WO2023246285A1 - 量子芯片的制备方法、装置、电子设备、计算机可读存储介质、计算机程序产品及量子芯片 - Google Patents

量子芯片的制备方法、装置、电子设备、计算机可读存储介质、计算机程序产品及量子芯片 Download PDF

Info

Publication number
WO2023246285A1
WO2023246285A1 PCT/CN2023/090539 CN2023090539W WO2023246285A1 WO 2023246285 A1 WO2023246285 A1 WO 2023246285A1 CN 2023090539 W CN2023090539 W CN 2023090539W WO 2023246285 A1 WO2023246285 A1 WO 2023246285A1
Authority
WO
WIPO (PCT)
Prior art keywords
chip substrate
quantum
chip
eigenfrequency
pattern
Prior art date
Application number
PCT/CN2023/090539
Other languages
English (en)
French (fr)
Inventor
李登峰
张文龙
戴茂春
卜坤亮
淮赛男
Original Assignee
腾讯科技(深圳)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 腾讯科技(深圳)有限公司 filed Critical 腾讯科技(深圳)有限公司
Priority to KR1020247009241A priority Critical patent/KR20240051186A/ko
Priority to US18/233,732 priority patent/US20230419148A1/en
Publication of WO2023246285A1 publication Critical patent/WO2023246285A1/zh

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/13Integrated optical circuits characterised by the manufacturing method
    • G02B6/136Integrated optical circuits characterised by the manufacturing method by etching
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • G06F30/27Design optimisation, verification or simulation using machine learning, e.g. artificial intelligence, neural networks, support vector machines [SVM] or training a model
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N10/00Quantum computing, i.e. information processing based on quantum-mechanical phenomena
    • G06N10/20Models of quantum computing, e.g. quantum circuits or universal quantum computers
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N10/00Quantum computing, i.e. information processing based on quantum-mechanical phenomena
    • G06N10/40Physical realisations or architectures of quantum processors or components for manipulating qubits, e.g. qubit coupling or qubit control
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N10/00Quantum computing, i.e. information processing based on quantum-mechanical phenomena
    • G06N10/80Quantum programming, e.g. interfaces, languages or software-development kits for creating or handling programs capable of running on quantum computers; Platforms for simulating or accessing quantum computers, e.g. cloud-based quantum computing

Definitions

  • quantum computing uses the principle of superposition states for calculations, quantum computing has more powerful computing capabilities than traditional computers on specific problems, thus arousing great interest in academia and industry.
  • the computing power of quantum computing mainly depends on relaxation time and scalability.
  • superconducting materials are usually used to prepare nonlinear circuits on the substrate to construct qubits.
  • an important factor affecting the relaxation time of the qubit is the substrate eigenmode of the chip.
  • Embodiments of the present application provide a method for preparing a quantum chip, including:
  • the quantum operating frequency is the operating frequency of the qubit of the quantum circuit
  • the second surface is opposite to the first surface
  • the target pattern is the intrinsic frequency of the chip substrate and the quantum operating frequency. The pattern when the difference between is the largest
  • Embodiments of the present application provide a quantum chip preparation device, including:.
  • a determination module configured to determine the initial eigenfrequency of the chip substrate
  • An etching module configured to perform a pattern etching process on the first surface of the chip substrate based on the numerical comparison result between the initial eigenfrequency and the quantum operating frequency, so that the second surface is complete and the first surface has Chip substrate with target pattern;
  • the first surface has a target pattern, wherein the target pattern is the pattern when the difference between the intrinsic frequency of the chip substrate and the quantum operating frequency is the largest;
  • the second surface is configured with a quantum circuit, wherein the operating frequency of a qubit of the quantum circuit is the quantum operating frequency.
  • An embodiment of the present application provides an electronic device, including:
  • a processor configured to implement the method for preparing a quantum chip provided by embodiments of the present application when executing computer-executable instructions stored in the memory.
  • Embodiments of the present application provide a computer program product, which includes computer-executable instructions.
  • the computer-executable instructions are executed by a processor, the method for preparing a quantum chip provided by the embodiments of the present application is implemented.
  • pattern etching is performed on the first surface of the chip substrate to obtain a chip substrate with a complete second surface and a target pattern on the first surface. Since the target pattern is The pattern when the difference between the eigenfrequency of the chip substrate and the quantum operating frequency is the largest, therefore can eliminate the influence of the eigenfrequency of the chip substrate on the coherence of qubits, thus increasing the computing power of the quantum chip.
  • the quantum circuit is etched to form a quantum chip. Since the etching pattern on the first surface of the chip substrate does not affect the morphology and size of the second surface of the chip substrate, it can be prepared normally. Quantum circuits.
  • Figure 1 is a schematic structural diagram of a quantum chip preparation system provided by an embodiment of the present application.
  • Figure 2 is a schematic structural diagram of an electronic device provided by an embodiment of the present application.
  • FIGS 3A-3B are schematic flow charts of the preparation method of quantum chips provided by embodiments of the present application.
  • Figure 4 is a schematic flow chart of a method for preparing a quantum chip provided by an embodiment of the present application
  • Figure 6 is a cutting schematic diagram of the preparation method of the quantum chip provided by the embodiment of the present application.
  • Figure 7 is a schematic diagram of changes in the intrinsic frequency of the quantum chip preparation method provided by the embodiment of the present application.
  • Figure 8 is a cutting schematic diagram of the preparation method of the quantum chip provided by the embodiment of the present application.
  • Figure 9 is a cutting schematic diagram of the preparation method of the quantum chip provided by the embodiment of the present application.
  • FIG. 10 is a schematic diagram of changes in the intrinsic frequency of the quantum chip preparation method provided by the embodiment of the present application.
  • Eigenmode of the chip substrate a standing wave field formed along the longitudinal direction of the axis that satisfies the resonance conditions. Since the substrate of the chip is usually square, it is equivalent to a two-dimensional resonant cavity in the microwave band formed on the chip substrate, thus having its own intrinsic model.
  • Quantum computing It is a new computing model that follows the laws of quantum mechanics to control quantum information units for calculation. Compared with the traditional general-purpose computer, its theoretical model is a universal Turing machine; the theoretical model of a general-purpose quantum computer is a universal Turing machine reinterpreted using the laws of quantum mechanics.
  • Quantum circuit a collection of quantum gates connected non-cyclically through input and output lines.
  • the size and depth of a quantum circuit are the number of nodes and the depth of the underlying connection graph.
  • Relaxation rate the rate at which a qubit degenerates from a quantum superposition state to a classical state.
  • the factors that affect the relaxation time of the qubit also include the eigenmode of the substrate. Since the substrate is generally square, there will also be electromagnetic standing waves inside the substrate, which can form the eigenmode of the substrate.
  • the working frequency of superconducting qubits generally operates between 4 GHz and 6 GHz.
  • Quantum chips often use 8 mm * 8 mm silicon substrates.
  • the intrinsic frequency of 8 mm * 8 mm silicon substrates is 7.7 GHz
  • the eigenfrequency of a mm x 8 mm sapphire substrate is approximately 8.4 GHz. This is relatively close to the working frequency of qubits.
  • the size of the chip needs to be increased, such as using 10 mm * 10 mm silicon wafers and sapphire wafers.
  • the eigenfrequency of the 10 mm * 10 mm silicon wafer is 6.1 GHz
  • the eigen frequency of the 10 mm * 10 mm sapphire substrate is 6.7 GHz.
  • the chip eigenfrequency and the qubit operating frequency will be more near.
  • the devices provided by embodiments of the present application can be implemented as notebook computers, tablet computers, desktop computers, set-top boxes, mobile devices (for example, mobile phones, portable music players, personal Various types of user terminals, such as digital assistants, dedicated messaging devices, portable gaming devices, etc., can also be implemented as servers. Next, the actual equipment will be described Example application when used as a server.
  • Figure 1 is a schematic structural diagram of a quantum chip preparation system provided by an embodiment of the present application.
  • the terminal 400 is connected to the server 200 through a network 300.
  • the network 300 can be a wide area network or a local area network, or a combination of the two.
  • the quantum chip preparation method provided by the embodiments of the present application can also be implemented by a terminal or a server alone.
  • the terminal alone is implemented as an example.
  • the terminal 400 determines the initial eigenfrequency of the chip substrate.
  • the terminal 400 determines the initial eigenfrequency of the chip substrate.
  • the initial eigenfrequency of the chip substrate and the quantum operating frequency are compared.
  • the terminal 400 determines the target pattern based on the numerical comparison result, and sends the target pattern to the terminal 400.
  • the terminal 400 performs pattern etching on the first surface of the chip substrate to obtain A chip substrate with a complete second surface and a target pattern on the first surface.
  • the quantum operating frequency is the operating frequency of the qubit of the quantum circuit.
  • the second surface is opposite to the first surface.
  • the target pattern is the intrinsic frequency of the chip substrate and the quantum
  • the terminal 400 etch the quantum circuit on the second surface of the chip substrate that has undergone the pattern etching process to form a quantum chip.
  • the server 200 may be an independent physical server, a server cluster or a distributed system composed of multiple physical servers, or may provide cloud services, cloud databases, cloud computing, cloud functions, cloud storage, Cloud servers for basic cloud computing services such as network services, cloud communications, middleware services, domain name services, security services, CDN, and big data and artificial intelligence platforms.
  • the terminal 400 can be a smartphone, a tablet computer, a notebook computer, a desktop computer, a smart speaker, a smart phone Watches, smart voice interaction devices, smart home appliances, vehicle terminals, aircraft, etc., but are not limited to these.
  • the terminal and the server can be connected directly or indirectly through wired or wireless communication methods, which are not limited in the embodiments of this application.
  • a terminal or server can implement the quantum chip preparation method provided in the embodiments of this application by running a computer program.
  • a computer program can be a native program or software module in the operating system; it can be a native (Native) application (APP, Application), that is, a program that needs to be installed in the operating system to run, such as an industrial equipment maintenance APP. ; It can also be a small program, that is, a program that only needs to be downloaded to the browser environment to run.
  • APP Native
  • the computer program described above can be any form of application, module or plug-in.
  • the processor 410 may be an integrated circuit chip with signal processing capabilities, such as a general-purpose processor, a digital signal processor (DSP, Digital Signal Processor), or other programmable logic devices, discrete gate or transistor logic devices, or discrete hardware Components, etc., wherein the general processor can be a microprocessor or any conventional processor, etc.
  • DSP Digital Signal Processor
  • User interface 430 includes one or more output devices 431 that enable the presentation of media content, including one or more speakers and/or one or more visual displays.
  • User interface 430 also includes one or more input devices 432, including user interface components that facilitate user input, such as a keyboard, mouse, microphone, touch screen display, camera, and other input buttons and controls.
  • Memory 450 may be removable, non-removable, or a combination thereof.
  • Exemplary hardware devices include solid state memory, hard disk drives, optical disk drives, etc.
  • Memory 450 may include one or more storage devices physically located remotely from processor 410 .
  • Memory 450 includes volatile memory or non-volatile memory, and may include both volatile and non-volatile memory. Both lossless memory.
  • the non-volatile memory may be a read-only memory (ROM), and the volatile memory may be a random-access memory (RAM).
  • the memory 450 described in the embodiments of this application is intended to include any suitable type of memory.
  • the memory 450 is capable of storing data to support various operations, examples of which include programs, modules, and data structures, or subsets or supersets thereof, as exemplarily described below.
  • the operating system 451 includes system programs used to process various basic system services and perform hardware-related tasks, such as the framework layer, core library layer, driver layer, etc., which are used to implement various basic services and process hardware-based tasks;
  • Network communication module 452 for reaching other electronic devices via one or more (wired or wireless) network interfaces 420.
  • Exemplary network interfaces 420 include: Bluetooth, Wireless Compliance Certification (WiFi), and Universal Serial Bus ( USB, Universal Serial Bus), etc.;
  • Presentation module 453 for enabling the presentation of information (e.g., a user interface for operating peripheral devices and displaying content and information) via one or more output devices 431 (e.g., display screens, speakers, etc.) associated with user interface 430 );
  • information e.g., a user interface for operating peripheral devices and displaying content and information
  • output devices 431 e.g., display screens, speakers, etc.
  • An input processing module 454 for detecting one or more user inputs or interactions from one or more input devices 432 and translating the detected inputs or interactions.
  • the device provided by the embodiment of the present application can be implemented in a software manner.
  • Figure 2 shows a quantum chip preparation device 455 stored in the memory 450, which can be software in the form of programs, plug-ins, etc., including the following Software modules: determination module 4551, etching module 4552, and preparation module 4553. These modules are logical, so they can be arbitrarily combined or further divided according to the functions implemented. The functions of each module are explained below.
  • the preparation method of the quantum chip provided by the embodiment of the present application will be described in conjunction with the exemplary application and implementation of the terminal provided by the embodiment of the present application.
  • the steps performed by the terminal may be performed by a client running on the terminal.
  • this application does not make a specific distinction between the terminal and the client running on the terminal.
  • the quantum chip preparation method provided by the embodiments of the present application can be executed by various forms of computer programs running on the terminal, and is not limited to the client running on the terminal. It can also be the above-mentioned ones. operating systems, software modules, scripts and applets described above.
  • FIG. 3A is a schematic flow chart of a method for preparing a quantum chip provided by an embodiment of the present application, which will be described in conjunction with steps 101 to 103 shown in FIG. 3A .
  • step 101 the initial eigenfrequency of the chip substrate is determined.
  • determining the initial eigenfrequency of the chip substrate in step 101 can be achieved through the following technical solution: when the first surface of the chip substrate is a rectangle, obtain the length and width of the first surface, for example, the first surface When it is a rectangle, obtain the length and width of the rectangle, and determine the initial eigenfrequency of the chip substrate based on the length and width of the first surface. Since the thickness of the chip substrate is much smaller than the length and width of the chip substrate, the chip substrate can be seen Construct a two-dimensional resonant cavity to calculate the initial eigenfrequency.
  • the chip substrate is regarded as a two-dimensional resonant cavity to calculate the initial eigenfrequency, which can improve the calculation efficiency of the initial eigenfrequency.
  • the above-mentioned determination of the initial eigenfrequency of the chip substrate based on the length and width of the first surface can be achieved through the following technical solutions: squaring the length to obtain the first square result, and squaring the width.
  • Process to obtain the second square result determine the first ratio between the square result of the pi constant and the first square result, and the second ratio between the square result of the pi constant and the second square result; calculate the first ratio and the second ratio Perform square root processing on the sum result to obtain the square root result; use the ratio of the square root result to the base constant as the initial eigenfrequency, where the base constant is obtained based on the magnetic permeability of the chip substrate and the dielectric constant of the chip substrate.
  • the chip substrate can be regarded as a two-dimensional resonant cavity to calculate the initial eigenfrequency, so that the initial eigenfrequency can be accurately and effectively determined.
  • the chip substrate is regarded as a two-dimensional resonant cavity to calculate the initial eigenfrequency
  • the calculation of the initial eigenfrequency can be referred to formula (2):
  • ⁇ and ⁇ are the magnetic permeability and dielectric constant of the chip substrate respectively
  • l and w are the length and width of the chip substrate respectively
  • f is the initial eigenfrequency
  • the substrate constant is ⁇ is the pi constant.
  • step 102 based on the numerical comparison result between the initial eigenfrequency and the quantum operating frequency, a pattern etching process is performed on the first surface of the chip substrate, so that the second surface is complete and the first surface has Target patterned chip substrate.
  • the quantum operating frequency is the operating frequency of the qubit of the quantum circuit
  • the second surface is opposite to the first surface
  • the target pattern is the pattern when the difference between the intrinsic frequency of the chip substrate and the quantum operating frequency is the largest.
  • the substrate etching method is determined, specifically the etching target pattern is determined, and then the first step of the chip substrate is performed based on the target pattern.
  • the surface is subjected to pattern etching treatment to obtain a chip substrate with a complete second surface and a first surface with a target pattern.
  • the target pattern should be etched to move the eigenfrequency of the chip substrate to high frequency, that is, the target pattern on the first surface when the eigenfrequency of the chip substrate reaches its maximum value is obtained.
  • the initial chip substrate is a cube.
  • the thickness (height) of the cube is much smaller than the length and width of the cube.
  • the initial chip substrate has two surfaces determined by the long side and the wide side (two opposite faces of the cube). The first surface is any one of the two surfaces, and the second surface is the other surface.
  • the surface where pattern etching is performed is regarded as the back side of the chip substrate (first surface). Pattern etching is not performed and during the etching process The intact surface is used as the front side (second surface) of the chip substrate.
  • the target pattern when the initial eigenfrequency is less than the quantum operating frequency, the target pattern has a cubic depression at the center of the first surface. When the initial eigenfrequency is not less than the quantum operating frequency, the target pattern is to have a cubic boss at the center of the first surface.
  • the eigenfrequency can be minimized or maximized through a simple target pattern, effectively improving the pattern etching efficiency.
  • the chip substrate can be regarded as a resonant cavity.
  • the chip substrate Before the back side is etched, the chip substrate is a two-dimensional resonant cavity. After the back side is etched, the shape of the resonant cavity changes, resulting in The standing wave field formed along the longitudinal direction of the axis changes, causing the eigenfrequency of the substrate to change.
  • the eigenfrequency of the substrate is not less than the operating frequency of the qubit, see Figure 5- Figure 6, Figure 5- Figure 6
  • the method of using a dicing machine grinding wheel to process grooves on the back of the chip substrate is schematically shown. When cutting, the cutting depth of the chip substrate by the grinding wheel can be set to 330 microns.
  • the remaining thickness of the chip substrate is 100 microns.
  • the lateral removal amount is 200 microns, which means that each cutting can cut a 200 micron wide and 330 micron deep groove, and the back side of the chip substrate can be processed into something like
  • the boss shape shown in Figure 5 can also be further removed from the back surface of the chip substrate in sequence to form a boss shape with a raised center as shown in Figure 6 .
  • Figure 7 shows the eigenfrequency of the substrate as a function of the amount of material removal from the chip substrate. As the amount of removal on both sides or around the back of the chip substrate increases, the eigenfrequency of the chip substrate will increase significantly.
  • the eigenfrequency of the chip substrate will begin to decrease until the back side becomes After the 330 micron thick material has been removed, the side length of the chip substrate is 10 mm and the thickness of the chip substrate is 100 microns. This is equivalent to obtaining the target pattern corresponding to the maximum eigenfrequency in Figure 7, which is shown in Figure 6.
  • the cube boss shown has a raised center.
  • Figure 8 schematically shows the method of using a dicing machine grinding wheel to process grooves on the back of the sapphire substrate.
  • each cutting can obtain a groove with a width of 200 microns and a depth of 330 microns.
  • the shape shown in Figure 8 can be obtained after multiple cuts, or only the central area can be processed.
  • the dicing machine can only completely cut from one side of the chip to the other side of the chip. Referring to FIG. 10 , FIG.
  • step 1021 when the initial eigenfrequency is less than the quantum operating frequency, the target pattern of the first surface when the eigenfrequency of the chip substrate reaches a minimum value is obtained.
  • step 1022 when the initial eigenfrequency is not less than the quantum operating frequency, the target pattern of the first surface when the eigenfrequency of the chip substrate reaches a maximum value is obtained.
  • the above-mentioned acquisition of the target pattern of the first surface when the eigenfrequency of the chip substrate reaches a minimum value can be achieved through the following technical solution: obtaining the geometric parameters of the chip substrate, the material of the chip substrate, and multiple candidates of the chip substrate pattern; call the first neural network model to perform the following processing: obtain the geometric features of the corresponding geometric parameters, the material features of the corresponding material, and the pattern features of each candidate pattern; for each candidate pattern, obtain the geometric features, material features, and candidate patterns
  • the pattern features are fused to obtain the first fusion feature, and the first fusion feature is subjected to the first mapping process to obtain the predicted eigenfrequencies of the candidate patterns; the predicted eigenfrequencies of the multiple candidate patterns are sorted from small to large,
  • the candidate pattern corresponding to the predicted eigenfrequency ranked first is used as the target pattern, so that the target pattern of the chip substrate when the eigenfrequency is the smallest can be obtained.
  • the above-mentioned acquisition of the target pattern on the first surface when the eigenfrequency of the chip substrate reaches its maximum value can be achieved through the following technical solutions: obtaining the geometric parameters of the chip substrate, the chip substrate materials and multiple candidate patterns of the chip substrate; call the first neural network model to perform the following processing: obtain the geometric characteristics of the corresponding geometric parameters, the material characteristics of the corresponding material, and the pattern characteristics of each candidate pattern; for each candidate pattern, The geometric features, the material features and the pattern features of the candidate pattern are fused to obtain the first fusion feature, and the first fusion feature is subjected to the first mapping process to obtain the predicted eigenfrequency of the candidate pattern; the predicted eigenfrequency of the multiple candidate patterns is obtained The eigenfrequencies are sorted from large to small, and the candidate pattern corresponding to the predicted eigenfrequency ranked first is used as the target pattern, so that the target pattern of the chip substrate when the eigenfrequency is the largest can be obtained.
  • the following describes the training process of the above-mentioned first neural network model, obtaining the sample geometric parameters of the sample chip substrate, the sample material of the sample chip substrate, and multiple sample candidate patterns of the sample chip substrate; calling the initialized first neural network model to perform the following processing: Obtain the sample geometric characteristics corresponding to the sample geometric parameters, the sample material characteristics corresponding to the sample material, and the sample pattern characteristics of each sample candidate pattern; for each sample candidate pattern, obtain the sample geometric characteristics, sample material characteristics, and sample pattern of the sample candidate pattern. The features are fused to obtain the first sample fusion feature, and the first sample fusion feature is subjected to the first mapping process to obtain the predicted eigenfrequency of the sample candidate pattern, and determine the predicted eigenfrequency of the sample candidate pattern and the sample candidate pattern. The error between the marked eigenfrequencies, the parameters of the first neural network model are updated based on the error, and the first neural network model updated when the error converges to the minimum value is used as the first neural network model for subsequent calls.
  • the transmission frequency of the electromagnetic wave when resonance occurs during the propagation process is obtained as the original value of the corresponding pattern.
  • Eigenfrequency sort the transmission frequencies corresponding to each simulated cutting process from small to large, determine the transmission frequency ranked first as the eigenfrequency that obtains the minimum value, and take the pattern corresponding to the transmission frequency ranked first as the target pattern.
  • the first surface of the chip substrate is a plane.
  • the first surface of the chip substrate is subjected to multiple simulated cutting processes until The first surface of the chip substrate becomes a plane again; perform the following processing on the first surface of the chip substrate obtained by each simulated cutting process: simulate the propagation of electromagnetic waves on the first surface of the chip substrate, and obtain the time when the resonance phenomenon occurs during the propagation process.
  • the transmission frequency of electromagnetic waves; the transmission frequencies corresponding to each simulated cutting process are sorted from large to small, and the transmission frequency ranked first is determined as the eigenfrequency with the maximum value.
  • the transmission frequency of the electromagnetic wave when resonance occurs during the propagation process is obtained as the original value of the corresponding pattern.
  • Eigenfrequency sort the transmission frequencies corresponding to each simulated cutting process from large to small, determine the transmission frequency ranked first as the eigenfrequency with the maximum value, and take the pattern corresponding to the transmission frequency ranked first as the target pattern.
  • the remaining thickness of the chip substrate is 100 microns.
  • the lateral removal amount is 200 microns, which means that each cutting can cut a 200 micron wide and 330 micron deep groove;
  • the first step to obtain the simulated beam is on the chip substrate.
  • the movement trajectory of the surface and the residence time of the simulated beam corresponding to each position during the movement are simulated.
  • Cutting is performed on the first surface of the chip substrate based on the movement trajectory and residence time.
  • focused plasma or laser can also be used to cut the chip. center for processing. First, the position of the focused plasma on the chip substrate or the position of the focus of the laser beam on the chip substrate is precisely controlled.
  • the chip substrate of the quantum chip includes an opposing first surface and a second surface; the first surface has a target pattern, wherein the target pattern is the largest difference between the eigenfrequency of the chip substrate and the quantum operating frequency.
  • the second surface is configured with a quantum circuit, where the operating frequency of the qubits of the quantum circuit is the quantum operating frequency.
  • first determine the initial eigenfrequency of the chip substrate and then perform a pattern etching process on the first surface of the chip substrate based on the numerical comparison result between the initial eigenfrequency and the quantum operating frequency to obtain a complete second surface.
  • the first surface has a chip substrate with a target pattern
  • the quantum operating frequency is the operating frequency of the qubit of the quantum circuit
  • the second surface is opposite to the first surface
  • the target pattern is The pattern when the difference between the intrinsic frequency of the chip substrate and the quantum operating frequency is the largest, and finally the quantum circuit is etched on the second surface of the chip substrate that has undergone pattern etching to form a quantum chip.
  • pattern etching is performed on the first surface of the chip substrate to obtain a chip substrate with a complete second surface and a target pattern on the first surface.
  • the target pattern is the chip
  • a quantum circuit is etched on the second surface of the substrate to form a quantum chip. Since the pattern is etched on the first surface of the chip substrate, the morphology and size of the second surface of the chip substrate are not affected, so the quantum circuit can be prepared normally.
  • the quantum chip preparation method provided by the embodiments of the present application can be implemented by a terminal and a server in collaboration.
  • the server determines the initial eigenfrequency of the chip substrate, and the server determines the initial eigenfrequency of the chip substrate and the quantum operating frequency.
  • the server determines the target pattern based on the numerical comparison result and sends the target pattern to the terminal.
  • the terminal performs pattern etching on the first surface of the chip substrate to obtain a chip substrate with a complete second surface and a first surface with the target pattern.
  • the quantum operating frequency is the operating frequency of the qubit of the quantum circuit.
  • the second surface is opposite to the first surface.
  • the target pattern is the pattern when the difference between the intrinsic frequency of the chip substrate and the quantum operating frequency is the largest.
  • the terminal passes through The quantum circuit is etched on the second surface of the chip substrate subjected to pattern etching to form a quantum chip.
  • the embodiment of the present application adjusts the eigenfrequency of the substrate by etching a pattern on the back of the substrate to change the overall shape of the substrate, increasing the distance between the qubit operating frequency and the eigenfrequency of the substrate, which can significantly reduce the coherence of the substrate mode to the bit. influence, extending the bit coherence time.
  • the preparation method of the quantum chip provided by the embodiment of the present application is to use the pattern etched on the back of the substrate to change the eigenfrequency of the eigenmode of the substrate, so that the difference between the operating frequency of the qubit and the eigenfrequency of the substrate is widened, so that It can reduce the impact of the eigenmode of the chip substrate on the coherence of qubits and extend the coherence time.
  • etching is performed on the chip substrate using ion cutting, laser cutting or mechanical dicing.
  • a target pattern is etched on the back of the chip substrate using ion cutting, laser cutting or mechanical dicing.
  • a groove structure or a boss structure is etched, and the size of the groove or boss is precisely controlled to maximize the difference between the eigenfrequency of the chip substrate and the operating frequency of the qubit.
  • a quantum circuit is etched on the front side of the chip substrate to form a quantum chip. Specifically, since the size and shape of the front side are not affected by pattern etching, a qubit circuit can be prepared on the front side.
  • the qubit circuit includes a read circuit. , filters, resonant cavities and Josephson junctions and other structures.
  • the cutting depth of the sapphire by the grinding wheel can be set to 330 microns during cutting. At this time, the remaining thickness of the sapphire is 100 Micron.
  • the horizontal removal amount is 200 microns, which means that each cutting can cut a groove of 200 microns wide and 330 microns deep, and the back of the sapphire can be processed as shown in Figure 5
  • the surrounding sides of the back side of the sapphire can be removed in sequence and processed into a boss shape with a convex center as shown in Figure 6.
  • FIG. 7 illustrates the eigenfrequency of a sapphire substrate as a function of the amount of sapphire substrate removed.
  • the eigenfrequency of the sapphire will increase significantly.
  • the structure of the sapphire will become closer and closer to a thinner complete sapphire.
  • the eigenfrequency will begin to decrease until the 330 micron thick sapphire on the back is removed.
  • the size of the sapphire is 10 mm on a side and 100 microns thick.
  • the difference between the eigenfrequency of sapphire at this time and the eigenfrequency when the thickness is 430 microns is small. Therefore, in actual operations, it is necessary to accurately select the appropriate removal amount to maximize the difference between the eigenfrequency of sapphire and the operating frequency of qubits.
  • Pattern etching is performed on one surface to obtain a chip substrate with a complete second surface and a target pattern on the first surface; wherein the quantum operating frequency is the operating frequency of the qubit of the quantum circuit, and the second surface is opposite to the first surface,
  • the target pattern is the pattern when the difference between the eigenfrequency of the chip substrate and the quantum operating frequency is the largest; the preparation module 4553 is configured to etch the quantum circuit on the second surface of the chip substrate that has undergone pattern etching processing, so as to Form a quantum chip.
  • the determination module 4551 is further configured to: when the first surface of the chip substrate is a rectangle, obtain the length and width of the first surface; based on the length and width of the first surface, determine the initial nature of the chip substrate. Symptom frequency.
  • the target pattern when the initial eigenfrequency is less than the quantum operating frequency, the target pattern has a cubic depression at the center of the first surface. When the initial eigenfrequency is not less than the quantum operating frequency, the target pattern is to have a cubic boss at the center of the first surface.
  • the etching module 4554 is also configured to: before obtaining the target pattern of the first surface when the eigenfrequency of the chip substrate reaches its maximum value, obtain the geometric parameters of the chip substrate, the material of the chip substrate, and the Multiple candidate patterns; call the first neural network model to perform the following processing: obtain the geometric features of the corresponding geometric parameters, the material features of the corresponding material, and the pattern features of each candidate pattern; for each candidate pattern, obtain the geometric features, material features, and The pattern features of the candidate pattern are fused to obtain the first fusion feature, and the first fusion feature is subjected to the first mapping process to obtain the predicted eigenfrequency of the candidate pattern; the predicted eigenfrequencies of the multiple candidate patterns are processed from large to small. small sort, The candidate pattern corresponding to the predicted eigenfrequency ranked first is used as the target pattern.
  • the first surface of the chip substrate is a plane
  • the etching module 4554 is further configured to: before obtaining the target pattern of the first surface when the eigenfrequency of the chip substrate reaches its maximum, The surface is subjected to multiple simulated cutting processes until the first surface of the chip substrate becomes flat again; the following processing is performed on the first surface of the chip substrate obtained by each simulated cutting process: simulated propagation of electromagnetic waves on the first surface of the chip substrate, And obtain the transmission frequency of electromagnetic waves when resonance occurs during propagation; sort the transmission frequencies corresponding to each simulated cutting process from large to small, and determine the transmission frequency ranked first as the eigenfrequency with the maximum value.
  • any simulated cutting process is any one of the following processes: obtaining a grinding wheel cutting unit, performing simulated cutting on the first surface of the chip substrate based on the grinding wheel cutting unit; obtaining the movement of the simulated light beam on the first surface of the chip substrate The trajectory and the residence time of the simulated beam correspond to each position during the movement process, and the first surface of the chip substrate is simulated cutting based on the movement trajectory and the residence time.
  • Embodiments of the present application provide a quantum chip.
  • the chip substrate of the quantum chip includes an opposing first surface and a second surface; the first surface has a target pattern, wherein the target pattern is the original pattern of the chip substrate.
  • Embodiments of the present application provide a computer program product or computer program.
  • the computer program product or computer program includes computer instructions, and the computer instructions are stored in a computer-readable storage medium.
  • the processor of the electronic device reads the computer instructions from the computer-readable storage medium, and the processor executes the computer instructions, so that the electronic device executes the method for preparing a quantum chip described above in the embodiment of the present application.
  • Embodiments of the present application provide a computer-readable storage medium storing executable instructions.
  • the executable instructions are stored therein.
  • the executable instructions When executed by a processor, they will cause the processor to execute the quantum chip provided by the embodiments of the present application.
  • the preparation method is, for example, the preparation method of the quantum chip as shown in Figures 3A-3B.
  • the computer-readable storage medium may be a memory such as FRAM, ROM, PROM, EPROM, EEPROM, flash memory, magnetic surface memory, optical disk, or CD-ROM; it may also include one or any combination of the above memories.
  • Various equipment may be a memory such as FRAM, ROM, PROM, EPROM, EEPROM, flash memory, magnetic surface memory, optical disk, or CD-ROM; it may also include one or any combination of the above memories.
  • Various equipment may be a memory such as FRAM, ROM, PROM, EPROM, EEPROM, flash memory, magnetic surface memory, optical disk, or CD-ROM; it may also include one or any combination of the above memories.
  • executable instructions may take the form of a program, software, software module, script, or code, written in any form of programming language, including compiled or interpreted languages, or declarative or procedural languages, and their May be deployed in any form, including deployed as a stand-alone program or deployed as a module, component, subroutine, or other unit suitable for use in a computing environment.
  • executable instructions may, but do not necessarily correspond to, files in a file system and may be stored as part of a file holding other programs or data, for example, in a Hyper Text Markup Language (HTML) document. in one or more scripts, in a single file that is specific to the program in question, or in multiple collaborative files (e.g., files that store one or more modules, subroutines, or portions of code).
  • HTML Hyper Text Markup Language
  • executable instructions may be deployed to execute on one electronic device, or on multiple electronic devices located at one location, or on multiple electronic devices distributed across multiple locations and interconnected by a communications network. execute on.
  • the first surface of the chip substrate is pattern etched, so that the second surface is complete and the first surface has The chip substrate of the target pattern.
  • the target pattern is the pattern when the difference between the eigenfrequency of the chip substrate and the quantum operating frequency is the largest. This eliminates the influence of the eigenfrequency of the chip substrate on the coherence of the qubit, thereby ensuring that the quantum circuit can operate normally.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Evolutionary Computation (AREA)
  • Software Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Artificial Intelligence (AREA)
  • Computing Systems (AREA)
  • Mathematical Analysis (AREA)
  • Mathematical Physics (AREA)
  • Pure & Applied Mathematics (AREA)
  • Computational Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Data Mining & Analysis (AREA)
  • Mathematical Optimization (AREA)
  • Geometry (AREA)
  • Computer Hardware Design (AREA)
  • Medical Informatics (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Optics & Photonics (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

本申请提供了一种量子芯片的制备方法、装置、电子设备、计算机可读存储介质、计算机程序产品及量子芯片;方法包括:确定芯片基底的初始的本征频率;基于初始的本征频率与量子工作频率之间的数值比较结果,对芯片基底的第一表面进行图案刻蚀处理,得到第二表面完整且第一表面具有目标图案的芯片基底;量子工作频率是量子电路的量子比特的工作频率,第二表面与第一表面是相对的,目标图案是芯片基底的本征频率与量子工作频率之间的差值最大时的图案;在经过图案刻蚀处理的芯片基底的第二表面上,刻蚀量子电路,以形成量子芯片。

Description

量子芯片的制备方法、装置、电子设备、计算机可读存储介质、计算机程序产品及量子芯片
相关申请的交叉引用
本申请基于申请号为202210713974.9、申请日为2022年6月22日的中国专利申请提出,并要求中国专利申请的优先权,中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本申请涉及芯片加工技术,尤其涉及一种量子芯片的制备方法、装置、电子设备、计算机可读存储介质、计算机程序产品及量子芯片。
背景技术
由于量子计算是利用叠加态的原理进行计算,因此量子计算在特定问题上比传统计算机具有更强大的计算能力,从而引起了学术界和产业界的极大兴趣。量子计算的计算能力主要取决于弛豫时间以及可扩展性。为实现较好的可扩展性,通常选用超导材料在基底上制备非线性的电路来构造量子比特,此时影响量子比特弛豫时间的重要因素是芯片的基底本征模式。
由于基底本征模式对量子比特相干性的影响,导致豫驰时间较短从而限制量子计算的计算能力,相关技术中对此尚无有效解决方式。
发明内容
本申请实施例提供一种量子芯片的制备方法、装置、电子设备、计算机可读存储介质、计算机程序产品及量子芯片,能够减小芯片基底的本征频率对量子比特相干性的影响,延长量子芯片的相干时间,增加量子芯片的计算能力。
本申请实施例的技术方案是这样实现的:
本申请实施例提供一种量子芯片的制备方法,包括:
确定芯片基底的初始的本征频率;
基于初始的本征频率与量子工作频率之间的数值比较结果,对所述芯片基底的第一表面进行图案刻蚀处理,得到第二表面完整且所述第一表面具有目标图案的芯片基底;
其中,量子工作频率是量子电路的量子比特的工作频率,所述第二表面与所述第一表面是相对的,所述目标图案是所述芯片基底的本征频率与所述量子工作频率之间的差值最大时的图案;
在经过图案刻蚀处理的芯片基底的第二表面上,刻蚀所述量子电路,以形成量子芯片。
本申请实施例提供一种量子芯片的制备装置,包括:。
确定模块,配置为确定芯片基底的初始的本征频率;
刻蚀模块,配置为基于初始的本征频率与量子工作频率之间的数值比较结果,对所述芯片基底的第一表面进行图案刻蚀处理,得到第二表面完整且所述第一表面具有目标图案的芯片基底;
其中,量子工作频率是量子电路的量子比特的工作频率,所述第二表面与所述第一表面是相对的,所述目标图案是所述芯片基底的本征频率与所述量子工作频率之间的差值最大时的图案;
制备模块,配置为在经过图案刻蚀处理的芯片基底的第二表面上,刻蚀所述量子电路,以形成量子芯片。
本申请实施例提供一种量子芯片,所述量子芯片的芯片基底包括相对的第一表面以及第二表面;
所述第一表面具有目标图案,其中,所述目标图案是所述芯片基底的本征频率与量子工作频率之间的差值最大时的图案;
所述第二表面配置有量子电路,其中,所述量子电路的量子比特的工作频率是所述量子工作频率。
本申请实施例提供一种电子设备,包括:
存储器,用于存储计算机可执行指令;
处理器,用于执行所述存储器中存储的计算机可执行指令时,实现本申请实施例提供的量子芯片的制备方法。
本申请实施例提供一种计算机可读存储介质,存储有计算机可执行指令,用于被处理器执行时,实现本申请实施例提供的量子芯片的制备方法。
本申请实施例提供一种计算机程序产品,包括计算机可执行指令,所述计算机可执行指令被处理器执行时实现本申请实施例提供的量子芯片的制备方法。
本申请实施例具有以下有益效果:
基于初始的本征频率与量子工作频率之间的数值比较结果,对芯片基底的第一表面进行图案刻蚀处理,得到第二表面完整且第一表面具有目标图案的芯片基底,由于目标图案是芯片基底的本征频率与量子工作频率之间的差值最大时的图案,因此能够消除芯片基底的本征频率对量子比特相干性的影响,从而增加量子芯片的计算能力,在经过图案刻蚀处理的芯片基底的第二表面上,刻蚀量子电路,以形成量子芯片,由于在芯片基底的第一表面刻蚀图案,不影响芯片基底的第二表面的形貌和尺寸,从而可以正常制备量子电路。
附图说明
图1是本申请实施例提供的量子芯片的制备系统的结构示意图;
图2是本申请实施例提供的电子设备的结构示意图;
图3A-3B是本申请实施例提供的量子芯片的制备方法的流程示意图;
图4是本申请实施例提供的量子芯片的制备方法的流程示意图;
图5是本申请实施例提供的量子芯片的制备方法的切割示意图;
图6是本申请实施例提供的量子芯片的制备方法的切割示意图;
图7是本申请实施例提供的量子芯片的制备方法的本征频率变化示意图;
图8是本申请实施例提供的量子芯片的制备方法的切割示意图;
图9是本申请实施例提供的量子芯片的制备方法的切割示意图;
图10是本申请实施例提供的量子芯片的制备方法的本征频率变化示意图。
具体实施方式
为了使本申请的目的、技术方案和优点更加清楚,下面将结合附图对本申请作进一步地详细描述,所描述的实施例不应视为对本申请的限制,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其它实施例,都属于本申请保护的范围。
在以下的描述中,涉及到“一些实施例”,其描述了所有可能实施例的子集,但是可以理解,“一些实施例”可以是所有可能实施例的相同子集或不同子集,并且可以在不冲突的情况下相互结合。
在以下的描述中,所涉及的术语“第一\第二\第三”仅仅是是区别类似的对象,不代表针对对象的特定排序,可以理解地,“第一\第二\第三”在允许的情况下可以互换特定的顺序或先后次序,以使这里描述的本申请实施例能够以除了在这里图示或描述的以外的顺序实施。
除非另有定义,本文所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同。本文中所使用的术语只是为了描述本申请实施例的目的,不是旨在限制本申请。
对本申请实施例进行进一步详细说明之前,对本申请实施例中涉及的名词和术语进行说明,本申请实施例中涉及的名词和术语适用于如下的解释。
1)芯片基底本征模式:满足谐振条件沿轴线纵向方向形成的驻波场,由于芯片的基底通常为方形,相当于在芯片基底形成在微波波段的二维谐振腔,从而具有自身的本征模式。
2)量子计算:是一种遵循量子力学规律调控量子信息单元进行计算的新型计算模式。对照于传统的通用计算机,其理论模型是通用图灵机;通用的量子计算机,其理论模型是用量子力学规律重新诠释的通用图灵机。
3)量子电路,通过输入输出线路非循环连接的量子门的集合。量子电路的大小和深度就是节点的数目和底部连接图的深度。
4)量子芯片:将量子线路集成在基片上得到的芯片,进而承载量子信息处 理的功能。
5)量子叠加态(Superposition State):即量子系统的不同量子态的叠加态,通过将量子系统的多个量子态进行归一化线性组合后得到。
6)弛豫时间:量子比特从量子叠加态退化到经典态所需要的时间。
7)弛豫速率:量子比特从量子叠加态退化到经典态的速率。
传统计算机每次只能操纵一个比特的确定态,而量子计算利用态叠加原理,可以操纵叠加态,因此计算能力得到了极大提高。但是基于量子力学的叠加态很容易受环境的干扰从而退极化到经典态,退极化所用的时间称为弛豫时间,弛豫时间的长短直接影响到量子计算机的计算能力。除了弛豫时间,可扩展性也是影响量子计算的重要指标,可扩展性直接决定了计算机比特数。基于超导的量子计算方案可以实现较好的可扩展性,通常选用铝,钽等超导材料在硅片或者蓝宝石基底上制备非线性的电感电路来构造量子比特。
此时影响量子比特的弛豫时间的因素除了材料和基底带来的损耗外,还有基底本征模式。由于基底一般为方形的,在基底内部也会有电磁波驻波的存在,可以形成基底的本征模式。超导量子比特的工作频率一般工作在4千兆赫至6千兆赫,制备量子芯片经常使用8毫米*8毫米的硅基底,8毫米*8毫米的硅基底的本征频率为7.7千兆赫,8毫米*8毫米的蓝宝石基底的本征频率约为8.4千兆赫。这和量子比特的工作频率比较接近,当芯片上的比特数增加时,芯片的尺寸需要加大,例如使用10毫米*10毫米的硅片和蓝宝石片。此时10毫米*10毫米的硅片的本征频率为6.1千兆赫,10毫米*10毫米的蓝宝石基底的本征频率为6.7千兆赫,此时芯片本征频率和量子比特工作频率会更加的接近。
申请人在实施本申请实施例时发现,对于超导材料的量子芯片,基底模式引起的弛豫速率可以参见公式(1):
其中,g表示量子比特和芯片基底模式的耦合强度,Δ表示量子比特的工作频率和基底的本征频率的频率差,κ表示量子比特周围电磁场模式的衰减速率。
从公式(1)中可以看出当基底的本征频率和量子比特的工作频率比较接近,也就是Δ很小的时候,基底模式引起的量子比特的弛豫速率很快,明显影响到量子比特的相干性。因此,提升量子比特相干性的重要途径是拉大基底本征频率和量子比特工作频率的差值。
对于硅基底,相关技术中会使用深硅刻蚀工艺在硅基底上刻蚀出周期性的通孔,当小孔的周期小于电磁波的波长的时候,小孔的存在可以明显的抑制芯片基底的本征模式。由于蓝宝石基底的损耗比硅基底更低,因此在量子芯片中,蓝宝石基底的应用更加广泛。而对于蓝宝石而言,目前还没有成熟的通孔工艺。
对于蓝宝石基底,相关技术中改变蓝宝石的尺寸,由于量子芯片的工作频率低于蓝宝石基底的本征频率,这样可以减小蓝宝石基底的尺寸使基底的本征频率向高频移动。例如,量子芯片的工作频率为5千兆赫时,当基底的尺寸为10毫米*10毫米时,其本征频率为6.7千兆赫,此时Δ为1.7千兆赫。当选用8毫米*8毫米的基底时,其本征频率为8.4千兆赫,此时Δ为3.4千兆赫。可以选用6毫米*6毫米的芯片尺寸,其本征频率为11.2千兆赫,此时Δ为6.5千兆赫。可以看到,减小基底尺寸可以明显拉开芯片基底本征频率和量子比特工作频率的距离。但是这种方法只有在量子比特数目少的时候,比如只有几个量子比特时才可以使用。当量子比特数目增多时,例如上百个量子比特时,由于芯片上的线路急剧增加,必须选用大尺寸的基底,无法轻易改变基底尺寸。
综上所述,由于基底本征模式对量子比特相干性的影响,导致豫驰时间较短从而限制量子计算的计算能力,相关技术中对此尚无有效解决方式。
本申请实施例提供一种量子芯片的制备方法、装置、电子设备、计算机可读存储介质、计算机程序产品及量子芯片,能够减小芯片基底的本征频率对量子比特相干性的影响,延长量子芯片的相干时间,增加量子芯片的计算能力。
下面说明本申请实施例提供的电子设备的示例性应用,本申请实施例提供的设备可以实施为笔记本电脑、平板电脑、台式计算机、机顶盒、移动设备(例如、移动电话、便携式音乐播放器、个人数字助理、专用消息设备、便携式游戏设备)等各种类型的用户终端,也可以实施为服务器。下面,将说明设备实 施为服务器时示例性应用。
参见图1,图1是本申请实施例提供的量子芯片的制备系统的结构示意图,终端400通过网络300连接服务器200,网络300可以是广域网或者局域网,又或者是二者的组合。
在一些实施例中,本申请实施例提供的量子芯片的制备方法可以由终端与服务器协同实施,服务器200确定芯片基底的初始的本征频率,服务器200对芯片基底的初始的本征频率以及量子工作频率进行比较,服务器200基于数值比较结果确定出目标图案,将目标图案发送至终端400,终端400对芯片基底的第一表面进行图案刻蚀处理,得到第二表面完整且第一表面具有目标图案的芯片基底,量子工作频率是量子电路的量子比特的工作频率,第二表面与第一表面是相对的,目标图案是芯片基底的本征频率与量子工作频率之间的差值最大时的图案,终端400在经过图案刻蚀处理的芯片基底的第二表面上,刻蚀量子电路,以形成量子芯片。
在一些实施例中,本申请实施例提供的量子芯片的制备方法还可以由终端或服务器单独实施,以终端单独实施为例进行说明,终端400确定芯片基底的初始的本征频率,终端400对芯片基底的初始的本征频率以及量子工作频率进行比较,终端400基于数值比较结果确定出目标图案,将目标图案发送至终端400,终端400对芯片基底的第一表面进行图案刻蚀处理,得到第二表面完整且第一表面具有目标图案的芯片基底,量子工作频率是量子电路的量子比特的工作频率,第二表面与第一表面是相对的,目标图案是芯片基底的本征频率与量子工作频率之间的差值最大时的图案,终端400在经过图案刻蚀处理的芯片基底的第二表面上,刻蚀量子电路,以形成量子芯片。
在一些实施例中,服务器200可以是独立的物理服务器,也可以是多个物理服务器构成的服务器集群或者分布式系统,还可以是提供云服务、云数据库、云计算、云函数、云存储、网络服务、云通信、中间件服务、域名服务、安全服务、CDN、以及大数据和人工智能平台等基础云计算服务的云服务器。终端400可以是智能手机、平板电脑、笔记本电脑、台式计算机、智能音箱、智能 手表、智能语音交互设备、智能家电、车载终端、飞行器等,但并不局限于此。终端以及服务器可以通过有线或无线通信方式进行直接或间接地连接,本申请实施例中不做限制。
在一些实施例中,终端或服务器可以通过运行计算机程序来实现本申请实施例提供的量子芯片的制备方法。举例来说,计算机程序可以是操作系统中的原生程序或软件模块;可以是本地(Native)应用程序(APP,Application),即需要在操作系统中安装才能运行的程序,如工业设备的维护APP;也可以是小程序,即只需要下载到浏览器环境中就可以运行的程序。总而言之,上述计算机程序可以是任意形式的应用程序、模块或插件。
参见图2,图2是本申请实施例提供的电子设备的结构示意图,图2所示的终端400包括:至少一个处理器410、存储器450、至少一个网络接口420和用户接口430。终端400中的各个组件通过总线系统440耦合在一起。可理解,总线系统440用于实现这些组件之间的连接通信。总线系统440除包括数据总线之外,还包括电源总线、控制总线和状态信号总线。但是为了清楚说明起见,在图2中将各种总线都标为总线系统440。
处理器410可以是一种集成电路芯片,具有信号的处理能力,例如通用处理器、数字信号处理器(DSP,Digital Signal Processor),或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等,其中,通用处理器可以是微处理器或者任何常规的处理器等。
用户接口430包括使得能够呈现媒体内容的一个或多个输出装置431,包括一个或多个扬声器和/或一个或多个视觉显示屏。用户接口430还包括一个或多个输入装置432,包括有助于用户输入的用户接口部件,比如键盘、鼠标、麦克风、触屏显示屏、摄像头、其他输入按钮和控件。
存储器450可以是可移除的,不可移除的或其组合。示例性的硬件设备包括固态存储器,硬盘驱动器,光盘驱动器等。存储器450可以包括在物理位置上远离处理器410的一个或多个存储设备。
存储器450包括易失性存储器或非易失性存储器,也可包括易失性和非易 失性存储器两者。非易失性存储器可以是只读存储器(ROM,Read Only Me mory),易失性存储器可以是随机存取存储器(RAM,Random Access Memor y)。本申请实施例描述的存储器450旨在包括任意适合类型的存储器。
在一些实施例中,存储器450能够存储数据以支持各种操作,这些数据的示例包括程序、模块和数据结构或者其子集或超集,下面示例性说明。
操作系统451,包括用于处理各种基本系统服务和执行硬件相关任务的系统程序,例如框架层、核心库层、驱动层等,用于实现各种基础业务以及处理基于硬件的任务;
网络通信模块452,用于经由一个或多个(有线或无线)网络接口420到达其他电子设备,示例性的网络接口420包括:蓝牙、无线相容性认证(WiFi)、和通用串行总线(USB,Universal Serial Bus)等;
呈现模块453,用于经由一个或多个与用户接口430相关联的输出装置431(例如,显示屏、扬声器等)使得能够呈现信息(例如,用于操作外围设备和显示内容和信息的用户接口);
输入处理模块454,用于对一个或多个来自一个或多个输入装置432之一的一个或多个用户输入或互动进行检测以及翻译所检测的输入或互动。
在一些实施例中,本申请实施例提供的装置可以采用软件方式实现,图2示出了存储在存储器450中的量子芯片的制备装置455,其可以是程序和插件等形式的软件,包括以下软件模块:确定模块4551、刻蚀模块4552以及制备模块4553,这些模块是逻辑上的,因此根据所实现的功能可以进行任意的组合或进一步拆分。将在下文中说明各个模块的功能。
将结合本申请实施例提供的终端的示例性应用和实施,说明本申请实施例提供的量子芯片的制备方法。终端执行的步骤可以是由终端上运行的客户端执行的,为了表述方便,本申请不对终端和终端上运行的客户端进行具体区分。此外,还需要说明的是,本申请实施例提供的量子芯片的制备方法可以由终端上运行的各种形式的计算机程序执行,并不局限于上述终端运行的客户端,还可以是上文所述的操作系统、软件模块、脚本和小程序。
参见图3A,图3A是本申请实施例提供的量子芯片的制备方法的流程示意图,将结合图3A示出的步骤101至步骤103进行说明。
在步骤101中,确定芯片基底的初始的本征频率。
在一些实施例中,步骤101中确定芯片基底的初始的本征频率,可以通过以下技术方案实现:当芯片基底的第一表面是矩形时,获取第一表面的长度以及宽度,例如第一表面是矩形时,获取矩形的长度和宽度,基于第一表面的长度以及宽度,确定芯片基底的初始的本征频率,由于芯片基底的厚度远小于芯片基底的长度和宽度,因此可以将芯片基底看作二维谐振腔来计算初始的本征频率,通过本申请实施例将芯片基底看作二维谐振腔来计算初始的本征频率,可以提高初始本征频率的计算效率。
在一些实施例中,上述基于第一表面的长度以及宽度,确定芯片基底的初始的本征频率,可以通过以下技术方案实现:对长度进行平方处理,得到第一平方结果,并对宽度进行平方处理,得到第二平方结果;确定圆周率常数的平方结果与第一平方结果的第一比值、以及圆周率常数的平方结果与第二平方结果的第二比值;对第一比值与第二比值的求和结果进行开方处理,得到开方结果;将开方结果与基底常数的比值作为初始的本征频率,其中,基底常数是基于芯片基底的磁导率以及芯片基底的介电常数得到的。通过本申请实施例可以将芯片基底看作二维谐振腔来计算初始的本征频率,从而可以精确有效确定出初始的本征频率。
作为示例,将芯片基底看作二维谐振腔来计算初始的本征频率时,初始的本征频率的计算可以参见公式(2):
其中,μ和ε分别为芯片基底的磁导率和介电常数,l和w分别为芯片基底的长度和宽度,f是初始的本征频率,基底常数是π是圆周率常数。
在步骤102中,基于初始的本征频率与量子工作频率之间的数值比较结果,对芯片基底的第一表面进行图案刻蚀处理,得到第二表面完整且第一表面具有 目标图案的芯片基底。
作为示例,量子工作频率是量子电路的量子比特的工作频率,第二表面与第一表面是相对的,目标图案是芯片基底的本征频率与量子工作频率之间的差值最大时的图案。
作为示例,根据量子工作频率小于量子工作频率或不小于量子工作频率的数值比较结果,确定基底刻蚀方式,具体而言是确定出刻蚀的目标图案,进而基于目标图案对芯片基底的第一表面进行图案刻蚀处理,得到第二表面完整且第一表面具有目标图案的芯片基底。当量子工作频率小于芯片基底的本征频率时,应当刻蚀出目标图案使芯片基底的本征频率向高频移动,即获取芯片基底的本征频率取得最大值时第一表面的目标图案。当量子工作频率不小于芯片基底的本征频率时,应当刻蚀出目标图案使芯片基底的本征频率向低频移动,即获取芯片基底的本征频率取得最小值时第一表面的目标图案。
作为示例,初始的芯片基底是立方体,立方体的厚度(高度)远小于立方体的长度以及宽度,初始的芯片基底具有两个由长边和宽边确定的表面(是立方体的两个相对面),第一表面是两个表面中的任一表面,第二表面是另一个表面,将进行图案刻蚀的表面作为芯片基底的背面(第一表面),将未进行图案刻蚀且在刻蚀过程中保持完整的表面作为芯片基底的正面(第二表面),第二表面完整表征未在第二表面上进行图案刻蚀,且在对第一表面进行图案刻蚀的过程中,第二表面没有受到刻蚀影响,仍然保持表面完整,例如,第二表面没有在第一表面的刻蚀过程中被穿孔。
在一些实施例中,当初始的本征频率小于量子工作频率时,目标图案是在第一表面的中心位置具有立方体凹陷。当初始的本征频率不小于量子工作频率时,目标图案是在第一表面的中心位置具有立方体凸台。通过本申请实施例可以通过简单的目标图案来实现本征频率的最小化或者最大化,有效提高图案刻蚀效率。
作为示例,芯片基底可以看做是谐振腔,在对背面刻蚀之前,芯片基底是二维谐振腔,在对背面进行刻蚀之后,由于谐振腔的形状发生变化,从而导致 沿轴线纵向方向形成的驻波场发生变化,从而导致基底的本征频率发生改变,当基底的本征频率不小于量子比特的工作频率的时候,参见图5-图6,图5-图6示意性给出使用划片机砂轮在芯片基底背面加工凹槽的方式,在切割的时候可以设定砂轮对芯片基底的切割深度为330微米,此时芯片基底的剩余厚度为100微米。划片机砂轮从芯片基底一侧切割到另一侧的时候横向去除量为200微米,也就是每切割一次可以切出一个200微米宽,330微米深的槽,可以将芯片基底背面加工成如图5所示的凸台状,进一步也可以将芯片基底背面四周依次去除,加工成如图6所示的中心凸起的凸台状。图7示出了基底的本征频率随芯片基底的材料去除量的关系。随着芯片基底的背面两侧或者四周的去除量增加,芯片基底的本征频率会有明显的增大,之后随着去除量的继续增加,芯片基底的本征频率会开始下降,直至将背面330微米厚的材料去除完毕,此时芯片基底的边长为10毫米,芯片基底的厚度为100微米,相当于需要获取图7中本征频率为最大值时对应的目标图案,即图6所示的中心凸起的立方体凸台。
作为示例,当基底的本征频率小于量子比特的工作频率的时候,参见图8,图8示意性给出使用划片机砂轮在蓝宝石基底背面加工凹槽的方式。此时可以设定划片机砂轮的切割参数。例如在中间部分刻蚀出凹槽。同样,每次切割可以得到一个宽度为200微米,深度为330微米的凹槽,精确控制切割次数,多次切割之后就可以得到如图8所示的形状,也可以只对中心区域进行加工。但由于划片机只能从芯片一侧完全划切到芯片另一侧。参见图10,图10示出了蓝宝石基底的本征频率随蓝宝石基底的去除量的关系。随着材料去除量的增加,芯片基底的本征频率首先会后明显的下降,之后随着去除量的继续增多,芯片基底的本征频率开始上升,最后达到和初始芯片基底的本征频率很接近的情况。因此实际加工中也要精确控制材料去除量达到芯片基底的本征频率和量子比特工作频率差的最大值,相当于需要获取图10中本征频率为最小值时对应的目标图案,即图8所示的中心凸起的立方体凹陷。
在步骤103中,在经过图案刻蚀处理的芯片基底的第二表面上,刻蚀量子 电路,以形成量子芯片。
作为示例,经过图案刻蚀处理的芯片基底是通过步骤102得到的芯片基底,即此时芯片基底的第一表面中包括目标图案,在芯片基底的第二表面(正面)制备量子比特电路(也即步骤103中的量子电路),制备的量子电路包括读取电路,滤波器,谐振腔和约瑟夫森结等电路结构。
在一些实施例中,参见图3B,图3B是本申请实施例提供的量子芯片的制备方法的流程示意图,步骤102基于初始的本征频率与量子工作频率之间的数值比较结果,对芯片基底的第一表面进行图案刻蚀处理,得到第二表面完整且第一表面具有目标图案的芯片基底可以通过执行图3B示出的步骤1021至步骤1023实现。
在步骤1021中,当初始的本征频率小于量子工作频率时,获取芯片基底的本征频率取得最小值时第一表面的目标图案。
在步骤1022中,当初始的本征频率不小于量子工作频率时,获取芯片基底的本征频率取得最大值时第一表面的目标图案。
在步骤1023中,基于目标图案对芯片基底的第一表面进行图案刻蚀处理,得到第二表面完整且第一表面具有目标图案的芯片基底。
在一些实施例中,上述获取芯片基底的本征频率取得最小值时第一表面的目标图案,可以通过以下技术方案实现:获取芯片基底的几何参数、芯片基底的材质以及芯片基底的多个候选图案;调用第一神经网络模型执行以下处理:获取对应几何参数的几何特征、对应材质的材质特征以及每个候选图案的图案特征;针对每个候选图案,对几何特征、材质特征以及候选图案的图案特征进行融合处理,得到第一融合特征,并对第一融合特征进行第一映射处理,得到候选图案的预测本征频率;对多个候选图案的预测本征频率进行由小到大排序,将排序在首位的预测本征频率对应的候选图案作为目标图案,从而可以获取本征频率最小时芯片基底的目标图案。
在一些实施例中,上述获取芯片基底的本征频率取得最大值时第一表面的目标图案,可以通过以下技术方案实现:获取芯片基底的几何参数、芯片基底 的材质以及芯片基底的多个候选图案;调用第一神经网络模型执行以下处理:获取对应几何参数的几何特征、对应材质的材质特征以及每个候选图案的图案特征;针对每个候选图案,对几何特征、材质特征以及候选图案的图案特征进行融合处理,得到第一融合特征,并对第一融合特征进行第一映射处理,得到候选图案的预测本征频率;对多个候选图案的预测本征频率进行由大到小排序,将排序在首位的预测本征频率对应的候选图案作为目标图案,从而可以获取本征频率最大时芯片基底的目标图案。
通过人工智能的方式预测每个候选图案的本征频率,从而选择出最大本征频率对应的候选图案作为目标图案或者选择出最小本征频率对应的候选图案作为目标图案,提升目标图案的获取效率以提升图案刻蚀效率。
下面介绍上述第一神经网络模型的训练过程,获取样本芯片基底的样本几何参数、样本芯片基底的样本材质以及样本芯片基底的多个样本候选图案;调用初始化的第一神经网络模型执行以下处理:获取对应样本几何参数的样本几何特征、对应样本材质的样本材质特征以及每个样本候选图案的样本图案特征;针对每个样本候选图案,对样本几何特征、样本材质特征以及样本候选图案的样本图案特征进行融合处理,得到第一样本融合特征,并对第一样本融合特征进行第一映射处理,得到样本候选图案的预测本征频率,确定样本候选图案的预测本征频率与样本候选图案的标记本征频率之间的误差,基于误差更新第一神经网络模型的参数,将误差收敛于最小值时更新得到的第一神经网络模型作为后续调用的第一神经网络模型。
在一些实施例中,芯片基底的第一表面为平面,在获取芯片基底的本征频率取得最小值时第一表面的目标图案之前,对芯片基底的第一表面进行多次模拟切割处理,直至芯片基底的第一表面再次成为平面;针对每次模拟切割处理得到的芯片基底的第一表面执行以下处理:将电磁波在芯片基底的第一表面进行仿真传播,并获取传播过程中出现共振现象时电磁波的传输频率;将对应每次模拟切割处理的传输频率进行由小到大的排序,将排序在首位的传输频率确定为取得最小值的本征频率。
作为示例,芯片基底是具有初始厚度的长方体,对芯片基底的第一表面进行多次模拟切割处理,即并非针对芯片基底进行真正的切割,而是进行模拟切割,得到芯片基底切割后的第一表面,直至芯片基底的第一表面再次成为平面,相当于直至芯片基底再次成为长方体,只不过相对于初始而言厚度减小了,针对每次模拟切割可以得到具有不同图案的第一表面,将电磁波在芯片基底的第一表面进行仿真传播,通过仿真软件可以实现电磁波在各式图案的第一表面上的仿真传播,对并获取传播过程中出现共振现象时电磁波的传输频率作为对应图案的本征频率,将对应每次模拟切割处理的传输频率进行由小到大的排序,将排序在首位的传输频率确定为取得最小值的本征频率,即将排序在首位的传输频率对应的图案作为目标图案。
在一些实施例中,芯片基底的第一表面为平面,在获取芯片基底的本征频率取得最大值时第一表面的目标图案之前,对芯片基底的第一表面进行多次模拟切割处理,直至芯片基底的第一表面再次成为平面;针对每次模拟切割处理得到的芯片基底的第一表面执行以下处理:将电磁波在芯片基底的第一表面进行仿真传播,并获取传播过程中出现共振现象时电磁波的传输频率;将对应每次模拟切割处理的传输频率进行由大到小的排序,将排序在首位的传输频率确定为取得最大值的本征频率。
作为示例,芯片基底是具有初始厚度的长方体,对芯片基底的第一表面进行多次模拟切割处理,即并非针对芯片基底进行真正的切割,而是进行模拟切割,得到芯片基底切割后的第一表面,直至芯片基底的第一表面再次成为平面,相当于直至芯片基底再次成为长方体,只不过相对于初始而言厚度减小了,针对每次模拟切割可以得到具有不同图案的第一表面,将电磁波在芯片基底的第一表面进行仿真传播,通过仿真软件可以实现电磁波在各式图案的第一表面上的仿真传播,对并获取传播过程中出现共振现象时电磁波的传输频率作为对应图案的本征频率,将对应每次模拟切割处理的传输频率进行由大到小的排序,将排序在首位的传输频率确定为取得最大值的本征频率,即将排序在首位的传输频率对应的图案作为目标图案。
通过本申请实施例可以进行多次模拟切割,得到多个模拟切割后具有不同图案的第一表面,通过仿真的方式测试得到各个图案的第一表面对应的本征频率,从而确定出本征频率最大或者最小的图案作为目标图案,可以准确地得到目标图案。
在一些实施例中,任意一次模拟切割处理为以下处理中任意一种:获取砂轮切割单元,基于砂轮切割单元对芯片基底的第一表面进行模拟切割,例如,使用划片机内置的显微镜系统测量芯片基底位置,确定芯片基底到砂轮的高度。根据事先标定的砂轮每次切割对芯片基底的设定切割参数。以边长为10毫米,厚度为430微米的方形芯片基底为例(砂轮切割单元),对于430微米厚的芯片基底,在切割的时候可以设定砂轮对芯片基底的切割深度为330微米,此时芯片基底的剩余厚度为100微米。划片机砂轮从芯片基底一侧切割到另一侧的时候横向去除量为200微米,也就是每切割一次可以切出一个200微米宽,330微米深的槽;获取模拟光束在芯片基底第一表面的移动轨迹以及模拟光束在移动过程中对应每个位置的停留时间,基于移动轨迹以及停留时间对芯片基底的第一表面进行模拟切割处理,例如,还可以使用聚焦的等离子体或激光对芯片的中心进行加工。首先精确控制在芯片基底聚焦等离子体的位置或激光束焦点在芯片基底的位置,之后由程序控制聚焦等离子体或激光束移动的轨迹和在基底上每个位置的停留时间,从而将芯片基底上的材料去除,最后加工出如图9所示的中间带有凹槽的芯片基底。
在一些实施例中,量子芯片的芯片基底包括相对的第一表面以及第二表面;第一表面具有目标图案,其中,目标图案是芯片基底的本征频率与量子工作频率之间的差值最大时的图案;第二表面配置有量子电路,其中,量子电路的量子比特的工作频率是量子工作频率。
作为示例,首先确定芯片基底的初始的本征频率,再基于初始的本征频率与量子工作频率之间的数值比较结果,对芯片基底的第一表面进行图案刻蚀处理,得到第二表面完整且第一表面具有目标图案的芯片基底,量子工作频率是量子电路的量子比特的工作频率,第二表面与第一表面是相对的,目标图案是 芯片基底的本征频率与量子工作频率之间的差值最大时的图案,最终在经过图案刻蚀处理的芯片基底的第二表面上,刻蚀量子电路,以形成量子芯片。
基于初始的本征频率与量子工作频率之间的数值比较结果,对芯片基底的第一表面进行图案刻蚀处理,得到第二表面完整且第一表面具有目标图案的芯片基底,目标图案是芯片基底的本征频率与量子工作频率之间的差值最大时的图案,消除芯片基底的本征频率对量子比特相干性的影响,从而增加量子芯片的计算能力,在经过图案刻蚀处理的芯片基底的第二表面上,刻蚀量子电路,以形成量子芯片,由于在芯片基底的第一表面刻蚀图案,不影响芯片基底的第二表面的形貌和尺寸,从而可以正常制备量子电路。
下面,将说明本申请实施例在一个实际的应用场景中的示例性应用。
在一些实施例中,本申请实施例提供的量子芯片的制备方法可以由终端与服务器协同实施,服务器确定芯片基底的初始的本征频率,服务器对芯片基底的初始的本征频率以及量子工作频率进行比较,服务器基于数值比较结果确定出目标图案,将目标图案发送至终端,终端对芯片基底的第一表面进行图案刻蚀处理,得到第二表面完整且第一表面具有目标图案的芯片基底,量子工作频率是量子电路的量子比特的工作频率,第二表面与第一表面是相对的,目标图案是芯片基底的本征频率与量子工作频率之间的差值最大时的图案,终端在经过图案刻蚀处理的芯片基底的第二表面上,刻蚀量子电路,以形成量子芯片。
本申请实施例通过在基底背面刻蚀出图案改变基底的总体形状来调节基底的本征频率,拉大量子比特工作频率和基底的本征频率的距离,可以明显减小基底模式对比特相干性的影响,延长比特相干时间。
本申请实施例提供的量子芯片的制备方法在于利用基底背面刻蚀出的图案来改变基底本征模式的本征频率,使得量子比特的工作频率和基底的本征频率的差别拉大,这样就可以减小芯片基底的本征模式对量子比特相干性的影响,延长相干时间。
参见图4,图4是本申请实施例提供的量子芯片的制备方法的流程示意图,在步骤201中,计算芯片基底初始的本征频率,具体而言,由于芯片基底的厚 度远小于芯片的长和宽,因此可以将芯片基底看作二维谐振腔,初始的本征频率的计算可以参见公式(3):
其中,μ和ε分别为芯片基底的磁导率和介电常数,l和w分别为芯片基底的长和宽。
还可以利用仿真软件输出芯片基底的本征频率,在获取芯片基底的本征频率之后,并将初始的本征频率和量子比特的工作频率对比。
在步骤202中,根据量子芯片的工作频率高于本征频率或低于本征频率的数值比较结果,确定基底刻蚀方式。具体而言是确定出刻蚀的目标图案,当量子比特的工作频率小于芯片基底的本征频率时,应当刻蚀出目标图案使芯片基底的本征频率向高频移动,当量子比特的工作频率不小于芯片基底的本征频率时,应当刻蚀出目标图案使芯片基底的本征频率向低频移动。
在步骤203中,利用离子切割、激光切割或者机械划片的方式在芯片基底进行刻蚀加工,具体而言利用离子切割、激光切割或者机械划片的方式在芯片基底背面刻蚀出目标图案,例如刻蚀出凹槽结构或者凸台结构,并精确控制凹槽或者凸台的尺寸使得芯片基底的本征频率和量子比特的工作频率差达到最大。
在步骤204中,在芯片基底正面刻蚀量子电路,以形成量子芯片,具体而言由于正面尺寸和形貌不受图案刻蚀影响,可以在正面制备量子比特电路,量子比特电路包括读取电路,滤波器,谐振腔和约瑟夫森结等结构。
在步骤205中,对量子芯片进行封装,并对量子芯片进行低温测试处理,具体而言是将量子芯片放入制冷机后运行量子算法。
在一些实施例中,当基底的本征频率不小于量子比特的工作频率的时候,参见图5-图6,图5-图6示意性给出使用划片机砂轮在蓝宝石基底背面加工凹槽的方式,此过程可以直接选用商用划片机来完成。首先将蓝宝石正面贴在专用的带有蓝膜的铁环上,而后将蓝宝石背面朝向砂轮的方向放置到划片机内。接着使用划片机内置的显微镜系统测量蓝宝石位置,确定蓝宝石到砂轮的高度。 根据事先标定的砂轮每次切割对蓝宝石的设定切割参数。以边长为10毫米,厚度为430微米的方形蓝宝石为例,对于430微米厚的蓝宝石基底,在切割的时候可以设定砂轮对蓝宝石的切割深度为330微米,此时蓝宝石的剩余厚度为100微米。划片机砂轮从蓝宝石一侧切割到另一侧的时候横向去除量为200微米,也就是每切割一次可以切出一个200微米宽,330微米深的槽,可以将蓝宝石背面加工成如图5所示的凸台状。进一步也可以将蓝宝石背面四周依次去除,加工成如图6所示的中心凸起的凸台状。
在一些实施例中,图7示出了蓝宝石基底的本征频率随蓝宝石基底的去除量的关系。随着蓝宝石背面两侧或者四周的去除量增加,蓝宝石的本征频率会有明显的增大,之后随着去除量的继续增加,蓝宝石的结构越来越接近一个较薄的完整蓝宝石,之后蓝宝石的本征频率会开始下降,直至将背面330微米厚的蓝宝石去除完毕,此时蓝宝石的尺寸为边长10毫米,厚度100微米。此时蓝宝石的本征频率和厚度为430微米时的本征频率差别较小。因此在实际操作中需要准确的选取合适的去除量使得蓝宝石的本征频率和量子比特的工作频率差别最大。
在一些实施例中,当基底的本征频率不高于量子比特的工作频率时,可以继续降低基底的本征频率。图8示意性给出使用划片机砂轮在蓝宝石基底背面加工凹槽的方式。此时可以设定划片机砂轮的切割参数。例如在中间部分刻蚀出凹槽。同样,每次切割可以得到一个宽度为200微米,深度为330微米的凹槽,精确控制切割次数,多次切割之后就可以得到如图8所示的形状。
在一些实施例中,也可以只对中心区域进行加工。但由于划片机只能从芯片一侧完全划切到芯片另一侧。因此如果只对芯片中心区域进行加工,就无法采用划片机。参见图9,此时可以使用聚焦的等离子体或激光对芯片的中心进行加工。首先精确控制在芯片基底聚焦等离子体的位置或激光束焦点在芯片基底的位置,之后由程序控制聚焦等离子体或激光束移动的轨迹和在基底上每个位置的停留时间,从而将芯片基底上的材料去除,最后加工出如图9所示的中间带有凹槽的芯片基底。
在一些实施例中,参见图10,图10示出了蓝宝石基底的本征频率随蓝宝石基底的去除量的关系。随着材料去除量的增加,芯片基底的本征频率首先会后明显的下降,之后随着去除量的继续增多,芯片基底的本征频率开始上升,最后达到和初始芯片基底的本征频率很接近的情况。因此实际加工中也要精确控制材料去除量达到芯片基底的本征频率和量子比特工作频率差的最大值。
通过本申请实施例在芯片基底的背面刻蚀出凸台或者凹坑图案,可以明显的提高或降低芯片基底的本征频率,增加芯片基底的本征频率和量子比特工作频率的差值,从而延长相干时间。由于在芯片基底的背面刻蚀图案,不影响芯片基底的正面形貌和尺寸,对量子芯片后续加工不产生影响。并且对芯片基底的种类没有要求,除了蓝宝石基底外,也可以配置为硅基底,或碳化硅基底,具有很好的兼容性。
下面继续说明本申请实施例提供的量子芯片的制备装置455的实施为软件模块的示例性结构,在一些实施例中,如图4所示,存储在存储器450的量子芯片的制备装置455中的软件模块可以包括:确定模块4551,配置为确定芯片基底的初始的本征频率;刻蚀模块4554,配置为基于初始的本征频率与量子工作频率之间的数值比较结果,对芯片基底的第一表面进行图案刻蚀处理,得到第二表面完整且第一表面具有目标图案的芯片基底;其中,量子工作频率是量子电路的量子比特的工作频率,第二表面与第一表面是相对的,目标图案是芯片基底的本征频率与量子工作频率之间的差值最大时的图案;制备模块4553,配置为在经过图案刻蚀处理的芯片基底的第二表面上,刻蚀量子电路,以形成量子芯片。
在一些实施例中,确定模块4551,还配置为:当芯片基底的第一表面是矩形时,获取第一表面的长度以及宽度;基于第一表面的长度以及宽度,确定芯片基底的初始的本征频率。
在一些实施例中,确定模块4551,还配置为:对长度进行平方处理,得到第一平方结果,并对宽度进行平方处理,得到第二平方结果;确定圆周率常数的平方结果与第一平方结果的第一比值、以及圆周率常数的平方结果与第二平 方结果的第二比值;对第一比值与第二比值的求和结果进行开方处理,得到开方结果;将开方结果与基底常数的比值作为初始的本征频率,其中,基底常数是基于芯片基底的磁导率以及芯片基底的介电常数得到的。
在一些实施例中,刻蚀模块4554,还配置为:在基于初始的本征频率与量子工作频率之间的数值比较结果,对芯片基底的第一表面进行图案刻蚀处理,得到第二表面完整且第一表面具有目标图案的芯片基底之前,当初始的本征频率小于量子工作频率时,获取芯片基底的本征频率取得最小值时第一表面的目标图案;当初始的本征频率不小于量子工作频率时,获取芯片基底的本征频率取得最大值时第一表面的目标图案。
在一些实施例中,当初始的本征频率小于量子工作频率时,目标图案是在第一表面的中心位置具有立方体凹陷。当初始的本征频率不小于量子工作频率时,目标图案是在第一表面的中心位置具有立方体凸台。
在一些实施例中,刻蚀模块4554,还配置为:在获取芯片基底的本征频率取得最小值时第一表面的目标图案之前,获取芯片基底的几何参数、芯片基底的材质以及芯片基底的多个候选图案;调用第一神经网络模型执行以下处理:获取对应几何参数的几何特征、对应材质的材质特征以及每个候选图案的图案特征;针对每个候选图案,对几何特征、材质特征以及候选图案的图案特征进行融合处理,得到第一融合特征,并对第一融合特征进行第一映射处理,得到候选图案的预测本征频率;对多个候选图案的预测本征频率进行由小到大排序,将排序在首位的预测本征频率对应的候选图案作为目标图案。
在一些实施例中,刻蚀模块4554,还配置为:在获取芯片基底的本征频率取得最大值时第一表面的目标图案之前,获取芯片基底的几何参数、芯片基底的材质以及芯片基底的多个候选图案;调用第一神经网络模型执行以下处理:获取对应几何参数的几何特征、对应材质的材质特征以及每个候选图案的图案特征;针对每个候选图案,对几何特征、材质特征以及候选图案的图案特征进行融合处理,得到第一融合特征,并对第一融合特征进行第一映射处理,得到候选图案的预测本征频率;对多个候选图案的预测本征频率进行由大到小排序, 将排序在首位的预测本征频率对应的候选图案作为目标图案。
在一些实施例中,芯片基底的第一表面为平面,刻蚀模块4554,还配置为:在获取芯片基底的本征频率取得最小值时第一表面的目标图案之前,对芯片基底的第一表面进行多次模拟切割处理,直至芯片基底的第一表面再次成为平面;针对每次模拟切割处理得到的芯片基底的第一表面执行以下处理:将电磁波在芯片基底的第一表面进行仿真传播,并获取传播过程中出现共振现象时电磁波的传输频率;将对应每次模拟切割处理的传输频率进行由小到大的排序,将排序在首位的传输频率确定为取得最小值的本征频率。
在一些实施例中,芯片基底的第一表面为平面,刻蚀模块4554,还配置为:在获取芯片基底的本征频率取得最大值时第一表面的目标图案之前,对芯片基底的第一表面进行多次模拟切割处理,直至芯片基底的第一表面再次成为平面;针对每次模拟切割处理得到的芯片基底的第一表面执行以下处理:将电磁波在芯片基底的第一表面进行仿真传播,并获取传播过程中出现共振现象时电磁波的传输频率;将对应每次模拟切割处理的传输频率进行由大到小的排序,将排序在首位的传输频率确定为取得最大值的本征频率。
在一些实施例中,任意一次模拟切割处理为以下处理中任意一种:获取砂轮切割单元,基于砂轮切割单元对芯片基底的第一表面进行模拟切割;获取模拟光束在芯片基底第一表面的移动轨迹以及模拟光束在移动过程中对应每个位置的停留时间,基于移动轨迹以及停留时间对芯片基底的第一表面进行模拟切割处理。
本申请实施例提供一种量子芯片,所述量子芯片的芯片基底包括相对的第一表面以及第二表面;所述第一表面具有目标图案,其中,所述目标图案是所述芯片基底的本征频率与量子工作频率之间的差值最大时的图案;所述第二表面配置有量子电路,其中,所述量子电路的量子比特的工作频率是所述量子工作频率。
本申请实施例提供了一种计算机程序产品或计算机程序,该计算机程序产品或计算机程序包括计算机指令,该计算机指令存储在计算机可读存储介质中。 电子设备的处理器从计算机可读存储介质读取该计算机指令,处理器执行该计算机指令,使得该电子设备执行本申请实施例上述的量子芯片的制备方法。
本申请实施例提供一种存储有可执行指令的计算机可读存储介质,其中存储有可执行指令,当可执行指令被处理器执行时,将引起处理器执行本申请实施例提供的量子芯片的制备方法,例如,如图3A-3B示出的量子芯片的制备方法。
在一些实施例中,计算机可读存储介质可以是FRAM、ROM、PROM、EPROM、EEPROM、闪存、磁表面存储器、光盘、或CD-ROM等存储器;也可以是包括上述存储器之一或任意组合的各种设备。
在一些实施例中,可执行指令可以采用程序、软件、软件模块、脚本或代码的形式,按任意形式的编程语言(包括编译或解释语言,或者声明性或过程性语言)来编写,并且其可按任意形式部署,包括被部署为独立的程序或者被部署为模块、组件、子例程或者适合在计算环境中使用的其它单元。
作为示例,可执行指令可以但不一定对应于文件系统中的文件,可以可被存储在保存其它程序或数据的文件的一部分,例如,存储在超文本标记语言(HTML,Hyper Text Markup Language)文档中的一个或多个脚本中,存储在专用于所讨论的程序的单个文件中,或者,存储在多个协同文件(例如,存储一个或多个模块、子程序或代码部分的文件)中。
作为示例,可执行指令可被部署为在一个电子设备上执行,或者在位于一个地点的多个电子设备上执行,又或者,在分布在多个地点且通过通信网络互连的多个电子设备上执行。
综上所述,通过本申请实施例基于初始的本征频率与量子工作频率之间的数值比较结果,对芯片基底的第一表面进行图案刻蚀处理,得到第二表面完整且第一表面具有目标图案的芯片基底,目标图案是芯片基底的本征频率与量子工作频率之间的差值最大时的图案,消除芯片基底的本征频率对量子比特相干性的影响,从而保证量子电路可以正常工作,在经过图案刻蚀处理的芯片基底的第二表面上,刻蚀量子电路,以形成量子芯片,由于在芯片基底的第一表面 刻蚀图案,不影响芯片基底的第二表面的形貌和尺寸,从而可以制备量子电路,得到正常工作的量子芯片。
以上所述,仅为本申请的实施例而已,并非用于限定本申请的保护范围。凡在本申请的精神和范围之内所作的任何修改、等同替换和改进等,均包含在本申请的保护范围之内。

Claims (15)

  1. 一种量子芯片的制备方法,所述方法由电子设备执行,所述方法包括:
    确定芯片基底的初始的本征频率;
    基于初始的本征频率与量子工作频率之间的数值比较结果,对所述芯片基底的第一表面进行图案刻蚀处理,得到第二表面完整且所述第一表面具有目标图案的芯片基底;
    其中,所述量子工作频率是量子电路的量子比特的工作频率,所述第二表面与所述第一表面是相对的,所述目标图案是所述芯片基底的本征频率与所述量子工作频率之间的差值最大时的图案;
    在经过图案刻蚀处理的芯片基底的第二表面上,刻蚀所述量子电路,以形成量子芯片。
  2. 根据权利要求1所述的方法,其中,所述确定芯片基底的初始的本征频率,包括:
    当所述芯片基底的第一表面是矩形时,获取所述第一表面的长度以及宽度;
    基于所述第一表面的长度以及宽度,确定所述芯片基底的初始的本征频率。
  3. 根据权利要求2所述的方法,其中,所述基于所述第一表面的长度以及宽度,确定所述芯片基底的初始的本征频率,包括:
    对所述长度进行平方处理,得到第一平方结果,并对所述宽度进行平方处理,得到第二平方结果;
    确定圆周率常数的平方结果与所述第一平方结果的第一比值、以及所述圆周率常数的平方结果与所述第二平方结果的第二比值;
    对所述第一比值与所述第二比值的求和结果进行开方处理,得到开方结果;
    将所述开方结果与基底常数的比值作为初始的本征频率,其中,所述基底常数是基于所述芯片基底的磁导率以及所述芯片基底的介电常数得到的。
  4. 根据权利要求1所述的方法,其中,所述基于初始的本征频率与量子工作频率之间的数值比较结果,对所述芯片基底的第一表面进行图案刻蚀处理, 得到第二表面完整且所述第一表面具有目标图案的芯片基底,包括:
    当初始的本征频率小于所述量子工作频率时,获取所述芯片基底的本征频率取得最小值时所述第一表面的目标图案;
    当初始的本征频率不小于所述量子工作频率时,获取所述芯片基底的本征频率取得最大值时所述第一表面的目标图案;
    基于所述目标图案对所述芯片基底的第一表面进行图案刻蚀处理,得到第二表面完整且所述第一表面具有所述目标图案的芯片基底。
  5. 根据权利要求4所述的方法,其中,所述获取所述芯片基底的本征频率取得最小值时所述第一表面的目标图案,包括:
    获取所述芯片基底的几何参数、所述芯片基底的材质以及所述芯片基底的多个候选图案;
    调用第一神经网络模型执行以下处理:
    获取对应所述几何参数的几何特征、对应所述材质的材质特征以及每个所述候选图案的图案特征;
    针对每个所述候选图案,对所述几何特征、所述材质特征以及所述候选图案的图案特征进行融合处理,得到第一融合特征,并对所述第一融合特征进行第一映射处理,得到所述候选图案的预测本征频率;
    对所述多个候选图案的预测本征频率进行由小到大排序,将排序在首位的预测本征频率对应的候选图案作为所述目标图案。
  6. 根据权利要求4所述的方法,其中,所述获取所述芯片基底的本征频率取得最大值时所述第一表面的目标图案,包括:
    获取所述芯片基底的几何参数、所述芯片基底的材质以及所述芯片基底的多个候选图案;
    调用第一神经网络模型执行以下处理:
    获取对应所述几何参数的几何特征、对应所述材质的材质特征以及每个所述候选图案的图案特征;
    针对每个所述候选图案,对所述几何特征、所述材质特征以及所述候选图 案的图案特征进行融合处理,得到第一融合特征,并对所述第一融合特征进行第一映射处理,得到所述候选图案的预测本征频率;
    对所述多个候选图案的预测本征频率进行由大到小排序,将排序在首位的预测本征频率对应的候选图案作为所述目标图案。
  7. 根据权利要求4所述的方法,其中,所述芯片基底的第一表面为平面,在获取所述芯片基底的本征频率取得最小值时所述第一表面的目标图案之前,所述方法还包括:
    对所述芯片基底的第一表面进行多次模拟切割处理,直至所述芯片基底的第一表面再次成为平面;
    针对每次模拟切割处理得到的芯片基底的第一表面执行以下处理:
    将电磁波在所述芯片基底的第一表面进行仿真传播,并获取传播过程中出现共振现象时所述电磁波的传输频率;
    将对应每次所述模拟切割处理的传输频率进行由小到大的排序,将排序在首位的传输频率确定为取得最小值的本征频率。
  8. 根据权利要求4所述的方法,其中,所述芯片基底的第一表面为平面,在获取所述芯片基底的本征频率取得最大值时所述第一表面的目标图案之前,所述方法还包括:
    对所述芯片基底的第一表面进行多次模拟切割处理,直至所述芯片基底的第一表面再次成为平面;
    针对每次模拟切割处理得到的芯片基底的第一表面执行以下处理:
    将电磁波在所述芯片基底的第一表面进行仿真传播,并获取传播过程中出现共振现象时所述电磁波的传输频率;
    将对应每次所述模拟切割处理的传输频率进行由大到小的排序,将排序在首位的传输频率确定为取得最大值的本征频率。
  9. 根据权利要求7或8所述的方法,其中,任意一次所述模拟切割处理为以下处理中任意一种:
    基于砂轮切割单元对所述芯片基底的第一表面进行模拟切割;
    获取模拟光束在所述芯片基底的第一表面的移动轨迹以及所述模拟光束在所述移动过程中对应每个位置的停留时间,基于所述移动轨迹以及所述停留时间对所述芯片基底的第一表面进行模拟切割处理。
  10. 根据权利要求1所述的方法,其中,
    当初始的本征频率小于所述量子工作频率时,所述目标图案是在所述第一表面的中心位置具有立方体凹陷;
    当初始的本征频率不小于所述量子工作频率时,所述目标图案是在所述第一表面的中心位置具有立方体凸台。
  11. 一种量子芯片,所述量子芯片的芯片基底包括相对的第一表面以及第二表面;
    所述第一表面具有目标图案,其中,所述目标图案是所述芯片基底的本征频率与量子工作频率之间的差值最大时的图案;
    所述第二表面配置有量子电路,其中,所述量子电路的量子比特的工作频率是所述量子工作频率。
  12. 一种量子芯片的制备装置,所述装置包括:
    确定模块,配置为确定芯片基底的初始的本征频率;
    刻蚀模块,配置为基于初始的本征频率与量子工作频率之间的数值比较结果,对所述芯片基底的第一表面进行图案刻蚀处理,得到第二表面完整且所述第一表面具有目标图案的芯片基底;
    其中,所述量子工作频率是量子电路的量子比特的工作频率,所述第二表面与所述第一表面是相对的,所述目标图案是所述芯片基底的本征频率与所述量子工作频率之间的差值最大时的图案;
    制备模块,配置为在经过图案刻蚀处理的芯片基底的第二表面上,刻蚀量子电路,以形成量子芯片。
  13. 一种电子设备,所述电子设备包括:
    存储器,用于存储计算机可执行指令;
    处理器,用于执行所述存储器中存储的计算机可执行指令时,实现权利要 求1至10任一项所述的量子芯片的制备方法。
  14. 一种计算机可读存储介质,存储有计算机可执行指令,所述可执行指令被处理器执行时实现权利要求1至10任一项所述的量子芯片的制备方法。
  15. 一种计算机程序产品,包括计算机可执行指令,所述计算机可执行指令被处理器执行时实现权利要求1至10任一项所述的量子芯片的制备方法。
PCT/CN2023/090539 2022-06-22 2023-04-25 量子芯片的制备方法、装置、电子设备、计算机可读存储介质、计算机程序产品及量子芯片 WO2023246285A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020247009241A KR20240051186A (ko) 2022-06-22 2023-04-25 양자 칩의 제조 방법, 장치, 전자 기기, 컴퓨터 판독 가능한 저장 매체, 컴퓨터 프로그램 제품 및 양자 칩
US18/233,732 US20230419148A1 (en) 2022-06-22 2023-08-14 Quantum chip and method for preparing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210713974.9 2022-06-22
CN202210713974.9A CN117313886A (zh) 2022-06-22 2022-06-22 芯片处理方法、装置、设备、存储介质及程序产品

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/233,732 Continuation US20230419148A1 (en) 2022-06-22 2023-08-14 Quantum chip and method for preparing the same

Publications (1)

Publication Number Publication Date
WO2023246285A1 true WO2023246285A1 (zh) 2023-12-28

Family

ID=89260936

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/090539 WO2023246285A1 (zh) 2022-06-22 2023-04-25 量子芯片的制备方法、装置、电子设备、计算机可读存储介质、计算机程序产品及量子芯片

Country Status (2)

Country Link
CN (1) CN117313886A (zh)
WO (1) WO2023246285A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108231992A (zh) * 2018-01-10 2018-06-29 合肥本源量子计算科技有限责任公司 一种含铌膜的超导量子芯片刻蚀方法
US20200335685A1 (en) * 2019-04-19 2020-10-22 International Business Machines Corporation Qubit frequency tuning structures and fabrication methods for flip chip quantum computing devices
CN113215574A (zh) * 2021-02-01 2021-08-06 南京大学 一种用于蓝宝石基底镀铝膜的量子芯片的湿法刻蚀方法
CN113887733A (zh) * 2021-11-02 2022-01-04 北京百度网讯科技有限公司 用于调节zz耦合强度的超导电路及控制方法
CN114065939A (zh) * 2021-11-22 2022-02-18 北京百度网讯科技有限公司 量子芯片设计模型的训练方法、装置、设备及存储介质
CN114142946A (zh) * 2021-11-29 2022-03-04 中国科学院上海微系统与信息技术研究所 一种集成量子纠缠光源的光量子芯片的制备方法及其结构
CN114492810A (zh) * 2022-02-11 2022-05-13 北京百度网讯科技有限公司 超导量子芯片设计方法及装置、电子设备和介质

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108231992A (zh) * 2018-01-10 2018-06-29 合肥本源量子计算科技有限责任公司 一种含铌膜的超导量子芯片刻蚀方法
US20200335685A1 (en) * 2019-04-19 2020-10-22 International Business Machines Corporation Qubit frequency tuning structures and fabrication methods for flip chip quantum computing devices
CN113215574A (zh) * 2021-02-01 2021-08-06 南京大学 一种用于蓝宝石基底镀铝膜的量子芯片的湿法刻蚀方法
CN113887733A (zh) * 2021-11-02 2022-01-04 北京百度网讯科技有限公司 用于调节zz耦合强度的超导电路及控制方法
CN114065939A (zh) * 2021-11-22 2022-02-18 北京百度网讯科技有限公司 量子芯片设计模型的训练方法、装置、设备及存储介质
CN114142946A (zh) * 2021-11-29 2022-03-04 中国科学院上海微系统与信息技术研究所 一种集成量子纠缠光源的光量子芯片的制备方法及其结构
CN114492810A (zh) * 2022-02-11 2022-05-13 北京百度网讯科技有限公司 超导量子芯片设计方法及装置、电子设备和介质

Also Published As

Publication number Publication date
CN117313886A (zh) 2023-12-29

Similar Documents

Publication Publication Date Title
EP3992868A1 (en) Quantum chip, quantum processor, and quantum computer
CN114065939B (zh) 量子芯片设计模型的训练方法、装置、设备及存储介质
JP2023058606A (ja) 超伝導量子チップの設計方法及び装置、電子機器並びに媒体
US20220029266A1 (en) Quantum chip preparation method, apparatus, and device and quantum chip
US20240070500A1 (en) Method and apparatus for simulating quantum circuit
CN116187258B (zh) 量子芯片版图的仿真方法、装置、计算设备及存储介质
US20240046140A1 (en) Simulation method, electronic device, and storage medium
CN115169569A (zh) 超导量子芯片设计方法及装置、电子设备和介质
AU2023200143A1 (en) Quantum chip and construction method and construction apparatus thereof
EP4113316A2 (en) Method and apparatus for processing table, device, and storage medium
WO2023246285A1 (zh) 量子芯片的制备方法、装置、电子设备、计算机可读存储介质、计算机程序产品及量子芯片
Chen et al. Analytical theory of finite-size photonic crystal slabs near the band edge
Koziel et al. Globalized simulation-driven miniaturization of microwave circuits by means of dimensionality-reduced constrained surrogates
US20240046130A1 (en) Simulation method, electronic device, and storage medium
Makri Electronic frustration, Berry’s phase interference and slow dynamics in some tight-binding systems coupled to harmonic baths
US20230419148A1 (en) Quantum chip and method for preparing the same
US11526152B2 (en) Techniques for determining fabricability of designs by searching for forbidden patterns
US10885262B1 (en) Systems and methods for determining fabrication loss of segmented designs using paintbrush patterns
CN113887733A (zh) 用于调节zz耦合强度的超导电路及控制方法
Koziel et al. Cost-efficient electromagnetic-simulation-driven antenna design using co-Kriging
US11157163B1 (en) Paintbrush-like techniques for determining fabricable segmented designs
US11321498B2 (en) Techniques for transforming arbitrary designs into manufacturable designs by removing forbidden patterns
CN115329975A (zh) 仿真方法、装置、设备及存储介质
Reineri et al. Exploration of superconducting multi-mode cavity architectures for quantum computing
Li et al. Isogeometric analysis with trimming technique for quadruple arch‐cut ridged circle waveguide

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23825938

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20247009241

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2023825938

Country of ref document: EP

Ref document number: 23825938.6

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2023825938

Country of ref document: EP

Effective date: 20240402