,所述筒状结构(12’)为一体成型的结构,或者由至少两个分体结构拼装而成。
  24. 根据权利要求23所述的顶推系统,其特征在于,当所述筒状结构(12’)由至少两个分体结构拼装而成时,所述至少两个分体结构彼此相同。
  25. 根据权利要求1所述的顶推系统,其特征在于,所述反力架(11)的朝向所述联络通道的一侧设置有顶推驱动单元(14),所述顶推驱动单元(14)包括围绕所述联络通道的中心轴线以象限对称的方式间隔设置的多个液压缸。
  26. 根据权利要求25所述的顶推系统,其特征在于,所述多个液压缸的一端连接所述反力架(11),另一端与环形的抵接件(141)连接,所述抵接件(141)用于与所述掘进设备或所述联络通道的管片抵接。
  27. 根据权利要求25所述的顶推系统,其特征在于,所述液压缸安装在所述反力架(21)上并且至少部分地设置在所述反力架(21)的内部。
  28. 根据权利要求25所述的顶推系统,其特征在于,所述顶推驱动单元(24)的配套设备设置在所述反力架(21)的内部,所述配 套设备至少包括液压控制元器件、油管、油箱和/或阀件。
  29. 根据权利要求25所述的顶推系统,其特征在于,所述液压缸包括缸筒(241)和活塞(242),所述缸筒(241)的前端设置有法兰凸缘(243)并通过所述法兰凸缘(243)沿掘进方向的反向抵靠在所述反力架(21)上。
  30. 根据权利要求29所述的顶推系统,其特征在于,所述法兰凸缘(243)通过紧固件(26)连接至所述反力架(21)。
  31. 根据权利要求29所述的顶推系统,其特征在于,所述反力架(21)的表面设置有与所述法兰凸缘(243)抵靠的凸台(212)。
  32. 根据权利要求25所述的顶推系统,其特征在于,所述液压缸的包括缸筒(241)和活塞(242),所述缸筒(241)的底部抵靠在所述反力架(21)上。
  33. 根据权利要求25所述的顶推系统,其特征在于,所述顶推系统还包括设置在所述始发端的台车(27),所述反力架(21)由所述台车(27)支撑,其中,所述反力架(21)设置有调节所述反力架(21)与所述台车(27)的相对位置的调节单元(28)。
  34. 根据权利要求33所述的顶推系统,其特征在于,所述调节单元(28)包括沿着三个相互正交的调节方向设置的调节驱动缸,所述调节方向之一为掘进方向。
  35. 根据权利要求34所述的顶推系统,其特征在于,所述反力架(21)在掘进方向上的左右两侧设置有凸耳部(213),至少一部分所述调节驱动缸设置在所述凸耳部(213)上。
  36. 根据权利要求34所述的顶推系统,其特征在于,所述调节单元至少在所述掘进方向上包括第一调节驱动缸和第二调节驱动缸,所述第二调节驱动缸的调节行程大于所述第一调节驱动缸的调节行程。
  37. 根据权利要求36所述的顶推系统,其特征在于,所述第二调节驱动缸设置在所述反力架(21)的底部。
  38. 根据权利要求1所述的顶推系统,其特征在于,所述反力架 (11)的背离所述联络通道的一侧设置有沿所述主隧道的延伸方向贯通的通行空间(45)。
  39. 根据权利要求38所述的顶推系统,其特征在于,所述通行空间(45)内铺设有通行平台(451)。
  40. 根据权利要求39所述的顶推系统,其特征在于,所述通行平台设置有沿所述主隧道的延伸方向延伸的通行轨道(452)。
  41. 根据权利要求39所述的顶推系统,其特征在于,所述顶推系统还包括架设在所述顶推系统的下方的主隧道管片上的作业平台(46),所述反力架和/或所述通行平台(451)支撑在所述作业平台(46)上。
  42. 根据权利要求38所述的顶推系统,其特征在于,所述顶推系统还包括附加传力构件,所述附加传力构件将所述反力架(11)连接至位于所述反力架(11)的背离所述联络通道的一侧的主隧道管片,所述掘进设备作用于所述反力架(11)的力经由所述传力构件和所述附加传力构件传递至所述主隧道管片,所述通行空间(45)延伸穿过所述附加传力构件。
  43. 根据权利要求42所述的顶推系统,其特征在于,所述附加传力构件包括围绕所述联络通道的轴线分布设置的多个支撑杆(47),所述多个支撑杆(47)包括上部支撑杆部分(471)和下部支撑杆部分(472),所述通行空间(45)设置在上部支撑杆部分(471)和下部支撑杆部分(472)之间。
  44. 根据权利要求43所述的顶推系统,其特征在于,所述顶推系统还包括承台(473),所述承台(473)具有能够在形状上与所述主隧道管片贴合的表面,所述支撑杆(47)连接至所述承台(473)并通过所述承台(473)支撑在所述主隧道管片上。
  45. 根据权利要求43所述的顶推系统,其特征在于,所述支撑杆(47)包括沿长度方向设置的至少两个子段,相邻的子段之间通过连接器可拆卸地连接固定。
  46. 根据权利要求1所述的顶推系统,其特征在于,所述反力架 (11)设置在与所述联络通道对应的位置设置有贯通所述反力架(11)的物料运输孔(111)。
  47. 一种使用根据权利要求1至46中任一项所述的顶推系统进行隧道群T型联络通道掘进施工的方法,其特征在于,所述方法包括:
    将顶推系统、掘进设备及配套设备运送至拟开挖联络通道的位置并固定;
    根据拟掘进方向调整所述顶推系统和所述掘进设备的位置;
    通过传力构件将反力架连接至主隧道管片;
    将所述掘进设备移动至计划始发位置;
    掘进和拼装联络通道拼装单元;
    完成联络通道施工。
  48. 根据权利要求47所述的方法,其特征在于,所述方法在所述将顶推系统、掘进设备及配套设备运送至拟开挖联络通道的位置并固定的步骤之前还包括:
    将所述配套设备、所述顶推系统和所述掘进设备组合为一体式结构。
  49. 根据权利要求47所述的方法,其特征在于,所述配套设备包括始发套筒,所述方法还包括:
    将所述始发套筒与所述主隧道管片连接,所述反力架通过传力构件连接至所述始发套筒上。
  50. 根据权利要求47所述的方法,其特征在于,所述掘进设备为盾构法掘进机,所述方法在掘进和拼装联络通道拼装单元的步骤之前还包括:
    安装始发前辅助管片及钢结构。
  51. 根据权利要求47所述的方法,其特征在于,所述掘进设备为顶管法掘进机,所述传力构件为无动力的传力拉杆,所述联络通道拼装单元为管节,所述方法在掘进和拼装联络通道拼装单元的步骤之前还包括:
    安装顶推驱动单元,所述顶推驱动单元直接作用在所述反力架 上。
  52. 根据权利要求51所述的方法,其特征在于,所述掘进和拼装联络通道拼装单元的步骤包括:
    使用顶管法掘进机完成本节管节的空间推进;
    将与管节运输通道干涉的至少部分的传力拉杆解除连接并从所述管节运输通道移开;
    将顶推驱动单元缩回;
    将本节管节运送至拼装位置完成拼装;
    将顶推驱动单元伸出与完成拼装的管节密贴;
    将传力拉杆恢复为连接状态。
  53. 根据权利要求47所述的方法,其特征在于,所述掘进设备为顶管法掘进机,所述传力构件为能够提供驱动力的传力拉杆,所述联络通道拼装单元为管节,所述掘进和拼装联络通道拼装单元的步骤包括:
    将与管节运输通道干涉的传力拉杆解除连接并从所述管节运输通道上移开;
    将管节运送至拼装位置完成拼装;
    将所述传力拉杆恢复为连接状态;
    驱动所述传力拉杆,通过所述反力架推动所述顶管法掘进机向前掘进,完成本管节掘进;
    将所述传力拉杆反向驱动,使所述反力架退回。
  54. 根据权利要求53所述的方法,其特征在于,所述方法在将所述传力拉杆反向驱动,使所述反力架退回的步骤之前还包括:
    通过止退装置将最靠近所述反力架的管节固定。
  55. 一种用于隧道群T型联络通道掘进施工的顶推系统,所述联络通道用于至少在沿着掘进方向的接收端联络主隧道,其特征在于,所述顶推系统包括反力架(31)和多个传力拉杆(32),所述传力拉杆(32)的一端与所述反力架(31)连接,另一端穿过岩土层连接至围绕所述联络通道的接收端的主隧道管片(4),所述反力架(31) 用于在掘进方向上为掘进设备提供支撑,其中,支撑力经由所述传力拉杆(32)传递至所述围绕所述联络通道的接收端的主隧道管片(4)。
  56. 根据权利要求55所述的顶推系统,其特征在于,围绕所述联络通道的接收端的主隧道管片(4)的内表面设置有承台(5),所述传力拉杆(32)穿过所述主隧道管片(4)并与所述承台(5)连接。
  57. 根据权利要求56所述的顶推系统,其特征在于,所述承台(5)是与所述主隧道管片(4)分体设置的结构,并且所述承台(5)具有能够在形状上与所述主隧道管片(4)的内表面相贴合的侧面。
  58. 根据权利要求57所述的顶推系统,其特征在于,所述承台(5)为钢制结构。
  59. 根据权利要求56所述的顶推系统,其特征在于,所述承台(5)是与所述主隧道管片(4)一体设置的预制钢筋混凝土结构。
  60. 根据权利要求56所述的顶推系统,其特征在于,所述传力拉杆(32)的末端穿过所述承台(5)并通过紧固件(323)锁定。
  61. 根据权利要求60所述的顶推系统,其特征在于,所述传力拉杆(32)的末端设置有垂直于自身轴向的卡槽,所述紧固件(323)构造为固定在所述承台(5)上的卡板(323a),所述卡板(323a)与所述卡槽卡合。
  62. 根据权利要求60所述的顶推系统,其特征在于,所述传力拉杆(32)的末端设置有螺纹结构,所述紧固件(323)构造为与所述螺纹结构螺纹接合的锁紧螺母(323b)。
  63. 根据权利要求62所述的顶推系统,其特征在于,所述锁紧螺母(323b)与所述承台(5)之间设置有垫圈。
  64. 根据权利要求60所述的顶推系统,其特征在于,所述传力拉杆(32)的末端设置有沿着垂直于自身轴向的方向贯通的通孔,所述紧固件(323)构造为穿设在所述通孔中的锁销(323c)。
  65. 根据权利要求56所述的顶推系统,其特征在于,多个所述传 力拉杆(32)连接至同一个所述承台(5)。
  66. 根据权利要求55所述的顶推系统,其特征在于,每个拉杆包括沿自身轴向布置的多个子段(321),相邻的子段(321)之间通过连接器(322)连接固定。
  67. 根据权利要求66所述的顶推系统,其特征在于,所述连接器(322)的结构强度不低于所述子段(321)的结构强度。
  68. 根据权利要求55所述的顶推系统,其特征在于,所述传力拉杆包括空心管(324)和穿设在所述空心管(324)中的传力拉索(325),其中,所述空心管(324)设置在岩土层中,所述传力拉索(325)用于与所述反力架(31)和所述围绕所述联络通道的接收端的主隧道管片(4)连接。
  69. 根据权利要求55所述的顶推系统,其特征在于,所述传力拉杆(32)由螺纹钢制成。
  70. 根据权利要求55所述的顶推系统,其特征在于,主隧道管片(4)上由所述传力拉杆(32)穿过的位置设置有用于防水的密封结构。
PCT/CN2023/093092 2022-06-24 2023-05-09 用于联络通道掘进施工的顶推系统及使用其的施工方法 WO2023246349A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2023285921A AU2023285921A1 (en) 2022-06-24 2023-05-09 Jacking system for contact channel tunneling construction and construction method using same

Applications Claiming Priority (14)

Application Number Priority Date Filing Date Title
CN202221615796.8U CN218953333U (zh) 2022-06-24 2022-06-24 用于隧道群t型联络通道掘进施工的顶推系统的传力机构
CN202210730498.1A CN115059487B (zh) 2022-06-24 2022-06-24 用于联络通道掘进施工的顶推系统及使用其的施工方法
CN202210730498.1 2022-06-24
CN202221605897.7U CN218093079U (zh) 2022-06-24 2022-06-24 用于隧道群t型联络通道掘进施工的顶推系统
CN202221605897.7 2022-06-24
CN202221615796.8 2022-06-24
CN202222604286.7U CN218093039U (zh) 2022-09-23 2022-09-23 用于隧道群t型联络通道掘进施工的顶推系统
CN202222604286.7 2022-09-23
CN202222854350.7 2022-10-27
CN202222854350.7U CN218780355U (zh) 2022-10-27 2022-10-27 用于隧道群t型联络通道掘进施工的顶推系统
CN202320180839.2U CN219910759U (zh) 2023-01-19 2023-01-19 用于隧道群t型联络通道掘进施工的顶推系统
CN202320180839.2 2023-01-19
CN202320348669.4U CN219197335U (zh) 2023-02-20 2023-02-20 用于隧道群t型联络通道掘进施工的顶推系统
CN202320348669.4 2023-02-20

Publications (1)

Publication Number Publication Date
WO2023246349A1 true WO2023246349A1 (zh) 2023-12-28

Family

ID=89379110

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/093092 WO2023246349A1 (zh) 2022-06-24 2023-05-09 用于联络通道掘进施工的顶推系统及使用其的施工方法

Country Status (2)

Country Link
AU (1) AU2023285921A1 (zh)
WO (1) WO2023246349A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117948166A (zh) * 2024-03-27 2024-04-30 中铁第六勘察设计院集团有限公司 一种隧道管片预埋套管及其快速装配方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08218788A (ja) * 1995-02-20 1996-08-27 Sato Kogyo Co Ltd カッタ付きセグメント及びそれを用いた横坑掘削方法
CN107060788A (zh) * 2016-09-19 2017-08-18 中铁隧道集团有限公司 一种隧道联络通道开挖装置
CN108590695A (zh) * 2018-05-30 2018-09-28 中山大学 联络通道盾构施工方法及联络通道
CN109026025A (zh) * 2018-08-30 2018-12-18 上海隧道工程有限公司 用于施工隧道联络通道的顶管支撑与顶进系统
CN113374501A (zh) * 2021-07-26 2021-09-10 中国铁建重工集团股份有限公司 一种施工管片、施工装置以及施工方法
CN115059487A (zh) * 2022-06-24 2022-09-16 朱瑶宏 用于联络通道掘进施工的顶推系统及使用其的施工方法
CN218093039U (zh) * 2022-09-23 2022-12-20 朱瑶宏 用于隧道群t型联络通道掘进施工的顶推系统
CN218093079U (zh) * 2022-06-24 2022-12-20 朱瑶宏 用于隧道群t型联络通道掘进施工的顶推系统
CN218780355U (zh) * 2022-10-27 2023-03-31 朱瑶宏 用于隧道群t型联络通道掘进施工的顶推系统
CN218953333U (zh) * 2022-06-24 2023-05-02 朱瑶宏 用于隧道群t型联络通道掘进施工的顶推系统的传力机构

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08218788A (ja) * 1995-02-20 1996-08-27 Sato Kogyo Co Ltd カッタ付きセグメント及びそれを用いた横坑掘削方法
CN107060788A (zh) * 2016-09-19 2017-08-18 中铁隧道集团有限公司 一种隧道联络通道开挖装置
CN108590695A (zh) * 2018-05-30 2018-09-28 中山大学 联络通道盾构施工方法及联络通道
CN109026025A (zh) * 2018-08-30 2018-12-18 上海隧道工程有限公司 用于施工隧道联络通道的顶管支撑与顶进系统
CN113374501A (zh) * 2021-07-26 2021-09-10 中国铁建重工集团股份有限公司 一种施工管片、施工装置以及施工方法
CN115059487A (zh) * 2022-06-24 2022-09-16 朱瑶宏 用于联络通道掘进施工的顶推系统及使用其的施工方法
CN218093079U (zh) * 2022-06-24 2022-12-20 朱瑶宏 用于隧道群t型联络通道掘进施工的顶推系统
CN218953333U (zh) * 2022-06-24 2023-05-02 朱瑶宏 用于隧道群t型联络通道掘进施工的顶推系统的传力机构
CN218093039U (zh) * 2022-09-23 2022-12-20 朱瑶宏 用于隧道群t型联络通道掘进施工的顶推系统
CN218780355U (zh) * 2022-10-27 2023-03-31 朱瑶宏 用于隧道群t型联络通道掘进施工的顶推系统

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117948166A (zh) * 2024-03-27 2024-04-30 中铁第六勘察设计院集团有限公司 一种隧道管片预埋套管及其快速装配方法
CN117948166B (zh) * 2024-03-27 2024-06-11 中铁第六勘察设计院集团有限公司 一种隧道管片预埋套管及其快速装配方法

Also Published As

Publication number Publication date
AU2023285921A1 (en) 2024-01-18

Similar Documents

Publication Publication Date Title
WO2021203625A1 (zh) 一种复合式支护结构、施工系统及方法
US9964235B2 (en) Supporting structures for pipelines and the like
WO2023246349A1 (zh) 用于联络通道掘进施工的顶推系统及使用其的施工方法
CN218093039U (zh) 用于隧道群t型联络通道掘进施工的顶推系统
CN112627234B (zh) 一种地下综合管廊施工设备及方法
CN115059487B (zh) 用于联络通道掘进施工的顶推系统及使用其的施工方法
CN109026025B (zh) 用于施工隧道联络通道的顶管支撑与顶进系统
CN105889625A (zh) 一种用于顶管施工的组合式钢管中继间设备及施工方法
CN110359934A (zh) 六边形管片、支护结构和隧道施工方法
CN218953333U (zh) 用于隧道群t型联络通道掘进施工的顶推系统的传力机构
CN218780355U (zh) 用于隧道群t型联络通道掘进施工的顶推系统
CN218093079U (zh) 用于隧道群t型联络通道掘进施工的顶推系统
CN218117774U (zh) 用于隧道群t型联络通道掘进施工的施工系统
CN217518676U (zh) 一种牵拉式顶管施工靠背系统
CN115110973B (zh) 一种联络通道顶管施工靠背系统及其使用方法
CN114876473A (zh) 一种基于水平全回转的地铁联络通道掘进设备及施工方法
CN219197335U (zh) 用于隧道群t型联络通道掘进施工的顶推系统
CN111305233B (zh) 一种轴力补偿式预应力鱼腹式基坑钢支撑结构及其施工方法
CN212406588U (zh) 用于取芯钻机的张拉反力架
CN111424708B (zh) 装配式管廊、装配式管廊拼装台架及拼装方法
CN219910759U (zh) 用于隧道群t型联络通道掘进施工的顶推系统
CN115822634B (zh) 一种主隧道与分支隧道连通处掘进施工系统及施工方法
CN110671114A (zh) 一种回收式圆形竖井支护装置及方法
CN213574127U (zh) 一种隧道施工用的可伸缩式横撑装置
CN113944468B (zh) 一种微型顶管施工工艺

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2023285921

Country of ref document: AU

ENP Entry into the national phase

Ref document number: 2023285921

Country of ref document: AU

Date of ref document: 20230509

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23825999

Country of ref document: EP

Kind code of ref document: A1