WO2023245907A1 - 抗反射激光器及其制备方法 - Google Patents

抗反射激光器及其制备方法 Download PDF

Info

Publication number
WO2023245907A1
WO2023245907A1 PCT/CN2022/122614 CN2022122614W WO2023245907A1 WO 2023245907 A1 WO2023245907 A1 WO 2023245907A1 CN 2022122614 W CN2022122614 W CN 2022122614W WO 2023245907 A1 WO2023245907 A1 WO 2023245907A1
Authority
WO
WIPO (PCT)
Prior art keywords
reflection
groove
waveguide structure
laser
cavity surface
Prior art date
Application number
PCT/CN2022/122614
Other languages
English (en)
French (fr)
Inventor
杨国文
唐松
惠利省
Original Assignee
度亘激光技术(苏州)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 度亘激光技术(苏州)有限公司 filed Critical 度亘激光技术(苏州)有限公司
Publication of WO2023245907A1 publication Critical patent/WO2023245907A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/2004Confining in the direction perpendicular to the layer structure
    • H01S5/2018Optical confinement, e.g. absorbing-, reflecting- or waveguide-layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S2304/00Special growth methods for semiconductor lasers

Definitions

  • the present disclosure relates to the technical field of anti-reflection lasers, and in particular, to an anti-reflection laser and a preparation method thereof.
  • Anti-reflection lasers are widely used in industrial manufacturing, lidar, sensing, communications, aerospace and other fields. Due to the advantage of the edge-emitting laser cavity being easy to extend, it is more suitable for the manufacture of high-power lasers.
  • high-power semiconductor lasers generally adopt an edge-emitting structure, that is, the light exit surface is the end face of the waveguide, parallel to the direction of the semiconductor layer.
  • the cavity surface of an edge-emitting laser is generally the cleavage surface of a semiconductor crystal. Since the cleavage surface of the crystal is very flat and smooth and is a good reflective surface, the two parallel cleavage end surfaces of the laser naturally form the resonant cavity of the edge-emitting laser. surface (ie, the light exit cavity surface and the reflection cavity surface).
  • surface ie, the light exit cavity surface and the reflection cavity surface.
  • the purpose of the present disclosure includes, for example, providing an anti-reflection laser and a preparation method thereof, which can at least solve the problem that the back-reflected light generated when the laser is coupled to an optical fiber affects the performance of the laser.
  • an anti-reflection laser including: a substrate, a semiconductor layer and a conductive functional layer; the semiconductor layer is formed on the substrate; the semiconductor layer includes: A plurality of extended and intermittently arranged ridge waveguide structures, and a transition waveguide structure connecting adjacent ridge waveguide structures, the size of the transition waveguide structure along the second direction is larger than the size of the ridge waveguide structure along the second direction; wherein , the first direction is the cavity length direction of the anti-reflection laser, and the second direction is the cavity width direction of the anti-reflection laser;
  • the transition waveguide structure includes an anti-reflection groove, and the anti-reflection groove is disposed close to the light exit cavity surface of the anti-reflection laser;
  • the anti-reflection groove includes two anti-reflection groove walls, and the two anti-reflection grooves
  • the wall is at a preset angle and has an opening facing the reflective cavity surface of the anti-reflection laser, for reflecting the back-reflected light incident from the light exit cavity surface;
  • the conductive functional layer is located on a side of the semiconductor layer away from the substrate and covers the anti-reflection groove.
  • the size of the anti-reflection groove along the second direction may be larger than the size of the ridge waveguide structure along the second direction.
  • the anti-reflection groove may include two interconnected sub-grooves, the two sub-grooves are symmetrically arranged with respect to the ridge waveguide structure; the sub-groove is close to the side of the light exit cavity surface
  • the groove wall is the anti-reflective groove wall.
  • the orthographic projection profile of the sub-groove on the substrate may be a parallelogram, a triangle or a trapezoid.
  • the preset angle between the two anti-reflection groove walls may be greater than 80 degrees and less than 160 degrees.
  • the semiconductor layer includes a plurality of transition waveguide structures, adjacent transition waveguide structures are separated by the ridge waveguide structure, and each transition waveguide structure includes one of the anti-reflection grooves. .
  • the orthographic projection area of the anti-reflection groove in each transition waveguide structure on the substrate increases sequentially from a direction close to the light exit cavity surface to a direction away from the light exit cavity surface.
  • the depth of the sub-groove gradually increases along the second direction from a position close to the center line of the ridge waveguide structure to a position away from the center line of the ridge waveguide structure.
  • the semiconductor layer further includes an isolation trench disposed close to the reflective cavity surface; the bottom of the isolation trench extends to the inside of the semiconductor layer, and the isolation trench is covered by the conductive functional layer.
  • the first direction is parallel to the direction in which the light exit cavity surface of the anti-reflection laser points to the reflection cavity surface
  • the second direction is parallel to the light exit cavity surface or the reflection cavity surface. direction.
  • the anti-reflection groove may be disposed between two adjacent ridge waveguide structures to block carrier expansion between the two adjacent ridge waveguide structures.
  • the semiconductor layer includes a first semiconductor cladding layer, a first semiconductor waveguide layer, a quantum well layer, a second semiconductor waveguide layer, a second semiconductor cladding layer and an ohmic contact layer that are sequentially stacked on the substrate. ; And wherein, the ridge waveguide structure and the transition waveguide structure are both obtained by the second semiconductor cladding patterning process and are part of the second semiconductor cladding.
  • the anti-reflective groove isolates the ohmic contact layer and extends downward to the interior of the second semiconductor cladding layer.
  • the conductive functional layer electrically connects the ohmic contact layer with an external device for applying voltage.
  • the plane of the groove bottom of the isolation groove is lower than the plane of the upper surface of the ridge waveguide structure.
  • embodiments of the present disclosure provide a method for preparing an anti-reflection laser, which is used to prepare the anti-reflection laser described in the first aspect, including:
  • a conductive functional layer covering the anti-reflection groove is formed on the semiconductor layer.
  • patterning the semiconductor layer to form a ridge waveguide structure located in the waveguide area and a transition waveguide structure located in the non-waveguide area includes: preparing a non-waveguide area near one end of the light exit cavity surface of the anti-reflection laser.
  • the transition waveguide structure is formed so that the transition waveguide structure is located between the adjacent ridge waveguide structures.
  • the anti-reflection laser and its preparation method provided by the embodiments of the present disclosure are provided by arranging an anti-reflection groove in an area close to the light exit cavity surface and corresponding to the non-waveguide area, and the opening composed of the two anti-reflection groove walls of the anti-reflection groove faces Reflective cavity surface, which can reflect back the back-reflected light incident from the light-emitting cavity surface, enhance the anti-reflection of the waveguide laser, and prevent the back-reflected light generated when the laser is coupled with the optical fiber from interfering with the light field mode transmission inside the laser, thereby The stability of the laser lasing mode is improved.
  • the anti-reflection groove is set between two adjacent ridge waveguide structures, the carrier expansion between the two adjacent ridge waveguide structures is blocked, which plays a role. The effect of electrical isolation thereby reduces the local current density on the cavity surface.
  • Figure 1 is a schematic cross-sectional view along the second direction of an anti-reflection laser provided by an embodiment of the present disclosure
  • Figure 2 is a schematic projection view of a semiconductor layer of an anti-reflection laser provided on a substrate according to an embodiment of the present disclosure
  • Figure 3 is a schematic projection view of a semiconductor layer of another anti-reflection laser provided on a substrate according to an embodiment of the present disclosure
  • Figure 4 is a schematic projection view of a semiconductor layer of another anti-reflection laser provided on a substrate according to an embodiment of the present disclosure
  • Figure 5 is a schematic cross-sectional view of the anti-reflective groove along A-A in Figure 2 provided by an embodiment of the present disclosure
  • Figure 6 is a schematic projection view of the semiconductor layer of another anti-reflection laser provided on the substrate according to an embodiment of the present disclosure
  • Figure 7 is a schematic flow chart of a method for preparing an anti-reflection laser provided by an embodiment of the present disclosure
  • FIG. 8 is a schematic structural diagram corresponding to step S200 in a method for manufacturing an anti-reflection laser provided by an embodiment of the present disclosure.
  • Icon 100-substrate; 101-reflective cavity surface; 102-light-emitting cavity surface;
  • 200-semiconductor layer 201-non-waveguide area; 202-waveguide area; 200a-ridge waveguide structure; 200b-ridge waveguide groove; 200c-transition waveguide structure; 200d-anti-reflection groove; 200e-isolation groove; 210-No.
  • a semiconductor cladding layer 220-first semiconductor waveguide layer; 230-quantum well layer; 240-second semiconductor waveguide layer; 250-second semiconductor cladding layer; 260-ohmic contact layer; 2001-sub-groove; 2011-anti-resistance reflective trough walls;
  • 300-conductive functional layer 310-dielectric layer; 320-metal layer.
  • an anti-reflection laser including: a substrate 100 and a semiconductor layer 200 and a conductive functional layer 300 sequentially stacked on the substrate 100 .
  • the semiconductor layer 200 includes at least one non-waveguide region 201 and a plurality of waveguide regions 202 .
  • Each non-waveguide area 201 is arranged between two adjacent waveguide areas 202 (the non-waveguide area 201 is arranged close to the light exit cavity surface 102), and the plurality of waveguide areas 202 are distributed intermittently along the first direction.
  • the first direction is the cavity length direction of the anti-reflection laser, that is, the direction parallel to the light exit cavity surface 102 (AR cavity surface) of the anti-reflection laser and pointing to the reflection cavity surface 101 (HR cavity surface).
  • the semiconductor layer 200 is formed on the substrate 100 and covers the entire surface of the substrate 100, and is mainly used for transmission of light field modes.
  • the semiconductor layer 200 includes a plurality of ridge waveguide structures 200a extending along the first direction and arranged intermittently.
  • the ridge waveguide structures 200a are located in the waveguide region 202, and both sides of the ridge waveguide structure 200a are ridge waveguide trenches 200b.
  • a transition waveguide structure 200c is provided between adjacent ridge waveguide structures 200a, and the transition waveguide structure 200c is located in the non-waveguide area 201.
  • the size of the transition waveguide structure 200c along the second direction is larger than the size of the ridge waveguide structure 200a along the second direction.
  • the second direction is the cavity width direction of the anti-reflection laser, that is, the direction parallel to the light exit cavity surface 102 or the reflection cavity surface 101.
  • the transition waveguide structure 200c includes an anti-reflective groove 200d.
  • the anti-reflective groove 200d includes two anti-reflective groove walls 2011.
  • the two anti-reflective groove walls 2011 form a preset angle ⁇
  • the two anti-reflective groove walls 2011 form a preset angle ⁇ .
  • the opening formed by the groove wall 2011 faces the reflective cavity surface 101 (or faces away from the light exit cavity surface 102), so that the back-reflected light incident from the light exit cavity surface 102 can be reflected back to avoid interference with the light field mode transmission inside the laser.
  • the semiconductor layer 200 includes a first semiconductor cladding layer 210, a first semiconductor waveguide layer 220, a quantum well layer 230, a second semiconductor waveguide layer 240, a second semiconductor cladding layer 250 which are sequentially stacked on the substrate 100.
  • Ohmic contact layer 260 the ridge waveguide structure 200a and the transition waveguide structure 200c are both obtained by the second semiconductor cladding 250 patterning process and are part of the second semiconductor cladding 250.
  • the anti-reflective groove 200d isolates the ohmic contact layer and extends downward to the interior of the second semiconductor cladding layer 250, and may further extend to the second semiconductor waveguide layer 240.
  • the conductive functional layer 300 may be located on a side of the semiconductor layer 200 (second semiconductor cladding layer 250) away from the substrate 100 and cover the anti-reflection groove 200d.
  • the conductive functional layer 300 can electrically connect the ohmic contact layer 260 to an external device that applies a voltage.
  • the conductive functional layer 300 includes a dielectric layer 310 and a metal layer 320 arranged sequentially on the ohmic contact layer 260.
  • the dielectric layer 310 is filled in the anti-reflection groove 200d, that is, the transmission on both sides of the interface of the anti-reflection groove wall 2011
  • the media are respectively the semiconductor layer 200 and the dielectric layer 310.
  • the ridge waveguide groove 200b in this embodiment may extend to the edge of the anti-reflection laser along the second direction (as shown in FIG. 2 ).
  • the transition waveguide structure 200c may extend to the edge of the anti-reflection laser along the second direction, or may not extend to the edge of the anti-reflection laser, as long as it can be larger than the size of the ridge waveguide structure 200a along the second direction (as shown in the figure shown in 2).
  • the anti-reflection laser provided in this embodiment is provided by setting an anti-reflection groove 200d in the area close to the light exit cavity surface 102 and corresponding to the non-waveguide area 201, and the opening composed of the two anti-reflection groove walls 2011 of the anti-reflection groove 200d faces
  • the reflective cavity surface 101 can reflect the back-reflected light incident from the light-emitting cavity surface 102 back, enhance the anti-reflection of the waveguide laser, and prevent the back-reflected light generated when the laser is coupled with the optical fiber from interfering with the light field mode transmission inside the laser.
  • the anti-reflection groove 200d is provided between two adjacent ridge waveguide structures 200a, it blocks the current carrying between the two adjacent ridge waveguide structures 200a.
  • the sub-expansion plays the role of electrical isolation, thereby reducing the local current density on the cavity surface.
  • the size of the anti-reflection groove 200d along the second direction is larger than the size of the ridge waveguide structure 200a along the second direction, that is, the anti-reflection groove 200d can extend along the second direction.
  • the larger the size the larger the area for reflecting back-reflected light, so that more back-reflected light can be reflected, further improving the reliability of the laser.
  • this embodiment considers the anti-reflection groove 200d as two interconnected sub-grooves 2001 , and the two sub-grooves 2001 may be symmetrical about the ridge waveguide structure 200 a settings to improve light uniformity.
  • Each sub-groove 2001 includes two opposite groove walls, and the groove walls on the side of the two sub-grooves 2001 close to the light exit cavity surface 102 are both anti-reflection groove walls 2011.
  • the two sub-grooves 2001 are symmetrically arranged with respect to the center line of the ridge waveguide structure 200a along the first direction, and the two sub-grooves 2001 are connected to each other without an obvious boundary.
  • the two sub-grooves 2001 may not be completely symmetrical with respect to the centerline of the ridge waveguide structure 200a along the first direction, allowing a slight difference in the orthographic projection of the two sub-grooves 2001 on the substrate, as long as it does not affect Anti-reflective effect is sufficient.
  • the orthographic outline of the sub-groove 2001 on the substrate 100 may be a parallelogram, a triangle or a trapezoid.
  • the orthographic projection outline of the sub-groove 2001 on the substrate 100 is a parallelogram
  • the orthographic projection of the entire anti-reflective groove 200d on the substrate 100 is similar to the shape of an airfoil
  • the orthographic projection profile on the substrate 100 is a triangle
  • the orthographic projection of the entire anti-reflective groove 200d on the substrate 100 is similar to a rhombus.
  • the sub-grooves 2001 in this embodiment can all adopt an inductively coupled plasma (ICP) etching process, which can form a flat, smooth and vertical surface, and have a more obvious reflection effect on back-reflected light.
  • ICP inductively coupled plasma
  • the anti-reflection groove 200d can be regarded as two interconnected sub-grooves 2001, which facilitates the processing of individual grooves, and the sub-grooves 2001 can adopt different profiles. structure, as long as the groove wall close to the light exit cavity surface 102 can reflect the back-reflected light, the adaptability range is wider.
  • the included angle of the anti-reflection groove wall 2011 needs to be limited. Assuming that the two anti-reflection groove walls 2011 are completely symmetrical and the preset angle between them is ⁇ , then the angle between one of the anti-reflection groove walls 2011 and the center line of the ridge waveguide structure 200a is ⁇ /2, and the back-reflected light The incident angle to the anti-reflection groove wall 2011 is 90°- ⁇ /2.
  • the critical angle of total reflection at the interface of the anti-reflection groove wall 2011 is c
  • the refractive index of the ridge waveguide structure 200a where the reflected light is located is n
  • the anti-reflection groove The refractive index of the medium (dielectric layer 310) is n', and n' ⁇ n, then (90°- ⁇ /2) needs to be greater than c, so as to ensure total reflection.
  • the preset included angle is too small, it will affect the actual area of the anti-reflection groove wall 2011 that can be used to reflect the back-reflected light. If the preset included angle is too large, the back-reflected light will be directly transmitted, thereby failing to achieve the reflection effect.
  • the preset angle ⁇ between the two anti-reflection groove walls may be greater than 80 degrees and less than 160 degrees, for example, ⁇ is 120 degrees.
  • the semiconductor layer 200 in this embodiment may include multiple transition waveguide structures 200c, and each transition waveguide structure 200c is provided with an anti-reflection recess. Groove 200d.
  • adjacent transition waveguide structures 200c are separated by ridge waveguide structures 200a, it is equivalent to a plurality of anti-reflection grooves 200d spaced apart along the first direction, and the plurality of anti-reflection grooves 200d are spaced apart along the first direction.
  • the grooves 200d are all disposed at one end close to the light exit cavity surface 102.
  • multiple corresponding non-waveguide areas 201 need to be reserved.
  • Multiple waveguide areas 202 can be separated between the multiple non-waveguide areas 201, and only in the corresponding The semiconductor layer 200 in the waveguide region 202 may form a ridge waveguide structure 200a.
  • the orthographic projection area of the plurality of anti-reflection grooves 200d on the substrate 100 increases sequentially from the direction close to the light exit cavity surface 102 to the direction away from the light exit cavity surface 102.
  • This structural design can It ensures the anti-reflective effect while saving process costs.
  • the depth of the sub-groove 2001 may gradually increase along the second direction from a position close to the center line of the ridge waveguide structure 200 a to a position away from the center line of the ridge waveguide structure 200 a , that is, the depth of the sub-groove 2001 may gradually increase along the second direction.
  • the groove depth of the sub-groove 2001 close to the centerline of the ridge waveguide structure 200a is shallower, and the groove depth of the sub-groove 2001 far away from the centerline of the ridge waveguide structure 200a is deeper.
  • the anti-reflection groove formed in this design has a larger area and can reflect more Reflect light to better achieve anti-reflection and electrical isolation.
  • center lines of all ridge waveguide structures 200a coincide with each other and can be regarded as the same straight line extending along the first direction.
  • the semiconductor layer 200 of the anti-reflection laser in this embodiment may also include an isolation groove 200e in addition to the anti-reflection groove 200d.
  • the isolation trench 200e is disposed close to the reflective cavity surface 101 (HR cavity surface), and the isolation trench 200e is located in the non-waveguide area 201. Since the bottom of the isolation trench 200e specifically extends to the second semiconductor cladding layer 250 of the semiconductor layer 200, the isolation trench 200e can also be covered by the conductive functional layer 300.
  • the isolation groove 200e acts as an electrical isolation between adjacent waveguide regions 202, blocking the transmission of carriers, which is beneficial to reducing COMD, thereby increasing the power of the laser.
  • the isolation trench 200e can also have a plane where the bottom of the isolation trench 200e is located lower than the upper surface of the ridge waveguide structure 200a (the upper surface of the second semiconductor cladding layer 250). Flat surface, which can further improve the isolation effect.
  • the anti-reflection laser provided in this embodiment is provided with an anti-reflection groove 200d at one end close to the light exit cavity surface 102, and at the same time, an isolation groove 200e is provided at one end close to the reflection cavity surface 101 and corresponding to the non-waveguide area 201, which can further improve the performance of the anti-reflection laser. Anti-reflection and electrical isolation effects, thereby improving laser performance.
  • the size of the isolation groove 200e in this embodiment along the second direction may be larger than the size of the ridge waveguide structure 200a along the second direction (ie, the width of the ridge waveguide structure 200a).
  • the isolation trench 200e is formed in the non-waveguide area 201, it is not limited by the width of the ridge waveguide structure 200a in the waveguide area 202. In this way, the width of the isolation trench 200e can be made larger than the ridge waveguide structure 200a, thereby reducing etching. The difficulty of the process can also further reduce the local current density in the end area of the laser, thereby improving the performance of the laser.
  • an embodiment of the present disclosure also provides a method for preparing an anti-reflection laser, which is used to prepare the anti-reflection laser in the previous embodiment, including the following steps:
  • a waveguide region and a non-waveguide region are defined in the semiconductor layer for subsequent formation of a ridge waveguide structure and a transition waveguide structure.
  • a transition waveguide structure can be prepared in a non-waveguide area near one end of the light exit cavity surface, and the transition waveguide structure is located between adjacent ridge waveguide structures.
  • anti-reflective grooves are formed in the area where the transition waveguide structure is located.
  • the anti-reflective groove extends downwardly into the interior of the second semiconductor cladding layer.
  • S500 Form a conductive functional layer covering the anti-reflection groove on the semiconductor layer.
  • the method for preparing an anti-reflection laser is to set an anti-reflection groove 200d in an area close to the light exit cavity surface 102 and corresponding to the non-waveguide area 201, and the anti-reflection groove 200d is composed of two anti-reflection groove walls 2011
  • the opening faces the reflective cavity surface 101, so that the back-reflected light incident from the light-emitting cavity surface 102 can be reflected back, thereby enhancing the anti-reflection of the waveguide laser and preventing the back-reflected light generated when the laser is coupled with the optical fiber from affecting the light field mode inside the laser.
  • the transmission causes interference, thereby improving the stability of the laser lasing mode.
  • the anti-reflection groove 200d is provided between two adjacent ridge waveguide structures 200a, it blocks the gap between the two adjacent ridge waveguide structures 200a.
  • the carrier expansion plays the role of electrical isolation, thereby reducing the local current density on the cavity surface.
  • steps, measures, and solutions in the various operations, methods, and processes that have been discussed in this disclosure can be alternated, changed, combined, or deleted. Further, other steps, measures, and solutions in the various operations, methods, and processes that have been discussed in this disclosure may also be alternated, changed, rearranged, decomposed, combined, or deleted. Furthermore, the steps, measures, and solutions in the various operations, methods, and processes disclosed in the present disclosure in the prior art can also be replaced, changed, rearranged, decomposed, combined, or deleted.
  • first and second are used for descriptive purposes only and shall not be understood as indicating or implying relative importance or implicitly indicating the quantity of indicated technical features. Therefore, features defined as “first” and “second” may explicitly or implicitly include one or more of these features. In the description of the present disclosure, “plurality” means two or more unless otherwise specified.
  • connection should be understood in a broad sense.
  • connection or integral connection; it can be directly connected, or indirectly connected through an intermediary, or it can be internal connection between two components.
  • connection or integral connection; it can be directly connected, or indirectly connected through an intermediary, or it can be internal connection between two components.
  • Embodiments of the present disclosure provide an anti-reflection laser and a preparation method thereof, by arranging an anti-reflection groove in an area close to the light exit cavity surface and corresponding to the non-waveguide area, and the anti-reflection groove is composed of two anti-reflection groove walls.
  • the opening faces the reflective cavity surface, so that the back-reflected light incident from the light-emitting cavity surface can be reflected back to enhance the anti-reflection of the waveguide laser and prevent the back-reflected light generated when the laser is coupled with the optical fiber from interfering with the light field mode transmission inside the laser. , thus improving the stability of the laser lasing mode.
  • the anti-reflection groove is set between two adjacent ridge waveguide structures, it blocks the carrier expansion between the two adjacent ridge waveguide structures. It plays the role of electrical isolation, thereby reducing the local current density on the cavity surface.

Landscapes

  • Physics & Mathematics (AREA)
  • Geometry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Semiconductor Lasers (AREA)

Abstract

本公开涉及半导体技术领域,提供了一种抗反射激光器及其制备方法,该抗反射激光器包括:衬底、设置在衬底上的半导体层和导电功能层;通过在靠近出光腔面且对应于非波导区的区域设置抗反射凹槽,且抗反射凹槽的两个抗反射槽壁组成的开口朝向反射腔面,这样可以将经出光腔面射入的背反射光线反射回去,增强波导激光器的抗反射,防止激光器与光纤耦合时产生的背反射光线对激光器内部的光场模式传输造成干扰,从而提高了激光激射模式的稳定性,同时由于抗反射凹槽设置在相邻的两个脊波导结构之间,阻断了相邻的两个脊波导结构之间的载流子扩展,起到了电隔离的作用,从而降低了腔面的局部电流密度。

Description

抗反射激光器及其制备方法
相关申请的交叉引用
本申请要求于2022年6月24日提交中国国家知识产权局的申请号为202210720715.9、名称为“抗反射激光器及其制备方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本公开涉及抗反射激光器技术领域,尤其是涉及一种抗反射激光器及其制备方法。
背景技术
抗反射激光器在工业制造、激光雷达、传感、通讯、航空航天等领域有着广泛的应用。由于边发射激光器腔长易延伸的优势,比较适合大功率激光器的制造,目前半导体大功率激光器一般都采用边发射结构,即出光面为波导的端面,平行于半导体层方向。
边发射激光器的腔面一般为半导体晶体的解理面,由于晶体的解理面非常平整光滑,是很好的反光面,所以激光器的两个平行解理端面自然形成边发射激光器的谐振腔腔面(即出光腔面和反射腔面)。现有的激光器与光纤耦合时,光纤耦合时产生的背反射光线会反射进入半导体激光腔,形成非线性效应,干扰激光器的正常工作,对激光器的性能和可靠性可能产生严重影响。
发明内容
本公开的目的例如包括提供一种抗反射激光器及其制备方法,从而至少能够解决现激光器与光纤耦合时产生的背反射光线会影响激光器性能的问题。
第一个方面,本公开实施例提供了一种抗反射激光器,包括:衬底、半导体层和导电功能层;所述半导体层形成于所述衬底上;所述半导体层包括沿第一方向延伸且间断设置的多个脊波导结构、以及连接相邻所述脊波导结构的过渡波导结构,所述过渡波导结构沿第二方向的尺寸大于所述脊波导结构沿第二方向的尺寸;其中,所述第一方向为所述抗反射激光器的腔长方向,所述第二方向为所述抗反射激光器的腔宽方向;
所述过渡波导结构包括抗反射凹槽,所述抗反射凹槽靠近所述抗反射激光器的出光腔面设置;所述抗反射凹槽包括两个抗反射槽壁,两个所述抗反射槽壁呈预设夹角且开口朝向所述抗反射激光器的反射腔面,用于反射从所述出光腔面射入的背反射光线;
所述导电功能层位于所述半导体层远离所述衬底的一侧,并覆盖所述抗反射凹槽。
可选地,所述抗反射凹槽可以沿第二方向的尺寸大于所述脊波导结构沿第二方向的尺寸。
可选地,所述抗反射凹槽可以包括两个相互连通的子凹槽,两个所述子凹槽关于所述 脊波导结构对称设置;所述子凹槽靠近所述出光腔面一侧的槽壁为所述抗反射槽壁。
可选地,所述子凹槽在所述衬底上的正投影轮廓可以为平行四边形、三角形或者梯形。
可选地,两个所述抗反射槽壁之间的预设夹角可以为大于80度且小于160度。
可选地,所述半导体层包括多个过渡波导结构,相邻的所述过渡波导结构之间被所述脊波导结构隔开,每个所述过渡波导结构均包括一个所述抗反射凹槽。
可选地,各所述过渡波导结构内的所述抗反射凹槽在所述衬底上的正投影面积,由靠近所述出光腔面的方向向远离所述出光腔面的方向依次增加。
可选地,所述子凹槽的深度沿所述第二方向由靠近所述脊波导结构中心线的位置向远离所述脊波导结构中心线的位置逐渐增加。
可选地,所述半导体层还包括靠近所述反射腔面设置的隔离槽;所述隔离槽的槽底延伸至所述半导体层内部,所述隔离槽被所述导电功能层覆盖。
可选地,所述第一方向平行于所述抗反射激光器的所述出光腔面指向所述反射腔面的方向,并且所述第二方向平行于所述出光腔面或者所述反射腔面的方向。
可选地,所述抗反射凹槽可以设置在相邻的两个所述脊波导结构之间,以阻断相邻的两个所述脊波导结构之间的载流子扩展。
可选地,所述半导体层包括依次层叠设置在所述衬底上的第一半导体包层、第一半导体波导层、量子阱层、第二半导体波导层、第二半导体包层以及欧姆接触层;并且其中,所述脊波导结构和所述过渡波导结构均由所述第二半导体包层图形化工艺得到并且属于所述第二半导体包层的一部分。
可选地,所述抗反射凹槽隔断所述欧姆接触层并且向下延伸至所述第二半导体包层的内部。
可选地,所述导电功能层将所述欧姆接触层与外部施加电压的装置进行电连接。
可选地,所述隔离槽的槽底所在的平面低于所述脊波导结构的上表面所在的平面。
第二个方面,本公开实施例提供了一种抗反射激光器的制备方法,用于制备第一个方面所述的抗反射激光器,包括:
提供一衬底;
在所述衬底的一侧制备半导体层;
图形化所述半导体层,以形成位于波导区的脊波导结构和位于非波导区的过渡波导结构;
在所述过渡波导结构所在的区域形成抗反射凹槽;
在所述半导体层上形成覆盖所述抗反射凹槽的导电功能层。
可选地,所述图形化所述半导体层,以形成位于波导区的脊波导结构和位于非波导区 的过渡波导结构包括:在靠近所述抗反射激光器的出光腔面一端的非波导区制备出过渡波导结构,使所述过渡波导结构位于相邻的所述脊波导结构之间。
本公开实施例至少能够实现例如以下技术效果:
本公开实施例提供的抗反射激光器及其制备方法,通过在靠近出光腔面且对应于非波导区的区域设置抗反射凹槽,且抗反射凹槽的两个抗反射槽壁组成的开口朝向反射腔面,这样可以将从出光腔面射入的背反射光线反射回去,增强波导激光器的抗反射,防止激光器与光纤耦合时产生的背反射光线对激光器内部的光场模式传输造成干扰,从而提高了激光激射模式的稳定性,同时由于抗反射凹槽设置在相邻的两个脊波导结构之间,阻断了相邻的两个脊波导结构之间的载流子扩展,起到了电隔离的作用,从而降低了腔面的局部电流密度。
附图说明
为了更清楚地说明本公开具体实施方式或现有技术中的技术方案,下面将对具体实施方式或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本公开的一些实施方式,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本公开实施例提供的一种抗反射激光器沿着第二方向的截面示意图;
图2为本公开实施例提供的一种抗反射激光器的半导体层在衬底上的投影示意图;
图3为本公开实施例提供的另一种抗反射激光器的半导体层在衬底上的投影示意图;
图4为本公开实施例提供的又一种抗反射激光器的半导体层在衬底上的投影示意图;
图5为本公开实施例提供的图2中抗反射凹槽沿A-A的截面示意图;
图6为本公开实施例提供的再一种抗反射激光器的半导体层在衬底上的投影示意图;
图7为本公开实施例提供的一种抗反射激光器的制备方法的流程示意图;
图8为本公开实施例提供的一种抗反射激光器的制备方法中步骤S200对应结构示意图。
图标:100-衬底;101-反射腔面;102-出光腔面;
200-半导体层;201-非波导区;202-波导区;200a-脊波导结构;200b-脊波导沟槽;200c-过渡波导结构;200d-抗反射凹槽;200e-隔离槽;210-第一半导体包层;220-第一半导体波导层;230-量子阱层;240-第二半导体波导层;250-第二半导体包层;260-欧姆接触层;2001-子凹槽;2011-抗反射槽壁;
300-导电功能层;310-介质层;320-金属层。
具体实施方式
下面将结合实施例对本公开的技术方案进行清楚、完整地描述,显然,所描述的实施 例是本公开一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。
本技术领域技术人员可以理解,除非另外定义,这里使用的所有术语(包括技术术语和科学术语),具有与本公开所属领域中的普通技术人员的一般理解相同的意义。还应该理解的是,诸如通用字典中定义的那些术语,应该被理解为具有与现有技术的上下文中的意义一致的意义,并且除非像这里一样被特定定义,否则不会用理想化或过于正式的含义来解释。
本技术领域技术人员可以理解,除非特意声明,这里使用的单数形式“一”、“一个”、“所述”和“该”也可包括复数形式。应该进一步理解的是,本公开的说明书中使用的措辞“包括”是指存在所述特征、整数、步骤、操作、元件和/或组件,但是并不排除存在或添加一个或多个其他特征、整数、步骤、操作、元件、组件和/或它们的组合。这里使用的措辞“和/或”包括一个或更多个相关联的列出项的全部或任一单元和全部组合。
如图1和图2所示,本公开实施例提供了一种抗反射激光器,包括:衬底100以及依次层叠设置在衬底100上的半导体层200和导电功能层300。
在本公开实施例中,半导体层200包括至少一个非波导区201和多个波导区202。每个非波导区201都布置在相邻的两个波导区202之间(非波导区201靠近出光腔面102设置),并且多个波导区202均沿着第一方向呈间断式分布。其中,第一方向为抗反射激光器的腔长方向,即平行于抗反射激光器的出光腔面102(AR腔面)指向反射腔面101(HR腔面)的方向。
半导体层200形成于衬底100上,并且覆盖整个衬底100的表面,主要用于光场模式的传输。半导体层200包括沿第一方向延伸且间断设置的多个脊波导结构200a,脊波导结构200a位于波导区202,脊波导结构200a的两侧为脊波导沟槽200b。相邻的脊波导结构200a之间设有过渡波导结构200c,过渡波导结构200c位于非波导区201。过渡波导结构200c沿第二方向的尺寸大于脊波导结构200a沿第二方向的尺寸,第二方向为抗反射激光器的腔宽方向,即平行于出光腔面102或者反射腔面101的方向。
本实施例中,过渡波导结构200c包括抗反射凹槽200d,抗反射凹槽200d包括两个抗反射槽壁2011,这两个抗反射槽壁2011呈预设夹角α,且两个抗反射槽壁2011形成的开口朝向反射腔面101(或者背向出光腔面102),这样可以将从出光腔面102射入的背反射光线反射回去,避免对激光器内部的光场模式传输造成干扰。
可选地,半导体层200包括依次层叠设置在衬底100上的第一半导体包层210、第一半导体波导层220、量子阱层230、第二半导体波导层240、第二半导体包层250以及欧姆接触层260。其中,脊波导结构200a和过渡波导结构200c均由第二半导体包层250图形化工 艺得到,属于第二半导体包层250的一部分。抗反射凹槽200d隔断欧姆接触层,并且向下延伸至第二半导体包层250的内部,可以进一步延伸到第二半导体波导层240。
对于整个激光器而言,导电功能层300可以位于半导体层200(第二半导体包层250)远离衬底100的一侧,并且覆盖抗反射凹槽200d。导电功能层300可以将欧姆接触层260与外部施加电压的装置进行电连接。
可选地,导电功能层300包括在欧姆接触层260上依次设置的介质层310和金属层320,介质层310填充在抗反射凹槽200d内,即抗反射槽壁2011分界面两侧的传输介质分别为半导体层200和介质层310。
可选地,本实施例中的脊波导沟槽200b可以沿第二方向延伸至抗反射激光器的边沿(如图2所示)。
可选地,过渡波导结构200c可以沿第二方向延伸至抗反射激光器的边沿,或者不延伸至抗反射激光器的边沿,只要保证能够大于脊波导结构200a沿第二方向的尺寸即可(如图2所示)。
本实施例提供的抗反射激光器,通过在靠近出光腔面102且对应于非波导区201的区域设置抗反射凹槽200d,且抗反射凹槽200d的两个抗反射槽壁2011组成的开口朝向反射腔面101,这样可以将从出光腔面102射入的背反射光线反射回去,增强波导激光器的抗反射,防止激光器与光纤耦合时产生的背反射光线对激光器内部的光场模式传输造成干扰,从而提高了激光器激射模式的稳定性,同时由于抗反射凹槽200d设置在相邻的两个脊波导结构200a之间,阻断了相邻的两个脊波导结构200a之间的载流子扩展,起到了电隔离的作用,从而降低了腔面的局部电流密度。
可选地,继续参阅图2,为了保证抗反射效果,抗反射凹槽200d沿第二方向的尺寸大于脊波导结构200a沿第二方向的尺寸,即抗反射凹槽200d可以沿第二方向延伸的尺寸越大,其可供反射背反射光线的面积也就越大,这样就能够反射更多的背反射光线,进一步提高激光器的可靠性。
在一些实施例中,继续参阅图2,为了便于描述,本实施例将抗反射凹槽200d看作是两个相互连通的子凹槽2001,这两个子凹槽2001关于脊波导结构200a可以对称设置,便于提升出光均匀性。每个子凹槽2001包括两个相对设置的槽壁,这两个子凹槽2001靠近出光腔面102一侧的槽壁均为抗反射槽壁2011。
可以理解的是,两个子凹槽2001关于脊波导结构200a沿第一方向的中心线对称设置,两个子凹槽2001之间相互连通,不存在明显的边界。
可选地,两个子凹槽2001关于脊波导结构200a沿第一方向的中心线也可以不完全对称,允许两个子凹槽2001在衬底上的正投影略微存在一定的差别,只要保证不影响抗反射 效果即可。
可选地,子凹槽2001在衬底100上的正投影轮廓可以为平行四边形、三角形或者梯形。例如:当子凹槽2001在衬底100上的正投影轮廓为平行四边形时,整个抗反射凹槽200d在衬底100上的正投影类似于机翼的形状;当子凹槽2001在衬底100上的正投影轮廓为三角形时,整个抗反射凹槽200d在衬底100上的正投影类似于菱形。
可选地,本实施例中的子凹槽2001可以均采用电感耦合等离子体(ICP)刻蚀工艺,这样能够形成平整光滑且垂直的表面,对背反射光线的反射效果更明显。
在本实施例提供的抗反射激光器中,可以将抗反射凹槽200d看作是两个相互连通的子凹槽2001,方便对单独的凹槽进行加工,并且子凹槽2001可以采用不同的轮廓结构,只要保证靠近出光腔面102的槽壁能够反射背反射光线即可,适应范围更广。
可选地,继续参阅图2,为了保证较佳的反射效果,需要对抗反射槽壁2011的夹角进行限定。假设两个抗反射槽壁2011完全对称,且二者之间的预设夹角为α,则其中一个抗反射槽壁2011与脊波导结构200a中心线的夹角为α/2,背反射光线射向抗反射槽壁2011的入射角为90°-α/2。
假设抗反射槽壁2011分界面的全反射临界角为c,全反射角c满足sin(c)=n’/n,其中,反射光所在脊波导结构200a的折射率为n,抗反射凹槽内的介质(介质层310)的折射率为n’,且n’<n,则需要满足(90°-α/2)大于c,这样才能保证实现全反射。
可以理解的是,预设夹角过小会影响抗反射槽壁2011实际可用于反射背反射光线的面积,预设夹角过大会导致背反射光线直接透射,从而起不到反射的效果。
在一个可选的实施例中,两个抗反射槽壁之间的预设夹角α可以为大于80度且小于160度,例如:α为120度。
在一些实施例中,如图3所示,为了进一步提升抗反射的效果,本实施例中的半导体层200可以包括多个过渡波导结构200c,每个过渡波导结构200c都设有一个抗反射凹槽200d。
在本公开的一实施例中,由于相邻的过渡波导结构200c之间被脊波导结构200a隔开,相当于多个抗反射凹槽200d沿着第一方向间隔设置,并且多个抗反射凹槽200d均设置在靠近出光腔面102的一端。
可以理解的是,当需要设置多个抗反射凹槽200d时,需要预留多个相应的非波导区201,多个非波导区201之间可以分隔出多个波导区202,并且仅在对应于波导区202的半导体层200可以形成脊波导结构200a。
可选地,如图4所示,多个抗反射凹槽200d在衬底100上的正投影面积由靠近出光腔面102的方向向远离出光腔面102的方向依次增加,这种结构设计能够保证抗反射效果的 同时节约工艺成本。
在一些实施例中,如图5所示,子凹槽2001的深度沿第二方向由靠近脊波导结构200a中心线的位置向远离脊波导结构200a中心线的位置可以逐渐增加,即子凹槽2001靠近脊波导结构200a中心线区域的槽深较浅,子凹槽2001远离脊波导结构200a中心线区域的槽深较深,这样设计形成的抗反射槽的面积更大,可以反射更多的反射光,更好地实现抗反射和电隔离的作用。
需要说明的是,本实施例可以认为所有脊波导结构200a的中心线都重合,可以看作是沿着第一方向延伸的同一条直线。
在一些实施例中,如图6所示,本实施例中的抗反射激光器的半导体层200除了设置抗反射凹槽200d之外,还可以包括隔离槽200e。
具体地,隔离槽200e靠近反射腔面101(HR腔面)设置,隔离槽200e位于非波导区201。由于隔离槽200e的槽底具体延伸至半导体层200的第二半导体包层250,隔离槽200e同样可以被导电功能层300覆盖。隔离槽200e相当于在相邻波导区202之间起到了电隔离的作用,阻隔载流子的传输,有利于降低COMD,从而提高激光器的功率。
需要说明的是,隔离槽200e除了隔断导电功能层300之外,隔离槽200e的槽底所在的平面还可以低于脊波导结构200a的上表面(第二半导体包层250的上表面)所在的平面,这样可以进一步提升隔离效果。
本实施例提供的抗反射激光器,在靠近出光腔面102的一端设置抗反射凹槽200d,同时在靠近反射腔面101的一端且对应于非波导区201的位置设置隔离槽200e,能够进一步提升抗反射和电隔离的效果,从而提升激光器的性能。
可选地,继续参阅图6,本实施例中的隔离槽200e沿第二方向的尺寸可以大于脊波导结构200a沿第二方向的尺寸(即脊波导结构200a的宽度)。
本实施例中,由于隔离槽200e形成于非波导区201,不受波导区202的脊波导结构200a自身宽度的限制,这样可以将隔离槽200e的宽度制备成大于脊波导结构200a,降低刻蚀工艺的难度,同时也能够进一步降低激光器端部区域内的局部电流密度,从而提升激光器的性能。
基于同一发明构思,如图7所示,本公开实施例还提供了一种抗反射激光器的制备方法,用于制备前述实施例中的抗反射激光器,包括以下步骤:
S100,提供一衬底。
S200,在衬底的一侧制备半导体层。
在本公开的一实施例中,如图8所示,在半导体层定义出波导区和非波导区,用于后续形成脊波导结构和过渡波导结构。
S300,图形化半导体层,以形成位于波导区的脊波导结构和位于非波导区的过渡波导结构。
在本公开的一实施例中,可以在靠近出光腔面一端的非波导区制备出过渡波导结构,过渡波导结构位于相邻的脊波导结构之间。
S400,在过渡波导结构所在的区域形成抗反射凹槽。
在本公开的一实施例中,抗反射凹槽向下延伸至第二半导体包层的内部。
S500,在半导体层上形成覆盖抗反射凹槽的导电功能层。
本实施例提供的抗反射激光器的制备方法,通过在靠近出光腔面102且对应于非波导区201的区域设置抗反射凹槽200d,且抗反射凹槽200d的两个抗反射槽壁2011组成的开口朝向反射腔面101,这样可以将从出光腔面102射入的背反射光线反射回去,增强波导激光器的抗反射,防止激光器与光纤耦合时产生的背反射光线对激光器内部的光场模式传输造成干扰,从而提高了激光激射模式的稳定性,同时由于抗反射凹槽200d设置在相邻的两个脊波导结构200a之间,阻断了相邻的两个脊波导结构200a之间的载流子扩展,起到了电隔离的作用,从而降低了腔面的局部电流密度。
本技术领域技术人员可以理解,本公开中已经讨论过的各种操作、方法、流程中的步骤、措施、方案可以被交替、更改、组合或删除。进一步地,具有本公开中已经讨论过的各种操作、方法、流程中的其他步骤、措施、方案也可以被交替、更改、重排、分解、组合或删除。进一步地,现有技术中的具有与本公开中公开的各种操作、方法、流程中的步骤、措施、方案也可以被交替、更改、重排、分解、组合或删除。
在本公开的描述中,需要理解的是,术语“中心”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本公开和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本公开的限制。
术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本公开的描述中,除非另有说明,“多个”的含义是两个或两个以上。
在本公开的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体状况理解上述术语在本公开中的具体含义。
在本说明书的描述中,具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
应该理解的是,虽然附图的流程图中的各个步骤按照箭头的指示依次显示,但是这些步骤并不是必然按照箭头指示的顺序依次执行。除非本文中有明确的说明,这些步骤的执行并没有严格的顺序限制,其可以以其他的顺序执行。而且,附图的流程图中的至少一部分步骤可以包括多个子步骤或者多个阶段,这些子步骤或者阶段并不必然是在同一时刻执行完成,而是可以在不同的时刻执行,其执行顺序也不必然是依次进行,而是可以与其他步骤或者其他步骤的子步骤或者阶段的至少一部分轮流或者交替地执行。
最后应说明的是:以上各实施例仅用以说明本公开的技术方案,而非对其限制;尽管参照前述各实施例对本公开进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本公开各实施例技术方案的范围。
工业实用性
本公开的实施例方式提供了抗反射激光器及其制备方法,通过在靠近出光腔面且对应于非波导区的区域设置抗反射凹槽,且抗反射凹槽的两个抗反射槽壁组成的开口朝向反射腔面,这样可以将从出光腔面射入的背反射光线反射回去,增强波导激光器的抗反射,防止激光器与光纤耦合时产生的背反射光线对激光器内部的光场模式传输造成干扰,从而提高了激光激射模式的稳定性,同时由于抗反射凹槽设置在相邻的两个脊波导结构之间,阻断了相邻的两个脊波导结构之间的载流子扩展,起到了电隔离的作用,从而降低了腔面的局部电流密度。

Claims (17)

  1. 一种抗反射激光器,包括:
    衬底;
    半导体层,所述半导体层形成于所述衬底上;所述半导体层包括沿第一方向延伸且间断设置的多个脊波导结构、以及连接相邻所述脊波导结构的过渡波导结构,所述过渡波导结构沿第二方向的尺寸大于所述脊波导结构沿第二方向的尺寸;其中,所述第一方向为所述抗反射激光器的腔长方向,所述第二方向为所述抗反射激光器的腔宽方向;
    所述过渡波导结构包括抗反射凹槽,所述抗反射凹槽靠近所述抗反射激光器的出光腔面设置;所述抗反射凹槽包括两个抗反射槽壁,两个所述抗反射槽壁呈预设夹角且开口朝向所述抗反射激光器的反射腔面,用于反射从所述出光腔面射入的背反射光线;
    导电功能层,所述导电功能层位于所述半导体层远离所述衬底的一侧,并覆盖所述抗反射凹槽。
  2. 根据权利要求1所述的抗反射激光器,其中,所述抗反射凹槽沿第二方向的尺寸大于所述脊波导结构沿第二方向的尺寸。
  3. 根据权利要求1至2中任一项所述的抗反射激光器,其中,所述抗反射凹槽包括两个相互连通的子凹槽,两个所述子凹槽关于所述脊波导结构对称设置;
    所述子凹槽靠近所述出光腔面一侧的槽壁为所述抗反射槽壁。
  4. 根据权利要求3所述的抗反射激光器,其中,所述子凹槽在所述衬底上的正投影轮廓为平行四边形、三角形或者梯形。
  5. 根据权利要求1至4中任一项所述的抗反射激光器,其中,两个所述抗反射槽壁之间的预设夹角为大于80度且小于160度。
  6. 根据权利要求1至5中任一项所述的抗反射激光器,其中,所述半导体层包括多个过渡波导结构,相邻的所述过渡波导结构之间被所述脊波导结构隔开,每个所述过渡波导结构均包括一个所述抗反射凹槽。
  7. 根据权利要求6所述的抗反射激光器,其中,各所述过渡波导结构内的所述抗反射凹槽在所述衬底上的正投影面积,由靠近所述出光腔面的方向向远离所述出光腔面的方向依次增加。
  8. 根据权利要求3或4所述的抗反射激光器,其中,所述子凹槽的深度沿所述第二方向由靠近所述脊波导结构中心线的位置向远离所述脊波导结构中心线的位置逐渐 增加。
  9. 根据权利要求1至8中任一项所述的抗反射激光器,其中,所述半导体层还包括靠近所述反射腔面设置的隔离槽;所述隔离槽的槽底延伸至所述半导体层内部,所述隔离槽被所述导电功能层覆盖。
  10. 根据权利要求1至9中任一项所述的抗反射激光器,其中,所述第一方向平行于所述抗反射激光器的所述出光腔面指向所述反射腔面的方向,并且所述第二方向平行于所述出光腔面或者所述反射腔面的方向。
  11. 根据权利要求1至10中任一项所述的抗反射激光器,其中,所述抗反射凹槽设置在相邻的两个所述脊波导结构之间,以阻断相邻的两个所述脊波导结构之间的载流子扩展。
  12. 根据权利要求1至11中任一项所述的抗反射激光器,其中,所述半导体层包括依次层叠设置在所述衬底上的第一半导体包层、第一半导体波导层、量子阱层、第二半导体波导层、第二半导体包层以及欧姆接触层;并且其中,所述脊波导结构和所述过渡波导结构均由所述第二半导体包层图形化工艺得到并且属于所述第二半导体包层的一部分。
  13. 根据权利要求12所述的抗反射激光器,其中,所述抗反射凹槽隔断所述欧姆接触层并且向下延伸至所述第二半导体包层的内部。
  14. 根据权利要求12或13所述的抗反射激光器,其中,所述导电功能层将所述欧姆接触层与外部施加电压的装置进行电连接。
  15. 根据权利要求9所述的抗反射激光器,其中,所述隔离槽的槽底所在的平面低于所述脊波导结构的上表面所在的平面。
  16. 一种抗反射激光器的制备方法,用于制备如权利要求1至15中任一项所述的抗反射激光器,所述方法包括:
    提供一衬底;
    在所述衬底的一侧制备半导体层;
    图形化所述半导体层,以形成位于波导区的脊波导结构和位于非波导区的过渡波导结构;
    在所述过渡波导结构所在的区域形成抗反射凹槽;
    在所述半导体层上形成覆盖所述抗反射凹槽的导电功能层。
  17. 根据权利要求16所述的方法,其中,所述图形化所述半导体层,以形成位于波导区的脊波导结构和位于非波导区的过渡波导结构包括:在靠近所述抗反射激光器的出光腔面一端的非波导区制备出过渡波导结构,使所述过渡波导结构位于相邻的所述脊波导结构之间。
PCT/CN2022/122614 2022-06-24 2022-09-29 抗反射激光器及其制备方法 WO2023245907A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210720715.9A CN114825045B (zh) 2022-06-24 2022-06-24 抗反射激光器及其制备方法
CN202210720715.9 2022-06-24

Publications (1)

Publication Number Publication Date
WO2023245907A1 true WO2023245907A1 (zh) 2023-12-28

Family

ID=82521304

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/122614 WO2023245907A1 (zh) 2022-06-24 2022-09-29 抗反射激光器及其制备方法

Country Status (2)

Country Link
CN (1) CN114825045B (zh)
WO (1) WO2023245907A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114825031B (zh) * 2022-06-24 2022-09-23 度亘激光技术(苏州)有限公司 半导体激光器及其制备方法
CN114825045B (zh) * 2022-06-24 2022-09-23 度亘激光技术(苏州)有限公司 抗反射激光器及其制备方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5479549A (en) * 1994-02-23 1995-12-26 Nec Corporation Coupling structure between a semiconductor laser and an optical fiber and coupling method thereof
US6226309B1 (en) * 1996-09-10 2001-05-01 Oki Electric Industry Co., Ltd. Semiconductor laser and light source
CN103688428A (zh) * 2011-03-30 2014-03-26 英特尔公司 高效绝缘体上硅光栅耦合器
US9558769B1 (en) * 2015-09-30 2017-01-31 HGST Netherlands B.V. Anti-reflection waveguide for heat-assisted magnetic recording
CN111261756A (zh) * 2020-03-25 2020-06-09 武汉光谷信息光电子创新中心有限公司 一种半导体发光器件
CN211789983U (zh) * 2020-05-26 2020-10-27 度亘激光技术(苏州)有限公司 一种激光器
CN114094438A (zh) * 2022-01-24 2022-02-25 日照市艾锐光电科技有限公司 一种双电极共调制发射激光器
CN114825045A (zh) * 2022-06-24 2022-07-29 度亘激光技术(苏州)有限公司 抗反射激光器及其制备方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW518741B (en) * 2001-02-09 2003-01-21 Ind Tech Res Inst Fabrication method of edge-emitting or edge-coupled waveguide electro-optic device
WO2004095519A2 (en) * 2003-04-23 2004-11-04 Dewell Corp. Method and system for coupling waveguides
WO2005011076A1 (en) * 2003-07-31 2005-02-03 Bookham Technology Plc Weakly guiding ridge waveguides with vertical gratings
JP2008543090A (ja) * 2005-06-01 2008-11-27 ビンオプテイクス・コーポレイシヨン 空間フィルタ
US10615568B2 (en) * 2017-07-12 2020-04-07 GM Global Technology Operations LLC Antireflection structure for integrated laser diode/photonic chip interface
CN111211485A (zh) * 2020-03-05 2020-05-29 度亘激光技术(苏州)有限公司 一种激光器

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5479549A (en) * 1994-02-23 1995-12-26 Nec Corporation Coupling structure between a semiconductor laser and an optical fiber and coupling method thereof
US6226309B1 (en) * 1996-09-10 2001-05-01 Oki Electric Industry Co., Ltd. Semiconductor laser and light source
CN103688428A (zh) * 2011-03-30 2014-03-26 英特尔公司 高效绝缘体上硅光栅耦合器
US9558769B1 (en) * 2015-09-30 2017-01-31 HGST Netherlands B.V. Anti-reflection waveguide for heat-assisted magnetic recording
CN111261756A (zh) * 2020-03-25 2020-06-09 武汉光谷信息光电子创新中心有限公司 一种半导体发光器件
CN211789983U (zh) * 2020-05-26 2020-10-27 度亘激光技术(苏州)有限公司 一种激光器
CN114094438A (zh) * 2022-01-24 2022-02-25 日照市艾锐光电科技有限公司 一种双电极共调制发射激光器
CN114825045A (zh) * 2022-06-24 2022-07-29 度亘激光技术(苏州)有限公司 抗反射激光器及其制备方法

Also Published As

Publication number Publication date
CN114825045A (zh) 2022-07-29
CN114825045B (zh) 2022-09-23

Similar Documents

Publication Publication Date Title
WO2023245907A1 (zh) 抗反射激光器及其制备方法
US11211767B2 (en) Reflector structure for tunable laser and tunable laser
US7729401B2 (en) Semiconductor laser device and fabrication method for the same
CN109412020A (zh) 一种倒台型高速半导体激光器芯片及其制备方法
CN105826813B (zh) 一种基于高阶表面光栅的单模激光器
JP5254045B2 (ja) 半導体レーザ装置
US20080310474A1 (en) Square micro-cavity laser with an output waveguide
CN112868149A (zh) 光放大器
CN111641103B (zh) 一种激光二极管及其制造方法
CN104795730A (zh) 一种利用量子阱混杂制作的基模半导体激光器及制作方法
WO2023245908A1 (zh) 半导体激光器及其制备方法
CN103138156A (zh) 光半导体装置
CN112993752B (zh) 垂直腔面发射激光器及其制备方法
JP2010097174A (ja) 光導波路の製造方法及び光導波路
CN217469101U (zh) 脊波导结构及激光器
CN100399657C (zh) 半导体激光器及其制造方法
CN109921283B (zh) 一种半导体器件及制备方法
JPH0461514B2 (zh)
WO2020237512A1 (zh) 一种激光二极管及其制作方法
CN116365361A (zh) 单模耦合微腔半导体激光器及其调控方法
CN116632648B (zh) 一种边发射半导体发光结构及其制备方法
CN106329315B (zh) 一种面发射分布反馈激光器
JP3788699B2 (ja) 集積型光回路素子及びその製造方法
CN111900625B (zh) 一种激光器及其制造方法
CN213878720U (zh) 半导体波导耦合结构和半导体器件

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22947647

Country of ref document: EP

Kind code of ref document: A1