WO2023245579A1 - 一种挥发性有机物VOCs检测监控系统 - Google Patents

一种挥发性有机物VOCs检测监控系统 Download PDF

Info

Publication number
WO2023245579A1
WO2023245579A1 PCT/CN2022/100910 CN2022100910W WO2023245579A1 WO 2023245579 A1 WO2023245579 A1 WO 2023245579A1 CN 2022100910 W CN2022100910 W CN 2022100910W WO 2023245579 A1 WO2023245579 A1 WO 2023245579A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas treatment
exhaust gas
vocs
treatment device
data
Prior art date
Application number
PCT/CN2022/100910
Other languages
English (en)
French (fr)
Inventor
张应书
程思聪
潘伟楷
Original Assignee
时代思康新材料有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 时代思康新材料有限公司 filed Critical 时代思康新材料有限公司
Priority to CN202280063429.8A priority Critical patent/CN117980839A/zh
Priority to PCT/CN2022/100910 priority patent/WO2023245579A1/zh
Publication of WO2023245579A1 publication Critical patent/WO2023245579A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/418Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS] or computer integrated manufacturing [CIM]

Definitions

  • This application relates to the field of exhaust gas monitoring technology, and specifically to a volatile organic compound VOCs detection and monitoring system.
  • the VOCs data collected by the VOCs detector are transmitted to the supporting data acquisition instrument for display. After the workers review the feedback, they adjust the production process indicators of the waste gas treatment device. This will cause the problem of lagging behind in the adjustment of production indicators, have a great impact on production control, regulation and management, and bring pollution to the environment.
  • this application provides a VOCs detection and monitoring system to realize real-time remote monitoring and control of VOCs indicators in production and improve the efficiency of production process control.
  • this application provides a VOCs detection and monitoring system, including: a VOCs detection device, an exhaust gas treatment device, a monitoring device, a cloud server and an intelligent device; the VOCs detection device is connected to the exhaust gas treatment device for The collected VOCs data is transmitted to the exhaust gas treatment device; the monitoring device is connected to the exhaust gas treatment device and used to monitor various operating statuses of the exhaust gas treatment device and the VOCs data; the cloud server is connected to the exhaust gas treatment device.
  • the intelligent device is connected to the cloud server.
  • the exhaust gas treatment device by connecting the VOCs detection data of the VOCs detection device to the exhaust gas treatment device, an adjustment strategy can be made to the VOCs detection data in real time to avoid the problem of lagging production index adjustment.
  • the exhaust gas treatment device will itself
  • the various operating status and VOCs data of the exhaust gas treatment device are transmitted to the monitoring device for remote monitoring by the operator to achieve early warning of excessive VOCs data.
  • the various operating status and VOCs data of the exhaust gas treatment device itself are also transmitted to the cloud server for It allows smart devices to read and grasp data status in real time, perform dual remote monitoring and early warning, and avoid environmental risks. This solution has good practicability, high degree of automation and low implementation cost.
  • the exhaust gas treatment device includes a controller; the VOCs detection device is connected to the controller through a first preset bus. Since the exhaust gas treatment device is overall controlled by the controller, the VOCs data collected by the VOCs detection device is directly connected to the controller for control calculations by using a preset bus.
  • the controller is provided with a first communication interface
  • the VOCs detection device is provided with a second communication interface
  • the first communication interface and the second communication interface are connected through the first default bus. connect.
  • the system further includes a DCS device; the monitoring device is connected to the exhaust gas treatment device through the DCS device. Since the DCS device can be set up in the remote central control room, by connecting the data from the exhaust gas treatment device to the DCS device, early warning of the operating status of the exhaust gas treatment device and VOCs detection data can be realized, and the central control can be reminded through the display of the monitoring device operator.
  • the controller of the exhaust gas treatment device is connected to the DCS device through a second preset bus; the DCS device is connected to the monitoring device through Ethernet. Since the exhaust gas treatment device is overall controlled by the controller, the VOCs data managed by the controller and the various operating statuses of the exhaust gas treatment device are connected to the DCS device for remote monitoring by using a preset bus.
  • the controller is provided with a third communication interface
  • the DCS device is provided with a fourth communication interface; the third communication interface and the fourth communication interface are connected through the second default bus. .
  • the DCS device can monitor the data in the exhaust gas treatment device. Since the DCS device and the exhaust gas treatment device are already used, There are communication interfaces, so implementation costs are low.
  • the first preset bus and the second preset bus include either a modbus bus or a DP bus, and this application does not specifically limit the bus type.
  • the exhaust gas treatment device includes an exhaust gas inlet, a pretreatment recovery module, a combustion chamber, a fan, a post-treatment system, and an exhaust gas outlet; wherein the exhaust gas inlet is connected to the input port of the pretreatment recovery module, The output port of the pretreatment recovery module is connected to the combustion chamber, the combustion chamber is connected to the after-treatment system, the exhaust gas outlet is connected to the after-treatment system, and the fan is used to supply air to the combustion chamber. Air is input; the VOCs detection device is located at the exhaust gas outlet. By placing the VOCs detection device at the tail gas outlet of the exhaust gas treatment device, the VOCs data collected can accurately reflect whether the treatment results of the exhaust gas treatment device meet the required emission indicators.
  • the exhaust gas treatment device is provided with a wireless module, and various operating statuses of the exhaust gas treatment device and the VOCs data are transmitted to the cloud server through the wireless module; the smart device uses Ethernet to Read various operating statuses of the exhaust gas treatment device and the VOCs data on the cloud server.
  • the smart device uses Ethernet to Read various operating statuses of the exhaust gas treatment device and the VOCs data on the cloud server.
  • the controller is a PLC to adapt to exhaust gas treatment control in an industrial environment.
  • this application provides an exhaust gas treatment system, including the VOCs detection and monitoring system described in the first aspect.
  • FIG 1 shows one of the schematic structural diagrams of the VOCs detection and monitoring system according to some embodiments of the present application
  • FIG. 2 shows the second structural schematic diagram of the VOCs detection and monitoring system according to some embodiments of the present application
  • VOCs detection and monitoring system 100 VOCs detection device 10, exhaust gas treatment device 20, monitoring device 30, cloud server 40, intelligent device 50, DCS device 60;
  • Controller 201 wireless module 202, exhaust inlet 203, pretreatment recovery module 204, combustion chamber 205, fan 206, post-treatment system 207, exhaust outlet 208;
  • an embodiment means that a particular feature, structure or characteristic described in connection with the embodiment can be included in at least one embodiment of the present application.
  • the appearances of this phrase in various places in the specification are not necessarily all referring to the same embodiment, nor are separate or alternative embodiments mutually exclusive of other embodiments. Those skilled in the art understand, both explicitly and implicitly, that the embodiments described herein may be combined with other embodiments.
  • multiple refers to more than two (including two).
  • multiple groups refers to two or more groups (including two groups), and “multiple pieces” refers to It is more than two pieces (including two pieces).
  • the VOCs data collected by the VOCs detection device i.e., VOCs detector
  • its supporting data acquisition instrument i.e., display module
  • the VOCs data collected by the workshop workers on site are Observe the VOCs data currently displayed by the data logger and compare it with the specified VOCs standard. If it exceeds the VOCs standard, it is determined that the VOCs data exceeds the standard.
  • workshop workers find that the standards are exceeded, they manually adjust the processing control parameters of the exhaust gas treatment device to ensure that the VOCs data collected by the VOCs detection device meets the standards.
  • the VOCs detection device is connected to the exhaust gas treatment device, so that the VOCs detection device can transmit the collected VOCs detection data to the exhaust gas treatment device in real time.
  • the exhaust gas treatment device automatically determines whether it exceeds the standard and makes timely adjustments to the control parameters to avoid lag in the adjustment of production indicators. problem and reduce the risk of atmospheric environmental pollution.
  • the inventor also designed the exhaust gas treatment device to transmit its own operating status to the monitoring device, and also transmit the VOCs data to the monitoring device for remote monitoring by the operator. For early warning of excessive VOCs data, further, by adding cloud servers and intelligent equipment, and transmitting the various operating status and VOCs data of the exhaust gas treatment device itself to the cloud server, so that the intelligent equipment can read and grasp the data status in real time. This enables dual remote monitoring and early warning.
  • This solution has good practicability, high degree of automation and low implementation cost.
  • VOCs detection and monitoring system disclosed in the embodiments of this application can be used in, but is not limited to, the production process of batteries. It can also be used in the production process of other similar structures to achieve the treatment and control of waste gas generated in the production process to improve the production process. Control efficiency and avoid air pollution problems during the production process.
  • FIG. 1 shows a schematic structural diagram of an electrical VOCs detection and monitoring system 100 provided by an embodiment of the present application.
  • the VOCs detection and monitoring system 100 includes a VOCs detection device 10 , an exhaust gas treatment device 20 , a monitoring device 30 , a cloud server 40 and an intelligent device 50 .
  • the VOCs detection device 10 is connected to the exhaust gas treatment device 20 in the exhaust gas treatment workshop, instead of transmitting it to the supporting data acquisition instrument in the existing technology, so that the VOCs detection device 10 can transmit the VOCs data collected in real time.
  • the exhaust gas treatment device 20 controls the VOCs data in real time to prevent the VOCs data from being isolated.
  • the exhaust gas treatment device 20 is an RTO device (regenerative thermal incinerator device), which is installed in the exhaust gas treatment workshop and is used to treat the exhaust gas generated in the product production process, so as to achieve the purpose of purifying the exhaust gas, so that The gases finally discharged into the atmosphere are non-polluting gases.
  • RTO device regenerative thermal incinerator device
  • the VOCs detection device 10 is a VOCs detector, which is installed on the exhaust gas treatment device 20 at a point where VOCs data detection is required, and is used to detect VOCs data around the environment in which it is located.
  • the VOCs data collected by the VOCs detection device can also include data such as gas flow rate, oxygen content, flue gas humidity, temperature, etc. These data facilitate the control of VOCs gas processing conditions.
  • the monitoring device 30 is connected to the exhaust gas treatment device 20.
  • the exhaust gas treatment device 20 will automatically regulate and control the operating status of each structure during the exhaust gas treatment process. Therefore, the operating status of each structure will be controlled through this connection relationship.
  • the VOCs data is also transmitted to the monitoring device 30, so that the manager can monitor the processing status of the VOCs data remotely while monitoring various operating statuses of the exhaust gas treatment device 20.
  • the monitoring device 30 is usually set up in a remote central control room, so that managers can monitor and provide early warning of the entire exhaust gas treatment workshop through various operating status and VOCs data displayed by the monitoring device 30, greatly reducing manpower and material costs. investment.
  • the exhaust gas treatment device 20 is also connected to the cloud server 40, so the exhaust gas treatment device 20 can also upload various operating status and VOCs data to the cloud server 40, and be read by the smart device connected to the cloud server 40. Dual remote monitoring.
  • the cloud server 40 can be one or more virtualization unit nodes deployed on a physical server, or one or more physical servers.
  • This application does not specifically limit the specific deployment method of the cloud server, as long as it can Just provide cloud services.
  • the smart device 50 can be any mobile terminal with networking capabilities such as a mobile phone, a notebook, or a desktop computer. It establishes a communication connection with the cloud server 40 and accesses the cloud service provided by the cloud server 40 to read the exhaust gas treatment device 20 Uploaded various operating status and VOCs data.
  • the VOCs detection and monitoring system provided in this embodiment is compared with the problem of lag in the transmission of the detection data of the VOCs detection device to the supporting data acquisition instrument in the traditional solution.
  • Adjustment strategies can be made to VOCs detection data in real time to avoid the problem of lag in production indicator adjustment.
  • the exhaust gas treatment device transmits its own operating status and VOCs data to the monitoring device for remote monitoring by managers to realize VOCs data
  • the system provides early warning of exceeding the standard, and further transmits the various operating status and VOCs data of the exhaust gas treatment device itself to the cloud server, so that smart devices can read and grasp the data status in real time, conduct dual remote monitoring and early warning, and avoid environmental risks.
  • This solution has good practicability, high degree of automation and low implementation cost.
  • the exhaust gas treatment device 20 includes a controller 201 , and the VOCs data collected by the VOCs detection device 10 is directly connected to the controller 201 for control operations by using the first preset bus zx1 .
  • the controller 201 is equivalent to the brain of the exhaust gas treatment device 20 and is used to regulate the operating status of each structural component in the exhaust gas treatment device 20 to achieve optimal treatment of the incoming exhaust gas. It can be seen that the exhaust gas treatment device 20 is overall controlled by the controller 201. Therefore, by directly connecting the VOCs data to the controller 201, the purpose of timely strategic control can be achieved.
  • the first preset bus zx1 can use either modbus bus or DP bus.
  • This application does not specifically limit the bus type, as long as it can be applied to the reserved interface of the VOCs detection device 10 and the reserved interface of the controller. That’s it.
  • controller 201 is a PLC controller to adapt to exhaust gas treatment control in an industrial environment.
  • the controller 201 is reserved with a first communication interface A
  • the VOCs detection device 10 is reserved with a second communication interface B.
  • the first communication interface A and the second communication interface B are reserved. Connected via the first preset bus zx1.
  • the first communication interface reserved on the controller 201 and the second communication interface reserved on the VOCs detection device 10 usually adopt the RS485/232 standard.
  • the VOCs detection and monitoring system 100 also includes a DCS (Distributed Control System) device 60 , and the monitoring device 30 is connected to the exhaust gas treatment device 20 through the DCS device 60 .
  • DCS Distributed Control System
  • the DCS device 60 is also called a distributed control system, which is usually installed in a remote central control room for distributed control and centralized management.
  • the DCS device 60 performs early warning on the VOCs data of various operating conditions transmitted by the exhaust gas treatment device 20 and displays it through the monitoring device 30 to promptly remind the management personnel in the central control room.
  • the second preset bus zx2 is used to connect the controller 201 of the exhaust gas treatment device 20 with the DCS device 60, and the DCS device 60 is connected with the monitoring device 30 through Ethernet.
  • the exhaust gas treatment device 20 is overall controlled by the controller 201. Therefore, by directly connecting the controller 201 to the DCS device 60, the DCS device 60 can obtain various operating statuses and VOCs data in the exhaust gas treatment device 20 in a timely manner. This further enables remote monitoring of various operating states and VOCs data of the exhaust gas treatment device 20 .
  • the second preset bus can be either a modbus bus or a DP bus.
  • This application does not specifically limit the bus type, as long as it can be applied to the reserved interface of the DCS device 60 and the reserved interface of the controller 201. Can.
  • controller 201 also reserves a third communication interface C, and the DCS device 60 reserves a fourth communication interface D.
  • the third communication interface C and the fourth communication interface D are connected through the second default bus zx2 to realize The DCS device 60 monitors data in the exhaust gas treatment device 20 .
  • the third communication interface C reserved on the controller 201 and the fourth communication interface D reserved on the DCS device 60 usually adopt the RS485/232 standard.
  • the exhaust gas treatment device 20 includes an exhaust gas inlet 203 , a pretreatment recovery module 204 , a combustion chamber 205 , a fan 206 , a post-treatment system 207 , and an exhaust gas outlet 208 .
  • the exhaust inlet 208 is connected to the input port of the pretreatment recovery module 204
  • the output port of the pretreatment recovery module 204 is connected to the combustion chamber 205
  • the combustion chamber 205 is connected to the post-treatment system 207
  • the exhaust outlet 208 is connected to the post-treatment system 207.
  • the fan 206 is used to input air into the combustion chamber 205 .
  • the VOCs detection device 10 is specifically installed at the exhaust gas outlet 208 point, and is used to collect exhaust gas data that will be discharged into the atmosphere after the exhaust gas is treated by the exhaust gas treatment device 20 .
  • the VOCs detection device 10 at the tail gas outlet 208 of the exhaust gas treatment device 20, the VOCs data collected by it can accurately reflect whether the treatment results of the exhaust gas treatment device 20 meet the prescribed emission index requirements.
  • the control principle of each structural component included in the above-mentioned exhaust gas treatment device 20 is:
  • the tail gas (that is, waste gas) generated in the product production process is discharged into the pretreatment recovery module 204 through the tail gas inlet 203, so that the pretreatment recovery module 204 preprocesses the discharged tail gas, that is, converts part of the non-combustible gas in the tail gas into Water or carbon dioxide that does not pollute the environment, and then the pretreated tail gas enters the combustion chamber 205 for incineration, so that some combustible gases undergo an oxidation reaction, and then the incinerated tail gas enters the post-treatment system 207 to treat some of the remaining acidic gases. Alkaline cleaning is performed, and finally the exhaust gas processed through a series of processes is discharged into the atmospheric environment from the exhaust gas outlet 208.
  • the VOCs data detected by the VOCs detection device 10 set at the exhaust outlet 208 is connected to the exhaust gas treatment device 20 for real-time monitoring, and when it is monitored that the VOCs data discharged from the exhaust outlet 208 exceeds the standard, the exhaust gas can be treated
  • the device 20 automatically adjusts the frequency of the fan 206 to increase the air volume discharged into the combustion chamber 205 and/or to increase the temperature of the combustion chamber 205 so that the combustible gas entering the combustion chamber 205 can be completely burned.
  • the exhaust gas treatment device 20 regulates the air volume of the fan 206 and the temperature of the combustion chamber 205 rises, the VOCs data discharged from the exhaust outlet 208 still exceeds the standard, the exhaust gas treatment device 20 needs to further use the gas detection probe at the exhaust inlet 203 to collect input The exhaust gas data is collected, and the collected input exhaust gas data is analyzed. If the analysis result is that it seriously exceeds the standard, an alarm is issued to remind the workshop staff to take measures.
  • the exhaust gas treatment device 20 is provided with a wireless module 202 .
  • Various operating statuses and VOCs data of the exhaust gas treatment device 20 are transmitted to the cloud server 40 through the wireless module 202 .
  • the smart device 50 reads various operating statuses and VOCs data of the exhaust gas treatment device 20 on the cloud server 40 through Ethernet.
  • the wireless module 202 added to the exhaust gas treatment device 20 can be a WiFi module, a BLE Bluetooth module, a WiFi+Bluetooth combination module, a zigbee wireless module, etc. This application does not specifically limit the type of wireless module.
  • the cloud server can be deployed in Any location, and managers can conduct remote monitoring through smart devices anytime and anywhere.
  • the present application also provides an exhaust gas treatment system, including the VOCs detection and monitoring system described in any of the above solutions.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Quality & Reliability (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Treating Waste Gases (AREA)

Abstract

本申请提供一种挥发性有机物VOCs检测监控系统,包括:VOCs检测装置、废气处理装置、监视装置、云端服务器以及智能设备;VOCs检测装置连接于废气处理装置,用于将采集的VOCs数据传输至废气处理装置;监视装置连接于废气处理装置,用于监视废气处理装置的各项运行状态和VOCs数据;云端服务器连接于废气处理装置,智能设备连接于云端服务器。通过将VOCs检测装置的VOCs检测数据接入废气处理装置中,以实时对VOCs检测数据进行监控,并做出调整策略,避免生产指标调节滞后的问题,同时废气处理装置还会将各项运行状态和VOCs数据传输至监视装置和云端服务器,从而可以由管理人员进行双重远程监视预警。本方案实用性好,自动化程度高、且实施成本低。

Description

一种挥发性有机物VOCs检测监控系统 技术领域
本申请涉及废气监测技术领域,具体涉及一种挥发性有机物VOCs检测监控系统。
背景技术
目前,在废气处理工厂中,VOCs检测仪采集的VOCs数据均是被传输至配套的数采仪中进行显示,并由工人查看反馈后,调整废气处理装置的生产过程指标。这样就会造成生产指标调节滞后的问题,给生产控制调节和管理带来极大影响,并给环境带来污染。
实用新型内容
鉴于上述问题,本申请提供一种VOCs检测监控系统,以实现生产对VOCs指标实时远程监视及控制,提升生产过程控制效率。
第一方面,本申请提供了一种VOCs检测监控系统,包括:VOCs检测装置、废气处理装置、监视装置、云端服务器以及智能设备;所述VOCs检测装置连接于所述废气处理装置,用于将采集的VOCs数据传输至所述废气处理装置;所述监视装置连接于所述废气处理装置,用于监视所述废气处理装置的各项运行状态和所述VOCs数据;所述云端服务器连接于所述废气处理装置,所述智能设备连接于所述云端服务器。
本申请实施例的技术方案中,通过将VOCs检测装置的VOCs检测数据接入废气处理装置中,以实时对VOCs检测数据做出调整策略,避免生产指标调节滞后的问题,同时废气处理装置将自身的各项运行状态和VOCs数据传输至监视装置,以由操作人员进行远程监视,实现对VOCs数据的超标预警,进一步废气处理装置自身的各项运行状态和VOCs数据也传输至云端服务器中,以供智能设备实时读取掌握数据状态,进行双重远程监视预警,规避环保风险。本方案实用性好,自动化程度高、且实施成本低。
在一些实施例中,所述废气处理装置包括控制器;所述VOCs检测装置通 过第一预设总线与所述控制器连接。由于废气处理装置是由控制器统筹控制,因此通过使用预设总线将VOCs检测装置采集的VOCs数据直接接入控制器进行控制运算。
在一些实施例中,所述控制器设有第一通讯接口,所述VOCs检测装置设有第二通讯接口,所述第一通讯接口与所述第二通讯接口通过所述第一预设总线连接。通过使用预设总线将控制器预留出来的通讯接口和VOCs检测装置预留出来的通讯接口连接,从而实现VOCs检测装置与废气处理装置的实时通信,由于使用的是VOCs检测装置和废气处理装置的已有通讯接口,无需增加其他硬件设施,因此实施成本低。
在一些实施例中,所述系统还包括DCS装置;所述监视装置通过所述DCS装置与所述废气处理装置连接。由于DCS装置可以设置在远程中控室内,因此通过将废气处理装置中的数据接入DCS装置中,能够实现废气处理装置各项运行状态和VOCs检测数据的预警,并通过监视装置显示提醒中控操作人员。
在一些实施例中,所述废气处理装置的控制器通过第二预设总线与所述DCS装置连接;所述DCS装置通过以太网与所述监视装置连接。由于废气处理装置是由控制器统筹控制,因此通过使用预设总线将控制器管理的VOCs数据和废气处理装置的各项运行状态接入DCS装置进行远程监视。
在一些实施例中,所述控制器设有第三通讯接口,所述DCS装置设有第四通讯接口;所述第三通讯接口与所述第四通讯接口通过所述第二预设总线连接。通过使用预设总线将控制器预留出来的通讯接口和DCS装置预留出来的通讯接口连接,从而实现DCS装置对废气处理装置中的数据监视,由于使用的是DCS装置和废气处理装置的已有通讯接口,因此实施成本低。
在一些实施例中,所述第一预设总线和所述第二预设总线均包括modbus总线、DP总线中的任一总线,本申请对总线类型不进行具体限定。
在一些实施例中,所述废气处理装置包括尾气进口、预处理回收模块、燃烧室、风机、后处理系统、尾气出口;其中,所述尾气进口连接于所述预处理回收模块的输入口,所述预处理回收模块的输出口连接于所述燃烧室,所述燃烧室连接于所述后处理系统,所述尾气出口连接于所述后处理系统,所述风机 用于向所述燃烧室输入空气;所述VOCs检测装置设于所述尾气出口处。通过将VOCs检测装置设置在废气处理装置的尾气出口处,其采集到的VOCs数据可以准确反映废气处理装置的处理结果是否符合要求的排放指标。
在一些实施例中,所述废气处理装置设有无线模块,所述废气处理装置的各项运行状态和所述VOCs数据通过所述无线模块传输至所述云端服务器;所述智能设备通过以太网读取所述云端服务器上的所述废气处理装置的各项运行状态和所述VOCs数据。通过在废气处理装置增设无线模块将废气处理装置的各项运行状态和所述VOCs数据以无线方式上传至云端,管理人员随时随地通过智能设备都可以进行远程监视。
在一些实施例中,所述控制器为PLC,以适应于工业环境下的废气处理控制。
第二方面,本申请提供了一种废气处理系统,包括如上述第一方面所述的VOCs检测监控系统。
上述说明仅是本申请技术方案的概述,为了能够更清楚了解本申请的技术手段,而可依照说明书的内容予以实施,并且为了让本申请的上述和其它目的、特征和优点能够更明显易懂,以下特举本申请的具体实施方式。
附图说明
通过阅读下文优选实施方式的详细描述,各种其他的优点和益处对于本领域普通技术人员将变得清楚明了。附图仅用于示出优选实施方式的目的,而并不认为是对本申请的限制。而且在整个附图中,用相同的附图标号表示相同的部件。在附图中:
图1示出了本申请一些实施例的VOCs检测监控系统结构示意图之一;
图2示出了本申请一些实施例的VOCs检测监控系统的结构示意图之二;
具体实施方式中的附图标号如下:
VOCs检测监控系统100,VOCs检测装置10,废气处理装置20,监视装置30,云端服务器40,智能设备50,DCS装置60;
控制器201,无线模块202,尾气进口203,预处理回收模块204,燃烧室205,风机206,后处理系统207,尾气出口208;
第一通讯接口A,第二通讯接口B,第三通讯接口C,第四通讯接口D,第一预设总线zx1,第二预设总线zx2。
具体实施方式
下面将结合附图对本申请技术方案的实施例进行详细的描述。以下实施例仅用于更加清楚地说明本申请的技术方案,因此只作为示例,而不能以此来限制本申请的保护范围。
除非另有定义,本文所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同;本文中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本申请;本申请的说明书和权利要求书及上述附图说明中的术语“包括”和“具有”以及它们的任何变形,意图在于覆盖不排他的包含。
在本申请实施例的描述中,技术术语“第一”“第二”等仅用于区别不同对象,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量、特定顺序或主次关系。在本申请实施例的描述中,“多个”的含义是两个以上,除非另有明确具体的限定。
在本文中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。本领域技术人员显式地和隐式地理解的是,本文所描述的实施例可以与其它实施例相结合。
在本申请实施例的描述中,术语“多个”指的是两个以上(包括两个),同理,“多组”指的是两组以上(包括两组),“多片”指的是两片以上(包括两片)。
在本申请实施例的描述中,技术术语“中心”“纵向”“横向”“长度”“宽度”“厚度”“上”“下”“前”“后”“左”“右”“竖直”“水平”“顶”“底”“内”“外”“顺时针”“逆时针”“轴向”“径向”“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请实施例和简化描述,而不是指示或暗示所指的装置或元件必须具有特 定的方位、以特定的方位构造和操作,因此不能理解为对本申请实施例的限制。
在本申请实施例的描述中,除非另有明确的规定和限定,技术术语“安装”“相连”“连接”“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;也可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请实施例中的具体含义。
目前,对于废气处理车间进行废气处理过程中,通常VOCs检测装置(也即VOCs检测仪)采集的VOCs数据均设计为传输至其配套的数采仪(也即显示模块)中,由车间工人现场观察数采仪当前显示的VOCs数据,并与规定的VOCs标准对比,如果超过VOCs标准,判定为VOCs数据超标。在车间工人发现超标时,再去手动调整废气处理装置的处理控制参数,以促使VOCs检测装置采集的VOCs数据符合标准。
然而,在废气处理车间中车间工人不可能一直盯着数采仪上的VOCs数据,通常是隔一段时间去查看一次VOCs数据,这种由工人定时查看VOCs数据是否超标的方式,会很容易带来生产指标调节滞后的问题,从而给大气环境带来污染。
发明人发现,在废气处理车间主要是车间工人通过废气处理装置的操作界面调控废气处理装置的控制参数实现VOCs数据的调控,为了解决废气处理车间对VOCs指标调节滞后的问题,于是发明人设计将VOCs检测装置接入废气处理装置,从而VOCs检测装置能够将采集的VOCs检测数据实时传送到废气处理装置,废气处理装置自动进行超标判定,并及时做出控制参数的调整,避免了生产指标调节滞后的问题,降低了大气环境污染风险,发明人还设计废气处理装置将自身的各项运行状态传输至监视装置的同时,也会将VOCs数据传输至监视装置,以由操作人员进行远程监视,实现对VOCs数据的超标预警,进一步地,通过增设云端服务器和智能设备,并将废气处理装置自身的各项运行状态和VOCs数据也传输至云端服务器中,以供智能设备实时读取掌握数据状态,从而实现双重远程监视预警。本方案实用性好,自动化程度高、且实施 成本低。
本申请实施例公开的VOCs检测监控系统,可以但不限用于电池的生产工艺,还可以用于其他类似结构体的生产工艺,实现对生产工艺上产生的废气进行处理控制,以提高生产过程控制效率,规避生产过程中的污染大气环境的问题。
为了使本技术领域的人员更好地理解本申请方案,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述。
根据本申请的一些实施例,参照图1,图1示出了本申请实施例提供的电VOCs检测监控系统100的结构示意图。VOCs检测监控系统100包括VOCs检测装置10、废气处理装置20、监视装置30、云端服务器40以及智能设备50。
如图1所示,VOCs检测装置10与废气处理车间中的废气处理装置20连接,而不是传输至现有技术中配套的数采仪中,从而VOCs检测装置10可以将实时采集的VOCs数据传输至废气处理装置20中,供废气处理装置20实时对VOCs数据进行调控,避免VOCs数据被孤立。
本实施例中,废气处理装置20为RTO装置(蓄热式热力焚化炉装置),设置在废气处理车间中,用来对产品生产工艺上产生的废气进行治理,从而达到净化废气的目的,使得最终排入大气环境中的气体是无污染的气体。
VOCs检测装置10即为VOCs检测仪,其设置在废气处理装置20上需要进行VOCs数据检测的点位,用于检测其所处环境周围的VOCs数据。
可选的,VOCs检测装置采集的VOCs数据除了包括VOCs浓度之外,还可以包括气体流速、氧含量、烟气湿度、温度等数据,这些数据便于对VOCs气体处理条件的调控。
进一步地,如图1所示,监视装置30与废气处理装置20连接,废气处理装置20在处理尾气过程中会对各个结构的运行状态自动进行调控控制,因此通过该连接关系将各项运行状态传输至监视装置30的同时,也将VOCs数据传输至监视装置30中,从而管理人员在监视废气处理装置20各项运行状态的同时,还能远程监视到VOCs数据的处理情况。
可选的,监视装置30通常设置在远程中控室内,从而管理人员通过监视 装置30显示的各项运行状态和VOCs数据,便可以实现整个废气处理车间的监视预警,极大减少了人力物力成本的投入。
再进一步地,废气处理装置20还与云端服务器40连接,从而废气处理装置20还可以将各项运行状态和VOCs数据上传至云端服务器40中,并由与云端服务器40连接的智能设备读取进行双重远程监视。
其中,云端服务器40可以是部署在实体服务器上的一个或多个虚拟化单元节点,也可以是一个或多个实体服务器上,本申请对云端服务器的具体部署方式不做具体限定,只要其能够提供云服务即可。
可选的,智能设备50可以是手机、笔记本、台式机等任意具有联网功能的移动终端,其通过与云端服务器40建立通信连接,访问云端服务器40提供的云服务,以读取废气处理装置20上传的各项运行状态和VOCs数据。
本实施例提供的VOCs检测监控系统,相较于传统方案中VOCs检测装置的检测数据传输至配套的数采仪监视滞后的问题,通过将VOCs检测装置的VOCs检测数据接入废气处理装置中,可以实时对VOCs检测数据做出调整策略,避免生产指标调节滞后的问题,同时废气处理装置将自身的各项运行状态和VOCs数据传输至监视装置,以由管理人员进行远程监视,实现对VOCs数据的超标预警,进一步废气处理装置自身的各项运行状态和VOCs数据也传输至云端服务器中,以供智能设备实时读取掌握数据状态,进行双重远程监视预警,规避环保风险。本方案实用性好,自动化程度高、且实施成本低。
根据本申请的一些实施例,参照图2所示,废气处理装置20包括控制器201,通过使用第一预设总线zx1将VOCs检测装置10采集的VOCs数据直接接入控制器201进行控制运算。
在本实施例中,控制器201相当于废气处理装置20的大脑,用来对废气处理装置20中的各个结构部件的运行状态进行调控,以实现传入废气的最佳治理。可见,废气处理装置20是由控制器201统筹控制,因此通过将VOCs数据直接接入控制器201,以达到及时策略调控的目的。
可选的,第一预设总线zx1可以采用modbus总线、DP总线中的任一总线,本申请对总线类型不进行具体限定,只要能够适用VOCs检测装置10的预留接口和控制器预留接口即可。
进一步地,控制器201为PLC控制器,以适应于工业环境下的废气处理控制。
根据本申请的一些实施例,参照图2所示,控制器201预留有第一通讯接口A,VOCs检测装置10预留有第二通讯接口B,第一通讯接口A与第二通讯接口B通过第一预设总线zx1连接。
其中,控制器201上预留的第一通讯接口和VOCs检测装置10上预留的第二通讯接口通常采用的是RS485/232标准。
在本实施例中,通过将第一预设总线zx1的两端分别连接于废气处理装置20与VOCs检测装置10的硬件接口,可以实现VOCs检测装置10与废气处理装置20的稳定通信,并且由于使用的是VOCs检测装置10和废气处理装置20的已有通讯接口,无需增加其他硬件设施,因此实施成本低。
根据本申请的一些实施例,参照图2所示,VOCs检测监控系统100还包括DCS(Distributed Control System,分散控制系统)装置60,且监视装置30是通过DCS装置60与废气处理装置20连接。
其中,DCS装置60又称为集散控制系统,通常是设置在远程中控室内,进行分散控制,集中管理。
在本实施例中,通过DCS装置60对废气处理装置20传送的各项运行状态进行VOCs数据进行预警,并通过监视装置30显示,以及时提醒中控室内的管理人员。
在具体实施时,使用第二预设总线zx2将废气处理装置20的控制器201与DCS装置60连接,并且DCS装置60通过以太网与监视装置30连接。
其中,基于上述描述废气处理装置20是由控制器201统筹控制,因此通过将控制器201直接接入DCS装置60,DCS装置60能够及时获得废气处理装置20中的各项运行状态和VOCs数据,进而实现对废气处理装置20的各项运行状态和VOCs数据的远程监视。
可选的,第二预设总线可以是modbus总线、DP总线中的任一总线,本申请对总线类型不进行具体限定,只要能够适用DCS装置60的预留接口和控制器201预留接口即可。
进一步地,控制器201还预留有第三通讯接口C,DCS装置60预留有第 四通讯接口D,第三通讯接口C与第四通讯接口D通过第二预设总线zx2连接,以实现DCS装置60对废气处理装置20中的数据监视。
其中,控制器201上预留的第三通讯接口C和DCS装置60上预留的第四通讯接口D通常采用的是RS485/232标准。
由此可见,通过将第二预设总线zx2的两端分别连接于DCS装置60和废气处理装置20的硬件接口,可以实现DCS装置60和废气处理装置20的稳定通信,并且由于使用的是DCS装置60和废气处理装置20的已有通讯接口,无需增加其他硬件设施,因此实施成本低
根据本申请的一些实施例,继续参照图2所示,废气处理装置20包括尾气进口203、预处理回收模块204、燃烧室205、风机206、后处理系统207、尾气出口208。
其中,尾气进口208连接于预处理回收模块204的输入口,预处理回收模块204的输出口连接于燃烧室205,燃烧室205连接于后处理系统207,尾气出口208连接于后处理系统207,风机206用于向燃烧室205输入空气。
进一步地,VOCs检测装置10具体设置于尾气出口208点位,用来采集经废气处理装置20治理废气后即将排入大气中的尾气数据。
可见,通过将VOCs检测装置10设置在废气处理装置20的尾气出口208处,其采集到的VOCs数据可以准确反映废气处理装置20的治理结果是否符合规定的排放指标要求。
上述废气处理装置20包括的各个结构部件的控制原理是:
产品生产工艺上产生的尾气(也即废气)经尾气进口203排入预处理回收模块204,以由预处理回收模块204对排入的尾气进行预处理,即将尾气中的部分不可燃气体转化为不污染环境的水或二氧化碳,然后经预处理后的尾气进入燃烧室205进行焚烧,以使一些可燃气体发生氧化反应,而后经焚烧后的尾气进入后处理系统207,以对剩余的一些酸性气体进行碱洗,最后将经过一系列过程处理后的尾气从尾气出口208排入大气环境。
在本申请实施例中,通过将尾气出口208处设置的VOCs检测装置10检测的VOCs数据接入废气处理装置20进行实时监控,并且在监控到尾气出口208排出的VOCs数据超标时,可以废气处理装置20通过自动调节风机206 频率来增大排入燃烧室205的风量,和/或升高燃烧室205的温度,以促使进入燃烧室205的可燃气体能够彻底燃烧充分。
如果废气处理装置20对风机206的风量进行调控,以及燃烧室205的温度升高之后,尾气出口208排出的VOCs数据仍然超标,废气处理装置20需要进一步利用尾气进口203处的气体检测探头采集输入的尾气数据,并对采集的输入尾气数据进行分析,如果分析结果为严重超标,则发出警报,以提醒车间工作人员采取措施。
根据本申请的一些实施例,继续参照图2所示,废气处理装置20设有无线模块202,废气处理装置20的各项运行状态和VOCs数据通过无线模块202传输至云端服务器40上,智能设备50通过以太网读取云端服务器40上的废气处理装置20的各项运行状态和VOCs数据。
其中,废气处理装置20增设的无线模块202可以是WiFi模块、BLE蓝牙模块、WiFi+蓝牙组合模块、zigbee无线模块等,本申请对无线模块的类型不进行具体限定。
在本实施例中,通过在废气处理装置20增设无线模块202将废气处理装置20的各项运行状态和VOCs数据以无线方式上传至云端服务器,由于不需要使用通信线,因此云端服务器可以部署在任何位置,并且管理人员随时随地通过智能设备都可以进行远程监视。
根据本申请的一些实施例,本申请还提供了一种废气处理系统,包括以上任一方案所述的VOCs检测监控系统。
最后应说明的是:以上各实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述各实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的范围,其均应涵盖在本申请的权利要求和说明书的范围当中。

Claims (11)

  1. 一种挥发性有机物VOCs检测监控系统,其特征在于,包括:VOCs检测装置、废气处理装置、监视装置、云端服务器以及智能设备;
    所述VOCs检测装置连接于所述废气处理装置,用于将采集的VOCs数据传输至所述废气处理装置;
    所述监视装置连接于所述废气处理装置,用于监视所述废气处理装置的各项运行状态和所述VOCs数据;
    所述云端服务器连接于所述废气处理装置,所述智能设备连接于所述云端服务器。
  2. 根据权利要求1所述的系统,其特征在于,所述废气处理装置包括控制器;
    所述VOCs检测装置通过第一预设总线与所述控制器连接。
  3. 根据权利要求2所述的系统,其特征在于,所述控制器设有第一通讯接口,
    所述VOCs检测装置设有第二通讯接口,所述第一通讯接口与所述第二通讯接口通过所述第一预设总线连接。
  4. 根据权利要求2所述的系统,其特征在于,所述系统还包括分散控制系统DCS装置;
    所述监视装置通过所述DCS装置与所述废气处理装置连接。
  5. 根据权利要求4所述的系统,其特征在于,所述废气处理装置的控制器通过第二预设总线与所述DCS装置连接;
    所述DCS装置通过以太网与所述监视装置连接。
  6. 根据权利要求5所述的系统,其特征在于,所述控制器设有第三通讯接口,所述DCS装置设有第四通讯接口;
    所述第三通讯接口与所述第四通讯接口通过所述第二预设总线连接。
  7. 根据权利要求5所述的系统,其特征在于,所述第一预设总线和所述第二预设总线均包括modbus总线、DP总线中的任一总线。
  8. 根据权利要求1所述的系统,其特征在于,所述废气处理装置包括尾气进口、预处理回收模块、燃烧室、风机、后处理系统、尾气出口;
    其中,所述尾气进口连接于所述预处理回收模块的输入口,所述预处理回收模块的输出口连接于所述燃烧室,所述燃烧室连接于所述后处理系统,所述尾气出口连接于所述后处理系统,所述风机用于向所述燃烧室输入空气;
    所述VOCs检测装置设于所述尾气出口处。
  9. 根据权利要求1所述的系统,其特征在于,所述废气处理装置设有无线模块,所述废气处理装置的各项运行状态和所述VOCs数据通过所述无线模块传输至所述云端服务器;
    所述智能设备通过以太网读取所述云端服务器上的所述废气处理装置的各项运行状态和所述VOCs数据。
  10. 根据权利要求2所述的系统,其特征在于,所述控制器为可编程逻辑控制器PLC。
  11. 一种废气处理系统,其特征在于,包括如上述权利要求1至10任一项所述的VOCs检测监控系统。
PCT/CN2022/100910 2022-06-23 2022-06-23 一种挥发性有机物VOCs检测监控系统 WO2023245579A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202280063429.8A CN117980839A (zh) 2022-06-23 2022-06-23 一种挥发性有机物VOCs检测监控系统
PCT/CN2022/100910 WO2023245579A1 (zh) 2022-06-23 2022-06-23 一种挥发性有机物VOCs检测监控系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/100910 WO2023245579A1 (zh) 2022-06-23 2022-06-23 一种挥发性有机物VOCs检测监控系统

Publications (1)

Publication Number Publication Date
WO2023245579A1 true WO2023245579A1 (zh) 2023-12-28

Family

ID=89378914

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/100910 WO2023245579A1 (zh) 2022-06-23 2022-06-23 一种挥发性有机物VOCs检测监控系统

Country Status (2)

Country Link
CN (1) CN117980839A (zh)
WO (1) WO2023245579A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104850104A (zh) * 2015-05-15 2015-08-19 杭州科瑞特环境技术有限公司 一种定型机油烟废气处理装置运行实时监控系统及其方法
CN107213763A (zh) * 2017-06-05 2017-09-29 深圳市智盾环保科技有限公司 智能化废气处理系统与方法
CN108579388A (zh) * 2018-07-03 2018-09-28 深圳市华海智联科技有限公司 一种废气处理装置及其远程监控方法
CN110052127A (zh) * 2019-05-21 2019-07-26 陕西青朗万城环保科技有限公司 一种废气处理设备在线检测和节能控制的系统及方法
WO2020102467A1 (en) * 2018-11-15 2020-05-22 Dürr Systems Ag Exhaust gas purification system and method and data processing system for monitoring at least one exhaust gas purification system
CN114234213A (zh) * 2021-12-29 2022-03-25 南京宇清环境科技有限公司 在线式节能型蓄热催化燃烧废气净化智能监控系统及方法
CN114247257A (zh) * 2021-12-15 2022-03-29 江苏省环境工程技术有限公司 一种含VOCs废气处理前后在线监测系统

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104850104A (zh) * 2015-05-15 2015-08-19 杭州科瑞特环境技术有限公司 一种定型机油烟废气处理装置运行实时监控系统及其方法
CN107213763A (zh) * 2017-06-05 2017-09-29 深圳市智盾环保科技有限公司 智能化废气处理系统与方法
CN108579388A (zh) * 2018-07-03 2018-09-28 深圳市华海智联科技有限公司 一种废气处理装置及其远程监控方法
WO2020102467A1 (en) * 2018-11-15 2020-05-22 Dürr Systems Ag Exhaust gas purification system and method and data processing system for monitoring at least one exhaust gas purification system
CN110052127A (zh) * 2019-05-21 2019-07-26 陕西青朗万城环保科技有限公司 一种废气处理设备在线检测和节能控制的系统及方法
CN114247257A (zh) * 2021-12-15 2022-03-29 江苏省环境工程技术有限公司 一种含VOCs废气处理前后在线监测系统
CN114234213A (zh) * 2021-12-29 2022-03-25 南京宇清环境科技有限公司 在线式节能型蓄热催化燃烧废气净化智能监控系统及方法

Also Published As

Publication number Publication date
CN117980839A (zh) 2024-05-03

Similar Documents

Publication Publication Date Title
CN204925745U (zh) 一种罗茨鼓风机智能监控系统
CN104715580B (zh) 自校准式gis室内六氟化硫气体泄漏监测报警系统
CN205015768U (zh) 仓储环境监控调节系统
WO2021103831A1 (zh) 一种用于配电室信息管理的物联网终端
CN204925777U (zh) 一种智能车间系统
CN206075074U (zh) 一种实验室监控系统
CN105717906A (zh) 工业锅炉远程诊断监测系统及诊断监测方法
CN205579626U (zh) 一种基于烟气co为控制变量的加热炉燃烧控制系统
CN102436237A (zh) 掺水伴热控制系统及掺水伴热控制方法
CN110470147A (zh) 用于陶瓷窑炉的工业物联网云平台交互系统及方法
CN109803019A (zh) 一种定型机废气处理装备集群远程监控与运维系统
CN111240385A (zh) 一种基于物联网的智能电气系统除湿方法
CN106042630A (zh) 适用于凹版印刷机干燥系统的电气控制系统及控制方法
CN211551671U (zh) 一种锅炉智能化燃烧控制系统
CN209642406U (zh) 一种智能配电房在线监测系统
CN206235901U (zh) 一种锅炉智能控制系统
WO2023245579A1 (zh) 一种挥发性有机物VOCs检测监控系统
CN201417277Y (zh) 气体安全检测监控系统
CN113570829B (zh) 一种无线气体检测报警系统
CN107103734A (zh) 一种智能气体检测报警装置
CN204989915U (zh) 一种水产养殖监控系统
CN202331142U (zh) 掺水伴热控制系统
CN109908754A (zh) 一种脱硝scr喷氨控制系统及其工作流程
CN209911844U (zh) 一种基于物联网的燃气热水锅炉远程节能调节控制系统
CN210742765U (zh) 一种cems智能管家系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22947350

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202280063429.8

Country of ref document: CN