WO2023245743A1 - 一种零开关损耗非隔离直流升压拓扑电路及其控制方法 - Google Patents

一种零开关损耗非隔离直流升压拓扑电路及其控制方法 Download PDF

Info

Publication number
WO2023245743A1
WO2023245743A1 PCT/CN2022/104578 CN2022104578W WO2023245743A1 WO 2023245743 A1 WO2023245743 A1 WO 2023245743A1 CN 2022104578 W CN2022104578 W CN 2022104578W WO 2023245743 A1 WO2023245743 A1 WO 2023245743A1
Authority
WO
WIPO (PCT)
Prior art keywords
energy storage
resonant
capacitor
storage inductor
output
Prior art date
Application number
PCT/CN2022/104578
Other languages
English (en)
French (fr)
Inventor
孙天奎
刘建
缪惠宇
史明明
袁宇波
潘益
庄舒仪
苏伟
吴凡
肖小龙
肖华锋
Original Assignee
国网江苏省电力有限公司电力科学研究院
江苏省电力试验研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国网江苏省电力有限公司电力科学研究院, 江苏省电力试验研究院有限公司 filed Critical 国网江苏省电力有限公司电力科学研究院
Publication of WO2023245743A1 publication Critical patent/WO2023245743A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0048Circuits or arrangements for reducing losses
    • H02M1/0054Transistor switching losses
    • H02M1/0058Transistor switching losses by employing soft switching techniques, i.e. commutation of transistors when applied voltage is zero or when current flow is zero
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/08Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
    • H02M1/083Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters for the ignition at the zero crossing of the voltage or the current
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/01Resonant DC/DC converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S40/00Components or accessories in combination with PV modules, not provided for in groups H02S10/00 - H02S30/00
    • H02S40/30Electrical components
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers

Definitions

  • the invention belongs to the field of power supply and relates to a one-way, grid-connected zero switching loss non-isolated DC boost topology circuit and a control method thereof.
  • the present invention proposes a zero-switching loss non-isolated DC boost topology circuit, which is used in photovoltaic systems to replace the existing hard-switching boost topology optimizer, which can significantly reduce losses and improve photovoltaic system efficiency.
  • the present invention also provides a control method for the above-mentioned non-isolated DC boost topology circuit.
  • a zero switching loss non-isolated DC boost topology circuit including an input positive terminal, an input negative terminal, an output positive terminal, an output negative terminal, an input side voltage stabilizing capacitor, an output side voltage stabilizing capacitor, an input side diode, and a storage device.
  • Energy inductor, resonant capacitor, resonant switch, output-side diode, main switch The input positive terminal is connected to the positive terminal of the input-side voltage stabilizing capacitor and the positive terminal of the input-side diode.
  • the negative terminal of the input-side voltage stabilizing capacitor is connected to the input negative terminal and the main switch.
  • the negative electrode, the negative electrode of the output side voltage stabilizing capacitor, and the output side negative terminal are connected.
  • the negative electrode of the input side diode is connected to the negative electrode of the resonant switch and the positive electrode of the energy storage inductor.
  • the positive electrode of the resonant switch is connected to one end of the resonant capacitor, and the other end of the resonant capacitor. It is connected to the negative electrode of the energy storage inductor, the positive electrode of the output-side diode, and the positive electrode of the main switch.
  • the negative electrode of the output-side diode is connected to the positive electrode of the output-side voltage stabilizing capacitor and the output-side positive terminal;
  • the zero switching loss working state of the non-isolated DC boost topology circuit includes:
  • State 1 Start-up: Turn on the resonant switch and main switch. When the resonant capacitor and energy storage inductor are charged to a certain level, turn off the main switch to cause the energy storage inductor to resonate with the resonant capacitor. After the energy storage inductor reversely charges the resonant capacitor, the state ends. Then turn off the resonant switch, allowing the resonant capacitor and energy storage inductor to continue to resonate until the energy storage inductor charges the resonant capacitor forward, until the energy storage inductor current reaches zero, the start-up state is ready and ready to enter state 2;
  • State 2 Energy storage inductor charging: Turn on the main switch to charge the energy storage inductor. The energy storage inductor current starts charging from 0, and the main switch is turned on at quasi-zero current. When the energy storage inductor current reaches the target value, the energy storage inductor is charged. The state is over and ready to enter state 3;
  • Freewheeling boost The energy storage inductor continues freewheeling to charge the output side voltage stabilizing capacitor through the output side diode until the energy storage inductor current reaches 0, the reverse voltage of the output side diode recovers, and the freewheeling boost state is completed, automatically Enter state 6;
  • Capacitor forward charging under resonance The energy storage inductor resonates with the resonant capacitor until the energy storage inductor forward charges the resonant capacitor until the voltage returns to the target voltage.
  • the forward charging state of the capacitor under resonance ends and waits for instructions to re-enter state 2. .
  • the main switch is any one of IGBT, IGCT, or MosFET.
  • the resonant switch is any one of MosFET, IGBT, or IGCT.
  • the input-side voltage stabilizing capacitor and the output-side voltage stabilizing capacitor are any one of polarized electrolytic capacitors, film capacitors, or supercapacitors.
  • the resonant capacitor is a non-polar capacitor.
  • the input positive terminal and the input negative terminal are respectively connected to the positive and negative electrodes of the photovoltaic modules or cascaded photovoltaic modules, and the output positive terminal and the output negative terminal are connected to the DC grid respectively, or are cascaded with other non-isolated DC boost topology circuits. Then it is connected to the DC grid, or connected to a unipolar AC/DC inverter, or cascaded with other non-isolated DC boost topology circuits and then connected to a unipolar AC/DC inverter.
  • the target voltage of the resonant capacitor is the difference between the input voltage and the output voltage
  • the input voltage is the voltage between the input positive terminal and the input negative terminal
  • the output voltage is the voltage between the output positive terminal and the output negative terminal. Voltage.
  • the control method of the above non-isolated DC boost topology circuit is as follows: when the output voltage is greater than 2 times the input voltage, the soft switching control method is used; when the output voltage is not higher than 2 times the input voltage, the hard switching control method is used. This When the resonant switch and the resonant capacitor are not working, the voltage boost is achieved by turning on and off the main switch.
  • the topology is simple.
  • the energy storage inductor in the non-isolated DC boost main circuit is reused to build a resonant cavity. Only one switching device and one resonant capacitor are added to the H-type topology currently widely used in photovoltaic optimizers, which greatly reduces the cost of the soft-switching topology.
  • the soft switch control method is simple and efficient. Reverse charging of the resonant capacitor is used to transfer the current of the main circuit switching device, and the main circuit switching device is turned off at zero current to achieve zero current switching of the main circuit switching device, which significantly improves the efficiency of topological power conversion. At the same time, the difference between the input and output voltages is used to naturally commutate the anti-parallel diode based on the resonant switching device to achieve zero-current turn-off of the switching device in the resonant circuit, significantly reducing the operating loss of the resonant circuit.
  • the proposed control method is based on the proposed topology. When the transformation ratio is greater than 2, resonant soft switching control is used, and when the transformation ratio is not higher than 2, hard switching control is still used to achieve optimal efficiency in the entire range.
  • Figure 1 is a structural diagram of the zero switching loss non-isolated DC boost topology circuit of the present invention
  • Figure 2 is a diagram of the voltage and current during the quasi-zero current turn-off process of the main switch
  • Figure 3 is a diagram of the voltage and current during the zero-current conduction process of the main switch
  • Figure 4 is a diagram of the voltage and current during the zero-current turn-off process of the resonant switch.
  • the present invention proposes a low-cost one-way grid-connected non-isolated DC boost topology circuit, as shown in Figure 1, including an input positive terminal 101, an input negative terminal 102, an output positive terminal 103, an output negative terminal 104, an input side stable Piezocapacitor 105, output side voltage stabilizing capacitor 106, input side diode 201, energy storage inductor 202, resonant capacitor 203, resonant switch 204, output side diode 205, main switch 206.
  • the main switch 206 When the main switch 206 is turned on, the current can flow from the positive electrode to the negative electrode of the main switch 206. When the main switch 206 is turned off, the current cannot flow from the positive electrode of the main switch 206 to the negative electrode; when the main switch 206 is turned on or off, the current can flow. The flow flows from the negative terminal of main switch 206 to the positive terminal.
  • the main switch 206 may preferably be any one of IGBT, IGCT, or MosFET.
  • the resonant switch 204 When the resonant switch 204 is turned on, the current can flow from the positive electrode to the negative electrode of the resonant switch 204. When the resonant switch 204 is turned off, the current cannot flow from the positive electrode of the resonant switch 204 to the negative electrode. When the resonant switch 204 is turned on or off, the current can flow. The flow flows from the negative electrode of the resonant switch 204 to the positive electrode.
  • the resonant switch 204 may preferably be any one of MosFET, IGBT, or IGCT.
  • the input-side voltage stabilizing capacitor 105 and the output-side voltage stabilizing capacitor 106 are preferably polarized electrolytic capacitors, film capacitors, or supercapacitors.
  • the resonant capacitor 203 is a non-polar capacitor.
  • one end connected to the resonant capacitor 203 and the energy storage inductor 202 is defined as the positive electrode, and the other end is defined as the negative electrode.
  • the input positive terminal 101 is connected to the positive electrode of the input side voltage stabilizing capacitor 105 and the positive electrode of the input side diode 201.
  • the negative electrode of the input side voltage stabilizing capacitor 105 is connected to the input negative terminal 102, the negative electrode of the main switch 206, and the negative electrode of the output side voltage stabilizing capacitor 106.
  • the output side negative terminal 104 is connected
  • the negative electrode of the input side diode 201 is connected to the negative electrode of the resonant switch 204 and the positive electrode of the energy storage inductor
  • the positive electrode of the resonant switch 204 is connected to the positive electrode of the resonant capacitor 203
  • the negative electrode of the resonant capacitor 203 is connected to the energy storage inductor.
  • the cathode of 202 is connected to the anode of the output-side diode 205 and the anode of the main switch 206.
  • the cathode of the output-side diode 205 is connected to the anode of the output-side voltage stabilizing capacitor 106 and the output-side anode terminal 103.
  • the input positive terminal 101 and the input negative terminal 102 are respectively connected to the positive and negative electrodes of the photovoltaic modules or cascaded photovoltaic modules.
  • the output positive terminal 103 and the output negative terminal 104 are respectively connected to the DC grid, or to other non-isolated DC boost topology circuits. After cascading, it is connected to the DC grid, or connected to a unipolar AC/DC inverter, or cascaded with other non-isolated DC boost topology circuits and then connected to a unipolar AC/DC inverter.
  • the open circuit voltage of the photovoltaic module connected between the input positive terminal 101 and the input negative terminal 102 is U0
  • the target voltage between the input positive terminal 101 and the input negative terminal 102 is U1
  • the voltage between the output positive terminal 103 and the output negative terminal 104 is U2.
  • the control method of this non-isolated DC boost topology circuit is as follows: when U2 is greater than 2 times U1, that is, when U3 is greater than U1, the circuit should adopt the soft switching control method.
  • the specific control process is described below; when U2 is not higher than 2 times U1, that is, when U3 is not higher than U1, the circuit should adopt a hard switching control method, that is, the resonant switch 204 and the resonant capacitor 203 do not work, and the topology degenerates into a conventional H-type boost circuit, through the conduction of the main switch 206 and shutdown to achieve boost.
  • the above zero switching loss non-isolated DC boost topology circuit has six working states within one switching cycle.
  • the specific control method of its work is as follows:
  • the resonant capacitor 203 needs to be charged first so that it has the ability to transfer the current of the energy storage inductor 202 to reversely block the main switch 206 .
  • the resonant switch 204 and the main switch 206 are turned on.
  • the main switch 206 is turned off to cause the energy storage inductor 202 and the resonant capacitor 203 to resonate.
  • the main switch 206 is turned on to charge the energy storage inductor 202.
  • the current of the energy storage inductor 202 starts to charge from 0, and the main switch 206 is turned on at a quasi-zero current.
  • the current I1 of the energy storage inductor 202 reaches the target value Imax, the energy storage inductor state ends. . Prepare to enter state 3.
  • the resonant switch 204 When the current I1 of the energy storage inductor 202 reaches the target value Imax, the resonant switch 204 is turned on, and the current of the energy storage inductor 202 is transferred through the resonant capacitor 203, so that the forward current flowing through the main switch 206 is 0, and the main switch 206 is closed. Zero current shutdown.
  • the main switch zero-current shutdown state ends and automatically enters state 4.
  • the freewheeling current of the energy storage inductor 202 reversely charges the resonant capacitor 203, and the voltage of the resonant capacitor 203 is reversely charged from U3 to -U3.
  • the output side diode 205 is turned on and transfers the current flowing from the energy storage inductor 202 to the resonant capacitor 203.
  • the resonant switch 204 The forward current is 0, and the resonant switch 204 is turned off to achieve zero-current turn-off of the resonant switch.
  • the reverse charging state of the resonant capacitor ends and it automatically enters state 5.
  • the energy storage inductor 202 continues to continue flowing through the output side diode 205 to charge the output side voltage stabilizing capacitor 106 until the current of the energy storage inductor 202 reaches 0 and the reverse voltage of the output side diode 205 recovers. After completing the freewheeling boost state, it automatically enters state 6.
  • the energy storage inductor 202 resonates with the resonant capacitor 203 until the energy storage inductor 202 forward charges the resonant capacitor 203 until the voltage returns to U3, and the forward charging state of the capacitor ends under resonance. Wait for instructions to re-enter state 2. It is safe to stop the entire cycle only here. If you want to stop, you can send a control command at this time to stop the state change.
  • the photovoltaic string voltage U1 between the input positive terminal 101 and the input negative terminal 102 is 350V
  • the output positive terminal 103 and the output negative terminal 104 are connected to the DC distribution network voltage U2 is 750V
  • the energy storage inductor 202 targets
  • the value Imax is set to 100A
  • the input side voltage stabilizing capacitor 105 has a capacitance value of 1mF
  • the output side voltage stabilizing capacitor 106 has a capacitance value of 0.5mF
  • the energy storage inductor 202 has an inductance value of 1mH
  • the resonant capacitor 203 has a capacitance value of 1uF
  • the side diode 201 and the output side diode 205 select diodes with an average current of 50A and a withstand voltage of 1200V.
  • the resonant switch 204 selects a MosFET with an average current of 14A and a withstand voltage of 600V.
  • the main switch 206 selects an average current of 50A
  • the voltage boost ratio U2/U1 is greater than 2
  • U3 is 400V
  • the main switch 206 is in a soft switching operation control state.
  • the hard switch turns off the main switch 206 to cause the energy storage inductor 202 and the resonant capacitor 203 to resonate;
  • the reverse charging of the resonant capacitor 203 by the inductor 202 is completed, that is, the forward current of the resonant switch 204 is 0, and the resonant switch 204 is closed with zero current; let the resonant capacitor 203 and the energy storage inductor 202 continue to resonate, and the energy storage inductor 202 charges the resonant capacitor.
  • 203 is charged forward until the current of the energy storage inductor 202 is zero. At this time, the voltage of the resonant capacitor 203 is about 400V.
  • the main switch 206 When the main switch 206 is turned on, the photovoltaic string charges the energy storage inductor 202, and the current of the energy storage inductor 202 starts to charge from 0. As shown in Figure 2, the main switch 206 is turned on with quasi-zero current.
  • the resonant switch 204 When the current of the energy storage inductor 202 rises to 100A, the resonant switch 204 is turned on, and the current of the energy storage inductor 202 is transferred through the resonant capacitor 203, so that the forward current flowing through the main switch 206 is 0. As shown in Figure 3, zero current Turn off the main switch 206.
  • the freewheeling of the energy storage inductor 202 reversely charges the resonant capacitor 203, and reversely charges the voltage of the resonant capacitor 203 to -400V, so that the voltage after the photovoltaic module and the resonant capacitor 203 are connected in series is 750V, which is equal to the voltage of the output side voltage stabilizing capacitor 106, and the output
  • the side diode 205 conducts and transfers the current flowing from the energy storage inductor 202 to the resonant capacitor 203.
  • the forward current of the resonant switch 204 is 0. As shown in FIG. 4, the zero current turns off the resonant switch 204.
  • the energy storage inductor 202 continues to continue flowing through the output side diode 205 to charge the output side voltage stabilizing capacitor 106 until the current of the energy storage inductor 202 reaches 0 and the reverse voltage of the output side diode 205 recovers. After completing the freewheeling boost state, it automatically enters state 6.
  • the inductor 202 After the energy storage inductor 202 drops to 0, the inductor 202 resonates with the resonant capacitor 203 until the energy storage inductor 202 forward-charges the resonant capacitor 203 until the voltage returns to 400V, and the forward charging state of the capacitor ends under resonance. At this time, when the topology operating state returns to the startup state, it can be decided according to the superior control instructions whether to enter state 2 and then enter the next cycle.
  • the present invention reuses the energy storage inductor in the main circuit to build a resonant cavity, and only adds one switching device and one resonant capacitor to the H-type topology currently widely used in photovoltaic optimizers, which greatly reduces the cost of the soft-switching topology.
  • the resonant capacitor is used to reverse charge to transfer the current of the main circuit switching device, and turn off the main circuit switching device at zero current, realizing zero current switching of the main circuit switching device, which significantly improves the efficiency of topological power conversion.
  • the difference between the input and output voltages is used to naturally commutate the anti-parallel diode based on the resonant switching device to achieve zero-current turn-off of the switching device in the resonant circuit, significantly reducing the operating loss of the resonant circuit.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)

Abstract

本发明公开了一种零开关损耗非隔离直流升压拓扑电路及其控制方法,拓扑结构为:输入正极端子(101)与输入侧稳压电容(105)的正极、输入侧二极管(201)的正极相连,输入侧稳压电容(105)的负极与输入负极端子(102)、主开关(206)的负极、输出侧稳压电容(106)的负极、输出侧负极端子(104)相连,输入侧二极管(201)的负极与谐振开关(204)的负极、储能电感(202)的正极相连,谐振开关(204)的正极与谐振电容(203)的一端相连,谐振电容(203)的另一端与储能电感(202)的负极、输出侧二极管(205)的正极、主开关(206)的正极相连,输出侧二极管(205)的负极与输出侧稳压电容(106)的正极、输出侧正极端子(103)相连。该拓扑结构简单且控制简便。

Description

一种零开关损耗非隔离直流升压拓扑电路及其控制方法 技术领域
本发明属于电源领域,涉及一种单向、并网型零开关损耗非隔离直流升压拓扑电路及其控制方法。
背景技术
目前,光伏优化器等装置均为硬开关型升压电路,影响效率。在优化器大规模推广应用后,采用硬开关拓扑的升压技术会明显增加光伏发电系统的损耗。现有的软开关拓扑增加器件多,成本高。因此,亟待一种低成本的软开关升压电路。
发明内容
发明目的:本发明提出一种零开关损耗非隔离直流升压拓扑电路,用于光伏系统中替代现有的硬开关升压拓扑优化器,可以明显降低损耗,提高光伏系统效率。
本发明还提供上述非隔离直流升压拓扑电路的控制方法。
技术方案:一种零开关损耗非隔离直流升压拓扑电路,包括输入正极端子、输入负极端子、输出正极端子、输出负极端子、输入侧稳压电容、输出侧稳压电容、输入侧二极管、储能电感、谐振电容、谐振开关、输出侧二极管、主开关,输入正极端子与输入侧稳压电容的正极、输入侧二极管的正极相连,输入侧稳压电容的负极与输入负极端子、主开关的负极、输出侧稳压电容的负极、输出侧负极端子相连,输入侧二极管的负极与谐振开关的负极、储能电感的正极相连,谐振开关的正极与谐振电容的一端相连,谐振电容的另一端与储能电感的负极、输出侧二极管的正极、主开关的正极相连,输出侧二极管的负极与输出侧稳压电容的正极、输出侧正极端子相连;
所述非隔离直流升压拓扑电路的零开关损耗工作状态包括:
状态1、启动:导通谐振开关和主开关,当谐振电容和储能电感充电到一定电量时,关断主开关使储能电感与谐振电容谐振,在储能电感给谐振电容反向充电结束后关闭谐振开关,让谐振电容与储能电感继续谐振,直到储能电感向谐振电容正向充电,直至储能电感电流为零,启动状态准备完毕,准备进入状态2;
状态2、储能电感充电:导通主开关使储能电感充电,储能电感电流由0开始充电,主开关为准零电流导通;当储能电感电流达到目标值时,储能电感充电状态结束,准备进入状态3;
状态3、主开关零电流关断:导通谐振开关,通过谐振电容转移储能电感的电流,使正向流过主开关的电流为0,关闭主开关,实现零电流关断,主开关零电流关断状态结束,自动进入状态4;
状态4、谐振下电容反向充电:储能电感续流为谐振电容反向充电,直至谐振电容电压绝对值达到目标电压,输出侧二极管导通并转移储能电感流向谐振电容的电流,谐振开关的正向电流为0,关断谐振开关实现谐振开关零电流关断,谐振电容反向充电状态结束,自动进入状态5;
状态5、续流升压:储能电感继续续流经输出侧二极管向输出侧稳压电容充电,直至储能电感电流为0,输出侧二极管反向电压恢复,完成续流升压状态,自动进入状态6;
状态6、谐振下电容正向充电:储能电感与谐振电容谐振,直至储能电感为谐振电容正向充电至电压恢复为目标电压,谐振下电容正向充电状态结束,等待指令重新进入状态2。
优选地,主开关是IGBT、IGCT、或MosFET中的任一种。
优选地,谐振开关是MosFET、IGBT、或IGCT中的任一种。
优选地,输入侧稳压电容和输出侧稳压电容为带有极性的电解电容、薄膜电容、或超级电容中的任一种。
优选地,谐振电容为无极性电容。
优选地,输入正极端子和输入负极端子分别连接光伏组件或级联后的光伏组件的正极和负极,输出正极端子和输出负极端子分别连接直流电网,或与其他非隔离直流升压拓扑电路级联后接入直流电网,或连接单极的AC/DC逆变器,或与其他非隔离直流升压拓扑电路级联后连接单极的AC/DC逆变器。
优选地,所述谐振电容的目标变压为输入电压与输出电压之间的差,输入电压为输入正极端子与输入负极端子之间的电压,输出电压为输出正极端子与输出负极端子之间的电压。
上述非隔离直流升压拓扑电路的控制方法如下:当输出电压大于2倍的输入电压时,采用软开关控制方法;当输出电压不高于2倍的输入电压时,采用硬开关控制方法,此时谐振开关和谐振电容不工作,通过主开关的导通和关断实现升压。
本发明具有以下有益效果:
1、拓扑结构简单。复用非隔离直流升压主电路中的储能电感构建谐振腔,在目前在光伏优化器中广泛使用的H型拓扑上仅增加一个开关器件和一个谐振电容,大幅降低软开关拓扑成本。
2、软开关控制方法简便、高效。使用谐振电容反向充电转移主电路开关器件的电流,在零电流下关断主电路开关器件,实现主电路开关器件零电流开关,明显提高拓扑电能变换的效率。同时,利用输入、输出电压间差异,基于谐振开关器件的反并联二极管自然换流,实现谐振电路中开关器件的零电流关断,明显降低谐振电路工作损耗。
3、所提控制方法基于所提拓扑,在变压比大于2时采用谐振软开关控制,在变压比不高于2时仍采用硬开关控制,实现全范围效率最优。
附图说明
图1是本发明的零开关损耗非隔离直流升压拓扑电路结构图;
图2是主开关准零电流关断过程电压和电流示意;
图3是主开关零电流导通过程电压和电流示意;
图4是谐振开关零电流关断过程电压电流示意。
具体实施方式
下面结合附图和具体实施例,对本发明的技术方案做进一步说明。
本发明提出一种低成本单向并网型非隔离直流升压拓扑电路,如图1所示,包括输入正极端子101、输入负极端子102、输出正极端子103、输出负极端子104、输入侧稳压电容105、输出侧稳压电容106、输入侧二极管201、储能电感202、谐振电容203、谐振开关204、输出侧二极管205、主开关206。
主开关206导通时,电流可以从主开关206的正极流向负极,主开关206断开时,电流不可以从主开关206的正极流向负极;主开关206导通和断开时,电流都可以从主开关206的负极流向正极。主开关206优选地可以是IGBT,或是IGCT,或是MosFET中的任意一种。
谐振开关204导通时,电流可以从谐振开关204的正极流向负极,谐振开关204断开时,电流不可以从谐振开关204的正极流向负极;谐振开关204导通和断开时,电流都可以从谐振开关204的负极流向正极。谐振开关204优选地可以是MosFET,或是IGBT、或是IGCT中的任意一种。
输入侧稳压电容105和输出侧稳压电容106优选为带有极性的电解电容,或是薄膜 电容,或是超级电容。谐振电容203为无极性电容。为了描述的便利,本发明中定义谐振电容203和储能电感202相连的一端为正极,另一极为负极。
输入正极端子101与输入侧稳压电容105的正极、输入侧二极管201的正极相连,输入侧稳压电容105的负极与输入负极端子102、主开关206的负极、输出侧稳压电容106的负极、输出侧负极端子104相连,输入侧二极管201的负极与谐振开关204的负极、储能电感的正极相连,谐振开关204的正极与谐振电容203的正极相连,谐振电容203的负极与储能电感202的负极、输出侧二极管205的正极、主开关206的正极相连,输出侧二极管205的负极与输出侧稳压电容106的正极、输出侧正极端子103相连。
输入正极端子101和输入负极端子102分别连接光伏组件或级联后的光伏组件的正极和负极,输出正极端子103和输出负极端子104分别连接直流电网,或是与其他非隔离直流升压拓扑电路级联后接入直流电网,或是连接单极的AC/DC逆变器,或是与其他非隔离直流升压拓扑电路级联后连接单极的AC/DC逆变器。
输入正极端子101与输入负极端子102间接入的光伏组件开路电压为U0,输入正极端子101与输入负极端子102间的目标电压为U1,输出正极端子103与输出负极端子104间的电压为U2,输入侧稳压电容105的容量要满足输入侧稳压电容105在U0下的电量大于谐振电容203在U3下的电量,其中U3=U2-U1。
该非隔离直流升压拓扑电路的控制方法如下:当U2大于2倍的U1时,即U3大于U1时,该电路宜采用软开关控制方法,具体控制过程在下面描述;当U2不高于2倍的U1时,即U3不高于U1时,该电路宜采用硬开关控制方法,即谐振开关204和谐振电容203不工作,拓扑退化为常规H型升压电路,通过主开关206的导通和关断实现升压。
上述零开关损耗非隔离直流升压拓扑电路在一个开关周期内有六种工作状态,其工作具体控制方法如下:
状态1、启动
当所述电路启动时,需要先给谐振电容203充电,使其具备转移储能电感202电流从而反向阻断主开关206的能力。首先导通谐振开关204和主开关206,当谐振电容203和储能电感202充电到其电量为谐振电容203在U3下的电量时,关断主开关206使储能电感202与谐振电容203谐振,在储能电感202给谐振电容203反向充电结束后关闭谐振开关204,让谐振电容203与储能电感202继续谐振,直到储能电感202向谐振电容203正向充电,直至储能电感202电流为零,此时谐振电容203电压约为U3。启动 状态准备完毕,准备进入状态2。
状态2、储能电感充电
导通主开关206使储能电感202充电,储能电感202电流由0开始充电,主开关206为准零电流导通;当储能电感202电流I1达到目标值Imax时,储能电感状态结束。准备进入状态3。
状态3、主开关零电流关断
当储能电感202电流I1达到目标值Imax时,导通谐振开关204,通过谐振电容203转移储能电感202的电流,使正向流过主开关206的电流为0,关闭主开关206,实现零电流关断。主开关零电流关断状态结束,自动进入状态4。
状态4、谐振下电容反向充电
储能电感202续流为谐振电容203反向充电,将谐振电容203电压由U3反向充至-U3,输出侧二极管205导通并转移储能电感202流向谐振电容203的电流,谐振开关204的正向电流为0,关断谐振开关204实现谐振开关零电流关断。谐振电容反向充电状态结束,自动进入状态5。
状态5、续流升压
储能电感202继续续流经输出侧二极管205向输出侧稳压电容106充电,直至储能电感202电流为0,输出侧二极管205反向电压恢复。完成续流升压状态,自动进入状态6。
状态6、谐振下电容正向充电
储能电感202与谐振电容203谐振,直至储能电感202为谐振电容203正向充电至电压恢复到U3,谐振下电容正向充电状态结束。等待指令重新进入状态2。整个循环只有在这里停止是安全的,如果想要停机,则可在此时发送控制指令,停止状态变换。
在本发明的示例中,输入正极端子101和输入负极端子102之间光伏组串电压U1为350V,输出正极端子103和输出负极端子104接入直流配网电压U2为750V,储能电感202目标值Imax设定为100A,输入侧稳压电容105电容容值为1mF,输出侧稳压电容106电容容值为0.5mF,储能电感202电感值为1mH,谐振电容203电容值为1uF,输入侧二极管201与输出侧二极管205选择平均电流为50A、耐压为1200V的二极管,谐振开关204选择平均电流为14A、耐压为600V的MosFET,主开关206选择平均电流为50A、耐压为1200V的IGBT。
在此工况下,升压比U2/U1大于2,U3为400V,主开关206为软开关运行控制状态。
状态1、启动
导通谐振开关204和主开关206,使谐振电容充电至350V,且储能电感202充电至12A时,硬开关关断主开关管206,使储能电感202和谐振电容203谐振;在储能电感202给谐振电容203反向充电结束后,即谐振开关204正向导通电流为0下,零电流关闭谐振开关204;让谐振电容203与储能电感202继续谐振,储能电感202向谐振电容203正向充电,直至储能电感202电流为零,此时谐振电容203电压约为400V。
状态2、储能电感充电
导通主开关206,光伏组串为储能电感202充电,储能电感202电流由0开始充电,如图2所示,主开关206为准零电流导通。
状态3、主开关零电流关断
当储能电感202电流升至100A时,导通谐振开关204,通过谐振电容203转移储能电感202的电流,使正向流过主开关206的电流为0,如图3所示,零电流关闭主开关206。
状态4、谐振下电容反向充电
储能电感202续流为谐振电容203反向充电,将谐振电容203电压反向充至-400V,使得光伏组件与谐振电容203串联后电压为750V,等于输出侧稳压电容106的电压,输出侧二极管205导通并转移储能电感202流向谐振电容203的电流,谐振开关204的正向电流为0,如图4所示,零电流关断谐振开关204。
状态5、续流升压
储能电感202继续续流经输出侧二极管205向输出侧稳压电容106充电,直至储能电感202电流为0,输出侧二极管205反向电压恢复。完成续流升压状态,自动进入状态6。
状态6、谐振下电容正向充电
储能电感202降至0后,电感202与谐振电容203谐振,直至储能电感202为谐振电容203正向充电至电压恢复到400V,谐振下电容正向充电状态结束。此时拓扑运行状态恢复到启动状态结束时,此时可根据上级控制指令决定是否进入状态2,从而进入下一个循环。
本发明复用主电路中的储能电感构建谐振腔,在目前在光伏优化器中广泛使用的H型拓扑上仅增加一个开关器件和一个谐振电容,大幅降低软开关拓扑成本。在软开关控制中,使用谐振电容反向充电转移主电路开关器件的电流,在零电流下关断主电路开关器件,实现主电路开关器件零电流开关,明显提高拓扑电能变换的效率。同时,利用输入、输出电压间差异,基于谐振开关器件的反并联二极管自然换流,实现谐振电路中开关器件的零电流关断,明显降低谐振电路工作损耗。

Claims (8)

  1. 一种零开关损耗非隔离直流升压拓扑电路,其特征在于,包括输入正极端子(101)、输入负极端子(102)、输出正极端子(103)、输出负极端子(104)、输入侧稳压电容(105)、输出侧稳压电容(106)、输入侧二极管(201)、储能电感(202)、谐振电容(203)、谐振开关(204)、输出侧二极管(205)、主开关(206),输入正极端子(101)与输入侧稳压电容(105)的正极、输入侧二极管(201)的正极相连,输入侧稳压电容(105)的负极与输入负极端子(102)、主开关(206)的负极、输出侧稳压电容(106)的负极、输出侧负极端子(104)相连,输入侧二极管(201)的负极与谐振开关(204)的负极、储能电感(202)的正极相连,谐振开关(204)的正极与谐振电容(203)的一端相连,谐振电容(203)的另一端与储能电感(202)的负极、输出侧二极管(205)的正极、主开关(206)的正极相连,输出侧二极管(205)的负极与输出侧稳压电容(106)的正极、输出侧正极端子(103)相连;
    所述非隔离直流升压拓扑电路的零开关损耗工作状态包括:
    状态1、启动:导通谐振开关(204)和主开关(206),当谐振电容(203)和储能电感(202)充电到一定电量时,关断主开关(206)使储能电感(202)与谐振电容(203)谐振,在储能电感(202)给谐振电容(203)反向充电结束后关闭谐振开关,让谐振电容(203)与储能电感(202)继续谐振,直到储能电感(202)向谐振电容(203)正向充电,直至储能电感(202)电流为零,启动状态准备完毕,准备进入状态2;
    状态2、储能电感充电:导通主开关(206)使储能电感(202)充电,储能电感(202)电流由0开始充电,主开关(206)为准零电流导通;当储能电感(202)电流达到目标值时,储能电感充电状态结束,准备进入状态3;
    状态3、主开关零电流关断:导通谐振开关(204),通过谐振电容(203)转移储能电感(202)的电流,使正向流过主开关(206)的电流为0,关闭主开关(206),实现零电流关断,主开关零电流关断状态结束,自动进入状态4;
    状态4、谐振下电容反向充电:储能电感(202)续流为谐振电容(203)反向充电,直至谐振电容(203)电压绝对值达到目标电压,输出侧二极管(205)导通并转移储能电感(202)流向谐振电容(203)的电流,谐振开关(204)的正向电流为0,关断谐振开关(204)实现谐振开关零电流关断,谐振电容(203)反向充电状态结束,自动进入状态5;
    状态5、续流升压:储能电感(202)继续续流经输出侧二极管(205)向输出侧稳 压电容(106)充电,直至储能电感(202)电流为0,输出侧二极管(205)反向电压恢复,完成续流升压状态,自动进入状态6;
    状态6、谐振下电容正向充电:储能电感(202)与谐振电容(203)谐振,直至储能电感(202)为谐振电容(203)正向充电至电压恢复为目标电压,谐振下电容正向充电状态结束,等待重新进入状态2。
  2. 根据权利要求1所述的零开关损耗非隔离直流升压拓扑电路,其特征在于,主开关(206)是IGBT、IGCT、或MosFET中的任一种。
  3. 根据权利要求1所述的零开关损耗非隔离直流升压拓扑电路,其特征在于,谐振开关(204)是MosFET、IGBT、或IGCT中的任一种。
  4. 根据权利要求1所述的零开关损耗非隔离直流升压拓扑电路,其特征在于,输入侧稳压电容(105)和输出侧稳压电容(106)为带有极性的电解电容、薄膜电容、或超级电容中的任一种。
  5. 根据权利要求1所述的零开关损耗非隔离直流升压拓扑电路,其特征在于,谐振电容(203)为无极性电容。
  6. 根据权利要求1所述的零开关损耗非隔离直流升压拓扑电路,其特征在于,输入正极端子(101)和输入负极端子(102)分别连接光伏组件或级联后的光伏组件的正极和负极,输出正极端子(103)和输出负极端子(104)分别连接直流电网,或与其他非隔离直流升压拓扑电路级联后接入直流电网,或连接单极的AC/DC逆变器,或与其他非隔离直流升压拓扑电路级联后连接单极的AC/DC逆变器。
  7. 根据权利要求1所述的零开关损耗非隔离直流升压拓扑电路,其特征在于,所述谐振电容(203)的目标变压为输入电压与输出电压之间的差,输入电压为输入正极端子(101)与输入负极端子(102)之间的电压,输出电压为输出正极端子(103)与输出负极端子(104)之间的电压。
  8. 一种非隔离直流升压拓扑电路的控制方法,其特征在于,基于权利要求1-7任一项所述的零开关损耗非隔离直流升压拓扑电路,所述方法包括:当输出电压大于2倍的输入电压时,采用软开关控制方法;当输出电压不高于2倍的输入电压时,采用硬开关控制方法,此时谐振开关(204)和谐振电容(203)不工作,通过主开关(206)的导通和关断实现升压。
PCT/CN2022/104578 2022-06-21 2022-07-08 一种零开关损耗非隔离直流升压拓扑电路及其控制方法 WO2023245743A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210702845.X 2022-06-21
CN202210702845.XA CN115173703A (zh) 2022-06-21 2022-06-21 一种零开关损耗非隔离直流升压拓扑电路及其控制方法

Publications (1)

Publication Number Publication Date
WO2023245743A1 true WO2023245743A1 (zh) 2023-12-28

Family

ID=83488005

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/104578 WO2023245743A1 (zh) 2022-06-21 2022-07-08 一种零开关损耗非隔离直流升压拓扑电路及其控制方法

Country Status (2)

Country Link
CN (1) CN115173703A (zh)
WO (1) WO2023245743A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117537658A (zh) * 2023-03-17 2024-02-09 成都科创时空科技有限公司 用于多级线圈式电磁炮的补能谐振关断拓扑结构

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050265055A1 (en) * 2004-05-31 2005-12-01 Delta Electronics Inc. Soft-switching DC/DC converter having relatively fewer elements
CN202034903U (zh) * 2011-04-19 2011-11-09 苏州工业职业技术学院 一种软开关升压型dc-dc变换器
CN105024548A (zh) * 2015-07-27 2015-11-04 江苏大学 一种改进型分裂电感零电流转换boost斩波电路及其调制方法
CN105162319A (zh) * 2015-09-30 2015-12-16 上海电力学院 零电压开关准谐振高增益直流升压变换器
CN106026657A (zh) * 2016-07-08 2016-10-12 西华大学 非隔离高增益dc-dc升压变换器

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050265055A1 (en) * 2004-05-31 2005-12-01 Delta Electronics Inc. Soft-switching DC/DC converter having relatively fewer elements
CN202034903U (zh) * 2011-04-19 2011-11-09 苏州工业职业技术学院 一种软开关升压型dc-dc变换器
CN105024548A (zh) * 2015-07-27 2015-11-04 江苏大学 一种改进型分裂电感零电流转换boost斩波电路及其调制方法
CN105162319A (zh) * 2015-09-30 2015-12-16 上海电力学院 零电压开关准谐振高增益直流升压变换器
CN106026657A (zh) * 2016-07-08 2016-10-12 西华大学 非隔离高增益dc-dc升压变换器

Also Published As

Publication number Publication date
CN115173703A (zh) 2022-10-11

Similar Documents

Publication Publication Date Title
WO2022062327A1 (zh) 一种改进型开关耦合电感准z源逆变器
CN109104108B (zh) 一种带有有源箝位的软开关型单级式高频隔离整流器
CN111245247B (zh) 一种隔离型双向谐振软开关dc-dc变换器
CN104201884B (zh) 一种软开关dc‑dc变换电路
CN105553254B (zh) 一种含开关电容的零电压开关高增益dc‑dc变换器
CN103929058A (zh) 基于耦合电感的两相交错并联变换器
CN113783418B (zh) 一种低输入电流纹波高增益软开关直流变换器
CN103475211A (zh) 融合耦合电感与倍压电路的升压变换器
CN111884521B (zh) 单级式Boost全桥升压零电流开关直流变换器及其控制方法
CN108736756B (zh) 一种改进型双辅助谐振极型三相软开关逆变电路
WO2023245743A1 (zh) 一种零开关损耗非隔离直流升压拓扑电路及其控制方法
CN109698627B (zh) 一种基于开关电容器的全桥dc/dc变换器及其调制策略
Li et al. Analysis and design of a nonisolated bidirectional DC–DC converter based on CLC network
CN108429452B (zh) 一种光伏系统用二次型多自举dc-dc变换器
Thumma et al. Design and simulation of a new ZVT Bi-directional DC-DC converter for electric vehicles
Tran et al. Interleaved ZVT boost converter for 800v fuel cell electric vehicles
CN108448892B (zh) 一种光伏系统用二次型多倍压单元dc-dc变换器
CN108429451B (zh) 一种光伏系统用级联型多自举dc-dc变换器
Jia et al. A Two-stage isolated converter without intermediate capacitor for wide voltage range applications
CN112054672A (zh) 一种集成开关电容和y源网络的dc-dc高电压增益变换器
CN205304678U (zh) 一种用于电机驱动的光伏发电系统
Mingqing et al. Efficient Bidirectional Charger Design For Power Grid V2G
Sukhi et al. Battery Charger using Bi-Directional DC-DC Converter
CN217445253U (zh) 一种二次侧带有源倍压器的全桥llc变换器
CN215580488U (zh) 一种移相全桥充电电路

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22947501

Country of ref document: EP

Kind code of ref document: A1