WO2023245358A1 - 镜头模组及成像设备 - Google Patents

镜头模组及成像设备 Download PDF

Info

Publication number
WO2023245358A1
WO2023245358A1 PCT/CN2022/099922 CN2022099922W WO2023245358A1 WO 2023245358 A1 WO2023245358 A1 WO 2023245358A1 CN 2022099922 W CN2022099922 W CN 2022099922W WO 2023245358 A1 WO2023245358 A1 WO 2023245358A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
light
optical axis
transmitting film
lenses
Prior art date
Application number
PCT/CN2022/099922
Other languages
English (en)
French (fr)
Inventor
王彬
王辉
刘江伟
Original Assignee
北京小米移动软件有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京小米移动软件有限公司 filed Critical 北京小米移动软件有限公司
Priority to PCT/CN2022/099922 priority Critical patent/WO2023245358A1/zh
Priority to CN202280004374.3A priority patent/CN117651894A/zh
Publication of WO2023245358A1 publication Critical patent/WO2023245358A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/12Fluid-filled or evacuated lenses
    • G02B3/14Fluid-filled or evacuated lenses of variable focal length
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/02Mountings, adjusting means, or light-tight connections, for optical elements for lenses
    • G02B7/04Mountings, adjusting means, or light-tight connections, for optical elements for lenses with mechanism for focusing or varying magnification
    • G02B7/10Mountings, adjusting means, or light-tight connections, for optical elements for lenses with mechanism for focusing or varying magnification by relative axial movement of several lenses, e.g. of varifocal objective lens
    • G02B7/105Mountings, adjusting means, or light-tight connections, for optical elements for lenses with mechanism for focusing or varying magnification by relative axial movement of several lenses, e.g. of varifocal objective lens with movable lens means specially adapted for focusing at close distances
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B13/00Viewfinders; Focusing aids for cameras; Means for focusing for cameras; Autofocus systems for cameras
    • G03B13/32Means for focusing
    • G03B13/34Power focusing

Definitions

  • the present disclosure relates to the field of electronic technology, specifically to lens modules and imaging devices.
  • the lens module involves zoom and focus functions during use.
  • the zoom function can change the shooting focal length of the lens module to achieve distant or close-up shooting of the scene to be shot.
  • the focus function enables clear imaging of the scene to be photographed.
  • the above-mentioned zoom function and focus function usually need to be realized by driving the lens in the lens module to move along the optical axis.
  • the moving range of the lens is limited by the thickness of imaging devices such as mobile phones, resulting in a small zoom range and unable to achieve expectations. telephoto or macro shots.
  • the lens also needs to take into account the zoom and focus functions during movement, thus affecting both the zoom effect and the focus effect.
  • embodiments of the present disclosure provide lens modules and imaging devices to solve technical problems in related technologies.
  • a lens module including a base frame and a plurality of lenses assembled on the base frame, and the plurality of lenses are arranged sequentially along the optical axis direction;
  • At least one of the plurality of lenses is a movable lens that can move along the optical axis direction to achieve focusing;
  • At least one of the plurality of lenses is a liquid lens
  • the liquid lens includes a bracket and a light-transmitting film disposed on at least one side of the bracket.
  • the bracket and the light-transmitting film surround a fluid containing cavity, and the The light-transmitting film can deform under the action of external force and the curvature of the light-transmitting film can be changed by the flow of fluid.
  • one side of the bracket is provided with the light-transmitting film, and the other side of the bracket is provided with a lens; and/or,
  • the light-transmitting films are respectively provided on both sides of the bracket.
  • the lens module further includes a first driving component for changing the curvature of the light-transmitting film;
  • the first driving component includes a zoom driving member that can move along the optical axis direction.
  • the driving member is provided with a light-transmitting port corresponding to the effective working part of the liquid lens, the zoom driving member is connected to the light-transmitting film, and the light-transmitting film includes an optically effective area facing the light-transmitting port, The zoom driving member is used to push and pull the light-transmitting film along the optical axis direction and deform the optically effective area.
  • the thickness of the optically effective area is set non-uniformly.
  • the zoom driving member is used to squeeze the light-transmitting film toward the inside of the liquid lens, and to bulge the optically effective area toward the outside of the liquid lens, at least part of the effective working portion.
  • the thickness gradually decreases from its center to the edge; or,
  • the zoom driving member is used to pull the light-transmitting film toward the outside of the liquid lens and make the optically effective area recess toward the inside of the liquid lens. At least part of the thickness of the effective working portion is from its center to The edge direction gradually increases.
  • the first driving assembly further includes a first power component capable of driving the zoom driving member to move along the optical axis direction;
  • the first power component includes a first magnet and a first coil, one of the first magnet and the first coil is provided on the bracket, and the other is provided on the zoom driving member to change the
  • the magnetic field direction of the first coil drives the light-transmitting film to change the deformation direction.
  • the bracket includes a sealing side wall, a mounting plate disposed on the periphery of the sealing side wall, and a connecting column disposed at a corner of the mounting plate;
  • the light-transmitting film is disposed on an end of the sealing side wall. part, and encloses the fluid containing cavity with the sealing side wall;
  • the connecting column extends along the optical axis direction;
  • the zoom driving member includes an annular abutment portion and a support body arranged around the side wall of the abutment portion.
  • the cavity of the abutment portion forms the light-transmitting port, and the support body and the mounting plate are located where
  • the support body is provided with a first escape opening corresponding to the position of the connecting column; the contact portion is connected to the light-transmitting film;
  • One of the first magnet and the first coil is disposed on a side of the mounting plate facing the supporting body, and the other is disposed on an inner side of the supporting body facing the mounting plate.
  • the first driving assembly further includes a first elastic member, which is connected to the zoom driving member and the bracket respectively to balance the first magnet and the first coil to generate magnetism;
  • the first elastic member includes a spring body, a first connecting piece connected to one end of the spring body, and a second connecting piece connected to the other end of the spring body.
  • the first connecting piece and the connecting post Connect, the second connecting piece is connected to the supporting body.
  • the first driving assembly includes a plurality of first power components that can be controlled individually.
  • the plurality of first power components are arranged at circumferential intervals around the bracket to drive the zoom driving member to drive the zoom driving member.
  • the liquid lens moves deflectively relative to the optical axis.
  • the lens module further includes a second driving component for driving the moving lens to move along the optical axis direction.
  • the second driving assembly includes at least two independently controlled second power components to drive the moving lens to deflect movement relative to the optical axis.
  • the second power component includes a second magnet and a second coil; one of the second magnet and the second coil is disposed on the outer wall of the moving lens, and the second magnet and the second coil are arranged on the outer wall of the moving lens.
  • the other of the second coils is disposed on the base frame to drive the moving lens to move along the optical axis through the magnetic field formed by the second coil.
  • the second power component includes at least one second elastic member; one end of the second elastic member is connected to the moving lens, and the other end of the second elastic member is connected to the base frame.
  • the plurality of lenses include a liquid lens and a solid lens, and at least one of the liquid lens and the solid lens can move along the optical axis direction.
  • the plurality of lenses include at least two liquid lenses
  • the base frame includes a front end and a rear end arranged oppositely; from the front end to the rear end, the two liquid lenses and the solid lens are sequentially arranged along the optical axis direction; or,
  • the liquid lens, the solid lens and the liquid lens are arranged in sequence along the optical axis direction.
  • the solid lens can move along the optical axis; or,
  • Both the solid lens and one of the liquid lenses can move along the optical axis; or,
  • Both the solid lens and the two liquid lenses can move along the optical axis direction.
  • At least one of the plurality of lenses is used to implement a convex lens function, and at least another of the plurality of lenses is used to implement a concave lens function.
  • an imaging device including:
  • the main body of the equipment including the optical system
  • Any lens module described in the first aspect is installed on the object side of the optical system of the device body.
  • the lens module includes a plurality of lenses. At least one of the plurality of lenses is a liquid lens and at least one is a moving lens.
  • the light-transmitting film of the liquid lens can deform under the action of external force and pass through the flow of fluid.
  • the curvature of the light-transmitting film is changed to achieve focusing or zooming, and the movable lens can move along the optical axis to achieve focusing.
  • Using the curvature change of the light-transmitting film can help increase the zoom range of the lens module, improve focusing efficiency, and change lens distortion.
  • the focusing effect is matched with the curvature change of the light-transmitting film of the liquid lens.
  • Figure 1 is a schematic cross-sectional structural diagram of a lens module in an exemplary embodiment of the present disclosure.
  • FIG. 2 is a schematic cross-sectional structural diagram of a liquid lens in an exemplary embodiment of the present disclosure.
  • FIG. 3 is the second schematic cross-sectional structural diagram of a liquid lens in an exemplary embodiment of the present disclosure.
  • Figure 4 is a third schematic cross-sectional structural diagram of a liquid lens in an exemplary embodiment of the present disclosure.
  • FIG. 5 is the fourth schematic cross-sectional structural diagram of a liquid lens in an exemplary embodiment of the present disclosure.
  • FIG. 6 is a fifth schematic cross-sectional structural diagram of a liquid lens in an exemplary embodiment of the present disclosure.
  • FIG. 7 is a sixth schematic cross-sectional structural diagram of a liquid lens in an exemplary embodiment of the present disclosure.
  • Figure 8 is a seventh schematic cross-sectional structural diagram of a liquid lens in an exemplary embodiment of the present disclosure.
  • FIG. 9 is a schematic cross-sectional structural diagram of a lens module in another exemplary embodiment of the present disclosure.
  • FIG. 10 is a schematic cross-sectional structural diagram of a liquid lens in an exemplary embodiment of the present disclosure.
  • Figure 11 is a schematic cross-sectional structural diagram of a liquid lens in an exemplary embodiment of the present disclosure.
  • Figure 12 is a schematic cross-sectional structural diagram of a liquid lens in an exemplary embodiment of the present disclosure.
  • Figure 13 is an eleventh schematic cross-sectional structural diagram of a liquid lens in an exemplary embodiment of the present disclosure.
  • Figure 14 is a schematic diagram of the assembly structure of a liquid lens and a first driving component in an exemplary embodiment of the present disclosure.
  • FIG. 15 is an exploded structural diagram of a liquid lens and a first driving component in an exemplary embodiment of the present disclosure.
  • FIG. 16 is an exploded structural diagram of a lens module in an exemplary embodiment of the present disclosure.
  • Figure 17 is a schematic three-dimensional structural diagram of a lens module in an exemplary embodiment of the present disclosure.
  • first, second, third, etc. may be used to describe various information in the embodiments of the present disclosure, the information should not be limited to these terms. These terms are only used to distinguish information of the same type from each other.
  • first information may also be called second information, and similarly, the second information may also be called first information.
  • word “if” as used herein may be interpreted as "when” or "when” or "in response to determining.”
  • the terms used in this article are “greater than” or “less than”, “higher than” or “lower than” when characterizing size relationships. But for those skilled in the art, it can be understood that: the term “greater than” also covers the meaning of “greater than or equal to”, and “less than” also covers the meaning of “less than or equal to”; the term “higher than” covers the meaning of “higher than or equal to”. “The meaning of “less than” also covers the meaning of "less than or equal to”.
  • the lens module involves zoom and focus functions during use.
  • the zoom function can change the shooting focal length of the lens module to achieve distant or close-up shooting of the scene to be shot.
  • the focus function enables clear imaging of the scene to be photographed.
  • the above-mentioned zoom function and focus function usually need to be realized by driving the lens in the lens module to move along the optical axis.
  • the moving range of the lens is limited by the thickness of imaging devices such as mobile phones, resulting in a small zoom range and unable to achieve expectations. telephoto or macro shots.
  • the lens also needs to take into account the zoom and focus functions during movement, thus affecting both the zoom effect and the focus effect.
  • FIG. 1 is a schematic structural diagram of a lens module in an exemplary embodiment of the present disclosure.
  • the lens module 1 includes a base frame 11 and a plurality of lenses assembled on the base frame 11 .
  • the plurality of lenses are arranged in sequence along the optical axis direction.
  • At least one of the plurality of lenses is a movable lens 12 that can move along the optical axis direction to achieve focusing.
  • At least one of the plurality of lenses is a liquid lens 13.
  • the liquid lens 13 includes a bracket 132 and a light-transmitting film 131 disposed on at least one side of the bracket 132.
  • the bracket 132 and the light-transmitting film 131 surround a fluid containing cavity 133.
  • the light-transmitting film 131 It can deform under the action of external force and change the curvature of the light-transmitting film 131 through the flow of fluid.
  • the light-transmitting film 131 of the liquid lens 13 can deform under the action of external force and the curvature of the light-transmitting film 131 can be changed by the flow of fluid. , thereby changing the focal length of the liquid lens 13 to achieve focusing or zooming, and the movable lens 12 can move along the optical axis direction to achieve focusing. Utilizing the curvature change of the light-transmitting film 131 can help increase the zoom range of the lens module 1, improve focusing efficiency, and change lens distortion.
  • the lens 12 By moving the lens 12 to achieve the coordination between the focusing effect and the curvature change of the light-transmitting film 131, the problem of reducing the zoom range caused by relying on the curvature change of the light-transmitting film 131 of the same liquid lens 13 for focusing and zooming is avoided.
  • the problem of insufficient equipment space and reduced focusing efficiency caused by moving the lens 12 to achieve focusing and zooming further improves the focusing efficiency and zoom range.
  • the light-transmitting film 131 of the liquid lens 13 can deform under the action of external force and change the curvature of the light-transmitting film 131 through the flow of fluid.
  • the curvature of the light-transmitting film 131 changes, the incident light passes through The propagation effect of the liquid lens 13 also changes accordingly. That is, various expected lens effects can be obtained through the deformation of the light-transmitting film 131 of the liquid lens 13, thereby achieving corresponding focusing or zooming functions.
  • the liquid lens 13 includes a bracket 132 , a light-transmitting film 131 is provided on one side of the bracket 132 , and a lens 134 is provided on the other side of the bracket 132 to pass through the transparent film on one side of the liquid lens.
  • the deformation of the light film 131 changes the curvature of the entire light-transmitting film 131, which helps to improve the convenience of controlling the curvature of the light-transmitting film 131.
  • the light-transmitting film 131 located on one side of the bracket 132 can include a flat initial state, a convex state protruding toward the outside of the liquid lens 13, and a concave state recessed toward the inside of the liquid lens 13.
  • a convex lens effect can be obtained, and when the light-transmitting film 131 is in a concave state, a concave lens effect can be obtained.
  • the lens 134 may refer to a fixed-form lens 134 whose shape does not change with the liquid flow of the liquid lens 13.
  • the lens 134 may be set as a flat plane lens 134 according to the requirements, or may be set in a convex shape protruding from the flat position or relative to the flat position. A concave shape with a depressed position.
  • the base frame 11 may include a front end and a rear end arranged oppositely, the light-transmitting film 131 may be disposed on the side of the liquid lens 13 facing the front end, and the lens 134 may be disposed on the side facing the rear end.
  • the light-transmitting film 131 may be disposed on the side of the liquid lens 13 facing the rear end, and the lens 134 may be disposed on the side of the liquid lens 13 facing the front end.
  • the liquid lens 13 includes a bracket 132 , and light-transmitting films 131 are respectively provided on both sides of the bracket 132 .
  • the curvatures of the two light-transmitting films 131 of the liquid lens 13 can be adjusted in two opposite directions along the optical axis, thereby improving the flexibility of the curvature change of the light-transmitting films 131 , the zoom range when using the liquid lens 13 to achieve zooming, and the focusing efficiency when using the liquid lens 13 to achieve focusing.
  • the light-transmitting films 131 located on both sides of the bracket 132 can include a flat initial state, a convex state protruding toward the outside of the liquid lens 13 , and a concave state that is concave toward the inside of the liquid lens 13 .
  • the light-transmitting films 131 located on both sides of the bracket 132 are in a convex state protruding toward the outside of the liquid lens 13 .
  • the liquid lens 13 can be used as a convex lens. As shown in FIG.
  • the light-transmitting films 131 located on both sides of the bracket 132 are in a concave state protruding toward the inside of the liquid lens 13 .
  • the liquid lens 13 can be used as a concave lens.
  • the light-transmitting film 131 located on one side of the bracket 132 is in a convex state protruding toward the outside of the liquid lens 13, and the light-transmitting film 131 located on the other side of the bracket 132 is in a concave state protruding toward the inside of the liquid lens 13.
  • the liquid lens 13 may have the functions of a convex lens and a concave lens at the same time.
  • the lens module 1 further includes a first driving component 14 for changing the curvature of the light-transmitting film 131 .
  • the first driving component 14 includes a zoom driving member 141 that can move along the optical axis direction.
  • the zoom driving member 141 is provided with a light-transmitting port 1414.
  • the zoom driving member 141 is connected to the light-transmitting film 131.
  • the light-transmitting film 131 includes a facing light-transmitting film.
  • the zoom driving member 141 is used to push and pull the light-transmitting film 131 along the optical axis direction and deform the optically effective area 1311.
  • the zoom driving member 141 of the first driving assembly 14 can drive part of the structure of the light-transmitting film 131 to move along the optical axis, so that the fluid in the fluid containing cavity 133 flows with the extrusion of the light-transmitting film 131, and finally the optically effective area is 1311 produces corresponding deformations.
  • the light-transmitting opening 1414 defines the optically effective area 1311, and the area of the light-transmitting opening 1414 determines the area of the optically effective area 1311.
  • the light-transmitting opening 1414 includes, but is not limited to, a circular light-transmitting opening 1414 .
  • the liquid lens 13 includes a bracket 132 with light-transmitting films 131 provided on both sides of the bracket 132.
  • the lens module 1 includes two sets of the above-mentioned first driving components 14 and one set of zoom driving parts of the first driving component 14. 141 drives the light-transmitting film 131 located on the side of the bracket 132 close to the front end of the base frame 11 to deform, thereby changing the curvature of the light-transmitting film 131 on this side.
  • the zoom driving member 141 of another set of first driving assemblies 14 drives the light-transmitting film 131 located on the side of the bracket 132 near the rear end of the base frame 11 to deform, thereby changing the curvature of the light-transmitting film 131 on that side.
  • the two sets of first driving components can be independently controlled, so that the curvature changes of the light-transmitting films 131 located on both sides of the bracket 132 can be independently controlled.
  • the thickness of the optically effective area 1311 is set non-uniformly.
  • the optically effective area 1311 with uneven thickness makes the light-transmitting film 131 aspherical in use.
  • the problem of photo distortion can be solved, especially for the current distortion problem of ultra-wide-angle photos, and can be further improved.
  • the large field of view of the lens avoids obvious distortion problems at the edges, improving the photography effect.
  • the light-transmitting film 131 can be disposed on one or both sides of the bracket 132.
  • the thickness of the optically effective area 1311 of the light-transmitting film 131 toward the front end of the base frame 11 can be non-uniformly provided, or it can be disposed toward the rear end of the base frame 11.
  • the thickness of the optically effective area 1311 of the film 131 is non-uniformly arranged, and the thickness of the optically effective area 1311 of the light-transmitting film 131 toward the front end and the rear end of the base frame 11 can also be arranged non-uniformly.
  • the optically effective area 1311 of the light-transmitting film 131 protrudes toward the outside of the liquid lens 13 and can be used to implement the convex lens function.
  • the optically effective area 1311 of the light-transmitting film 131 is recessed toward the inside of the liquid lens 13, which can be used to implement a concave lens function.
  • the above-mentioned optically effective area 1311 may be thin in the middle and thick on both sides or thick in the middle and thin on both sides. For the light-transmitting film 131 of the same material, when subjected to the same extrusion force of the fluid, the thin parts are more likely to undergo greater mechanical deformation, resulting in greater changes in optical properties.
  • the zoom driving member 141 is used to squeeze the light-transmitting film 131 toward the inside of the liquid lens 13 and to make the optically effective area 1311 bulge toward the outside of the liquid lens 13 to achieve the function of a convex lens.
  • the thickness of at least part of the effective working part can gradually decrease from the center to the edge.
  • the zoom driving member 141 is used to pull the light-transmitting film 131 toward the outside of the liquid lens 13 and to recess the optically effective area 1311 toward the inside of the liquid lens 13 to achieve a concave lens. Function, the thickness of at least part of the effective working part gradually increases from the center to the edge.
  • the thickness of the effective working part first gradually increases from the center to the edge, and then gradually decreases.
  • the first driving assembly 14 further includes a first power component capable of driving the zoom driving member 141 to move along the optical axis direction.
  • the first power component includes a first magnet 142 and a first coil 143.
  • One of the first magnet 142 and the first coil 143 is provided on the bracket 132, and the other is provided on the zoom driving member 141.
  • the first coil 143 is powered by the first The magnetic field force of the magnet 142 moves along the optical axis direction, thereby driving the zoom driving member 141 to drive the light-transmitting film 131 along the optical axis direction, causing the light-transmitting film 131 to deform; and by changing the magnetic field direction of the first coil 143, the light-transmitting film 131 can be deformed.
  • the light-transmitting film 131 is driven to change the deformation direction.
  • the cooperation of the first magnet 142 and the first coil 143 realizes electromagnetic driving of the zoom driving member 141, which improves the control convenience and the accuracy of motion control of the zoom driving member 141.
  • the first power component may also be one or more of other driving methods such as piezoelectric driving components, SMA driving components, and magnetic driving components.
  • the following takes the first power component including the first magnet 142 and the first coil 143 as an example to illustrate the structural arrangement and connection method of the liquid lens.
  • the bracket 132 includes a sealing side wall 1321, a mounting plate 1322 disposed around the sealing side wall 1321, and a connecting post 1323 disposed at the corner of the mounting plate 1322.
  • the light-transmitting film 131 is disposed at the end of the sealing side wall 1321 and forms a fluid containing cavity 133 with the sealing side wall 1321.
  • the connecting column 1323 extends along the optical axis direction.
  • the zoom driving member 141 includes an annular abutment portion 1411 and a support body 1413 arranged around the side wall of the abutment portion 1411 .
  • the cavity of the contact portion 1411 forms a light-transmitting opening 1414.
  • the support body 1413 and the mounting plate 1322 are arranged oppositely in the optical axis direction.
  • the support body 1413 is provided with a first escape opening 1412 corresponding to the position of the connecting column 1323.
  • the contact portion 1411 Connected to the light-transmitting film 131.
  • One of the first magnet 142 and the first coil 143 is disposed on the side of the mounting plate 1322 facing the supporting body 1413 , and the other is disposed on the inner side of the supporting body 1413 facing the mounting plate 1322 .
  • the first magnet 142 being disposed on the mounting plate 1322 and the first coil 143 being disposed on the inner side of the support body 1413 facing the mounting plate 1322 as an example, through the above structural arrangement, when a current is passed through the first coil 143, a connection with the first coil 143 can be formed.
  • the magnet 142 faces a magnetic field with the same or different magnetic properties on one side of the first coil 143, and the magnetic field force between the first magnet 142 and the first coil 143 can be used to drive the zoom driving member 141 to move along the optical axis direction.
  • the light-transmitting film 131 is connected to the abutting portion 1411 of the zoom driving member 141.
  • the local extrusion of the light-transmitting film 131 causes the fluid in the fluid containing cavity 133 to flow with the extrusion of the light-transmitting film 131, and finally the optically effective area 1311 produce corresponding deformations.
  • the incident light can enter the liquid lens 13 through the light transmission port 1414 to avoid the structure of the zoom driving member 141 from interfering with the structure of light propagation.
  • the support body 1413 of the zoom driving member 141 is also provided with a first escape opening 1412 corresponding to the position of the connecting column 1323 to provide assembly space for the connecting column 1323 and to prevent the connecting column 1323 from facing the lens module while ensuring the function of the supporting body 1413. Radial dimensions occupied by group 1.
  • the first driving component 14 may also include a first elastic member 144 , which is connected to the zoom driving member 141 and the bracket 132 respectively to balance the first magnet 142 and the first elastic member 144 .
  • a coil 143 generates magnetic force.
  • the first elastic member 144 includes a spring main body 1441, a first connecting piece 1442 connected to one end of the spring main body 1441, and a second connecting piece 1443 connected to the other end of the spring main body 1441.
  • the first connecting piece 1442 is connected to the connecting post 1323.
  • the second connecting piece 1443 is connected with the supporting body 1413 .
  • the first elastic member 144 can buffer the magnetic field force between the first coil 143 and the first magnet 142 to prevent excessive pulling of the light-transmitting film 131 due to excessive or too small force on one side.
  • the spring main body 1441 may be a spring wire extending radially along the lens module 1.
  • the first connecting piece 1442 provided at one end of the spring wire is connected to the connecting post 1323, and the second connecting piece 1443 provided at the other end of the spring wire is connected to the connecting post 1323.
  • the support body 1413 is connected to achieve a balance of magnetic force generated by the first magnet 142 and the first coil 143 through the tension and compression of the spring wire.
  • the first driving assembly 14 may include a plurality of first power components that can be individually controlled.
  • the plurality of first power components are arranged at circumferential intervals around the bracket 132 to drive the zoom driving member 141 to drive the liquid lens 13 relative to each other. Deflection movement on the optical axis.
  • different driving forces can be generated at different positions of the zoom driving member 141, so that the zoom driving member 141 drives the liquid lens 13 to deflect relative to the optical axis to achieve prevention. jitter function.
  • the first magnet 142 can be disposed on the mounting plate 1322, and the first coil 143 can be disposed on the inner side of the support body 1413 facing the mounting plate 1322.
  • the first coil 143 It may include at least two first sub-coils 1431 distributed along the circumferential direction of the support body 1413. The at least two first sub-coils 1431 receive different electromagnetic control signals to drive the zoom driving member 141 to deflect relative to the optical axis, thereby achieving corresponding anti-shake function.
  • the lens module 1 also includes a second driving component 15 for driving the movable lens 12 to move along the optical axis direction.
  • the second driving component 15 drives the movable lens 12 to move along the optical axis direction. Can be used to achieve focus or zoom functions.
  • the second driving assembly 15 includes at least two independently controlled second power components to drive the moving lens 12 to deflect movement relative to the optical axis.
  • the power generated by two or more of the first power components is different, different driving forces can be generated at different positions of the moving lens 12, thereby driving the moving lens 12 to deflect relative to the optical axis to achieve the anti-shake function.
  • the second power component including the second magnet 152 and the second coil 153
  • one of the second magnet 152 and the second coil 153 is disposed on the outer wall of the moving lens 12, and one of the second magnet 152 and the second coil 153
  • the other one is provided on the base frame 11 to drive the moving lens to move along the optical axis with the magnetic field formed by the second coil 153 .
  • the second magnet 152 may be disposed on the base frame 11
  • the second coil 153 may be disposed on the outer wall of the moving lens 12 .
  • the second coil 153 may include at least two second sub-coils distributed along the circumferential direction of the moving lens 12 . At least two The second sub-coil receives different electromagnetic control signals to drive the movable lens 12 to deflect relative to the optical axis, thereby achieving corresponding anti-shake functions.
  • the second power component includes at least one second elastic member 151.
  • One end of the second elastic member 151 is connected to the moving lens 12, and the other end of the second elastic member 151 is connected to the base frame 11 to balance the second elastic member 151.
  • the magnet 152 and the second coil 153 generate magnetic force.
  • the second elastic member 151 includes a spring body 1511, a connecting end 1513 connected to one end of the spring body 1511, and a connecting end 1513 connected to the other end of the spring body 1511.
  • the connecting end 1513 is connected to the outer wall of the moving lens 12, and the third connection
  • the piece 1512 is connected to the base frame 11 .
  • the second elastic member 151 can buffer the magnetic field force between the second coil 153 and the second magnet 152 to prevent excessive pulling of the moving lens 12 due to excessive or too small force on one side.
  • the above-mentioned spring body 1511 may be a spring wire extending along the radial direction of the lens module 1 .
  • the second power component may include two groups of second elastic members 151 , each group including a plurality of second elastic members 151 , and the first group of second elastic members 151 is disposed on the moving lens 12 near the front end of the base frame 11 On one side, the second group of second elastic members 151 is disposed on the side of the moving lens 12 close to the rear end of the base frame 11 .
  • the base frame 11 may include a lens barrel 111 and a base 112 located at the bottom of the lens barrel 111, wherein one end of each second elastic member 151 in the first group is connected to the moving lens 12, and the other end of the second elastic member 151 is connected to the lens. Barrel 111 is connected. One end of each second elastic member 151 in the second group is connected to the moving lens 12 , and the other end of the second elastic member 151 is connected to the base 112 .
  • the second power component may also include one or more of other driving methods such as piezoelectric driving components, SMA driving components, and magnetic driving components to achieve the desired driving effect.
  • the plurality of lenses may include a liquid lens 13 and a solid lens 16, and at least one of the liquid lens 13 and the solid lens 16 can move along the optical axis direction.
  • the above-mentioned movable lens 12 that can move along the optical axis can realize the focusing function through movement, and can also assist the zoom function through movement.
  • only the solid lens 16 among the plurality of lenses can move along the optical axis, or at least one liquid lens 13 and at least one solid lens 16 among the plurality of lenses can move along the optical axis, or the liquid lens 13 among the plurality of lenses can move along the optical axis.
  • the optical axis moves.
  • the plurality of lenses may include at least two liquid lenses 13 .
  • the base frame 11 includes a front end and a rear end arranged oppositely. From the front end to the rear end, two liquid lenses 13 and a solid lens 16 are arranged in sequence along the optical axis direction. Alternatively, the liquid lens 13, the solid lens 16, and the liquid lens 13 are arranged in sequence along the optical axis direction.
  • solid lens 16 is movable along the optical axis.
  • both the solid lens 16 and the one liquid lens 13 can move along the optical axis direction.
  • both the solid lens 16 and the two liquid lenses 13 can move in the optical axis direction.
  • the lens barrel 111 may include a first barrel and a second barrel that are sequentially arranged along the optical axis direction and detachably connected.
  • the first barrel may be located at the front end, and the second barrel may be located at the rear end.
  • the plurality of lenses may include two liquid lenses 13 and one solid lens.
  • the solid lenses and the two liquid lenses 13 are movable lenses that can move along the optical axis direction.
  • One of the two movable lenses can be installed on the first barrel, and both The other of the two movable lenses is installed on the second barrel, and the two movable lenses can be arranged adjacent to each other in the optical axis direction, which can facilitate the assembly and disassembly of the lens module.
  • two liquid lenses 13 are installed on the first cylinder, and the solid lens is installed on the second cylinder.
  • the multiple lenses may include two liquid lenses 13 and one solid lens 16 , and the two liquid lenses 13 and the solid lens 16 are arranged in sequence along the optical axis direction.
  • the liquid lens 13 close to the front end of the base frame 11 can be mainly used to implement the zoom function.
  • the liquid lens 13 and the solid lens 16 located in the middle can serve as the movable lens 12.
  • the liquid lens 13 located in the middle can not only include the zoom function but also be able to move along the optical axis to achieve the focusing function.
  • the solid lens 16 can move along the optical axis to achieve focusing. Function. That is, the lens module 1 includes two sets of first driving assemblies 14 and two sets of second driving assemblies 15 .
  • the first power component and the zoom driving member 141 of the first set of first driving assemblies 14 are matched with a lens located near the front end of the base frame 11
  • the liquid lens 13 realizes the zoom function by driving the light-transmitting film 131 of the liquid lens 13 to deform.
  • the second group of first driving components 14 and the first group of second driving components 15 cooperate with the liquid lens 13 in the middle.
  • the first power component and the zoom driving member 141 of the first driving component 14 drive the light transmission of the middle liquid lens 13
  • the membrane 131 deforms to achieve the zoom function
  • the second power component of the second driving assembly 15 drives the liquid lens 13 to move along the optical axis to achieve the focusing function.
  • the second group of second driving components 15 cooperates with the solid lens 16 to drive the solid lens 16 to move along the optical axis to achieve the focusing function.
  • the above lens setting scheme can realize the main zoom function of the lens module 1 through the liquid lens 13 close to the front end of the base frame 11, and realize the main focus function through the liquid lens 13 and the solid lens located in the middle, avoiding the need to use the same liquid lens 13 for both. The impact of zoom and focus effects on the zoom range and focus effect.
  • the liquid lens 13 close to the front end of the base frame 11 is mainly used to achieve the zoom function through the deformation of the light-transmitting film 131. It can also produce a focusing effect through the deformation of the light-transmitting film 131. In specific focusing scenarios, it can Choose the appropriate lens according to your needs to achieve zoom and focus effects.
  • At least one of the plurality of lenses is used to implement a convex lens function
  • at least another of the plurality of lenses is used to implement a concave lens function to ensure the convenience of realizing the zoom and focus functions.
  • the lens used to realize the function of a convex lens can be a liquid lens 13 with the light-transmitting film 131 in a convex state, or it can be a solid lens 16 in the form of a convex lens.
  • the lens used to realize the function of a concave lens can be a liquid lens 13 with the light-transmitting film 131 in a concave state, or it can be a solid lens 16 in the form of a concave lens.
  • a lens used to implement the convex lens function can be located on the side close to the front end of the base frame 11, and a lens used to implement the concave lens function can be located between the lens and the rear end of the convex lens function, in order to obtain better focus and zoom. Effect.
  • the present disclosure further provides an imaging device, which includes a device main body and the above-mentioned lens module 1.
  • the main body of the device includes the optical system.
  • the lens module 1 is installed on the object side of the optical system of the device body.
  • the lens module 1 includes multiple lenses, at least one of the multiple lenses is a liquid lens 13 and at least one is a movable lens 12.
  • the light-transmitting film 131 of the liquid lens 13 can deform under the action of external force and be deformed by the flow of fluid.
  • the curvature of the light-transmitting film 131 changes, thereby changing the focal length of the liquid lens 13 to achieve focusing or zooming, and the movable lens 12 can move along the optical axis direction to achieve focusing. Utilizing the curvature change of the light-transmitting film 131 can help increase the zoom range of the lens module 1, improve focusing efficiency, and change lens distortion.
  • the focusing effect is matched with the curvature change of the light-transmitting film 131 of the liquid lens 13, thereby avoiding the problem of reducing the zoom range caused by relying on the curvature change of the light-transmitting film 131 of the same liquid lens 13 to achieve focusing and zooming.
  • it avoids the problem of insufficient equipment space and reduced focusing efficiency caused by relying on the moving lens 12 to achieve focusing and zooming, and further improves the focusing efficiency and zoom range.
  • the above-mentioned imaging device may be a mobile phone, a tablet computer, a vehicle-mounted terminal, a wearable device, a camera, etc., and this disclosure is not limited thereto.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lens Barrels (AREA)

Abstract

一种镜头模组(1)及成像设备。镜头模组(1)包括多个透镜,多个透镜中的至少一个为液态透镜(13)、至少一个为移动透镜(12),液态透镜(13)的透光膜(131)能够在外力作用下产生形变并通过流体的流动使透光膜(131)的曲率发生改变,进而实现对焦或变焦,移动透镜(12)能够沿光轴方向移动实现对焦。利用透光膜(131)的曲率变化有助于增加镜头模组(1)的变焦范围、提高对焦效率、改变镜头畸变现象。通过移动透镜(12)获得对焦效果与液态透镜(13)的透光膜(131)的曲率变化的配合,避免了依靠同一液态透镜(13)的透光膜(131)的曲率变化实现对焦及变焦而造成的变焦范围减小问题,同时避免了依靠移动透镜(12)实现对焦及变焦而造成的设备空间不足和对焦效率降低问题,进一步提升了对焦效率及变焦范围。

Description

镜头模组及成像设备 技术领域
本公开涉及电子技术领域,具体而言,涉及镜头模组及成像设备。
背景技术
镜头模组在使用过程中涉及变焦功能及对焦功能。其中,变焦功能可以改变镜头模组的拍摄焦段,以实现对待拍场景的远景或近景拍摄。对焦功能能够实现对待拍场景的清晰成像。
在相关技术中,上述变焦功能和对焦功能通常需要通过驱动镜头模组内的透镜沿光轴移动实现,而透镜的移动范围因受限于手机等成像设备的厚度导致变焦范围小,无法实现预期的长焦或微距拍摄。且透镜在移动过程中还需要兼顾变焦和对焦功能,因而同时影响了变焦效果及对焦效果。
发明内容
有鉴于此,本公开的实施例提出了镜头模组及成像设备,以解决相关技术中的技术问题。
根据本公开实施例的第一方面,提出一种镜头模组,包括基架以及组装于所述基架的多个透镜,多个所述透镜沿光轴方向依次设置;
所述多个透镜中的至少一个为能够沿光轴方向移动的移动透镜,以实现对焦;
所述多个透镜中的至少一个为液态透镜,所述液态透镜包括支架和设置于所述支架至少一侧的透光膜,所述支架和所述透光膜围成流体容纳腔,所述透光膜能够在外力作用下产生形变并通过流体的流动使所述透光膜的曲率发生改变。
可选的,所述支架的一侧设有所述透光膜,所述支架的另一侧设有镜片;和/或,
所述支架两侧分别设有所述透光膜。
可选的,所述镜头模组还包括用于改变所述透光膜的曲率的第一驱动组件;所 述第一驱动组件包括能够沿所述光轴方向移动的变焦驱动件,所述变焦驱动件上设置有与所述液态透镜的有效工作部分对应透光口,所述变焦驱动件与所述透光膜相连,所述透光膜包括正对所述透光口的光学有效区,所述变焦驱动件用于沿所述光轴方向推拉所述透光膜,并使所述光学有效区产生形变。
可选的,所述光学有效区的厚度非均匀设置。
可选的,所述变焦驱动件用于朝向所述液态透镜的内侧挤压所述透光膜,并使所述光学有效区向所述液态透镜的外侧凸起,至少部分所述有效工作部分的厚度由自身中心至边缘方向逐渐减小;或,
所述变焦驱动件用于朝向所述液态透镜的外侧拉动所述透光膜,并使所述光学有效区向所述液态透镜的内侧凹陷,至少部分所述有效工作部分的厚度由自身中心至边缘方向逐渐增大。
可选的,所述第一驱动组件还包括能够带动变焦驱动件沿光轴方向运动的第一动力部件;
所述第一动力部件包括第一磁石和第一线圈,所述第一磁石和所述第一线圈中的一个设置于所述支架,另一个设置于所述变焦驱动件,以通过改变所述第一线圈的磁场方向驱动所述透光膜改变形变方向。
可选的,所述支架包括密封侧壁、设置于所述密封侧壁外围的安装板以及设置于所述安装板拐角处的连接柱;所述透光膜设置于所述密封侧壁的端部,且与所述密封侧壁围成所述流体容纳腔;所述连接柱沿光轴方向延伸;
所述变焦驱动件包括环形抵接部和环绕所述抵接部侧壁设置的支撑主体,所述抵接部的空腔形成所述透光口,所述支撑主体与所述安装板在所述光轴方向上相对设置,所述支撑主体设有与所述连接柱位置对应的第一避让开口;所述抵接部与所述透光膜连接;
所述第一磁石与所述第一线圈中的一者设置于所述安装板朝向所述支撑主体的一侧,另一者设置于所述支撑主体朝向所述安装板的内侧面。
可选的,所述第一驱动组件还包括第一弹性件,所述第一弹性件分别与所述变焦驱动件及所述支架相连,以平衡所述第一磁石和所述第一线圈产生的磁力;
所述第一弹性件包括弹簧主体、连接于所述弹簧主体的一端的第一连接片以及 连接于所述弹簧主体的另一端的第二连接片,所述第一连接片与所述连接柱连接,所述第二连接片与所述支撑主体连接。
可选的,所述第一驱动组件包括能够单独控制的多个第一动力部件,多个所述第一动力部件环绕所述支架的周向间隔设置,以驱动所述变焦驱动件带动所述液态透镜相对于所述光轴偏转运动。
可选的,所述镜头模组还包括用于驱动所述移动透镜沿所述光轴方向移动的第二驱动组件。
可选的,所述第二驱动组件包括至少两个单独控制的第二动力部件,以驱动所述移动透镜相对于所述光轴偏转运动。
可选的,所述第二动力部件包括第二磁石和第二线圈;所述第二磁石和所述第二线圈中的一个设置于所述移动透镜的外侧壁,所述第二磁石和所述第二线圈中的另一个设置于所述基架,以通过所述第二线圈形成的磁场驱动所述移动镜头沿光轴移动。
可选的,所述第二动力部件包括至少一个第二弹性件;所述第二弹性件的一端与所述移动透镜连接,所述第二弹性件的另一端与所述基架连接。
可选的,所述多个透镜包括液态透镜和固态透镜,所述液态透镜和所述固态透镜中的至少一者能够沿所述光轴方向移动。
可选的,所述多个透镜包括至少两个液态透镜;
所述基架包括相对设置的前端和后端;自所述前端至所述后端,两个所述液态透镜和所述固态透镜沿所述光轴方向依次设置;或,
所述液态透镜、所述固态透镜和所述液态透镜沿所述光轴方向依次设置。
可选的,所述固态透镜能够沿光轴方向移动;或,
所述固态透镜和一个所述液态透镜均能够沿光轴方向移动;或,
所述固态透镜和两个所述液态透镜均能够沿光轴方向移动。
可选的,所述多个透镜中的至少一个用于实现凸透镜功能,所述多个透镜中的至少另一个用于实现凹透镜功能。
根据本公开实施例的第二方面,提供一种成像设备,包括:
设备主体,包括光学系统;
第一方面所述的任一镜头模组,安装在所述设备主体的所述光学系统的物体侧上。
根据本公开的实施例,镜头模组包括多个透镜,多个透镜中的至少一个为液态透镜、至少一个为移动透镜,液态透镜的透光膜能够在外力作用下产生形变并通过流体的流动使透光膜的曲率发生改变,进而实现对焦或变焦,移动透镜能够沿光轴方向移动实现对焦。利用透光膜的曲率变化有助于增加镜头模组的变焦范围、提高对焦效率、改变镜头畸变现象。通过移动透镜获得对焦效果与液态透镜的透光膜的曲率变化的配合,避免了依靠同一液态透镜的透光膜的曲率变化实现对焦及变焦而造成的变焦范围减小问题,同时避免了依靠移动透镜实现对焦及变焦而造成的设备空间不足和对焦效率降低问题,进一步提升了对焦效率及变焦范围。
附图说明
为了更清楚地说明本公开实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1是本公开一示例性实施例中一种镜头模组的截面结构示意图。
图2是本公开一示例性实施例中一种液态透镜的截面结构示意图之一。
图3是本公开一示例性实施例中一种液态透镜的截面结构示意图之二。
图4是本公开一示例性实施例中一种液态透镜的截面结构示意图之三。
图5是本公开一示例性实施例中一种液态透镜的截面结构示意图之四。
图6是本公开一示例性实施例中一种液态透镜的截面结构示意图之五。
图7是本公开一示例性实施例中一种液态透镜的截面结构示意图之六。
图8是本公开一示例性实施例中一种液态透镜的截面结构示意图之七。
图9是本公开另一示例性实施例中一种镜头模组的截面结构示意图。
图10是本公开一示例性实施例中一种液态透镜的截面结构示意图之八。
图11是本公开一示例性实施例中一种液态透镜的截面结构示意图之九。
图12是本公开一示例性实施例中一种液态透镜的截面结构示意图之十。
图13是本公开一示例性实施例中一种液态透镜的截面结构示意图之十一。
图14是本公开一示例性实施例中一种液态透镜和第一驱动组件的组装结构示意图。
图15是本公开一示例性实施例中一种液态透镜和第一驱动组件的分解结构示意图。
图16是本公开一示例性实施例中一种镜头模组的分解结构示意图。
图17是本公开一示例性实施例中一种镜头模组的立体结构示意图。
具体实施方式
下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本公开一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。
在本公开实施例使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本公开实施例。在本公开实施例和所附权利要求书中所使用的单数形式的“一种”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。还应当理解,本文中使用的术语“和/或”是指并包含一个或多个相关联的列出项目的任何或所有可能组合。
应当理解,尽管在本公开实施例可能采用术语第一、第二、第三等来描述各种信息,但这些信息不应限于这些术语。这些术语仅用来将同一类型的信息彼此区分开。例如,在不脱离本公开实施例范围的情况下,第一信息也可以被称为第二信息,类似地,第二信息也可以被称为第一信息。取决于语境,如在此所使用的词语“如果”可以被解释成为“在……时”或“当……时”或“响应于确定”。
出于简洁和便于理解的目的,本文在表征大小关系时,所使用的术语为“大于”或“小于”、“高于”或“低于”。但对于本领域技术人员来说,可以理解:术语“大于”也涵盖了“大于等于”的含义,“小于”也涵盖了“小于等于”的含义;术语“高于”涵盖了“高于等于”的含义,“低于”也涵盖了“低于等于”的含义。
镜头模组在使用过程中涉及变焦功能及对焦功能。其中,变焦功能可以改变镜头模组的拍摄焦段,以实现对待拍场景的远景或近景拍摄。对焦功能能够实现对待拍场景的清晰成像。在相关技术中,上述变焦功能和对焦功能通常需要通过驱动镜头模 组内的透镜沿光轴移动实现,而透镜的移动范围因受限于手机等成像设备的厚度导致变焦范围小,无法实现预期的长焦或微距拍摄。且透镜在移动过程中还需要兼顾变焦和对焦功能,因而同时影响了变焦效果及对焦效果。
本公开提供一种镜头模组,图1是本公开一示例性实施例中一种镜头模组的结构示意图。如图1所示,镜头模组1包括基架11以及组装于基架11的多个透镜,多个透镜沿光轴方向依次设置。多个透镜中的至少一个为能够沿光轴方向移动的移动透镜12,以实现对焦。多个透镜中的至少一个为液态透镜13,液态透镜13包括支架132和设置于支架132至少一侧的透光膜131,支架132和透光膜131围成流体容纳腔133,透光膜131能够在外力作用下产生形变并通过流体的流动使透光膜131的曲率发生改变。
由于上述多个透镜中的至少一个为液态透镜13、至少一个为移动透镜12,液态透镜13的透光膜131能够在外力作用下产生形变并通过流体的流动使透光膜131的曲率发生改变,进而改变液态透镜13的焦距,实现对焦或变焦,移动透镜12能够沿光轴方向移动实现对焦。利用透光膜131的曲率变化有助于增加镜头模组1的变焦范围、提高对焦效率、改变镜头畸变现象。通过移动透镜12获得对焦效果与透光膜131的曲率变化的配合,避免了依靠同一液态透镜13的透光膜131的曲率变化实现对焦及变焦而造成的变焦范围减小问题,同时避免了依靠移动透镜12实现对焦及变焦而造成的设备空间不足和对焦效率降低问题,进一步提升了对焦效率及变焦范围。
在上述实施例中,液态透镜13的透光膜131能够在外力作用下产生形变并通过流体的流动使透光膜131的曲率发生改变,当透光膜131的曲率发生改变时,入射光线经过液态透镜13的传播效果也随之改变。即,通过液态透镜13的透光膜131的形变能够获得各种预期的透镜效果,进而实现相应的对焦或变焦功能。下面针对液态透镜13的结构设置进行示例性说明:
在一实施例中,如图2所示,液态透镜13包括支架132,支架132的一侧设有透光膜131,支架132的另一侧设有镜片134,以通过液态镜头一侧的透光膜131形变改变整个透光膜131的曲率,有助于提升对透光膜131曲率的控制便利性。
其中,如图2-图4所示,位于支架132一侧的透光膜131可以包括平整的初始状态、朝向液态透镜13外部突出的凸出状态及朝向液态透镜13内部凹陷的凹陷状态,当透光膜131处于凸出状态时可以获得凸透镜效果,当透光膜131处于凹陷状态时可以获得凹透镜效果。镜片134可以指形态不随液态透镜13的液体流动而发生改变的固 定形态镜片134,镜片134可以根据需求设置成平整的平面镜片134,也可以设置成突出于平整位置的凸出形态或相对于平整位置凹陷的凹陷形态。
需要说明的是,基架11可以包括相对设置的前端和后端,可以将透光膜131设置于液态透镜13朝向前端的侧面,镜片134设置于朝向后端的侧面。或者,也可以将透光膜131设置于液态透镜13朝向后端的侧面,镜片134设置于朝向前端的侧面。
在另一实施例中,如图5所示,液态透镜13包括支架132,支架132两侧分别设有透光膜131。通过在支架132的两侧设置透光膜131,使得液态透镜13的两个透光膜131在沿光轴的相对两个方向上均能够调整曲率,提升了透光膜131的曲率变化灵活性、使用液态透镜13实现变焦时的变焦范围以及使用液态透镜13实现对焦时的对焦效率。
同样的,如图5-图8所示,位于支架132两侧的透光膜131均可以包括平整的初始状态、朝向液态透镜13外部突出的凸出状态及朝向液态透镜13内部凹陷的凹陷状态。如图6所示,位于支架132两侧的透光膜131均处于朝向液态透镜13外部突出的凸出状态,此时液态透镜13可用作凸透镜。如图7所示,位于支架132两侧的透光膜131均处于朝向液态透镜13内部突出的凹陷状态,此时液态透镜13可用作凹透镜。如图8所示,位于支架132一侧的透光膜131处于朝向液态透镜13外部突出的凸出状态,位于支架132另一侧的透光膜131处于朝向液态透镜13内部突出的凹陷状态,此时液态透镜13可同时包含凸透镜和凹透镜的功能。
在一些实施例中,如图9所示,镜头模组1还包括用于改变透光膜131的曲率的第一驱动组件14。第一驱动组件14包括能够沿光轴方向移动的变焦驱动件141,变焦驱动件141上设置有透光口1414,变焦驱动件141与透光膜131相连,透光膜131包括正对透光口1414的光学有效区1311,变焦驱动件141用于沿光轴方向推拉透光膜131,并使光学有效区1311产生形变。通过第一驱动组件14的变焦驱动件141可以驱动透光膜131的部分结构沿光轴移动,进而使流体容纳腔133内的流体随透光膜131的挤压发生流动,最终使光学有效区1311产生相应的变形。其中,透光口1414限定了光学有效区1311,透光口1414的面积决定了光学有效区1311的面积。透光口1414包括但不限于圆形透光口1414。
在一些实施例中,液态透镜13包括支架132,支架132两侧分别设有透光膜131,镜头模组1包括两组上述第一驱动组件14,一组第一驱动组件14的变焦驱动件141驱动位于支架132靠近基架11前端一侧的透光膜131发生形变,进而改变该侧透 光膜131的曲率。另一组第一驱动组件14的变焦驱动件141驱动位于支架132靠近基架11后端一侧的透光膜131发生形变,进而改变该侧透光膜131的曲率。两组第一驱动组件可可独立控制,以使位于支架132两侧的透光膜131的曲率变化可独立控制。
在一些实施例中,如图10、图11所示,光学有效区1311的厚度非均匀设置。通过厚度不均匀的光学有效区1311使得透光膜131在使用中为非球面形,相较于球面透镜而言,可以解决拍照畸变问题,尤其是针对目前超广角拍照的畸变问题,可以进一步增大镜头的视场角而避免在边缘产生明显的畸变问题,提升了拍照效果。
透光膜131可以设置于支架132的一侧或两侧,可以是朝向基架11前端的透光膜131的光学有效区1311的厚度非均匀设置,也可以是朝向基架11后端的透光膜131的光学有效区1311的厚度非均匀设置,也可以朝向基架11前端和后端的透光膜131的光学有效区1311的厚度非均匀设置。当透光膜131配合于变焦驱动件141的位置沿光轴朝向液态透镜13内部方向运动时,透光膜131的光学有效区1311朝向液态透镜13外侧突出,可以用于实现凸透镜功能。当透光膜131配合于变焦驱动件141的位置沿光轴朝向液态透镜13外部方向运动时,透光膜131的光学有效区1311朝向液态透镜13内部凹陷,可以用于实现凹透镜功能。上述光学有效区1311可以是中间薄、两边厚或者中间厚、两边薄。对于同一种材质的透光膜131而言,当受到相同的流体的挤压力时,薄的地方更容易发生较大的机械变形,产生更大的光学属性的变化。
在一实施例中,如图12所示,变焦驱动件141用于朝向液态透镜13的内侧挤压透光膜131,并使光学有效区1311向液态透镜13的外侧凸起,以实现凸透镜功能,至少部分有效工作部分的厚度可以由自身中心至边缘方向逐渐减小。或者,在另一实施例中,如图13所示,变焦驱动件141用于朝向液态透镜13的外侧拉动透光膜131,并使光学有效区1311向液态透镜13的内侧凹陷,以实现凹透镜功能,至少部分有效工作部分的厚度由自身中心至边缘方向逐渐增大,可选的,有效工作部分的厚度由自身中心至边缘方向先逐渐增大,再逐渐减小。
在一些实施例中,如图14、图15所示,第一驱动组件14还包括能够带动变焦驱动件141沿光轴方向运动的第一动力部件。第一动力部件包括第一磁石142和第一线圈143,第一磁石142和第一线圈143中的一个设置于支架132,另一个设置于变焦驱动件141,第一线圈143通电后受到第一磁石142的磁场力的作用而沿光轴方向移动,从而带动变焦驱动件141沿光轴方向驱动透光膜131,使透光膜131发生变形;且通过改变第一线圈143的磁场方向还可以驱动透光膜131改变形变方向。通过第一 磁石142和第一线圈143的配合实现针对变焦驱动件141的电磁驱动,提升了控制便利性和变焦驱动件141的运动控制精确性。
需要说明的是,所述第一动力部件还可以为压电驱动部件、SMA驱动部件和磁致驱动部件等其他驱动方式中的一种或多种。下面以第一动力部件包括第一磁石142和第一线圈143为例,对液态镜头的结构设置及连接方式进行示例性说明。
在一些实施例中,支架132包括密封侧壁1321、设置于密封侧壁1321外围的安装板1322以及设置于安装板1322拐角处的连接柱1323。透光膜131设置于密封侧壁1321的端部,且与密封侧壁1321围成流体容纳腔133,连接柱1323沿光轴方向延伸。变焦驱动件141包括环形抵接部1411和环绕抵接部1411侧壁设置的支撑主体1413。抵接部1411的空腔形成透光口1414,支撑主体1413与安装板1322在光轴方向上相对设置,支撑主体1413设有与连接柱1323位置对应的第一避让开口1412,抵接部1411与透光膜131连接。第一磁石142与第一线圈143中的一者设置于安装板1322朝向支撑主体1413的一侧,另一者设置于支撑主体1413朝向安装板1322的内侧面。
以第一磁石142设置于安装板1322,第一线圈143设置于支撑主体1413朝向安装板1322的内侧面为例,通过上述结构设置,当第一线圈143中通入电流时可以形成与第一磁石142朝向第一线圈143一侧磁性相同或相异的磁场,进而可利用第一磁石142与第一线圈143之间的磁场作用力带动变焦驱动件141沿光轴方向移动。而透光膜131与变焦驱动件141的抵接部1411相连,透光膜131的局部挤压使流体容纳腔133内的流体随透光膜131的挤压发生流动,最终使光学有效区1311产生相应的变形。入射光线可由透光口1414进入液态透镜13,避免变焦驱动件141的结构对光线传播的结构干涉。
此外,变焦驱动件141的支撑主体1413还设有与连接柱1323位置对应的第一避让开口1412,以为连接柱1323提供组装空间,在确保支撑主体1413功能的情况下避免连接柱1323对镜头模组1的径向尺寸占用。
在上述实施例中,如图15所示,第一驱动组件14还可以包括第一弹性件144,第一弹性件144分别与变焦驱动件141及支架132相连,以平衡第一磁石142和第一线圈143产生的磁力。第一弹性件144包括弹簧主体1441、连接于弹簧主体1441的一端的第一连接片1442以及连接于弹簧主体1441的另一端的第二连接片1443,第一连接片1442与连接柱1323连接,第二连接片1443与支撑主体1413连接。第一弹性 件144可以对第一线圈143与第一磁石142之间的磁场作用力形成缓冲,避免一侧作用力过大或过小而造成对透光膜131的过度拉扯。
其中,上述弹簧主体1441可以是沿镜头模组1径向延伸的弹簧丝,设置于弹簧丝一端的第一连接片1442与连接柱1323连接,设置于弹簧丝另一端的第二连接片1443与支撑主体1413连接,以通过弹簧丝的拉伸和压缩实现对第一磁石142和第一线圈143产生磁力的平衡。
在上述实施例中,第一驱动组件14可以包括能够单独控制的多个第一动力部件,多个第一动力部件环绕支架132的周向间隔设置,以驱动变焦驱动件141带动液态透镜13相对于光轴偏转运动。当其中两个或多个第一动力部件产生的动力不同时,可以在变焦驱动件141不同位置产生不同的驱动力,进而使变焦驱动件141带动液态透镜13相对于光轴偏转,以实现防抖功能。
以第一动力部件包括第一磁石142和第一线圈143为例,第一磁石142可以设置于安装板1322,第一线圈143设置于支撑主体1413朝向安装板1322的内侧面,第一线圈143可以包括沿支撑主体1413的周向分布的至少两个第一子线圈1431,至少两个第一子线圈1431接收不同的电磁控制信号以驱动变焦驱动件141相对于光轴偏转运动,进而实现相应的防抖功能。
在一些实施例中,如图16所示,镜头模组1还包括用于驱动移动透镜12沿光轴方向移动的第二驱动组件15,第二驱动组件15驱动移动透镜12沿光轴方向移动可以用于实现对焦或变焦功能。
在上述实施例中,第二驱动组件15包括至少两个单独控制的第二动力部件,以驱动移动透镜12相对于光轴偏转运动。当其中两个或多个第一动力部件产生的动力不同时,可以在移动透镜12的不同位置产生不同的驱动力,进而带动移动透镜12相对于光轴偏转,以实现防抖功能。
以第二动力部件包括第二磁石152和第二线圈153为例,第二磁石152和第二线圈153中的一个设置于移动透镜12的外侧壁,第二磁石152和第二线圈153中的另一个设置于基架11,以通过第二线圈153形成的磁场驱动移动镜头沿光轴移动。第二磁石152可以设置于基架11,第二线圈153设置于移动透镜12的外侧壁,第二线圈153可以包括沿移动透镜12的周向分布的至少两个第二子线圈,至少两个第二子线圈接收不同的电磁控制信号以驱动移动透镜12相对于光轴偏转运动,进而实现相应的防 抖功能。
在一些实施例中,第二动力部件包括至少一个第二弹性件151,第二弹性件151的一端与移动透镜12连接,第二弹性件151的另一端与基架11连接,以平衡第二磁石152和第二线圈153产生的磁力。第二弹性件151包括弹簧本体1511、连接于弹簧本体1511的一端的连接端1513以及连接于弹簧本体1511的另一端的连接端1513,连接端1513与移动透镜12的外侧壁连接,第三连接片1512与基架11连接。第二弹性件151可以对第二线圈153与第二磁石152之间的磁场作用力形成缓冲,避免一侧作用力过大或过小而造成对移动透镜12的过度拉扯。其中,上述弹簧本体1511可以是沿镜头模组1径向延伸的弹簧丝。
在上述实施例中,第二动力部件可以包括两组第二弹性件151,每组包括多个第二弹性件151,第一组第二弹性件151设置于移动透镜12靠近基架11前端的一侧,第二组第二弹性件151设置于移动透镜12靠近基架11后端的一侧。基架11可以包括镜筒111和位于镜筒111底部的底座112,其中,第一组中每个第二弹性件151的一端与与移动透镜12连接,第二弹性件151的另一端与镜筒111连接。第二组中的每个第二弹性件151的一端与与移动透镜12连接,第二弹性件151的另一端与底座112连接。
需要说明的是,第二动力部件还可以包括压电驱动部件、SMA驱动部件和磁致驱动部件等其他驱动方式中的一种或多种,以实现预期的驱动效果。
在上述实施例中,多个透镜可以包括液态透镜13和固态透镜16,液态透镜13和固态透镜16中的至少一者能够沿光轴方向移动。上述可沿光轴移动的移动透镜12能够通过移动实现对焦功能,还能够通过移动辅助变焦功能。例如,多个透镜中仅有固态透镜16能够沿光轴移动,或者多个透镜中的至少一个液态透镜13和至少一个固态透镜16能够沿光轴移动,或者多个透镜中液态透镜13能够沿光轴移动。
在一些实施例中,多个透镜可以包括至少两个液态透镜13。基架11包括相对设置的前端和后端,自前端至后端,两个液态透镜13和固态透镜16沿光轴方向依次设置。或者,液态透镜13、固态透镜16和液态透镜13沿光轴方向依次设置。
在一些实施例中,固态透镜16能够沿光轴方向移动。或者,固态透镜16和一个液态透镜13均能够沿光轴方向移动。或者,固态透镜16和两个液态透镜13均能够沿光轴方向移动。
镜筒111可以包括沿光轴方向依次设置且可拆卸连接的第一筒体和第二筒体,第一筒体可以位于前端,第二筒体位于后端。多个透镜可以包括两个液态透镜13和一个固态透镜,固态透镜以及两个液态透镜13为能够沿光轴方向移动的移动透镜,两个移动透镜中的一个可以安装于第一筒体,两个移动透镜中的另一个安装于第二筒体,两个移动透镜可以在光轴方向上相邻设置,能够方便镜头模组的组装和拆卸。可选的,两个液态透镜13安装于第一筒体,固态透镜安装于第二筒体。
在一实施例中,如图1、图16、图17所示,多个透镜可以包括两个液态透镜13和一个固态透镜16,两个液态透镜13和固态透镜16沿光轴方向依次设置。其中,靠近基架11前端的液态透镜13可以主要用于实现变焦功能。位于中间的液态透镜13和固态透镜16可以作为移动透镜12,位于中间的液态透镜13可以既包含变焦功能还能够沿着光轴移动以实现对焦功能,固态透镜16可以沿光轴移动以实现对焦功能。即,镜头模组1包括两组第一驱动组件14和两组第二驱动组件15,第一组第一驱动组件14的第一动力部件和变焦驱动件141配合于位于靠近基架11前端的液态透镜13,以驱动液态透镜13的透光膜131形变实现变焦功能。第二组第一驱动组件14以及第一组第二驱动组件15配合于位于中间的液态透镜13,第一驱动组件14的第一动力部件和变焦驱动件141驱动中间的液态透镜13的透光膜131形变实现变焦功能,第二驱动组件15的第二动力部件驱动液态透镜13沿光轴移动以实现对焦功能。第二组第二驱动组件15配合于固态透镜16,以驱动固态透镜16沿光轴移动实现对焦功能。上述透镜设置方案可以将镜头模组1主要的变焦功能通过靠近基架11前端的液态透镜13实现,将主要对焦功能通过位于中间的液态透镜13及固体透镜实现,避免了使用同一液态透镜13兼顾变焦及对焦效果对变焦范围及对焦效果的影响。
需要说明的是,靠近基架11前端的液态透镜13主要用于通过透光膜131的形变实现变焦功能,其也能够通过透光膜131的形变产生对焦效果,在具体的对焦场景中,可以根据需求选用合适的镜头实现变焦和对焦效果。
在一些实施例中,多个透镜中的至少一个用于实现凸透镜功能,多个透镜中的至少另一个用于实现凹透镜功能,以确保变焦及对焦功能的实现便利性。其中,用于实现凸透镜功能的透镜可以是液态透镜13的透光膜131处于凸出状态,也可以是呈凸透镜形态的固态透镜16。同样的,用于实现凹透镜功能的透镜可以是液态透镜13的透光膜131处于凹陷状态,也可以是呈凹透镜形态的固态透镜16。进一步的,一个用于实现凸透镜功能的透镜可以位于靠近基架11前端的一侧,一个用于实现凹透镜功能 的透镜可以位于凸透镜功能的透镜与后端之间,以期获得较好的对焦及变焦效果。
本公开进一步提供一种成像设备,成像设备包括设备主体和上述镜头模组1。设备主体包括光学系统。镜头模组1安装在设备主体的光学系统的物体侧上。
由于镜头模组1包括多个透镜,多个透镜中的至少一个为液态透镜13、至少一个为移动透镜12,液态透镜13的透光膜131能够在外力作用下产生形变并通过流体的流动使透光膜131的曲率发生改变,进而改变液态透镜13的焦距,实现对焦或变焦,移动透镜12能够沿光轴方向移动实现对焦。利用透光膜131的曲率变化有助于增加镜头模组1的变焦范围、提高对焦效率、改变镜头畸变现象。通过移动透镜12获得对焦效果与液态透镜13的透光膜131的曲率变化的配合,避免了依靠同一液态透镜13的透光膜131的曲率变化实现对焦及变焦而造成的变焦范围减小问题,同时避免了依靠移动透镜12实现对焦及变焦而造成的设备空间不足和对焦效率降低问题,进一步提升了对焦效率及变焦范围。
需要说明的是,上述成像设备可以是手机、平板电脑、车载终端、可穿戴设备、相机等,本公开并不对此进行限制。
本领域技术人员在考虑说明书及实践这里公开的公开后,将容易想到本公开的其它实施方案。本公开旨在涵盖本公开的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本公开的一般性原理并包括本公开未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本公开的真正范围和精神由下面的权利要求指出。
应当理解的是,本公开并不局限于上面已经描述并在附图中示出的精确结构,并且可以在不脱离其范围进行各种修改和改变。本公开的范围仅由所附的权利要求来限制。
需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的 相同要素。
以上对本公开实施例所提供的方法和装置进行了详细介绍,本文中应用了具体个例对本公开的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本公开的方法及其核心思想;同时,对于本领域的一般技术人员,依据本公开的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本公开的限制。

Claims (18)

  1. 一种镜头模组,其特征在于,包括基架以及组装于所述基架的多个透镜,多个所述透镜沿光轴方向依次设置;
    所述多个透镜中的至少一个为能够沿光轴方向移动的移动透镜,以实现对焦;
    所述多个透镜中的至少一个为液态透镜,所述液态透镜包括支架和设置于所述支架至少一侧的透光膜,所述支架和所述透光膜围成流体容纳腔,所述透光膜能够在外力作用下产生形变并通过流体的流动使所述透光膜的曲率发生改变。
  2. 根据权利要求1所述的镜头模组,其特征在于,所述支架的一侧设有所述透光膜,所述支架的另一侧设有镜片;和/或,
    所述支架两侧分别设有所述透光膜。
  3. 根据权利要求1所述的镜头模组,其特征在于,还包括用于改变所述透光膜的曲率的第一驱动组件;所述第一驱动组件包括能够沿所述光轴方向移动的变焦驱动件,所述变焦驱动件上设置有透光口,所述变焦驱动件与所述透光膜相连,所述透光膜包括正对所述透光口的光学有效区,所述变焦驱动件用于沿所述光轴方向推拉所述透光膜,并使所述光学有效区产生形变。
  4. 根据权利要求3所述的镜头模组,其特征在于,所述光学有效区的厚度非均匀设置。
  5. 根据权利要求4所述的镜头模组,其特征在于,所述变焦驱动件用于朝向所述液态透镜的内侧挤压所述透光膜,并使所述光学有效区向所述液态透镜的外侧凸起,至少部分所述有效工作部分的厚度由自身中心至边缘方向逐渐减小;或,
    所述变焦驱动件用于朝向所述液态透镜的外侧拉动所述透光膜,并使所述光学有效区向所述液态透镜的内侧凹陷,至少部分所述有效工作部分的厚度由自身中心至边缘方向逐渐增大。
  6. 根据权利要求3所述的镜头模组,其特征在于,所述第一驱动组件还包括能够带动变焦驱动件沿光轴方向运动的第一动力部件;
    所述第一动力部件包括第一磁石和第一线圈,所述第一磁石和所述第一线圈中的一个设置于所述支架,另一个设置于所述变焦驱动件,以通过改变所述第一线圈的磁场方向驱动所述透光膜改变形变方向。
  7. 根据权利要求6所述的镜头模组,其特征在于,所述支架包括密封侧壁、设置于所述密封侧壁外围的安装板以及设置于所述安装板拐角处的连接柱;所述透光膜设置于所述密封侧壁的端部,且与所述密封侧壁围成所述流体容纳腔;所述连接柱沿光 轴方向延伸;
    所述变焦驱动件包括环形抵接部和环绕所述抵接部侧壁设置的支撑主体,所述抵接部的空腔形成所述透光口,所述支撑主体与所述安装板在所述光轴方向上相对设置,所述支撑主体设有与所述连接柱位置对应的第一避让开口;所述抵接部与所述透光膜连接;
    所述第一磁石与所述第一线圈中的一者设置于所述安装板朝向所述支撑主体的一侧,另一者设置于所述支撑主体朝向所述安装板的内侧面。
  8. 根据权利要求7所述的镜头模组,其特征在于,所述第一驱动组件还包括第一弹性件,所述第一弹性件分别与所述变焦驱动件及所述支架相连,以平衡所述第一磁石和所述第一线圈产生的磁力;
    所述第一弹性件包括弹簧主体、连接于所述弹簧主体的一端的第一连接片以及连接于所述弹簧主体的另一端的第二连接片,所述第一连接片与所述连接柱连接,所述第二连接片与所述支撑主体连接。
  9. 根据权利要求6所述的镜头模组,其特征在于,所述第一驱动组件包括能够单独控制的多个第一动力部件,多个所述第一动力部件环绕所述支架的周向间隔设置,以驱动所述变焦驱动件带动所述液态透镜相对于所述光轴偏转运动。
  10. 根据权利要求1所述的镜头模组,其特征在于,还包括用于驱动所述移动透镜沿所述光轴方向移动的第二驱动组件。
  11. 根据权利要求10所述的镜头模组,其特征在于,所述第二驱动组件包括至少两个单独控制的第二动力部件,以驱动所述移动透镜相对于所述光轴偏转运动。
  12. 根据权利要求11所述的镜头模组,其特征在于,所述第二动力部件包括第二磁石和第二线圈;所述第二磁石和所述第二线圈中的一个设置于所述移动透镜的外侧壁,所述第二磁石和所述第二线圈中的另一个设置于所述基架,以通过所述第二线圈形成的磁场驱动所述移动镜头沿光轴移动。
  13. 根据权利要求12所述的镜头模组,其特征在于,所述第二动力部件包括至少一个第二弹性件;所述第二弹性件的一端与所述移动透镜连接,所述第二弹性件的另一端与所述基架连接。
  14. 根据权利要求1所述的镜头模组,其特征在于,所述多个透镜包括液态透镜和固态透镜,所述液态透镜和所述固态透镜中的至少一者能够沿所述光轴方向移动。
  15. 根据权利要求14所述的镜头模组,其特征在于,所述多个透镜包括至少两个液态透镜;
    所述基架包括相对设置的前端和后端;自所述前端至所述后端,两个所述液态透镜和所述固态透镜沿所述光轴方向依次设置;或,
    所述液态透镜、所述固态透镜和所述液态透镜沿所述光轴方向依次设置。
  16. 根据权利要求15所述的镜头模组,其特征在于,所述固态透镜能够沿光轴方向移动;或,
    所述固态透镜和一个所述液态透镜均能够沿光轴方向移动;或,
    所述固态透镜和两个所述液态透镜均能够沿光轴方向移动。
  17. 根据权利要求1所述的镜头模组,其特征在于,所述多个透镜中的至少一个用于实现凸透镜功能,所述多个透镜中的至少另一个用于实现凹透镜功能。
  18. 一种成像设备,其特征在于,包括:
    设备主体,包括光学系统;
    如权利要求1-17任一项所述的镜头模组,安装在所述设备主体的所述光学系统的物体侧上。
PCT/CN2022/099922 2022-06-20 2022-06-20 镜头模组及成像设备 WO2023245358A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2022/099922 WO2023245358A1 (zh) 2022-06-20 2022-06-20 镜头模组及成像设备
CN202280004374.3A CN117651894A (zh) 2022-06-20 2022-06-20 镜头模组及成像设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/099922 WO2023245358A1 (zh) 2022-06-20 2022-06-20 镜头模组及成像设备

Publications (1)

Publication Number Publication Date
WO2023245358A1 true WO2023245358A1 (zh) 2023-12-28

Family

ID=89378934

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/099922 WO2023245358A1 (zh) 2022-06-20 2022-06-20 镜头模组及成像设备

Country Status (2)

Country Link
CN (1) CN117651894A (zh)
WO (1) WO2023245358A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6344930B1 (en) * 1999-03-03 2002-02-05 Denso Corporation Total-focus imaging apparatus using a variable-focus lens
CN110955010A (zh) * 2019-12-12 2020-04-03 东莞市亚登电子有限公司 液态镜头对焦和防抖机构、摄像模块和电子设备
CN110967783A (zh) * 2019-04-18 2020-04-07 华为技术有限公司 驱动液态镜头的马达组件、摄像头模组和电子设备
CN111323902A (zh) * 2018-12-13 2020-06-23 宁波舜宇光电信息有限公司 带有液体镜片的摄像模组及其像面校正方法
CN114077028A (zh) * 2020-08-21 2022-02-22 宁波舜宇光电信息有限公司 直立式变焦模组及相应的拍摄方法
CN114157784A (zh) * 2021-11-26 2022-03-08 昆山丘钛光电科技有限公司 一种摄像模组及终端设备
CN216561186U (zh) * 2021-08-24 2022-05-17 北京小米移动软件有限公司 混合透镜系统、成像设备和电子设备

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6344930B1 (en) * 1999-03-03 2002-02-05 Denso Corporation Total-focus imaging apparatus using a variable-focus lens
CN111323902A (zh) * 2018-12-13 2020-06-23 宁波舜宇光电信息有限公司 带有液体镜片的摄像模组及其像面校正方法
CN110967783A (zh) * 2019-04-18 2020-04-07 华为技术有限公司 驱动液态镜头的马达组件、摄像头模组和电子设备
CN110955010A (zh) * 2019-12-12 2020-04-03 东莞市亚登电子有限公司 液态镜头对焦和防抖机构、摄像模块和电子设备
CN114077028A (zh) * 2020-08-21 2022-02-22 宁波舜宇光电信息有限公司 直立式变焦模组及相应的拍摄方法
CN216561186U (zh) * 2021-08-24 2022-05-17 北京小米移动软件有限公司 混合透镜系统、成像设备和电子设备
CN114157784A (zh) * 2021-11-26 2022-03-08 昆山丘钛光电科技有限公司 一种摄像模组及终端设备

Also Published As

Publication number Publication date
CN117651894A (zh) 2024-03-05

Similar Documents

Publication Publication Date Title
US9549107B2 (en) Autofocus for folded optic array cameras
US11796891B2 (en) Optical driving mechanism
WO2021017181A1 (zh) 摄像模组及其镜头组件以及移动终端
WO2021104017A1 (zh) 摄像头模组及电子设备
KR20070041341A (ko) 촬상 장치
CN107247385B (zh) 一种摄像模组及摄像装置
CN213423566U (zh) 光学系统
CN211206941U (zh) 潜望式光学模块以及光学系统
CN110646932B (zh) 反射式摄像头和电子装置
US11506861B2 (en) Imaging lens module and electronic device
WO2021104402A1 (zh) 一种摄像头模组及电子设备
WO2021213216A1 (zh) 潜望式摄像模组、多摄摄像模组和摄像模组的组装方法
US11668999B2 (en) Optical imaging apparatus
WO2023070596A1 (zh) 透镜驱动装置、摄像装置以及移动终端
WO2023245358A1 (zh) 镜头模组及成像设备
CN110764170B (zh) 光学元件、镜头、摄像头及电子装置
US20230221537A1 (en) Lens module, camera module, and terminal
CN213457506U (zh) 光学系统
CN212302033U (zh) 镜头驱动模块与电子装置
TWI769465B (zh) 光學成像裝置
WO2021253227A1 (zh) 变焦结构及摄像装置
CN114079710A (zh) 潜望式连续光变摄像模组及相应的电子设备
CN114967079B (zh) 微型长焦成像系统、镜头、摄像模组及电子设备
CN111953895B (zh) 可对焦成像装置
CN117289371A (zh) 凹透镜模组、摄像装置及移动终端

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 202280004374.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22947139

Country of ref document: EP

Kind code of ref document: A1