WO2023243581A1 - Manufacturing method for capacitor, and capacitor - Google Patents

Manufacturing method for capacitor, and capacitor Download PDF

Info

Publication number
WO2023243581A1
WO2023243581A1 PCT/JP2023/021668 JP2023021668W WO2023243581A1 WO 2023243581 A1 WO2023243581 A1 WO 2023243581A1 JP 2023021668 W JP2023021668 W JP 2023021668W WO 2023243581 A1 WO2023243581 A1 WO 2023243581A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
capacitor
resin
base electrode
base
Prior art date
Application number
PCT/JP2023/021668
Other languages
French (fr)
Japanese (ja)
Inventor
克朋 有富
芳正 吉野
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Publication of WO2023243581A1 publication Critical patent/WO2023243581A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/30Stacked capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/008Terminals
    • H01G9/012Terminals specially adapted for solid capacitors

Definitions

  • This invention relates to a technique for connecting internal electrodes within a laminate to external electrodes on the outer surface of the laminate.
  • Patent Document 1 describes a chip type capacitor.
  • the internal electrodes are exposed on the side surface of the chip substrate.
  • a metal film is formed on the exposed surface by plating, and a conductive resin paste is further applied.
  • side electrodes are formed on the side surfaces of the chip substrate, and the internal electrodes and the side electrodes (external electrodes) are connected.
  • Patent Document 2 describes a solid electrolytic capacitor.
  • a part of the anode body is exposed to the outside of the sealing body.
  • the exposed portion is covered with a plating layer, and is electrically connected to the conductive elastic body for the anode through the plating layer.
  • an external electrode is formed on the side surface of the sealing body, and the anode body (internal electrode) and the external electrode are connected.
  • the adhesion strength (adhesion strength) between the internal electrode and the external electrode may be low.
  • Such a low adhesion force for example, causes an increase in ESR of the solid electrolytic capacitor.
  • an object of the present invention is to obtain high adhesion between the internal electrode and the external electrode.
  • the capacitor manufacturing method of the present invention includes an element body forming step, a base electrode forming step, and an external electrode forming step.
  • the element forming process a plurality of flat film-shaped capacitor electrodes are stacked and sealed with an insulating resin to form an element, and a plurality of capacitor electrodes are exposed in a linear manner on the end face of the element.
  • a base electrode is formed on the exposed end faces of the plurality of capacitor electrodes by an AD method.
  • the resin electrode forming step a resin electrode is formed to cover the end face and the base electrode.
  • an external electrode covering the resin electrode is formed.
  • the surface roughness of the base electrode in the direction in which the base electrode extends linearly is 1.5 ⁇ m or more and 10.0 ⁇ m or less.
  • the base electrode has appropriate unevenness in a direction perpendicular to the end face. This improves the adhesion between the base metal and the resin electrode, and the adhesion between the capacitor electrode and the resin and external electrodes.
  • FIG. 1 is an external perspective view of a solid electrolytic capacitor according to an embodiment of the present invention.
  • FIG. 2 is a side sectional view showing the configuration of a solid electrolytic capacitor according to an embodiment of the present invention.
  • FIG. 3(A) is a plan view of the capacitor element, and FIG. 3(B) is a side sectional view of the capacitor element.
  • FIG. 4 is a flowchart showing an example of a schematic flow of the method for manufacturing a solid electrolytic capacitor according to this embodiment.
  • 5(A), FIG. 5(B), and FIG. 5(C) are side sectional views of the solid electrolytic capacitor according to the present embodiment according to each process.
  • FIG. 6 is a diagram of an apparatus for forming a base electrode using the AD method.
  • FIG. 7 is an enlarged plan view showing an example of a specific shape of the base electrode.
  • FIG. 8 is a table showing the relationship between surface roughness Rmax and adhesion force.
  • FIG. 1 is an external perspective view of a solid electrolytic capacitor according to an embodiment of the present invention.
  • FIG. 2 is a side sectional view showing the configuration of a solid electrolytic capacitor according to an embodiment of the present invention.
  • FIG. 2 is a cross-sectional view taken along a plane perpendicular to the top, bottom, and end surfaces of the solid electrolytic capacitor body.
  • FIG. 2 in order to describe the configuration in an easy-to-understand manner, dimensions in each direction are appropriately emphasized, and in particular, dimensions in the height direction (z-axis direction in the figure) are emphasized.
  • the solid electrolytic capacitor 10 includes an element body 11, a base electrode 61, a base electrode 62, a resin electrode 71, a resin electrode 72, an external electrode 81, and an external electrode 82.
  • the element body 11 has a rectangular parallelepiped shape and has a top surface, a bottom surface, an end surface 111, an end surface 112, and two side surfaces.
  • the element body 11 includes a plurality of capacitor elements 20, a plurality of cathode electrodes 30, a plurality of connection layers 40, an insulating resin 50, and an insulator layer 500.
  • the cathode electrode 30 is a type of "capacitor electrode" of the present invention.
  • FIG. 3(A) is a plan view of the capacitor element
  • FIG. 3(B) is a side sectional view of the capacitor element
  • FIG. 3(B) is a cross-sectional view taken along a plane perpendicular to the flat membrane surface and the end surface of the capacitor element.
  • the capacitor element 20 includes an anode electrode 21 and a CP layer (solid electrolyte layer) 22.
  • the anode electrode 21 is a type of "capacitor electrode" of the present invention.
  • the anode electrode 21 is a flat membrane having a predetermined thickness, and has an end surface 211, an end surface 212, a flat membrane surface 213, and a flat membrane surface 214.
  • the length of the flat membrane surface 213 and the flat membrane surface 214 in the direction perpendicular to each other corresponds to the thickness of the anode electrode 21 .
  • the anode electrode 21 includes a large number of holes recessed from the flat membrane surfaces 213 and 214.
  • the portion of the anode electrode 21 having a predetermined thickness near the flat membrane surfaces 213 and 214 is a porous body in a porous state.
  • the ratio of the thicknesses of the porous body and core metal portion on one side of the anode electrode 21 to the thickness of the porous body on the other side is about 1:1:1.
  • the dielectric layer 210 covers the outer surface of the anode electrode 21. Since the detailed structure of the anode electrode 21 is not illustrated in FIG. 3, the dielectric layer 210 is schematically shown as covering the macroscopic surface (flat membrane surfaces 213 and 214) of the anode electrode 21. has been done. However, in reality, the dielectric layer 210 covers not only the macroscopic surface (flat membrane surfaces 213 and 214) of the anode electrode 21 but also the inner surfaces of the many holes in the anode electrode 21.
  • the CP layer 22 covers the surface of the dielectric layer 210.
  • An insulator layer 500 is formed in a region of the flat film surfaces 213 and 214 of the anode electrode 21 on the end surface 211 side.
  • the region in which the CP layer 22 is formed is regulated by the insulator layer 500. More specifically, the CP layer 22 has a shape that does not reach the end surface 211 of the anode electrode 21.
  • the anode electrode 21 and the CP layer 22 face each other with the dielectric layer 210 in between, and the capacitor element 20 functions as a capacitor having a predetermined capacitance.
  • the plurality of capacitor elements 20 and the plurality of cathode electrodes 30 have a flat film shape.
  • the plurality of capacitor elements 20 and the plurality of cathode electrodes 30 are arranged such that their respective flat membrane surfaces are substantially parallel to the top and bottom surfaces of the element body 11.
  • the plurality of capacitor elements 20 and the plurality of cathode electrodes 30 are arranged alternately in a direction perpendicular to the top surface and the bottom surface (height direction of the element body 11 (z-axis direction in the figure)). Note that in FIG. 2, the number of the plurality of capacitor elements 20 is three, and the number of the plurality of cathode electrodes 30 is four, but the respective numbers are not limited to these.
  • connection layer 40 is provided between adjacent capacitor elements 20 and cathode electrodes 30.
  • the connection layer 40 has conductivity. Thereby, the CP layer 22 of the capacitor element 20 and the cathode electrode 30 are electrically connected.
  • the end surfaces 211 (see FIG. 3(B)) of the plurality of capacitor elements 20 are at approximately the same position when viewed from the side.
  • the end surfaces 311 of the plurality of cathode electrodes 30 are at approximately the same position when viewed from the side.
  • the end surfaces 211 of the plurality of capacitor elements 20 protrude from the end surfaces 312 of the plurality of cathode electrodes 30.
  • the end surfaces 311 of the plurality of cathode electrodes 30 protrude more than the end surfaces 212 of the plurality of capacitor elements 20.
  • the capacitor laminate in which a plurality of capacitor elements 20 and a plurality of cathode electrodes 30 are stacked in this way is sealed with an insulating resin 50. More specifically, the insulating resin 50 covers the capacitor laminate so that the end faces 211 of the plurality of capacitor elements 20 and the end faces 311 of the plurality of cathode electrodes 30 are exposed and the other parts are enclosed.
  • the end faces 211 of the plurality of capacitor elements 20 are exposed to the outside of the element body 11 from the end face 111 of the element body 11.
  • the end surfaces 211 of the plurality of capacitor elements 20 are aligned with the end surfaces of the element bodies 11 in a line substantially perpendicular to the stacking direction when viewed in the stacking direction of the plurality of capacitor elements 20 (the z-axis direction in FIG. 2). Exposure from 111.
  • the end faces 311 of the plurality of cathode electrodes 30 are exposed to the outside of the element body 11 from the end face 112 of the element body 11. At this time, the end surfaces 311 of the plurality of cathode electrodes 30 are linear, substantially perpendicular to the stacking direction when viewed in the stacking direction of the plurality of cathode electrodes 30 (the z-axis direction in FIG. 2), and It is exposed from the end face 112.
  • the plurality of base electrodes 61 are formed on the end surfaces 211 of the anode electrodes 21 of the plurality of capacitor elements 20, respectively.
  • the base electrode 61 is formed with a predetermined thickness (height) from the end surface 211. That is, the base electrode 61 protrudes outward from the end surface 111 of the element body 11. Note that a specific method for forming the base electrode 61 and a specific shape will be described later.
  • the plurality of base electrodes 62 are formed on the end surfaces 311 of the plurality of cathode electrodes 30, respectively.
  • the base electrode 62 is formed with a predetermined thickness (height) from the end surface 311. That is, the base electrode 62 protrudes outward from the end surface 112 of the element body 11 .
  • the specific formation method and specific shape of the base electrode 62 are the same as those of the base electrode 61, and a description thereof will be omitted.
  • the resin electrode 71 contacts the end surface 111 of the element body 11 and the base electrode 61, and covers the end surface 111 and the base electrode 61.
  • the resin electrode 72 contacts the end surface 112 of the element body 11 and the base electrode 62 and covers the end surface 112 and the base electrode 62.
  • the external electrode 81 has a laminated structure of an electrode film 811 and an electrode film 812.
  • the electrode film 811 covers the outer surface of the resin electrode 71, and the electrode film 812 covers the outer surface of the electrode film 811.
  • the external electrode 82 has a laminated structure of an electrode film 821 and an electrode film 822.
  • the electrode film 821 covers the outer surface of the resin electrode 72, and the electrode film 822 covers the outer surface of the electrode film 821.
  • FIG. 4 is a flowchart showing an example of a schematic flow of the method for manufacturing a solid electrolytic capacitor according to this embodiment.
  • 5(A), FIG. 5(B), and FIG. 5(C) are side sectional views of the solid electrolytic capacitor according to the present embodiment according to each process.
  • FIG. 6 is a diagram of an apparatus for forming a base electrode using the AD method.
  • the element body 11 is formed (S11). Specifically, as shown in FIG. 5A, a plurality of capacitor elements 20 and a plurality of cathode electrodes 30 are sequentially stacked with a connection layer 40 in between to form a laminate. The element body 11 is formed by sealing the laminate with an insulating resin 50. At this time, the anode electrodes 21 and the cathode electrodes 30 of the plurality of capacitor elements 20 are made of, for example, aluminum.
  • a base electrode 61 is formed on the end face 211 of the anode electrode 21 of the plurality of capacitor elements 20 in the element body 11 using the AD method (S12).
  • a plurality of element bodies 11 are fixed on a stage 92 and placed in a chamber 91. At least the tip (the ejection end) of the aerosol generator 93 is inserted into the chamber 91 .
  • the aerosol generator 93 generates an aerosol by introducing copper powder (Cu powder) 600 into the carrier gas, and sprays the aerosol onto the end surface 111 of the element body 11 .
  • the copper powder 600 can be
  • a base electrode 61 is formed on the end surface 211 of the plurality of anode electrodes 21 by stacking them at a predetermined height (predetermined thickness) (see FIG. 5(B)).
  • the particle size of the copper powder 600 is, for example, about 3 ⁇ m, but may be 2 ⁇ m or less.
  • the base electrode 62 is formed on the end surface 311 of the plurality of cathode electrodes 30 in the element body 11 using the AD method (S13). Note that the method for forming the base electrode 62 is the same as the method for forming the base electrode 61, and a description thereof will be omitted (see FIG. 5(B)).
  • a resin electrode 71 is formed so as to cover the end face 111 of the element body 11 and the base electrode 61, and a resin electrode 72 is formed so as to cover the end face 112 of the element body 11 and the base electrode 62 (S15).
  • the resin electrode 71 is made of a paste-like material in which conductive particles such as silver (Ag) are kneaded into resin.
  • the resin electrode 71 is formed by applying this paste-like material so as to cover the end surface 111 of the element body 11 and the base electrode 61 and then solidifying it (see FIG. 5(C)). Since the resin electrode 72 is also formed by the same method as the resin electrode 71, the description thereof will be omitted (see FIG. 5(C)).
  • an external electrode 81 is formed on the surface of the resin electrode 71, and an external electrode 82 is formed on the surface of the resin electrode 72 (S15).
  • the external electrode 81 consists of an electrode film 811 and an electrode film 812, and is formed by plating.
  • the electrode film 811 is a nickel (Ni) plating layer
  • the electrode film 812 is a tin (Sn) plating layer.
  • the external electrode 82 is also formed by plating like the external electrode 81.
  • the electrode film 821 is a nickel (Ni) plating layer
  • the electrode film 822 is a tin (Sn) plating layer.
  • the thickness of the terminal electrode consisting of the resin electrode 71 and the external electrode 81 and the thickness of the terminal electrode consisting of the resin electrode 72 and the external electrode 82 are preferably 8 ⁇ m or more and less than 20 ⁇ m.
  • FIG. 7 is an enlarged plan view showing an example of a specific shape of the base electrode.
  • FIG. 7 is a diagram of the solid electrolytic capacitor 10 and the element body 11 as viewed in the thickness direction (z-axis direction).
  • the base electrode 61 When the base electrode 61 is formed using the AD method, the base electrode 61 is formed in the shape of a mountain protruding from the end surface 211 of the anode electrode 21 (see FIG. 2). At this time, as shown in FIG. 7, the base electrode 61 has a ridgeline 610 extending along the longitudinal direction of the end surface 211 (the y-axis direction in the figure) when viewed in a direction perpendicular to the flat membrane surface 213 of the anode electrode 21.
  • the ridge line 610 is a line connecting the furthest point of the base electrode 61 in the direction orthogonal to the end surface 211 at each position in the longitudinal direction of the end surface 211 (the direction perpendicular to the thickness direction of the anode electrode 21 on the end surface 211).
  • the height of this ridgeline 610 (the length of protrusion from the end surface 211 (distance in the x-axis direction)) varies in the longitudinal direction.
  • the surface roughness Rmax is defined as a variation index of the height of the ridgeline 610.
  • the surface roughness Rmax in this case is the difference between the length (Hmax) from the end surface 211 at the highest point of the ridge line 610 and the length (Hmin) from the end surface 211 at the lowest point (Hmax - Hmin). ) is defined.
  • the surface roughness Rmax is 1.5 ⁇ m or more and 10.0 ⁇ m or less.
  • FIG. 8 is a table showing the relationship between surface roughness Rmax and adhesion force.
  • the adhesion force is the adhesion force between the base electrode 61 and the resin electrode 71, and in turn corresponds to the adhesion force between the anode electrode 21 and the terminal electrode (the electrode consisting of the resin electrode 71 and the external electrode 81).
  • F indicates that the adhesion is within a reasonable range
  • G indicates that the adhesion is good
  • E indicates that the adhesion is excellent. That is, the adhesion force is in the relationship F ⁇ G ⁇ E.
  • the thickness of the base electrode 61 is larger than the respective surface roughness Rmax.
  • the maximum thickness (length Hmax) of the base electrode 61 is 0.5 ⁇ m or more.
  • the maximum thickness (length Hmax) of the base electrode 61 is 1.5 ⁇ m or more, and when the surface roughness Rmax is 10.0 ⁇ m, the maximum thickness of the base electrode 61 is (Length Hmax) is 10.0 ⁇ m or more.
  • the base electrode 61 has a shape that is neither too thin nor too thick, and the base electrode This is because a surface area of 61 mm can be obtained. Thereby, the adhesion between the base electrode 61 and the resin electrode 71 is improved, and a decrease in ESR can be suppressed.
  • the thickness of the base electrode 61 is preferably 0.1 ⁇ m or more and less than 30 ⁇ m within a thickness range that can achieve the above-mentioned surface roughness Rmax.
  • the thickness of the base electrode 61 here is the average value of the height of the ridge line (the average value in the y-axis direction in the figure). Thereby, the base electrode 61 has a more appropriate thickness, the adhesion between the base electrode 61 and the resin electrode 71 can be stably increased, and a decrease in ESR can be suppressed.
  • a solid electrolytic capacitor is explained as an example, but the present embodiment can be applied to any electronic component including a laminate including a film-like internal electrode and an external electrode formed on an end surface of the laminate. By applying the configuration, similar effects can be achieved.
  • the configuration of this embodiment is particularly effective in electronic components that use resin electrodes between internal electrodes and external electrodes.
  • the surface roughness of the base electrode in the direction in which the base electrode extends linearly is 1.5 ⁇ m or more and 10.0 ⁇ m or less, Method of manufacturing capacitors.
  • the capacitor electrode includes an anode electrode made of aluminum, In the anode electrode, A porous material is formed at a predetermined depth from the flat membrane surface forming the flat membrane shape, the flat membrane surface and the surface of the porous body are oxidized to form a dielectric layer; A method for manufacturing a capacitor according to ⁇ 1>.
  • ⁇ 3> The method for manufacturing a capacitor according to ⁇ 1> or ⁇ 2>, wherein the base electrode has an average thickness of 0.1 ⁇ m or more and less than 30 ⁇ m.
  • ⁇ 4> The method for manufacturing a capacitor according to any one of ⁇ 1> to ⁇ 3>, wherein the external electrode has a thickness of 8 ⁇ m or more and less than 20 ⁇ m.
  • ⁇ 5> In the external electrode forming step, forming the external electrode on the resin electrode by plating; The method for manufacturing a capacitor according to any one of ⁇ 1> to ⁇ 4>.
  • the capacitor electrode includes an anode electrode formed of aluminum, In the anode electrode, A porous body is located at a predetermined depth from the flat membrane surface forming the flat membrane shape, the flat membrane surface and the surface of the porous body are oxidized dielectric layers; The capacitor described in ⁇ 6>.
  • ⁇ 8> The capacitor according to ⁇ 6> or ⁇ 7>, wherein the base electrode has an average thickness of 0.1 ⁇ m or more and less than 30 ⁇ m.
  • ⁇ 9> The capacitor according to any one of ⁇ 6> to ⁇ 8>, wherein the terminal electrode made of the resin electrode and the external electrode has a thickness of 8 ⁇ m or more and less than 20 ⁇ m.
  • Solid electrolytic capacitor 11 Element body 20: Capacitor element 21: Anode electrode 22: CP layer 30: Cathode electrode 40: Connection layer 50: Insulating resin 61, 62: Base electrode 71, 72: Resin electrode 81, 82: External electrode 91: Chamber 92: Stage 93: Aerosol generator 111, 112: End surface 210: Dielectric layer 211, 212, 311, 312: End surface 213, 214: Flat film surface 500: Insulator layer 600: Copper powder 610: Ridge lines 811, 812, 821, 822: electrode film

Abstract

In the present invention, a solid electrolyte capacitor (10) comprises: an element body (11) having an end surface (111) from which a plurality of positive electrodes (21) are linearly exposed; base electrodes (61) disposed on exposed surfaces of end surfaces (211) of the plurality of positive electrodes (21); a resin electrode (71) covering the end surface (111) of the element body (11) and the base electrodes (61); and an external electrode (81) covering the resin electrode (71). The surface roughness of the base electrodes (61), in the direction in which the base electrodes (61) linearly extend, is 1.5-10.0 μm.

Description

コンデンサの製造方法、および、コンデンサCapacitor manufacturing method and capacitor
 積層体内の内部電極を積層体の外面の外部電極に接続する技術に関する。 This invention relates to a technique for connecting internal electrodes within a laminate to external electrodes on the outer surface of the laminate.
 特許文献1には、チップ型コンデンサが記載されている。特許文献1のチップ型コンデンサでは、内部電極がチップ基板の側面に露出している。露出面には、めっき処理によって金属膜が形成され、さらに、導電性樹脂ペーストが塗布されている。これにより、チップ基板の側面に側面電極(外部電極)が形成され、内部電極と側面電極(外部電極)とが接続される。 Patent Document 1 describes a chip type capacitor. In the chip-type capacitor disclosed in Patent Document 1, the internal electrodes are exposed on the side surface of the chip substrate. A metal film is formed on the exposed surface by plating, and a conductive resin paste is further applied. As a result, side electrodes (external electrodes) are formed on the side surfaces of the chip substrate, and the internal electrodes and the side electrodes (external electrodes) are connected.
 特許文献2には、固体電解コンデンサが記載されている。特許文献2に記載の固体電解コンデンサでは、陽極体の一部が封止体の外部に露出している。露出部は、めっき層で被覆されており、めっき層を通じて陽極用導電性弾性体へ電気的に接続される。これにより、封止体の側面に外部電極が形成され、陽極体(内部電極)と外部電極とは接続される。 Patent Document 2 describes a solid electrolytic capacitor. In the solid electrolytic capacitor described in Patent Document 2, a part of the anode body is exposed to the outside of the sealing body. The exposed portion is covered with a plating layer, and is electrically connected to the conductive elastic body for the anode through the plating layer. As a result, an external electrode is formed on the side surface of the sealing body, and the anode body (internal electrode) and the external electrode are connected.
特開2007-073883号公報Japanese Patent Application Publication No. 2007-073883 特許第3276113号公報Patent No. 3276113
 しかしながら、特許文献1、2に記載の構成では、内部電極と外部電極との密着力(固着強度)が低くなる場合があった。このような密着力の低さは、例えば、固体電解コンデンサのESRの増加を招いてしまう。 However, in the configurations described in Patent Documents 1 and 2, the adhesion strength (adhesion strength) between the internal electrode and the external electrode may be low. Such a low adhesion force, for example, causes an increase in ESR of the solid electrolytic capacitor.
 したがって、本発明の目的は、内部電極と外部電極との間で高い密着力を得ることにある。 Therefore, an object of the present invention is to obtain high adhesion between the internal electrode and the external electrode.
 この発明のコンデンサの製造方法は、素体形成工程、下地電極形成工程、外部電極形成工程を有する。素体形成工程は、複数の平膜状のコンデンサ用電極を積層して絶縁性樹脂によって封止することで素体を形成し、素体の端面に複数のコンデンサ用電極を線状に露出させる。下地金属形成工程は、複数のコンデンサ用電極の端面の露出面にAD法によって下地電極を形成する。樹脂電極形成工程は、端面と下地電極とを覆う樹脂電極を形成する。外部電極形成工程は、樹脂電極を覆う外部電極を形成する。下地電極形成工程では、下地電極が線状に延びる方向の下地電極の表面粗さは、1.5μm以上10.0μm以下である。 The capacitor manufacturing method of the present invention includes an element body forming step, a base electrode forming step, and an external electrode forming step. In the element forming process, a plurality of flat film-shaped capacitor electrodes are stacked and sealed with an insulating resin to form an element, and a plurality of capacitor electrodes are exposed in a linear manner on the end face of the element. . In the base metal forming step, a base electrode is formed on the exposed end faces of the plurality of capacitor electrodes by an AD method. In the resin electrode forming step, a resin electrode is formed to cover the end face and the base electrode. In the external electrode forming step, an external electrode covering the resin electrode is formed. In the base electrode forming step, the surface roughness of the base electrode in the direction in which the base electrode extends linearly is 1.5 μm or more and 10.0 μm or less.
 この方法では、下地電極が端面に直交する方向に適切な凹凸を有する。これにより、下地金属と樹脂電極との密着力が向上し、コンデンサ用電極と樹脂電極および外部電極との密着力は向上する。 In this method, the base electrode has appropriate unevenness in a direction perpendicular to the end face. This improves the adhesion between the base metal and the resin electrode, and the adhesion between the capacitor electrode and the resin and external electrodes.
 この発明によれば、内部電極と外部電極との間で高い密着力を得られる。 According to this invention, high adhesion can be obtained between the internal electrode and the external electrode.
図1は、本発明の実施形態に係る固体電解コンデンサの外観斜視図である。FIG. 1 is an external perspective view of a solid electrolytic capacitor according to an embodiment of the present invention. 図2は、本発明の実施形態に係る固体電解コンデンサの構成を示す側面断面図である。FIG. 2 is a side sectional view showing the configuration of a solid electrolytic capacitor according to an embodiment of the present invention. 図3(A)は、コンデンサ素子の平面図であり、図3(B)はコンデンサ素子の側面断面図である。FIG. 3(A) is a plan view of the capacitor element, and FIG. 3(B) is a side sectional view of the capacitor element. 図4は、本実施形態に係る固体電解コンデンサの製造方法の概略フローの一例を示すフローチャートである。FIG. 4 is a flowchart showing an example of a schematic flow of the method for manufacturing a solid electrolytic capacitor according to this embodiment. 図5(A)、図5(B)、図5(C)は、本実施形態に係る固体電解コンデンサの工程別の側面断面図である。5(A), FIG. 5(B), and FIG. 5(C) are side sectional views of the solid electrolytic capacitor according to the present embodiment according to each process. 図6は、AD法による下地電極の形成装置の図である。FIG. 6 is a diagram of an apparatus for forming a base electrode using the AD method. 図7は、下地電極の具体的な形状の一例を示す拡大平面図である。FIG. 7 is an enlarged plan view showing an example of a specific shape of the base electrode. 図8は、表面粗さRmaxと密着力との関係を示す表である。FIG. 8 is a table showing the relationship between surface roughness Rmax and adhesion force.
 本発明の実施形態に係る固体電解コンデンサの製造方法、および、この製造方法によって製造される固体電解コンデンサについて、図を参照して説明する。 A method for manufacturing a solid electrolytic capacitor according to an embodiment of the present invention and a solid electrolytic capacitor manufactured by this manufacturing method will be described with reference to the drawings.
 (固体電解コンデンサ10の構成の説明)
 図1は、本発明の実施形態に係る固体電解コンデンサの外観斜視図である。図2は、本発明の実施形態に係る固体電解コンデンサの構成を示す側面断面図である。図2は、固体電解コンデンサの素体の天面、底面および端面に直交する面による断面図である。なお、図2では、構成を分かり易く記載するため、各方向の寸法を適宜強調しており、特に、高さ方向(図のz軸方向)の寸法を強調している。
(Description of the configuration of the solid electrolytic capacitor 10)
FIG. 1 is an external perspective view of a solid electrolytic capacitor according to an embodiment of the present invention. FIG. 2 is a side sectional view showing the configuration of a solid electrolytic capacitor according to an embodiment of the present invention. FIG. 2 is a cross-sectional view taken along a plane perpendicular to the top, bottom, and end surfaces of the solid electrolytic capacitor body. In addition, in FIG. 2, in order to describe the configuration in an easy-to-understand manner, dimensions in each direction are appropriately emphasized, and in particular, dimensions in the height direction (z-axis direction in the figure) are emphasized.
 図1、図2に示すように、固体電解コンデンサ10は、素体11、下地電極61、下地電極62、樹脂電極71、樹脂電極72、外部電極81、および、外部電極82を備える。 As shown in FIGS. 1 and 2, the solid electrolytic capacitor 10 includes an element body 11, a base electrode 61, a base electrode 62, a resin electrode 71, a resin electrode 72, an external electrode 81, and an external electrode 82.
 素体11は、直方体形状であり、天面、底面、端面111、端面112、二個の側面を有する。素体11は、複数のコンデンサ素子20、複数の陰極電極30、複数の接続層40、絶縁性樹脂50、および、絶縁体層500を備える。陰極電極30が、本発明の「コンデンサ用電極」の一種である。 The element body 11 has a rectangular parallelepiped shape and has a top surface, a bottom surface, an end surface 111, an end surface 112, and two side surfaces. The element body 11 includes a plurality of capacitor elements 20, a plurality of cathode electrodes 30, a plurality of connection layers 40, an insulating resin 50, and an insulator layer 500. The cathode electrode 30 is a type of "capacitor electrode" of the present invention.
 図3(A)は、コンデンサ素子の平面図であり、図3(B)はコンデンサ素子の側面断面図である。図3(B)は、コンデンサ素子の平膜面および端面に直交する面による断面図である。 FIG. 3(A) is a plan view of the capacitor element, and FIG. 3(B) is a side sectional view of the capacitor element. FIG. 3(B) is a cross-sectional view taken along a plane perpendicular to the flat membrane surface and the end surface of the capacitor element.
 図3(A)、図3(B)に示すように、コンデンサ素子20は、陽極電極21、CP層(固体電解質層)22を備える。陽極電極21は、本発明の「コンデンサ用電極」の一種である。 As shown in FIGS. 3(A) and 3(B), the capacitor element 20 includes an anode electrode 21 and a CP layer (solid electrolyte layer) 22. The anode electrode 21 is a type of "capacitor electrode" of the present invention.
 陽極電極21は、所定の厚みを有する平膜であり、端面211、端面212、平膜面213、平膜面214を有する。平膜面213と平膜面214との直交する方向の長さが、陽極電極21の厚みに対応する。図3では詳細な構造の図示は割愛されているが、陽極電極21は、平膜面213、214から凹む多数の孔を備える。言い換えれば、陽極電極21における平膜面213、214の近傍の所定厚みの部分は、ポーラス状態の多孔質体である。陽極電極21の一方側の多孔質体と芯金部分と他方側の多孔質体の厚みの比は、1:1:1程度である。 The anode electrode 21 is a flat membrane having a predetermined thickness, and has an end surface 211, an end surface 212, a flat membrane surface 213, and a flat membrane surface 214. The length of the flat membrane surface 213 and the flat membrane surface 214 in the direction perpendicular to each other corresponds to the thickness of the anode electrode 21 . Although illustration of the detailed structure is omitted in FIG. 3, the anode electrode 21 includes a large number of holes recessed from the flat membrane surfaces 213 and 214. In other words, the portion of the anode electrode 21 having a predetermined thickness near the flat membrane surfaces 213 and 214 is a porous body in a porous state. The ratio of the thicknesses of the porous body and core metal portion on one side of the anode electrode 21 to the thickness of the porous body on the other side is about 1:1:1.
 誘電体層210は、陽極電極21の外面を覆う。図3では陽極電極21の詳細な構造の図示が割愛されているため、誘電体層210は模式的に陽極電極21の巨視的な表面(平膜面213、214)を覆っているように図示されている。しかしながら、実際には、誘電体層210は、陽極電極21の巨視的な表面(平膜面213、214)のみならず、陽極電極21の多数の孔の内面も覆っている。 The dielectric layer 210 covers the outer surface of the anode electrode 21. Since the detailed structure of the anode electrode 21 is not illustrated in FIG. 3, the dielectric layer 210 is schematically shown as covering the macroscopic surface (flat membrane surfaces 213 and 214) of the anode electrode 21. has been done. However, in reality, the dielectric layer 210 covers not only the macroscopic surface (flat membrane surfaces 213 and 214) of the anode electrode 21 but also the inner surfaces of the many holes in the anode electrode 21.
 CP層22は、誘電体層210の表面を覆う。陽極電極21の平膜面213、214における端面211側の領域には、絶縁体層500が形成されている。絶縁体層500によって、CP層22の形成領域が規制される。より具体的には、CP層22は、陽極電極21における端面211に達しない形状である。 The CP layer 22 covers the surface of the dielectric layer 210. An insulator layer 500 is formed in a region of the flat film surfaces 213 and 214 of the anode electrode 21 on the end surface 211 side. The region in which the CP layer 22 is formed is regulated by the insulator layer 500. More specifically, the CP layer 22 has a shape that does not reach the end surface 211 of the anode electrode 21.
 このような構成によって、陽極電極21とCP層22とは、誘電体層210を挟んで対向し、コンデンサ素子20は、所定の静電容量を有するコンデンサとして機能する。 With such a configuration, the anode electrode 21 and the CP layer 22 face each other with the dielectric layer 210 in between, and the capacitor element 20 functions as a capacitor having a predetermined capacitance.
 複数のコンデンサ素子20と複数の陰極電極30は、平膜状である。複数のコンデンサ素子20と複数の陰極電極30とは、それぞれの平膜面が素体11の天面および底面に略平行になるように配置される。複数のコンデンサ素子20と複数の陰極電極30とは、天面および底面に直交する方向(素体11の高さ方向(図のz軸方向))に、交互に配置される。なお、図2では、複数のコンデンサ素子20の個数は3であり、複数の陰極電極30の個数は4であるが、それぞれの個数はこれに限るものではない。 The plurality of capacitor elements 20 and the plurality of cathode electrodes 30 have a flat film shape. The plurality of capacitor elements 20 and the plurality of cathode electrodes 30 are arranged such that their respective flat membrane surfaces are substantially parallel to the top and bottom surfaces of the element body 11. The plurality of capacitor elements 20 and the plurality of cathode electrodes 30 are arranged alternately in a direction perpendicular to the top surface and the bottom surface (height direction of the element body 11 (z-axis direction in the figure)). Note that in FIG. 2, the number of the plurality of capacitor elements 20 is three, and the number of the plurality of cathode electrodes 30 is four, but the respective numbers are not limited to these.
 隣り合うコンデンサ素子20と陰極電極30との間には接続層40が配設される。接続層40は導電性を有する。これにより、コンデンサ素子20のCP層22と陰極電極30とは電気的に接続される。 A connection layer 40 is provided between adjacent capacitor elements 20 and cathode electrodes 30. The connection layer 40 has conductivity. Thereby, the CP layer 22 of the capacitor element 20 and the cathode electrode 30 are electrically connected.
 このような積層状態において、複数のコンデンサ素子20の端面211(図3(B)参照)は側面視して略同じ位置となる。複数の陰極電極30の端面311は側面視して略同じ位置となる。そして、複数のコンデンサ素子20の端面211は複数の陰極電極30の端面312よりも突出している。また、複数の陰極電極30の端面311は複数のコンデンサ素子20の端面212よりも突出している。 In such a stacked state, the end surfaces 211 (see FIG. 3(B)) of the plurality of capacitor elements 20 are at approximately the same position when viewed from the side. The end surfaces 311 of the plurality of cathode electrodes 30 are at approximately the same position when viewed from the side. The end surfaces 211 of the plurality of capacitor elements 20 protrude from the end surfaces 312 of the plurality of cathode electrodes 30. Furthermore, the end surfaces 311 of the plurality of cathode electrodes 30 protrude more than the end surfaces 212 of the plurality of capacitor elements 20.
 このように複数のコンデンサ素子20と複数の陰極電極30とが積層されたコンデンサ積層体は、絶縁性樹脂50によって封止される。より具体的には、絶縁性樹脂50は、複数のコンデンサ素子20の端面211および複数の陰極電極30の端面311が露出し、他の部分を内包するように、コンデンサ積層体を覆う。 The capacitor laminate in which a plurality of capacitor elements 20 and a plurality of cathode electrodes 30 are stacked in this way is sealed with an insulating resin 50. More specifically, the insulating resin 50 covers the capacitor laminate so that the end faces 211 of the plurality of capacitor elements 20 and the end faces 311 of the plurality of cathode electrodes 30 are exposed and the other parts are enclosed.
 これにより、複数のコンデンサ素子20の端面211は、素体11の端面111から素体11の外部に露出する。この際、複数のコンデンサ素子20の端面211は、複数のコンデンサ素子20の積層方向(図2のz軸方向)に視て、該積層方向に対して略直交する線状に素体11の端面111から露出する。 As a result, the end faces 211 of the plurality of capacitor elements 20 are exposed to the outside of the element body 11 from the end face 111 of the element body 11. At this time, the end surfaces 211 of the plurality of capacitor elements 20 are aligned with the end surfaces of the element bodies 11 in a line substantially perpendicular to the stacking direction when viewed in the stacking direction of the plurality of capacitor elements 20 (the z-axis direction in FIG. 2). Exposure from 111.
 また、複数の陰極電極30の端面311は、素体11の端面112から素体11の外部に露出する。この際、複数の陰極電極30の端面311は、複数の陰極電極30の積層方向(図2のz軸方向)に視て、該積層方向に対して略直交する線状で、素体11の端面112から露出する。 Further, the end faces 311 of the plurality of cathode electrodes 30 are exposed to the outside of the element body 11 from the end face 112 of the element body 11. At this time, the end surfaces 311 of the plurality of cathode electrodes 30 are linear, substantially perpendicular to the stacking direction when viewed in the stacking direction of the plurality of cathode electrodes 30 (the z-axis direction in FIG. 2), and It is exposed from the end face 112.
 複数の下地電極61は、複数のコンデンサ素子20の陽極電極21の端面211にそれぞれ形成される。下地電極61は、端面211から所定厚み(高さ)で形成される。すなわち、下地電極61は、素体11の端面111から外方に突出する。なお、下地電極61の具体的な形成方法および具体的な形状は、後述する。 The plurality of base electrodes 61 are formed on the end surfaces 211 of the anode electrodes 21 of the plurality of capacitor elements 20, respectively. The base electrode 61 is formed with a predetermined thickness (height) from the end surface 211. That is, the base electrode 61 protrudes outward from the end surface 111 of the element body 11. Note that a specific method for forming the base electrode 61 and a specific shape will be described later.
 複数の下地電極62は、複数の陰極電極30の端面311にそれぞれ形成される。下地電極62は、端面311から所定厚み(高さ)で形成される。すなわち、下地電極62は、素体11の端面112から外方に突出する。なお、下地電極62の具体的な形成方法および具体的な形状は、下地電極61と同様であり、説明は省略する。 The plurality of base electrodes 62 are formed on the end surfaces 311 of the plurality of cathode electrodes 30, respectively. The base electrode 62 is formed with a predetermined thickness (height) from the end surface 311. That is, the base electrode 62 protrudes outward from the end surface 112 of the element body 11 . Note that the specific formation method and specific shape of the base electrode 62 are the same as those of the base electrode 61, and a description thereof will be omitted.
 樹脂電極71は、素体11の端面111および下地電極61に当接し、端面111および下地電極61を覆う。樹脂電極72は、素体11の端面112および下地電極62に当接し、端面112および下地電極62を覆う。 The resin electrode 71 contacts the end surface 111 of the element body 11 and the base electrode 61, and covers the end surface 111 and the base electrode 61. The resin electrode 72 contacts the end surface 112 of the element body 11 and the base electrode 62 and covers the end surface 112 and the base electrode 62.
 外部電極81は、電極膜811と電極膜812との積層構造である。電極膜811は、樹脂電極71の外面を覆い、電極膜812は、電極膜811の外面を覆う。外部電極82は、電極膜821と電極膜822との積層構造である。電極膜821は、樹脂電極72の外面を覆い、電極膜822は、電極膜821の外面を覆う。 The external electrode 81 has a laminated structure of an electrode film 811 and an electrode film 812. The electrode film 811 covers the outer surface of the resin electrode 71, and the electrode film 812 covers the outer surface of the electrode film 811. The external electrode 82 has a laminated structure of an electrode film 821 and an electrode film 822. The electrode film 821 covers the outer surface of the resin electrode 72, and the electrode film 822 covers the outer surface of the electrode film 821.
 以上の構成によって、固体電解コンデンサ10は実現される。 With the above configuration, the solid electrolytic capacitor 10 is realized.
 (固体電解コンデンサ10の製造方法)
 上述の構成からなる固体電解コンデンサ10は、例えば、次のように製造される。図4は、本実施形態に係る固体電解コンデンサの製造方法の概略フローの一例を示すフローチャートである。図5(A)、図5(B)、図5(C)は、本実施形態に係る固体電解コンデンサの工程別の側面断面図である。図6は、AD法による下地電極の形成装置の図である。
(Method for manufacturing solid electrolytic capacitor 10)
The solid electrolytic capacitor 10 having the above-described configuration is manufactured, for example, as follows. FIG. 4 is a flowchart showing an example of a schematic flow of the method for manufacturing a solid electrolytic capacitor according to this embodiment. 5(A), FIG. 5(B), and FIG. 5(C) are side sectional views of the solid electrolytic capacitor according to the present embodiment according to each process. FIG. 6 is a diagram of an apparatus for forming a base electrode using the AD method.
 素体11を形成する(S11)。具体的には、図5(A)に示すように、複数のコンデンサ素子20と複数の陰極電極30とを接続層40を挟んで順次積層して、積層体を形成する。積層体を絶縁性樹脂50で封止することで、素体11を形成する。この際、複数のコンデンサ素子20の陽極電極21および複数の陰極電極30は、例えばアルミニウムからなる。 The element body 11 is formed (S11). Specifically, as shown in FIG. 5A, a plurality of capacitor elements 20 and a plurality of cathode electrodes 30 are sequentially stacked with a connection layer 40 in between to form a laminate. The element body 11 is formed by sealing the laminate with an insulating resin 50. At this time, the anode electrodes 21 and the cathode electrodes 30 of the plurality of capacitor elements 20 are made of, for example, aluminum.
 次に、素体11における複数のコンデンサ素子20の陽極電極21の端面211にAD法を用いて下地電極61を形成する(S12)。 Next, a base electrode 61 is formed on the end face 211 of the anode electrode 21 of the plurality of capacitor elements 20 in the element body 11 using the AD method (S12).
 より具体的には、図6に示すように、複数の素体11をステージ92上に固定し、チャンバ91内に配置する。チャンバ91には、エアロゾル発生器93の少なくとも先端(噴出端)が挿入されている。エアロゾル発生器93は、搬送ガスに銅粉(Cu粉)600を導入することで、エアロゾルを発生し、素体11の端面111に吹き付ける。この際、エアロゾルの仕様(例えば、搬送ガスに含む銅粉600の体積比等)、吹きつけ条件(例えば、吹きつけ回数、吹きつけ強度等)を適宜設定することで、銅粉600は、主として複数の陽極電極21の端面211に所定高さ(所定厚み)で積み重なり、下地電極61が成膜される(図5(B)参照)。なお、この際、銅粉600の粒径は、例えば、3μm程度であるが、2μm以下であってもよい。 More specifically, as shown in FIG. 6, a plurality of element bodies 11 are fixed on a stage 92 and placed in a chamber 91. At least the tip (the ejection end) of the aerosol generator 93 is inserted into the chamber 91 . The aerosol generator 93 generates an aerosol by introducing copper powder (Cu powder) 600 into the carrier gas, and sprays the aerosol onto the end surface 111 of the element body 11 . At this time, the copper powder 600 can be A base electrode 61 is formed on the end surface 211 of the plurality of anode electrodes 21 by stacking them at a predetermined height (predetermined thickness) (see FIG. 5(B)). In this case, the particle size of the copper powder 600 is, for example, about 3 μm, but may be 2 μm or less.
 次に、素体11における複数の陰極電極30の端面311にAD法を用いて下地電極62を形成する(S13)。なお、下地電極62の形成方法は、下地電極61の形成方法と同様であり、説明は省略する(図5(B)参照)。 Next, the base electrode 62 is formed on the end surface 311 of the plurality of cathode electrodes 30 in the element body 11 using the AD method (S13). Note that the method for forming the base electrode 62 is the same as the method for forming the base electrode 61, and a description thereof will be omitted (see FIG. 5(B)).
 次に、素体11の端面111および下地電極61を覆うように、樹脂電極71を形成し、素体11の端面112および下地電極62を覆うように、樹脂電極72を形成する(S15)。具体的には、樹脂電極71は、銀(Ag)等の導電性粒子を樹脂に混練したペースト状の材料からなる。このペースト状の材料を素体11の端面111および下地電極61を覆うように塗布した後に固化することで、樹脂電極71は、形成される(図5(C)参照)。樹脂電極72も樹脂電極71と同様の方法で形成されるため、説明は省略する(図5(C)参照)。 Next, a resin electrode 71 is formed so as to cover the end face 111 of the element body 11 and the base electrode 61, and a resin electrode 72 is formed so as to cover the end face 112 of the element body 11 and the base electrode 62 (S15). Specifically, the resin electrode 71 is made of a paste-like material in which conductive particles such as silver (Ag) are kneaded into resin. The resin electrode 71 is formed by applying this paste-like material so as to cover the end surface 111 of the element body 11 and the base electrode 61 and then solidifying it (see FIG. 5(C)). Since the resin electrode 72 is also formed by the same method as the resin electrode 71, the description thereof will be omitted (see FIG. 5(C)).
 次に、樹脂電極71の表面に外部電極81を形成し、樹脂電極72の表面に外部電極82を形成する(S15)。具体的には、外部電極81は、電極膜811と電極膜812とからなり、めっきによって形成される。例えば、電極膜811は、ニッケル(Ni)めっき層であり、電極膜812は、錫(Sn)めっき層である。外部電極82も外部電極81と同様にめっきによって形成され、例えば、電極膜821は、ニッケル(Ni)めっき層であり、電極膜822は、錫(Sn)めっき層である。なお、樹脂電極71と外部電極81からなる端子電極の厚み、および、樹脂電極72と外部電極82からなる端子電極の厚みは、8μm以上20μm未満であることが好ましい。 Next, an external electrode 81 is formed on the surface of the resin electrode 71, and an external electrode 82 is formed on the surface of the resin electrode 72 (S15). Specifically, the external electrode 81 consists of an electrode film 811 and an electrode film 812, and is formed by plating. For example, the electrode film 811 is a nickel (Ni) plating layer, and the electrode film 812 is a tin (Sn) plating layer. The external electrode 82 is also formed by plating like the external electrode 81. For example, the electrode film 821 is a nickel (Ni) plating layer, and the electrode film 822 is a tin (Sn) plating layer. Note that the thickness of the terminal electrode consisting of the resin electrode 71 and the external electrode 81 and the thickness of the terminal electrode consisting of the resin electrode 72 and the external electrode 82 are preferably 8 μm or more and less than 20 μm.
 (下地電極61および下地電極62の具体的な形状)
 下地電極61と下地電極62とは、同様の形状であり、ここでは、代表して下地電極61を例に説明する。図7は、下地電極の具体的な形状の一例を示す拡大平面図である。図7は、固体電解コンデンサ10および素体11の厚み方向(z軸方向)に視た図である。
(Specific shapes of base electrode 61 and base electrode 62)
The base electrode 61 and the base electrode 62 have similar shapes, and here, the base electrode 61 will be described as a representative example. FIG. 7 is an enlarged plan view showing an example of a specific shape of the base electrode. FIG. 7 is a diagram of the solid electrolytic capacitor 10 and the element body 11 as viewed in the thickness direction (z-axis direction).
 AD法を用いて下地電極61を形成すると、陽極電極21の端面211から突起する山型に下地電極61は形成される(図2参照)。この際、下地電極61は、図7に示すように、陽極電極21の平膜面213に直交する方向に視て、端面211の長手方向(図のy軸方向)に沿って延びる稜線610を形成する。稜線610は、端面211の長手方向(端面211における陽極電極21の厚み方向に直交する方向)の各位置において下地電極61における端面211から直交する方向に最も遠いところを結んだ線である。そして、この稜線610の高さ(端面211から突出する長さ(x軸方向の距離))は、長手方向においてバラツキを有する。 When the base electrode 61 is formed using the AD method, the base electrode 61 is formed in the shape of a mountain protruding from the end surface 211 of the anode electrode 21 (see FIG. 2). At this time, as shown in FIG. 7, the base electrode 61 has a ridgeline 610 extending along the longitudinal direction of the end surface 211 (the y-axis direction in the figure) when viewed in a direction perpendicular to the flat membrane surface 213 of the anode electrode 21. Form. The ridge line 610 is a line connecting the furthest point of the base electrode 61 in the direction orthogonal to the end surface 211 at each position in the longitudinal direction of the end surface 211 (the direction perpendicular to the thickness direction of the anode electrode 21 on the end surface 211). The height of this ridgeline 610 (the length of protrusion from the end surface 211 (distance in the x-axis direction)) varies in the longitudinal direction.
 ここで、稜線610の高さのバラツキ指数として、表面粗さRmaxを規定する。この場合の表面粗さRmaxは、稜線610の一番高い点での端面211からの長さ(Hmax)と一番低い点での端面211からの長さ(Hmin)との差(Hmax-Hmin)で定義される。 Here, the surface roughness Rmax is defined as a variation index of the height of the ridgeline 610. The surface roughness Rmax in this case is the difference between the length (Hmax) from the end surface 211 at the highest point of the ridge line 610 and the length (Hmin) from the end surface 211 at the lowest point (Hmax - Hmin). ) is defined.
 そして、固体電解コンデンサ10では、表面粗さRmaxは、1.5μm以上10.0μm以下である。 In the solid electrolytic capacitor 10, the surface roughness Rmax is 1.5 μm or more and 10.0 μm or less.
 図8は、表面粗さRmaxと密着力との関係を示す表である。密着力とは、下地電極61と樹脂電極71との密着力であり、ひいては、陽極電極21と端子電極(樹脂電極71および外部電極81からなる電極)との密着力に対応する。なお、密着力について、Fは、密着力が妥当な範囲であることを示し、Gは、密着力が良好なことを示し、Eは、密着力が優秀であることを示す。すなわち、密着力は、F<G<Eの関係にある。 FIG. 8 is a table showing the relationship between surface roughness Rmax and adhesion force. The adhesion force is the adhesion force between the base electrode 61 and the resin electrode 71, and in turn corresponds to the adhesion force between the anode electrode 21 and the terminal electrode (the electrode consisting of the resin electrode 71 and the external electrode 81). Regarding the adhesion, F indicates that the adhesion is within a reasonable range, G indicates that the adhesion is good, and E indicates that the adhesion is excellent. That is, the adhesion force is in the relationship F<G<E.
 また、この際、下地電極61の厚みは、それぞれの表面粗さRmaxよりも大きい。例えば、表面粗さRmaxが0.5μmの場合、下地電極61の最大厚み(長さHmax)は、0.5μm以上である。また、表面粗さRmaxが1.5μmの場合、下地電極61の最大厚み(長さHmax)は、1.5μm以上であり、表面粗さRmaxが10.0μmの場合、下地電極61の最大厚み(長さHmax)は、10.0μm以上である。 Furthermore, at this time, the thickness of the base electrode 61 is larger than the respective surface roughness Rmax. For example, when the surface roughness Rmax is 0.5 μm, the maximum thickness (length Hmax) of the base electrode 61 is 0.5 μm or more. Further, when the surface roughness Rmax is 1.5 μm, the maximum thickness (length Hmax) of the base electrode 61 is 1.5 μm or more, and when the surface roughness Rmax is 10.0 μm, the maximum thickness of the base electrode 61 is (Length Hmax) is 10.0 μm or more.
 図8に示すように、表面粗さRmaxが1.5μm以上10.0μm以下であることによって、密着力は、E(優秀)となり、他の表面粗さRmax(1.5μm未満、10.0μmより大きい)よりも、高い密着力を実現できる。 As shown in FIG. 8, when the surface roughness Rmax is 1.5 μm or more and 10.0 μm or less, the adhesion becomes E (excellent), and other surface roughness Rmax (less than 1.5 μm, 10.0 μm (larger) can achieve higher adhesion.
 これは、表面粗さRmaxが1.5μm以上10.0μm以下に制御されることによって、下地電極61は薄すぎず、厚すぎない形状となり、且つ、密着力の向上に寄与できるように下地電極61の表面積を稼ぐことができるからである。これにより、下地電極61と樹脂電極71の密着性は向上し、ESRの低下を抑制できる。 This is because by controlling the surface roughness Rmax to 1.5 μm or more and 10.0 μm or less, the base electrode 61 has a shape that is neither too thin nor too thick, and the base electrode This is because a surface area of 61 mm can be obtained. Thereby, the adhesion between the base electrode 61 and the resin electrode 71 is improved, and a decrease in ESR can be suppressed.
 なお、下地電極61の厚みは、上記表面粗さRmaxを実現可能な厚さの範囲内で、0.1μm以上30μm未満であることが好ましい。なお、ここでの下地電極61の厚みは、稜線の高さの平均値(図のy軸方向の平均値)である。これにより、下地電極61は、より適正な厚みとなり、下地電極61と樹脂電極71の密着性を安定的に高くでき、ESRの低下を抑制できる。 Note that the thickness of the base electrode 61 is preferably 0.1 μm or more and less than 30 μm within a thickness range that can achieve the above-mentioned surface roughness Rmax. Note that the thickness of the base electrode 61 here is the average value of the height of the ridge line (the average value in the y-axis direction in the figure). Thereby, the base electrode 61 has a more appropriate thickness, the adhesion between the base electrode 61 and the resin electrode 71 can be stably increased, and a decrease in ESR can be suppressed.
 上述の実施形態では、固体電解コンデンサを例に説明するが、膜状の内部電極を含む積層体と、積層体の端面に形成された外部電極とを備える電子部品であれば、本実施形態の構成を適用し、同様の作用効果を奏することができる。特に、内部電極と外部電極との間に樹脂電極を用いる電子部品において、本実施形態の構成は有効である。 In the above embodiment, a solid electrolytic capacitor is explained as an example, but the present embodiment can be applied to any electronic component including a laminate including a film-like internal electrode and an external electrode formed on an end surface of the laminate. By applying the configuration, similar effects can be achieved. The configuration of this embodiment is particularly effective in electronic components that use resin electrodes between internal electrodes and external electrodes.
<1> 複数の平膜状のコンデンサ用電極を積層して絶縁性樹脂によって封止することで素体を形成し、前記素体の端面に前記複数のコンデンサ用電極を線状に露出させる素体形成工程と、
 前記複数のコンデンサ用電極の前記端面の露出面にAD法によって下地電極を形成する下地電極形成工程と、
 前記端面と前記下地電極とを覆う樹脂電極を形成する樹脂電極形成工程と、
 前記樹脂電極を覆う外部電極を形成する外部電極形成工程と、
 を有し、
 前記下地電極形成工程では、
 前記下地電極が前記線状に延びる方向の前記下地電極の表面粗さは、1.5μm以上10.0μm以下である、
 コンデンサの製造方法。
<1> An element in which a plurality of flat film capacitor electrodes are stacked and sealed with an insulating resin to form an element body, and the plurality of capacitor electrodes are exposed linearly on an end face of the element body. body formation process;
a base electrode forming step of forming a base electrode on the exposed end face of the plurality of capacitor electrodes by an AD method;
a resin electrode forming step of forming a resin electrode covering the end surface and the base electrode;
an external electrode forming step of forming an external electrode covering the resin electrode;
has
In the base electrode forming step,
The surface roughness of the base electrode in the direction in which the base electrode extends linearly is 1.5 μm or more and 10.0 μm or less,
Method of manufacturing capacitors.
<2> 前記コンデンサ用電極をアルミニウムで形成された陽極電極を含み、
 前記陽極電極では、
 前記平膜状を形成する平膜面から所定深さが多孔質体で形成され、
 前記平膜面と前記多孔質体の表面が酸化され誘電体層となっている、
 <1>に記載のコンデンサの製造方法。
<2> The capacitor electrode includes an anode electrode made of aluminum,
In the anode electrode,
A porous material is formed at a predetermined depth from the flat membrane surface forming the flat membrane shape,
the flat membrane surface and the surface of the porous body are oxidized to form a dielectric layer;
A method for manufacturing a capacitor according to <1>.
<3> 前記下地電極の平均厚みは、0.1μm以上30μm未満である、<1>または<2>に記載のコンデンサの製造方法。 <3> The method for manufacturing a capacitor according to <1> or <2>, wherein the base electrode has an average thickness of 0.1 μm or more and less than 30 μm.
<4> 前記外部電極の厚みは、8μm以上20μm未満である、<1>乃至<3>のいずれかに記載のコンデンサの製造方法。 <4> The method for manufacturing a capacitor according to any one of <1> to <3>, wherein the external electrode has a thickness of 8 μm or more and less than 20 μm.
<5> 前記外部電極形成工程では、
 前記樹脂電極に前記外部電極をめっきで形成する、
 <1>乃至<4>のいずれかに記載のコンデンサの製造方法。
<5> In the external electrode forming step,
forming the external electrode on the resin electrode by plating;
The method for manufacturing a capacitor according to any one of <1> to <4>.
<6> 複数の平膜状のコンデンサ用電極が積層されて絶縁性樹脂によって封止されており、前記複数のコンデンサ用電極が線状に露出する端面を有する素体と、
 前記複数のコンデンサ用電極の前記端面の露出面に配置された下地電極と、
 前記端面と前記下地電極とを覆う樹脂電極と、
 前記樹脂電極を覆う外部電極と、
 を備え、
 前記下地電極が前記線状に延びる方向の前記下地電極の表面粗さは、1.5μm以上10.0μm以下である、
 コンデンサ。
<6> A base body in which a plurality of flat film-shaped capacitor electrodes are stacked and sealed with an insulating resin, and has an end face from which the plurality of capacitor electrodes are exposed linearly;
a base electrode disposed on the exposed end surface of the plurality of capacitor electrodes;
a resin electrode covering the end face and the base electrode;
an external electrode covering the resin electrode;
Equipped with
The surface roughness of the base electrode in the direction in which the base electrode extends linearly is 1.5 μm or more and 10.0 μm or less,
capacitor.
<7> 前記コンデンサ用電極をアルミニウムで形成された陽極電極を含み、
 前記陽極電極では、
 前記平膜状を形成する平膜面から所定深さが多孔質体であり、
 前記平膜面と前記多孔質体の表面が酸化誘電体層である、
 <6>に記載のコンデンサ。
<7> The capacitor electrode includes an anode electrode formed of aluminum,
In the anode electrode,
A porous body is located at a predetermined depth from the flat membrane surface forming the flat membrane shape,
the flat membrane surface and the surface of the porous body are oxidized dielectric layers;
The capacitor described in <6>.
<8> 前記下地電極の平均厚みは、0.1μm以上30μm未満である、<6>または<7>に記載のコンデンサ。 <8> The capacitor according to <6> or <7>, wherein the base electrode has an average thickness of 0.1 μm or more and less than 30 μm.
<9> 前記樹脂電極と外部電極とからなる端子電極の厚みは、8μm以上20μm未満である、<6>乃至<8>のいずれかに記載のコンデンサ。 <9> The capacitor according to any one of <6> to <8>, wherein the terminal electrode made of the resin electrode and the external electrode has a thickness of 8 μm or more and less than 20 μm.
<10> 前記外部電極は、前記樹脂電極の外面に配置されためっき層である、<6>乃至<9>のいずれかに記載のコンデンサ。 <10> The capacitor according to any one of <6> to <9>, wherein the external electrode is a plating layer disposed on the outer surface of the resin electrode.
10:固体電解コンデンサ
11:素体
20:コンデンサ素子
21:陽極電極
22:CP層
30:陰極電極
40:接続層
50:絶縁性樹脂
61、62:下地電極
71、72:樹脂電極
81、82:外部電極
91:チャンバ
92:ステージ
93:エアロゾル発生器
111、112:端面
210:誘電体層
211、212、311、312:端面
213、214:平膜面
500:絶縁体層
600:銅粉
610:稜線
811、812、821、822:電極膜
10: Solid electrolytic capacitor 11: Element body 20: Capacitor element 21: Anode electrode 22: CP layer 30: Cathode electrode 40: Connection layer 50: Insulating resin 61, 62: Base electrode 71, 72: Resin electrode 81, 82: External electrode 91: Chamber 92: Stage 93: Aerosol generator 111, 112: End surface 210: Dielectric layer 211, 212, 311, 312: End surface 213, 214: Flat film surface 500: Insulator layer 600: Copper powder 610: Ridge lines 811, 812, 821, 822: electrode film

Claims (10)

  1.  複数の平膜状のコンデンサ用電極を積層して絶縁性樹脂によって封止することで素体を形成し、前記素体の端面に前記複数のコンデンサ用電極を線状に露出させる素体形成工程と、
     前記複数のコンデンサ用電極の前記端面の露出面にAD法によって下地電極を形成する下地電極形成工程と、
     前記端面と前記下地電極とを覆う樹脂電極を形成する樹脂電極形成工程と、
     前記樹脂電極を覆う外部電極を形成する外部電極形成工程と、
     を有し、
     前記下地電極形成工程では、
     前記下地電極が前記線状に延びる方向の前記下地電極の表面粗さは、1.5μm以上10.0μm以下である、
     コンデンサの製造方法。
    An element body forming step in which a plurality of flat film capacitor electrodes are stacked and sealed with an insulating resin to form an element body, and the plurality of capacitor electrodes are exposed linearly on an end face of the element body. and,
    a base electrode forming step of forming a base electrode on the exposed end face of the plurality of capacitor electrodes by an AD method;
    a resin electrode forming step of forming a resin electrode covering the end surface and the base electrode;
    an external electrode forming step of forming an external electrode covering the resin electrode;
    has
    In the base electrode forming step,
    The surface roughness of the base electrode in the direction in which the base electrode extends linearly is 1.5 μm or more and 10.0 μm or less,
    Method of manufacturing capacitors.
  2.  前記コンデンサ用電極をアルミニウムで形成された陽極電極を含み、
     前記陽極電極では、
     前記平膜状を形成する平膜面から所定深さが多孔質体で形成され、
     前記平膜面と前記多孔質体の表面が酸化され誘電体層となっている、
     請求項1に記載のコンデンサの製造方法。
    The capacitor electrode includes an anode electrode made of aluminum,
    In the anode electrode,
    A porous material is formed at a predetermined depth from the flat membrane surface forming the flat membrane shape,
    the flat membrane surface and the surface of the porous body are oxidized to form a dielectric layer;
    A method for manufacturing a capacitor according to claim 1.
  3.  前記下地電極の平均厚みは、0.1μm以上30μm未満である、
     請求項1または請求項2に記載のコンデンサの製造方法。
    The average thickness of the base electrode is 0.1 μm or more and less than 30 μm.
    A method for manufacturing a capacitor according to claim 1 or 2.
  4.  前記外部電極の厚みは、8μm以上20μm未満である、
     請求項1乃至請求項3のいずれかに記載のコンデンサの製造方法。
    The thickness of the external electrode is 8 μm or more and less than 20 μm.
    A method for manufacturing a capacitor according to any one of claims 1 to 3.
  5.  前記外部電極形成工程では、
     前記樹脂電極に前記外部電極をめっきで形成する、
     請求項1乃至請求項4のいずれかに記載のコンデンサの製造方法。
    In the external electrode forming step,
    forming the external electrode on the resin electrode by plating;
    A method for manufacturing a capacitor according to any one of claims 1 to 4.
  6.  複数の平膜状のコンデンサ用電極が積層されて絶縁性樹脂によって封止されており、前記複数のコンデンサ用電極が線状に露出する端面を有する素体と、
     前記複数のコンデンサ用電極の前記端面の露出面に配置された下地電極と、
     前記端面と前記下地電極とを覆う樹脂電極と、
     前記樹脂電極を覆う外部電極と、
     を備え、
     前記下地電極が前記線状に延びる方向の前記下地電極の表面粗さは、1.5μm以上10.0μm以下である、
     コンデンサ。
    a plurality of flat film-shaped capacitor electrodes are stacked and sealed with an insulating resin, and an element body has an end face from which the plurality of capacitor electrodes are exposed linearly;
    a base electrode disposed on the exposed end surface of the plurality of capacitor electrodes;
    a resin electrode covering the end face and the base electrode;
    an external electrode covering the resin electrode;
    Equipped with
    The surface roughness of the base electrode in the direction in which the base electrode extends linearly is 1.5 μm or more and 10.0 μm or less,
    capacitor.
  7.  前記コンデンサ用電極をアルミニウムで形成された陽極電極を含み、
     前記陽極電極では、
     前記平膜状を形成する平膜面から所定深さが多孔質体であり、
     前記平膜面と前記多孔質体の表面が酸化誘電体層である、
     請求項6に記載のコンデンサ。
    The capacitor electrode includes an anode electrode made of aluminum,
    In the anode electrode,
    A porous body is located at a predetermined depth from the flat membrane surface forming the flat membrane shape,
    the flat membrane surface and the surface of the porous body are oxidized dielectric layers;
    A capacitor according to claim 6.
  8.  前記下地電極の平均厚みは、0.1μm以上30μm未満である、
     請求項6または請求項7に記載のコンデンサ。
    The average thickness of the base electrode is 0.1 μm or more and less than 30 μm.
    A capacitor according to claim 6 or claim 7.
  9.  前記樹脂電極と外部電極とからなる端子電極の厚みは、8μm以上20μm未満である、
     請求項6乃至請求項8のいずれかに記載のコンデンサ。
    The thickness of the terminal electrode consisting of the resin electrode and the external electrode is 8 μm or more and less than 20 μm.
    A capacitor according to any one of claims 6 to 8.
  10.  前記外部電極は、前記樹脂電極の外面に配置されためっき層である、
     請求項6乃至請求項9のいずれかに記載のコンデンサ。
    The external electrode is a plating layer disposed on the outer surface of the resin electrode,
    A capacitor according to any one of claims 6 to 9.
PCT/JP2023/021668 2022-06-15 2023-06-12 Manufacturing method for capacitor, and capacitor WO2023243581A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-096259 2022-06-15
JP2022096259 2022-06-15

Publications (1)

Publication Number Publication Date
WO2023243581A1 true WO2023243581A1 (en) 2023-12-21

Family

ID=89191230

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/021668 WO2023243581A1 (en) 2022-06-15 2023-06-12 Manufacturing method for capacitor, and capacitor

Country Status (1)

Country Link
WO (1) WO2023243581A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011159856A (en) * 2010-02-02 2011-08-18 Sanyo Electric Co Ltd Electrode for capacitor, capacitor, and methods of manufacturing them
JP2017034010A (en) * 2015-07-30 2017-02-09 株式会社村田製作所 Multilayer ceramic capacitor and manufacturing method therefor
JP2018098475A (en) * 2016-12-09 2018-06-21 株式会社村田製作所 Multilayer ceramic capacitor
WO2021085555A1 (en) * 2019-10-31 2021-05-06 パナソニックIpマネジメント株式会社 Electrolytic capacitor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011159856A (en) * 2010-02-02 2011-08-18 Sanyo Electric Co Ltd Electrode for capacitor, capacitor, and methods of manufacturing them
JP2017034010A (en) * 2015-07-30 2017-02-09 株式会社村田製作所 Multilayer ceramic capacitor and manufacturing method therefor
JP2018098475A (en) * 2016-12-09 2018-06-21 株式会社村田製作所 Multilayer ceramic capacitor
WO2021085555A1 (en) * 2019-10-31 2021-05-06 パナソニックIpマネジメント株式会社 Electrolytic capacitor

Similar Documents

Publication Publication Date Title
US9439301B2 (en) Multilayered chip electronic component and board for mounting the same
KR101474168B1 (en) Multi-layered ceramic electronic part and board having the same mounted thereon
US6400556B1 (en) Solid electrolytic capacitor and method of fabricating the same
US11657974B2 (en) Multilayer ceramic capacitor
KR20140095361A (en) Multi-layered ceramic electronic parts and fabricating method thereof
KR20150033341A (en) Multi-layered ceramic capacitor and manufacturing method the same
JP4653682B2 (en) Chip-shaped solid electrolytic capacitor
KR20160109858A (en) Multi layered ceramic electronic component, manufacturing method thereof and circuit board having the same
US20150077905A1 (en) Solid electrolytic capacitor
KR20150019732A (en) Multi-layered ceramic capacitor and board for mounting the same
WO2023243581A1 (en) Manufacturing method for capacitor, and capacitor
JP4807059B2 (en) Electronic components
KR20170051129A (en) Capacitor and manufacturing method of the same
JP6497127B2 (en) Multilayer capacitor
US8518127B2 (en) Solid capacitor and manufacturing method thereof
CN112420388A (en) Multilayer ceramic capacitor, circuit board, and method for manufacturing multilayer ceramic capacitor
WO2019132017A1 (en) Laminated ceramic capacitor, mounting structure for laminated ceramic capacitor, and electronic component array
WO2019058535A1 (en) Solid electrolytic capacitor and method for manufacturing same
CN216773071U (en) Multilayer ceramic capacitor
US11955289B2 (en) Multilayer capacitor
WO2023243160A1 (en) Laminated ceramic capacitor
CN217061784U (en) Multilayer electronic component
KR102524878B1 (en) Method for manufacturing of ceramic capacitor
WO2024047961A1 (en) Capacitor and method for producing capacitor
KR20230102072A (en) Multi-layer ceramic capacitor and manufacturing method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23823871

Country of ref document: EP

Kind code of ref document: A1