WO2023246029A1 - 基于在线精准测量防治水冷壁腐蚀的方法 - Google Patents

基于在线精准测量防治水冷壁腐蚀的方法 Download PDF

Info

Publication number
WO2023246029A1
WO2023246029A1 PCT/CN2022/140496 CN2022140496W WO2023246029A1 WO 2023246029 A1 WO2023246029 A1 WO 2023246029A1 CN 2022140496 W CN2022140496 W CN 2022140496W WO 2023246029 A1 WO2023246029 A1 WO 2023246029A1
Authority
WO
WIPO (PCT)
Prior art keywords
air duct
air
secondary air
reducing gas
primary
Prior art date
Application number
PCT/CN2022/140496
Other languages
English (en)
French (fr)
Inventor
王小华
赵鹏
陈宝康
张雷
俞胜捷
梅振锋
彭小敏
陈敏
赵俊武
姚胜
薛晓垒
王祝成
刘瑞鹏
朱晋永
丁奕文
梁昊
Original Assignee
苏州西热节能环保技术有限公司
西安热工研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州西热节能环保技术有限公司, 西安热工研究院有限公司 filed Critical 苏州西热节能环保技术有限公司
Publication of WO2023246029A1 publication Critical patent/WO2023246029A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B37/00Component parts or details of steam boilers
    • F22B37/02Component parts or details of steam boilers applicable to more than one kind or type of steam boiler
    • F22B37/025Devices and methods for diminishing corrosion, e.g. by preventing cooling beneath the dew point
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B37/00Component parts or details of steam boilers
    • F22B37/02Component parts or details of steam boilers applicable to more than one kind or type of steam boiler
    • F22B37/38Determining or indicating operating conditions in steam boilers, e.g. monitoring direction or rate of water flow through water tubes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23LSUPPLYING AIR OR NON-COMBUSTIBLE LIQUIDS OR GASES TO COMBUSTION APPARATUS IN GENERAL ; VALVES OR DAMPERS SPECIALLY ADAPTED FOR CONTROLLING AIR SUPPLY OR DRAUGHT IN COMBUSTION APPARATUS; INDUCING DRAUGHT IN COMBUSTION APPARATUS; TOPS FOR CHIMNEYS OR VENTILATING SHAFTS; TERMINALS FOR FLUES
    • F23L1/00Passages or apertures for delivering primary air for combustion 
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23LSUPPLYING AIR OR NON-COMBUSTIBLE LIQUIDS OR GASES TO COMBUSTION APPARATUS IN GENERAL ; VALVES OR DAMPERS SPECIALLY ADAPTED FOR CONTROLLING AIR SUPPLY OR DRAUGHT IN COMBUSTION APPARATUS; INDUCING DRAUGHT IN COMBUSTION APPARATUS; TOPS FOR CHIMNEYS OR VENTILATING SHAFTS; TERMINALS FOR FLUES
    • F23L9/00Passages or apertures for delivering secondary air for completing combustion of fuel 
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N3/00Regulating air supply or draught
    • F23N3/002Regulating air supply or draught using electronic means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2223/00Signal processing; Details thereof
    • F23N2223/44Optimum control

Definitions

  • the present disclosure relates to the technical field of boiler combustion, and specifically relates to a method for preventing and controlling water wall corrosion based on online accurate measurement.
  • the CO online monitoring system installed on the furnace water-cooled wall monitors the CO concentration in the water-cooled wall area to understand H 2 S concentration level, the CO concentration is reduced through the optimization and adjustment of operating oxygen volume and combustion air volume, thereby alleviating high-temperature corrosion of the water wall.
  • the high temperature in the furnace is currently monitored in real time through the electrochemical noise method, polarization curve method and AC impedance method.
  • Corrosion, online monitoring of high-temperature corrosion on the heating surface is realized, but most of them do not involve the prevention and control measures of high-temperature corrosion on the water-cooled wall.
  • Embodiments of the present disclosure provide a method for preventing and controlling corrosion of water-cooled walls based on online accurate measurement, so as to at least solve the deficiencies of current methods of alleviating high-temperature corrosion of water-cooled walls in furnaces.
  • the first embodiment of the present disclosure proposes a method for preventing and controlling water wall corrosion based on online accurate measurement, which is characterized by including:
  • the reducing gas H 2 S concentration and the reducing gas CO concentration in the boiler measured by the multiple water-cooled wall reducing gas online monitoring devices have different effects on the hot secondary air duct air inlet volume, the layer secondary air duct air inlet volume, and the burner.
  • the air inlet volume and combustion air inlet volume are adjusted.
  • This disclosure provides a method for preventing and controlling water-cooled wall corrosion based on online accurate measurement, including: structural optimization of primary air ducts, hot secondary air ducts, and layered secondary air ducts; and the installation of multiple water-cooled walls on the side walls of the boiler furnace.
  • a reducing gas online monitoring device ; an air volume online measuring device is provided at the burner and the burnout air inlet; and the H 2 S concentration and reducibility of the reducing gas in the boiler measured by the multiple water-cooled wall reducing gas online monitoring devices
  • the gas CO concentration adjusts the air inlet volume of the hot secondary air duct, the air inlet volume of the layer secondary air duct, the burner air inlet volume and the combustion air inlet volume.
  • the disclosed method solves the deficiencies in current methods of alleviating high-temperature corrosion of the water-cooled wall in the furnace, and achieves precise prevention and control of high-temperature corrosion of the water-cooled wall.
  • the structural optimization of the primary air duct, hot secondary air duct and layered secondary air duct includes: optimizing the cold air duct of the primary air duct, the hot air duct of the primary air duct and all The structure is optimized at the mixing port of the cold air duct and the hot air duct; flow guide devices are provided at a plurality of second elbows of the hot secondary air duct; and a plurality of third bends of the layer of secondary air duct are provided. A flow guide device and a uniform grille are installed at the elbow.
  • the structural optimization of the cold air duct of the primary air duct, the hot air duct of the primary air duct, and the mixing port of the cold air duct and the hot air duct includes:
  • the air outlet of the duct is provided with an expanded structure;
  • the mixing port of the cold air duct and the hot air duct is arranged in the horizontal section of the hot air duct;
  • the mixing port of the cold air duct and the hot air duct is provided Cold air wind box;
  • a flow guide device is provided at the first elbow of the hot air duct.
  • arranging a cold air box at the mixing port of the cold air duct and the hot air duct includes: arranging the cold air box in a horizontal section of the hot air duct, wherein the cold air box is in The height direction runs through the hot air duct; the expansion structure of the air outlet of the cold air duct is connected to the air inlet of the cold air air box, and the cold air air box uniformly distributes the airflow entering the hot air duct from the cold air duct. Divided into multiple strands.
  • the flow guide device includes a plurality of flow guide plates.
  • installing multiple water-cooled wall reducing gas online monitoring devices on the side walls of the boiler furnace includes: determining the degree of corrosion in the boiler furnace; dividing the boiler furnace into categories based on the degree of corrosion in the boiler furnace. A first area and a second area, wherein the corrosion degree of the first area is greater than the corrosion degree of the second area; N water-cooled wall reducing gas online monitoring devices are installed in the first area, and in the first area M water-cooled wall reducing gas online monitoring devices are installed in the second area, where N>M.
  • the air volume online measurement device includes an annular air duct, a secondary air annular air duct inlet, a secondary air annular air duct outlet, a first electrostatic sensor and a second electrostatic sensor; the secondary air annular air duct
  • the duct inlet is the inlet of the annular air duct
  • the secondary air annular air duct outlet is the outlet of the annular air duct
  • the first electrostatic sensor and the second electrostatic sensor are connected along the inlet of the annular air duct.
  • the direction to the outlet of the annular air duct is set inside the inlet of the secondary air annular air duct for measuring the dust carried in the secondary air passing through the annular air duct and passing through the first electrostatic sensor and the second electrostatic sensor.
  • the time difference between the dust carried in the secondary air passing through the first electrostatic sensor and the second electrostatic sensor is measured, and then the secondary air speed is measured, that is, the burner air inlet volume and the burnout air inlet volume are measured; wherein, the The first electrostatic sensor and the second electrostatic sensor are annular structures and are used to measure the dust carried in the secondary air passing through the entire annular air duct.
  • the method further includes: using an online air volume measurement device to measure the burner air inlet volume and the burnout air inlet volume; using the air volume online measurement device to measure the burner air inlet volume and the burnout air inlet volume includes the following steps: : Collect the dust carried in the secondary air annular air duct inlet and the secondary air annular air duct outlet; measure the time K1 for the secondary air carrying dust to pass through the first electrostatic sensor, and measure the time K1 for the secondary air carrying dust to pass through the first electrostatic sensor.
  • the time K2 of the two electrostatic sensors; the time K2 when the secondary air carrying dust passes through the second electrostatic sensor and the time K1 when the secondary air carrying dust passes through the first electrostatic sensor are difference processed to obtain the passage of the secondary air carrying dust
  • the time difference K3 between the time K2 of the first electrostatic sensor and the second electrostatic sensor; the burner air inlet volume and the combustion air inlet volume are obtained through the time difference K3.
  • the concentration of reducing gas H 2 S and the concentration of reducing gas CO in the boiler measured according to the plurality of water-cooled wall reducing gas online monitoring devices have a significant impact on the air inlet volume of the hot secondary air duct and the second layer of the hot secondary air duct.
  • the air inlet volume of the secondary air duct, the burner air inlet volume and the combustion air inlet volume are adjusted, including: using the water-cooled wall reducing gas online monitoring device to measure the reducing gas H 2 S concentration and the reducing gas CO concentration in the boiler ; Based on the measurement of the multiple water-cooled wall reducing gas online monitoring devices, the reducing gas H 2 S concentration in the boiler is greater than the first preset concentration threshold, and the multiple water-cooled wall reducing gas online monitoring devices measured If the reducing gas CO concentration in the boiler is greater than the second preset concentration threshold, the air inlet volume of the hot secondary air duct will be increased; based on the measurement of the water-cooled wall reducing gas online monitoring device, the secondary air duct in the layer If the reducing gas H 2 S concentration and reducing gas CO concentration of one of the air ducts are both greater than the preset reducing gas H 2 S concentration and the preset reducing gas CO concentration, then increase the concentration of the reducing gas H 2 S in one of the air ducts.
  • the air inlet volume of the air duct based on the measurement of the water-cooled wall reducing gas online monitoring device, the reducing gas H 2 S concentration and the reducing gas CO concentration in the burner area of a burner are both greater than the preset reducing gas H 2
  • the S concentration and the preset reducing gas CO concentration increase the air inlet volume of the one burner and reduce the air inlet volume of all burners except the one burner; based on the water-cooled wall reduction
  • the reducing gas H 2 S concentration in the combustion wind area of a burnout wind measured by the reducing gas online monitoring device is greater than the third preset concentration threshold, and the water-cooled reducing gas online monitoring device measured a burnout wind.
  • the concentration of reducing gas CO in the combustion wind area is greater than the fourth preset concentration threshold, increase the air inlet volume of the one burnout wind, and reduce other burnout winds in all burnout winds except the one burnout wind. Air intake volume.
  • the method further includes: measuring the primary wind temperature and primary wind speed passing through the primary air duct according to the arrangement of the primary air duct, and measuring the primary wind temperature and primary wind speed through the primary wind temperature and primary wind speed.
  • the current air inlet volume of the primary air duct is calculated; the total secondary air temperature and total secondary air speed passing through the hot secondary air duct are measured according to the layout of the hot secondary air duct, and the total secondary air velocity is measured through the total secondary air flow rate.
  • the secondary air temperature and the total secondary air speed are calculated to obtain the current air inlet volume of the hot secondary air duct; the layer secondary air volume passing through the layer of secondary air ducts is measured according to the layout of the layer of secondary air ducts.
  • the wind temperature and the secondary wind speed of the layer are calculated, and the current air inlet volume of the secondary air duct of the layer is calculated based on the secondary air temperature of the layer and the secondary wind speed of the layer; a primary air duct is established based on the primary air duct. model and perform simulation calculations through the primary air duct model to obtain the primary wind simulated temperature of the primary air duct and the primary wind simulated wind speed of the primary air duct, and calculate the first value of the primary wind simulated temperature and the primary wind temperature.
  • the temperature deviation value and the first speed deviation value between the simulated primary wind speed and the primary wind speed are based on the first temperature deviation value being greater than the preset first temperature deviation value or the first speed deviation value being greater than the preset Set the first speed deviation value to optimize the structure of the primary air duct; establish a thermal secondary air duct model based on the thermal secondary air duct and perform simulation calculations through the thermal secondary air duct model to obtain the thermal secondary air duct.
  • the total secondary air simulated temperature and the total secondary air simulated wind speed of the secondary air duct are calculated, and the second temperature deviation value between the total secondary air simulated temperature and the total secondary air temperature and the total secondary air simulated wind speed are calculated.
  • the second speed deviation value from the total secondary air speed is based on the second temperature deviation value being greater than the preset second temperature deviation value or the second speed deviation value being greater than the preset second speed deviation value, Carry out structural optimization of the thermal secondary air duct; establish a thermal secondary air duct model based on the layer of secondary air duct and conduct simulation calculations through the layer of secondary air duct model to obtain the layer 2 of the layer of secondary air duct.
  • the secondary wind simulated temperature and the layer secondary wind simulated wind speed are calculated, and the third temperature deviation value between the layer secondary wind simulated temperature and the layer secondary wind temperature is calculated, and the layer secondary wind simulated wind speed and the layer secondary wind simulated wind speed are calculated.
  • the third speed deviation value of the wind speed is based on the third temperature deviation value being greater than the preset third temperature deviation value or the third speed deviation value being greater than the preset third speed deviation value. Carry out structural optimization.
  • Figure 1 is a flow chart of a method for preventing and controlling water wall corrosion based on online accurate measurement according to an embodiment of the present disclosure
  • Figure 2 is a front view of the layout of boiler furnace equipment in a method for preventing and controlling water wall corrosion based on online accurate measurement according to an embodiment of the present disclosure
  • Figure 3 is a schematic diagram of the burner arrangement in a method for preventing and controlling water wall corrosion based on online accurate measurement according to an embodiment of the present disclosure
  • Figure 4 is a structural diagram of a burner in a method for preventing and controlling water wall corrosion based on online accurate measurement according to an embodiment of the present disclosure
  • Figure 5 is a structural diagram of the burnout air in a method for preventing and controlling water wall corrosion based on online accurate measurement provided according to an embodiment of the present disclosure
  • Figure 6 is a schematic diagram of primary air duct and air volume measurement in a method for preventing and controlling water wall corrosion based on online precise measurement provided according to an embodiment of the present disclosure
  • Figure 7 is a schematic diagram of the hot secondary air duct and air volume measurement in a method for preventing and controlling water wall corrosion based on online accurate measurement according to an embodiment of the present disclosure
  • Figure 8 is a schematic diagram of the secondary air duct and air volume measurement in the middle layer of a method for preventing and controlling water-cooling wall corrosion based on online accurate measurement according to an embodiment of the present disclosure
  • Figure 9 is a schematic diagram of the optimized primary air duct and air volume measurement in a method for preventing and controlling water wall corrosion based on online accurate measurement according to an embodiment of the present disclosure
  • Figure 10 is a schematic diagram of the optimized hot secondary air duct and air volume measurement in a method for preventing and controlling water wall corrosion based on online accurate measurement according to an embodiment of the present disclosure
  • Figure 11 is a schematic diagram of the optimized secondary air duct and air volume measurement in a method for preventing and controlling water wall corrosion based on online accurate measurement according to an embodiment of the present disclosure
  • Figure 12 is a distribution diagram of the reducing gas hole measurement of the water-cooled wall on the side of the furnace wall in a method for preventing and controlling water-cooled wall corrosion based on online accurate measurement according to an embodiment of the present disclosure
  • Figure 13 is a schematic diagram of a burner air volume measurement device in a method for preventing and controlling water wall corrosion based on online accurate measurement according to an embodiment of the present disclosure
  • Figure 14 is a schematic diagram of a burnout air volume measurement device in a method for preventing and controlling water wall corrosion based on online accurate measurement according to an embodiment of the present disclosure
  • Figure 15 is a schematic structural diagram of a wind volume online measurement device for a method of preventing and controlling water wall corrosion based on online accurate measurement according to an embodiment of the present disclosure.
  • This disclosure proposes a method to prevent water-cooled wall corrosion based on online accurate measurement, including: structural optimization of primary air ducts, hot secondary air ducts and layered secondary air ducts; adding multiple water-cooled walls to the side walls of the boiler furnace A reducing gas online monitoring device; an air volume online measuring device is provided at the burner and the burnout air inlet; and the H 2 S concentration and reducibility of the reducing gas in the boiler measured by the multiple water-cooled wall reducing gas online monitoring devices
  • the gas CO concentration adjusts the hot secondary air duct air inlet volume, the layer secondary air duct air inlet volume, the burner air inlet volume and the combustion air inlet volume.
  • the disclosed method solves the problem of current deficiencies in alleviating high-temperature corrosion of water-cooled walls in furnaces. It is proposed to establish an online monitoring system and combine it with precise measurements to achieve precise prevention and control of high-temperature corrosion of water-cooled walls.
  • Figure 1 is a flow chart of a method for preventing and controlling water wall corrosion based on online accurate measurement according to an embodiment of the present disclosure. As shown in Figure 1 , the method includes step 1 to step 4.
  • Step 1 Structural optimization of primary air duct 5, hot secondary air duct 6 and layer secondary air duct 7.
  • FIG. 2 is a front view of the layout of boiler furnace equipment in a method for preventing and controlling water-cooled wall corrosion based on online accurate measurement according to an embodiment of the present disclosure.
  • the boiler furnace equipment includes a boiler furnace 1, a water-cooled wall 2, and multiple burners. 3 and a plurality of burnout air 4, and a cold slag hopper 101 is provided at the bottom of the boiler furnace 1.
  • the water-cooled wall 2 is arranged on the inner wall of the boiler furnace 1, and the middle and lower parts of the water-cooled wall 2 adopt a spiral tube circle.
  • Each tube in the same tube band of the spiral tube circle bypasses the corner part and the middle part of the furnace from bottom to top in the same way, where
  • the boiler furnace 1 and the water-cooled wall 2 are existing technologies and will not be described in detail here.
  • FIG. 3 is a schematic diagram of the burner arrangement in a method for preventing and controlling water-cooled wall corrosion based on online accurate measurement according to an embodiment of the present disclosure; as shown in Figure 3
  • three layers of burners 3 are provided on the front and back walls of the boiler, each layer including 5 to 8 burners 3; a plurality of burnout air 4 are also arranged in layers on the front and back walls of the boiler.
  • 1 to 2 layers of burnout air ducts are installed on both the front wall and the back wall of the boiler, and each layer includes 5 to 8 burnout air ducts.
  • the installation position and installation quantity of the burner 3 and the combustion air 4 on the boiler are not limited.
  • FIG 4 is a structural diagram of the burner 3 in a method for preventing and controlling water wall corrosion based on online accurate measurement provided according to an embodiment of the present disclosure.
  • the combustion air is divided into three streams of wind, and the three streams of wind are respectively Primary air, secondary air and tertiary air.
  • the primary air is provided by a primary fan.
  • the primary air generated by the primary fan enters the coal mill and carries coal powder to form a primary air powder mixture.
  • the primary air powder mixture passes through the burner.
  • the primary air duct of 3 is fed into the boiler furnace 1.
  • a cast pulverized coal concentrator is provided at the end of the primary air duct on the furnace side (the pulverized coal concentrator is not shown in Figure 4).
  • the pulverized coal concentrator is used to enter the primary air pulverized mixture with pulverized coal into the boiler furnace 1 Concentrate it before.
  • the concentrated pulverized coal airflow cooperates with the secondary air and tertiary air to ensure that a stable flame is maintained near the 3rd throat of the burner.
  • Wind boxes are provided on the front and rear water-cooled walls of the boiler furnace 1.
  • the wind boxes located on the front and rear water-cooled walls 2 of the boiler furnace 1 supply secondary air and tertiary air to each burner 3.
  • the secondary air and tertiary air pass through concentric rings in the burner 3.
  • Channel, secondary air and tertiary air enter the boiler furnace 1 at different stages of combustion, which contributes to the reduction of NOx and the burning out of fuel.
  • the burner 3 and the combustion air 4 are both provided with secondary air baffles 301.
  • the secondary air baffles 301 on the burner 3 are used to adjust the ratio between the secondary air volume and the tertiary air volume of each burner 3.
  • the adjustment rod of the secondary air damper 301 passes through the burner panel of the burner 3 so that the position of the secondary air damper 301 can be adjusted outside the burner 3 .
  • the secondary air generates necessary rotation by the secondary air cyclone 302, and the tertiary air generates the necessary rotation by the tertiary air cyclone 303.
  • the tertiary air cyclone 303 is fixed on the burner 3 during the assembly of the burner 3. The most forward position of the outlet to produce the strongest spin.
  • the position of the tertiary air swirler 303 through the joystick on the burner 3 panel.
  • the swirl intensity of the secondary air can be adjusted by adjusting the axial position of the secondary air swirler 302.
  • the adjustment rod of the secondary air swirler 302 passes through the combustion panel and the position of the swirler can be adjusted from outside the burner 3. .
  • each burner 3 also has a central air, which supplies an appropriate amount of central air to the center of the burner 3 to stabilize the oil flame and prevent the oil flame from washing the central air duct 304 and oil burner swirler (the oil burner swirler is not shown in Figure 4).
  • a continuous air flow flows through the oil gun, oil nozzle and oil burner swirler through the central air duct 304 to prevent oil droplets and fly ash from being deposited in the central air duct 304.
  • FIG. 5 is a structural diagram of the burnout air 4 in a method for preventing and controlling water wall corrosion based on online accurate measurement provided according to an embodiment of the present disclosure.
  • the difference in air volume required for complete fuel combustion passes through multiple layers on the boiler furnace 1
  • the combustion air 4 above the uppermost burner 3 among the burners 3 is supplemented.
  • the burnout air 4 nozzle enters the boiler furnace 1 with two airflows at high speed.
  • the first secondary airflow rushes out with a higher axial speed to ensure the airflow penetrates the boiler furnace 1, which is called primary air;
  • the second airflow rushes out to ensure penetration of the boiler furnace 1 airflow.
  • the secondary air flow swirls around the periphery and enters the boiler furnace 1 to ensure that the air is fully mixed with the unburned particles in the combustion products, which is called secondary air.
  • FIG 6 is a schematic diagram of the primary air duct 5 and air volume measurement in a method for preventing and controlling water wall corrosion based on online accurate measurement provided according to an embodiment of the present disclosure.
  • the primary air duct 5 includes a cold air duct 501, a hot air Channel 502 and mixed air channel 503, the cold primary air coming out of the primary fan is divided into two streams, one of which enters the cold air channel 501 of primary air channel 5 for controlling the air temperature of the coal mill; The cold primary air is divided into two streams. The other air enters the air preheater for heating and then enters the hot air duct 502.
  • the cold air output from the cold air duct 501 and the hot air output from the hot air duct 502 are mixed with cold and hot air before entering the coal mill.
  • the primary air after mixing the hot and cold air enters the coal mill and carries pulverized coal to form a primary air powder mixture, which is sent to the boiler furnace 1 through the primary air duct of the burner 3.
  • a first pressure test section 504 and a first temperature test section 505 are provided on the mixing air duct 503.
  • a plurality of first pressure measuring points are arranged on the first pressure test section 504, and a temperature measuring point is arranged on the first temperature test section 505.
  • Point used for online primary air volume measurement.
  • the density of the gas is obtained through the static pressure measured at the pressure measuring point and the temperature measured at the temperature measuring point, and finally the air volume is calculated through the dynamic pressure and density.
  • Figure 7 is a schematic diagram of the hot secondary air duct 6 and air volume measurement in a method for preventing and controlling water wall corrosion based on online accurate measurement provided according to an embodiment of the present disclosure.
  • the cold secondary air coming out of the air blower After being heated by the air preheater, it becomes hot secondary air, which enters the floor air box through the floor secondary air duct 7.
  • a second pressure test section 601 is arranged on the hot secondary air duct 6, and a plurality of second pressure measuring points are arranged on the second pressure test section 601 for measuring the online total secondary air volume.
  • the density of the gas is obtained through the static pressure measured at the second pressure measuring point, and finally the total secondary air volume is calculated through the dynamic pressure and density.
  • an expansion joint 603 is also provided in the hot secondary air duct 6 to unload the expansion force, that is, to leave room and margin for expansion of the secondary air duct.
  • the expansion joint 603 is an existing technology. Here, Without going into too much detail.
  • Figure 8 is a schematic diagram of the secondary air duct 7 and air volume measurement in the middle layer of a method for preventing and controlling water-cooled wall corrosion based on online accurate measurement provided according to an embodiment of the present disclosure.
  • the total secondary air passes through the secondary air Before entering the burner 3, the duct is divided into 4 to 6 layers along the height direction, of which 2 to 3 layers enter the burner layer, 1 to 2 layers enter the combustion air layer, and a third layer of secondary air duct 7 is arranged.
  • the third pressure test section 701 has a plurality of third pressure measuring points arranged on the third pressure test section 701 for measuring the secondary air volume at the line level.
  • the density of the gas is obtained through the static pressure measured at the third pressure measuring point, and finally the secondary air volume of the layer is calculated through the dynamic pressure and density.
  • the above primary air duct 5, hot secondary air duct 6 and secondary air duct 7 and the corresponding measurement points on each air duct constitute the primary air and secondary air system required for combustion of the coal-fired boiler.
  • the structure of the primary air duct 5, the hot secondary air duct 6 and the layer secondary air duct 7 is optimized to achieve the goal of accurate measurement.
  • Secondary air duct 7 is structurally optimized. Specifically including G1-G3.
  • G1 Structural optimization is performed on the cold air duct 501 of the primary air duct 5 , the hot air duct 502 of the primary air duct 5 , and the mixing port of the cold air duct 501 and the hot air duct 502 .
  • Figure 9 is a schematic diagram of the optimized primary air duct 5 and air volume measurement in a method for preventing and controlling water wall corrosion based on online precise measurement provided according to an embodiment of the present disclosure.
  • the hot air duct 502 of the primary air duct 5 and the mixing port of the cold air duct 501 and the hot air duct 502 are structurally optimized, including A1-A4.
  • A1 Set the air outlet of the cold air duct 501 as a flared structure 5011;
  • the air outlet of the cold air duct 501 is set as an enlarged structure 5011, which expands the area of the mixing port of the cold air duct 501 connected to the hot air duct 502, reduces the wind speed at the outlet of the cold air duct 501, and reduces the amount of air entering from the cold air duct 501.
  • the cold air in the hot air duct 502 impacts the hot air in the hot air duct 502 .
  • A2 Set the mixing port of the cold air duct 501 and the hot air duct 502 in the horizontal section 5021 of the hot air duct 502;
  • the mixing port of the cold air duct 501 and the hot air duct 502 is changed from the vertical section of the primary air duct 5 to the horizontal section 5021 of the hot air duct 502, which increases the cold air output from the cold air duct 501 and the hot air duct 502.
  • the mixing time of the hot air output is sufficient to make the mixing complete.
  • A3 Set a cold air box 506 at the mixing port of the cold air duct 501 and the hot air duct 502;
  • setting the cold air box 506 at the mixing port of the cold air duct 501 and the hot air duct 502 includes:
  • the cold air box 506 is arranged in the horizontal section 5021 of the hot air duct 502, wherein the cold air box 506 penetrates the hot air duct 502 in the height direction;
  • the expansion structure 5011 of the air outlet of the cold air duct 501 is connected to the air inlet of the cold air air box 506.
  • the cold air air box 506 divides the airflow entering the hot air duct 502 from the cold air duct 501 into equal parts. Multiple strands accelerate the mixing of hot and cold air.
  • a flow guide 8 is provided at the first elbow 507 of the hot air duct.
  • the flow guide 8 is used to smooth the air flow through the primary air duct 5, making the measurement of the primary air volume more accurate.
  • the primary air measurement pipeline layout at the entrance of the coal mill does not comply with the regulations on the measurement section position in GB/T10184-2015 (test section).
  • the front straight pipe section should be no less than 8 to 10 times the equivalent diameter, and the rear straight pipe section should be no less than 1 to 3 times the equivalent diameter).
  • the straight pipe section in front of the test section is short.
  • the density, temperature and speed of the two winds are very different, and there are eddy currents, backflow and other phenomena.
  • the distribution of temperature field and velocity field at the test section Uneven.
  • the relative standard deviation of the flow velocity distribution at the first pressure test section 504 was reduced to 6.3%, and the airflow velocity range was reduced from 10.0m/s to 28.0m/s to 20.1m/s to 24.5m/s. ;
  • the relative deviation of the airflow temperature field at the coal mill inlet cross-section is reduced to 1.6%, the mixed airflow temperature range is 500K ⁇ 522K, and the temperature difference between the high temperature zone and the low temperature zone is reduced from 130°C to about 20°C.
  • the external flow field environment of the coal mill inlet air volume has the conditions for accurate measurement.
  • the equal cross-section grid method is used to measure the primary wind dynamic pressure and temperature using an electronic micromanometer and a thermometer.
  • the static pressure and temperature are measured and compared with multiple sets of dial values to obtain the air volume correction coefficient, and then the primary air volume calculation formula coefficient of the distributed control system is modified to achieve the purpose of accurate measurement.
  • G2 Provide flow guide devices 8 at the plurality of second elbows 602 of the hot secondary air duct 6 .
  • Figure 10 is a schematic diagram of the optimized hot secondary air duct and air volume measurement in a method for preventing and controlling water wall corrosion based on online accurate measurement according to an embodiment of the present disclosure.
  • the guide devices 8 are added at the three second elbows 602 of the hot secondary air duct 6.
  • the relative standard deviation of the total secondary air speed at the second pressure test section 601 decreases. To 5.5%, the flow field uniformity has been greatly improved, which can fully meet the requirements of the measuring element on the flow field conditions.
  • the flow guide device 8 includes a plurality of guide plates.
  • the flow guide device 8 installed at the second elbow 602 includes 3 to 4 guide plates.
  • the flow guide device 8 includes 3 to 4 guide plates.
  • Multiple sets of test installation positions and installation angles of the preset guide plates are used, and the guide plates are adjusted and determined from the multiple sets of test installation positions and installation angles.
  • the installation position and installation angle that is, the position and angle of the deflector need to be designed and calculated in detail by numerical simulation software to achieve accurate air volume measurement.
  • G3 Provide flow guide devices 8 and uniformly distributed grilles 9 at the plurality of third elbows 702 of the secondary air duct of the layer.
  • FIG 11 is a schematic diagram of the optimized layer secondary air duct and air volume measurement in a method for preventing and controlling water wall corrosion based on online accurate measurement according to an embodiment of the present disclosure; by installing a flow guide at the third elbow 702
  • the velocity field distribution is balanced by means of device 8 and current equalizing grid 9.
  • the flow guide devices 8 are distributed in 3 to 4 pieces in the height direction.
  • the position and angle of the flow guide devices 8 need to be determined after numerical simulation.
  • the flow equalization grille 9 divides the corresponding air duct into 3 sections in the height direction. Divide the corresponding air duct into 4 sections.
  • the maximum relative standard deviation of the third pressure test section 701 was reduced to 38.8%, and the flow field was significantly improved.
  • the conventional multi-point differential pressure Pitot tube still cannot meet the test requirements.
  • the purpose of accurate measurement of air volume in the secondary air duct 7 can be achieved.
  • Step 2 Install multiple water-cooled wall reducing gas online monitoring devices on the side wall of boiler furnace 1.
  • multiple water-cooled walls 2 reducing gas online monitoring devices are installed on the side walls of the boiler furnace 1, including:
  • the boiler furnace is divided into a first area and a second area according to the corrosion degree in the boiler furnace 1, wherein the corrosion degree of the first area is greater than the corrosion degree of the second area;
  • N water-cooled wall reducing gas online monitoring devices are installed in the first area, and M water-cooled wall 2 reducing gas online monitoring devices are installed in the second area, where N>M.
  • online monitoring is developed based on the high-temperature corrosion conditions in the furnace inspected in the cold state.
  • the plan for the location of the device that is, there should be more measuring points in areas with severe high-temperature corrosion, and fewer measuring points in areas with relatively light corrosion.
  • Figure 12 is a measurement hole distribution diagram of reducing gases in the water-cooled wall on the side of the furnace wall in a method for preventing and controlling water-cooled wall corrosion based on online accurate measurement provided according to an embodiment of the present disclosure.
  • the reducing gas online monitoring device is mainly arranged on the furnace side wall of the water-cooled wall. Between the slag hopper 101 and the burnout wind 4 area, 5 to 8 layers are arranged in the height direction, and each layer is arranged with 3 to 5 measuring points (measuring holes). In some specific embodiments, a reducing gas online monitoring device Install on the test hole as shown in the picture.
  • the water-cooled wall reducing gas online monitoring device can choose mature products on the existing market.
  • Step 3 Set up the air volume online measurement device 10 at the air inlet of the burner 3 and combustion air 4.
  • Figure 13 is a schematic diagram of a burner air volume measuring device in a method for preventing and controlling water-cooling wall corrosion based on online precise measurement according to an embodiment of the present disclosure.
  • Figure 14 is a schematic diagram of a method for preventing and controlling water-cooling wall corrosion based on online precise measurement according to an embodiment of the present disclosure.
  • Schematic diagram of the burnout air volume measurement device in the wall corrosion method as shown in Figures 13 and 14.
  • the air volume online measurement device 10 is respectively installed at the secondary air inlet of the burner 3 and the air inlet of the secondary air duct 401 of the combustion air 4 to measure the burner 3 and the combustion air 4.
  • the secondary air at the air outlet is measured.
  • the secondary air duct 401 of the burnout air 4 is also provided with a secondary air cyclone 302.
  • the secondary air cyclone 302 is used to generate rotation for the secondary air entering the burnout air 4.
  • the secondary air cyclone 302 is an existing technology and will not be described in detail here.
  • Figure 15 is a schematic structural diagram of an online air volume measurement device based on a method for preventing and controlling water wall corrosion based on online accurate measurement according to an embodiment of the present disclosure.
  • the online measurement device includes an annular air duct 1006 and a secondary air annular air duct inlet. 1001. Secondary air annular air duct outlet 1002, first electrostatic sensor 1003, second electrostatic sensor 1004 and sensor holder 1005;
  • the secondary air annular air duct inlet 1001 is the inlet of the annular air duct 1006, and the secondary air annular air duct outlet 1002 is the outlet of the annular air duct 1006.
  • the first electrostatic sensor 1003 and the second electrostatic sensor 1004 are arranged inside the secondary air annular air duct inlet 1001 along the direction from the entrance of the annular air duct 1006 to the outlet of the annular air duct 1006, and are used to measure the passage of The dust carried in the secondary air of the annular air duct is measured by the first electrostatic sensor 1003 and the second electrostatic sensor 1004.
  • the dust carried in the secondary air passes through the first electrostatic sensor 1003 and the second electrostatic sensor.
  • the time difference of the sensor 1004 is used to calculate the secondary air speed, that is, the burner air inlet volume and the combustion air inlet volume are measured.
  • the secondary air annular air duct inlet 1001 and the secondary air annular air duct outlet 1002 echo each other from beginning to end, forming an annular pipeline, that is, an annular air duct 1006.
  • the first electrostatic sensor 1003 and the second electrostatic sensor 1004 are annular structures and are used to measure the dust-carrying secondary air passing through the entire wind annular air duct; in some specific embodiments, due to the secondary air It is an annular air duct. It is impossible to accurately measure the wind speed of the entire cross-section with a single straight sensor. Therefore, a less than 360-degree annular structure sensor is designed so that the sensor almost covers the annular air duct, which greatly increases the accuracy of measurement.
  • the first electrostatic sensor 1003 and the second electrostatic sensor 1004 are respectively installed inside the annular air duct through corresponding sensor fixing seats 905 .
  • the method for improving the combustion state of the offset coal-fired boiler further includes:
  • Using the air volume online measurement device 10 to measure the air inlet volume of the burner 3 and the combustion air 4 includes the following steps:
  • the difference between the time K2 when the secondary air carrying dust passes through the second electrostatic sensor and the time K1 when the secondary air carrying dust passes through the first electrostatic sensor is processed to obtain the difference between the time K2 when the secondary air carrying dust passes through the first electrostatic sensor and the time K1 when the secondary air carrying dust passes through the first electrostatic sensor.
  • the air inlet volume of burner 3 and the air inlet volume of combustion air 4 are obtained through the time difference K3.
  • an annular electrostatic method air volume measurement device is adopted at the burner and the combustion air inlet.
  • the electrostatic rod collects the dust carried in the air and uses the charge voltage to Convert and amplify the signal through an amplifier. After data processing, the relationship between wind speed and dust concentration can be obtained.
  • a calibrated anemometer can be used to measure wind speed in a cold state, and the coefficient of online air volume can be corrected to achieve the purpose of accurate measurement. .
  • burner 3 in Figure 13 is a swirl burner, and the type of burner is not limited in other embodiments of the present disclosure.
  • a tertiary wind measurement device 11 is provided at the tertiary air inlet of the swirl burner for measuring the tertiary air;
  • a primary air measurement device 11 is provided at the air inlet of the primary air duct 403 of the burnout air 4
  • the device 402, the tertiary wind measuring device 11 and the primary wind measuring device 402 have the same structure as the air volume online measuring device 10, and will not be described in detail here.
  • Step 4 According to the concentration of reducing gas H 2 S and the concentration of reducing gas CO in the boiler measured by the multiple water-cooled wall reducing gas online monitoring devices, the air inlet volume of the hot secondary air duct 6 and the layer secondary air duct 7 Adjust the air inlet volume, burner 3 air inlet volume and combustion air 4 inlet volume. That is, based on the online monitoring data, the online air volume is accurately adjusted manually or automatically to achieve dynamic adjustment of the reducing gas in the water-cooled wall 2 and alleviate the high-temperature corrosion of the water-cooled wall 2.
  • the concentration of reducing gas H 2 S and the concentration of reducing gas CO in the boiler measured by the multiple water-cooled wall 2 reducing gas online monitoring devices have a significant impact on the air inlet volume and layer of the hot secondary air duct 6
  • the air inlet volume of secondary air duct 7, the air inlet volume of burner 3 and the air inlet volume of combustion air 4 are adjusted, including D1-D5.
  • the establishment of an accurate measurement system for the above-mentioned primary air volume, secondary air volume, layer secondary air volume, as well as the air inlet volume of a single burner 3 and the burnout air 4 inlet volume relies on the additional side wall water-cooled wall restoration.
  • the method of preventing and controlling water wall corrosion based on online accurate measurement also includes H1-H6.
  • H1 The primary air temperature and primary wind speed passing through the primary air duct 5 are measured according to the layout of the primary air duct 5, and the primary air duct 5 is calculated based on the primary wind temperature and the primary wind speed.
  • H2 According to the arrangement of the hot secondary air duct 6, the total secondary air temperature and the total secondary air speed passing through the hot secondary air duct 6 are measured, and the total secondary air temperature and the total secondary air speed are measured. The secondary air wind speed is calculated to obtain the current air inlet volume of the hot secondary air duct 6;
  • H3 Measure the layer secondary air temperature and layer secondary air speed passing through the layer secondary air duct 7 according to the layout of the layer secondary air duct 7, and pass the layer secondary air temperature and layer The secondary wind speed is calculated to obtain the current air inlet volume of the secondary air duct of the layer;
  • H4 Establish a primary air duct model based on the primary air duct 5 and perform simulation calculations through the primary air duct model to obtain the simulated primary wind temperature of the primary air duct 5 and the simulated primary wind speed of the primary air duct 5, and calculate The first temperature deviation value between the primary wind simulated temperature and the primary wind temperature and the first speed deviation value between the primary wind simulated wind speed and the primary wind speed.
  • the first temperature deviation value is greater than a preset value
  • the first temperature deviation value or the first speed deviation value is greater than the preset first speed deviation value, the structure of the primary air duct 5 is optimized.
  • modeling, meshing, and simulation calculations are performed at a ratio of 1:1 to the on-site air duct size.
  • the numerical simulation results show that the relative standard deviation of the velocity field at the test section is 30.0%, and the relative standard deviation of the temperature field is 30.0%. The deviation is 10.0% (the larger the relative standard deviation, the more uneven the flow field distribution, and vice versa).
  • the air volume does not have an external flow field environment for accurate measurement, that is, the structure of the primary air duct 5 needs to be optimized.
  • Xi temperature value or velocity value of each point at the test section
  • X The average temperature or velocity at the test section
  • standard deviation of temperature or velocity distribution
  • H5 Establish a hot secondary air duct model based on the hot secondary air duct 6 and perform simulation calculations through the hot secondary air duct model to obtain the total secondary air simulated temperature and total secondary air temperature of the hot secondary air duct 6 Secondary wind simulated wind speed, calculate the second temperature deviation value between the total secondary air simulated temperature and the total secondary air temperature and the second speed between the total secondary wind simulated wind speed and the total secondary wind speed Deviation value, when the second temperature deviation value is greater than the preset second temperature deviation value or the second speed deviation value is greater than the preset second speed deviation value, the structure of the hot secondary air duct 6 is optimized;
  • the velocity field at the test section is the velocity field at the test section. Distribution uniformity problem. Modeling, meshing, and simulation calculations are conducted at a scale of 1:1 with the on-site air duct size. The numerical simulation results show that the relative standard deviation of the velocity field at the test section is 44.0%, and the air volume does not have an external flow field environment for accurate measurement, that is, the structure of the thermal secondary air duct 6 needs to be optimized.
  • H6 Establish a thermal secondary air duct model based on the layer of secondary air duct and perform simulation calculations through the layer of secondary air duct model to obtain the layer secondary air simulated temperature and layer secondary air duct of the layer of secondary air duct.
  • Wind simulated wind speed calculate the third temperature deviation value between the layer secondary wind simulated temperature and the layer secondary wind temperature and the third speed deviation value between the layer secondary wind simulated wind speed and the layer secondary wind speed , when the third temperature deviation value is greater than the preset third temperature deviation value or the third speed deviation value is greater than the preset third speed deviation value, the structure of the secondary air duct 7 is optimized.
  • the airflow does not have time to mix evenly. It enters the third pressure test section 701, and due to the influence of the downstream diameter change, the airflow distribution uniformity here is extremely poor. Modeling, meshing, and simulation calculations are conducted at a scale of 1:1 with the on-site air duct size. Numerical simulation results show that the relative standard deviation of the velocity field at part 701 of the third pressure test section reaches 124%, and the air volume does not have an external flow field environment for accurate measurement.
  • the standard deviation of the velocity field is 20% and the relative deviation of the temperature field is 5%.
  • the air volume does not have an accurately measured external flow field. environment, that is, the structure of the corresponding air duct needs to be optimized.
  • the present disclosure provides a method for preventing and controlling water-cooled wall corrosion based on online accurate measurement, including: structural optimization of primary air ducts, hot secondary air ducts and layered secondary air ducts; Install multiple water-cooled wall reducing gas online monitoring devices; install air volume online measuring devices on the burner and combustion air inlet; measure the reducing gas H 2 in the boiler based on the multiple water-cooled wall reducing gas online monitoring devices. S concentration and reducing gas CO concentration adjust the hot secondary air duct air inlet volume, layer secondary air duct air inlet volume, burner air inlet volume and combustion air inlet volume.
  • the disclosed method solves the problem of current deficiencies in alleviating high-temperature corrosion of water-cooled walls in furnaces. It is proposed to establish an online monitoring system and combine it with precise measurements to achieve precise prevention and control of high-temperature corrosion of water-cooled walls.
  • references to the terms “one embodiment,” “some embodiments,” “an example,” “specific examples,” or “some examples” or the like means that specific features are described in connection with the embodiment or example. , structures, materials or features are included in at least one embodiment or example of the present application. In this specification, the schematic expressions of the above terms are not necessarily directed to the same embodiment or example. Furthermore, the specific features, structures, materials or characteristics described may be combined in any suitable manner in any one or more embodiments or examples. Furthermore, those skilled in the art may combine and combine different embodiments or examples and features of different embodiments or examples described in this specification unless they are inconsistent with each other.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Regulation And Control Of Combustion (AREA)

Abstract

提供了一种基于在线精准测量防治水冷壁腐蚀的方法。该方法包括:对一次风道、热二次风道以及层二次风道进行结构优化;在锅炉炉膛侧墙加装多个水冷壁还原性气体在线监测装置;在燃烧器和燃尽风进风口设置风量在线测量装置;根据所述多个水冷壁还原性气体在线监测装置测量得到的锅炉内还原性气体H 2S浓度和还原性气体CO浓度对热二次风道进风量、层二次风道进风量、燃烧器进风量和燃尽风进风量进行调配。

Description

基于在线精准测量防治水冷壁腐蚀的方法
相关申请的交叉引用
本申请要求在2022年06月22日在中国提交的中国专利申请号2022107112680的优先权,其全部内容通过引用并入本文。
技术领域
本公开涉及锅炉燃烧技术领域,具体涉及一种基于在线精准测量防治水冷壁腐蚀的方法。
背景技术
随着大型燃煤机组超净排放的逐步实施,污染物排放水平进一步降低,炉内NOx排放也处于一个较低的水平;同时,炉内的燃烧状况持续恶化,水冷壁高温腐蚀的问题愈发突出,爆管的事故日渐增多。目前,为掌握炉内高温腐蚀情况,考虑水冷壁高温腐蚀还原性气体H 2S与CO浓度呈正相关的规律,通过加装在炉膛水冷壁的CO在线监测系统监测水冷壁区域CO浓度进而了解H 2S的浓度水平,通过运行氧量和燃尽风量的优化调整降低CO浓度,从而缓解水冷壁高温腐蚀,另外,目前通过电化学噪声法、极化曲线法和交流阻抗法实时监测炉内高温腐蚀,实现了受热面高温腐蚀的在线监测,但大部分未涉及水冷壁高温腐蚀的防治措施。相关技术提及了防治水冷壁高温腐蚀的措施,但未提及如何精准控制,仍是一种粗放的控制方式。
发明内容
本公开实施例提供的一种基于在线精准测量防治水冷壁腐蚀的方法,以至少解决目前缓解炉内水冷壁高温腐蚀方法的不足的问题。
本公开第一方面实施例提出一种基于在线精准测量防治水冷壁腐蚀的方法,其特征在于,包括:
对一次风道、热二次风道以及层二次风道进行结构优化;
在锅炉炉膛侧墙加装多个水冷壁还原性气体在线监测装置;
在燃烧器和燃尽风进风口设置风量在线测量装置;
根据所述多个水冷壁还原性气体在线监测装置测量得到的锅炉内还原性气体H 2S浓度和还原性气体CO浓度对热二次风道进风量、层二次风道进风量、燃烧器进风量和燃尽风进风量进行调配。
本公开的实施例提供的技术方案至少带来以下有益效果:
本公开提供了一种基于在线精准测量防治水冷壁腐蚀的方法,包括:对一次风道、热二次风道以及层二次风道进行结构优化;在锅炉炉膛侧墙加装多个水冷壁还原性气体在线监测装置;在燃烧器和燃尽风进风口设置风量在线测量装置;根据所述多个水冷壁还原性气体在线监测装置测量得到的锅炉内还原性气体H 2S浓度和还原性气体CO浓度对热二次风道进风量、层二次风道进风量、燃烧器进风量和燃尽风进风量进行调配。通过本公开的方法解决目前缓解炉内水冷壁高温腐蚀方法的不足的问题,实现了对水冷壁高温腐蚀的精准防治。
在一些实施例中,所述对一次风道、热二次风道以及层二次风道进行结构优化,包括:对所述一次风道的冷风道、所述一次风道的热风道以及所述冷风道与所述热风道的混合口处进行结构优化;在所述热二次风道的多个第二弯头处设置导流装置;在所述层二次风道的多个第三弯头处设置导流装置和均布格栅。
在一些实施例中,所述对所述一次风道的冷风道、所述一次风道的热风道以及所述冷风道与所述热风道的混合口处进行结构优化,包括:将所述冷风道的出风口处设置为扩口结构;将所述冷风道与所述热风道的混合口设置在所述热风道的水平段内;在所述冷风道与所述热风道的混合口处设置冷风风箱;在所述热风道的第一弯头处设置导流装置。
在一些实施例中,所述在所述冷风道与所述热风道的混合口处设置冷风风箱,包括:将所述冷风风箱设置在所述热风道的水平段内,其中所述冷风风箱在高度方向贯穿所述热风道;将所述冷风道的出风口的扩口结构与所述冷风风箱的进风口连接,所述冷风风箱在将进入从所述冷风道进入所述热风道的气流均分为多股。
在一些实施例中,所述导流装置包括多个导流板。
在一些实施例中,所述在锅炉炉膛侧墙加装多个水冷壁还原性气体在线监测装置,包括:确定锅炉炉膛内的腐蚀度;根据所述锅炉炉膛内的腐蚀度将锅炉炉膛分为第一区域和第二区域,其中,所述第一区域的腐蚀度大于所述第二区域的腐蚀度;在所述第一区域安装N个水冷壁还原性气体在线监测装置,在所述第二区域内安装M个水冷壁还原性气体在线监测装置,其中,N>M。
在一些实施例中,所述风量在线测量装置包括环形风道、二次风环形风道入口、二次风环形风道出口、第一静电传感器和第二静电传感器;所述二次风环形风道入口是所述环形风道的入口、所述二次风环形风道出口是所述环形风道的出口;所述第一静电传感器和所述第二静电传感器,沿由环形风道的入口至环形风道的出口的方向设置于二次风环形风道入口的内部,用于测量通过环形风道二次风中携带的粉尘,并通过所述第一静电传感器和所述第二静电传感器测量出二次风中携带的粉尘通过第一静电传感器和所述第二静电传 感器的时间差,进而测算出二次风风速,即测算出燃烧器进风量和燃尽风进风量;其中,所述第一静电传感器和第二静电传感器为环形结构,用于测量通过整个风环形风道的二次风的中携带粉尘。
在一些实施例中,所述方法还包括:利用风量在线测量装置测量得到燃烧器进风量和燃尽风进风量;利用风量在线测量装置测量得到燃烧器进风量和燃尽风进风量包括如下步骤:收集到二次风环形风道入口和二次风环形风道出口中携带的粉尘;测量得到携带粉尘的二次风通过第一静电传感器的时间K1,测量得到携带粉尘的二次风通过第二静电传感器的时间K2;对携带粉尘的二次风通过第二静电传感器的时间K2与携带粉尘的二次风通过第一静电传感器的时间K1进行做差处理,得到携带粉尘的二次风通过第一静电传感器和第二静电传感器的时间K2的时间差K3;通过时间差K3得到燃烧器进风量和燃尽风进风量。
在一些实施例中,所述根据所述多个水冷壁还原性气体在线监测装置测量得到的锅炉内还原性气体H 2S浓度和还原性气体CO浓度对热二次风道进风量、层二次风道进风量、燃烧器进风量和燃尽风进风量进行调配,包括:利用所述水冷壁还原性气体在线监测装置测量得到锅炉内的还原性气体H 2S浓度和还原性气体CO浓度;基于所述多个水冷壁还原性气体在线监测装置测量得到锅炉内的还原性气体H 2S浓度均大于第一预设浓度阈值,且所述多个水冷壁还原性气体在线监测装置测量得到锅炉内的还原性气体CO浓度均大于第二预设浓度阈值,则增大所述热二次风道进风量;基于所述水冷壁还原性气体在线监测装置测量得到所述层二次风道中的其中一层风道的还原性气体H 2S浓度和还原性气体CO浓度均大于预设的还原性气体H 2S浓度和预设的还原性气体CO浓度,则增大所述其中一层风道进风量;基于所述水冷壁还原性气体在线监测装置测量得到一个燃烧器的燃烧器区域内的还原性气体H 2S浓度和还原性气体CO浓度均大于预设的还原性气体H 2S浓度和预设的还原性气体CO浓度,增大所述一个燃烧器的进风量,减少所有燃烧器中除所述一个燃烧器之外的其他燃烧器的进风量;基于所述水冷壁还原性气体在线监测装置测量得到一个燃尽风的燃烧风区域内的还原性气体H 2S浓度大于第三预设浓度阈值,且所述水冷壁还原性气体在线监测装置测量得到一个燃尽风的燃烧风区域内的还原性气体CO浓度大于第四预设浓度阈值,增大所述一个燃尽风的进风量,减少所有燃尽风中除所述一个燃尽风之外的其他燃尽风进风量。
在一些实施例中,所述方法还包括:根据所述一次风道的布置测量得到通过所述一次风道的一次风温度和一次风风速,并通过所述一次风温度和所述一次风风速计算得到所述一次风道的当前进风量;根据所述热二次风道的布置测量得到通过所述热二次风道的总二次风温度和总二次风风速,并通过所述总二次风温度和所述总二次风风速计算得到所述热 二次风道的当前进风量;根据所述层二次风道的布置测量得到通过所述层二次风道的层二次风温度和层二次风风速,并通过所述层二次风温度和所述层二次风风速计算得到所述层二次风道的当前进风量;根据所述一次风道建立一次风道模型并通过所述一次风道模型进行模拟计算,得到所述一次风道的一次风模拟温度和一次风道的一次风模拟风速,计算所述一次风模拟温度与所述一次风温度的第一温度偏差值以及所述一次风模拟风速与所述一次风风速的第一速度偏差值,基于所述第一温度偏差值大于预设的第一温度偏差值或所述第一速度偏差值大于预设的第一速度偏差值,对一次风道进行结构优化;根据所述热二次风道建立热二次风道模型并通过所述热二次风道模型进行模拟计算,得到所述热二次风道的总二次风模拟温度和总二次风模拟风速,计算所述总二次风模拟温度与所述总二次风温度的第二温度偏差值以及所述总二次风模拟风速与所述总二次风风速的第二速度偏差值,基于所述第二温度偏差值大于预设的第二温度偏差值或所述第二速度偏差值大于预设的第二速度偏差值,对热二次风道进行结构优化;根据所述层二次风道建立热二次风道模型并通过所述层二次风道模型进行模拟计算,得到所述层二次风道的层二次风模拟温度和层二次风模拟风速,计算所述层二次风模拟温度与所述层二次风温度的第三温度偏差值以及所述层二次风模拟风速与所述层二次风风速的第三速度偏差值,基于所述第三温度偏差值大于预设的第三温度偏差值或所述第三速度偏差值大于预设的第三速度偏差值,对层二次风道进行结构优化。
本公开附加的方面以及优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本公开的实践了解到。
附图说明
本公开上述的和/或附加的方面以及优点从下面结合附图对实施例的描述中将变得明显和容易理解,其中:
图1是根据本公开一个实施例提供的一种基于在线精准测量防治水冷壁腐蚀的方法的流程图;
图2是根据本公开一个实施例提供的一种基于在线精准测量防治水冷壁腐蚀的方法中锅炉炉膛设备布置的正视图;
图3是根据本公开一个实施例提供的一种基于在线精准测量防治水冷壁腐蚀的方法中燃烧器布置的示意图;
图4是根据本公开一个实施例提供的一种基于在线精准测量防治水冷壁腐蚀的方法中燃烧器的结构图;
图5是根据本公开一个实施例提供的一种基于在线精准测量防治水冷壁腐蚀的方法中 燃尽风的结构图;
图6是根据本公开一个实施例提供的一种基于在线精准测量防治水冷壁腐蚀的方法中一次风道及风量测量的示意图;
图7是根据本公开一个实施例提供的一种基于在线精准测量防治水冷壁腐蚀的方法中热二次风道及风量测量的示意图;
图8是根据本公开一个实施例提供的一种基于在线精准测量防治水冷壁腐蚀的方法中层二次风道及风量测量的示意图;
图9是根据本公开一个实施例提供的一种基于在线精准测量防治水冷壁腐蚀的方法中优化后的一次风道及风量测量的示意图;
图10是根据本公开一个实施例提供的一种基于在线精准测量防治水冷壁腐蚀的方法中优化后的热二次风道及风量测量的示意图;
图11是根据本公开一个实施例提供的一种基于在线精准测量防治水冷壁腐蚀的方法中优化后的层二次风道及风量测量的示意图;
图12是根据本公开一个实施例提供的一种基于在线精准测量防治水冷壁腐蚀的方法中炉膛墙侧水冷壁还原性气体测孔分布图;
图13是根据本公开一个实施例提供的一种基于在线精准测量防治水冷壁腐蚀的方法中燃烧器风量测量装置示意图;
图14是根据本公开一个实施例提供的一种基于在线精准测量防治水冷壁腐蚀的方法中燃尽风风量测量装置示意图;
图15是根据本公开一个实施例提供的一种基于在线精准测量防治水冷壁腐蚀的方法中风量在线测量装置的结构示意图。
附图标记说明:
锅炉炉膛-1;水冷壁-2;燃烧器-3;燃尽风-4;冷渣斗-101;一次风道-5;热二次风道-6;层二次风道-7;导流装置-8;均布格栅-9;风量在线测量装置-10;三次风测量装置-11;二次风挡板-301;二次风旋流器-302;三次风旋流器-303;中心风管-304;二次风管-401;一次风测量装置-402;一次风管-403;;冷风道-501;热风道-502;混合风道-503;第一压力测试截面-504;第一温度测试截面-505;冷风风箱-506;第一弯头-507;扩口结构-5011;水平段-5021;第二压力测试截面-601;第二弯头-602;膨胀节-603;第三压力测试截面-701;第三弯头-702;二次风环形风道入口-1001;二次风环形风道出口-1002;第一静电传感器-1003;第二静电传感器-1004;传感器固定座-1005;环形风道-1006。
具体实施方式
下面详细描述本公开的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,旨在用于解释本公开,而不能理解为对本公开的限制。
本公开提出的一种基于在线精准测量防治水冷壁腐蚀的方法,包括:对一次风道、热二次风道以及层二次风道进行结构优化;在锅炉炉膛侧墙加装多个水冷壁还原性气体在线监测装置;在燃烧器和燃尽风进风口设置风量在线测量装置;根据所述多个水冷壁还原性气体在线监测装置测量得到的锅炉内还原性气体H 2S浓度和还原性气体CO浓度对热二次风道进风量、层二次风道进风量、燃烧器进风量和燃尽风进风量进行调配。通过本公开的方法解决目前缓解炉内水冷壁高温腐蚀方法的不足的问题,拟采取在线监测系统的建立并结合精准测量,实现了对水冷壁高温腐蚀的精准防治。
下面参考附图描述本公开实施例的一种基于在线精准测量防治水冷壁腐蚀的方法。
实施例1
图1是根据本公开一个实施例提供的一种基于在线精准测量防治水冷壁腐蚀的方法的流程图,如图1所述,所述方法包括步骤1-步骤4。
步骤1:对一次风道5、热二次风道6以及层二次风道7进行结构优化。
图2是根据本公开一个实施例提供的一种基于在线精准测量防治水冷壁腐蚀的方法中锅炉炉膛设备布置的正视图,所述锅炉炉膛设备包括锅炉炉膛1、水冷壁2、多个燃烧器3和多个燃尽风4,锅炉炉膛1底部设置有冷渣斗101。
水冷壁2设置在锅炉炉膛1内壁上,且水冷壁2中下部采用螺旋管圈,螺旋管圈同一管带中的各管以相同方式从下到上绕过炉膛的隅部分和中间部分,其中锅炉炉膛1以及水冷壁2是现有技术,在此不做过多赘述。
多个燃烧器3分层设置于锅炉前墙和后墙,图3是根据本公开一个实施例提供的一种基于在线精准测量防治水冷壁腐蚀的方法中燃烧器布置的示意图;如图3所示,锅炉前墙和后墙上均设置三层燃烧器3,每层包括5~8个燃烧器3;多个燃尽风4也分层设置于锅炉前墙和后墙,在本实施例中,锅炉前墙和后墙上均设置1~2层燃尽风4,每层包括5~8个燃尽风4。在本公开的其他实施例当中,不对燃烧器3和燃尽风4在锅炉上的安装位置以及安装数量进行限制。
图4是根据本公开一个实施例提供的一种基于在线精准测量防治水冷壁腐蚀的方法中燃烧器3的结构图,如图4所示,燃烧的空气被分为三股风,三股风分别为一次风、二次风和三次风,其中,一次风由一次风由一次风机提供,一次风机产生的一次风进入磨煤机中携带煤粉,形成一次风粉混合物,一次风粉混合物经燃烧器3的一次风管送入锅炉炉膛1。在一次风管靠炉膛一侧的端部设有铸造的煤粉浓缩器(煤粉浓缩器在图4中未显示), 煤粉浓缩器用以在带煤粉的一次风粉混合物进入锅炉炉膛1之前对其进行浓缩。浓缩的煤粉气流同二次风、三次风的配合,以保证在靠近燃烧器3喉口处维持一个稳定的火焰。
锅炉炉膛1前后水冷壁上设置有风箱,位于锅炉炉膛1前后水冷壁2上的风箱向每个燃烧器3供给二次风和三次风,二次风和三次风通过燃烧器3内同心的环形通道,二次风和三次风在燃烧的不同阶段进入锅炉炉膛1,有助于NOx的降低和燃料的燃尽。
燃烧器3和燃尽风4上均设置有二次风挡板301,燃烧器3上的二次风挡板301用以调节每个燃烧器3的二次风量和三次风量间的比例。二次风挡板301的调整杆穿过燃烧器3的燃烧器面板可以在燃烧器3外部调整二次风挡板301的位置。二次风由二次风旋流器302产生必要的旋转,三次风由三次风旋流器303产生必要的旋转,通常三次风旋流器303在燃烧器3装配期间就被固定在燃烧器3出口最前端的位置,以便产生最强烈的旋转。在一些特殊的场合,通过燃烧器3面板上的操纵杆来调整三次风旋流器303的位置也是可能的。二次风的旋流强度可以通过调节二次风旋流器302的轴向位置进行调整,二次风旋流器302的调整杆穿过燃烧面板可以从燃烧器3外面调整旋流器的位置。
除了一次风、二次风和三次风这三股风之外,每个燃烧器3还有一股中心风,向燃烧器3中心供给适量的中心风以稳定油火焰,防止油火焰冲刷中心风管304和油燃烧器旋流器(油燃烧器旋流器在图4中未显示)。同时,一股连续的气流通过中心风管304流过油枪,油喷嘴和油燃烧器旋流器以防止油滴和粉煤灰沉积在中心风管304。
需要注意的是,风箱、燃烧器3的结构、燃尽风4的结构、二次风挡板301、二次风挡板301的调整杆、旋流器以及旋流器在燃烧器3上的安装和调节等均是现有技术,在此不做过多赘述。
图5是根据本公开一个实施例提供的一种基于在线精准测量防治水冷壁腐蚀的方法中燃尽风4的结构图,燃料完全燃烧所要求的风量的差额通过处于锅炉炉膛1上的多层燃烧器3中位于最上层的燃烧器3上方的燃尽风4补充。燃尽风4喷口以二股气流高速进入锅炉炉膛1,其中第一股以较高的轴向速度的二次风气流冲出以保证穿透锅炉炉膛1气流,称之为一次风;第二股二次风气流在外围旋流进入锅炉炉膛1以保证空气与燃烧产物中的未燃颗粒充分混合,称之为二次风。
图6是根据本公开一个实施例提供的一种基于在线精准测量防治水冷壁腐蚀的方法中一次风道5及风量测量的示意图,如图6所示,一次风道5包括冷风道501、热风道502和混合风道503,从一次风机出来的冷一次风分为两股,其中一股风进入一次风道5的冷风道501,用于磨煤机风温的控制;从一次风机出来的冷一次风分为两股中的另一股风进入空预器加热后进入热风道502,从冷风道501输出的冷风与从热风道502输出的热风进行冷热风混合后再进入磨煤机,冷热风混合后的一次风进入磨煤机中携带煤粉,形成一次 风粉混合物,一次风粉混合物经燃烧器3的一次风管送入锅炉炉膛1。在混合风道503上设置有第一压力测试截面504和第一温度测试截面505,第一压力测试截面504上布置了多个第一压力测点,第一温度测试截面505上布置了温度测点,用于在线一次风量的测量。在一些具体实施例中,通过压力测点测量得到的静压和温度测点得到的温度再得到气体的密度,最后通过动压和密度计算得到风量。
图7是根据本公开一个实施例提供的一种基于在线精准测量防治水冷壁腐蚀的方法中热二次风道6及风量测量的示意图,如图7所示,从送风机出来的冷二次风经过空预器加热后变成热二次风,热二次风通过层二次风道7进入层风箱。热二次风道6上布置有第二压力测试截面601,第二压力测试截面601上布置了多个第二压力测点,用于在线总二次风量的测量。在一些具体实施例中,通过第二压力测点测量的静压得到气体的密度,最后通过动压和密度计算得到总二次风量风量。
另外,热二次风道6内还设置有膨胀节603,用于为膨胀卸力,即为二次风道留有膨胀的空间和余量,所述膨胀节603为现有技术,在此不做过多赘述。
图8是根据本公开一个实施例提供的一种基于在线精准测量防治水冷壁腐蚀的方法中层二次风道7及风量测量的示意图,如图8所示,总二次风经过层二次风道在进入燃烧器3前,沿着高度方向分为4~6层,其中2~3层进入燃烧器层,1~2层进入燃尽风层,在层二次风道7上布置有第三压力测试截面701,第三压力测试截面701上布置了多个第三压力测点,用于在线层二次风量的测量。在一些具体实施例中,通过第三压力测点测量的静压得到气体的密度,最后通过动压和密度计算得到层二次风量风量。
以上一次风道5、热二次风道6以及层二次风道7及其每个风道上对应的测量点组成冲燃煤锅炉燃烧需要的一次风和二次风系统。
需要注意的是,图6至图8所示的一次风道5、热二次风道6以及层二次风道7及其对应风量的测量方法是现有技术,在此不做过多赘述。
在本公开实施例当中,对一次风道5、热二次风道6以及层二次风道7进行结构优化,达到准确测量的目标,对一次风道5、热二次风道6以及层二次风道7进行结构优化。具体包括G1-G3。
G1:对所述一次风道5的冷风道501、所述一次风道5的热风道502以及所述冷风道501与所述热风道502的混合口处进行结构优化。
图9是根据本公开一个实施例提供的一种基于在线精准测量防治水冷壁腐蚀的方法中优化后的一次风道5及风量测量的示意图,对所述一次风道5的冷风道501、所述一次风道5的热风道502以及所述冷风道501与所述热风道502的混合口处进行结构优化,包括A1-A4。
A1:将所述冷风道501的出风口处设置为扩口结构5011;
将所述冷风道501的出风口处设置为扩口结构5011,扩大了冷风道501接入热风道502混合口的面积,降低了冷风道501出风口的风速,减小了从冷风道501进入热风道502的冷风对热风道502中的热风的冲击。
A2:将所述冷风道501与所述热风道502的混合口设置在所述热风道502的水平段5021内;
将冷风道501与所述热风道502的混合口由原来设置在一次风道5的垂直段改为设置在所述热风道502的水平段5021,增加了冷风道501输出的冷风以及热风道502输出的热风的混合时间,使混合充分。
A3:在所述冷风道501与所述热风道502的混合口处设置冷风风箱506;
其中,在所述冷风道501与所述热风道502的混合口处设置冷风风箱506包括:
将所述冷风风箱506设置在所述热风道502的水平段5021内,其中所述冷风风箱506在高度方向贯穿所述热风道502;
将所述冷风道501的出风口的扩口结构5011与所述冷风风箱506的进风口连接,所述冷风风箱506在将进入从所述冷风道501进入所述热风道502的气流均分为多股,加速了冷热风的混合。
A4:在所述热风道的第一弯头507处设置导流装置8,导流装置8用于平顺通过一次风道5的气流,使得对一次风风量的测量更加准确。
需要注意的是,图6所示的冷热一次风混合后,由于现场管道布置的限制,磨煤机入口一次风测量管道布置不符合GB/T10184-2015中对测量截面位置的规定(测试截面前直管段应不小于8~10倍当量直径,截面后直管段不小于1~3倍当量直径)。磨煤机入口的冷热一次风混合后,测试截面前直管段较短,两股风密度、温度以及速度相差很大,且有涡流、回流等现象存在,测试截面处温度场和速度场分布不均。采取上述A1-A4措施后,第一压力测试截面504处的流速分布相对标准偏差降低至6.3%,气流速度范围由10.0m/s~28.0m/s缩小至20.1m/s~24.5m/s;磨煤机入口截面处的气流温度场相对偏差降至1.6%,混合气流温度区间为500K~522K,高温区与低温区温度差值由130℃缩小至20℃左右。磨煤机入口风量外部流场环境已具备精确测量的条件。对一次风道5优化改造完成后,热态下,通过选取标准毕托管或经过标定的S型毕托管、靠背管,采用等截面网格法用电子微压计和温度计进行一次风动压、静压和温度的测量,并与多组表盘值进行比对,得出风量修正系数,进而对分布式控制系统一次风量计算公式系数进行修改,从而达到精准测量的目的。
G2:在所述热二次风道6的多个第二弯头602处设置导流装置8。
图10是根据本公开一个实施例提供的一种基于在线精准测量防治水冷壁腐蚀的方法 中优化后的热二次风道及风量测量的示意图,如图10所示,为使二次风气流平顺,在热二次风道6的三个第二弯头602处均增加了导流装置8,安装导流装置8后,第二压力测试截面601处的总二次风速度相对标准偏差降低至5.5%,流场均匀性得到了极大提升,完全能够满足测量元件对流场条件的要求。
在本公开实施例当中,导流装置8包括多个导流板,本实施例,第二弯头602处安装的导流装置8包括3至4块导流板,在本公开的其他实施例当中,不对导流装置8包括的导流板个数进行限制,利用预设定的导流板得多组测试安装位置以及安装角度,从多组测试安装位置以及安装角度中调整确定导流板的安装位置以及安装角度,即导流板的位置和角度需经过数值模拟软件详细设计和计算,达到风量测量准确的目的。
G3:在所述层二次风道的多个第三弯头702处设置导流装置8和均布格栅9。
图11是根据本公开一个实施例提供的一种基于在线精准测量防治水冷壁腐蚀的方法中优化后的层二次风道及风量测量的示意图;通过在第三弯头702处加装导流装置8和均流格栅9的方式均衡速度场分布。其中导流装置8在高度方向上分布3~4块,导流装置8位置和角度需经数值模拟后确定,均流格栅9在高度方向上将对应风道划分成3段,宽度方向上将对应风道划分成4段。实施后,第三压力测试截面701最大相对标准偏差降低至38.8%,流场明显改善。但常规的多点式压差毕托管仍无法满足测试的要求,再结合新型静电法风量测量装置改造,达到层二次风道7风量准确测量的目的。
步骤2:在锅炉炉膛1侧墙加装多个水冷壁还原性气体在线监测装置。
在本公开实施例当中,所述在锅炉炉膛1侧墙加装多个水冷壁2还原性气体在线监测装置,包括:
确定锅炉炉膛内1的腐蚀度;
根据所述锅炉炉膛内1的腐蚀度将锅炉炉膛分为第一区域和第二区域,其中,所述第一区域的腐蚀度大于所述第二区域的腐蚀度;
在所述第一区域安装N个水冷壁还原性气体在线监测装置,在所述第二区域内安装M个水冷壁2还原性气体在线监测装置,其中,N>M。
在一些具体实施例中,为实时了解对冲燃烧方式侧墙水冷壁2还原性气体H 2S浓度和还原性气体CO或高温腐蚀速率,根据冷态下检查的炉内高温腐蚀情况,制定在线监测装置位置的方案,即高温腐蚀严重的区域测点应多一些,腐蚀相对轻的区域测点可少一点。
图12是根据本公开一个实施例提供的一种基于在线精准测量防治水冷壁腐蚀的方法中炉膛墙侧水冷壁还原性气体测孔分布图,还原性气体在线监测装置主要布置在炉膛侧墙冷渣斗101至燃尽风4区域之间,高度方向上布置5~8层,每层布置3~5个测点(测孔)不等,在一些具体实施例中,还原性气体在线监测装置安装在图中所示的测孔上。
另外,水冷壁还原性气体在线监测装置可选用现有市场上成熟的产品。
步骤3:在燃烧器3和燃尽风4进风口设置风量在线测量装置10。
图13是根据本公开一个实施例提供的一种基于在线精准测量防治水冷壁腐蚀的方法中燃烧器风量测量装置示意图,图14是根据本公开一个实施例提供的一种基于在线精准测量防治水冷壁腐蚀的方法中燃尽风风量测量装置示意图,如图13和图14所示,所述风量在线测量装置10设置有多个,多个在线测量装置10设置在燃烧器3和燃尽风4进风口处。在一些具体实施例中,风量在线测量装置10分别设置在燃烧器3的二次风进风口处以及燃尽风4的二次风管401进风口处,对燃烧器3和燃尽风4进风口处的二次风进行测量。
所述燃尽风4的二次风管401内还设置有二次风旋流器302,所述二次风旋流器302用于为进入燃尽风4的二次风产生旋转,所述二次风旋流器302为现有技术,在此不做过多赘述。
图15是根据本公开一个实施例提供的一种基于在线精准测量防治水冷壁腐蚀的方法中风量在线测量装置的结构示意图,所述在线测量装置包括环形风道1006、二次风环形风道入口1001、二次风环形风道出口1002、第一静电传感器1003、第二静电传感器1004和传感器固定座1005;
所述二次风环形风道入口1001是所述环形风道1006的入口、所述二次风环形风道出口1002是所述环形风道1006的出口。
所述第一静电传感器1003和所述第二静电传感器1004,沿由环形风道1006的入口至环形风道1006的出口的方向设置于二次风环形风道入口1001的内部,用于测量通过环形风道二次风中携带的粉尘,并通过所述第一静电传感器1003和所述第二静电传感器1004测量出的二次风中携带的粉尘通过第一静电传感器1003和所述第二静电传感器1004的时间差,进而测算出二次风风速,即测算出燃烧器进风量和燃尽风进风量。
其中,所述二次风环形风道入口1001和二次风环形风道出口1002首尾相互呼应,形成环形管路,即环形风道1006。
需要注意的是,所述第一静电传感器1003和第二静电传感器1004为环形结构,用于测量通过整个风环形风道的携带粉尘的二次风;在一些具体实施例中,由于二次风是环形风道,用笔直的传感器单支无法准确测出整个截面的风速,于是就设计出小于360度的环形结构传感器,使传感器几乎覆盖环形风道,大大增加测量的准确性。
所述第一静电传感器1003和第二静电传感器1004分别通过对应的传感器固定座905安装在环形风道内部。
在本公开的实施例中,所述改善对冲燃煤锅炉燃烧状态的方法还包括:
利用风量在线测量装置10测量得到燃烧器3进风量和燃尽风4进风量;
利用风量在线测量装置10测量得到燃烧器3进风量和燃尽风4进风量包括如下步骤:
收集到二次风环形风道入口和二次风环形风道出口中携带的粉尘;
测量得到携带粉尘的二次风通过第一静电传感器的时间K1,测量得到携带粉尘的二次风通过第二静电传感器的时间K2;
对携带粉尘的二次风通过第二静电传感器的时间K2与携带粉尘的二次风通过第一静电传感器的时间K1进行做差处理,得到携带粉尘的二次风通过第一静电传感器和第二静电传感器的时间K2的时间差K3;
通过时间差K3得到燃烧器3进风量和燃尽风4进风量。
在一些具体实施例中,通过在燃烧器和燃尽风进风口采取环形静电法风量测量装置,当二次风通过不同通道经过进风口,静电棒收集到空气中携带的粉尘,通过电荷电压的转化,并通过放大器将信号放大,数据处理后得出风速和粉尘浓度的关系,可在冷态下采用经过校验过的风速仪进行风速的实测,修正在线风量的系数,达到准确测量的目的。
需要注意的是,图13中的燃烧器3为旋流燃烧器,在本公开的其他实施例当中不对燃烧器的类型进行限制。
另外,旋流燃烧器的上的三次风进风口处还设置有三次风测量装置11,用于对三次风进行测量;所述燃尽风4的一次风管403进风口处设置有一次风测量装置402,所述三次风测量装置11以及一次风测量装置402与风量在线测量装置10结构相同,在此不做过多赘述。
步骤4:根据所述多个水冷壁还原性气体在线监测装置测量得到的锅炉内还原性气体H 2S浓度和还原性气体CO浓度对热二次风道6进风量、层二次风道7进风量、燃烧器3进风量和燃尽风4进风量进行调配。即依据在线监测数据,对在线风量进行精准手动或自动调配,实现水冷壁2还原性气体的动态调整,缓解水冷壁2高温腐蚀。
在本公开实施例当中,根据所述多个水冷壁2还原性气体在线监测装置测量得到的锅炉内还原性气体H 2S浓度和还原性气体CO浓度对热二次风道6进风量、层二次风道7进风量、燃烧器3进风量和燃尽风4进风量进行调配,包括D1-D5。
D1:利用所述水冷壁还原性气体在线监测装置测量得到锅炉内的还原性气体H 2S浓度和还原性气体CO浓度;
D2:当所述多个水冷壁还原性气体在线监测装置测量得到锅炉内的还原性气体H 2S浓度均大于第一预设浓度阈值,且所述多个水冷壁还原性气体在线监测装置测量得到锅炉内的还原性气体CO浓度均大于第二预设浓度阈值时,则增大所述热二次风道6进风量;
D3:当所述水冷壁还原性气体在线监测装置测量得到所述层二次风道7中的其中一层风道的还原性气体H 2S浓度和还原性气体CO浓度均大于预设的还原性气体H 2S浓度和预 设的还原性气体CO浓度时,则增大所述其中一层风道进风量;
D4:当所述水冷壁还原性气体在线监测装置测量得到一个燃烧器的燃烧器区域内的还原性气体H 2S浓度和还原性气体CO浓度均大于预设的还原性气体H 2S浓度和预设的还原性气体CO浓度时,增大所述一个燃烧器3的进风量,减少所有燃烧器3中除所述一个燃烧器3之外的其他燃烧器3的进风量;
D5:当所述水冷壁还原性气体在线监测装置测量得到一个燃尽风4的燃烧风区域内的还原性气体H 2S浓度大于第三预设浓度阈值,且所述水冷壁还原性气体在线监测装置测量得到一个燃尽风4的燃烧风区域内的还原性气体CO浓度大于第四预设浓度阈值时,增大所述一个燃尽风4的进风量,减少所有燃尽风4中除所述一个燃尽风4之外的其他燃尽风进风量。
在一些具体实施例中,上述一次风量、二次风量、层二次风量以及单只燃烧器3进风量、燃尽风4进风量的精准测量系统的建立,依靠加装的侧墙水冷壁还原性气体在线监测装置,实时了解侧墙还原性气体的变化,对一次风煤比、总风量、层二次风量和单只燃烧器3、燃尽风4的调整,如发现所有层高温腐蚀还原性气体浓厚或高温腐蚀速率较快,即炉内整体处于缺氧状态,可考虑增大总二次风量;如发现某层高温腐蚀气体浓厚或高温腐蚀速率较快,可考虑减少其他层二次风量、增大该层二次风量;如发现某层局部区域高温腐蚀气体浓厚或高温腐蚀速率较快,可考虑加大靠侧墙燃烧器的风量,减少同层其余燃烧器风量并结合一次风煤比的调整,降低侧墙水冷壁还原性气体水平,进而缓解炉内侧墙水冷壁高温腐蚀。
在本公开实施例当中,基于在线精准测量防治水冷壁腐蚀的方法还包括H1-H6。
H1:根据所述一次风道5的布置测量得到通过所述一次风道5的一次风温度和一次风风速,并通过所述一次风温度和所述一次风风速计算得到所述一次风道5的当前进风量;
H2:根据所述热二次风道6的布置测量得到通过所述热二次风道6的总二次风温度和总二次风风速,并通过所述总二次风温度和所述总二次风风速计算得到所述热二次风道6的当前进风量;
H3:根据所述层二次风道7的布置测量得到通过所述层二次风道7的层二次风温度和层二次风风速,并通过所述层二次风温度和所述层二次风风速计算得到所述层二次风道的当前进风量;
H4:根据所述一次风道5建立一次风道模型并通过所述一次风道模型进行模拟计算,得到所述一次风道5的一次风模拟温度和一次风道5的一次风模拟风速,计算所述一次风模拟温度与所述一次风温度的第一温度偏差值以及所述一次风模拟风速与所述一次风风速的第一速度偏差值,当所述第一温度偏差值大于预设的第一温度偏差值或所述第一速度偏 差值大于预设的第一速度偏差值时,对一次风道5进行结构优化。
在一些具体实施例中,采取与现场风道尺寸1:1的比例建模、划分网格、模拟计算,数值模拟结果表明,测试截面处的速度场相对标准偏差为30.0%,温度场相对标准偏差为10.0%(相对标准偏差越大,表明流场分布的越不均匀,反之亦然),风量不具备精准测量的外部流场环境,即需要对对一次风道5进行结构优化。
其中,相对标准偏差计算公式如下:
Figure PCTCN2022140496-appb-000001
Figure PCTCN2022140496-appb-000002
Figure PCTCN2022140496-appb-000003
式中:
Xi——测试截面处各点温度值或速度值;
X——测试截面处温度或速度的平均值;
δ——温度或速度分布标准偏差;
CV——温度或速度分布相对标准偏差,%
H5:根据所述热二次风道6建立热二次风道模型并通过所述热二次风道模型进行模拟计算,得到所述热二次风道6的总二次风模拟温度和总二次风模拟风速,计算所述总二次风模拟温度与所述总二次风温度的第二温度偏差值以及所述总二次风模拟风速与所述总二次风风速的第二速度偏差值,当所述第二温度偏差值大于预设的第二温度偏差值或所述第二速度偏差值大于预设的第二速度偏差值时,对热二次风道6进行结构优化;
在一些具体实施例中,从总二次风道经过弯头进入到各层二次风道后,由于热二次风道不存在冷风混合的问题,需重点考虑的是测试截面处的速度场分布均匀性问题。采取与现场风道尺寸1:1的比例建模、划分网格、模拟计算。数值模拟结果表明,测试截面处的速度场相对标准偏差为44.0%,风量不具备精准测量的外部流场环境,即需要对热二次风道6进行结构优化。
H6:根据所述层二次风道建立热二次风道模型并通过所述层二次风道模型进行模拟计算,得到所述层二次风道的层二次风模拟温度和层二次风模拟风速,计算所述层二次风模 拟温度与所述层二次风温度的第三温度偏差值以及所述层二次风模拟风速与所述层二次风风速的第三速度偏差值,当所述第三温度偏差值大于预设的第三温度偏差值或所述第三速度偏差值大于预设的第三速度偏差值时,对层二次风道7进行结构优化。
在一些具体实施例中,总二次风道经过第二弯头602和第三弯头702弯头进入到各层二次风道7后,由于第三弯头702的影响,气流来不及混合均匀就进入到第三压力测试截面701,且受下游变径的影响,该处的气流分布均匀性极差。采取与现场风道尺寸1:1的比例建模、划分网格、模拟计算。数值模拟结果表明,部分第三压力测试截面701处的速度场相对标准偏差达到了124%,风量不具备精准测量的外部流场环境。
需要注意的是,速度场标准偏差为20%,温度场相对偏差为5%,当测量得到的速度场标准偏差大于20%,温度场相对偏差大于5%,风量不具备精准测量的外部流场环境,即需要对对应的风道进行结构优化。
综上所述,本公开提供了一种基于在线精准测量防治水冷壁腐蚀的方法,包括:对一次风道、热二次风道以及层二次风道进行结构优化;在锅炉炉膛侧墙加装多个水冷壁还原性气体在线监测装置;在燃烧器和燃尽风进风口设置风量在线测量装置;根据所述多个水冷壁还原性气体在线监测装置测量得到的锅炉内还原性气体H 2S浓度和还原性气体CO浓度对热二次风道进风量、层二次风道进风量、燃烧器进风量和燃尽风进风量进行调配。通过本公开的方法解决目前缓解炉内水冷壁高温腐蚀方法的不足的问题,拟采取在线监测系统的建立并结合精准测量,实现了对水冷壁高温腐蚀的精准防治。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本申请的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
流程图中或在此以其他方式描述的任何过程或方法描述可以被理解为,表示包括一个或更多个用于实现定制逻辑功能或过程的步骤的可执行指令的代码的模块、片段或部分,并且本申请的优选实施方式的范围包括另外的实现,其中可以不按所示出或讨论的顺序,包括根据所涉及的功能按基本同时的方式或按相反的顺序,来执行功能,这应被本申请的实施例所属技术领域的技术人员所理解。
尽管上面已经示出和描述了本申请的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本申请的限制,本领域的普通技术人员在本申请的范围内可以对上述实施例 进行变化、修改、替换和变型。

Claims (10)

  1. 一种基于在线精准测量防治水冷壁腐蚀的方法,其特征在于,所述方法包括:
    对一次风道、热二次风道以及层二次风道进行结构优化;
    在锅炉炉膛侧墙加装多个水冷壁还原性气体在线监测装置;
    在燃烧器和燃尽风进风口设置风量在线测量装置;
    根据所述多个水冷壁还原性气体在线监测装置测量得到的锅炉内还原性气体H 2S浓度和还原性气体CO浓度对热二次风道进风量、层二次风道进风量、燃烧器进风量和燃尽风进风量进行调配。
  2. 如权利要求1所述的方法,其特征在于,所述对一次风道、热二次风道以及层二次风道进行结构优化,包括:
    对所述一次风道的冷风道、所述一次风道的热风道以及所述冷风道与所述热风道的混合口处进行结构优化;
    在所述热二次风道的多个第二弯头处设置导流装置;
    在所述层二次风道的多个第三弯头处设置导流装置和均布格栅。
  3. 如权利要求2所述的方法,其特征在于,所述对所述一次风道的冷风道、所述一次风道的热风道以及所述冷风道与所述热风道的混合口处进行结构优化,包括:
    将所述冷风道的出风口处设置为扩口结构;
    将所述冷风道与所述热风道的混合口设置在所述热风道的水平段内;
    在所述冷风道与所述热风道的混合口处设置冷风风箱;
    在所述热风道的第一弯头处设置导流装置。
  4. 如权利要求3所述的方法,其特征在于,所述在所述冷风道与所述热风道的混合口处设置冷风风箱,包括:
    将所述冷风风箱设置在所述热风道的水平段内,其中所述冷风风箱在高度方向贯穿所述热风道;
    将所述冷风道的出风口的扩口结构与所述冷风风箱的进风口连接,所述冷风风箱在将进入从所述冷风道进入所述热风道的气流均分为多股。
  5. 如权利要求2至4中任一项所述的方法,其特征在于,所述导流装置包括多个导流板。
  6. 如权利要求1至5中任一项所述的方法,其特征在于,所述在锅炉炉膛侧墙加装多个水冷壁还原性气体在线监测装置,包括:
    确定锅炉炉膛内的腐蚀度;
    根据所述锅炉炉膛内的腐蚀度将锅炉炉膛分为第一区域和第二区域,其中,所述第一区域的腐蚀度大于所述第二区域的腐蚀度;
    在所述第一区域安装N个水冷壁还原性气体在线监测装置,在所述第二区域内安装M个水冷壁还原性气体在线监测装置,其中,N>M。
  7. 如权利要求1至6中任一项所述的方法,其特征在于,所述风量在线测量装置包括环形风道、二次风环形风道入口、二次风环形风道出口、第一静电传感器和第二静电传感器;
    所述二次风环形风道入口是所述环形风道的入口、所述二次风环形风道出口是所述环形风道的出口;
    所述第一静电传感器和所述第二静电传感器,沿由环形风道的入口至环形风道的出口的方向设置于二次风环形风道入口的内部,用于测量通过环形风道二次风中携带的粉尘,并通过所述第一静电传感器和所述第二静电传感器测量出二次风中携带的粉尘通过第一静电传感器和所述第二静电传感器的时间差,进而测算出二次风风速,即测算出燃烧器进风量和燃尽风进风量;
    其中,所述第一静电传感器和第二静电传感器为环形结构,用于测量通过整个风环形风道的二次风的中携带粉尘。
  8. 如权利要求1至7中任一项所述的方法,其特征在于,所述方法还包括:
    利用风量在线测量装置测量得到燃烧器进风量和燃尽风进风量;
    利用风量在线测量装置测量得到燃烧器进风量和燃尽风进风量包括如下步骤:
    收集到二次风环形风道入口和二次风环形风道出口中携带的粉尘;
    测量得到携带粉尘的二次风通过第一静电传感器的时间K1,测量得到携带粉尘的二次风通过第二静电传感器的时间K2;
    对携带粉尘的二次风通过第二静电传感器的时间K2与携带粉尘的二次风通过第一静电传感器的时间K1进行做差处理,得到携带粉尘的二次风通过第一静电传感器和第二静电传感器的时间K2的时间差K3;
    通过时间差K3得到燃烧器进风量和燃尽风进风量。
  9. 如权利要求1至8中任一项所述的方法,其特征在于,所述根据所述多个水冷壁还原性气体在线监测装置测量得到的锅炉内还原性气体H 2S浓度和还原性气体CO浓度对热二次风道进风量、层二次风道进风量、燃烧器进风量和燃尽风进风量进行调配,包括:
    利用所述水冷壁还原性气体在线监测装置测量得到锅炉内的还原性气体H 2S浓度和还原性气体CO浓度;
    基于所述多个水冷壁还原性气体在线监测装置测量得到锅炉内的还原性气体H 2S浓度 均大于第一预设浓度阈值,且所述多个水冷壁还原性气体在线监测装置测量得到锅炉内的还原性气体CO浓度均大于第二预设浓度阈值,则增大所述热二次风道进风量;
    基于所述水冷壁还原性气体在线监测装置测量得到所述层二次风道中的其中一层风道的还原性气体H 2S浓度和还原性气体CO浓度均大于预设的还原性气体H 2S浓度和预设的还原性气体CO浓度,则增大所述其中一层风道进风量;
    基于所述水冷壁还原性气体在线监测装置测量得到一个燃烧器的燃烧器区域内的还原性气体H 2S浓度和还原性气体CO浓度均大于预设的还原性气体H 2S浓度和预设的还原性气体CO浓度,增大所述一个燃烧器的进风量,减少所有燃烧器中除所述一个燃烧器之外的其他燃烧器的进风量;
    基于所述水冷壁还原性气体在线监测装置测量得到一个燃尽风的燃烧风区域内的还原性气体H 2S浓度大于第三预设浓度阈值,且所述水冷壁还原性气体在线监测装置测量得到一个燃尽风的燃烧风区域内的还原性气体CO浓度大于第四预设浓度阈值,增大所述一个燃尽风的进风量,减少所有燃尽风中除所述一个燃尽风之外的其他燃尽风进风量。
  10. 如权利要求1至9中任一项所述的方法,其特征在于,所述方法还包括:
    根据所述一次风道的布置测量得到通过所述一次风道的一次风温度和一次风风速,并通过所述一次风温度和所述一次风风速计算得到所述一次风道的当前进风量;
    根据所述热二次风道的布置测量得到通过所述热二次风道的总二次风温度和总二次风风速,并通过所述总二次风温度和所述总二次风风速计算得到所述热二次风道的当前进风量;
    根据所述层二次风道的布置测量得到通过所述层二次风道的层二次风温度和层二次风风速,并通过所述层二次风温度和所述层二次风风速计算得到所述层二次风道的当前进风量;
    根据所述一次风道建立一次风道模型并通过所述一次风道模型进行模拟计算,得到所述一次风道的一次风模拟温度和一次风道的一次风模拟风速,计算所述一次风模拟温度与所述一次风温度的第一温度偏差值以及所述一次风模拟风速与所述一次风风速的第一速度偏差值,基于所述第一温度偏差值大于预设的第一温度偏差值或所述第一速度偏差值大于预设的第一速度偏差值,对一次风道进行结构优化;
    根据所述热二次风道建立热二次风道模型并通过所述热二次风道模型进行模拟计算,得到所述热二次风道的总二次风模拟温度和总二次风模拟风速,计算所述总二次风模拟温度与所述总二次风温度的第二温度偏差值以及所述总二次风模拟风速与所述总二次风风速的第二速度偏差值,基于所述第二温度偏差值大于预设的第二温度偏差值或所述第二速度偏差值大于预设的第二速度偏差值,对热二次风道进行结构优化;
    根据所述层二次风道建立热二次风道模型并通过所述层二次风道模型进行模拟计算,得到所述层二次风道的层二次风模拟温度和层二次风模拟风速,计算所述层二次风模拟温度与所述层二次风温度的第三温度偏差值以及所述层二次风模拟风速与所述层二次风风速的第三速度偏差值,基于所述第三温度偏差值大于预设的第三温度偏差值或所述第三速度偏差值大于预设的第三速度偏差值,对层二次风道进行结构优化。
PCT/CN2022/140496 2022-06-22 2022-12-20 基于在线精准测量防治水冷壁腐蚀的方法 WO2023246029A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210711268.0A CN115076676B (zh) 2022-06-22 2022-06-22 一种基于在线精准测量防治水冷壁腐蚀的方法
CN202210711268.0 2022-06-22

Publications (1)

Publication Number Publication Date
WO2023246029A1 true WO2023246029A1 (zh) 2023-12-28

Family

ID=83252514

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/140496 WO2023246029A1 (zh) 2022-06-22 2022-12-20 基于在线精准测量防治水冷壁腐蚀的方法

Country Status (2)

Country Link
CN (1) CN115076676B (zh)
WO (1) WO2023246029A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113983489B (zh) * 2021-10-09 2024-01-19 苏州西热节能环保技术有限公司 一种用于对冲燃烧锅炉主动防腐的二次风配风方法
CN115076676B (zh) * 2022-06-22 2023-09-22 苏州西热节能环保技术有限公司 一种基于在线精准测量防治水冷壁腐蚀的方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04222315A (ja) * 1990-03-14 1992-08-12 Babcock & Wilcox Co:The 微粉炭流を監視しそして制御する装置
JPH05280735A (ja) * 1992-03-30 1993-10-26 Ubukata Seisakusho:Kk 風量計及びそれを用いた装置
CN106678783A (zh) * 2017-02-24 2017-05-17 国电科学技术研究院 一种防止水冷壁高温腐蚀的燃烧优化系统及调整方法
CN107764888A (zh) * 2017-09-05 2018-03-06 华北电力大学 一种基于静电法的火电厂燃煤煤质在线辨识方法
CN111256110A (zh) * 2020-02-20 2020-06-09 苏州西热节能环保技术有限公司 一种对冲燃煤锅炉侧墙水冷壁高温腐蚀防治方法
CN112797399A (zh) * 2021-02-01 2021-05-14 西安西热锅炉环保工程有限公司 一种适用于对冲燃烧锅炉防高温腐蚀的燃烧系统及方法
CN113983489A (zh) * 2021-10-09 2022-01-28 苏州西热节能环保技术有限公司 一种用于对冲燃烧锅炉主动防腐的二次风配风方法
CN216203479U (zh) * 2021-03-29 2022-04-05 苏州西热节能环保技术有限公司 一种百万双切圆锅炉及锅炉风道均匀配风装置
CN115076676A (zh) * 2022-06-22 2022-09-20 苏州西热节能环保技术有限公司 一种基于在线精准测量防治水冷壁腐蚀的方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04222315A (ja) * 1990-03-14 1992-08-12 Babcock & Wilcox Co:The 微粉炭流を監視しそして制御する装置
JPH05280735A (ja) * 1992-03-30 1993-10-26 Ubukata Seisakusho:Kk 風量計及びそれを用いた装置
CN106678783A (zh) * 2017-02-24 2017-05-17 国电科学技术研究院 一种防止水冷壁高温腐蚀的燃烧优化系统及调整方法
CN107764888A (zh) * 2017-09-05 2018-03-06 华北电力大学 一种基于静电法的火电厂燃煤煤质在线辨识方法
CN111256110A (zh) * 2020-02-20 2020-06-09 苏州西热节能环保技术有限公司 一种对冲燃煤锅炉侧墙水冷壁高温腐蚀防治方法
CN112797399A (zh) * 2021-02-01 2021-05-14 西安西热锅炉环保工程有限公司 一种适用于对冲燃烧锅炉防高温腐蚀的燃烧系统及方法
CN216203479U (zh) * 2021-03-29 2022-04-05 苏州西热节能环保技术有限公司 一种百万双切圆锅炉及锅炉风道均匀配风装置
CN113983489A (zh) * 2021-10-09 2022-01-28 苏州西热节能环保技术有限公司 一种用于对冲燃烧锅炉主动防腐的二次风配风方法
CN115076676A (zh) * 2022-06-22 2022-09-20 苏州西热节能环保技术有限公司 一种基于在线精准测量防治水冷壁腐蚀的方法

Also Published As

Publication number Publication date
CN115076676B (zh) 2023-09-22
CN115076676A (zh) 2022-09-20

Similar Documents

Publication Publication Date Title
WO2023246029A1 (zh) 基于在线精准测量防治水冷壁腐蚀的方法
JP5490924B2 (ja) 固体燃料バーナおよび前記バーナを用いる燃焼装置
CN203980331U (zh) 防止“w”炉四角严重结焦的防焦风系统
CN103968371A (zh) 电力燃烧锅炉及基于数值模拟技术的分离燃尽风调节方法
CN103955599A (zh) 锅炉改造后不同周界风量下燃烧特性的获取方法
CN102635871B (zh) 用于解决锅炉对流受热面沾污的方法及装置
CN105090949B (zh) 一种使旋流燃烧器二次风管进风量均匀的方法及测量装置
CN112097235B (zh) 一种锅炉低负荷运行时水冷壁壁温控制方法
CN212029567U (zh) 掺烧低灰熔点煤锅炉防结渣和防结焦系统
CN203810390U (zh) 一种用于煤粉锅炉的燃尽风与二次风调节装置
CN105509035B (zh) 一种确定对冲燃烧进风量的方法、装置及自动控制系统
CN107525067A (zh) 一种防止水冷壁结渣的中心给粉旋流煤粉燃烧装置
WO2022188375A1 (zh) 基于水冷壁高温腐蚀防治的煤粉锅炉一体化综合调整方法
CN106051759A (zh) 多级分离中心回流式轴向旋流燃烧器
CN207006125U (zh) 一种防积灰的贴壁风风箱
CN206037020U (zh) Cfb锅炉气膜防磨水冷壁结构
CN113983489A (zh) 一种用于对冲燃烧锅炉主动防腐的二次风配风方法
CN111256109B (zh) 一种缓解对冲燃煤锅炉管壁温度偏差的方法
CN204153768U (zh) 四角切圆锅炉及其炉膛
CN111457418A (zh) 一种基于燃尽风减轻双切圆锅炉炉膛出口烟气速度偏差的方法
CN113776047A (zh) 燃烧锅炉防止水冷壁高温腐蚀装置及锅炉防腐蚀方法
CN103148501B (zh) 一种燃烧生物质成型燃料锅炉的二次风结构
CN115059932A (zh) 一种针对改善对冲燃煤锅炉燃烧状态的方法
CN205897131U (zh) 一种旋流燃烧器空气系数在线监测和实时优化调整装置
Storm Optimizing combustion in boilers with low-NOx burners

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22947764

Country of ref document: EP

Kind code of ref document: A1