WO2023245810A1 - 被动房环境调控系统及环境调控方法 - Google Patents

被动房环境调控系统及环境调控方法 Download PDF

Info

Publication number
WO2023245810A1
WO2023245810A1 PCT/CN2022/108640 CN2022108640W WO2023245810A1 WO 2023245810 A1 WO2023245810 A1 WO 2023245810A1 CN 2022108640 W CN2022108640 W CN 2022108640W WO 2023245810 A1 WO2023245810 A1 WO 2023245810A1
Authority
WO
WIPO (PCT)
Prior art keywords
air
control mode
assembly
passive house
temperature
Prior art date
Application number
PCT/CN2022/108640
Other languages
English (en)
French (fr)
Inventor
林波荣
武双对
孙弘历
段梦凡
吴一凡
Original Assignee
清华大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 清华大学 filed Critical 清华大学
Publication of WO2023245810A1 publication Critical patent/WO2023245810A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D27/00Simultaneous control of variables covered by two or more of main groups G05D1/00 - G05D25/00
    • G05D27/02Simultaneous control of variables covered by two or more of main groups G05D1/00 - G05D25/00 characterised by the use of electric means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F5/00Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater
    • F24F5/0007Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater cooling apparatus specially adapted for use in air-conditioning
    • F24F5/0017Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater cooling apparatus specially adapted for use in air-conditioning using cold storage bodies, e.g. ice
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F5/00Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater
    • F24F5/0096Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater combined with domestic apparatus
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/10Photovoltaic [PV]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/20Solar thermal
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present disclosure relates to the field of environmental control, and in particular to a passive house environmental control system and an environmental control method.
  • Passive house is a brand-new energy-saving building concept and an important opportunity and platform to promote building energy-saving work. It achieves low energy consumption through high thermal and sound insulation, strong sealing building envelope and renewable energy. It does not require additional active heating and air conditioning systems to maintain the indoor thermal environment and significantly reduces energy demand.
  • the main technologies used in Passive Houses include solar photovoltaic power generation, high-performance envelope structures, natural ventilation and solar chimney effect, double-skin curtain walls, heat recovery, etc.
  • the peak power loss rate of solar cells is approximately 0.41%.
  • the output power of a silicon solar cell operating at 20°C is 20% higher than that of a silicon solar cell operating at 70°C. Therefore, improving the photoelectric conversion efficiency of solar cells is one of the difficulties faced by the promotion of photovoltaic buildings.
  • HVAC Heating-related technologies
  • the choice of heating method directly affects the creation of thermal environment and human thermal comfort.
  • HVAC terminal technology in related technologies it is often through wall-mounted or cabinet air conditioners and various forms of radiators that are independently placed indoors, or through coils or capillary tubes combined with walls and floors.
  • these terminals require additional ancillary equipment such as boilers, gas wall-mounted boilers, heat pumps, etc., which are not well integrated with the building.
  • Independent distributed air conditioners and radiators can easily cause uneven, overcooling or overheating of the indoor environment.
  • the construction of the architectural environment includes comprehensive considerations of indoor heat and humidity environment, wind environment, light environment, acoustic environment and other aspects.
  • Related technologies often control the operation of one of these aspects, and control the coordination and overall planning of various systems.
  • the present disclosure proposes a passive house environment control system and an environment control method.
  • a passive house environment control system includes: a waterway component disposed on the roof and the shady side wall, and an air duct component disposed on the roof and the sunny side wall.
  • the water circuit components include solar components installed on the roof, and water circuit circulation components installed on the roof and shady walls; the solar components are used to obtain electricity through photoelectric conversion and generate heat;
  • the water circuit components include refrigerators, water pumps, and valves And a water circulation pipe laid on the roof and the shady wall, the water circulation component is used to drive the water pump and the refrigerator through the electric power according to the environmental control mode, so that the liquid flowing in the water circulation pipe Obtain heat or cold energy;
  • the air duct assembly includes a window assembly disposed on the sun-facing wall, and an air duct circulation assembly disposed on the roof and sun-facing wall; the window assembly is used according to the environmental control mode, Determine the passability of near-infrared rays;
  • the air duct circulation component is used to form a hot-
  • the solar component includes a photovoltaic component for performing photoelectric conversion to obtain electricity, and a reflective layer disposed under the photovoltaic component for reducing the temperature of the photovoltaic component, which is laid on the roof.
  • a water circulation pipe is provided below the reflective layer, and is used to allow the liquid flowing in the water circulation pipe to obtain the heat generated when the photovoltaic module performs photoelectric conversion.
  • the window assembly includes a light-transmitting plate, a glass assembly and a blind.
  • An air passage is included between the light-transmitting plate and the glass assembly, and the blind is disposed in the air passage.
  • the glass component includes thermochromic glass for reflecting near-infrared rays and transmitting visible light when the surface temperature of the thermochromic glass is higher than or equal to a critical temperature threshold; or , when the surface temperature of the thermochromic glass is lower than the critical temperature threshold, near-infrared rays and visible light are transmitted.
  • the glass component includes low-emissivity coated glass for reflecting far-infrared rays.
  • one side of the blinds is coated with a radiation cooling coating, and the other side is coated with a thermal radiation absorption coating.
  • the blinds are used to determine the direction toward the outside of the passive room according to the environment control mode. surface, and determine the inclination angle of the blinds, and the inclination angle of the blinds is used to adjust the light transmittance of the blinds.
  • the air duct circulation assembly includes an air passage between the light-transmitting plate and the glass assembly, an air duct disposed under the water circulation duct on the roof, the air duct and the The air outlet between the inside of the passive room, the air outlet between the inside of the passive room and the air passage, the air outlet between the air passage and the outside of the passive room, and the air outlet between the air passage and the air duct.
  • the air outlet between the air duct and the passive house is disposed on the roof.
  • the environment control mode includes a summer daytime control mode
  • the water circuit component is used to drive the refrigerator and the water pump through the electric power to obtain cooling liquid flowing in the water circuit circulation pipe.
  • the environment control mode includes a summer daytime control mode, and the air duct assembly is used to make the side of the blinds coated with the radiation cooling coating face outside the passive room.
  • the environment control mode includes a summer daytime control mode
  • the air path assembly is used to adjust the air outlet between the passive house and the air passage, and the air passage and The air vents between the air ducts are closed, and the air vents between the air passage and the outside of the passive house, and the air vents between the air duct and the interior of the passive house are opened.
  • the environment control mode includes a summer night control mode
  • the water circuit component is used to drive the refrigerator and the water pump through the electric power to obtain cooling liquid flowing in the water circuit circulation pipe.
  • the environment control mode includes a summer night control mode, and the air path assembly is used to make the side of the blinds coated with the radiation cooling coating face outside the passive room.
  • the environment control mode includes a summer night control mode
  • the air path assembly is used to connect the air outlet between the passive house and the air path, the air path and the air path.
  • the air openings between the air ducts and the air openings between the air ducts and the interior of the passive house are opened, and the air openings between the air passage and the exterior of the passive house are closed.
  • the environment control mode includes a winter daytime control mode
  • the waterway component is used to heat the liquid flowing in the waterway circulation pipe provided on the roof with the heat of the solar component to obtain waterway circulation. Heated liquid flowing in pipes.
  • the environment control mode includes a winter daytime control mode, and the air duct assembly is used to make the side of the louver coated with the heat radiation absorbing coating face outside the passive room.
  • the environment control mode includes a winter daytime control mode
  • the air path assembly is used to connect the air outlet between the passive house and the air path, the air path and the air path.
  • the air vents between the air ducts and the air vents between the air ducts and the interior of the passive house are opened, and the air vents between the air passage and the exterior of the passive house are closed.
  • the environment control mode includes a winter night control mode
  • the waterway component also includes a heating component
  • the water circuit component is used to drive the heating component and the water pump through the electric power to obtain heated liquid flowing in the water circuit circulation pipe.
  • the environment control mode includes a winter night control mode
  • the air duct assembly is used to make the side of the blinds coated with the heat radiation absorption coating face outside the passive room.
  • the environment control mode includes a winter night control mode
  • the air path assembly is used to connect the air outlet between the passive house and the air path, the air path and the air path.
  • the air openings between the air ducts, the air openings between the air ducts and the interior of the passive house, and the air openings between the air passage and the exterior of the passive house are closed.
  • an environmental control method including: determining environmental parameters to be controlled according to an environmental control mode; and determining a preset range of the environmental parameters based on actual measured values of the environmental parameters in the passive house. , and the passive house environment control system, which regulates environmental parameters in the passive house.
  • the environment control mode includes a summer daytime control mode
  • the environmental parameters include temperature and illumination
  • the environment control mode includes a summer daytime control mode
  • the environmental parameters include temperature and illumination
  • the environment control mode includes a summer daytime control mode
  • the environmental parameters include temperature and illumination
  • the environment control mode includes a summer daytime control mode
  • the environmental parameters include temperature and illumination
  • the environment control mode includes a summer daytime control mode
  • the environmental parameters include temperature and illumination
  • the environmental control mode includes a summer night control mode
  • the environmental parameters include temperature
  • the predicted environmental parameters are based on the actual measured values of the environmental parameters in the passive house.
  • the environment control mode includes a winter daytime control mode
  • the environmental parameters include temperature and illumination
  • the environment control mode includes a winter daytime control mode
  • the environmental parameters include temperature and illumination
  • the environment control mode includes a winter daytime control mode
  • the environmental parameters include temperature and illumination
  • the environment control mode includes a winter daytime control mode
  • the environmental parameters include temperature and illumination
  • the environment control mode includes a winter daytime control mode
  • the environmental parameters include temperature and illumination
  • the environment control mode includes a winter night control mode
  • the environmental parameters include temperature
  • the water circulation component also includes a heating component
  • the environmental parameters in the passive house are The actual measured value, the preset range of the environmental parameter
  • the passive house environment control system regulate the environmental parameters in the passive house, including: based on the actual measured value of the temperature and the preset temperature range to adjust the heating temperature of the heating component.
  • the passive house environment control system further includes a power storage device
  • the method further includes: obtaining the power stored in the power storage device; when the power stored in the power storage device is less than a preset In the case of power threshold, the range of regulation of the environmental parameters is reduced.
  • solar energy resources can be fully utilized through solar components installed on the roof, photoelectric conversion efficiency and photothermal conversion efficiency can be improved, heat and electricity can be provided for waterway components, and water circulation components can be utilized at the same time.
  • Reduce the temperature of solar modules improve their photoelectric conversion efficiency, and provide a more comfortable indoor environment through radiant heating or radiant cooling.
  • the air passage component is used to control the passability of the near-infrared rays emitted by the sun. While providing lighting, it can effectively control the thermal radiation generated by the sun, thereby controlling the indoor temperature changes caused by solar radiation. It can also be heated or cooled through the water passage component. liquid, obtain heated or cooled airflow, and improve indoor temperature control efficiency. It can also save electric energy, reduce dependence on fossil energy, and improve coordination and overall planning among various parts of the system.
  • Figure 1 shows a schematic diagram of a passive house environment control system according to an embodiment of the present disclosure
  • Figure 2 shows a schematic diagram of a passive house environment control system according to an embodiment of the present disclosure
  • Figure 3 shows a schematic diagram of a photovoltaic module according to an embodiment of the present disclosure
  • FIGS. 4A and 4B illustrate schematic diagrams of glass assemblies according to embodiments of the present disclosure
  • Figure 5 shows a schematic diagram of the control of waterway components in summer according to an embodiment of the present disclosure
  • Figure 6 shows a schematic diagram of the control of the air duct assembly in the summer daytime control mode according to an embodiment of the present disclosure
  • Figure 7 shows a schematic diagram of the control of the air duct assembly in the summer night control mode according to an embodiment of the present disclosure
  • Figure 8 shows a schematic diagram of the regulation of waterway components in winter according to an embodiment of the present disclosure
  • Figure 9 shows a schematic diagram of the control of the air duct assembly in the winter daytime control mode according to an embodiment of the present disclosure
  • Figure 10 shows a schematic diagram of the control of the air duct assembly in the winter night control mode according to an embodiment of the present disclosure
  • Figure 11 illustrates an environment regulation method according to an embodiment of the present disclosure
  • Figure 12 shows a control schematic diagram of the summer daytime control mode according to an embodiment of the present disclosure
  • Figure 13 shows a control schematic diagram of the summer night control mode according to an embodiment of the present disclosure
  • Figure 14 shows a control schematic diagram of the winter daytime control mode according to an embodiment of the present disclosure
  • Figure 15 shows a control schematic diagram of the winter night control mode according to an embodiment of the present disclosure.
  • exemplary means "serving as an example, example, or illustrative.” Any embodiment described herein as “exemplary” is not necessarily to be construed as superior or superior to other embodiments.
  • a and/or B can mean: A exists alone, A and B exist simultaneously, and they exist alone. B these three situations.
  • at least one herein means any one of a plurality or any combination of at least two of a plurality, for example, including at least one of A, B, and C, which can mean including from A, Any one or more elements selected from the set composed of B and C.
  • the present disclosure relates to a passive house environment control system.
  • Figure 1 shows a schematic diagram of a passive house environment control system according to an embodiment of the present disclosure.
  • the system includes: a waterway component provided on the roof and the shady side wall; air duct components;
  • the waterway component includes a solar component installed on the roof, and a waterway circulation component installed on the roof and the shady wall;
  • Solar components are used to obtain electricity through photoelectric conversion and generate heat
  • the water circulation component includes a refrigerator, a water pump, a valve, and a water circulation pipe laid on the roof and the shady wall.
  • the water circulation component is used to drive the water pump and the refrigeration unit through the electricity according to the environmental control mode. Machine, so that the liquid flowing in the water circulation pipe obtains heat or cold;
  • the air duct assembly includes a window assembly disposed on the sun-facing wall, and an air duct circulation assembly disposed on the roof and sun-facing wall;
  • the window component is used to determine the passability of near-infrared rays according to the environmental control mode
  • the air duct circulation component is used to form a hot-pressure ventilation airflow according to the environment control mode, and obtain heated or cooled airflow through at least the water circulation component;
  • the air path assembly is used to regulate environmental parameters in the passive house based on the passability of the near-infrared rays and the heated or cooled airflow.
  • solar energy resources can be fully utilized through solar components installed on the roof, photoelectric conversion efficiency and photothermal conversion efficiency can be improved, heat and electricity can be provided for waterway components, and water circulation components can be utilized at the same time.
  • Reduce the temperature of solar modules improve their photoelectric conversion efficiency, and provide a more comfortable indoor environment through radiant heating or radiant cooling.
  • the air passage component is used to control the passability of the near-infrared rays emitted by the sun. While providing lighting, it can effectively control the thermal radiation generated by the sun, thereby controlling the indoor temperature changes caused by solar radiation. It can also be heated or cooled through the water passage component. liquid, obtain heated or cooled airflow, and improve indoor temperature control efficiency. It can also save electric energy, reduce dependence on fossil energy, and improve coordination and overall planning among various parts of the system.
  • the solar component includes a photovoltaic component for performing photoelectric conversion to obtain electricity, and a reflective layer disposed under the photovoltaic component for reducing the temperature of the photovoltaic component, which is laid on the roof.
  • a water circulation pipe is provided below the reflective layer, and is used to allow the liquid flowing in the water circulation pipe to obtain the heat generated when the photovoltaic module performs photoelectric conversion.
  • FIG 2 shows a schematic diagram of a passive house environment control system according to an embodiment of the present disclosure.
  • the waterway components include solar components disposed on the roof, and waterway circulation components disposed on the roof and shady walls.
  • the solar module may include a photovoltaic module 1 and a reflective layer 2 at its lower part and a power storage device 3 (refer to Figures 2, 6, 7, 9, and 10), wherein the power storage device may include a battery, etc. , this disclosure does not limit the type of power storage device.
  • the photovoltaic module 1 can be disposed on the roof to efficiently absorb sunlight, thereby utilizing the energy radiated by the sunlight, for example, converting it into heat or electricity.
  • the photovoltaic component 1 may include a solar panel or the like, and the present disclosure does not limit the type of the photovoltaic component.
  • the main structure of the passive house can be built of reinforced concrete 15, and an insulation layer 16 can be laid on the roof and walls.
  • FIG 3 shows a schematic diagram of a photovoltaic module according to an embodiment of the present disclosure.
  • the photovoltaic module has a five-layer structure. From top to bottom, they are: high-transmission coated glass 101, upper encapsulation film 102, and double-sided cells. sheet 103, lower packaging film 104, and backplate glass 105.
  • the high-transmission coated glass 101 has the performance of full transmission in the solar spectrum band.
  • a layer of porous silicon oxide film with a thickness of 100nm-150nm can be formed on the glass surface to form the high-transmission coated glass 101, thereby increasing the visible light. transmittance to improve the power generation efficiency of photovoltaic modules.
  • This disclosure does not limit the manufacturing method of the high-transmission coated glass 101 and the type and thickness of the coating.
  • the upper encapsulating film 102 and the lower encapsulating film 104 are insulating transparent thin layers, so that solar radiation can illuminate the double-sided cell sheet 103 through the encapsulating film and protect the double-sided cell sheet. 103 role.
  • the materials of the upper encapsulating film 102 and the lower encapsulating film 104 include, but are not limited to, one of ethylene-vinyl acetate copolymer EVA, ethylene-octene copolymer POE, or a combination thereof.
  • the thickness of the encapsulating adhesive film is Can be 0.4-0.6mm. This disclosure does not limit the manufacturing materials and thickness of the upper encapsulation film 102 and the lower encapsulation film 104 .
  • the bifacial cell sheet 103 may be an N-type or P-type crystalline silicon bifacial solar cell sheet.
  • the double-sided battery sheet 103 is connected to a power storage device through wires, so that the power generated by the double-sided battery sheet 103 can be stored through the power storage device to be used by equipment such as refrigerators, water pumps, and heating components.
  • the back glass 105 may be a TPT polyvinyl fluoride composite film with a thickness of 0.2-0.4 mm. This disclosure places no restrictions on the manufacturing material and thickness of the back glass 105 .
  • the reflective layer under the photovoltaic module can reflect the long-wave radiation not absorbed by the double-sided cell sheet 103, which can alleviate the situation where the temperature below the photovoltaic module is too high and the photoelectric conversion efficiency decreases.
  • the reflective layer can be used as a heat conductive layer to quickly transfer the heat of the photovoltaic module to the water circulation pipe below (i.e., the water circulation pipe laid on the roof), and can provide heat for the liquid flowing in the water circulation pipe (for example, In winter, the liquid flowing in the water circulation pipe is heated up), and the heat accumulated by the photovoltaic modules can also be taken away through the water circulation pipe to improve the efficiency of photovoltaic power generation.
  • the material of the reflective layer includes but is not limited to a silver layer and other reflective metal layers, and the thickness may be 50-200 nm. This disclosure places no limitations on the manufacturing materials and thickness of the reflective layer.
  • the water circulation component includes a refrigerator, a water pump, a valve, and a water circulation pipe laid on the roof and the shady wall.
  • the water circulation component is used to control the environment through the Electricity drives the water pump and the refrigerator, so that the liquid flowing in the water circulation pipe obtains heat or cold energy.
  • the water circuit circulation component also includes a water storage tank for storing water and other liquids flowing in the water circuit circulation pipe.
  • a heating component (for example, an electric heating wire) can be provided in the water storage tank, which can be used to heat the liquid.
  • the water circulation pipe may be a galvanized steel pipe.
  • Water circulation pipes are laid on the roof and shady walls, which can provide heat or cold radiation to the passive house through the liquid flowing in the water circulation pipes, thus providing a more comfortable temperature control effect.
  • the liquid flowing in the water circulation pipe can be heated by the heat of the photovoltaic modules and cooled by the refrigerator, thereby providing thermal radiation or cold radiation for the passive house.
  • the water circulation pipe can also take away the heat of the photovoltaic modules, thereby improving the The power generation efficiency of photovoltaic modules.
  • the water circuit circulation assembly may also include a water storage tank 7 and a heating assembly 701 (for example, an electric heating wire).
  • the water storage tank may be used to store liquid flowing in the water circuit circulation pipe, such as water.
  • the heating component can be installed in a water tank or in a water circulation pipe. When the photovoltaic module cannot generate heat (for example, at night), the heating component can be used to heat the liquid flowing in the water circulation pipe, thereby providing passive heating. Provides thermal radiation inside the room.
  • the water pump can be driven by electricity to circulate the liquid in the water circulation pipe.
  • photovoltaic modules can absorb sunlight, generate electricity, and store it in a power storage device.
  • the electricity storage device can power the refrigerator to cool down the liquid in the water circulation pipe.
  • the liquid in the water circulation pipe circulates, it can provide cold radiation inside the passive house, improve the comfort of cooling, and take away the heat in the room. It can also take away the heat of photovoltaic modules and improve the power generation efficiency of photovoltaic modules.
  • the liquid that takes away the above heat can enter the water storage tank and enter the refrigerator for cooling through the action of the water pump. Alternatively, it can directly enter the refrigerator for cooling through the action of the water pump, so that the cooled liquid continues to circulate.
  • the heat of the photovoltaic modules can be taken away through the circulating liquid in the water circulation pipe, thereby improving the photovoltaic power generation efficiency, and can heat the circulating liquid, thereby providing energy for the passive house interior during the circulation process.
  • the water circulation pipe laid on the shady side wall can also reduce the heat loss of the shady side wall and reduce the indoor heat load. It can heat the room through thermal radiation to improve heating comfort.
  • the air duct assembly includes a window assembly disposed on the sun-facing wall 17 (refer to FIGS. 5 and 8 ), and an air duct circulation assembly disposed on the roof and the sun-facing wall 17 .
  • the window assembly includes a light-transmitting plate 10, a glass assembly 11 and a blind 12 (refer to Figures 2, 6, 7, 9 and 10).
  • the light-transmitting plate and the An air passage is included between the glass components 11, and the blinds are arranged in the air passage.
  • the light-transmitting plate is made of a transparent material with high transmittance across the entire wavelength range, for example, a PC light-transmitting plate with polycarbonate as the main material.
  • the types of the light-transmitting plate include: But it is not limited to hollow solar panels, hollow solar tiles, honeycomb solar panels, etc.
  • the thickness of the light-transmitting plate is 4mm-8mm.
  • the light transmittance is 80%-90% or higher. It has the characteristics of impact resistance, UV protection, light weight, flame retardant and sound insulation. This disclosure places no restrictions on the material, type and thickness of the light-transmitting plate.
  • the glass component 11 includes thermochromic glass, configured to reflect near-infrared rays and transmit visible light when the surface temperature of the thermochromic glass is higher than or equal to a critical temperature threshold; Alternatively, when the surface temperature of the thermochromic glass is lower than a critical temperature threshold, near-infrared rays and visible light are transmitted.
  • the thermochromic glass includes energy-saving glass that can adjust solar radiation and is composed of a thermochromic dimming material and glass and other materials.
  • the optical properties of the thermochromic glass such as transmittance and reflectivity, etc., can change with the physical environment such as light and heat. Through the optical properties of thermochromic glass, the purpose of regulating the indoor ambient temperature can be achieved.
  • the thermochromic glass specifically includes a glass interlayer composed of two single layers of glass (for example, with a thickness of 6 mm) and a thermochromic layer filled in the glass interlayer.
  • the thermochromic layer Made from PNIPAM-based hydrogel polymer. PNIPAM is poly-N-isopropylacrylamide.
  • Thermochromic materials include but are not limited to one of PNIPAM, graphene oxide, VO2 (vanadium dioxide), cesium tungsten bronze, or composite materials made of the above materials. This disclosure does not place restrictions on the thickness of the thermochromic glass, specific parameters of optical properties, and manufacturing materials.
  • thermochromic glass in summer, when the surface temperature of the thermochromic glass is higher than or equal to a critical temperature threshold (for example, 33°C), the thermochromic glass can reflect the near-infrared rays emitted by the sun, thereby shielding thermal radiation. , reduce the heat entering the room, reduce the indoor cooling load in summer, and at the same time, allow visible light to pass through the thermochromic glass, maintain indoor illumination, and provide lighting for the room.
  • the surface temperature of thermochromic glass is lower than the critical temperature threshold (for example, 33°C).
  • Thermochromic glass can transmit near-infrared rays and visible light, allowing the thermal radiation of sunlight to enter the room and reducing the indoor heating heat load. It can also provide indoor lighting.
  • the glass component 11 includes low-emissivity coated glass (for example, low-e glass) for reflecting far-infrared rays.
  • low-emissivity coated glass for example, low-e glass
  • An air layer can be included between the low-emissivity coated glass and the thermochromic glass.
  • a low-emission coating is applied to the side of the low-emission coated glass close to the air layer.
  • the low-emission coating can have high transmittance to visible light. (for example, 70-80% transmittance), and has low transmittance, low absorption rate, and high reflectivity for far infrared rays. Therefore, it can be used to reflect far infrared rays.
  • the material of the coating layer and the thickness of the coating can lead to different near-infrared transmittances of low-emissivity coated glass.
  • the low-emissivity coated glass can play a role in thermal insulation.
  • the outdoor temperature is higher than the indoor temperature. Outdoor high-temperature objects (such as other buildings) can emit far-infrared rays. When encountering low-emissivity coated glass, most of it (for example, more than 90%) is reflected back to the outdoors, thus It can reduce indoor cooling load and play the role of heat insulation.
  • the glass assembly includes the thermochromic glass and the low-e coating glass, and an air layer 114 between the thermochromic glass and the low-e coating glass.
  • the thermochromic glass may include glass 111 and glass 113, and a thermochromic layer 112.
  • the low-emissivity coated glass includes glass 116 and low-emissivity coating 115 .
  • the thickness of the glass 111, the glass 113 and the glass 116 is 6 mm, and this disclosure does not limit the specific thickness of the glass.
  • the glass assembly 11 (refer to Figure 4A and Figure 2, Figure 6, Figure 7, Figure 9, Figure 10) can provide lighting and energy replenishment in winter, and can reduce visible light 19 has high transmittance to meet the lighting needs, and because the temperature is lower than the critical temperature threshold, the near-infrared rays 20 emitted by the sun can be transmitted through the glass component 11, and the far-infrared rays 21 emitted to indoor objects are reflected back into the room by the glass component 11, thereby Receive solar thermal radiation while reducing indoor heat loss.
  • the glass assembly 11 in summer, can be used for lighting and heat insulation, with high transmittance of visible light 19 to meet lighting needs, and because the temperature is higher than the critical temperature threshold, the near-infrared rays 20 emitted by the sun can be It is reflected and can reflect the far-infrared rays 21 emitted by indoor and outdoor objects to isolate external heat radiation and prevent indoor cold radiation from escaping to the outside world.
  • the window assembly includes a blind 12 disposed in the air passage between the light-transmitting plate 10 and the glass assembly 11 .
  • One side of the louvers is coated with a radiation cooling coating, and the other side is coated with a thermal radiation absorption coating.
  • the louvers are used to determine the surface facing the outside of the passive room and determine the inclination angle of the louvers according to the environmental control mode. The inclination angle of the blinds is used to adjust the light transmittance of the blinds.
  • the blinds can not only adjust the transmittance of light, for example, by adjusting the inclination angle of the blinds to adjust the ratio between the blocking part and the light-transmitting part, but also have two types of light transmittances on both sides of the blinds.
  • Coating that is, one side of the blinds is coated with a radiant cooling coating, and the other side is coated with a thermal radiation absorbing coating.
  • the thermal radiation absorbing coating may be coated with a material having a high solar radiation absorption rate, and the thermal radiation absorbing coating may be a black coating or a black metal plating.
  • the radiation cooling coating can have high solar radiation reflectivity and high long-wave emissivity.
  • the radiation refrigeration coating may include a composite film composed of polymer flexible materials, silicon micro-elements and silver layers. This disclosure does not limit the manufacturing materials of the radiant cooling coating and the thermal radiation absorbing coating.
  • the radiant cooling coating of the blinds faces outside the passive room to dissipate thermal radiation outwards and take away the heat in the room, thereby reducing the indoor temperature and reducing the air in the air passage where the blinds are located. temperature.
  • the heat radiation absorbing coating of the louvers faces outside the passive room to absorb thermal radiation from the sun, increase the temperature of the air in the air passage, and conduct heat exchange with the wall, thereby increasing the indoor temperature.
  • the air duct assembly includes an air duct circulation assembly disposed on the roof and the sun-facing wall.
  • the air duct circulation assembly includes an air passage between the light-transmitting plate 10 and the glass assembly 11, and an air duct 13 provided under the water circulation duct on the roof (refer to Figures 2, 6, 7, and 9 , Figure 10), the air outlet between the air duct and the inside of the passive room, the air outlet between the inside of the passive room and the air passage, the air outlet between the air passage and the outside of the passive room, and an air outlet between the air passage and the air duct, wherein the air duct is used to obtain heated or cooled air flow at least through the water circuit circulation component, and the air duct between the air duct and the passive room is
  • the air outlet is set on the roof.
  • the louvers are used to raise or lower the temperature of the air in the air passage, and the heat or cold of the liquid flowing in the water circulation component is obtained for heating or cooling.
  • the air duct on the roof can be arranged under the water circulation pipe, so that the air flow in the air duct can be heated by heated liquid, or the air flow in the air duct can be cooled by cooled liquid. , thereby obtaining heated or cooled airflow to regulate the indoor temperature.
  • the air outlets between the air duct and the interior of the passive house include air outlets 5, 6 and 7.
  • the air outlets between the interior of the passive house and the air passage include air outlet 4.
  • each part of the above-mentioned waterway component and airway component can be controlled according to the environmental control mode, thereby lowering the indoor temperature in summer and raising the indoor temperature in winter to obtain a controlled indoor temperature.
  • the effect of environmental parameters such as temperature. And reduce the need for additional electricity, thereby reducing dependence on fossil energy and reducing carbon emissions. And can achieve a more comfortable control effect.
  • the environmental control mode includes a summer daytime control mode, a summer nighttime control mode, a winter daytime control mode and a winter nighttime control mode.
  • the summer daytime control mode corresponds to an external environment with higher temperature and sunshine;
  • the summer nighttime control mode corresponds to an external environment with higher temperature and no sunshine;
  • the winter daytime control mode corresponds to an external environment with lower temperature And there is an external environment with sunshine;
  • the winter night control mode corresponds to an external environment with lower temperature and no sunshine.
  • the environment control mode includes a summer daytime control mode
  • the water circuit component is used to drive the refrigerator and the water pump through the electric power to obtain cooling liquid flowing in the water circuit circulation pipe.
  • FIG. 5 shows a schematic diagram of the control of the waterway component in summer according to an embodiment of the present disclosure.
  • the valve 903 and the water pump 802 can be closed, and the valve 901, the valve 902, the water pump 803 and the water pump 801 can be opened.
  • the photovoltaic modules are irradiated by the sun, and the electricity generated can be stored in the power storage device 3 (refer to Figures 2, 5, 6, 7, 8, 9, and 10) and used for cooling.
  • the machine 6 provides power, and the liquid (for example, water) in the water circulation component can be circulated in the water circulation pipe, for example, the water circulation pipe 5 laid on the shady wall 18, so that the cooling liquid can radiate cold to the room and be taken away from the room.
  • the cooled liquid generated by the refrigerator 6 flows through the water circulation pipe 5 laid on the shady wall, which can provide cold radiation indoors. Compared with the cold air of the air conditioner, the comfort is better, the indoor cooling effect is more uniform, and the liquid
  • the water circulation pipe 4 flowing through the roof can cool down the photovoltaic modules and improve the efficiency of photovoltaic power generation.
  • the environment control mode includes a summer daytime control mode
  • the air path assembly is used to adjust the air outlet between the passive house and the air passage, and the air passage and The air vents between the air ducts are closed, and the air vents between the air passage and the outside of the passive house, and the air vents between the air duct and the interior of the passive house are opened.
  • Figure 6 shows a schematic diagram of the control of the air duct assembly in the summer daytime control mode according to an embodiment of the present disclosure.
  • the air outlets 143 ie, air outlet 3 and air outlet 144 (ie, air outlet 4) can be closed, and the air outlets 141 (ie, air outlet 1), air outlet 142 (ie, air outlet 2), and air outlets 145 (ie, air outlet 1) can be opened.
  • tuyere 4 tuyer 146 (ie, tuyere 6), tuyere 147 (ie, tuyere 7).
  • cooling liquid flows in the water circulation pipe 4 on the roof.
  • the air vents 145, 146, and 147 are opened, and the heat plume generated by the indoor heating element is The flow rises and enters the air duct 13 on the roof from the air outlet 146.
  • the cold air cooled by the cooling liquid flowing in the water circulation pipe 4 on the roof sinks and is sent out from the air outlets 145 and 147 to form an indoor air circulation loop.
  • the outer surface temperature of thermochromic glass is higher than the critical temperature threshold. Therefore, thermochromic glass can transmit visible light and shield near-infrared rays, reducing the thermal radiation introduced into the room.
  • low-emissivity coated glass It reflects the cold radiation from indoor objects back, reducing the loss of indoor cold radiation and reducing the cooling load. Furthermore, low-emissivity coated glass can also shield the far-infrared rays emitted by objects with higher temperatures outside, thereby shielding thermal radiation.
  • the environment control mode includes a summer daytime control mode
  • the air duct assembly is used to make the side of the blinds coated with the radiation cooling coating face outside the passive room. That is, by making the side coated with the radiation cooling coating face the outside of the passive room, the heat in the room can be dissipated to the outdoors through thermal radiation, for example, the heat in the air passage can be dissipated through the 8-13 ⁇ m band of the atmospheric window. Further, Due to the effect of thermal pressure, a bottom-up air flow can be formed in the air passage. For example, air enters the air passage through the air vents 142 and flows through the air passage, reducing the surface temperature of the exterior wall, and flows out through the air vents 141.
  • the environment control mode includes a summer night control mode
  • the water circuit component is used to drive the refrigerator and the water pump through the electric power to obtain cooling liquid flowing in the water circuit circulation pipe.
  • the status of the valve and water pump in the summer night control mode is the same as that in the summer daytime control mode.
  • the photovoltaic modules cannot generate electricity through sunlight. Therefore, the electricity stored in the power storage device 3 can be used to drive the refrigerator 6 and the turned-on water pump.
  • the liquid (for example, water) in the water circuit circulation component can flow in the water circuit circulation pipe (for example, the water circuit circulation pipe 5 laid on the shady wall and the water circuit circulation pipe 4 laid on the roof), taking away the indoor heat, and It flows into the water storage tank 7 and then flows into the refrigerator 6 through the valve 901 and the water pump 803, so that the refrigerator cools the liquid, obtains the cooled liquid, and starts the next liquid cycle.
  • the water circuit circulation pipe for example, the water circuit circulation pipe 5 laid on the shady wall and the water circuit circulation pipe 4 laid on the roof
  • the environment control mode includes a summer night control mode
  • the air path assembly is used to connect the air outlet between the passive house and the air path, the air path and the air path.
  • the air openings between the air ducts and the air openings between the air ducts and the interior of the passive house are opened, and the air openings between the air passage and the exterior of the passive house are closed.
  • Figure 7 shows a schematic diagram of the control of the air duct assembly in the summer night control mode according to an embodiment of the present disclosure.
  • the air outlets 141 ie, air outlet 1
  • air outlet 142 ie, air outlet 2
  • air outlet 145 ie, air outlet 5
  • air outlet 147 ie, air outlet 7
  • the air outlet 143 ie, air outlet 7
  • tuyere 3 tuyere 144 (ie, tuyere 4)
  • tuyere 146 ie, tuyere 6).
  • the environment control mode includes a summer night control mode
  • the air path assembly is used to make the side of the blinds coated with the radiation cooling coating face outside the passive room.
  • the side of the blinds coated with radiant cooling coating faces the outside of the passive room, which can dissipate the indoor heat to the outdoors in the form of thermal radiation and reduce the indoor cooling load.
  • the atmospheric window 8-13 ⁇ m The band radiates heat to the outdoors.
  • indoor hot air floats up through the thermal plume and enters the roof air duct 13 through the air opening 146.
  • the air flow in the roof air duct 13 passes through the cooling liquid flowing in the water circulation pipe 4 laid on the roof.
  • the cooling effect generates cold air with a lower temperature, enters the air passage through the air opening 143 between the air duct 13 and the air passage, and enters the room through the air opening 144 between the air passage and the passive house interior to cool the room.
  • the air vents 145 and 147 can also be opened, so that the cooling airflow can also enter the room from the air vents 145 and 147 . This disclosure does not limit this.
  • the environment control mode includes a winter daytime control mode
  • the waterway component is used to heat the liquid flowing in the waterway circulation pipe provided on the roof with the heat of the solar component to obtain waterway circulation. Heated liquid flowing in pipes.
  • the heating component 701 can also be used to generate heat to heat the liquid flowing in the water circulation pipe to obtain a water circulation pipe. The heated liquid flowing inside.
  • FIG 8 shows a schematic diagram of the control of the waterway component in winter according to an embodiment of the present disclosure.
  • valve 901, valve 902, water pump 803, and water pump 801 can be closed, and valve 903 and water pump 802 can be opened.
  • photovoltaic modules are good large-area heat sources and generate a lot of heat.
  • the heated liquid serves as a heating heat flow and enters the shady wall for laying.
  • the water circulation pipe 5 heats the room through thermal radiation, and at the same time can reduce the heat dissipated through the shady wall, reduce heat loss, and reduce the indoor heat load, improve the indoor hot and humid environment and increase the comfort of heating.
  • the environment control mode includes a winter daytime control mode
  • the air path assembly is used to connect the air outlet between the passive house and the air path, the air path and the air path.
  • the air vents between the air ducts and the air vents between the air ducts and the interior of the passive house are opened, and the air vents between the air passage and the exterior of the passive house are closed.
  • FIG 9 shows a schematic diagram of the control of the air duct assembly in the winter daytime control mode according to an embodiment of the present disclosure.
  • the air outlets 141 ie, air outlet 1
  • air outlet 142 ie, air outlet 2
  • air outlet 145 ie, air outlet 5
  • air outlet 146 ie, air outlet 6
  • the air outlet 143 ie, air outlet 6
  • tuyere 3 tuyere 144 (ie, tuyere 4), and tuyere 147 (ie, tuyere 7).
  • the environment control mode includes a winter daytime control mode, and the air duct assembly is used to make the side of the louver coated with the heat radiation absorbing coating face outside the passive room.
  • the side of the louvers 12 in the air passage between the light-transmitting panel 10 and the glass assembly that is coated with the heat radiation absorbing coating faces the outside of the passive room. It absorbs outdoor heat radiation, causing the air temperature in the air passage to increase, and conducts heat exchange with the wall, thereby increasing the indoor temperature and reducing the indoor heating load.
  • the cold air in the room can sink and enter the air passage through the air opening 144.
  • the air in the air passage is heated and rises due to the heat radiation absorbed by the blinds, floats up through the heat pressure and enters through the air opening 143.
  • Roof air duct 13 What flows in the water circulation pipe 4 on the roof is liquid heated by the heat of the photovoltaic modules. The heated liquid can heat the air in the roof air duct 13 to generate a hot air flow and send it into the room through the air outlet 147.
  • the air vents 145 and 146 can also be opened to allow hot air to enter the room through the air vents 146, 147 and 145 to heat the room.
  • thermochromic glass of the glass component can transmit most of the visible light and near-infrared rays in solar radiation due to the low external temperature, which is lower than the critical temperature threshold, and can provide light and energy to the indoor environment. Fully receive the sun's thermal radiation, increase indoor temperature, and reduce heating load. At the same time, low-emissivity coated glass can reflect the far-infrared rays emitted by indoor objects back into the room, preventing thermal radiation from being emitted outwards, that is, preventing heat from being lost outward.
  • the environment control mode includes a winter night control mode
  • the waterway component also includes a heating component 701, which is used to drive the heating component and the water pump through the electric power, Obtain the heated liquid flowing in the water circulation pipe.
  • the heat source for heating the liquid flowing in the water circulation pipe 4 is the heat accumulated at the bottom of the photovoltaic module 1, and in the winter night control mode, There is no external light, the photovoltaic module 1 does not work, and no heat accumulates. Therefore, the power storage device 3 can be used to provide power to the heating assembly 701 to heat the liquid in the water storage tank 7 , that is, the hot water heated by the heating assembly 701 can be circulated as a heat source.
  • the flow direction of the liquid is consistent with the winter daytime regulation pattern.
  • the liquid flows out of the water tank, enters the water circulation pipe 4 laid on the roof, and then enters the water circulation pipe 5 laid on the shady side wall 18, thereby providing heat radiation to the room, increasing the indoor temperature, and reducing the heat loss of the shady side wall. Heat loss while improving heating comfort.
  • the environment control mode includes a winter night control mode
  • the air path assembly is used to connect the air outlet between the passive house and the air path, the air path and the air path.
  • the air openings between the air ducts, the air openings between the air ducts and the interior of the passive house, and the air openings between the air passage and the exterior of the passive house are closed.
  • FIG 10 shows a schematic diagram of the control of the air duct assembly in the winter night control mode according to an embodiment of the present disclosure.
  • all air vents can be closed, and the heat radiation of the liquid flowing in the water circulation pipe can be used to heat the room.
  • the air vents 145, 146 and 147 can also be opened so that the gas in the air duct 13 can obtain the heat of the heated liquid in the water circulation pipe and send the hot air flow through the air vents 145, 146 and 147. Go indoors and heat the room.
  • the environment control mode includes a winter night control mode
  • the air duct assembly is used to make the side of the blinds coated with the heat radiation absorption coating face outside the passive room.
  • the side coated with the thermal radiation absorption coating faces the outside of the passive room
  • the side coated with the radiation cooling coating faces the outside, dissipating heat radiation to the outside, causing the air temperature in the air passage to be too low and passing through the wall.
  • the low-emissivity coated glass of the glass assembly can reflect the far-infrared rays emitted by indoor objects back into the room, preventing indoor heat from escaping outward.
  • the light-transmitting plate 10 and the glass assembly 11 form an interlayer air passage, it also has an effective regulating effect on the indoor humid environment and can effectively prevent dew condensation on the indoor surface.
  • the sunlight passes through the light-transmitting plate 10, it is projected on the wall facing the sun, and part of the solar radiation energy is absorbed by the wall and converted into heat.
  • the air interlayer is affected by solar radiation, and its relative humidity is much lower than the indoor relative humidity, causing the moisture transfer from the wall to transition from a two-way transfer between the room and the air passage to a one-way transfer from the wall to the air passage.
  • due to the function of the wall to absorb and release humidity the relative humidity in the room can be maintained at a relatively stable and appropriate state.
  • solar energy resources can be fully utilized through solar components installed on the roof, photoelectric conversion efficiency and photothermal conversion efficiency can be improved, heat and electricity can be provided for waterway components, and water circulation components can be utilized at the same time.
  • Reduce the temperature of solar modules improve their photoelectric conversion efficiency, and provide a more comfortable temperature control effect through radiant heating or radiant cooling.
  • the air passage component is used to control the passability of the near-infrared rays emitted by the sun. While providing lighting, it can effectively control the thermal radiation generated by the sun, thereby controlling the indoor temperature changes caused by solar radiation. It can also be heated or cooled through the water passage component.
  • Liquids, as well as louvers obtain heated or cooled airflow, improving indoor temperature control efficiency.
  • waterway components and airway components can be controlled in a variety of environmental control modes in a targeted manner, so that the indoor environment of the passive house can maintain appropriate temperature and humidity, and can save electricity, reduce dependence on fossil energy, and improve the efficiency of the system. Coordination and overall planning among various parts.
  • FIG 11 illustrates an environment control method according to an embodiment of the present disclosure. As shown in Figure 11, the method includes:
  • step S11 determine the environmental parameters to be regulated according to the environmental regulation mode
  • step S12 the environmental parameters in the passive house are regulated according to the actual measured values of the environmental parameters in the passive house, the preset range of the environmental parameters, and according to the passive house environment control system.
  • the environmental parameters to be controlled can be determined based on the environment control mode. For example, in summer day mode or winter day mode, the indoor illumination needs to be controlled, but in summer night mode or winter night mode, there is no need to control the indoor illumination.
  • the environmental parameters can be controlled through the above-mentioned passive house environment control system based on the actual measured values of the environmental parameters in the mobile house and the preset range of the environmental parameters.
  • the environmental control mode includes a summer daytime control mode
  • the environmental parameters include temperature and illuminance.
  • Step S12 may include: based on the actual measured value of the illuminance and the preset range of the illuminance. , adjust the window assembly and lighting assembly; and/or adjust the outlet water temperature and operating time of the refrigerator according to the actual measured value of the temperature and the preset range of the temperature.
  • the photovoltaic module 1 in the summer daytime mode, the photovoltaic module 1 generates electricity and stores it in the power storage device 3 and supplies power to the refrigerator 6, thereby cooling the liquid and realizing that the water circulation pipeline of the shady side wall can Radiant cooling is provided indoors, and the photovoltaic module 1 on the roof can be cooled.
  • Figure 12 shows a control schematic diagram of the summer daytime control mode according to an embodiment of the present disclosure.
  • the blinds 12 are related to indoor illumination, indoor temperature and humidity.
  • the running time and outlet water temperature of the refrigerator 6 may affect the indoor cooling effect, that is, the temperature and humidity.
  • the illumination sensor can obtain the actual measured value of indoor illumination in real time, and the controller compares the actual measured value of illumination with the preset range of illumination (for example, 300 ⁇ 50lux). If the indoor illumination is not within this range, , then further determine whether the angle of the blinds 12 has been adjusted to the maximum value. If the angle of the blinds 12 is still adjustable, the controller will send the error signal to the actuator. After receiving the signal, the actuator controls the rotation angle of the blinds 12 to adjust the indoor illumination. If the angle of the blinds 12 is adjusted to the maximum and still cannot meet the indoor illumination requirements, the indoor lighting components (for example, lamps) can be used to adjust the angle.
  • the preset range of illumination for example, 300 ⁇ 50lux
  • the controller determines whether the indoor temperature and humidity are within the preset range (for example, 26-28 °C, 30-70% range), if the temperature or humidity is not within this range, a signal is sent to the actuator to adjust the outlet water temperature of the refrigerator 6 to adjust the indoor temperature and humidity.
  • the humidity may not be adjusted separately, but it may be determined whether the temperature is within the preset range, that is, after the temperature is adjusted to the preset range, the humidity may be automatically adjusted to the preset range.
  • the passive house environment control system further includes a power storage device
  • the method further includes: obtaining the power stored in the power storage device; when the power stored in the power storage device is less than a preset In the case of power threshold, the range of regulation of the environmental parameters is reduced.
  • a preset electricity threshold for example, 50%.
  • the environment control mode includes a summer night control mode
  • the environmental parameters include temperature.
  • Step S12 may include: based on the actual measured value of the temperature and the preset range of the temperature, the Adjust the outlet water temperature and operating time of the refrigerator.
  • the electricity in the power storage device 3 is used to supply power to the refrigerator 6 to refrigerate the liquid, so that the water circulation pipe of the shady wall can provide indoor radiation. cold.
  • Figure 13 shows a control schematic diagram of the summer night control mode according to an embodiment of the present disclosure.
  • the operating time and outlet water temperature of the refrigerator 6 may affect the indoor cooling effect, that is, the temperature and humidity.
  • the controller can determine whether the indoor temperature and humidity are within the preset range (for example, 26-28°C, 30-70% range) based on the actual measured value of temperature and humidity of the temperature and humidity sensor. If the temperature or humidity is not within this range, then Send a signal to the actuator to adjust the outlet water temperature of the refrigerator 6 to adjust the indoor temperature and humidity. Further, the humidity may not be adjusted separately, but it may be determined whether the temperature is within the preset range, that is, after the temperature is adjusted to the preset range, the humidity may be automatically adjusted to the preset range. Furthermore, it can also be determined whether the stored electricity of the power storage device 3 is above a preset electricity threshold (for example, 50%).
  • a preset electricity threshold for example, 50%
  • the photovoltaic power generation is insufficient and electricity can be saved, for example, by
  • the operating time or outlet water temperature of the refrigerator 6 is adjusted to reduce power consumption and achieve energy saving while satisfying the comfort level. Further, if the indoor temperature and humidity fall within the preset range, no adjustment is required, and the indoor temperature and humidity are continuously monitored.
  • the environmental control mode includes a winter daytime control mode
  • the environmental parameters include temperature and illuminance.
  • Step S12 may include: based on the actual measured value of the illuminance and the preset range of the illuminance. , adjust the window assembly and lighting assembly; and/or adjust the flow rate of the water pump according to the actual measured value of the temperature and the preset range of the temperature.
  • the roof water circulation pipe absorbs the heat of the photovoltaic module 1 and heats the liquid. That is, the photovoltaic module 1 serves as a heat source and causes the heated liquid to flow through the roof in sequence.
  • the water circulation pipes and the water circulation pipes on the shady wall provide thermal radiation indoors.
  • the blinds 12 are related to the indoor illumination, and the water pump controls the flow and velocity of the pipeline to affect the indoor temperature and humidity.
  • Figure 14 shows a control schematic diagram of the winter daytime control mode according to an embodiment of the present disclosure.
  • the illumination sensor can obtain the actual measured value of indoor illumination in real time, and the controller compares the actual measured value of illumination with the preset range of illumination. (for example, 300 ⁇ 50lux) for comparison. If the indoor illumination is not within this range, it is further determined whether the angle of the blinds 12 has been adjusted to the maximum value. If the angle of the blinds 12 is still adjustable, the controller sends the error signal to the execution The actuator controls the rotation angle of the blinds 12 after receiving the signal to adjust the indoor illumination. If the angle of the blinds 12 is adjusted to the maximum and still cannot meet the indoor illumination requirements, the indoor lighting can be adjusted.
  • the preset range of illumination for example, 300 ⁇ 50lux
  • the controller determines whether the indoor temperature and humidity are within the preset range (for example, 16-22 °C, 30-60% range), if the temperature or humidity is not within this range, a signal is sent to the actuator to adjust the flow of the water pump to adjust the indoor temperature and humidity.
  • the humidity may not be adjusted separately, but it may be determined whether the temperature is within the preset range, that is, after the temperature is adjusted to the preset range, the humidity may be automatically adjusted to the preset range. If the indoor temperature and humidity fall within the preset range, no adjustment is required, and the indoor temperature and illumination are continuously monitored.
  • the preset amount of electricity stored in the power storage device can also be monitored, and the degree of regulation of the environmental parameters can be controlled in a manner similar to the above.
  • the environment control mode includes a winter night control mode
  • the environmental parameters include temperature
  • the water circuit circulation component further includes a heating component, such as an electric heating wire 701 .
  • Step S12 may include: adjusting the heating temperature of the heating component according to the actual measured value of the temperature and the preset range of the temperature.
  • the power storage device 3 in the winter night control mode, provides power to the electric heating wire 701 in the water storage tank 7, and the electric heating wire 701 heats the liquid in the water storage tank, thereby circulating the heated liquid.
  • the water circulation pipes in the roof and shady wall provide thermal radiation indoors. Therefore, the water temperature in the water storage tank is related to the indoor temperature and humidity.
  • Figure 15 shows a control schematic diagram of the winter night control mode according to an embodiment of the present disclosure.
  • the controller can determine whether the indoor temperature and humidity are within the preset range (for example, 16-22°C, 30-60% range) based on the actual measured value of temperature and humidity of the temperature and humidity sensor. If the temperature or humidity is not within this range, then Send a signal to the actuator to adjust the power supply of the electric heating wire to control the water temperature in the water storage tank and thereby control the indoor temperature and humidity.
  • the humidity may not be adjusted separately, but it may be determined whether the temperature is within the preset range, that is, after the temperature is adjusted to the preset range, the humidity may be automatically adjusted to the preset range.
  • the preset amount of electricity stored in the power storage device can also be monitored, and the degree of regulation of the environmental parameters can be controlled in a manner similar to the above.

Abstract

本公开涉及被动房环境调控系统及环境调控方法。所述系统包括:水路组件和风路组件,水路组件包括太阳能组件和水路循环组件;太阳能组件用于通过光电转换获取电力,并产生热量;水路循环组件用于根据环境调控模式,使得水路循环管道内流动的液体获取热量或冷量;风路组件包括窗口组件和风道循环组件;窗口组件用于根据环境调控模式确定近红外线的通过性;风道循环组件用于获取加热或冷却的气流。根据本公开的实施例的被动房环境调控系统,可根据不同的环境调控模式切换水路组件和风路组件的控制方式,在不同的模式下获得良好的环境调控效果,提高系统各部分之间的协调性和统筹性。还可节约电能,减少对化石能源的依赖。

Description

被动房环境调控系统及环境调控方法
本公开要求在2022年6月21日提交中国专利局、申请号为202210708547.1、申请名称为“被动房环境调控系统及环境调控方法”的中国专利申请的优先权,其全部内容通过引用结合在本公开中。
技术领域
本公开涉及环境调控领域,尤其涉及一种被动房环境调控系统及环境调控方法。
背景技术
“被动房”是一种全新的节能建筑概念,也是推动建筑节能工作的重要契机和平台。其通过高隔热隔音、密封性强的建筑围护结构和可再生能源实现低能耗运行,不需要额外提供主动的采暖和空调系统即可维持室内热环境,大幅降低能源需求。被动房所用到的主要技术有太阳能光伏发电、高性能围护结构、自然通风及太阳能烟囱效应、双层皮幕墙、热回收等。
对于相关技术中的分布式光伏技术,在建筑中的应用主要有两种,分别是安装型太阳能光伏建筑BAPV(Building Attached Photovoltaic)和光伏建筑一体化BIPV(Building Integrated Photovoltaic)后者的好处是让太阳能系统成为建筑设计的一部分,巧妙高效地利用空间,使建筑屋顶或向阳面得到充分利用,通过同步设计与安装节省了太阳能系统的安装成本。通过建筑朝向和屋顶大面积光伏布置,可充分利用光照发电并储存。但太阳能电池板是电子元件,随着温度升高,光电效率下降。温度每升高1℃,太阳能电池的峰值功率损失率约为0.41%,工作在20℃的硅太阳能电池,其输出功率要比工作在70℃的高20%。因此,提高太阳能电池的光电转换效率是光伏建筑推广面临的难题之一。
对于相关技术中的高性能围护结构节能技术,当外墙的传热系数达到一定限制时性能已达到上限,再通过保温等技术减小传热系数对性能提升不明显且造价大幅提升,而门窗的能耗约为同等面积墙体的4倍、屋面的5倍、地面的20多倍,约占建筑围护结构总能耗的40%-50%,因此,增强门窗的保温隔热性能是改善室内热环境和提高建筑节能水平的重要环节。窗户除了须考虑通风、遮阳、透光等功能要求外,还需达到良好的保温隔热性能。
对于相关技术中的双层皮幕墙技术,夏季在强烈的阳光照射下,夹层空气中往往温度过高,尤其是当双层玻璃幕墙之间间隔太小而遮阳效果不佳时,其温度有时会超过室外温度,使得通过开窗获得自然通风无法实现。
相关技术中的暖通空调等设备难以脱碳以实现对化石能源的替代,对“双碳”目标影响较大,且属于民生工程,供暖方式的选择直接影响热环境营造及人体热舒适。对于相关技术中的暖通空调末端技术,往往是通过独立置于室内的壁挂式或柜式空调及多种形式的散热器,抑或是与墙壁、地板结合的盘管或毛细管。但这些末端都需要额外配置锅炉、燃气壁挂炉、热泵等附属设备,与建筑的集成性不好。独立分布式空调、散热器等容易造成室内环境不均匀、过冷或者过热的现象。
此外,建筑环境营造包括对室内热湿环境、风环境、光环境、声环境等多方面的综合考虑,相关技术往往对其中某一个方面进行运行调控,对各个系统之间的协调性和统筹性还存在不足,导致了不必要的能源浪费和复杂繁琐的运维策略。
发明内容
本公开提出了一种被动房环境调控系统及环境调控方法。
根据本公开的一方面,提供了一种被动房环境调控系统,所述系统包括:设置于屋顶及背阴面墙体的水路组件,以及设置于屋顶及向阳面墙体的风路组件,所述水路组件包括设置于屋顶的太阳能组件,以及设置于屋顶及背阴面墙体的水路循环组件;太阳能组件用于通过光电转换获取电力,并产生热量;所述水路循环组件包括制冷机、水泵、阀门以及铺设于屋顶及背阴面墙体的水路循环管道,所述水路循环组件用于根据环境调控模式,通过所述电力驱动所述水泵和所述制冷机,使得所述水路循环管道内流动的液体获取热量或冷量;所述风路组件包括设置于向阳面墙体的窗口组件,以及设置于屋顶及向阳面墙体的风道循环组件;所述窗口组件用于根据所述环境调控模式,确定近红外线的通过性;所述风道循环组件用于根据所述环境调控模式,形成热压通风气流,并至少通过所述水路循环组件获取加热或冷却的气流;所述风路组件用于根据所述近红外线的通过性以及所述加热或冷却的气流,调控被动房内的环境参数。
在一种可能的实现方式中,所述太阳能组件包括用于进行光电转换以获取电力的光伏组件,以及设置在光伏组件下方的反射层,用于降低所述光伏组件的温度,铺设于屋顶的水路循环管道设置于所述反射层的下方,用于使所述水路循环管道内流动的液体获取所述光伏组件进行光电转换时产生的热量。
在一种可能的实现方式中,所述窗口组件包括透光板,玻璃组件以及百叶窗,所述透光板和所述玻璃组件之间包括空气通路,所述百叶窗设置在所述空气通路中。
在一种可能的实现方式中,所述玻璃组件包括热致变色玻璃,用于在所述热致变色玻璃表面温度高于或等于临界温度阈值的情况下,反射近红外线,且透射可见光;或者,在所述热致变色玻璃表面温度低于临界温度阈值的情况下,透射近红外线及可见光。
在一种可能的实现方式中,所述玻璃组件包括低辐射镀膜玻璃,用于反射远红外线。
在一种可能的实现方式中,所述百叶窗的一面涂覆辐射制冷涂层,另一面涂覆热辐射吸收涂层,所述百叶窗用于根据所述环境调控模式,确定朝向所述被动房室外的面,以及确定百叶窗的倾角,所述百叶窗的倾角用于调节所述百叶窗的透光率。
在一种可能的实现方式中,所述风道循环组件包括所述透光板和所述玻璃组件之间的空气通路、设置于屋顶的水路循环管道下方的风道、所述风道与所述被动房室内之间的风口、所述被动房室内与所述空气通路之间的风口,所述空气通路与所述被动房室外之间的风口、以及所述空气通路与所述风道之间的风口,其中,所述风道用于至少通过所述水路循环组件获取加热或冷却的气流,所述风道与所述被动房室内之间的风口设置于屋顶。
在一种可能的实现方式中,所述环境调控模式包括夏季日间调控模式,所述水路组件用于通过所述电力驱动所述制冷机和所述水泵,获得水路循环管道内流动的冷却液体。
在一种可能的实现方式中,所述环境调控模式包括夏季日间调控模式,所述风路组件用于使所述百叶窗的涂覆辐射制冷涂层的一面朝向所述被动房室外。
在一种可能的实现方式中,所述环境调控模式包括夏季日间调控模式,所述风路组件用于使所述被动房室内与所述空气通路之间的风口,以及所述空气通路与所述风道之间的风口关闭,并使所述空气通路与所述被动房室外之间的风口,以及使所述风道与所述被动房室内之间的风口打开。
在一种可能的实现方式中,所述环境调控模式包括夏季夜间调控模式,所述水路组件用于通过所述电力驱动所述制冷机和所述水泵,获得水路循环管道内流动的冷却液体。
在一种可能的实现方式中,所述环境调控模式包括夏季夜间调控模式,所述风路组件用于使所述百叶窗的涂覆辐射制冷涂层的一面朝向所述被动房室外。
在一种可能的实现方式中,所述环境调控模式包括夏季夜间调控模式,所述风路组件用于使所述被动房室内与所述空气通路之间的风口、所述空气通路与所述风道之间的风口,以及所述风道与所述被动房室内之间的风口打开,并使所述空气通路与所述被动房室外之间的风口关闭。
在一种可能的实现方式中,所述环境调控模式包括冬季日间调控模式,所述水路组件用于通过太阳能组件的热量对设置于屋顶的水路循环管道内流动的液体进行加热,获得水路循环管道内流动的加热液体。
在一种可能的实现方式中,所述环境调控模式包括冬季日间调控模式,所述风路组件用于使所述百叶窗的涂覆热辐射吸收涂层的一面朝向所述被动房室外。
在一种可能的实现方式中,所述环境调控模式包括冬季日间调控模式,所述风路组件用于使所述被动房室内与所述空气通路之间的风口、所述空气通路与所述风道之间的风口,以及所述风道与所述被动房室内之间的风口打开,并使所述空气通路与所述被动房室外之间的风口关闭。
在一种可能的实现方式中,所述环境调控模式包括冬季夜间调控模式,所述水路组件还包括加热组件,
所述水路组件用于通过所述电力驱动所述加热组件和所述水泵,获得水路循环管道内流动的加热液体。
在一种可能的实现方式中,所述环境调控模式包括冬季夜间调控模式,所述风路组件用于使所述 百叶窗的涂覆热辐射吸收涂层的一面朝向所述被动房室外。
在一种可能的实现方式中,所述环境调控模式包括冬季夜间调控模式,所述风路组件用于使所述被动房室内与所述空气通路之间的风口、所述空气通路与所述风道之间的风口、所述风道与所述被动房室内之间的风口,以及所述空气通路与所述被动房室外之间的风口关闭。
根据本公开的一方面,提供了一种环境调控方法,包括:根据环境调控模式,确定待调控的环境参数;根据被动房内的所述环境参数的实测值,所述环境参数的预设范围,以及所述被动房环境调控系统,对所述被动房内的环境参数进行调控。
在一种可能的实现方式中,所述环境调控模式包括夏季日间调控模式,所述环境参数包括温度和照度,其中,所述根据被动房内的所述环境参数的实测值,所述环境参数的预设范围,以及所述被动房环境调控系统,对所述被动房内的环境参数进行调控,包括:根据所述照度的实测值以及所述照度的预设范围,对所述窗口组件和照明组件进行调节;和/或根据所述温度的实测值以及所述温度的预设范围,对所述制冷机的出水温度和运行时间进行调节。
在一种可能的实现方式中,所述环境调控模式包括夏季夜间调控模式,所述环境参数包括温度,其中,所述根据被动房内的所述环境参数的实测值,所述环境参数的预设范围,以及所述被动房环境调控系统,对所述被动房内的环境参数进行调控,包括:根据所述温度的实测值以及所述温度的预设范围,对所述制冷机的出水温度和运行时间进行调节。
在一种可能的实现方式中,所述环境调控模式包括冬季日间调控模式,所述环境参数包括温度和照度,其中,所述根据被动房内的所述环境参数的实测值,所述环境参数的预设范围,以及所述被动房环境调控系统,对所述被动房内的环境参数进行调控,包括:根据所述照度的实测值以及所述照度的预设范围,对所述窗口组件和照明组件进行调节;和/或根据所述温度的实测值以及所述温度的预设范围,对所述水泵的流量进行调节。
在一种可能的实现方式中,所述环境调控模式包括冬季夜间调控模式,所述环境参数包括温度,所述水路循环组件还包括加热组件,其中,所述根据被动房内的所述环境参数的实测值,所述环境参数的预设范围,以及所述被动房环境调控系统,对所述被动房内的环境参数进行调控,包括:根据所述温度的实测值以及所述温度的预设范围,对所述加热组件的加热温度进行调节。
在一种可能的实现方式中,所述被动房环境调控系统还包括蓄电装置,所述方法还包括:获取蓄电装置中存储的电量;在所述蓄电装置中存储的电量小于预设电量阈值的情况下,降低对所述环境参数的调控幅度。
根据本公开的实施例的被动房环境调控系统,可通过设置在屋顶的太阳能组件充分利用太阳能资源,提高光电转化效率及光热转化效率,为水路组件提供热量和电力,同时可利用水路循环组件降低太阳能组件的温度,提高其光电转化效率,且可通过辐射供暖或辐射供冷提供更舒适的室内环境。并且,通过风路组件控制太阳发出的近红外线的通过性,在提供照明的同时,有效控制太阳产生的热辐射,从而控制太阳照射引起的室内温度变化,还可通过水路组件中加热或冷却的液体,获得加热或冷却的气流,提升室内的温控效率。并可节约电能,减少对化石能源的依赖,提高了系统各部分之间的协调性和统筹性。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,而非限制本公开。根据下面参考附图对示例性实施例的详细说明,本公开的其它特征及方面将变得清楚。
附图说明
此处的附图被并入说明书中并构成本说明书的一部分,这些附图示出了符合本公开的实施例,并与说明书一起用于说明本公开的技术方案。
图1示出根据本公开实施例的被动房环境调控系统的示意图;
图2示出根据本公开实施例的被动房环境调控系统的示意图;
图3示出根据本公开实施例的光伏组件的示意图;
图4A和图4B示出根据本公开实施例的玻璃组件的示意图;
图5示出根据本公开实施例的水路组件在夏季的调控示意图;
图6示出根据本公开实施例的风路组件在夏季日间调控模式下的调控示意图;
图7示出根据本公开实施例的风路组件在夏季夜间调控模式下的调控示意图;
图8示出根据本公开实施例的水路组件在冬季的调控示意图;
图9示出根据本公开实施例的风路组件在冬季日间调控模式下的调控示意图;
图10示出根据本公开实施例的风路组件在冬季夜间调控模式下的调控示意图;
图11示出根据本公开的实施例的环境调控方法;
图12示出根据本公开的实施例的夏季日间调控模式的调控示意图;
图13示出根据本公开的实施例的夏季夜间调控模式的调控示意图;
图14示出根据本公开的实施例的冬季日间调控模式的调控示意图;
图15示出根据本公开的实施例的冬季夜间调控模式的调控示意图。
具体实施方式
以下将参考附图详细说明本公开的各种示例性实施例、特征和方面。附图中相同的附图标记表示功能相同或相似的元件。尽管在附图中示出了实施例的各种方面,但是除非特别指出,不必按比例绘制附图。
在这里专用的词“示例性”意为“用作例子、实施例或说明性”。这里作为“示例性”所说明的任何实施例不必解释为优于或好于其它实施例。
本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中术语“至少一种”表示多种中的任意一种或多种中的至少两种的任意组合,例如,包括A、B、C中的至少一种,可以表示包括从A、B和C构成的集合中选择的任意一个或多个元素。
另外,为了更好地说明本公开,在下文的具体实施方式中给出了众多的具体细节。本领域技术人员应当理解,没有某些具体细节,本公开同样可以实施。在一些实例中,对于本领域技术人员熟知的方法、手段、元件和电路未作详细描述,以便于凸显本公开的主旨。
为了综合调控被动房中的环境参数,减少对化石能源的依赖,提升获取到的太阳能等能源的利用效率。本公开涉及一种被动房环境调控系统。
图1示出根据本公开实施例的被动房环境调控系统的示意图,如图1所示,所述系统包括:设置于屋顶及背阴面墙体的水路组件,以及设置于屋顶及向阳面墙体的风路组件;
所述水路组件包括设置于屋顶的太阳能组件,以及设置于屋顶及背阴面墙体的水路循环组件;
太阳能组件用于通过光电转换获取电力,并产生热量;
所述水路循环组件包括制冷机、水泵、阀门以及铺设于屋顶及背阴面墙体的水路循环管道,所述水路循环组件用于根据环境调控模式,通过所述电力驱动所述水泵和所述制冷机,使得所述水路循环管道内流动的液体获取热量或冷量;
所述风路组件包括设置于向阳面墙体的窗口组件,以及设置于屋顶及向阳面墙体的风道循环组件;
所述窗口组件用于根据所述环境调控模式,确定近红外线的通过性;
所述风道循环组件用于根据所述环境调控模式,形成热压通风气流,并至少通过所述水路循环组件获取加热或冷却的气流;
所述风路组件用于根据所述近红外线的通过性以及所述加热或冷却的气流,调控被动房内的环境参数。
根据本公开的实施例的被动房环境调控系统,可通过设置在屋顶的太阳能组件充分利用太阳能资源,提高光电转化效率及光热转化效率,为水路组件提供热量和电力,同时可利用水路循环组件降低太阳能组件的温度,提高其光电转化效率,且可通过辐射供暖或辐射供冷提供更舒适的室内环境。并且,通过风路组件控制太阳发出的近红外线的通过性,在提供照明的同时,有效控制太阳产生的热辐射,从而控制太阳照射引起的室内温度变化,还可通过水路组件中加热或冷却的液体,获得加热或冷却的气流,提升室内的温控效率。并可节约电能,减少对化石能源的依赖,提高了系统各部分之间的 协调性和统筹性。
在一种可能的实现方式中,所述太阳能组件包括用于进行光电转换以获取电力的光伏组件,以及设置在光伏组件下方的反射层,用于降低所述光伏组件的温度,铺设于屋顶的水路循环管道设置于所述反射层的下方,用于使所述水路循环管道内流动的液体获取所述光伏组件进行光电转换时产生的热量。
图2示出根据本公开实施例的被动房环境调控系统的示意图,如图2所示,水路组件包括设置于屋顶的太阳能组件,以及设置于屋顶及背阴面墙体的水路循环组件。其中,太阳能组件可包括光伏组件1和其下部的反射层2以及蓄电装置3(参照图2、图6、图7、图9、图10),其中,所述蓄电装置可包括蓄电池等,本公开对蓄电装置的类型不做限制。所述光伏组件1可设置在屋顶,以高效地吸收太阳光,从而利用太阳光辐射的能量,例如,转换为热量或电力。在示例中,光伏组件1可包括太阳能电池板等,本公开对光伏组件的类型不做限制。所述被动房的主体架构可由钢筋混凝土15建成,且可在屋顶及墙体内铺设保温层16。
图3示出根据本公开实施例的光伏组件的示意图,如图3所示,光伏组件为5层结构,从上至下依次为:高透镀膜玻璃101、上层封装胶膜102、双面电池片103、下层封装胶膜104、背板玻璃105。其中,高透镀膜玻璃101具有太阳光谱波段全透过的性能,在示例中,可在玻璃表面形成一层100nm-150nm厚的多孔氧化硅薄膜,从而形成高透镀膜玻璃101,从而增加可见光的透过率以提升光伏组件的发电效率。本公开对高透镀膜玻璃101的制造方法和镀膜的类型及厚度不做限制。
在一种可能的实现方式中,上层封装胶膜102和下层封装胶膜104为绝缘的透明薄层,使得太阳光辐射通过封装胶膜照射双面电池片103,并起到保护双面电池片103的作用。在示例中,上层封装胶膜102和下层封装胶膜104的材料包括但不限于乙烯-醋酸乙烯酯共聚物EVA、乙烯-辛烯共聚物POE中的一种或其组合,封装胶膜的厚度可为0.4-0.6mm。本公开对上层封装胶膜102和下层封装胶膜104的制造材料及厚度不做限制。
在一种可能的实现方式中,所述双面电池片103可以是N型或P型晶体硅类双面太阳能电池片。所述双面电池片103通过导线与蓄电装置相连,从而可将双面电池片103产生的电力通过蓄电装置进行储存,以提供给制冷机、水泵、加热组件等设备使用。
在一种可能的实现方式中,所述背板玻璃105可以是TPT聚氟乙烯复合膜,厚度为0.2-0.4mm。本公开对背板玻璃105的制造材料和厚度不做限制。
在一种可能的实现方式中,所述光伏组件下方的反射层可反射双面电池片103未吸收的长波辐射,可缓解光伏组件下方温度过高,光电转换效率下降的情况。并且,所述反射层可作为热传导层,将光伏组件的热量迅速传给下方的水路循环管道(即,铺设于屋顶的水路循环管道),可为水路循环管道中流动的液体提供热量(例如,在冬季时,使得水路循环管道中流动的液体升温),还可通过水路循环管道带走光伏组件积累的热量,提高光伏发电效率。在示例中,反射层的材料包括但不限于银层等反射金属层,厚度可为50-200nm。本公开对反射层的制造材料和厚度不做限制。
在一种可能的实现方式中,所述水路循环组件包括制冷机、水泵、阀门以及铺设于屋顶及背阴面墙体的水路循环管道,所述水路循环组件用于根据环境调控模式,通过所述电力驱动所述水泵和所述制冷机,使得所述水路循环管道内流动的液体获取热量或冷量。所述水路循环组件还包括储水箱,用于储存水路循环管道中流动的水等液体。所述储水箱内可设置加热组件(例如,电热丝),可用于为液体加热。
在一种可能的实现方式中,所述水路循环管道可以是镀锌钢管。水路循环管道铺设于屋顶和背阴面墙体,可通过水路循环管道中流动的液体为被动房室内提供热辐射或冷辐射,从而提供更舒适的温控效果。水路循环管道中流动的液体可通过光伏组件的热量加热,并可通过制冷机制冷,从而为被动房内提供热辐射或冷辐射,同时,水路循环管道还可带走光伏组件的热量,从而提高光伏组件的发电效率。
在一种可能的实现方式中,水路循环组件还可包括储水箱7和加热组件701(例如,电热丝),所述储水箱可用于存储水路循环管道中流动的液体,例如,水。所述加热组件可设置在水箱中,也可设 置在水路循环管道中,可在光伏组件不能产生热量时(例如,夜间),通过加热组件使水路循环管道中流动的液体升温,从而可为被动房室内提供热辐射。
在一种可能的实现方式中,可通过电力驱动水泵,使得水路循环管道中的液体进行循环。在示例中,在夏季日间时,光伏组件可吸收太阳的照射,产生电力,并存储在蓄电装置中。蓄电装置可为制冷机供电,使得水路循环管道中的液体降温,在水路循环管道中的液体进行循环时,可为被动房室内提供冷辐射,提升制冷的舒适度,带走室内的热量,还可带走光伏组件的热量,提升光伏组件的发电效率。带走上述热量的液体可进入储水箱,并通过水泵的作用进入制冷机进行降温,或者,可直接通过水泵的作用进入制冷机进行降温,进而使得降温后的液体继续进行循环。
在示例中,在冬季日间时,可通过水路循环管道中的循环的液体带走光伏组件的热量,提高光伏发电效率,且可为循环的液体进行加热,从而在循环过程中为被动房室内提供热辐射,从而为室内供暖。并且,铺设于背阴面墙体的水路循环管道还可减少背阴面墙体的热损失,减少室内热负荷。可通过热辐射的形式为室内供暖,提高供暖的舒适度。
在一种可能的实现方式中,所述风路组件包括设置于向阳面墙体17(参照图5、图8)的窗口组件,以及设置于屋顶及向阳面墙体17的风道循环组件。
在一种可能的实现方式中,所述窗口组件包括透光板10,玻璃组件11以及百叶窗12(参照图2、图6、图7、图9、图10),所述透光板和所述玻璃组件11之间包括空气通路,所述百叶窗设置在所述空气通路中。
在一种可能的实现方式中,所述透光板由全波段高透过率的透明材料制成,例如,以聚碳酸酯为主要材料的PC透光板,所述透光板的类型包括但不限于中空阳光板、中空阳光瓦、蜂窝阳光板等。在示例中,所述透光板的厚度为4mm-8mm。透光率在80%-90%或更高。具有抗撞击、防紫外线、重量轻、阻燃、隔音等特点。本公开对透光板的材料、类型和厚度不做限制。
在一种可能的实现方式中,所述玻璃组件11包括热致变色玻璃,用于在所述热致变色玻璃表面温度高于或等于临界温度阈值的情况下,反射近红外线,且透射可见光;或者,在所述热致变色玻璃表面温度低于临界温度阈值的情况下,透射近红外线及可见光。
在一种可能的实现方式中,所述热致变色玻璃包括热致变色调光材料与玻璃等材料组成的可调节太阳辐射的节能玻璃,热致变色玻璃的光学性能,如透射率、反射率等,可随光热等物理环境而发生变化,通过热致变色玻璃的光学性能,可达到调控室内环境温度的目的。在示例中,所述热致变色玻璃具体包括两片单层玻璃(例如,厚度为6mm)组成的玻璃夹层与填充在所述玻璃夹层内的热致变色层,在示例中,热致变色层由基于PNIPAM的水凝胶聚合物制成。PNIPAM为聚N-异丙基丙烯酰胺,其临界温度阈值约为33℃,接近于室温,可以通过光热效应触发其性质变化。热致变色材料包括但不限于PNIPAM、氧化石墨烯、VO2(二氧化钒)、铯钨青铜中的一种,或者以上几种材料制成的复合材料。本公开对热致变色玻璃的厚度、光学性能的具体参数以及制造材料不做限制。
在一种可能的实现方式中,在夏季时,热致变色玻璃的表面温度高于或等于临界温度阈值(例如,33℃),热致变色玻璃可反射太阳发出的近红外线,从而屏蔽热辐射,减少进入室内的热量,降低夏季室内的冷负荷,同时,可使可见光通过热致变色玻璃,保持室内的照度,为室内提供照明。在冬季时,热致变色玻璃的表面温度低于临界温度阈值(例如,33℃),热致变色玻璃可透射近红外线及可见光,使得太阳光的热辐射进入室内,减少室内的供暖热负荷,同时可为室内提供照明。
在一种可能的实现方式中,所述玻璃组件11包括低辐射镀膜玻璃(例如,low-e玻璃),用于反射远红外线。所述低辐射镀膜玻璃与热致变色玻璃之间可包括空气层,所述低辐射镀膜玻璃的靠近空气层的一侧贴敷有低辐射镀膜,所述低辐射镀膜可对可见光具有高透过率(例如,70-80%的透过率),对远红外线具有低透过率、低吸收率、高反射率,因此,可用于反射远红外线。此外,镀膜层的材料和镀膜厚度的不同,可导致低辐射镀膜玻璃对近红外的透过率不同。在示例中,在冬季时,在室内温度高于室外温度时,室内温度较高物体发射的远红外线,遇到低辐射镀膜玻璃时,有绝大部分(例如,90%以上)被反射回室内,因此,在低辐射镀膜玻璃可起到保温的作用。在夏季时,室外温度高于室内温度,室外高温物体(例如其他建筑物)可发射远红外线,遇到低辐射镀膜玻璃时,有绝大部分(例 如,90%以上)被反射回室外,从而可降低室内的冷负荷,起到隔热的作用。
图4A和图4B示出根据本公开实施例的玻璃组件的示意图。所述玻璃组件包括所述热致变色玻璃和所述低辐射镀膜玻璃,以及所述热致变色玻璃和所述低辐射镀膜玻璃之间的空气层114。所述热致变色玻璃可包括玻璃111和玻璃113,以及热致变色层112。所述低辐射镀膜玻璃包括玻璃116和低辐射镀膜115。在示例中,所述玻璃111、玻璃113和玻璃116的厚度为6mm,本公开对玻璃的具体厚度不做限制。
在一种可能的实现方式中,如图4A所示,所述玻璃组件11(参照图4A和图2、图6、图7、图9、图10)可在冬季时采光补能,对可见光19具有高透射率,以满足照明需求,且由于温度低于临界温度阈值,可使太阳发出的近红外线20透射玻璃组件11,对室内物体发射的远红外线21被玻璃组件11反射回室内,从而接收太阳的热辐射,同时减少室内的热量流失。如图4B所示,在夏季时,可通过玻璃组件11进行采光隔热,对可见光19具有高透射率,以满足照明需求,且由于温度高于临界温度阈值,可使太阳发出的近红外线20被反射,并且可反射室内外物体发射的远红外线21,以隔绝外界的热辐射,同时阻止室内的冷辐射向外界流失。
在一种可能的实现方式中,所述窗口组件包括设置在透光板10和玻璃组件11之间的空气通路中的百叶窗12。所述百叶窗的一面涂覆辐射制冷涂层,另一面涂覆热辐射吸收涂层,所述百叶窗用于根据所述环境调控模式,确定朝向所述被动房室外的面,以及确定百叶窗的倾角,所述百叶窗的倾角用于调节所述百叶窗的透光率。
在一种可能的实现方式中,所述百叶窗不仅可调节光线的透射率,例如,通过调节百叶窗的倾角,来调节遮挡部分和透光部分之间的比例,且在百叶窗的两面分别具有两种涂层,即,百叶窗的一面涂覆辐射制冷涂层,另一面涂覆热辐射吸收涂层。在示例中,所述热辐射吸收涂层可由具有高太阳辐射吸收率的材料涂覆而成,所述热辐射吸收涂层可以是黑色涂层或黑色金属镀层。所述辐射制冷涂层可具有较高的太阳辐射反射率以及较高的长波发射率,在示例中,可在8-13μm大气窗口具有高发射率,可向外发出热辐射,降低自身的温度,所述辐射制冷涂层可包括高分子柔性材料、硅体微元与银层等组成的复合膜。本公开对辐射制冷涂层和热辐射吸收涂层的制造材料不做限制。
在示例中,在夏季时,所述百叶窗的辐射制冷涂层朝向被动房室外,以向外散发热辐射,带走室内的热量,从而降低室内的温度,且可降低百叶窗所在的空气通路中空气的温度。在冬季时,所述百叶窗的热辐射吸收涂层朝向被动房室外,以吸收太阳的热辐射,提升上述空气通路中空气的温度,并与墙体进行热交换,从而提高室内的温度。
在一种可能的实现方式中,所述风路组件包括设置于屋顶及向阳面墙体的风道循环组件。所述风道循环组件包括所述透光板10和所述玻璃组件11之间的空气通路、设置于屋顶的水路循环管道下方的风道13(参照图2、图6、图7、图9、图10)、所述风道与所述被动房室内之间的风口、所述被动房室内与所述空气通路之间的风口,所述空气通路与所述被动房室外之间的风口、以及所述空气通路与所述风道之间的风口,其中,所述风道用于至少通过所述水路循环组件获取加热或冷却的气流,所述风道与所述被动房室内之间的风口设置于屋顶。例如,通过百叶窗来提升或降低空气通路中空气的温度,以及,获取水路循环组件中流动的液体的热量或冷量,从而进行加热或冷却。
在一种可能的实现方式中,如图2所示,屋顶的风道可设置于水路循环管道下方,以通过加热的液体为风道中的气流加热,或者通过冷却的液体为风道中的气流制冷,从而获得加热或冷却的气流,以调控室内的温度。如图2所示,风道与被动房室内之间的风口包括风口5、风口6和风口7,被动房室内与空气通路之间的风口包括风口4,空气通路与被动房室外之间的风口包括风口1和风口2,空气通路与风道之间的风口包括风口3。
在一种可能的实现方式中,上述水路组件和风路组件中的各个部分可根据环境调控模式来控制,从而在夏季时降低室内的温度,在冬季时升高室内的温度,以获得调控室内的温度等环境参数的效果。且减少对额外电力的需求,从而减少对化石能源的依赖,减少碳排放。并可获得更舒适的调控效果。
在一种可能的实现方式中,所述环境调控模式包括夏季日间调控模式、夏季夜间调控模式、冬季日间调控模式和冬季夜间调控模式。所述夏季日间调控模式对应于温度较高且具有日照的外界环境; 所述夏季夜间调控模式对应于温度较高且不具有日照的外界环境;所述冬季日间调控模式对应于温度较低且具有日照的外界环境;所述冬季夜间调控模式对应于温度较低且不具有日照的外界环境。
在一种可能的实现方式中,所述环境调控模式包括夏季日间调控模式,所述水路组件用于通过所述电力驱动所述制冷机和所述水泵,获得水路循环管道内流动的冷却液体。
图5示出根据本公开实施例的水路组件在夏季的调控示意图。在夏季日间调控模式下,可关闭阀门903、水泵802,打开阀门901、阀门902、水泵803和水泵801。在这种情况下,光伏组件经过太阳照射,产生的电力可储存在蓄电装置3中(参照图2、图5、图6、图7、图8、图9、图10),并为制冷机6提供电力,水路循环组件中的液体(例如,水)可在水路循环管道,例如,背阴面墙体18上铺设的水路循环管道5,使得冷却液体向室内进行冷辐射,并带走室内的热量,随后进入屋顶上铺设的水路循环管道4,带走光伏组件的热量,并流入储水箱7。进而通过阀门901和水泵803流入制冷机6,使得制冷机为液体制冷,获得冷却的液体,并开始下一个液体循环。制冷机6产生的冷却的液体流经背阴面墙体上铺设的水路循环管道5,可为室内提供冷辐射,相比于空调的冷风,其舒适度更好,室内制冷效果更均匀,并且液体流经屋顶上铺设的水路循环管道4可为光伏组件降温,提升光伏发电效率。
在一种可能的实现方式中,所述环境调控模式包括夏季日间调控模式,所述风路组件用于使所述被动房室内与所述空气通路之间的风口,以及所述空气通路与所述风道之间的风口关闭,并使所述空气通路与所述被动房室外之间的风口,以及使所述风道与所述被动房室内之间的风口打开。
图6示出根据本公开实施例的风路组件在夏季日间调控模式下的调控示意图。夏季日间调控模式中,可关闭风口143(即,风口3)、风口144(即,风口4),打开风口141(即,风口1)、风口142(即,风口2)、风口145(即,风口4)、风口146(即,风口6)、风口147(即,风口7)。
在一种可能的实现方式中,在夏季日间调控模式下,屋顶的水路循环管道4内流动的为冷却的液体,此时打开风口145、风口146、风口147,室内发热体产生的热羽流上浮,从风口146进入屋顶的风道13,被屋顶的水路循环管道4内流动的冷却的液体制冷后的冷风下沉,从风口145和风口147送出,形成室内空气循环回路。同时,在夏季日间,热致变色玻璃外表面温度高于临界温度阈值,因此,热致变色玻璃可使可见光透射,并屏蔽近红外线,减少传入室内的热辐射,并且,低辐射镀膜玻璃将室内物体的冷辐射反射回去,减少室内冷辐射的散失,降低制冷负荷,进一步地,低辐射镀膜玻璃还可屏蔽室外的温度较高的物体发射的远红外线,从而屏蔽热辐射。
在一种可能的实现方式中,所述环境调控模式包括夏季日间调控模式,所述风路组件用于使所述百叶窗的涂覆辐射制冷涂层的一面朝向所述被动房室外。即,使涂覆辐射制冷涂层的一面朝向所述被动房室外,可将室内的热量通过热辐射散发至室外,例如,通过大气窗口8-13μm波段将空气通路内热量散发出去,进一步地,由于热压作用,可在空气通路内形成自下而上的气流,例如,空气通过风口142进入空气通路,并通过空气通路流动,降低外墙表面温度,并通过风口141流出。
在一种可能的实现方式中,所述环境调控模式包括夏季夜间调控模式,所述水路组件用于通过所述电力驱动所述制冷机和所述水泵,获得水路循环管道内流动的冷却液体。
在一种可能的实现方式中,如图5所示,夏季夜间调控模式下的阀门和水泵的状态与夏季日间调控模式相同。但在夏季夜间调控模式下,光伏组件无法通过太阳光的照射产生电力,因此,可通过蓄电装置3中存储的电力来驱动制冷机6和开启的水泵。水路循环组件中的液体(例如,水)可在水路循环管道(例如,背阴面墙体上铺设的水路循环管道5和屋顶上铺设的水路循环管道4)内流动,带走室内的热量,并流入储水箱7,进而通过阀门901和水泵803流入制冷机6,使得制冷机为液体制冷,获得冷却的液体,并开始下一个液体循环。
在一种可能的实现方式中,所述环境调控模式包括夏季夜间调控模式,所述风路组件用于使所述被动房室内与所述空气通路之间的风口、所述空气通路与所述风道之间的风口,以及所述风道与所述被动房室内之间的风口打开,并使所述空气通路与所述被动房室外之间的风口关闭。
图7示出根据本公开实施例的风路组件在夏季夜间调控模式下的调控示意图。在夏季夜间调控模式下,可关闭风口141(即,风口1)、风口142(即,风口2)、风口145(即,风口5)、风口147(即,风口7),打开风口143(即,风口3)、风口144(即,风口4)和风口146(即,风口6)。
在一种可能的实现方式中,所述环境调控模式包括夏季夜间调控模式,所述风路组件用于使所述百叶窗的涂覆辐射制冷涂层的一面朝向所述被动房室外。在这种情况下,百叶窗的涂覆辐射制冷涂层的一面朝向被动房室外,可将室内的热量以热辐射的形式散发至室外,降低室内的制冷负荷,例如,可通过大气窗口8-13μm波段向室外辐射热量。
在一种可能的实现方式中,室内热空气通过热羽流上浮,通过风口146进入屋顶风道13,屋顶风道13中的气流经过屋顶上铺设的水路循环管道4内流动的冷却的液体的制冷作用,产生温度较低的冷空气,并通过风道13与空气通路之间的风口143进入空气通路,并经过空气通路与被动房室内之间的风口144进入室内,为室内降温。
在示例中,风口145和风口147也可打开,使得冷却的气流也可从风口145和风口147进入室内。本公开对此不做限制。
在一种可能的实现方式中,所述环境调控模式包括冬季日间调控模式,所述水路组件用于通过太阳能组件的热量对设置于屋顶的水路循环管道内流动的液体进行加热,获得水路循环管道内流动的加热液体。当然,如果遇到日间阳光不充足(例如,冬季的阴天或雾霾)的情况,也可通过加热组件701产生热量,对所述水路循环管道内流动的液体进行加热,获得水路循环管道内流动的加热液体。
图8示出根据本公开实施例的水路组件在冬季的调控示意图。如图8所示,在冬季日间调控模式下,可关闭阀门901、阀门902、水泵803、水泵801,开启阀门903和水泵802。
在一种可能的实现方式中,冬季日间调控模式下,液体从水箱7中流入屋顶的水路循环管道4中,通过屋顶的水路循环管道4带走光伏组件积累的热量,提高光伏发电效率。并且,光伏组件是良好的大面积热源,产生的热量较多,水路循环管道4中流动的液体经过屋顶光伏组件的热量进行升温后,加热后的液体作为供暖热流,进入背阴面墙体上铺设的水路循环管道5,通过热辐射为室内供暖,同时可减少通过背阴面墙体散发的热量,减少热损失,且减小室内热负荷,改善室内热湿环境的同时提高了供暖的舒适度。
在一种可能的实现方式中,所述环境调控模式包括冬季日间调控模式,所述风路组件用于使所述被动房室内与所述空气通路之间的风口、所述空气通路与所述风道之间的风口,以及所述风道与所述被动房室内之间的风口打开,并使所述空气通路与所述被动房室外之间的风口关闭。
图9示出根据本公开实施例的风路组件在冬季日间调控模式下的调控示意图。在冬季日间调控模式下,可关闭风口141(即,风口1)、风口142(即,风口2)、风口145(即,风口5)、风口146(即,风口6),打开风口143(即,风口3)、风口144(即,风口4)、风口147(即,风口7)。
在一种可能的实现方式中,所述环境调控模式包括冬季日间调控模式,所述风路组件用于使所述百叶窗的涂覆热辐射吸收涂层的一面朝向所述被动房室外。
在一种可能的实现方式中,在冬季日间调控模式下,透光板10与玻璃组件之间的空气通路中的百叶窗12涂覆热辐射吸收涂层的一面朝向被动房室外。以吸收室外的热辐射,使得空气通路中的空气温度升高,并与墙体进行热交换,从而提升室内的温度,降低室内的供暖负荷。
在一种可能的实现方式中,室内的冷空气可下沉,通过风口144进入空气通路,空气通路内的空气由于百叶窗吸收的热辐射而加热且上升,通过热压作用上浮并从风口143进入屋顶风道13。屋顶的水路循环管道4中流动的是通过光伏组件的热量加热后的液体,可通过加热后的液体为屋顶风道13内的空气加热,产生热气流,并通过风口147送入室内。当然,风口145和风口146也可打开,使热空气通过风口146、风口147和风口145进入室内,为室内供暖。
在一种可能的实现方式中,玻璃组件的热致变色玻璃可由于外界温度较低,低于临界温度阈值,从而可透过太阳辐射中的大部分可见光和近红外线,采光补能,使得室内充分接收太阳的热辐射,提高室内温度,降低供暖负荷。同时,低辐射镀膜玻璃可将室内物体发射的远红外线反射回室内,防止室内向外发射热辐射,即,防止热量向外散失。
在一种可能的实现方式中,所述环境调控模式包括冬季夜间调控模式,所述水路组件还包括加热组件701,所述水路组件用于通过所述电力驱动所述加热组件和所述水泵,获得水路循环管道内流动的加热液体。
在一种可能的实现方式中,在冬季的日间,存在光照的时候,为水路循环管道4中流动的液体进行加热的热源为光伏组件1底部积累的热量,而在冬季夜间调控模式下,外界不存在光照,光伏组件1不工作,也不会积累热量。因此,可通过蓄电装置3为加热组件701提供电力,加热储水箱7中的液体,即,将加热组件701加热的热水作为热源进行循环。液体的流向与冬季日间调控模式一致。即,液体流出水箱,进入铺设于屋顶的水路循环管道4,进而进入铺设于背阴面墙体18的水路循环管道5,从而为室内提供热辐射,使室内温度提升,并且减少背阴面墙体的热损失,同时提升供暖的舒适性。
在一种可能的实现方式中,所述环境调控模式包括冬季夜间调控模式,所述风路组件用于使所述被动房室内与所述空气通路之间的风口、所述空气通路与所述风道之间的风口、所述风道与所述被动房室内之间的风口,以及所述空气通路与所述被动房室外之间的风口关闭。
图10示出根据本公开实施例的风路组件在冬季夜间调控模式下的调控示意图。在冬季夜间调控模式下,可关闭所有风口,通过水路循环管道中流动的液体的热辐射为室内供暖。当然,也可打开风口145、风口146和风口147,使得被风道13中的气体可获取水路循环管道中的加热后的液体的热量,并将热气流通过风口145、风口146和风口147送入室内,为室内供暖。
在一种可能的实现方式中,所述环境调控模式包括冬季夜间调控模式,所述风路组件用于使所述百叶窗的涂覆热辐射吸收涂层的一面朝向所述被动房室外。在示例中,涂覆热辐射吸收涂层的一面朝向被动房室外,防止涂覆辐射制冷涂层的一面朝向室外,向室外散发热辐射,使得空气通路中的空气温度过低,从而通过墙体进行热交换,降低室内温度。由于墙体的热惯性,墙体向室内缓慢散热使室内环境的温度较稳定。并且,玻璃组件的低辐射镀膜玻璃可将室内物体发射的远红外线反射回室内,防止室内热量向外散失。
在一种可能的实现方式中,由于透光板10与玻璃组件11形成夹层空气通路,对室内湿环境也具有有效的调节作用,能够有效防止室内表面结露现象的发生。在示例中,太阳光通过透光板10后,投射在向阳面墙体上,部分太阳辐射能被墙体吸收并转换为热量。空气夹层受到太阳辐射的作用,其相对湿度远远低于室内的相对湿度,使墙体的湿传递从向室内和空气通路传递间的双向传递,过渡到墙体向空气通路传递的单向传递,由于墙体的吸收和释放湿度的功能,使得室内的相对湿度可以保持在相对稳定的适宜状态。
根据本公开的实施例的被动房环境调控系统,可通过设置在屋顶的太阳能组件充分利用太阳能资源,提高光电转化效率及光热转化效率,为水路组件提供热量和电力,同时可利用水路循环组件降低太阳能组件的温度,提高其光电转化效率,且可通过辐射供暖或辐射供冷提供更舒适的温控效果。并且,通过风路组件控制太阳发出的近红外线的通过性,在提供照明的同时,有效控制太阳产生的热辐射,从而控制太阳照射引起的室内温度变化,还可通过水路组件中加热或冷却的液体,以及百叶窗,获得加热或冷却的气流,提升室内的温控效率。并且,可在多种环境调控模式下,有针对性地控制水路组件和风路组件,使得被动房室内的环境保持适宜的温度和湿度,且可节约电能,减少对化石能源的依赖,提高了系统各部分之间的协调性和统筹性。
图11示出根据本公开的实施例的环境调控方法,如图11所示,所示方法包括:
在步骤S11中,根据环境调控模式,确定待调控的环境参数;
在步骤S12中,根据被动房内的所述环境参数的实测值,所述环境参数的预设范围,以及根据所述被动房环境调控系统,对所述被动房内的环境参数进行调控。
在一种可能的实现方式中,在通过所述被动房环境调控系统调控被动房室内的环境时,首先可在步骤S11中,基于环境调控模式,确定待调控的环境参数。例如,在夏季日间模式或冬季日间模式下,需要调控室内的照度,而夏季夜间模式或冬季夜间模式下,则不需要控制室内的照度。在确定需要调控的环境参数后,可在步骤S12中,基于动房内的所述环境参数的实测值,以及环境参数的预设范围,通过上述被动房环境调控系统,对环境参数进行调控。
在一种可能的实现方式中,所述环境调控模式包括夏季日间调控模式,所述环境参数包括温度和照度,步骤S12可包括:根据所述照度的实测值以及所述照度的预设范围,对所述窗口组件和照明组 件进行调节;和/或根据所述温度的实测值以及所述温度的预设范围,对所述制冷机的出水温度和运行时间进行调节。
在一种可能的实现方式中,在夏季日间模式下,光伏组件1发电储存在蓄电装置3中并向制冷机6供电,从而对液体进行制冷,实现背阴面墙体的水路循环管道可对室内进行辐射供冷,并可对屋顶的光伏组件1进行降温。
图12示出根据本公开的实施例的夏季日间调控模式的调控示意图,如图12所示,在夏季日间模式下,百叶窗12与室内照度、室内温湿度有关。制冷机6的运行时间和出水温度可能影响室内的制冷效果,即,温度和湿度。
在一种可能的实现方式中,照度传感器可实时获取室内照度的实测值,控制器将照度的实测值与照度的预设范围(例如,300±50lux)进行比较,若室内照度不在该范围内,则进一步判断百叶窗12的角度是否已调节到最大值,若百叶窗12的角度仍可调,控制器则将误差信号发送至执行机构,执行机构接受信号后控制百叶窗12的旋转倾角,以调节室内照度。若百叶窗12的角度调至最大限度仍无法满足室内照度要求,则通过室内照明组件(例如,灯具)调节。
在一种可能的实现方式中,若室内照度在照度的预设范围内,控制器则根据温湿度传感器温度的实测值和湿度实测值判断室内温湿度是否在预设范围(例如,26-28℃、30-70%范围)内,若温度或湿度不在该范围内,则向执行机构发送信号,调节制冷机6的出水温度以调节室内温度和湿度。进一步地,可不对湿度进行单独调节,而是可判断温度是否在预设范围内,即,在将温度调节到预设范围内后,湿度可自动调节至预设范围内。
在一种可能的实现方式中,所述被动房环境调控系统还包括蓄电装置,所述方法还包括:获取蓄电装置中存储的电量;在所述蓄电装置中存储的电量小于预设电量阈值的情况下,降低对所述环境参数的调控幅度。
在一种可能的实现方式中,还可判断蓄电装置3的蓄电量是否在预设电量阈值(例如,50%)以上,若低于预设电量阈值,则光伏发电量不充足,可节省用电,例如,通过调节制冷机6的运行时间或出水温度以减少用电量,在满足舒适度的前提下实现节能。进一步地,如果室内温湿度属于所述预设范围,则可不进行调节,并持续监测室内的温度和照度。
在一种可能的实现方式中,所述环境调控模式包括夏季夜间调控模式,所述环境参数包括温度,步骤S12可包括:根据所述温度的实测值以及所述温度的预设范围,对所述制冷机的出水温度和运行时间进行调节。
在一种可能的实现方式中,在夏季夜间模式下,使用蓄电装置3中的电力向制冷机6供电,从而对液体进行制冷,实现背阴面墙体的水路循环管道可对室内进行辐射供冷。
图13示出根据本公开的实施例的夏季夜间调控模式的调控示意图,如图13所示,在夏季夜间模式下,制冷机6的运行时间和出水温度可能影响室内的制冷效果,即,温度和湿度。
在一种可能的实现方式中,在夏季夜间调控模式下,无需对照度进行调控。控制器可根据温湿度传感器温度的实测值和湿度实测值判断室内温湿度是否在预设范围(例如,26-28℃、30-70%范围)内,若温度或湿度不在该范围内,则向执行机构发送信号,调节制冷机6的出水温度以调节室内温度和湿度。进一步地,可不对湿度进行单独调节,而是可判断温度是否在预设范围内,即,在将温度调节到预设范围内后,湿度可自动调节至预设范围内。进一步地,还可判断蓄电装置3的蓄电量是否在预设电量阈值(例如,50%)以上,若低于预设电量阈值,则光伏发电量不充足,可节省用电,例如,通过调节制冷机6的运行时间或出水温度以减少用电量,在满足舒适度的前提下实现节能。进一步地,如果室内温湿度属于所述预设范围,则可不进行调节,并持续监测室内的温度和湿度。
在一种可能的实现方式中,所述环境调控模式包括冬季日间调控模式,所述环境参数包括温度和照度,步骤S12可包括:根据所述照度的实测值以及所述照度的预设范围,对所述窗口组件和照明组件进行调节;和/或根据所述温度的实测值以及所述温度的预设范围,对所述水泵的流量进行调节。
在一种可能的实现方式中,在冬季日间调控模式下,屋顶水路循环管道吸收光伏组件1的热量,为液体加热,即,光伏组件1作为热源,并使加热后的液体依次流经屋顶水路循环管道和背阴面墙体 的水路循环管道,为室内提供热辐射。在冬季日间调控模式下,百叶窗12与室内照度有关,水泵控制管路的流量和流速而影响室内温湿度。
图14示出根据本公开的实施例的冬季日间调控模式的调控示意图,如图14所示,照度传感器可实时获取室内照度的实测值,控制器将照度的实测值与照度的预设范围(例如,300±50lux)进行比较,若室内照度不在该范围内,则进一步判断百叶窗12的角度是否已调节到最大值,若百叶窗12的角度仍可调,控制器则将误差信号发送至执行机构,执行机构接受信号后控制百叶窗12的旋转倾角,以调节室内照度。若百叶窗12的角度调至最大限度仍无法满足室内照度要求,则通过室内灯具调节。
在一种可能的实现方式中,若室内照度在照度的预设范围内,控制器则根据温湿度传感器温度的实测值和湿度实测值判断室内温湿度是否在预设范围(例如,16-22℃、30-60%范围)内,若温度或湿度不在该范围内,则向执行机构发送信号,调节水泵的流量以调节室内温度和湿度。进一步地,可不对湿度进行单独调节,而是可判断温度是否在预设范围内,即,在将温度调节到预设范围内后,湿度可自动调节至预设范围内。如果室内温湿度属于所述预设范围,则可不进行调节,并持续监测室内的温度和照度。当然,也可监测蓄电装置存储的预设电量,并通过与上述相似的方式控制对环境参数的调控幅度。
在一种可能的实现方式中,所述环境调控模式包括冬季夜间调控模式,所述环境参数包括温度,所述水路循环组件还包括加热组件,例如,电热丝701。步骤S12可包括:根据所述温度的实测值以及所述温度的预设范围,对所述加热组件的加热温度进行调节。
在一种可能的实现方式中,在冬季夜间调控模式下,蓄电装置3向储水箱7内电热丝701提供电力,电热丝701将储水箱内的液体进行加热,从而使加热后的液体循环至屋顶和背阴面墙体中的水路循环管道,为室内提供热辐射。因此,储水箱内的水温与室内的温度和湿度相关。
图15示出根据本公开的实施例的冬季夜间调控模式的调控示意图,如图15所示,在冬季夜间调控模式下,无需对照度进行调控。控制器可根据温湿度传感器温度的实测值和湿度实测值判断室内温湿度是否在预设范围(例如,16-22℃、30-60%范围)内,若温度或湿度不在该范围内,则向执行机构发送信号,调节电热丝的供电量,从而控制储水箱内的水温,进而控制室内的温度和湿度。进一步地,可不对湿度进行单独调节,而是可判断温度是否在预设范围内,即,在将温度调节到预设范围内后,湿度可自动调节至预设范围内。如果室内的温度和湿度的实测值在所述预设范围内,则无需调节电热丝的供电量,并持续监测温度和湿度。当然,也可监测蓄电装置存储的预设电量,并通过与上述相似的方式控制对环境参数的调控幅度。
可以理解,本公开提及的上述各个方法实施例,在不违背原理逻辑的情况下,均可以彼此相互结合形成结合后的实施例,限于篇幅,本公开不再赘述。本领域技术人员可以理解,在上述具体实施方式中,各步骤的具体执行顺序应当以其功能和可能的内在逻辑确定。
以上已经描述了本公开的各实施例,上述说明是示例性的,并非穷尽性的,并且也不限于所披露的各实施例。在不偏离所说明的各实施例的范围和精神的情况下,对于本技术领域的普通技术人员来说许多修改和变更都是显而易见的。本文中所用术语的选择,旨在最好地解释各实施例的原理、实际应用或对市场中的技术的改进,或者使本技术领域的其它普通技术人员能理解本文披露的各实施例。

Claims (25)

  1. 一种被动房环境调控系统,其特征在于,所述系统包括:设置于屋顶及背阴面墙体的水路组件,以及设置于屋顶及向阳面墙体的风路组件;
    所述水路组件包括设置于屋顶的太阳能组件,以及设置于屋顶及背阴面墙体的水路循环组件;
    太阳能组件用于通过光电转换获取电力,并产生热量;
    所述水路循环组件包括制冷机、水泵、阀门以及铺设于屋顶及背阴面墙体的水路循环管道,所述水路循环组件用于根据环境调控模式,通过所述电力驱动所述水泵和所述制冷机,使得所述水路循环管道内流动的液体获取热量或冷量;
    所述风路组件包括设置于向阳面墙体的窗口组件,以及设置于屋顶及向阳面墙体的风道循环组件;
    所述窗口组件用于根据所述环境调控模式,确定近红外线的通过性;
    所述风道循环组件用于根据所述环境调控模式,形成热压通风气流,并至少通过所述水路循环组件获取加热或冷却的气流;
    所述风路组件用于根据所述近红外线的通过性以及所述加热或冷却的气流,调控被动房内的环境参数。
  2. 根据权利要求1所述的系统,其特征在于,所述太阳能组件包括用于进行光电转换以获取电力的光伏组件,以及设置在光伏组件下方的反射层,用于降低所述光伏组件的温度,铺设于屋顶的水路循环管道设置于所述反射层的下方,用于使所述水路循环管道内流动的液体获取所述光伏组件进行光电转换时产生的热量。
  3. 根据权利要求1所述的系统,其特征在于,所述窗口组件包括透光板,玻璃组件以及百叶窗,所述透光板和所述玻璃组件之间包括空气通路,所述百叶窗设置在所述空气通路中。
  4. 根据权利要求3所述的系统,其特征在于,所述玻璃组件包括热致变色玻璃,用于在所述热致变色玻璃表面温度高于或等于临界温度阈值的情况下,反射近红外线,且透射可见光;或者,在所述热致变色玻璃表面温度低于临界温度阈值的情况下,透射近红外线及可见光。
  5. 根据权利要求3所述的系统,其特征在于,所述玻璃组件包括低辐射镀膜玻璃,用于反射远红外线。
  6. 根据权利要求3所述的系统,其特征在于,所述百叶窗的一面涂覆辐射制冷涂层,另一面涂覆热辐射吸收涂层,所述百叶窗用于根据所述环境调控模式,确定朝向所述被动房室外的面,以及确定百叶窗的倾角,所述百叶窗的倾角用于调节所述百叶窗的透光率。
  7. 根据权利要求3所述的系统,其特征在于,所述风道循环组件包括所述透光板和所述玻璃组件之间的空气通路、设置于屋顶的水路循环管道下方的风道、所述风道与所述被动房室内之间的风口、所述被动房室内与所述空气通路之间的风口,所述空气通路与所述被动房室外之间的风口、以及所述空气通路与所述风道之间的风口,
    其中,所述风道用于至少通过所述水路循环组件获取加热或冷却的气流,所述风道与所述被动房室内之间的风口设置于屋顶。
  8. 根据权利要求1所述的系统,其特征在于,所述环境调控模式包括夏季日间调控模式,所述水路组件用于通过电力驱动所述制冷机和所述水泵,获得水路循环管道内流动的冷却液体。
  9. 根据权利要求6所述的系统,其特征在于,所述环境调控模式包括夏季日间调控模式,所述风路组件用于使所述百叶窗的涂覆辐射制冷涂层的一面朝向所述被动房室外。
  10. 根据权利要求7所述的系统,其特征在于,所述环境调控模式包括夏季日间调控模式,所述风路组件用于使所述被动房室内与所述空气通路之间的风口,以及所述空气通路与所述风道之间的风口关闭,并使所述空气通路与所述被动房室外之间的风口,以及使所述风道与所述被动房室内之间的风口打开。
  11. 根据权利要求1所述的系统,其特征在于,所述环境调控模式包括夏季夜间调控模式,所述水路组件用于通过所述电力驱动所述制冷机和所述水泵,获得水路循环管道内流动的冷却液体。
  12. 根据权利要求6所述的系统,其特征在于,所述环境调控模式包括夏季夜间调控模式,所述 风路组件用于使所述百叶窗的涂覆辐射制冷涂层的一面朝向所述被动房室外。
  13. 根据权利要求7所述的系统,其特征在于,所述环境调控模式包括夏季夜间调控模式,所述风路组件用于使所述被动房室内与所述空气通路之间的风口、所述空气通路与所述风道之间的风口,以及所述风道与所述被动房室内之间的风口打开,并使所述空气通路与所述被动房室外之间的风口关闭。
  14. 根据权利要求1所述的系统,其特征在于,所述环境调控模式包括冬季日间调控模式,所述水路组件用于通过太阳能组件的热量对设置于屋顶的水路循环管道内流动的液体进行加热,获得水路循环管道内流动的加热液体。
  15. 根据权利要求6所述的系统,其特征在于,所述环境调控模式包括冬季日间调控模式,所述风路组件用于使所述百叶窗的涂覆热辐射吸收涂层的一面朝向所述被动房室外。
  16. 根据权利要求7所述的系统,其特征在于,所述环境调控模式包括冬季日间调控模式,所述风路组件用于使所述被动房室内与所述空气通路之间的风口、所述空气通路与所述风道之间的风口,以及所述风道与所述被动房室内之间的风口打开,并使所述空气通路与所述被动房室外之间的风口关闭。
  17. 根据权利要求1所述的系统,其特征在于,所述环境调控模式包括冬季夜间调控模式,所述水路组件还包括加热组件,
    所述水路组件用于通过所述电力驱动所述加热组件和所述水泵,获得水路循环管道内流动的加热液体。
  18. 根据权利要求6所述的系统,其特征在于,所述环境调控模式包括冬季夜间调控模式,所述风路组件用于使所述百叶窗的涂覆热辐射吸收涂层的一面朝向所述被动房室外。
  19. 根据权利要求7所述的系统,其特征在于,所述环境调控模式包括冬季夜间调控模式,所述风路组件用于使所述被动房室内与所述空气通路之间的风口、所述空气通路与所述风道之间的风口、所述风道与所述被动房室内之间的风口,以及所述空气通路与所述被动房室外之间的风口关闭。
  20. 一种环境调控方法,其特征在于,包括:
    根据环境调控模式,确定待调控的环境参数;
    根据被动房内的所述环境参数的实测值,所述环境参数的预设范围,以及根据权利要求1-19中任一项所述的被动房环境调控系统,对所述被动房内的环境参数进行调控。
  21. 根据权利要求20所述的方法,其特征在于,所述环境调控模式包括夏季日间调控模式,所述环境参数包括温度和照度,
    其中,所述根据被动房内的所述环境参数的实测值,所述环境参数的预设范围,以及所述被动房环境调控系统,对所述被动房内的环境参数进行调控,包括:
    根据所述照度的实测值以及所述照度的预设范围,对所述窗口组件和照明组件进行调节;和/或
    根据所述温度的实测值以及所述温度的预设范围,对所述制冷机的出水温度和运行时间进行调节。
  22. 根据权利要求20所述的方法,其特征在于,所述环境调控模式包括夏季夜间调控模式,所述环境参数包括温度,
    其中,所述根据被动房内的所述环境参数的实测值,所述环境参数的预设范围,以及所述被动房环境调控系统,对所述被动房内的环境参数进行调控,包括:
    根据所述温度的实测值以及所述温度的预设范围,对所述制冷机的出水温度和运行时间进行调节。
  23. 根据权利要求20所述的方法,其特征在于,所述环境调控模式包括冬季日间调控模式,所述环境参数包括温度和照度,
    其中,所述根据被动房内的所述环境参数的实测值,所述环境参数的预设范围,以及所述被动房环境调控系统,对所述被动房内的环境参数进行调控,包括:
    根据所述照度的实测值以及所述照度的预设范围,对所述窗口组件和照明组件进行调节;和/或
    根据所述温度的实测值以及所述温度的预设范围,对所述水泵的流量进行调节。
  24. 根据权利要求20所述的方法,其特征在于,所述环境调控模式包括冬季夜间调控模式,所述环境参数包括温度,所述水路循环组件还包括加热组件,
    其中,所述根据被动房内的所述环境参数的实测值,所述环境参数的预设范围,以及所述被动房环境调控系统,对所述被动房内的环境参数进行调控,包括:
    根据所述温度的实测值以及所述温度的预设范围,对所述加热组件的加热温度进行调节。
  25. 根据权利要求20所述的方法,其特征在于,所述被动房环境调控系统还包括蓄电装置,
    所述方法还包括:
    获取蓄电装置中存储的电量;
    在所述蓄电装置中存储的电量小于预设电量阈值的情况下,降低对所述环境参数的调控幅度。
PCT/CN2022/108640 2022-06-21 2022-07-28 被动房环境调控系统及环境调控方法 WO2023245810A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210708547.1 2022-06-21
CN202210708547.1A CN115033041B (zh) 2022-06-21 2022-06-21 被动房环境调控系统及环境调控方法

Publications (1)

Publication Number Publication Date
WO2023245810A1 true WO2023245810A1 (zh) 2023-12-28

Family

ID=83126156

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/108640 WO2023245810A1 (zh) 2022-06-21 2022-07-28 被动房环境调控系统及环境调控方法

Country Status (2)

Country Link
CN (1) CN115033041B (zh)
WO (1) WO2023245810A1 (zh)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102589078A (zh) * 2012-02-27 2012-07-18 新奥科技发展有限公司 通风系统及其操作方法
US20140048244A1 (en) * 2012-08-17 2014-02-20 Albert Reid Wallace Hydronic building systems control
CN104746647A (zh) * 2015-02-04 2015-07-01 北京工业大学 主动式与被动式相结合的全年性利用相变储能房
WO2016205634A1 (en) * 2015-06-19 2016-12-22 Surna Inc. Hybrid building
CN110488897A (zh) * 2019-08-22 2019-11-22 河南省建筑科学研究院有限公司 一种非封闭性空间环境调控系统及其调控方法
JP2020056555A (ja) * 2018-10-04 2020-04-09 Omソーラー株式会社 太陽熱利用機器の運転制御方法
CN111946232A (zh) * 2020-08-06 2020-11-17 大连理工大学 智能感知被动式太阳能窗户系统
CN112880074A (zh) * 2021-01-11 2021-06-01 湖南大学 基于相变蓄能的主动冷却与太阳能混合通风、光伏耦合一体化系统及智能控制
CN114093971A (zh) * 2021-10-22 2022-02-25 华南理工大学 太阳能集热与被动式冷却协同的冷热电联产系统及方法
CN114135954A (zh) * 2021-12-01 2022-03-04 南京工业大学 一种热管换热空调系统

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100802159B1 (ko) * 2006-08-29 2008-02-11 바스코리아 주식회사 실내온도의 최적 제어를 위한 팬코일 유닛 제어기 및팬코일 유닛 제어시스템
HUP0900578A2 (en) * 2009-09-15 2011-03-28 Bela Boldoghy Low energy demand for heating, cooling, surface radiator and air changing building system, and for passive energy-saving buildings
DE102012013585A1 (de) * 2011-09-15 2013-05-02 Johannes Schmitz Verfahren zum kontinuierlichen Gewinnen von Strom, Gebäude mit Exergie, Verfahren zum Reduzieren einer Stoffbelastung, Verfahren zum Führen von Luft in einem Wohngebäude, Verfahren zum Betreiben einer Wärmepumpen Anordnung, Wärmetauscher und Verfahren zum Kühlen eines Gebäudes, Verfahren zum Erwärmen von Brauchwasser
CH708605A2 (de) * 2013-09-25 2015-03-31 Emil Bächli Emil Bächli Energietechnik Ag Pumpwasserdruck-Luftpolster-Energiespeicherung mit einstellbarem über die Druckluft regulierbarem konstantem Wasserdruck für den Turbinenantrieb.
CN104746813A (zh) * 2015-02-17 2015-07-01 安阳师范学院 一种被动式太阳房结构
CN107289561A (zh) * 2017-07-13 2017-10-24 商丘工学院 建筑节能装置
CN108317652A (zh) * 2018-03-20 2018-07-24 南京工业大学 一种面向被动房的太阳能集热通风系统
CN109025742A (zh) * 2018-08-24 2018-12-18 宁波瑞凌节能环保创新与产业研究院 一种辐射制冷与集热功能一体化的百叶窗
CN110160196A (zh) * 2019-06-19 2019-08-23 南京工业大学 一种太阳能烟囱耦合分离式热管的被动式供热通风系统
CN111288583A (zh) * 2020-03-13 2020-06-16 清华大学 一种多功能新风净化机及运行控制方法
CN213362918U (zh) * 2020-08-31 2021-06-04 河南五方合创建筑设计有限公司 可转换辐射制冷与太阳能集热功能的装置
CN112985505B (zh) * 2021-03-02 2022-02-01 清华大学 移动与固定感知结合的室内环境时空分布场生成方法
CN113558455A (zh) * 2021-06-28 2021-10-29 青岛海尔空调器有限总公司 用于控制窗帘的方法及装置、服务器
CN114543233A (zh) * 2022-02-21 2022-05-27 西安交通大学 一种光伏/光热耦合驱动建筑烟囱通风强化系统及方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102589078A (zh) * 2012-02-27 2012-07-18 新奥科技发展有限公司 通风系统及其操作方法
US20140048244A1 (en) * 2012-08-17 2014-02-20 Albert Reid Wallace Hydronic building systems control
CN104746647A (zh) * 2015-02-04 2015-07-01 北京工业大学 主动式与被动式相结合的全年性利用相变储能房
WO2016205634A1 (en) * 2015-06-19 2016-12-22 Surna Inc. Hybrid building
JP2020056555A (ja) * 2018-10-04 2020-04-09 Omソーラー株式会社 太陽熱利用機器の運転制御方法
CN110488897A (zh) * 2019-08-22 2019-11-22 河南省建筑科学研究院有限公司 一种非封闭性空间环境调控系统及其调控方法
CN111946232A (zh) * 2020-08-06 2020-11-17 大连理工大学 智能感知被动式太阳能窗户系统
CN112880074A (zh) * 2021-01-11 2021-06-01 湖南大学 基于相变蓄能的主动冷却与太阳能混合通风、光伏耦合一体化系统及智能控制
CN114093971A (zh) * 2021-10-22 2022-02-25 华南理工大学 太阳能集热与被动式冷却协同的冷热电联产系统及方法
CN114135954A (zh) * 2021-12-01 2022-03-04 南京工业大学 一种热管换热空调系统

Also Published As

Publication number Publication date
CN115033041A (zh) 2022-09-09
CN115033041B (zh) 2023-03-21

Similar Documents

Publication Publication Date Title
Peng et al. An experimental study of the thermal performance of a novel photovoltaic double-skin facade in Hong Kong
WO2011011961A1 (zh) 内置式全自动控制遮阳双层玻璃窗
CN101892800B (zh) 具有外被动式冷却的方法及其装置
CN105020770B (zh) 一种新型太阳能储热供暖系统装置及方法
Tang et al. Performance prediction of a novel double-glazing PV curtain wall system combined with an air handling unit using exhaust cooling and heat recovery technology
CN109737486B (zh) 一种集热蓄热墙和空气水集热器的组合供暖系统
Kasaeian et al. Solar energy systems: An approach to zero energy buildings
CN101893298A (zh) 具有内空气水循环被动式冷却的空调方法及其装置
WO2023245810A1 (zh) 被动房环境调控系统及环境调控方法
CN201794488U (zh) 具有外空气水循环被动式冷却的装置
CN218668062U (zh) 光伏通风一体化围护结构
CN201865546U (zh) 具有外被动式冷却的装置
CN206556185U (zh) 一种混合送风双层光伏幕墙系统
CN201865545U (zh) 水被动式冷却集成装置、蒸发制冷水被动式冷却集成装置及其空调装置
CN101892799B (zh) 具有外空气水循环被动式冷却的方法及装置
CN110230457A (zh) 一种基于建筑室内外观感设计的光伏光热联供窗体组件
CN114562764A (zh) 一种建筑烟囱效应自然通风强化系统及方法
CN110924561A (zh) 一种双排百叶帘片集热墙装置及使用方法
CN214995028U (zh) 一种碲化镉发电玻璃自呼吸幕墙
Pasini et al. Systems design of the Canadian solar decathlon house
CN115200111B (zh) 利用太阳能烟囱结构和辐射制冷复合的被动式通风系统
Boeri et al. Eco-technologies for energy efficient buildings in Italy
CN211735893U (zh) 一种双排百叶帘片集热墙装置
CN113719004B (zh) 一种二次聚焦光热相变蓄能双层玻璃幕墙模块
CN219011615U (zh) 一种可储热的呼吸式光伏幕墙系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22947555

Country of ref document: EP

Kind code of ref document: A1