WO2023245487A1 - 显示基板及其维修方法、制备方法、显示装置 - Google Patents

显示基板及其维修方法、制备方法、显示装置 Download PDF

Info

Publication number
WO2023245487A1
WO2023245487A1 PCT/CN2022/100388 CN2022100388W WO2023245487A1 WO 2023245487 A1 WO2023245487 A1 WO 2023245487A1 CN 2022100388 W CN2022100388 W CN 2022100388W WO 2023245487 A1 WO2023245487 A1 WO 2023245487A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
pole
emitting element
pixel
line
Prior art date
Application number
PCT/CN2022/100388
Other languages
English (en)
French (fr)
Inventor
孙诗
谢学武
刘浩
艾雨
刘博文
孔玉宝
殷卫东
Original Assignee
京东方科技集团股份有限公司
合肥鑫晟光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 合肥鑫晟光电科技有限公司 filed Critical 京东方科技集团股份有限公司
Priority to CN202280001843.6A priority Critical patent/CN117716415A/zh
Priority to PCT/CN2022/100388 priority patent/WO2023245487A1/zh
Publication of WO2023245487A1 publication Critical patent/WO2023245487A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate

Definitions

  • the present disclosure relates to the field of display technology, and in particular to a display substrate and its maintenance method, preparation method and display device.
  • OLED display substrates are widely used in various display devices due to their advantages such as self-illumination, wide viewing angle, fast response speed, low power consumption and high contrast.
  • OLED display substrates generally include a substrate and multiple pixels located on one side of the substrate.
  • Each pixel includes a pixel circuit and a light-emitting element, and the light-emitting element includes an anode and a cathode stacked in sequence.
  • the pixel circuit is coupled to the anode of the light-emitting element and configured to transmit a light-emitting driving signal to the anode of the light-emitting element.
  • the cathode of the light-emitting element is coupled to the power line and is configured to emit light under the action of a voltage difference between the light-emitting driving signal received by the anode and the power signal provided by the power line to the cathode.
  • Embodiments of the present disclosure provide a display substrate and its maintenance method, preparation method, and display device.
  • the technical solutions are as follows:
  • a display substrate which includes:
  • the pixels include a pixel circuit and a light-emitting element.
  • the pixel circuit is coupled to the first pole of the light-emitting element.
  • the second pole of the light-emitting element is connected to the first power supply. line coupling, the pixel circuit is configured to transmit a drive signal to a first pole of the light emitting element, the light emitting element is configured to emit light based on the drive signal and a first power signal provided by the first power line ;
  • the second power line is coupled to the repair line, and the orthographic projection of the repair line on the substrate is the same as The orthographic projection of the first pole of the light-emitting element on the substrate overlaps, and the repair line is configured to connect the second power line to the third light-emitting element of the dead pixel in the plurality of pixels.
  • One pole is coupled, and the second power line is configured to transmit a second power signal to the first pole of the coupled light-emitting element through the repair line;
  • the bad pixels include dark pixels, and the potential of the second power signal is greater than the potential of the first power signal.
  • the potential of the first power signal is 0, and the potential of the second power signal is greater than or equal to 6 volts and less than or equal to 12 volts.
  • the plurality of pixels have at least two colors, and at least two pixels of the same color share the same repair line;
  • the repair line is further configured to couple the first pole of the light-emitting element included in the bad pixel with the first pole of the light-emitting element included in the normal pixel, wherein the normal pixel and the bad pixel share a common One of the repair lines has the same color, and the dead pixels include bright pixels;
  • the repair line couples the first pole of the light-emitting element included in the bad pixel with the first pole of the light-emitting element included in the normal pixel
  • the first pole of the light-emitting element included in the bad pixel is The first pole of the light-emitting element included in the dead pixel is disconnected from the pixel circuit included in the dead pixel and the second power line is disconnected.
  • the plurality of pixels are arranged in an array, and the normal pixel and the bad pixel are two adjacent pixels located in the same column.
  • the first pole of the light-emitting element is an anode
  • the second pole of the light-emitting element is a cathode
  • the first pole of the light-emitting element has a first part and a second part arranged at intervals.
  • the pixel circuit includes: a data writing sub-circuit, a sensing sub-circuit, an adjustment sub-circuit and a driving sub-circuit;
  • the data writing sub-circuit is coupled to the first gate line, the data line and the control end of the driving sub-circuit respectively, and the data writing sub-circuit is configured to respond to the first gate line provided by the first gate line.
  • the gate drive signal controls the connection between the control end of the drive sub-circuit and the data line;
  • the sensing sub-circuit is coupled to the second gate line, the sensing line and the output end of the driving sub-circuit respectively, and the sensing sub-circuit is configured to respond to the second gate line provided by the second gate line.
  • a pole driving signal controls the connection between the output end of the driving sub-circuit and the sensing line;
  • the regulating subcircuit is coupled to the control terminal and the output terminal of the driving subcircuit respectively, and the regulating subcircuit is configured to regulate the potential of the control terminal and the output terminal of the driving subcircuit;
  • the input end of the driving sub-circuit is coupled to a driving power line, and the output end of the driving sub-circuit is also coupled to the first pole of the light-emitting element.
  • the driving sub-circuit is configured to operate based on the driving power line.
  • the provided driving power signal and the control terminal signal transmit the driving signal to the first pole of the light-emitting element;
  • the second power line is the sensing line.
  • the data writing sub-circuit includes: a first transistor; the sensing sub-circuit includes: a second transistor; the adjustment sub-circuit includes: a storage capacitor; the driving sub-circuit includes: a third transistor;
  • the gate electrode of the first transistor is coupled to the first gate line, the first electrode of the first transistor is coupled to the data line, and the second electrode of the first transistor is coupled to the third transistor. gate coupling;
  • the gate electrode of the second transistor is coupled to the second gate line, the first electrode of the second transistor is coupled to the sensing line, the second electrode of the second transistor is coupled to the third The second pole of the transistor is coupled;
  • One end of the storage capacitor is coupled to the gate of the third transistor, and the other end of the storage capacitor is coupled to the second pole of the third transistor;
  • the first electrode of the third transistor is coupled to the driving power line, and the second electrode of the third transistor is further coupled to the first electrode of the light-emitting element.
  • the second power line and the repair line are located on different layers, and the display substrate further includes:
  • An insulating layer located between the second power line and the repair line, and a via hole penetrating the insulating layer. The second power line and the repair line are overlapped through the via hole.
  • the pixel circuit includes: an active layer, a gate insulating layer, a gate metal layer, an interlayer delimiter layer and a source and drain metal layer sequentially stacked in a direction away from the substrate;
  • the display substrate further includes : a light-shielding layer located between the substrate and the active layer;
  • the second power line and the source-drain metal layer are located on the same layer, and the repair line and the light-shielding layer are located on the same layer.
  • a maintenance method of a display substrate which is used to repair the display substrate as described in the above aspect, and the method includes:
  • the second power line is coupled to the first pole of the light-emitting element in the defective pixel through a repair line.
  • the potential of the second power signal is greater than the potential of the first power signal provided by the first power line coupled to the second pole of the light-emitting element.
  • the method also includes:
  • the first pole of the light-emitting element in the dead pixel is decoupled from the pixel circuit in the dead pixel. Connect, disconnect the first pole of the light-emitting element in the dead pixel from the second power line, and connect the first pole of the light-emitting element in the dead pixel with the normal pixel through the repair line.
  • the first pole of the light-emitting element is coupled; wherein the normal pixel and the bad pixel share the same repair line and have the same color.
  • coupling the second power line to the first pole of the light-emitting element in the dead pixel through a repair line includes:
  • the repair line is welded to the first pole of the light-emitting element in the dead pixel through a laser welding process, so that the second power line passes through the repair line and the first pole of the light-emitting element in the dead pixel is welded. pole coupling;
  • Coupling the first pole of the light-emitting element in the bad pixel with the first pole of the light-emitting element in the normal pixel through the repair line includes:
  • the repair line is welded to the first pole of the light-emitting element in the bad pixel and the first pole of the light-emitting element in the normal pixel respectively, so that the third pole of the light-emitting element in the bad pixel is welded.
  • One pole is coupled to the first pole of the light-emitting element in the normal pixel;
  • Decoupling the second power line from the first pole of the light-emitting element in the dead pixel includes:
  • the repair line is coupled to the first pole of the light-emitting element in the dead pixel to disconnect the second power line from the first pole of the light-emitting element in the dead pixel. coupling;
  • Decoupling the first pole of the light-emitting element in the dead pixel from the pixel circuit in the dead pixel includes:
  • the first pole of the light-emitting element in the defective pixel is disconnected from the pixel circuit in the defective pixel.
  • a method for preparing a display substrate for preparing the display substrate as described in the above aspect, the method includes:
  • a plurality of pixels are formed on one side of the substrate.
  • the pixels include a pixel circuit and a light-emitting element.
  • the pixel circuit is coupled to the first pole of the light-emitting element.
  • the second pole of the light-emitting element is coupled to the first pole.
  • a power line is coupled, the pixel circuit is configured to transmit a driving signal to a first pole of the light-emitting element, and the light-emitting element is configured to provide a first power signal based on the driving signal and the first power line. glow; glow;
  • the repair line is configured to connect the second power line to the light-emitting pixel included in the defective pixel in the plurality of pixels.
  • the first pole of the element is coupled, and the second power line is configured to transmit a second power signal to the first pole of the coupled light-emitting element through the repair line;
  • the bad pixels include dark pixels, and the potential of the second power signal is greater than the potential of the first power signal.
  • a display device which includes: a power supply component, and the display substrate as described in the above aspect;
  • the power supply component is coupled to the display substrate and configured to provide power to the display substrate.
  • Figure 1 is a schematic structural diagram of a display substrate provided by an embodiment of the present disclosure
  • Figure 2 is an equivalent schematic diagram of a partial structure in a display substrate provided by an embodiment of the present disclosure
  • Figure 3 is a schematic structural diagram of a pixel circuit provided by an embodiment of the present disclosure.
  • Figure 4 is a schematic structural diagram of another pixel circuit provided by an embodiment of the present disclosure.
  • Figure 5 is an equivalent schematic diagram of a partial structure in another display substrate provided by an embodiment of the present disclosure.
  • FIG. 6 is an equivalent schematic diagram of a partial structure in another display substrate provided by an embodiment of the present disclosure.
  • Figure 7 is a maintenance equivalent diagram of a display substrate provided by an embodiment of the present disclosure.
  • Figure 8 is another maintenance equivalent diagram for a display substrate provided by an embodiment of the present disclosure.
  • Figure 9 is a schematic diagram of a film layer of a display substrate provided by an embodiment of the present disclosure.
  • Figure 10 is a flow chart of a maintenance method for a display substrate provided by an embodiment of the present disclosure.
  • Figure 11 is a flow chart of another display substrate maintenance method provided by an embodiment of the present disclosure.
  • Figure 12 is a flow chart of a method for preparing a display substrate provided by an embodiment of the present disclosure
  • FIG. 13 is a schematic structural diagram of a display device provided by an embodiment of the present disclosure.
  • pixels may also suffer from bright spot defects.
  • defective dark spots refer to pixels that cannot be illuminated normally and emit light. Pixels with defective dark spots are also called dark spot pixels.
  • a defective bright spot refers to a pixel that can be lit normally but has abnormal brightness (generally higher brightness).
  • a pixel with a defective bright spot is also called a bright spot pixel.
  • Dark pixels and bright pixels are both bad pixels.
  • pixels that can be lit normally and have normal brightness are normal pixels.
  • the causes of dark spot defects also include abnormalities in the components (such as transistors or capacitors) in the pixel circuit.
  • the causes of defective bright spots usually include device abnormalities in the pixel circuit, such as transistor threshold voltage drift.
  • the anode is designed to be divided into two parts, which can improve the dark spot defects. If it is determined that the dark spots are defective due to device anomalies in the pixel circuit, they cannot be repaired. When a pixel has a defective bright spot, the entire anode is usually cut directly to prevent the pixel from emitting light, that is, the bright spot is repaired into a dark spot.
  • a pixel described in the embodiments of this disclosure refers to a sub-pixel.
  • the above processing method has the following problems: First, for transparent display products, after repairing half a pixel to emit light, the macroscopic display effect is still poor due to the low resolution of the product itself and the large transparent area. Secondly, because foreign matter is generally very small and difficult to observe even with a microscope, it is impossible to distinguish the cause of the defective dark spot, making it impossible to repair it. Moreover, even if it can be determined that the dark spot defect is caused by a foreign object, it is still impossible to reliably determine the location of the foreign object, and furthermore, it is impossible to determine which part of the anode to cut, which still makes it impossible to repair. Tests show that currently about 40% of dark spots are defective and foreign matter cannot be found.
  • embodiments of the present disclosure provide a new display substrate and defective repair method, so as to reliably improve the phenomenon of defective dark spots and defective bright spots on the basis of solving the above-mentioned problems.
  • FIG. 1 is a schematic structural diagram of a display substrate provided by an embodiment of the present disclosure. As shown in Figure 1, the display substrate includes:
  • Each pixel 02 includes a pixel circuit 021 and a light-emitting element 022.
  • the pixel circuit 021 is coupled (ie, electrically connected) to the first pole of the light-emitting element 022, and the second pole of the light-emitting element 022 is coupled to the first power line V1.
  • the pixel circuit 021 is configured to transmit a driving signal (eg, a driving current) to a first pole of the light-emitting element 022
  • the light-emitting element 022 is configured to provide a first power source based on the driving signal received by the first pole and the first power line V1
  • the signal glows.
  • the light-emitting element 022 can emit light under the action of the voltage difference between the driving signal and the first power signal.
  • one is an anode and the other is a cathode.
  • the first pole shown in Figure 1 is the anode
  • the second pole is the cathode.
  • the display substrate recorded in the embodiment of the present disclosure also includes: at least one second power line V2 located on one side of the substrate 01 and multiple repair line(repair line)RL.
  • the second power line V2 is coupled to the repair line RL.
  • the orthographic projection of the repair line RL on the substrate 01 overlaps with the orthographic projection of the first pole of the light emitting element 022 on the substrate 01 .
  • FIG. 2 only shows the first pole of the light-emitting element 022, only shows a second power supply line V2, and does not show the pixel circuit 02.
  • the repair line RL of the embodiment of the present disclosure may be configured to couple the second power line V2 with the first pole of the light-emitting element 022 included in the bad pixel among the plurality of pixels 02 .
  • the second power line V2 may be configured to transmit the second power signal to the first pole of the coupled light emitting element 022 via the repair line RL.
  • the bad pixels may include dark pixels, and the potential of the second power signal may be greater than the potential of the first power signal.
  • the potential of the first power signal may be less than or equal to 0, and the potential of the second power signal may be greater than 0. Therefore, when foreign objects cause dark dot pixels to appear, after coupling the second power line V2 to the first pole of the light-emitting element 022, the potential of the second power signal provided by the second power line V2 can be flexibly set to The purpose of burning off the foreign matter contained between the first pole and the second pole of the light-emitting element is to melt the foreign matter. After the foreign matter is melted, the first and second poles of the light-emitting element are no longer short-circuited, the light-emitting element can be lit normally, the dark spot pixels disappear, and the problem of bad dark spots is solved.
  • the repair line RL only overlaps with the first pole of the light-emitting element 022 but is not coupled. If dark dot pixels appear, some connection processes can be further used to couple the repair line RL to the first pole of the light-emitting element 022 to indirectly couple the second power line V2 to the first pole of the light-emitting element 022 to solve the problem. Bad dark spot problem.
  • the connection process may include: a laser welding process.
  • coupling the repair line RL to the first pole of the light-emitting element 022 may also be referred to as welding the repair line RL to the first pole of the light-emitting element 022 to ensure coupling. reliability.
  • the pixel circuit 021 and the first pole of the light-emitting element 022 can be coupled through the first transfer via hole K1.
  • the repair line RL and the first pole of the light emitting element 022 may be coupled through the second transfer via hole K2.
  • the orthographic projection of the repair line RL on the substrate 01 overlaps with the orthographic projection of the first pole of the light-emitting element 022 on the substrate 01 may mean: the orthographic projection of the repair line RL on the substrate 01 overlaps with the second The orthographic projections of the transfer via K2 on the substrate overlap.
  • Soldering the repair line RL to the first pole of the light-emitting element 022 may refer to performing a soldering process at the second transfer via hole K2.
  • both the first transfer via hole K1 and the second transfer via hole K2 can be called anode via holes.
  • the first transfer via hole K1 and the second transfer via hole K2 may be provided at intervals or may be the same via hole.
  • the dark spots are solved by setting the repair line RL to extend the second power line V2 to the anode of the light-emitting element 022 and expanding the area of the anode via hole to the repair line RL.
  • the repair line RL can also be called a branch of the second power line V2.
  • inventions of the present disclosure provide a display substrate.
  • the display substrate includes: a plurality of pixels located on one side of the substrate, a second power line and a repair line.
  • the second power line is coupled to the repair line, and the repair line can be configured to couple the second power line to the first pole of the light-emitting element in the dead pixel, so that the second power line is connected to the first pole of the light-emitting element.
  • the pole transmits the second power signal.
  • the potential of the second power signal is greater than the potential of the first power signal provided by the first power line coupled to the second pole of the light-emitting element.
  • the potential of the second power signal can be flexibly set, so that when the foreign matter causes the first pole and the second pole of the light-emitting element in the dead pixel to short-circuit and dark spots appear, the foreign matter can be reliably burned off, so that the first pole of the light-emitting element can The first pole and the second pole are no longer short-circuited, thereby solving the problem of bad dark spots, and the display substrate has a better display effect.
  • the potential of the first power signal may be 0.
  • the potential of the second power signal may be greater than or equal to 6 volts (V) and less than or equal to 12V.
  • V volts
  • 12V 12V
  • the first electrode of the light-emitting element 022 may be an anode
  • the second electrode of the light-emitting element 022 may be a cathode
  • FIG. 3 is a schematic structural diagram of a pixel circuit provided by an embodiment of the present disclosure.
  • the pixel circuit 021 recorded in the embodiment of the present disclosure may include: a data writing sub-circuit 0211, a sensing sub-circuit 0212, an adjustment sub-circuit 0213 and a driving sub-circuit 0214.
  • the data writing sub-circuit 0211 may be coupled to the first gate line G1, the data line Data and the control end of the driving sub-circuit 0214 respectively. Furthermore, the data writing sub-circuit 0211 may be configured to control the connection between the control end of the driving sub-circuit 0214 and the data line Data in response to the first gate driving signal provided by the first gate line G1.
  • the data writing sub-circuit 0211 can control the control terminal of the driving sub-circuit 0214 to be conductive with the data line Data when the potential of the first gate driving signal provided by the first gate line G1 is the first potential.
  • the data line Data can transmit a data signal to the control end of the driving subcircuit 0214 to charge the control end of the driving subcircuit 0214.
  • the data writing sub-circuit 0211 may control the control end of the driving sub-circuit 0214 to disconnect from the data line Data when the potential of the first gate driving signal provided by the first gate line G1 is the second potential.
  • the first potential may be an effective potential
  • the second potential may be an ineffective potential
  • the first potential may be a higher potential than the second potential
  • the sensing sub-circuit 0212 may be coupled to the second gate line G2, the sensing line Sense and the output terminal of the driving sub-circuit 0214 respectively. Moreover, the sensing sub-circuit 0212 may be configured to control the connection between the output end of the driving sub-circuit 0214 and the sensing line Sense in response to the second gate driving signal provided by the second gate line G2.
  • the sensing sub-circuit 0212 can control the output end of the driving sub-circuit 0214 to be conductive with the sensing line Sense when the potential of the second gate driving signal is the first potential.
  • the sensing line Sense can transmit a sensing signal to the output end of the control driving sub-circuit 0214 to reset the output end of the driving sub-circuit 0214; or, the sensing line Sense can receive a sensing signal at the output end of the control driving sub-circuit 0214. potential.
  • the sensing line Sense can also be coupled with an external compensation circuit and transmit the received potential to the external compensation circuit, so that the external compensation circuit can externally compensate the data signal based on the potential to ensure that the light-emitting element can be reliably lit. 022.
  • the sensing sub-circuit 0212 may control the output end of the driving sub-circuit 0214 to be disconnected from the sensing line Sense when the potential of the second gate driving signal is the second potential.
  • the regulating sub-circuit 0213 may be coupled to the control terminal and the output terminal of the driving sub-circuit 0214 respectively. Moreover, the adjustment subcircuit 0213 may be configured to adjust the potentials of the control terminal and the output terminal of the driving subcircuit 0214.
  • the input terminal of the driving sub-circuit 0214 may be coupled to the driving power line VDD, and the output terminal of the driving sub-circuit 0214 may also be coupled to the first pole of the light-emitting element 022. Furthermore, the driving sub-circuit 0214 may be configured to transmit the driving signal to the first pole of the light-emitting element 022 based on the driving power signal provided by the driving power line VDD and the signal at the control terminal.
  • the second power line V2 recorded in the embodiment of the present disclosure may be the sensing line Sense. That is, the pixel circuit 02 may also be coupled with the second power line V2 to transmit the driving signal to the light emitting element 022 based on the second power signal provided by the second power line V2.
  • the second power line V2 may also be a driving power line VDD; or other signal lines capable of providing the potential of the above-mentioned second power signal, and the pixel circuit 02 may not be coupled to the second power line V2. catch.
  • the following embodiments take the second power line V2 as the sensing line Sense as an example for description.
  • the sensing line Sense or the driving power line VDD is used as the second power line V2
  • their common point is that they are all DC power lines, that is, the signals provided are all DC signals.
  • the sensing sub-circuit 0212 it can be seen that when the pixel 02 is normally lit, the potential of the sensing signal provided by the sensing line Sense is generally low, about 0V or below. Therefore, in the embodiment of the present disclosure, on the basis that the sensing line Sense is used as the second power line V2, it is also necessary to load a large potential of about 10V to the sensing line Sense when repairing the dark spot defect problem.
  • the circuit that loads the large potential to the sensing line Sense can be the external compensation circuit mentioned in the above embodiment, or it can also be other external driving circuits.
  • FIG. 4 is a schematic structural diagram of another pixel circuit provided by an embodiment of the present disclosure.
  • the data writing sub-circuit 0211 may include: a first transistor T1.
  • Sensing sub-circuit 0212 may include: a second transistor T2.
  • Adjustment subcircuit 0213 may include: storage capacitor C1.
  • the driving subcircuit 0214 may include: a third transistor T3.
  • the gate of the first transistor T1 may be coupled to the first gate line G1
  • the first electrode of the first transistor T1 may be coupled to the data line Data
  • the second electrode of the first transistor T1 may be coupled to the third transistor T3. Gate coupling.
  • the gate of the second transistor T2 may be coupled to the second gate line G2, the first electrode of the second transistor T2 may be coupled to the sensing line Sense, and the second electrode of the second transistor T2 may be coupled to the third electrode of the third transistor T3. Two-pole coupling.
  • One end of the storage capacitor C1 may be coupled to the gate of the third transistor T3, and the other end of the storage capacitor C1 may be coupled to the second electrode of the third transistor T3.
  • the first electrode of the third transistor T3 may be coupled to the driving power line VDD, and the second electrode of the third transistor T3 may also be coupled to the first electrode of the light emitting element 022 .
  • the first transistor T1 may also be called a data writing transistor.
  • the second transistor T2 may also be called a sensing transistor.
  • the third transistor T3 may also be called a driving transistor. Combining Figures 3 and 4, it can be seen that the control end of the driving subcircuit 0214 is the gate of the driving transistor, the input end of the driving subcircuit 0214 is the first pole of the driving transistor, and the output end of the driving subcircuit 0214 is the driving transistor. the second pole.
  • the second power signal with a larger potential applied to the sensing line Sense can directly cross the second transistor T2 (ie, the sensing transistor) to reach the light-emitting element 022 anode to achieve the purpose of reliably burning off foreign matter.
  • the signal flow direction is indicated by the dotted arrow in Figure 4. That is, it has been experimentally verified that although the current limit of the sensing transistor is small and the small current cannot burn out the foreign matter, the success rate of burning out the foreign matter can reach 100% after the sensing transistor is bridged.
  • one electrode may be a source electrode and the other electrode may be a drain electrode.
  • the embodiment of the present disclosure is described using the first pole as the source electrode and the second pole as the drain electrode.
  • the first transistor T1, the second transistor T2 and the third transistor T3 may all be N-type transistors, or all be P-type transistors, or part of them may be N-type transistors and part of them may be P-type transistors.
  • the effective potential ie, the first potential
  • the ineffective potential ie, the second potential
  • the effective potential ie, the first potential
  • the ineffective potential ie, the second potential
  • the structure shown in Figure 4 can be called a 3T1C structure, which includes 3 transistors and 1 capacitor.
  • the pixel circuit 021 may also have other structures, such as a 6T2C structure including 6 transistors and 2 capacitors, provided that the above described embodiments are met.
  • the pixel circuit 021 is not limited to only include the sub-circuits shown in FIGS. 3 and 4 , that is, it may also include other sub-circuits, for example, it may include a light-emitting control sub-circuit. The embodiments of the disclosure do not limit this.
  • the first pole of the light-emitting element 022 may only include a part and belong to a whole.
  • the first pole of the light emitting element 022 may have a first part Anode1 and a second part Anode2 arranged at intervals. That is, as described in the above embodiment, the anode of the light-emitting element 022 can adopt a partition design and be divided into two. In this way, only a part of the anode that cannot emit light normally may not affect the entire anode of the light-emitting element 022 .
  • the following embodiments take as an example that the first pole of the light-emitting element 022 includes a first part Anode1 and a second part Anode2.
  • the first pole of the light-emitting element 022 including the first part Anode1 and the second part Anode2 may be arranged at intervals along the column direction.
  • the first part Anode1 and the second part Anode2 may also be arranged at intervals along other directions, such as the row direction.
  • the embodiment of the present disclosure does not limit its arrangement.
  • the plurality of pixels 02 provided by the embodiment of the present disclosure may have at least two colors, and at least two pixels 02 of the same color may share the same repair line RL.
  • sharing a repair line RL here may mean that the first pole of the light-emitting element 022 in at least two pixels 02 of the same color overlaps with the same repair line RL. That is, it is coupled to the second power line V2 through the same repair line RL.
  • a plurality of pixels 02 shown therein include three colors, namely red (Red, R), green (Green, G) and blue (Blue, B). That is, the display substrate may include a plurality of red pixels, a plurality of green pixels, and a plurality of blue pixels.
  • every two adjacent pixels 02 of the same color shown in FIG. 6 share the same repair line RL. Adjacent here may mean adjacent in the column direction. Moreover, each pixel 02 only corresponds to one repair line RL, that is, different repair lines RL are shared by two different pixels 02 . In this way, wiring can be facilitated.
  • the repair line RL recorded in the embodiment of the present disclosure can also be configured to couple the first pole of the light-emitting element 022 included in the dead pixel with the first pole of the light-emitting element 022 included in the normal pixel 02 .
  • the normal pixel 02 and the bad pixel can share the same repair line RL and have the same color.
  • the normal pixel 02 and the bad pixel 02 may be two adjacent pixels 02 located in the same column.
  • the bad pixels may also include bright pixels.
  • the repair line RL couples the first pole of the light-emitting element 022 included in the dead pixel to the first pole of the light-emitting element 022 included in the normal pixel 02
  • the first pole of the light-emitting element 022 included in the dead pixel is connected to the first pole of the light-emitting element 022 included in the normal pixel 02.
  • the pixel circuit 021 included in the dot pixel can be disconnected, and the first pole and the second power line V2 of the light-emitting element 022 included in the bad pixel can be disconnected.
  • a laser welding process can be used to weld the repair line RL to both the first pole of the light-emitting element 022 included in the defective pixel and the first pole of the light-emitting element 022 included in the normal pixel 02, so as to weld the damaged pixel through the repair line RL.
  • the first pole of the light-emitting element 022 included in the point pixel is reliably coupled to the first pole of the light-emitting element 022 included in the normal pixel 02 .
  • Some cutting processes may be used to disconnect the first pole of the light-emitting element 022 included in the dead pixel from the pixel circuit 021 included in the dead pixel and the second power line V2 respectively.
  • a laser cutting process can be used to cut off the first pole of the light-emitting element 022 included in the defective pixel from the pixel circuit 021 included in the defective pixel and the second power line V2 respectively, so as to disconnect the coupling.
  • the repair line RL can be cut to disconnect the coupling between the pixel circuit 021 and the second power line V2.
  • the reasons for the occurrence of bright spot pixels include: abnormal transistors or capacitors in the pixel circuit 021 shown in FIG. 4 .
  • Causes of dark pixels can also include: abnormal transistors or capacitors.
  • the coupling between the pixel circuit 021 and the light-emitting element 022 in the dead pixel is cut off, and the repair line RL is used to repair the first of the light-emitting element 022 in the dead pixel.
  • the pole is coupled to the first pole of the light-emitting element 022 in the normal pixel, so that the pixel circuit 021 coupled to the first pole of the light-emitting element 022 in the normal pixel can transmit a driving signal to the first pole of the light-emitting element 022 in the bad pixel, Reliably drive dead pixels to emit light normally and solve the problem of poor display.
  • the premise for the first pole and the second power line V2 of the light-emitting element 022 included in the dead pixel pixel to be disconnected is: before that, the first pole and the second pole of the light-emitting element 022 included in the dead pixel pixel are disconnected.
  • the power line V2 is coupled through the repair line RL. That is, bad pixels are dark pixels. If the dead pixel itself is a bright pixel, there is no need to first couple the second power line V2 to the first pole of the light emitting element 022 through the repair line RL. Therefore, there is no need to disconnect the first electrode of the light-emitting element 022 from the second power line V2.
  • the repair line RL coupled to the second power line V2 and the first light-emitting element 022 in the dark spot pixel can be first used through a laser welding process. pole welding, and provide a second power signal with a larger potential to the first pole of the light-emitting element 022 through the second power line V2. If the dark spot defect is caused by foreign matter, the foreign matter will be melted and expressed, that is, displayed. Therefore, you can reliably determine whether the dark spot defect is caused by the foreign matter or by abnormal transistor or capacitance by observing whether the molten foreign matter appears. Causes dark spots. On this basis, even if the foreign body is too small to be observed with a microscope, this method can burn off the foreign body to reveal the foreign body.
  • the second power line V2 can be disconnected from the first pole of the light-emitting element 022 through a laser cutting process, so that the second power line V2 no longer transmits the second power signal to the first pole of the light-emitting element 022.
  • the first pole of the light-emitting element 022 receives the driving signal provided by the pixel circuit 021 again and emits light normally.
  • the first pole of the light-emitting element 022 in the dark spot pixel can be disconnected from the pixel circuit 021 and the second power line V2 through a laser cutting process, and can be disconnected through a laser welding process.
  • the first pole is coupled, so that the pixel circuit included in the normal pixel transmits the driving signal to the first pole of the light-emitting element 022 in the dark spot pixel, so as to drive the dark spot pixel to emit light normally. In this way, the problem of bad dark spots is solved.
  • the first pole of the light-emitting element 022 in the dark spot pixel can be disconnected from the pixel circuit 021 through the laser cutting process, and the repair line RL can be connected to the dark spot pixel through the laser welding process.
  • the first pole of the medium light-emitting element 022 and the first pole of the medium light-emitting element 022 of the normal pixel are welded to couple the first pole of the light-emitting element 022 of the dark spot pixel with the first pole of the light-emitting element 022 of the normal pixel 02, so that The pixel circuit included in the normal pixel transmits a driving signal to the first pole of the light-emitting element 022 in the dark point pixel to drive the bright point pixel to emit light normally. In this way, the problem of poor bright spots is solved.
  • the green G pixel is At the second transfer via hole K2 corresponding to the anode (including G-Anode1 and G-Anode2), weld the repair line RL to the anode of the green G pixel. Then, a potential of about 10V is applied to the second power line V2 (ie, the sensing line Sense) to burn off the foreign matter so that the anode and cathode of the green G pixel are no longer short-circuited.
  • V2 ie, the sensing line Sense
  • the repair line RL is cut through a laser cutting process to disconnect the second power line V2 from the anode of the green G pixel, and the pixel circuit 021 is used to reliably drive the green G pixel to emit light. As a result, the dark pixels are repaired into normal pixels.
  • the second transfer via hole K2 corresponding to the anode of the dark spot green G pixel and the second transfer via hole K2 corresponding to the anode of the normal green G pixel sharing the repair line RL with the dark spot green G pixel are formed.
  • the repair line RL is welded to the anode of the dark spot green G pixel and the anode of the normal green G pixel, so that the anode of the dark spot green G pixel is coupled to the anode of the normal green G pixel.
  • the pixel circuit 021 of the normal green G pixel can transmit a driving signal to the dark spot green G pixel to drive the dark spot green G pixel to emit light normally.
  • the method in the example of FIG. 8 is executed after the foreign matter does not appear after a large potential is applied to the second power line V2 in the example of FIG. 7 .
  • the embodiments of the present disclosure can reliably repair the problems of bad dark spots and bad bright spots without affecting the aperture ratio, so that all bad pixels can be reliably repaired by adding a repair line RL. repair.
  • the product yield can be greatly improved.
  • the repair method provided by the embodiments of the present disclosure is not only applicable to the top-emission display products and transparent display products described in the above-mentioned embodiments, but can also be applied to bottom-emission display products or non-transparent display products.
  • the second power line V2 and the repair line RL recorded in the embodiment of the present disclosure may be located on different layers, that is, they may be stacked in a direction away from the substrate.
  • the display substrate may further include: an insulating layer located between the second power line V2 and the repair line RL, and a via hole K0 penetrating the insulating layer.
  • the second power line V2 and the repair line RL can be overlapped through the via hole K0.
  • the second power line V2 and the repair line RL may also be located on the same layer.
  • the pixel circuit 021 may include: an active layer P1, a gate insulator (GI) layer, and a gate metal layer GT that are stacked sequentially in a direction away from the substrate 01. , inter-layer di-electric (ILD) layer and source-drain (SD) metal layer.
  • Figure 9 shows the driving transistor in the pixel circuit 021, that is, the third transistor T3.
  • the anode Anode may be located on the side of the source-drain metal layer SD away from the substrate 01 .
  • the active layer P1, the gate insulating layer GI, the gate metal layer GT, the interlayer defining layer ILD and the source and drain metal layer SD may be sequentially stacked in a direction away from the substrate 01. That is, each transistor in the pixel circuit 021 may be a top-gate structure transistor. Of course, in some other embodiments, the transistor may also be a transistor with a bottom-gate structure.
  • the display substrate may also include: a light shield (LS) layer located between the substrate O1 and the active layer P1.
  • the second power line V2 recorded in the embodiment of the present disclosure may be located on the same layer as the source-drain metal layer SD, and the repair line RL may be located on the same layer as the light-shielding layer LS.
  • a patterning process may include multiple exposure, development or etching processes, and the specific pattern in the formed layer structure may be continuous or discontinuous. That is, multiple elements, components, structures and/or portions located on "the same layer" are made of the same material and formed through the same patterning process. In this way, the manufacturing process and manufacturing costs can be saved, and the manufacturing efficiency can be accelerated. That is, the second power line V2 and the source-drain metal layer SD can be formed using the same material through one patterning process. Similarly, the repair line RL and the light-shielding layer LS can be formed using the same material through a one-time patterning process.
  • the display substrate may also include: a buffer layer Buffer located between the active layer P1 and the light-shielding layer LS, and a passivation layer located between the source-drain metal layer SD and the anode and stacked in sequence. PVX) layer and planarization (PLN) layer.
  • the source-drain metal layer SD may include a source electrode S1 and a drain electrode D1 located on the same layer and spaced apart from each other.
  • the insulating layer located between the repair line RL and the light shielding layer LS may include an interlayer defining layer ILD and a buffer layer Buffer.
  • the second power line V2 may be connected to the repair line RL through a via K0 penetrating the interlayer delimiter layer ILD and the buffer layer Buffer.
  • the repair line RL may also be located on the same layer as other conductive layers.
  • the repair line RL may be located on the same layer as the gate metal layer Gate.
  • the second power line V2 may also be located on the same layer as other conductive layers.
  • the second power line V2 may be located on the same layer as the gate metal layer Gate.
  • FIG. 9 also shows the cathode Cathode and the luminescent layer EL.
  • the cathode Cathode and the luminescent layer EL are located on the side of the anode Anode away from the substrate 01 and are stacked in sequence in the direction away from the substrate 01 .
  • the source S1 can be connected to the light-shielding layer LS through a via hole that penetrates the interlayer delimiter layer ILD and the buffer layer Buffer, so that the light-shielding layer LS has the same voltage as the source electrode S1 and the anode, and avoids the light-shielding layer LS from interfacing with other conductive structures. Parasitic capacitance is generated between them.
  • the orthographic projection of the active layer P1 on the substrate 01 overlaps with the orthographic projection of the light-shielding layer LS on the substrate 01.
  • the light-shielding layer LS can be used to block the active layer P1 to prevent the active layer P1 from being exposed to light.
  • the voltage threshold shift occurs under illumination, and can be used to block light to prevent external light from interfering with the display.
  • the source electrode S1 and the drain electrode D1 can be respectively connected to the active layer P1 through two via holes penetrating the interlayer delimiter layer ILD.
  • the source S1 can also be connected to the anode Anode through a via hole penetrating the passivation layer PVX and the planar layer PLN. In this way, the driving signal can be transmitted to the anode Anode through the source electrode S1, and the driving signal and the first power signal applied to the cathode Cathode can form a voltage difference to cause the luminescent layer EL to emit light.
  • the active layer P1 may have a semiconductorized region (also called a channel region) and a conductive region located on both sides of the channel region (called source region and drain region, respectively, corresponding to the source and drain).
  • the semiconductorized region may not be doped, or the doping type may be different from the source region and the drain region, and therefore have semiconductor characteristics.
  • the conductorized region can be doped and therefore conductive.
  • the doping impurities can vary depending on the type of transistor (ie, N-type or P-type).
  • the above-mentioned source-drain metal layer SD may overlap with the conductive area.
  • the substrate 01 may include a glass substrate or a flexible substrate, and the material of the flexible substrate may include polyimide.
  • the material of the buffer layer Buffer, the material of the passivation layer PVX, and the material of the gate insulating layer GI may include inorganic materials such as silicon nitride, silicon oxide, or silicon oxynitride.
  • the material of the interlayer defining layer ILD may include: silicon dioxide, silicon nitride, or a mixed material of silicon dioxide and silicon nitride.
  • the material of the flat layer PLN may include resin.
  • the material of the light-emitting layer EL may include organic electroluminescence (EL) light-emitting materials.
  • the material of the cathode Anode may include: indium tin oxide (ITO).
  • the material of the cathode Cathode may include: indium zinc oxide (IZO).
  • the material of the light-shielding layer LS, the material of the gate metal layer GT and the source-drain metal layer SD may include metal materials such as metal aluminum, metal silver, metal molybdenum or alloys.
  • the material of the active layer P1 may include: polysilicon, amorphous silicon, oxide semiconductor and other semiconductor materials.
  • inventions of the present disclosure provide a display substrate.
  • the display substrate includes: a plurality of pixels located on one side of the substrate, a second power line and a repair line.
  • the second power line is coupled to the repair line, and the repair line can be configured to couple the second power line to the first pole of the light-emitting element in the dead pixel, so that the second power line is connected to the first pole of the light-emitting element.
  • the pole transmits the second power signal.
  • the potential of the second power signal is greater than the potential of the first power signal provided by the first power line coupled to the second pole of the light-emitting element.
  • the potential of the second power signal can be flexibly set, so that when the foreign matter causes the first pole and the second pole of the light-emitting element in the dead pixel to short-circuit and dark spots appear, the foreign matter can be reliably burned off, so that the first pole of the light-emitting element can The first pole and the second pole are no longer short-circuited, thereby solving the problem of bad dark spots, and the display substrate has a better display effect.
  • Figure 10 is a maintenance method of a display substrate provided by an embodiment of the present disclosure. This method can be used to repair the display substrate shown in the above figures. As shown in Figure 10, the method includes:
  • Step 1001 When a plurality of pixels in the display substrate have dead pixels and the dead pixels are dark pixels, couple the second power line to the first pole of the light-emitting element in the dead pixel through a repair line.
  • the repair line RL can be welded to the first pole of the light-emitting element 022 in the defective pixel through a laser welding process, so that the second power line V2 is connected to the defective pixel through the repair line RL.
  • the first pole of the light-emitting element 022 in the point pixel is coupled.
  • Step 1002 Provide a second power signal to the first pole of the light-emitting element in the dead pixel through the second power line.
  • the potential of the second power signal may be greater than the potential of the first power signal provided by the first power line coupled to the second pole of the light-emitting element.
  • Figure 11 is another display substrate maintenance method provided by an embodiment of the present disclosure. It can be seen from Figure 10 and Figure 11 that after step 1002, the method may also include:
  • Step 1003 If the defective pixel shows a fused foreign object, disconnect the second power line from the first pole of the light-emitting element in the defective pixel.
  • the defective pixel shows a foreign matter after melting
  • the cause of the defective dark spot is that the foreign matter causes the first pole and the second pole of the light-emitting element to be short-circuited.
  • the second power line can be disconnected from the first pole of the light-emitting element in the dead pixel, so that the second power line no longer transmits large potential to the first pole of the light-emitting element.
  • the pixel circuit 021 normally provides the driving signal to the first pole of the light-emitting element again to drive the light-emitting element to emit light reliably.
  • the repair line RL can be cut through a laser cutting process to disconnect the second power line V2 from the first pole of the light-emitting element 022 in the dead pixel.
  • Step 1004 If no fused foreign matter is displayed at the dead pixel or the dead pixel is a bright spot pixel, disconnect the first pole of the light-emitting element in the dead pixel from the pixel circuit in the dead pixel, and remove the dead pixel.
  • the first pole of the light-emitting element in the pixel is disconnected from the second power line, and the first pole of the light-emitting element in the defective pixel is coupled with the first pole of the light-emitting element in the normal pixel through the repair line.
  • the first pole of the light-emitting element in the dead pixel can be disconnected from the pixel circuit in the dead pixel, the first pole of the light-emitting element in the dead pixel can be disconnected from the second power line, and the first pole of the light-emitting element in the dead pixel can be disconnected from the second power line.
  • the repair line couples the first pole of the light-emitting element in the dead pixel with the first pole of the light-emitting element in the normal pixel, so that the pixel circuit in the normal pixel provides a driving signal to the light-emitting element in the bad pixel to drive the The light-emitting element in the dead pixel emits light reliably.
  • normal pixels and bad pixels share the same repair line and have the same color.
  • step 1004 can also be performed directly without performing the above-mentioned steps 1001 to 1003.
  • the repair line RL can be welded to the first pole of the light-emitting element 022 in the bad pixel and the first pole of the light-emitting element 022 in the normal pixel respectively through a laser welding process, so as to The first pole of the light-emitting element 022 in the defective pixel is coupled to the first pole of the light-emitting element 022 in the normal pixel.
  • the first pole of the light-emitting element 022 in the dead pixel can be disconnected from the pixel circuit 021 in the dead pixel and disconnected from the second power line V2 through a laser cutting process.
  • embodiments of the present disclosure provide a method for repairing a display substrate.
  • the second power line is coupled to the first pole of the light-emitting element in the dead pixel through the repair line in the display substrate, and the second power line is coupled to the first pole of the light-emitting element in the dead pixel through the repair line in the display substrate.
  • the power line provides a second power signal to the first pole of the light-emitting element in the dead pixel.
  • the potential of the second power signal is greater than the potential of the first power signal provided by the first power line coupled to the second pole of the light-emitting element.
  • the potential of the second power signal can be flexibly set, so that when the foreign matter causes the first pole and the second pole of the light-emitting element in the dead pixel to short-circuit and dark spots appear, the foreign matter can be reliably burned off, so that the first pole of the light-emitting element can The pole and the second pole are no longer short-circuited, thus solving the problem of bad dark spots.
  • the display substrate provided by the embodiments of the present disclosure has a better display effect.
  • the second power line and the light-emitting element in the dead pixel can be further connected.
  • the first pole is disconnected, so that the second power line stops providing a high-potential second power signal to the dead pixel, ensuring that the pixel subsequently emits normal light. If no foreign matter appears, you can further disconnect the first pole of the light-emitting element in the dead pixel from the pixel circuit in the dead pixel, and disconnect the first pole of the light-emitting element in the dead pixel from the second power line.
  • FIG. 12 is a flow chart of a method for preparing a display substrate provided by an embodiment of the present disclosure. This method can be used to prepare the display substrate as shown in the above figures. As shown in Figure 12, the method includes:
  • Step 1201 Provide a substrate.
  • the provided substrate 01 may be a glass substrate or a flexible substrate.
  • Step 1202 Form multiple pixels on one side of the substrate.
  • the pixel includes a pixel circuit and a light-emitting element
  • the pixel circuit is coupled to the first pole of the light-emitting element
  • the second pole of the light-emitting element is coupled to the first power line
  • the pixel circuit is configured to transmit drive to the first pole of the light-emitting element.
  • the light emitting element is configured to emit light based on the driving signal and the first power signal provided by the first power line.
  • a single patterning process can be used to form an active layer, a gate insulating layer, a gate metal layer and a source and drain metal layer on one side of the substrate to form a pixel circuit; and anode, light-emitting layer and cathode to form a light-emitting element.
  • the patterning process includes: photoresist coating, exposure, development, etching, photoresist stripping and other process steps.
  • Step 1203 Form at least one second power line and a plurality of repair lines on one side of the substrate, and couple the second power line and the repair lines.
  • the orthographic projection of the repair line on the substrate overlaps with the orthographic projection of the first pole of the light-emitting element on the substrate.
  • the repair line may be configured to couple the second power line to the first pole of the light-emitting element included in the defective pixel in the plurality of pixels, and the second power line may be configured to provide the coupled light-emitting element via the repair line.
  • the first pole transmits the second power signal.
  • the bad pixels may include dark pixels, and the potential of the second power signal may be greater than the potential of the first power signal.
  • the repair line can also be configured to couple the first pole of the light-emitting element included in the bad pixel with the first pole of the light-emitting element included in the normal pixel, wherein the normal pixel and the bad pixel share the same repair line and the color
  • dead pixels can include bright pixels.
  • the repair line couples the first pole of the light-emitting element included in the dead pixel with the first pole of the light-emitting element included in the normal pixel, the first pole of the light-emitting element included in the bad pixel is connected to the pixel included in the bad pixel.
  • the circuit is decoupled, and the first pole and the second power line of the light-emitting element included in the dead pixel are decoupled.
  • a one-time patterning process can be used to form the repair line RL while forming the light shielding layer LS; and form the second power line V2 while forming the source and drain metal layer SD; and, through the through layer
  • the via K0 between the defining layer ILD and the buffer layer Buffer overlaps the second power line V2 of different layers and the repair line RL.
  • embodiments of the present disclosure provide a method for preparing a display substrate.
  • a plurality of pixels, a second power supply line and a repair line may be formed on one side of the substrate, and the second power supply line and the repair line may be coupled.
  • the repair line formed can be configured to couple the second power line to the first pole of the light-emitting element in the defective pixel, so that the second power line transmits the second power signal to the first pole of the light-emitting element.
  • the potential of the second power signal is greater than the potential of the first power signal provided by the first power line coupled to the second pole of the light-emitting element.
  • the potential of the second power signal can be flexibly set, so that when the foreign matter causes the first pole and the second pole of the light-emitting element in the dead pixel to short-circuit and dark spots appear, the foreign matter can be reliably burned off, so that the first pole of the light-emitting element can The pole and the second pole are no longer short-circuited, thus solving the problem of bad dark spots.
  • the display substrate provided by the embodiments of the present disclosure has a better display effect.
  • Figure 13 is a display device provided by an embodiment of the present disclosure. As shown in FIG. 13 , the display device may include: a power supply component J1 and a display substrate 00 as shown in the above figures.
  • the power supply component J1 may be coupled to the display substrate 00 and configured to provide power to the display substrate 00 .
  • the display device can be any product or component with a display function such as a mobile phone, a tablet computer, a television, a monitor, a notebook computer, a digital photo frame, a navigator or a transparent display product.
  • a display function such as a mobile phone, a tablet computer, a television, a monitor, a notebook computer, a digital photo frame, a navigator or a transparent display product.
  • transparent display products can be used in in-vehicle displays such as cars or subways, and can be used in window displays such as hotels or clothing stores. They have the advantages of clear picture quality and realistic display effects.
  • first and second are used for descriptive purposes only and cannot be understood as indicating or implying relative importance.
  • plurality refers to two or more than two, unless expressly limited otherwise.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Theoretical Computer Science (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

一种显示基板及其维修方法、制备方法、显示装置。该显示基板包括:位于衬底(01)一侧的多个像素(02)、第二电源线(V2)和修复线(RL)。其中,第二电源线(V2)与修复线(RL)耦接,且修复线(RL)能够被配置为将第二电源线(V2)与坏点像素(02)中发光元件(022)的第一极耦接,以使第二电源线(V2)向发光元件(022)的第一极传输第二电源信号。并且,该第二电源信号的电位大于发光元件(022)的第二极耦接的第一电源线(V1)提供的第一电源信号的电位。可以通过灵活设置第二电源信号的电位,以在异物导致坏点像素(02)中发光元件(022)的第一极和第二极短接而出现暗点时,可烧断异物,使得发光元件(022)的第一极和第二极不再短接,进而解决暗点不良问题。

Description

显示基板及其维修方法、制备方法、显示装置 技术领域
本公开涉及显示技术领域,特别涉及一种显示基板及其维修方法、制备方法、显示装置。
背景技术
有机发光二极管(organic light emitting diode,OLED)显示基板因其自发光、宽视角、响应速度快、低功耗和高对比度等优点广泛应用于各类显示装置中。
目前,OLED显示基板一般包括衬底,以及位于衬底一侧的多个像素。其中,每个像素包括像素电路和发光元件,发光元件包括依次层叠的阳极和阴极。像素电路与发光元件的阳极耦接,并被配置为向发光元件的阳极传输发光驱动信号。发光元件的阴极与电源线耦接,并被配置为在阳极接收到的发光驱动信号和电源线向阴极提供的电源信号的压差作用下发光。
但是,研究发现,制备OLED显示基板的过程中,若异物落入发光元件的阳极和阴极之间,则易导致发光元件的阳极和阴极短接,造成发光元件无法正常发光,进而使得OLED显示基板出现暗点不良现象,显示效果较差。
发明内容
本公开实施例提供了一种显示基板及其维修方法、制备方法、显示装置。所述技术方案如下:
一方面,提供了一种显示基板,所述显示基板包括:
衬底;
位于所述衬底一侧的多个像素,所述像素包括像素电路和发光元件,所述像素电路与所述发光元件的第一极耦接,所述发光元件的第二极与第一电源线耦接,所述像素电路被配置为向所述发光元件的第一极传输驱动信号,所述发光元件被配置为基于所述驱动信号和所述第一电源线提供的第一电源信号发光;
以及,位于所述衬底一侧的至少一条第二电源线和多条修复线,所述第二电源线与所述修复线耦接,所述修复线在所述衬底上的正投影与所述发光元件的第一极在所述衬底上的正投影交叠,所述修复线被配置为将所述第二电源线与所述多个像素中坏点像素包括的发光元件的第一极耦接,所述第二电源线被配置为经所述修复线向所耦接的发光元件的第一极传输第二电源信号;
其中,所述坏点像素包括暗点像素,所述第二电源信号的电位大于所述第一电源信号的电位。
可选的,所述第一电源信号的电位为0,所述第二电源信号的电位大于等于6伏特且小于等于12伏特。
可选的,所述多个像素具有至少两种颜色,且至少两个相同颜色的像素共用同一条所述修复线;
所述修复线还被配置为将所述坏点像素包括的发光元件的第一极与正常像素包括的发光元件的第一极耦接,其中,所述正常像素与所述坏点像素共用同一条所述修复线且颜色相同,所述坏点像素包括亮点像素;
并且,在所述修复线将所述坏点像素包括的发光元件的第一极与所述正常像素包括的发光元件的第一极耦接时,所述坏点像素包括的发光元件的第一极与所述坏点像素包括的像素电路被断开耦接,且所述坏点像素包括的发光元件的第一极与所述第二电源线被断开耦接。
可选的,所述多个像素阵列排布,所述正常像素与所述坏点像素为位于同一列且相邻的两个像素。
可选的,所述发光元件的第一极为阳极,所述发光元件的第二极为阴极。
可选的,所述发光元件的第一极具有间隔设置的第一部分和第二部分。
可选的,所述像素电路包括:数据写入子电路、感测子电路、调节子电路和驱动子电路;
所述数据写入子电路分别与第一栅线、数据线和所述驱动子电路的控制端耦接,所述数据写入子电路被配置为响应于所述第一栅线提供的第一栅极驱动信号,控制所述驱动子电路的控制端与所述数据线的通断;
所述感测子电路分别与第二栅线、感测线和所述驱动子电路的输出端耦接,所述感测子电路被配置为响应于所述第二栅线提供的第二栅极驱动信号,控制所述驱动子电路的输出端与所述感测线的通断;
所述调节子电路分别与所述驱动子电路的控制端和输出端耦接,所述调节子电路被配置为调节所述驱动子电路的控制端和输出端的电位;
所述驱动子电路的输入端与驱动电源线耦接,所述驱动子电路的输出端还与所述发光元件的第一极耦接,所述驱动子电路被配置为基于所述驱动电源线提供的驱动电源信号和控制端的信号,向所述发光元件的第一极传输驱动信号;
其中,所述第二电源线为所述感测线。
可选的,所述数据写入子电路包括:第一晶体管;所述感测子电路包括:第二晶体管;所述调节子电路包括:存储电容;所述驱动子电路包括:第三晶体管;
所述第一晶体管的栅极与所述第一栅线耦接,所述第一晶体管的第一极与所述数据线耦接,所述第一晶体管的第二极与所述第三晶体管的栅极耦接;
所述第二晶体管的栅极与所述第二栅线耦接,所述第二晶体管的第一极与所述感测线耦接,所述第二晶体管的第二极与所述第三晶体管的第二极耦接;
所述存储电容的一端与所述第三晶体管的栅极耦接,所述存储电容的另一端与所述第三晶体管的第二极耦接;
所述第三晶体管的第一极与所述驱动电源线耦接,所述第三晶体管的第二极还与所述发光元件的第一极耦接。
可选的,所述第二电源线与所述修复线位于不同层,所述显示基板还包括:
位于所述第二电源线与所述修复线之间的绝缘层,以及贯穿所述绝缘层的过孔,所述第二电源线与所述修复线通过所述过孔搭接。
可选的,所述像素电路包括:沿远离所述衬底的方向依次层叠的有源层、栅绝缘层、栅金属层、层间介定层和源漏金属层;所述显示基板还包括:位于所述衬底与所述有源层之间的遮光层;
其中,所述第二电源线与所述源漏金属层位于同层,所述修复线与所述遮光层位于同层。
另一方面,提供了一种显示基板的维修方法,用于维修如上述方面所述的显示基板,所述方法包括:
在所述显示基板中的多个像素出现坏点像素,且所述坏点像素为暗点像素时,通过修复线将第二电源线与所述坏点像素中发光元件的第一极耦接;
通过所述第二电源线向所述坏点像素中发光元件的第一极提供第二电源信 号;
其中,所述第二电源信号的电位大于所述发光元件的第二极耦接的第一电源线提供的第一电源信号的电位。
可选的,所述方法还包括:
若所述坏点像素处显示有熔断后的异物,则将所述第二电源线与所述坏点像素中发光元件的第一极断开耦接;
若所述坏点像素处未显示有熔断后的异物或所述坏点像素为亮点像素,则将所述坏点像素中发光元件的第一极与所述坏点像素中像素电路断开耦接,将所述坏点像素中发光元件的第一极与所述第二电源线断开耦接,并通过所述修复线将所述坏点像素中发光元件的第一极与正常像素中发光元件的第一极耦接;其中,所述正常像素与所述坏点像素共用同一条所述修复线且颜色相同。
可选的,所述通过修复线将第二电源线与所述坏点像素中发光元件的第一极耦接,包括:
通过激光焊接工艺,将所述修复线与所述坏点像素中发光元件的第一极焊接,以使所述第二电源线经所述修复线与所述坏点像素中发光元件的第一极耦接;
所述通过所述修复线将所述坏点像素中发光元件的第一极与正常像素中发光元件的第一极耦接,包括:
通过激光焊接工艺,将所述修复线分别与所述坏点像素中发光元件的第一极和所述正常像素中发光元件的第一极焊接,以使所述坏点像素中发光元件的第一极与所述正常像素中发光元件的第一极耦接;
所述将所述第二电源线与所述坏点像素中发光元件的第一极断开耦接,包括:
通过激光切割工艺,将所述修复线与所述坏点像素中发光元件的第一极的耦接,以将所述第二电源线与所述坏点像素中发光元件的第一极断开耦接;
所述将所述坏点像素中发光元件的第一极与所述坏点像素中像素电路断开耦接,包括:
通过激光切割工艺,将所述坏点像素中发光元件的第一极与所述坏点像素中像素电路断开耦接。
又一方面,提供了一种显示基板的制备方法,用于制备如上述方面所述的 显示基板,所述方法包括:
提供衬底;
在所述衬底的一侧形成多个像素,所述像素包括像素电路和发光元件,所述像素电路与所述发光元件的第一极耦接,所述发光元件的第二极与第一电源线耦接,所述像素电路被配置为向所述发光元件的第一极传输驱动信号,所述发光元件被配置为基于所述驱动信号和所述第一电源线提供的第一电源信号发光;
以及,在所述衬底的一侧形成至少一条第二电源线和多条修复线,并将所述第二电源线与所述修复线耦接,所述修复线在所述衬底上的正投影与所述发光元件的第一极在所述衬底上的正投影交叠,所述修复线被配置为将所述第二电源线与所述多个像素中坏点像素包括的发光元件的第一极耦接,所述第二电源线被配置为经所述修复线向所耦接的发光元件的第一极传输第二电源信号;
其中,所述坏点像素包括暗点像素,所述第二电源信号的电位大于所述第一电源信号的电位。
再一方面,提供了一种显示装置,所述显示装置包括:供电组件,以及如上述方面所述的显示基板;
所述供电组件与所述显示基板耦接,并被配置为向所述显示基板供电。
附图说明
为了更清楚地说明本公开实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本公开实施例提供的一种显示基板的结构示意图;
图2是本公开实施例提供的一种显示基板中局部结构的等效示意图;
图3是本公开实施例提供的一种像素电路的结构示意图;
图4是本公开实施例提供的另一种像素电路的结构示意图;
图5是本公开实施例提供的另一种显示基板中局部结构的等效示意图;
图6是本公开实施例提供的另一种显示基板中局部结构的等效示意图;
图7是本公开实施例提供的一种针对显示基板的维修等效图;
图8是本公开实施例提供的另一种针对显示基板的维修等效图;
图9是本公开实施例提供的一种显示基板的膜层示意图;
图10是本公开实施例提供的一种显示基板的维修方法流程图;
图11是本公开实施例提供的另一种显示基板的维修方法流程图;
图12是本公开实施例提供的一种显示基板的制备方法流程图;
图13是本公开实施例提供的一种显示装置的结构示意图。
具体实施方式
为使本公开的目的、技术方案和优点更加清楚,下面将结合附图对本公开实施方式作进一步地详细描述。
经研究发现,像素除了会出现背景技术记载的暗点不良现象外,还会出现亮点不良现象。其中,暗点不良是指像素无法被正常被点亮而发光,出现暗点不良现象的像素也称为暗点像素。亮点不良是指虽然能够被正常点亮但发光亮度异常(一般表现为亮度较大),出现亮点不良现象的像素也称为亮点像素。暗点像素和亮点像素均属于坏点像素,相应的,能够被正常点亮且发光亮度正常的像素属于正常像素。出现暗点不良现象的原因除了包括异物造成发光元件的阳极和阴极短接外,还包括像素电路中器件(如,晶体管或电容)异常。出现亮点不良现象的原因通常包括像素电路中器件异常,如晶体管阈值电压漂移。
目前,在像素出现暗点不良时,通常是通过观察以确定是因异物导致的暗点不良还是因像素电路中器件异常导致的暗点不良。并且,若确定是因异物导致的暗点不良,则可以切断异物所在位置的部分阳极。该处理方式常用于将一个阳极一分为二的显示产品中,在出现异物时,可以将像素中一分为二的一半切断即可,像素在另一半与阴极的压差作用下正常发光,即使半颗像素发光。一分为二的显示产品一般为同时具有显示及透光功能的透明显示产品。因透光功能是通过牺牲分辨率实现的,故透明显示产品的分辨率一般较低,像素间隔较大,暗点不良现象在透明显示产品中较为明显。由此,设计阳极一分为二,可以改善暗点不良。若确定是因像素电路中器件异常导致的暗点不良,则无法维修。而在像素出现亮点不良时,通常是直接切割整个阳极,使像素不发光,即由亮点维修为暗点。本公开实施例记载的一个像素均是指一颗亚像素。
以上处理方式具有以下几点问题:第一,对于透明显示产品而言,维修为 半颗像素发光后,因产品本身分辨率较低,透明区域较大,故宏观观察显示效果依然较差。第二,因异物一般很小,即便使用显微镜也难以观察,故无法区分造成暗点不良的原因,进而无法维修。并且,即便能够确定是异物导致的暗点不良,也无法可靠确定异物所在位置,进而无法确定具体切割哪部分阳极,依然导致无法维修。测试反映目前约有40%的暗点不良无法找到异物。第三,像素电路中器件异常导致的暗点难以被发现,尤其是具有反射阴极和遮光层的顶发射显示产品中出现的暗点。测试反映目前约有90%的暗点在显微镜下无法被观察到。第四,半颗像素发光面积相对于整颗像素的发光面积而言较小,但提供给部分阳极的驱动信号的电位与提供给整个阳极的驱动信号的电位相同。如此,导致电流密度较大,长时间点亮半颗像素后,与周边正常的整颗像素的发光亮度差异会越来越大,容易信赖性失效重新变为暗点。第五,像素电路中器件异常导致的暗点不良和亮点不良其实均无法维修为正常点。
为此,本公开实施例提供了一种新的显示基板及不良维修方法,以在解决上述几点问题的基础上,可靠改善暗点不良和亮点不良现象。
图1是本公开实施例提供的一种显示基板的结构示意图。如图1所示,该显示基板包括:
衬底01。
位于衬底01一侧的多个像素02。
其中,每个像素02包括像素电路021和发光元件022,像素电路021与发光元件022的第一极耦接(即,电连接),发光元件022的第二极与第一电源线V1耦接。像素电路021被配置为向发光元件022的第一极传输驱动信号(如,驱动电流),发光元件022被配置为基于第一极接收到的驱动信号和第一电源线V1提供的第一电源信号发光。如,发光元件022可以在驱动信号和第一电源信号的压差作用下发光。
可选的,发光元件022的第一极和第二极中,一极为阳极(Anode),另一极为阴极(Cathode)。示例的,图1示出的第一极为阳极,第二极为阴极。
在图1基础上,再参考图2示出的另一种显示基板的结构示意图可知,本公开实施例记载的显示基板还包括:位于衬底01一侧的至少一条第二电源线V2和多条修复线(repair line)RL。第二电源线V2与修复线RL耦接。修复线RL在衬底01上的正投影与发光元件022的第一极在衬底01上的正投影交叠。
需要说明的是,图2仅示出了发光元件022的第一极,仅示出了一条第二电源线V2,且未示出像素电路02。
在上述设置基础上,本公开实施例的修复线RL可以被配置为将第二电源线V2与多个像素02中的坏点像素包括的发光元件022的第一极耦接。第二电源线V2可以被配置为经修复线RL向所耦接的发光元件022的第一极传输第二电源信号。
其中,坏点像素可以包括暗点像素,第二电源信号的电位可以大于第一电源信号的电位。如,第一电源信号的电位可以小于等于0,第二电源信号的电位可以大于0。由此,在异物导致出现暗点像素时,在将第二电源线V2与发光元件022的第一极耦接之后,可以通过灵活设置第二电源线V2提供的第二电源信号的电位,以达到烧断发光元件的第一极和第二极之间夹杂的异物的目的,即将该异物熔融。在异物被熔融后,发光元件的第一极和第二极之间不再短接,发光元件能够被正常点亮,暗点像素消失,暗点不良问题得以解决。
示例的,结合图2,在本公开实施例中,若未出现暗点像素,则修复线RL仅与发光元件022的第一极交叠,而不耦接。若出现暗点像素,则可以进一步采用一些连接工艺,将修复线RL与发光元件022的第一极耦接,以间接将第二电源线V2与发光元件022的第一极耦接,以解决暗点不良问题。如,连接工艺可以包括:激光焊接工艺,相应的,将修复线RL与发光元件022的第一极耦接也可以称为将修复线RL与发光元件022的第一极焊接,从而确保耦接可靠性。
可选的,结合图2还可以看出,像素电路021与发光元件022的第一极可以通过第一转接过孔K1耦接。修复线RL与发光元件022的第一极可以通过第二转接过孔K2耦接。相应的,修复线RL在衬底01上的正投影与发光元件022的第一极在衬底01上的正投影交叠可以是指:修复线RL在衬底01上的正投影与第二转接过孔K2在衬底上的正投影交叠。将修复线RL与发光元件022的第一极焊接可以是指:在第二转接过孔K2处执行焊接处理。并且,在第一极为阳极时,第一转接过孔K1和第二转接过孔K2均可以称为阳极过孔。第一转接过孔K1和第二转接过孔K2可以间隔设置或为同一个过孔。
如此可知,在本公开实施例中,是通过设置修复线RL以将第二电源线V2延长至发光元件022的阳极旁,以及将阳极过孔处面积扩大至修复线RL处,来解决暗点不良问题。由此修复线RL也可以称为第二电源线V2的分支。
综上所述,本公开实施例提供了一种显示基板。该显示基板包括:位于衬底一侧的多个像素、第二电源线和修复线。其中,第二电源线与修复线耦接,且修复线能够被配置为将第二电源线与坏点像素中发光元件的第一极耦接,以使第二电源线向发光元件的第一极传输第二电源信号。并且,第二电源信号的电位大于发光元件的第二极耦接的第一电源线提供的第一电源信号的电位。如此,可以通过灵活设置第二电源信号的电位,以在异物导致坏点像素中发光元件的第一极和第二极短接而出现暗点时,可靠烧断异物,使得发光元件的第一极和第二极不再短接,进而解决暗点不良问题,该显示基板的显示效果较好。
可选的,在本公开实施例中,第一电源信号的电位可以为0。第二电源信号的电位可以大于等于6伏特(V)且小于等于12V,如,一般可以为10V。如此,可以确保在异物导致暗点不良时,可靠熔融异物,解决暗点不良问题。
可选的,在本公开实施例中,如图1和图2所示,发光元件022的第一极可以为阳极,发光元件022的第二极可以为阴极。
可选的,图3是本公开实施例提供的一种像素电路的结构示意图。如图3所示,本公开实施例记载的像素电路021可以包括:数据写入子电路0211、感测子电路0212、调节子电路0213和驱动子电路0214。
数据写入子电路0211可以分别与第一栅线G1、数据线Data和驱动子电路0214的控制端耦接。且,数据写入子电路0211可以被配置为响应于第一栅线G1提供的第一栅极驱动信号,控制驱动子电路0214的控制端与数据线Data的通断。
例如,数据写入子电路0211可以在第一栅线G1提供的第一栅极驱动信号的电位为第一电位时,控制驱动子电路0214的控制端与数据线Data导通。此时,数据线Data可以向驱动子电路0214的控制端传输数据信号,以为驱动子电路0214的控制端充电。以及,数据写入子电路0211可以在第一栅线G1提供的第一栅极驱动信号的电位为第二电位时,控制驱动子电路0214的控制端与数据线Data断开耦接。
可选的,在本公开实施例中,第一电位可以为有效电位,第二电位可以为无效电位,且第一电位相对于第二电位可以为高电位。
感测子电路0212可以分别与第二栅线G2、感测线Sense和驱动子电路0214 的输出端耦接。且,感测子电路0212可以被配置为响应于第二栅线G2提供的第二栅极驱动信号,控制驱动子电路0214的输出端与感测线Sense的通断。
例如,感测子电路0212可以在第二栅极驱动信号的电位为第一电位时,控制驱动子电路0214的输出端与感测线Sense导通。此时,感测线Sense可以向控制驱动子电路0214的输出端传输感测信号,以对驱动子电路0214的输出端复位;或,感测线Sense可以接收控制驱动子电路0214的输出端处的电位。进一步的,感测线Sense还可以与外部补偿电路耦接,并将接收到的电位传输至外部补偿电路,以供外部补偿电路根据该电位对数据信号进行外部补偿,确保能够可靠点亮发光元件022。以及,感测子电路0212可以在第二栅极驱动信号的电位为第二电位时,控制驱动子电路0214的输出端与感测线Sense断开耦接。
调节子电路0213可以分别与驱动子电路0214的控制端和输出端耦接。且,调节子电路0213可以被配置为调节驱动子电路0214的控制端和输出端的电位。
驱动子电路0214的输入端可以与驱动电源线VDD耦接,驱动子电路0214的输出端还可以与发光元件022的第一极耦接。且,驱动子电路0214可以被配置为基于驱动电源线VDD提供的驱动电源信号和控制端的信号,向发光元件022的第一极传输驱动信号。
在上述结构基础上,本公开实施例记载的第二电源线V2可以为感测线Sense。即,像素电路02还可以与第二电源线V2耦接,以基于第二电源线V2提供的第二电源信号,向发光元件022传输驱动信号。或者,在一些其他实施例中,第二电源线V2还可以为驱动电源线VDD;或其他能够提供上述第二电源信号的电位的信号线,像素电路02与该第二电源线V2可以不耦接。下述实施例均以第二电源线V2为感测线Sense为例进行说明。
需要说明的是,无论是感测线Sense还是驱动电源线VDD作为第二电源线V2,其共同点均是属于直流电源线,即所提供信号均为直流信号。并且,结合感测子电路0212的工作原理可知,正常点亮像素02时,感测线Sense提供的感测信号的电位一般较低,约为0V或0V以下。故,在本公开实施例中,在感测线Sense作为第二电源线V2的基础上,还需要在修复暗点不良问题时,向感测线Sense加载10V左右的较大电位。可选的,向感测线Sense加载该大电位的电路可以为上述实施例提到的外部补偿电路,或者也可以为其他外部驱动电路。
可选的,图4是本公开实施例提供的另一种像素电路的结构示意图。如图4 所示,数据写入子电路0211可以包括:第一晶体管T1。感测子电路0212可以包括:第二晶体管T2。调节子电路0213可以包括:存储电容C1。驱动子电路0214可以包括:第三晶体管T3。
其中,第一晶体管T1的栅极可以与第一栅线G1耦接,第一晶体管T1的第一极可以与数据线Data耦接,第一晶体管T1的第二极可以与第三晶体管T3的栅极耦接。
第二晶体管T2的栅极可以与第二栅线G2耦接,第二晶体管T2的第一极可以与感测线Sense耦接,第二晶体管T2的第二极可以与第三晶体管T3的第二极耦接。
存储电容C1的一端可以与第三晶体管T3的栅极耦接,存储电容C1的另一端可以与第三晶体管T3的第二极耦接。
第三晶体管T3的第一极可以与驱动电源线VDD耦接,第三晶体管T3的第二极还可以与发光元件022的第一极耦接。
第一晶体管T1也可以称为数据写入晶体管。第二晶体管T2也可以称为感测晶体管。第三晶体管T3也可以称为驱动晶体管。结合图3和图4可知,驱动子电路0214的控制端即为驱动晶体管的栅极,驱动子电路0214的输入端即为驱动晶体管的第一极,驱动子电路0214的输出端即为驱动晶体管的第二极。
基于晶体管的限流作用可知,在修复暗点不良现象时,施加至感测线Sense的较大电位的第二电源信号可以直接跨过第二晶体管T2(即,感测晶体管)到达发光元件022的阳极,以达到可靠烧断异物的目的,信号流向见图4虚线箭头所指示。即,经实验验证,虽然感测晶体管的限流较小,小电流无法烧断异物,但经感测晶体管跨接后,烧断异物的成功率可以达到100%。
可选的,上述各晶体管的第一极和第二极中,一极可以为源极,另一极可以为漏极。本公开实施例以第一极为源极,第二极为漏极进行说明。第一晶体管T1、第二晶体管T2和第三晶体管T3可以均为N型晶体管,或均为P型晶体管,或部分为N型晶体管,部分为P型晶体管。
其中,对于N型晶体管而言,有效电位(即,第一电位)相对于无效电位(即,第二电位)可以为高电位。对于P型晶体管而言,有效电位(即,第一电位)相对于无效电位(即,第二电位)可以为低电位。
需要说明的是,图4所示结构可以称为3T1C结构,即包括3个晶体管和1 个电容。当然,在一些其他实施例中,在满足上述实施例记载前提下,像素电路021也可以为其他结构,如包括6个晶体管和2个电容的6T2C结构。以及,像素电路021不限于仅包括图3和图4所示的各子电路,即还可以包括其他子电路,如,可以包括发光控制子电路。本公开实施例对此均不做限定。
可选的,在本公开实施例中,发光元件022的第一极可以仅包括一部分,属于一个整体。或者,参考图5所示的又一种显示基板,发光元件022的第一极可以具有间隔设置的第一部分Anode1和第二部分Anode2。即,如上述实施例记载,发光元件022的阳极可以采用分区设计,被一分为二。如此,仅一部分无法正常发光可能并不会影响到发光元件022的阳极整体。下述实施例均以发光元件022的第一极包括第一部分Anode1和第二部分Anode2为例说明。
可选的,结合图1,在多个像素02按行和列阵列排布的前提下,发光元件022的第一极包括第一部分Anode1和第二部分Anode2可以沿列方向间隔排布。当然,在一些其他实施例中,第一部分Anode1和第二部分Anode2也可以沿其他方向间隔排布,如行方向。本公开实施例对其排布方式不做限定。
可选的,本公开实施例提供的多个像素02可以具有至少两种颜色,且至少两个相同颜色的像素02可以共用同一条修复线RL。结合图2,此处共用一条修复线RL可以是指:至少两个相同颜色的像素02中发光元件022的第一极与同一条修复线RL交叠。即,经同一条修复线RL与第二电源线V2耦接。
例如,参考图6,其示出的多个像素02包括三种颜色,分别为红色(Red,R)、绿色(Green,G)和蓝色(Blue,B)。即,显示基板可以包括多个红色像素、多个绿色像素和多个蓝色像素。
以及,图6示出的每相邻两个相同颜色的像素02共用同一条修复线RL。此处相邻可以是指在列方向上相邻。且,每个像素02仅对应一条修复线RL,即不同修复线RL被不同的两个像素02共用。如此,可以便于布线。
在上述耦接基础上,本公开实施例记载的修复线RL还可以被配置为将坏点像素包括的发光元件022的第一极与正常像素02包括的发光元件022的第一极耦接。其中,正常像素02与坏点像素可以共用同一条修复线RL且颜色相同。如,对于图6所示结构而言,正常像素02与坏点像素可以为位于同一列且相邻的两个像素02。此处,坏点像素除可以包括暗点像素外,还可以包括亮点像素。
并且,在修复线RL将坏点像素包括的发光元件022的第一极与正常像素 02包括的发光元件022的第一极耦接时,坏点像素包括的发光元件022的第一极与坏点像素包括的像素电路021可以被断开耦接,且坏点像素包括的发光元件022的第一极与第二电源线V2可以被断开耦接。
示例的,可以采用激光焊接工艺,将修复线RL与坏点像素包括的发光元件022的第一极和正常像素02包括的发光元件022的第一极均进行焊接,以通过修复线RL将坏点像素包括的发光元件022的第一极与正常像素02包括的发光元件022的第一极可靠耦接。可以采用一些切割工艺将坏点像素包括的发光元件022的第一极分别与坏点像素包括的像素电路021和第二电源线V2断开耦接。如,可以采用激光切割工艺,将坏点像素包括的发光元件022的第一极分别与坏点像素包括的像素电路021和第二电源线V2切断,以断开耦接。可选的,可以通过切割修复线RL,以断开像素电路021和第二电源线V2的耦接。
结合上述实施例记载可知,出现亮点像素的原因包括:图4所示像素电路021中晶体管或电容异常。出现暗点像素的原因也可以包括:晶体管或电容异常。
如此,在晶体管或电容异常导致暗点不良或是亮点不良时,通过切断坏点像素中像素电路021与发光元件022的耦接,并采用修复线RL将坏点像素中发光元件022的第一极与正常像素中发光元件022的第一极耦接,可以使得该正常像素中发光元件022的第一极耦接的像素电路021向坏点像素中发光元件022的第一极传输驱动信号,以可靠驱动坏点像素正常发光,解决显示不良问题。
需要说明的是,坏点像素包括的发光元件022的第一极与第二电源线V2被断开耦接的前提是:在此之前坏点像素包括的发光元件022的第一极与第二电源线V2通过修复线RL耦接。即,坏点像素为暗点像素。若坏点像素本身即为亮点像素,则无需先通过修复线RL将第二电源线V2与发光元件022的第一极耦接。由此,也无需将发光元件022的第一极与第二电源线V2断开耦接。
结合上述实施例可知,在本公开实施例中,若出现暗点像素,则可以先通过激光焊接工艺,将耦接第二电源线V2的修复线RL与暗点像素中发光元件022的第一极焊接,并通过第二电源线V2向发光元件022的第一极提供较大电位的第二电源信号。由于若为异物导致的暗点不良,则异物会被熔融并表现出来,即显示出来,因此可以通过观察是否有熔融的异物表现出来以可靠判断是因异物造成暗点不良还是因晶体管或电容异常造成暗点不良。在此基础上,即使异物过小,显微镜观察不到,此方式也可烧断异物,以将异物表现出来。
进一步的,若有异物表现出来,即确定是因异物导致的暗点不良,则此时被熔融的异物使得发光元件022的第一极和第二极不再短接,暗点像素恢复为正常像素。之后,可以再通过激光切割工艺将第二电源线V2与发光元件022的第一极断开耦接,以使第二电源线V2不再向发光元件022的第一极传输第二电源信号,发光元件022的第一极重新接收像素电路021提供的驱动信号,正常发光。若没有异物表现出来,则可以通过激光切割工艺将暗点像素中发光元件022的第一极与像素电路021断开耦接,且与第二电源线V2断开耦接,并通过激光焊接工艺将修复线RL与暗点像素中发光元件022的第一极和正常像素中发光元件022的第一极焊接,以将暗点像素中发光元件022的第一极与正常像素02中发光元件022的第一极耦接,使正常像素包括的像素电路向暗点像素中发光元件022的第一极传输驱动信号,以驱动该暗点像素正常发光。如此,即解决了暗点不良问题。
若是晶体管或电容异常导致的亮点不良,则可以通过激光切割工艺将暗点像素中发光元件022的第一极与像素电路021断开耦接,并通过激光焊接工艺将修复线RL与暗点像素中发光元件022的第一极和正常像素中发光元件022的第一极焊接,以将暗点像素中发光元件022的第一极与正常像素02中发光元件022的第一极耦接,使正常像素包括的像素电路向暗点像素中发光元件022的第一极传输驱动信号,以驱动亮点像素正常发光。如此,即解决了亮点不良问题。
示例的,在图6基础上,以异物导致一个绿色G像素出现暗点不良为例,参考图7工艺等效图,对维修方式进一步说明:首先,通过激光焊接工艺,在该绿色G像素的阳极(包括G-Anode1和G-Anode2)对应的第二转接过孔K2处,将修复线RL与该绿色G像素的阳极焊接。然后,给第二电源线V2(即,感测线Sense)施加约10V的电位,以烧断异物,使得该绿色G像素的阳极与阴极不再短接。最后,通过激光切割工艺,切割修复线RL,以断开第二电源线V2与该绿色G像素的阳极的耦接,采用像素电路021可靠驱动该绿色G像素发光。由此,暗点像素即被维修为正常像素。
示例的,在图6基础上,以晶体管或电容异常导致一个绿色G像素出现暗点不良为例,参考图8工艺等效图,对维修方式进一步说明:首先,通过激光切割工艺,切割修复线RL,以断开第二电源线V2与该暗点绿色G像素的阳极的耦接。然后,通过激光切割工艺,断开该暗点绿色G像素的阳极与该暗点绿 色G像素中像素电路021的耦接。最后,通过激光焊接工艺,在该暗点绿色G像素的阳极对应的第二转接过孔K2,以及与该暗点绿色G像素共用修复线RL的正常绿色G像素的阳极对应的第二转接过孔K2处,将修复线RL与该暗点绿色G像素的阳极和正常绿色G像素的阳极焊接,使得该暗点绿色G像素的阳极与正常绿色G像素的阳极耦接。进而,正常绿色G像素的像素电路021可以向该暗点绿色G像素传输驱动信号,以驱动该暗点绿色G像素正常发光。由此,暗点像素即被维修为正常像素。并且,结合上述实施例记载,图8示例方式是在图7示例中,向第二电源线V2施加大电位后,异物未表现出来后执行的。
需要说明的是,图8所示的上述切割和焊接顺序可以根据情况灵活调整。以及切割位置和焊接位置也可以根据情况灵活设置,确保能够满足上述耦接和断开耦接方式即可。
由上述实施例记载可知,本公开实施例仅通过新增一条修复线RL,在不影响开口率的前提下,即可可靠维修暗点不良和亮点不良问题,使得所有坏点像素均能够被可靠维修。在应用于透明显示产品时,可以使产品良率大幅提升。当然,本公开实施例提供的维修方法不仅应用于上述实施例记载的顶发射显示产品和透明显示产品中,也可以应用于底发射显示产品或是非透明显示产品中。
可选的,本公开实施例记载的第二电源线V2与修复线RL可以位于不同层,即沿远离衬底的方向层叠排布。如此,结合图6和图9,显示基板还可以包括:位于第二电源线V2与修复线RL之间的绝缘层,以及贯穿绝缘层的过孔K0。第二电源线V2与修复线RL可以通过该过孔K0搭接。当然,在一些其他实施例中,第二电源线V2与修复线RL也可以位于同层。
可选的,继续参考图9可以看出,像素电路021可以包括:沿远离衬底01的方向依次层叠的有源层P1、栅绝缘(gate insulator,GI)层、栅(Gate)金属层GT、层间介定(inter-layer di-electric,ILD)层和源漏(source&drain,SD)金属层。图9所示为像素电路021中的驱动晶体管,即第三晶体管T3。
可选的,阳极Anode可以位于源漏金属层SD远离衬底01的一侧。有源层P1、栅绝缘层GI、栅金属层GT、层间介定层ILD和源漏金属层SD可以沿远离衬底01的方向依次层叠。即,像素电路021中各晶体管可以是顶栅结构的晶体管。当然,在一些其他实施例中,晶体管也可以为底栅结构的晶体管。
可选的,显示基板还可以包括:位于衬底01与有源层P1之间的遮光(light  shield,LS)层。本公开实施例记载的第二电源线V2可以与源漏金属层SD位于同层,修复线RL可以与该遮光层LS位于同层。
需要说明的是,位于同层可以是指采用同一成膜工艺形成特定图形的膜层,然后利用同一掩模板通过一次构图工艺对该膜层图案化所形成的层结构。根据特定图形的不同,一次构图工艺可能包括多次曝光、显影或刻蚀工艺,而形成的层结构中的特定图形可以是连续的也可以是不连续的。即,位于“同层”的多个元件、部件、结构和/或部分由相同的材料构成,并通过同一次构图工艺形成。如此,可以节省制造工艺和制造成本,并且可以加快制造效率。即,第二电源线V2与源漏金属层SD可以采用相同材料,通过一次构图工艺形成。同理,修复线RL与遮光层LS可以采用相同材料,通过一次构图工艺形成。
并且,结合图9可以看出,显示基板还可以包括:位于有源层P1与遮光层LS之间的缓冲层Buffer,位于源漏金属层SD与阳极之间且依次层叠的钝化(passivation,PVX)层和平坦(planarization,PLN)层。源漏金属层SD可以包括位于同层且相互间隔的源极S1和漏极D1。如此可知,位于修复线RL和遮光层LS之间的绝缘层可以包括层间介定层ILD和缓冲层Buffer。第二电源线V2可以经贯穿层间介定层ILD和缓冲层Buffer的过孔K0与修复线RL搭接。
当然,在一些其他实施例中,修复线RL也可以与其他导电层位于同层。如,修复线RL可以与栅金属层Gate位于同层。第二电源线V2也可以与其他导电层位于同层。如,第二电源线V2可以与栅金属层Gate位于同层。
图9还示出了阴极Cathode和发光层EL,阴极Cathode和发光层EL位于阳极Anode远离衬底01的一侧且沿远离衬底01的方向依次层叠。源极S1可以通过贯穿层间介定层ILD和缓冲层Buffer的过孔与遮光层LS搭接,以使得遮光层LS与源极S1和阳极上的电压相同,避免遮光层LS与其他导电结构之间产生寄生电容。并且,有源层P1在衬底01上的正投影与遮光层LS在衬底01上的正投影重叠,遮光层LS可以用于对有源层P1进行遮挡,避免有源层P1在光线的照射下出现电压阈值偏移现象,且可以用于遮光,避免外界光线干扰显示。源极S1和漏极D1可以分别通过贯穿层间介定层ILD的两个过孔与有源层P1搭接。以及,源极S1还可以通过贯穿钝化层PVX和平坦层PLN的过孔与阳极Anode搭接。如此,可以经源极S1向阳极Anode传输驱动信号,该驱动信号和施加于阴极Cathode的第一电源信号可以形成压差,使发光层EL发光。
可选的,有源层P1可以具有半导体化区(也称沟道区)和位于沟道区两侧的导体化区(分别称为源极区和漏极区,对应源极和漏极)。其中,半导体化区可以不进行掺杂,或掺杂类型与源极区和漏极区不同,并因此具有半导体特性。导体化区可以进行掺杂,并因此具有导电性。掺杂的杂质可以根据晶体管的类型(即,N型或是P型)而变化。上述源漏金属层SD可以与导体化区搭接。
可选的,衬底01可以包括:玻璃基板或柔性基板,柔性基板的材料可以包括:聚酰亚胺(Polyimide)。缓冲层Buffer的材料、钝化层PVX的材料和栅绝缘层GI的材料可以包括:氮化硅、氧化硅或氮氧化硅等无机材料。层间介定层ILD的材料可以包括:二氧化硅、氮化硅或者二氧化硅和氮化硅的混合材料。平坦层PLN的材料可以包括:树脂。发光层EL的材料可以包括有机电致(electr o-Luminescence,EL)发光材料。阴极Anode的材料可以包括:氧化铟锡(indi um tin oxide,ITO)。阴极Cathode的材料可以包括:氧化铟锌(indium zinc oxide,IZO)。遮光层LS的材料、栅金属层GT的材料和源漏金属层SD可以包括:金属铝、金属银、金属钼或合金等金属材料。有源层P1的材料可以包括:多晶硅、非晶硅或氧化物半导体等半导体材料。
综上所述,本公开实施例提供了一种显示基板。该显示基板包括:位于衬底一侧的多个像素、第二电源线和修复线。其中,第二电源线与修复线耦接,且修复线能够被配置为将第二电源线与坏点像素中发光元件的第一极耦接,以使第二电源线向发光元件的第一极传输第二电源信号。并且,第二电源信号的电位大于发光元件的第二极耦接的第一电源线提供的第一电源信号的电位。如此,可以通过灵活设置第二电源信号的电位,以在异物导致坏点像素中发光元件的第一极和第二极短接而出现暗点时,可靠烧断异物,使得发光元件的第一极和第二极不再短接,进而解决暗点不良问题,该显示基板的显示效果较好。
图10是本公开实施例提供的一种显示基板的维修方法,该方法可以用于维修如上述附图所示的显示基板。如图10所示,该方法包括:
步骤1001、在显示基板中的多个像素出现坏点像素,且坏点像素为暗点像素时,通过修复线将第二电源线与坏点像素中发光元件的第一极耦接。
可选的,结合图7和上述实施例记载,可以通过激光焊接工艺,将修复线RL与坏点像素中发光元件022的第一极焊接,以使第二电源线V2经修复线RL 与坏点像素中发光元件022的第一极耦接。
步骤1002、通过第二电源线向坏点像素中发光元件的第一极提供第二电源信号。
其中,第二电源信号的电位可以大于发光元件的第二极耦接的第一电源线提供的第一电源信号的电位。如此,可以在异物导致暗点不良时,可靠烧断异物,使发光元件的第一极和第二极不再短接,解决暗点不良问题。
图11是本公开实施例提供的另一种显示基板的维修方法。结合图10和图11可以看出,在步骤1002之后,方法还可以包括:
步骤1003、若坏点像素处显示有熔断后的异物,则将第二电源线与坏点像素中发光元件的第一极断开耦接。
如上述实施例记载,若坏点像素处显示有熔断后的异物,则可以确定造成暗点不良的原因是异物导致发光元件的第一极与第二极短接。此时,在烧断异物后,可以将第二电源线与坏点像素中发光元件的第一极断开耦接,以使第二电源线不再向发光元件的第一极传输大电位的第二电源信号。像素电路021重新正常向发光元件的第一极提供驱动信号,以驱动发光元件可靠发光。
可选的,结合图7和上述实施例记载,可以通过激光切割工艺,将修复线RL切断,以将第二电源线V2与坏点像素中发光元件022的第一极断开耦接。
步骤1004、若坏点像素处未显示有熔断后的异物或坏点像素为亮点像素,则将坏点像素中发光元件的第一极与坏点像素中像素电路断开耦接,将坏点像素中发光元件的第一极与第二电源线断开耦接,并通过修复线将坏点像素中发光元件的第一极与正常像素中发光元件的第一极耦接。
如上述实施例记载,若坏点像素处未显示有异物,则可以确定造成暗点不良的原因是晶体管或电容异常。此时,可以将坏点像素中发光元件的第一极与坏点像素中像素电路断开耦接,将坏点像素中发光元件的第一极与第二电源线断开耦接,并通过修复线将坏点像素中发光元件的第一极与正常像素中发光元件的第一极耦接,以使正常像素中的像素电路向该坏点像素中的发光元件提供驱动信号,以驱动该坏点像素中的发光元件可靠发光。其中,正常像素与坏点像素共用同一条修复线且颜色相同。当然,若为亮点不良,也可以直接执行步骤1004,而不执行上述步骤1001至步骤1003。
可选的,结合图8和上述实施例机记载可以通过激光焊接工艺,将修复线 RL分别与坏点像素中发光元件022的第一极和正常像素中发光元件022的第一极焊接,以使坏点像素中发光元件022的第一极与正常像素中发光元件022的第一极耦接。以及,可以通过激光切割工艺,将坏点像素中发光元件022的第一极与坏点像素中像素电路021断开耦接,且与第二电源线V2断开耦接。
综上所述,本公开实施例提供了一种显示基板的维修方法。该方法中,若出现坏点像素,且坏点像素为暗点像素,则通过显示基板中的修复线将第二电源线与坏点像素中发光元件的第一极耦接,并通过第二电源线向坏点像素中发光元件的第一极提供第二电源信号。并且,该第二电源信号的电位大于发光元件的第二极耦接的第一电源线提供的第一电源信号的电位。如此,可以通过灵活设置第二电源信号的电位,以在异物导致坏点像素中发光元件的第一极和第二极短接而出现暗点时,可靠烧断异物,使得发光元件的第一极和第二极不再短接,进而解决暗点不良问题。本公开实施例提供的显示基板的显示效果较好。
此外,该方法中,若在通过第二电源线向坏点像素中发光元件的第一极提供第二电源信号,有异物表现出来,则可以进一步将第二电源线与坏点像素中发光元件的第一极断开耦接,以使得第二电源线停止向坏点像素提供大电位的第二电源信号,确保像素后续的正常发光。若未有异物表现出来,则可以进一步将坏点像素中发光元件的第一极与坏点像素中像素电路断开耦接,将坏点像素中发光元件的第一极与第二电源线断开耦接,并通过修复线将坏点像素中发光元件的第一极与正常像素中发光元件的第一极耦接。如此,还可以可靠解决像素电路中晶体管或电容异常导致的不良问题。
图12是本公开实施例提供的一种显示基板的制备方法流程图,该方法可以用于制备如上述附图所示的显示基板。如图12所示,该方法包括:
步骤1201、提供衬底。
可选的,如上述实施例记载,提供的衬底01可以为玻璃基板或柔性基板。
步骤1202、在衬底的一侧形成多个像素。
其中,像素包括像素电路和发光元件,像素电路与发光元件的第一极耦接,发光元件的第二极与第一电源线耦接,像素电路被配置为向发光元件的第一极传输驱动信号,发光元件被配置为基于驱动信号和第一电源线提供的第一电源信号发光。
可选的,结合图9,可以采用一次构图工艺在衬底的一侧形成有源层、栅绝缘层、栅金属层和源漏金属层,以形成像素电路;以及在衬底的一侧形成阳极、发光层和阴极,以形成发光元件。其中,构图工艺包括:光刻胶涂覆、曝光、显影、刻蚀和光刻胶剥离等工艺步骤。
步骤1203、在衬底的一侧形成至少一条第二电源线和多条修复线,并将第二电源线与修复线耦接。
其中,修复线在衬底上的正投影与发光元件的第一极在衬底上的正投影交叠。并且,修复线可以被配置为将第二电源线与多个像素中坏点像素包括的发光元件的第一极耦接,第二电源线可以被配置为经修复线向所耦接的发光元件的第一极传输第二电源信号。坏点像素可以包括暗点像素,第二电源信号的电位可以大于第一电源信号的电位。
此外,修复线还可以被配置为将坏点像素包括的发光元件的第一极与正常像素包括的发光元件的第一极耦接,其中,正常像素与坏点像素共用同一条修复线且颜色相同,坏点像素可以包括亮点像素。并且,在修复线将坏点像素包括的发光元件的第一极与正常像素包括的发光元件的第一极耦接时,坏点像素包括的发光元件的第一极与坏点像素包括的像素电路被断开耦接,且坏点像素包括的发光元件的第一极与第二电源线被断开耦接。
可选的,结合图9,可以采用一次构图工艺,在形成遮光层LS的同时,形成修复线RL;以及在形成源漏金属层SD的同时,形成第二电源线V2;并且,通过贯穿层间介定层ILD和缓冲层Buffer的过孔K0将不同层的第二电源线V2与修复线RL搭接。
综上所述,本公开实施例提供了一种显示基板的制备方法。该方法中,可以在衬底的一侧形成多个像素、第二电源线和修复线,并将第二电源线与修复线耦接。其中,形成的修复线能够被配置为将第二电源线与坏点像素中发光元件的第一极耦接,以使第二电源线向发光元件的第一极传输第二电源信号。并且,该第二电源信号的电位大于发光元件的第二极耦接的第一电源线提供的第一电源信号的电位。如此,可以通过灵活设置第二电源信号的电位,以在异物导致坏点像素中发光元件的第一极和第二极短接而出现暗点时,可靠烧断异物,使得发光元件的第一极和第二极不再短接,进而解决暗点不良问题。本公开实施例提供的显示基板的显示效果较好。
图13是本公开实施例提供的一种显示装置。如图13所示,该显示装置可以包括:供电组件J1,以及如上述附图所示的显示基板00。
其中,供电组件J1可以与显示基板00耦接,并被配置为向该显示基板00供电。
可选的,该显示装置可以为:手机、平板电脑、电视机、显示器、笔记本电脑、数码相框、导航仪或透明显示产品等任何具有显示功能的产品或部件。其中,透明显示产品可以应用于汽车或地铁等车载显示,且可以应用于酒店或服装店等橱窗展示,具有画质清晰、显示效果逼真等优点。
需要指出的是,在附图中,为了图示的清晰可能夸大了层和区域的尺寸。而且可以理解,当元件或层被称为在另一元件或层“上”时,它可以直接在其他元件上,或者可以存在中间的层。另外,可以理解,当元件或层被称为在另一元件或层“下”时,它可以直接在其他元件下,或者可以存在一个以上的中间的层或元件。另外,还可以理解,当层或元件被称为在两层或两个元件“之间”时,它可以为两层或两个元件之间惟一的层,或还可以存在一个以上的中间层或元件。通篇相似的参考标记指示相似的元件。
以及,本公开实施方式部分使用的术语仅用于对本公开的实施例进行解释,而非旨在限定本公开。除非另作定义,本公开的实施方式使用的技术术语或者科学术语应当为本公开所属领域内具有一般技能的人士所理解的通常意义。
如,在本公开实施例中,术语“第一”和“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性。术语“多个”指两个或两个以上,除非另有明确的限定。
同样,“一个”或者“一”等类似词语也不表示数量限制,而是表示存在至少一个。
“包括”或者“包含”等类似的词语意指出现在“包括”或者“包含”前面的元件或者物件涵盖出现在“包括”或者“包含”后面列举的元件或者物件及其等同,并不排除其他元件或者物件。
“上”、“下”、“左”或者“右”等仅用于表示相对位置关系,当被描述对象的绝对位置改变后,则所述相对位置关系也可能相应地改变。
“和/或”,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。字符“/”一般表示前后关联对象是一种“或”的关系。
以上所述仅为本公开的可选的实施例,并不用以限制本公开,凡在本公开的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本公开的保护范围之内。

Claims (15)

  1. 一种显示基板,所述显示基板包括:
    衬底;
    位于所述衬底一侧的多个像素,所述像素包括像素电路和发光元件,所述像素电路与所述发光元件的第一极耦接,所述发光元件的第二极与第一电源线耦接,所述像素电路被配置为向所述发光元件的第一极传输驱动信号,所述发光元件被配置为基于所述驱动信号和所述第一电源线提供的第一电源信号发光;
    以及,位于所述衬底一侧的至少一条第二电源线和多条修复线,所述第二电源线与所述修复线耦接,所述修复线在所述衬底上的正投影与所述发光元件的第一极在所述衬底上的正投影交叠,所述修复线被配置为将所述第二电源线与所述多个像素中坏点像素包括的发光元件的第一极耦接,所述第二电源线被配置为经所述修复线向所耦接的发光元件的第一极传输第二电源信号;
    其中,所述坏点像素包括暗点像素,所述第二电源信号的电位大于所述第一电源信号的电位。
  2. 根据权利要求1所述的显示基板,其中,所述第一电源信号的电位为0,所述第二电源信号的电位大于等于6伏特且小于等于12伏特。
  3. 根据权利要求1所述的显示基板,其中,所述多个像素具有至少两种颜色,且至少两个相同颜色的像素共用同一条所述修复线;
    所述修复线还被配置为将所述坏点像素包括的发光元件的第一极与正常像素包括的发光元件的第一极耦接,其中,所述正常像素与所述坏点像素共用同一条所述修复线且颜色相同,所述坏点像素包括亮点像素;
    并且,在所述修复线将所述坏点像素包括的发光元件的第一极与所述正常像素包括的发光元件的第一极耦接时,所述坏点像素包括的发光元件的第一极与所述坏点像素包括的像素电路被断开耦接,且所述坏点像素包括的发光元件的第一极与所述第二电源线被断开耦接。
  4. 根据权利要求3所述的显示基板,其中,所述多个像素阵列排布,所述正常像素与所述坏点像素为位于同一列且相邻的两个像素。
  5. 根据权利要求1至4任一所述的显示基板,其中,所述发光元件的第一极为阳极,所述发光元件的第二极为阴极。
  6. 根据权利要求1至5任一所述的显示基板,其中,所述发光元件的第一极具有间隔设置的第一部分和第二部分。
  7. 根据权利要求1至6任一所述的显示基板,其中,所述像素电路包括:数据写入子电路、感测子电路、调节子电路和驱动子电路;
    所述数据写入子电路分别与第一栅线、数据线和所述驱动子电路的控制端耦接,所述数据写入子电路被配置为响应于所述第一栅线提供的第一栅极驱动信号,控制所述驱动子电路的控制端与所述数据线的通断;
    所述感测子电路分别与第二栅线、感测线和所述驱动子电路的输出端耦接,所述感测子电路被配置为响应于所述第二栅线提供的第二栅极驱动信号,控制所述驱动子电路的输出端与所述感测线的通断;
    所述调节子电路分别与所述驱动子电路的控制端和输出端耦接,所述调节子电路被配置为调节所述驱动子电路的控制端和输出端的电位;
    所述驱动子电路的输入端与驱动电源线耦接,所述驱动子电路的输出端还与所述发光元件的第一极耦接,所述驱动子电路被配置为基于所述驱动电源线提供的驱动电源信号和控制端的信号,向所述发光元件的第一极传输驱动信号;
    其中,所述第二电源线为所述感测线。
  8. 根据权利要求7所述的显示基板,其中,所述数据写入子电路包括:第一晶体管;所述感测子电路包括:第二晶体管;所述调节子电路包括:存储电容;所述驱动子电路包括:第三晶体管;
    所述第一晶体管的栅极与所述第一栅线耦接,所述第一晶体管的第一极与所述数据线耦接,所述第一晶体管的第二极与所述第三晶体管的栅极耦接;
    所述第二晶体管的栅极与所述第二栅线耦接,所述第二晶体管的第一极与 所述感测线耦接,所述第二晶体管的第二极与所述第三晶体管的第二极耦接;
    所述存储电容的一端与所述第三晶体管的栅极耦接,所述存储电容的另一端与所述第三晶体管的第二极耦接;
    所述第三晶体管的第一极与所述驱动电源线耦接,所述第三晶体管的第二极还与所述发光元件的第一极耦接。
  9. 根据权利要求1至8任一所述的显示基板,其中,所述第二电源线与所述修复线位于不同层,所述显示基板还包括:
    位于所述第二电源线与所述修复线之间的绝缘层,以及贯穿所述绝缘层的过孔,所述第二电源线与所述修复线通过所述过孔搭接。
  10. 根据权利要求9所述的显示基板,其中,所述像素电路包括:沿远离所述衬底的方向依次层叠的有源层、栅绝缘层、栅金属层、层间介定层和源漏金属层;所述显示基板还包括:位于所述衬底与所述有源层之间的遮光层;
    其中,所述第二电源线与所述源漏金属层位于同层,所述修复线与所述遮光层位于同层。
  11. 一种显示基板的维修方法,其中,用于维修如权利要求1至10任一所述的显示基板,所述方法包括:
    在所述显示基板中的多个像素出现坏点像素,且所述坏点像素为暗点像素时,通过修复线将第二电源线与所述坏点像素中发光元件的第一极耦接;
    通过所述第二电源线向所述坏点像素中发光元件的第一极提供第二电源信号;
    其中,所述第二电源信号的电位大于所述发光元件的第二极耦接的第一电源线提供的第一电源信号的电位。
  12. 根据权利要求11所述的方法,其中,所述方法还包括:
    若所述坏点像素处显示有熔断后的异物,则将所述第二电源线与所述坏点像素中发光元件的第一极断开耦接;
    若所述坏点像素处未显示有熔断后的异物或所述坏点像素为亮点像素,则 将所述坏点像素中发光元件的第一极与所述坏点像素中像素电路断开耦接,将所述坏点像素中发光元件的第一极与所述第二电源线断开耦接,并通过所述修复线将所述坏点像素中发光元件的第一极与正常像素中发光元件的第一极耦接;其中,所述正常像素与所述坏点像素共用同一条所述修复线且颜色相同。
  13. 根据权利要求12所述的方法,其中,所述通过修复线将第二电源线与所述坏点像素中发光元件的第一极耦接,包括:
    通过激光焊接工艺,将所述修复线与所述坏点像素中发光元件的第一极焊接,以使所述第二电源线经所述修复线与所述坏点像素中发光元件的第一极耦接;
    所述通过所述修复线将所述坏点像素中发光元件的第一极与正常像素中发光元件的第一极耦接,包括:
    通过激光焊接工艺,将所述修复线分别与所述坏点像素中发光元件的第一极和所述正常像素中发光元件的第一极焊接,以使所述坏点像素中发光元件的第一极与所述正常像素中发光元件的第一极耦接;
    所述将所述第二电源线与所述坏点像素中发光元件的第一极断开耦接,包括:
    通过激光切割工艺,将所述修复线与所述坏点像素中发光元件的第一极的耦接,以将所述第二电源线与所述坏点像素中发光元件的第一极断开耦接;
    所述将所述坏点像素中发光元件的第一极与所述坏点像素中像素电路断开耦接,包括:
    通过激光切割工艺,将所述坏点像素中发光元件的第一极与所述坏点像素中像素电路断开耦接。
  14. 一种显示基板的制备方法,用于制备如权利要求1至10任一所述的显示基板,所述方法包括:
    提供衬底;
    在所述衬底的一侧形成多个像素,所述像素包括像素电路和发光元件,所述像素电路与所述发光元件的第一极耦接,所述发光元件的第二极与第一电源线耦接,所述像素电路被配置为向所述发光元件的第一极传输驱动信号,所述 发光元件被配置为基于所述驱动信号和所述第一电源线提供的第一电源信号发光;
    以及,在所述衬底的一侧形成至少一条第二电源线和多条修复线,并将所述第二电源线与所述修复线耦接,所述修复线在所述衬底上的正投影与所述发光元件的第一极在所述衬底上的正投影交叠,所述修复线被配置为将所述第二电源线与所述多个像素中坏点像素包括的发光元件的第一极耦接,所述第二电源线被配置为经所述修复线向所耦接的发光元件的第一极传输第二电源信号;
    其中,所述坏点像素包括暗点像素,所述第二电源信号的电位大于所述第一电源信号的电位。
  15. 一种显示装置,所述显示装置包括:供电组件,以及如权利要求1至10任一所述的显示基板;
    所述供电组件与所述显示基板耦接,并被配置为向所述显示基板供电。
PCT/CN2022/100388 2022-06-22 2022-06-22 显示基板及其维修方法、制备方法、显示装置 WO2023245487A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202280001843.6A CN117716415A (zh) 2022-06-22 2022-06-22 显示基板及其维修方法、制备方法、显示装置
PCT/CN2022/100388 WO2023245487A1 (zh) 2022-06-22 2022-06-22 显示基板及其维修方法、制备方法、显示装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/100388 WO2023245487A1 (zh) 2022-06-22 2022-06-22 显示基板及其维修方法、制备方法、显示装置

Publications (1)

Publication Number Publication Date
WO2023245487A1 true WO2023245487A1 (zh) 2023-12-28

Family

ID=89378751

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/100388 WO2023245487A1 (zh) 2022-06-22 2022-06-22 显示基板及其维修方法、制备方法、显示装置

Country Status (2)

Country Link
CN (1) CN117716415A (zh)
WO (1) WO2023245487A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008123700A (ja) * 2006-11-08 2008-05-29 Canon Inc 有機el表示装置とその修復方法、及び有機el表示装置の製造方法
KR20150072225A (ko) * 2013-12-19 2015-06-29 삼성디스플레이 주식회사 유기 발광 표시 장치
CN105225639A (zh) * 2014-06-11 2016-01-06 三星显示有限公司 有机发光显示装置及其修复方法
CN105374843A (zh) * 2014-08-21 2016-03-02 乐金显示有限公司 有机发光显示装置及其修复方法
US20160233286A1 (en) * 2015-02-09 2016-08-11 Samsung Display Co., Ltd. Organic light-emitting diode display
CN108258007A (zh) * 2016-12-28 2018-07-06 京东方科技集团股份有限公司 Oled阵列基板、显示装置及其暗点修复方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008123700A (ja) * 2006-11-08 2008-05-29 Canon Inc 有機el表示装置とその修復方法、及び有機el表示装置の製造方法
KR20150072225A (ko) * 2013-12-19 2015-06-29 삼성디스플레이 주식회사 유기 발광 표시 장치
CN105225639A (zh) * 2014-06-11 2016-01-06 三星显示有限公司 有机发光显示装置及其修复方法
CN105374843A (zh) * 2014-08-21 2016-03-02 乐金显示有限公司 有机发光显示装置及其修复方法
US20160233286A1 (en) * 2015-02-09 2016-08-11 Samsung Display Co., Ltd. Organic light-emitting diode display
CN108258007A (zh) * 2016-12-28 2018-07-06 京东方科技集团股份有限公司 Oled阵列基板、显示装置及其暗点修复方法

Also Published As

Publication number Publication date
CN117716415A (zh) 2024-03-15

Similar Documents

Publication Publication Date Title
US9129923B1 (en) Organic light emitting display and repairing method of the same
US20220293637A1 (en) Array substrate and display panel
KR102381288B1 (ko) 유기 발광 표시 장치
US10418430B2 (en) Display device
JP7071256B2 (ja) Oledアレイ基板、表示装置およびその黒点欠陥修復方法
US20170033168A1 (en) Organic electroluminescent device and repairing method thereof
US20190156740A1 (en) Display panel, manufacturing method thereof, maintenance method thereof and display device
US20060279499A1 (en) Organic light-emitting device
WO2020001085A1 (zh) 显示面板及其制作方法、检测方法和显示装置
KR102333563B1 (ko) 유기발광 디스플레이 장치와 픽셀의 리페어 방법
KR102380161B1 (ko) 유기 발광 표시 장치 및 그 리페어 방법
TWI642180B (zh) 顯示裝置
CN110491881B (zh) 一种阵列基板、显示面板及阵列基板的制备方法
KR102013319B1 (ko) 평판 표시 장치 및 이의 제조 방법
US9893087B2 (en) Thin film transistor substrate, display apparatus including thin film transistor substrate, method of manufacturing thin film transistor substrate, and method of manufacturing display apparatus
US11049439B2 (en) Display device, tiling electronic device and method for repairing a display device
KR20190008683A (ko) 전계발광표시장치
KR102387791B1 (ko) 유기전계 발광표시장치 및 그 제조방법
KR101286094B1 (ko) 유기전계발광소자의 제조 방법 및 수리방법
KR102081251B1 (ko) 유기 발광 표시 장치 및 그 수리 방법
US11462604B2 (en) Display device
CN111326673A (zh) 显示装置
US9153632B2 (en) Organic light emitting device display and manufacturing method thereof
WO2023245487A1 (zh) 显示基板及其维修方法、制备方法、显示装置
KR20080061766A (ko) 유기전계발광표시장치 및 그 제조방법

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 202280001843.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22947266

Country of ref document: EP

Kind code of ref document: A1