WO2023243578A1 - Measurement device, measurement method, and measurement program - Google Patents

Measurement device, measurement method, and measurement program Download PDF

Info

Publication number
WO2023243578A1
WO2023243578A1 PCT/JP2023/021655 JP2023021655W WO2023243578A1 WO 2023243578 A1 WO2023243578 A1 WO 2023243578A1 JP 2023021655 W JP2023021655 W JP 2023021655W WO 2023243578 A1 WO2023243578 A1 WO 2023243578A1
Authority
WO
WIPO (PCT)
Prior art keywords
measurement
electrical characteristic
measurement object
value
area
Prior art date
Application number
PCT/JP2023/021655
Other languages
French (fr)
Japanese (ja)
Inventor
哲也 中村
直也 北村
Original Assignee
日置電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日置電機株式会社 filed Critical 日置電機株式会社
Publication of WO2023243578A1 publication Critical patent/WO2023243578A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R27/00Arrangements for measuring resistance, reactance, impedance, or electric characteristics derived therefrom
    • G01R27/02Measuring real or complex resistance, reactance, impedance, or other two-pole characteristics derived therefrom, e.g. time constant
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/389Measuring internal impedance, internal conductance or related variables

Definitions

  • the present invention relates to a measuring device, a measuring method, and a measuring program.
  • measuring electrical characteristic values in a measuring device such as a battery tester that measures values indicating electrical characteristics such as impedance (hereinafter referred to as "electrical characteristic values") of a measurement target (DUT: Device Under Test) such as a battery.
  • electrical characteristic values values indicating electrical characteristics such as impedance
  • DUT Device Under Test
  • errors may occur in the measured electrical characteristic values due to the surrounding environment, such as the influence of other objects around the object to be measured or metals around the object.
  • zero adjustment correction is generally performed using a device for zero adjustment correction, such as what is called a zero adjustment board.
  • a device for zero adjustment correction such as what is called a zero adjustment board.
  • the instrument used for error correction and the object to be measured are different things, and the shapes and materials of the metal parts that affect the generation of eddy current are different.
  • the situation in which eddy currents, which cause errors in measured values, occur differs depending on when measuring the object to be measured. In other words, even if the resistance measuring device performs zero adjustment correction in an attempt to reduce errors caused by the surrounding environment, it is difficult to say that the errors are corrected based on the actual measurement situation.
  • FIG. 1 is a functional block diagram showing the configuration of a measuring device according to an embodiment. It is a figure showing an example of the inspection process of measuring the impedance value of a measurement object in the measurement method concerning an embodiment. It is a figure which shows an example of the reference impedance value of a measurement object, the impedance value by measurement area, and the amount of deviation
  • FIG. 3 is a diagram schematically showing a reference measurement object in a measurement method according to an embodiment.
  • FIG. 7 is a schematic diagram showing a step of acquiring impedance values for each measurement region of a reference measurement object corresponding to a measurement region in the measurement method according to the embodiment.
  • FIG. 1 is a functional block diagram showing the configuration of a measuring device according to an embodiment. It is a figure showing an example of the inspection process of measuring the impedance value of a measurement object in the measurement method concerning an embodiment. It is a figure which shows an example of the reference impedance value of a measurement object, the
  • FIG. 7 is another schematic diagram showing the step of acquiring impedance values for each measurement area of the reference measurement object corresponding to the measurement area in the measurement method according to the embodiment.
  • FIG. 7 is yet another schematic diagram showing the step of acquiring impedance values for each measurement area of the reference measurement object corresponding to the measurement area in the measurement method according to the embodiment.
  • FIG. 3 is a schematic diagram showing an example of a storage area for the amount of deviation in the measurement method according to the embodiment. It is a flowchart which shows an example of deviation amount calculation processing in the measurement method concerning an embodiment. It is a flow chart which shows an example of impedance value measurement processing of a measurement object in a measurement method concerning an embodiment.
  • a measurement device (1) that measures the electrical characteristic value of a measurement object (20) arranged in at least one measurement region (101 to 110), and serves as a reference for the measurement object (20). The amount of deviation between the reference value of the electrical characteristics of the reference measurement object (20S) and the electrical characteristic value of the reference measurement object (20S) measured in the measurement area (101 to 110) is measured in the measurement area (101 to 110).
  • a storage unit (19) that stores information in association with the measurement target (20); and a measurement area information reception unit (19) that receives information specifying the actual measurement area (101 to 110) when measuring the electrical characteristic value of the measurement object (20).
  • the deviation amount calculation unit (180) calculates the ratio of the electric characteristic value of the reference measurement object (20S) measured in the measurement area (101 to 110) to the reference value as the deviation amount [2] Measuring device (1) described in (1).
  • the measuring device 1 includes a high-side sense terminal 111, a high-side source terminal 112, a low-side sense terminal 121, a low-side source terminal 122, a signal generation circuit 13, a voltage detection circuit 14, and a current detection circuit 15. , an A/D conversion circuit 16, an A/D conversion circuit 17, a data processing control section 18, a storage section 19, an operation section 21, and a display section 22.
  • the high-side sense terminal 111, the high-side source terminal 112, the low-side sense terminal 121, and the low-side source terminal 122 are external terminals for connecting the measurement object 20.
  • one terminal of the object to be measured 20 is connected to the high-side sense terminal 111 and the high-side source terminal 112, and the other terminal of the object to be measured 20 is connected to the low-side sense terminal 121 and the low-side source terminal 122. is connected.
  • the measuring device 1 is configured to conduct a measurement from a high-side source terminal 112 to a measurement object 20 connected between a high-side sense terminal 111 and a high-side source terminal 112 and a low-side sense terminal 121 and a low-side source terminal 122.
  • the current flowing through the low-side source terminal 122 is measured, and the electrical characteristics (impedance) of the object to be measured 20 are measured based on the measured voltage and current.
  • the signal generation circuit 13 is a constant current circuit, the current value generated by the signal generation circuit 13 is known. In this case, the measuring device 1 may measure the impedance of the object to be measured 20 based on the measured voltage and known current.
  • the A/D conversion circuit 16 samples the voltage signal output from the voltage detection circuit 14 at a predetermined sampling period (for example, a period sufficiently shorter than the period of the AC signal output from the signal generation circuit 13). converts the voltage signal into a digital signal and outputs it as voltage data.
  • a predetermined sampling period for example, a period sufficiently shorter than the period of the AC signal output from the signal generation circuit 13.
  • the current detection circuit 15 is a circuit that is connected to the low-side source terminal 122 and detects the current flowing through the measurement object 20. For example, the current detection circuit 15 inputs the current flowing through the measurement object 20 when an AC signal is applied to the measurement object 20 from the signal generation circuit 13 via the low-side source terminal 122, and converts the input current into a voltage. Convert it into a current signal and output it as a current signal.
  • the storage unit 19 is provided with a storage area that stores the reference impedance value of the reference measurement object 20S of the measurement object 20. Furthermore, the storage unit 19 is provided with a storage area for storing impedance values of the reference measurement object 20S in the measurement areas 101 to 110 (hereinafter referred to as "impedance values by measurement area"). Furthermore, the storage unit 19 is provided with a storage area that stores the amount of deviation between the reference impedance value of the reference measurement object 20S and the impedance value for each measurement region. Further, the storage unit 19 is provided with a storage area for storing impedance values measured by the measurement unit 185. Furthermore, the storage section 19 is provided with a storage area for storing the corrected impedance value corrected by the correction section 186. Details of the reference impedance value, measurement area-specific impedance value, and deviation amount of the reference measurement object 20S will be described later.
  • the operation unit 21 is an input interface for a user to operate the measuring device 1.
  • Examples of the operation unit 21 include various buttons, a touch panel, and the like.
  • the user can set various measurement conditions for measuring the measurement object 20 in the measuring device 1, and can instruct the measuring device 1 to execute and stop the measurement.
  • the operation unit 21 is not limited to the above-mentioned buttons or touch panel, and may have any function as long as it can receive input for the user to operate the measuring device 1.
  • the operation unit 21 may be, for example, one that accepts operations using commands from a communication interface (LAN, USB, RS-232C, etc.), or may accept operations that are input by voice commands.
  • the data processing control unit 18 also includes a deviation amount calculation unit 180, a measurement area information reception unit 181, a deviation amount identification unit 182, as functional units for realizing the measurement method by executing a stored program.
  • An output section 183, a measurement section 185, and a correction section 186 are realized.
  • the deviation amount calculation unit 180 calculates the amount of deviation between the reference impedance value of the reference measurement object 20S and the impedance value for each measurement area measured corresponding to the measurement areas 101 to 110, as the deviation amount. The process of calculating the amount of deviation will be described later.
  • the measurement area information reception unit 181 receives information that specifies the positions of the measurement areas 101 to 110 when measuring the actual impedance value in a state where the measurement object 20 is mounted on the measurement areas 101 to 110. Accepts area information. Specifically, the measurement area information reception unit 181 receives measurement area information on the tray 100 of the measurement target 20 from the operation unit 21, specifically, measurement area 101, measurement area 102, ..., measurement area 110. Accepts input of information to identify. Note that the measurement area information accepted by the measurement area information receiving unit 181 is not limited to information input from the operation unit 21.
  • the deviation amount specifying unit 182 reads the deviation amounts D1 to D10 corresponding to the measurement areas 101 to 110 specified by the measurement area information receiving unit 181 from the storage unit 19. For example, when the measurement area information received by the measurement area information receiving unit 181 is the measurement area 105, the deviation amount specifying unit 182 determines the deviation amount D5 corresponding to the measurement area 105 from the measurement stored in the storage unit 19. The deviation amounts D1 to D10 corresponding to the regions 101 to 110 are specified and read out.
  • the measurement unit 185 acquires the voltage value detected by the voltage detection circuit 14.
  • the measurement unit 185 acquires the current value detected by the current detection circuit 15 or a known current value.
  • the measurement unit 185 calculates the impedance of the measurement object 20 based on the obtained voltage value and current value. For example, the measurement unit 185 calculates the impedance values of the measurement object 20 and the reference measurement object 20S by dividing the obtained voltage value by the current value.
  • the correction unit 186 corrects the impedance value calculated by the measurement unit 185 based on the deviation amounts D1 to D10 specified by the deviation amount identification unit 182.
  • the output unit 183 outputs (displays) the measurement region-specific impedance value corrected by the correction unit 186 to the display unit 22 as the measurement result of the measurement object 20. Note that the output unit 183 may output the amount of deviation to the display unit 22.
  • a method for obtaining the reference impedance value P1 of the reference measurement object 20S, the measurement region-specific impedance values M1 to M10 of the reference measurement object 20S in the measurement regions 101 to 110, and the deviation amounts D1 to D10 will be described.
  • FIG. 3 is a diagram showing an example of the reference impedance value P1, the impedance values M1 to M10 by measurement area, and the deviation amount D of the reference measurement object 20S in the measurement method according to the embodiment.
  • the deviation amount calculation unit 180 calculates the amount of deviation calculated by the measurement area corresponding to the measurement areas 101 to 110 on the tray 100 in accordance with the inspection process. From the impedance values M1 to M10, a deviation amount D is calculated based on a reference impedance value P1 measured with no metal around the object to be measured 20 (no influence of induced voltage or eddy current).
  • the deviation amounts D1 to D10 are, for example, values obtained by adding or subtracting the measurement region-specific impedance values M1 to M10 from the reference impedance value P1.
  • the deviation amounts D1 to D10 are stored in a storage area.
  • FIG. 4 is a diagram schematically showing the reference measurement object 20S.
  • the measurement unit 185 of the measurement device 1 is used to measure the reference impedance value P1 of the reference measurement object 20S.
  • the reference measurement object 20S is one of the measurement objects 20 that has a known impedance value when measuring the impedance value and serves as a reference for the impedance value of the measurement object 20.
  • the reference measurement object 20S has the same electrical characteristics as the measurement object 20. Specifically, for example, when the measurement object 20 is a battery cell, the reference measurement object 20S is an individual that is different from other battery cells but has the same type (model number, etc.) as one or more battery cells. It is a product of
  • the reference impedance value P1 is determined by, for example, not placing other batteries or metals around the reference measurement object 20S, or placing it on a metal tray 100 to reduce the influence of eddy currents from the surroundings. It is desirable to measure without removing the Here, before measuring the reference impedance value P1 of the reference measurement object 20S, zero adjustment correction of the measuring device 1 may be performed. As shown in FIG. 4, the reference impedance value P1 of the reference measurement object 20S is measured to be, for example, 1.000 m ⁇ .
  • the measuring device 1 stores the acquired reference impedance value P1 in the storage area of the storage unit 19.
  • FIGS. 5 to 7 are schematic diagrams illustrating the steps of acquiring measurement region-specific impedance values M1 to M10 corresponding to measurement regions 101 to 110 of the reference measurement object 20S in the resistance measurement method according to the embodiment.
  • the measurement object 20 in order to associate the measurement areas 101 to 110 of the tray 100 with the measurement object 20, the measurement object 20 is labeled with measurement objects 20_1 to 20_10.
  • the impedance values for each measurement area of the reference measurement object 20S corresponding to the measurement area are determined in one or more measurement areas defined at different positions on the tray 100.
  • a reference measurement object 20S is mounted on each of them and measured.
  • the impedance values for each measurement area are determined when the other measurement objects 20_1 to 20_10 are mounted around the reference measurement object 20S on the tray 100, that is, in the same manner as in the inspection process during mass production of battery cells. Measurement is performed in situations where eddy currents from the surroundings are affected.
  • the impedance values for each measurement area are stored in association with information on the measurement areas 101 to 110 on the tray 100.
  • the mounting position of the battery on the tray 100 is, for example, one end of the tray 100 (the left end in FIGS. 5, 6, and 7) as the measurement area 101, and the other end of the tray 100 (in FIGS. Measurement areas 102,..., measurement area 105,..., measurement area 109, measurement area 110 in order toward the right end of the paper in FIGS. 6 and 7), the measurement objects 20_1 to 20_10 and It is stored with information that allows the measurement area of the reference measurement object 20S to be specified.
  • the measuring device 1 stores the acquired impedance values for each measurement area as shown in FIGS. 5, 6, and 7 in the storage area of the storage unit 19 in association with information on the measurement areas 101 to 110.
  • the measurement region-specific impedance values of the reference measurement object 20S in the measurement regions 101 to 110 are, for example, the measurement region-specific impedance value M1 measured in the measurement region 101 and the measurement region-specific impedance value M1 measured in the measurement region 105.
  • the impedance value M5 for each measurement area measured in the measurement area 110 is stored as the impedance value M10 for each measurement area measured in the measurement area 110.
  • the deviation amount calculation unit 180 calculates the deviation amounts D1 to D10. Specifically, the reference impedance values P1:1 . . . shown in FIG. 5 are determined from the impedance values M1, . By adding or subtracting 000 m ⁇ , the deviation amounts D1 to D10 are calculated.
  • the deviation amount D1 in the measurement area 101 is calculated to be, for example, 0.001 m ⁇ .
  • the deviation amount D5 in the measurement area 105 is calculated to be, for example, 0.005 m ⁇ .
  • the deviation amount D10 in the measurement area 110 is calculated to be, for example, 0.010 m ⁇ .
  • FIG. 8 is a schematic diagram showing an example of a storage area for the deviation amounts D1 to D10 in the measurement method according to the embodiment.
  • the calculated deviation amounts D1 to D10 are calculated based on the reference measurement area 101 and the deviation amount D1, ..., the measurement area 105 and the deviation amount D5, ..., the measurement area 110 and the deviation amount D10, and so on. It is stored in the storage area of the storage unit 19 in association with the measurement area of the object 20S on the tray 100, that is, the measurement areas 101 to 110.
  • the correction unit 186 uses the deviation amounts D1 to D10 to correct other values in the measurement areas 101 to 110 on the tray 100 when measuring the impedance value of the measurement object 20 with the measurement device 1 in the battery cell inspection process. Corrects the effects of induced voltage and eddy current due to battery cells and metals. That is, in the battery cell inspection process, when measuring the impedance value of the measurement object 20 with the measuring device 1, the measured impedance value is corrected using the deviation amount D. By doing so, according to the measuring device 1, it is possible to obtain an impedance value of the object to be measured 20 in which the effects of induced voltage and eddy current are reduced regardless of the measurement area on the tray 100. Therefore, by using the measuring device 1, selection in the battery cell inspection process can be carried out more accurately.
  • zero adjustment correction was performed using a device for zero adjustment correction such as a zero adjustment board to adjust a battery tester, but the zero adjustment correction was performed on the assumption that the arrangement of the test leads and the metal environment around the measurement target 20 did not change. It was held in On the other hand, in the measuring device 1, unlike zero adjustment correction that attempts to reduce errors caused by the surrounding environment, error correction can be performed based on the actual measurement situation.
  • FIG. 9 is a flowchart illustrating an example of the deviation amount calculation process in the measurement method according to the embodiment. With reference to the flowchart shown in FIG. 9, the calculation process of the amount of deviation used in the measurement method according to the embodiment will be described.
  • the measuring device 1 uses the deviation amount calculation unit 180 to calculate the deviation amounts D1 to D10 between the reference impedance value P1 and the measurement region-specific impedance values M1 to M10 (step S103).
  • the measuring device 1 stores the calculated deviation amount in the storage area of the storage unit 19 in association with the measurement areas 101 to 110 (step S104).
  • FIG. 10 is a flowchart illustrating an example of an impedance value measurement process of a measurement object in the measurement method according to the embodiment. The measurement method according to the embodiment will be described with reference to the flowchart shown in FIG.
  • the measurement region information reception unit 181 receives position information of the measurement regions 101 to 110 when measuring the actual impedance value of the measurement object 20, that is, measurement region information (step S201).
  • the correction unit 186 corrects the impedance value calculated by the measurement unit 185 based on the deviation amounts D1 to D10 specified by the deviation amount identification unit 182 (step S204).
  • the measurement method performed by the measuring device 1 calculates the amount of deviation between the reference impedance value of the reference measurement object 20S and the impedance value for each measurement area, and corresponds to one or more measurement areas where the impedance value for each measurement area was measured.
  • the amount of deviation is stored in the storage area.
  • the amount of deviation is determined by receiving measurement area information that specifies the position of the measurement object 20 on the tray 100 from the operation unit 21. A value corresponding to the information is identified.
  • the measuring device 1 outputs, from the output unit 183, a value obtained by adding or subtracting the specified amount of deviation from the actual impedance value of the measuring object 20 mounted on the tray 100.
  • FIG. 11 is a diagram showing a first modification of the inspection process of measuring the impedance value of the object to be measured in the measurement method according to the embodiment.
  • FIG. 12 is a diagram showing a second modification of the inspection process of measuring the impedance value of the object to be measured in the measurement method according to the embodiment.
  • the battery cell serving as the measurement object 20 of the measuring device 1 is not limited to a cylindrical battery cell, and may, for example, be a square battery cell as in Modification 1 shown in FIG. 11 or a modification as shown in FIG. 12. As in Example 2, it may be used in an internal resistance testing process in a production line for laminated pouch type battery cells.
  • the number of measurement objects 20 mounted on the tray 100 was 10, but the number of measurement objects 20 is not limited to the above example.
  • the measurement objects 20 may be mounted in two or more rows. Further, the measurement objects 20 on the tray 100 do not need to be arranged in a row as long as the measurement areas 101 to 110 can be specified.
  • the reference impedance value and the impedance value by measurement area are obtained by measuring the impedance value of the reference measurement object 20S using the measuring device 1 as shown in FIGS. 4 to 7.
  • the reference impedance value and the measurement region-specific impedance value may be set by inputting from the operation unit 21.
  • the measurement area information, the impedance value by measurement area, and the number specifying the amount of deviation are numbers starting from 1, but they may be a combination of letters and numbers indicating columns. .
  • the measurement objects 20 are arranged in two rows on the tray 100, each row having 12 objects, for example, the first row: A1 to A12, and the second row: B1 to B12. It is possible that
  • the deviation amount calculation unit 180 calculates the deviation amount by adding and subtracting the reference impedance value and the impedance value for each measurement area measured corresponding to one or more measurement areas, and the correction unit 186
  • the impedance value is corrected by adding or subtracting the amount of deviation from the measured impedance value
  • the present disclosure is not limited to this.
  • the deviation amount calculation unit 180 may calculate the correction coefficient from the ratio between the reference impedance value and the impedance value for each measurement area corresponding to one or more measurement areas. In this case, the correction unit 186 multiplies and divides the actually measured impedance value by this correction coefficient.
  • the measurement region-specific impedance values M1 to M10 of the reference measurement object 20S in the measurement regions 101 to 110 and the impedance values of the measurement object 20 measured in the measurement regions 101 to 110 are It is measured by external terminals of the device 1 (high side sense terminal 111, high side source terminal 112, low side sense terminal 121, and low side source terminal 122).
  • the external terminal of the measuring device 1 is not limited to the example in which the position is fixed and the tray 100 moves relative to the external terminal.
  • the external terminal of the measuring device 1 may be movable with respect to the reference measurement object 20S and the measurement object 20 mounted in the measurement areas 101 to 110 of the tray 100.
  • the error that changes due to the difference in the measurement area also includes changes due to the influence of external measurement terminals used during measurement. Therefore, the actual impedance value changes depending on other measurement objects 20 adjacent to the measurement object 20 and the test lead arrangement. Therefore, in this embodiment, the amount of shift in impedance value is recorded in association with position information.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measurement Of Resistance Or Impedance (AREA)

Abstract

The present invention corrects errors in measurement on the basis of the actual circumstances in which the measurement is done. A measurement device (1) is for measuring an electrical characteristic value of a measurement subject arranged in at least one measurement region, said device comprising: a storage unit (19) for storing, in association with measurement regions (101-110), offset amounts between a reference value for an electrical characteristic of a reference measurement subject (20S) that is a reference for a measurement subject (20) and electrical characteristic values of the reference measurement subject (20S) measured in the measurement regions (101-110); a measurement region information receiving unit (181) for receiving information identifying the actual measurement regions (101-110) for when the electrical characteristic values of the measurement subject (20) are being measured; an offset amount identification unit (182) for identifying offset amounts corresponding to the information identifying the measurement regions (101-110); a measurement unit (185) for measuring the electrical characteristic values of the measurement subject (20); and a correction unit (186) for correcting the electrical characteristic values of the measurement subject (20) in accordance with the identified offset amounts.

Description

測定装置、測定方法、及び、測定プログラムMeasuring device, measuring method, and measuring program
 本発明は、測定装置、測定方法、及び、測定プログラムに関する。 The present invention relates to a measuring device, a measuring method, and a measuring program.
 バッテリなどの測定対象物(DUT:Device Under Test)のインピーダンスなどの電気的特性を示す値(以下「電気的特性値」という)を測定するバッテリテスタ等の測定装置において、電気的特性値を測定する際に測定対象物の周辺にある他の測定対象物や測定対象物の周囲にある金属からの影響など周辺の環境により、測定した電気的特性値に誤差が生じる場合がある。 Measuring electrical characteristic values in a measuring device such as a battery tester that measures values indicating electrical characteristics such as impedance (hereinafter referred to as "electrical characteristic values") of a measurement target (DUT: Device Under Test) such as a battery. When measuring, errors may occur in the measured electrical characteristic values due to the surrounding environment, such as the influence of other objects around the object to be measured or metals around the object.
 なお、測定に先立って、種々の補正(調整)が行われるが、その一つにゼロアジャスト補正(ショート補正とも言う)が知られている(例えば、特許文献1参照)。 Note that, prior to measurement, various corrections (adjustments) are performed, one of which is known as zero adjustment correction (also referred to as short correction) (for example, see Patent Document 1).
特開2021-81202号公報JP 2021-81202 Publication
 しかしながら、ゼロアジャスト補正は、一般にゼロアジャストボードと称されるものなど、ゼロアジャスト補正用の器具を用いて行われる。このように、ゼロアジャスト補正において、誤差の補正に用いられる器具と測定対象物とが異なる物であり、渦電流の発生に影響する金属部の形状や材質などが異なるため、ゼロアジャスト補正時と測定対象物の測定時とで測定値の誤差要因となる渦電流の発生の状況が異なる。つまり、抵抗測定装置において、周辺の環境により生じる誤差を低減しようとしてゼロアジャスト補正を行ったとしても、実際の測定する状況に基づいて誤差の補正が行われているとは言いがたい。 However, zero adjustment correction is generally performed using a device for zero adjustment correction, such as what is called a zero adjustment board. In this way, during zero adjustment correction, the instrument used for error correction and the object to be measured are different things, and the shapes and materials of the metal parts that affect the generation of eddy current are different. The situation in which eddy currents, which cause errors in measured values, occur differs depending on when measuring the object to be measured. In other words, even if the resistance measuring device performs zero adjustment correction in an attempt to reduce errors caused by the surrounding environment, it is difficult to say that the errors are corrected based on the actual measurement situation.
 本発明は、上述した課題に鑑みてなされたものであり、電気的特性を示す値を測定する際に実際の測定する状況に基づいて誤差の補正を行うことができる技術を提供することを目的とする。 The present invention has been made in view of the above-mentioned problems, and an object of the present invention is to provide a technology that can correct errors based on the actual measurement situation when measuring values indicating electrical characteristics. shall be.
 本発明の代表的な実施の形態に係る測定装置は、少なくとも1つの測定領域に配置された測定対象物の電気的特性値を測定する測定装置であって、測定対象物の基準である基準測定対象物の電気的特性の基準値と前記測定領域において測定された前記基準測定対象物の電気的特性値とのずれ量を、前記測定領域に対応付けて記憶する記憶部と、前記測定対象物の電気的特性値を測定する際における実際の前記測定領域を特定する情報を受け付ける測定領域情報受付部と、前記測定領域を特定する情報に対応した前記ずれ量を特定するずれ量特定部と、前記測定対象物の電気的特性値を測定する測定部と、特定した前記ずれ量に応じて前記測定対象物の電気的特性値を補正する補正部と、を備える。 A measuring device according to a typical embodiment of the present invention is a measuring device that measures an electrical characteristic value of a measuring object placed in at least one measurement area, and the measuring device is a measuring device that measures an electrical characteristic value of a measuring object, which is a reference of the measuring object. a storage unit that stores an amount of deviation between a reference value of an electrical characteristic of a target object and an electrical characteristic value of the reference measurement target measured in the measurement region in association with the measurement region; a measurement area information reception unit that receives information specifying the actual measurement area when measuring the electrical characteristic value of the measurement area, and a deviation amount identification unit that specifies the deviation amount corresponding to the information specifying the measurement area; The measuring device includes a measuring section that measures the electrical characteristic value of the object to be measured, and a correcting section that corrects the electrical characteristic value of the object to be measured according to the specified amount of deviation.
 本発明に係る測定装置によれば、電気的特性を示す値を測定する際に実際の測定する状況に基づいて誤差の補正を行うことができる。 According to the measuring device according to the present invention, it is possible to correct errors based on the actual measurement situation when measuring values indicating electrical characteristics.
実施の形態に係る測定装置の構成を示す機能ブロック図である。FIG. 1 is a functional block diagram showing the configuration of a measuring device according to an embodiment. 実施の形態に係る測定方法における測定対象物のインピーダンス値を計測する検査工程の一例を示す図である。It is a figure showing an example of the inspection process of measuring the impedance value of a measurement object in the measurement method concerning an embodiment. 実施の形態に係る測定方法における測定対象物の基準インピーダンス値、測定領域別インピーダンス値、及びずれ量の一例を示す図である。It is a figure which shows an example of the reference impedance value of a measurement object, the impedance value by measurement area, and the amount of deviation|shift in the measurement method based on embodiment. 実施の形態に係る測定方法における基準測定対象物を示す模式的に示す図である。FIG. 3 is a diagram schematically showing a reference measurement object in a measurement method according to an embodiment. 実施の形態に係る測定方法において測定領域に対応する基準測定対象物の測定領域別インピーダンス値を取得するステップを示す模式図である。FIG. 7 is a schematic diagram showing a step of acquiring impedance values for each measurement region of a reference measurement object corresponding to a measurement region in the measurement method according to the embodiment. 実施の形態に係る測定方法において測定領域に対応する基準測定対象物の測定領域別インピーダンス値を取得するステップを示す別の模式図である。FIG. 7 is another schematic diagram showing the step of acquiring impedance values for each measurement area of the reference measurement object corresponding to the measurement area in the measurement method according to the embodiment. 実施の形態に係る測定方法において測定領域に対応する基準測定対象物の測定領域別インピーダンス値を取得するステップを示すさらに別の模式図である。FIG. 7 is yet another schematic diagram showing the step of acquiring impedance values for each measurement area of the reference measurement object corresponding to the measurement area in the measurement method according to the embodiment. 実施の形態に係る測定方法におけるずれ量の記憶領域の一例を示す模式図である。FIG. 3 is a schematic diagram showing an example of a storage area for the amount of deviation in the measurement method according to the embodiment. 実施の形態に係る測定方法におけるずれ量算出処理の一例を示すフローチャートである。It is a flowchart which shows an example of deviation amount calculation processing in the measurement method concerning an embodiment. 実施の形態に係る測定方法における測定対象物のインピーダンス値測定処理の一例を示すフローチャートである。It is a flow chart which shows an example of impedance value measurement processing of a measurement object in a measurement method concerning an embodiment. 実施の形態に係る測定方法における測定対象物のインピーダンス値を計測する検査工程の変形例1を示す図である。It is a figure which shows the modification 1 of the test|inspection process of measuring the impedance value of a measurement object in the measurement method based on embodiment. 実施の形態に係る測定方法における測定対象物のインピーダンス値を計測する検査工程の変形例2を示す図である。It is a figure which shows the modification 2 of the test|inspection process of measuring the impedance value of a measurement object in the measurement method based on embodiment.
1.実施の形態の概要
 先ず、本願において開示される発明の代表的な実施の形態について概要を説明する。なお、以下の説明では、一例として、発明の構成要素に対応する図面上の参照符号を、括弧を付して記載している。
1. Overview of Embodiments First, an overview of typical embodiments of the invention disclosed in this application will be described. In the following description, as an example, reference numerals on the drawings corresponding to constituent elements of the invention are written in parentheses.
 [1]少なくとも1つの測定領域(101~110)に配置された測定対象物(20)の電気的特性値を測定する測定装置(1)であって、測定対象物(20)の基準である基準測定対象物(20S)の電気的特性の基準値と測定領域(101~110)において測定された基準測定対象物(20S)の電気的特性値とのずれ量を測定領域(101~110)に対応付けて記憶する記憶部(19)と、測定対象物(20)の電気的特性値を測定する際における実際の測定領域(101~110)を特定する情報を受け付ける測定領域情報受付部(181)と、測定領域を特定する情報に対応したずれ量を特定するずれ量特定部(182)と、測定対象物(20)の電気的特性値を測定する測定部(185)と、特定したずれ量に応じて測定対象物(20)の電気的特性値を補正する補正部(186)と、を備える、測定装置(1)。 [1] A measurement device (1) that measures the electrical characteristic value of a measurement object (20) arranged in at least one measurement region (101 to 110), and serves as a reference for the measurement object (20). The amount of deviation between the reference value of the electrical characteristics of the reference measurement object (20S) and the electrical characteristic value of the reference measurement object (20S) measured in the measurement area (101 to 110) is measured in the measurement area (101 to 110). a storage unit (19) that stores information in association with the measurement target (20); and a measurement area information reception unit (19) that receives information specifying the actual measurement area (101 to 110) when measuring the electrical characteristic value of the measurement object (20). 181), a deviation amount specifying section (182) that specifies the deviation amount corresponding to the information specifying the measurement area, and a measuring section (185) that measures the electrical characteristic value of the measurement object (20). A measuring device (1) comprising: a correction section (186) that corrects the electrical characteristic value of the measurement object (20) according to the amount of deviation.
 [2]前記ずれ量を算出するずれ量算出部(180)を備える、[1]に記載の測定装置(1)。 [2] The measuring device (1) according to [1], including a shift amount calculation unit (180) that calculates the shift amount.
 [3]ずれ量算出部(180)は、測定領域(101~110)において測定された基準測定対象物(20S)の電気的特性値から基準値を加減算した値をずれ量として算出する、[2]に記載の測定装置(1)。 [3] The deviation amount calculation unit (180) calculates, as the deviation amount, a value obtained by adding or subtracting a reference value from the electrical characteristic value of the reference measurement object (20S) measured in the measurement area (101 to 110). The measuring device (1) according to [2].
 [4]ずれ量算出部(180)は、測定領域(101~110)において測定された基準測定対象物(20S)の電気的特性値から基準値との比をずれ量として算出する[2]に記載の測定装置(1)。 [4] The deviation amount calculation unit (180) calculates the ratio of the electric characteristic value of the reference measurement object (20S) measured in the measurement area (101 to 110) to the reference value as the deviation amount [2] Measuring device (1) described in (1).
 [5]測定部(185)が測定した前記測定対象物の電気的特性値または補正部(186)により補正された補正後の前記測定対象物の電気的特性値のいずれか一方を出力する出力部(183)を備える、[1]から[4]のいずれか1つに記載の測定装置(1)。 [5] An output that outputs either the electrical characteristic value of the object to be measured measured by the measurement section (185) or the electrical characteristic value of the object to be measured after correction corrected by the correction section (186). The measuring device (1) according to any one of [1] to [4], comprising a section (183).
 [6]基準測定対象物(20S)は、測定対象物(20)と同等の特性を有する物である、[1]から[5]のいずれか1つに記載の測定装置(1)。 [6] The measuring device (1) according to any one of [1] to [5], wherein the reference measurement object (20S) has characteristics equivalent to the measurement object (20).
 [7]基準測定対象物(20S)及び測定対象物(20)は、バッテリである、[1]から[6]のいずれか1つに記載の測定装置(1)。 [7] The measuring device (1) according to any one of [1] to [6], wherein the reference measurement object (20S) and the measurement object (20) are batteries.
 [8]測定部(185)は、基準測定対象物(20S)の電気的特性値を測定する、[1]から[7]のいずれか1つに記載の測定装置(1)。 [8] The measurement device (1) according to any one of [1] to [7], wherein the measurement unit (185) measures the electrical characteristic value of the reference measurement object (20S).
 [9]少なくとも1つの測定領域に配置された測定対象物の電気的特性値を測定する測定方法であって、測定対象物(20)の電気的特性値を測定する際における実際の測定領域(101~110)を特定する情報を受け付けるステップと、測定対象物(20)の基準である基準測定対象物(20S)の電気的特性の基準値と測定領域(101~110)における基準測定対象物(20S)の電気的特性値とのずれ量が、測定領域(101~110)に対応付けて記憶されている記憶部(19)から、測定領域(101~110)に対応したずれ量を特定するステップと、測定対象物の電気的特性値を測定するステップと、特定したずれ量に応じて測定対象物の電気的特性値を補正するステップと、を実行する測定方法。 [9] A measuring method for measuring electrical characteristic values of a measurement object arranged in at least one measurement area, the measurement method comprising 101 to 110); and the reference value of the electrical characteristics of the reference measurement object (20S), which is the reference for the measurement object (20), and the reference measurement object in the measurement region (101 to 110). Specify the amount of deviation corresponding to the measurement area (101-110) from the storage unit (19) in which the amount of deviation from the electrical characteristic value of (20S) is stored in association with the measurement area (101-110). A measuring method that performs the steps of: measuring the electrical characteristic value of the object to be measured; and correcting the electrical characteristic value of the object to be measured according to the specified amount of deviation.
 [10]基準値を記憶部(19)に記憶するステップと、測定領域(101~110)における基準測定対象物(20S)の電気的特性値を測定領域(101~110)に対応付けて記憶部(19)に記憶するステップと、を実行する、[9]に記載の測定方法。 [10] Storing the reference value in the storage unit (19), and storing the electrical characteristic values of the reference measurement object (20S) in the measurement region (101 to 110) in association with the measurement region (101 to 110). The measuring method according to [9], which performs the step of storing in the section (19).
 [11]少なくとも1つの測定領域(101~110)に配置された測定対象物(20)の電気的特性値を測定する処理をコンピュータ(18)に実行させる測定プログラムであって、測定対象物(20)の電気的特性値を測定する際における実際の測定領域(101~110)を受け付けるステップと、測定対象物(20)の基準である基準測定対象物(20S)の電気的特性の基準値と測定領域(101~110)における基準測定対象物(20S)の電気的特性値とのずれ量が、測定領域(101~110)に対応付けて記憶されている記憶部(19)から、測定領域(101~110)に対応した前記ずれ量を特定するステップと、測定対象物の電気的特性値を測定するステップと、特定したずれ量に応じて測定対象物の電気的特性値を補正するステップと、をコンピュータ(18)に実行させる測定プログラム。 [11] A measurement program that causes a computer (18) to execute a process of measuring an electrical characteristic value of a measurement object (20) arranged in at least one measurement area (101 to 110), the measurement program comprising: Step 20) of accepting the actual measurement area (101 to 110) when measuring the electrical property value, and the reference value of the electrical property of the reference measurement object (20S) which is the reference of the measurement object (20). The amount of deviation between the electrical characteristic value of the reference measurement object (20S) in the measurement area (101 to 110) is stored in the storage unit (19) in association with the measurement area (101 to 110). A step of specifying the amount of deviation corresponding to the region (101 to 110), a step of measuring the electrical characteristic value of the object to be measured, and a step of correcting the electrical characteristic value of the object to be measured according to the specified amount of deviation. A measurement program that causes a computer (18) to execute steps.
 [12]基準値を記憶部(19)に記憶するステップと、測定領域(101~110)における基準測定対象物(20S)の電気的特性値を測定領域(101~110)に対応付けて記憶部(19)に記憶するステップと、をコンピュータ(18)に実行させる、[11]に記載の測定プログラム。 [12] Storing the reference value in the storage unit (19), and storing the electrical characteristic values of the reference measurement object (20S) in the measurement region (101 to 110) in association with the measurement region (101 to 110). The measurement program according to [11], which causes the computer (18) to execute the step of storing in the section (19).
2.実施の形態の具体例
 以下、本発明の実施の形態の具体例について図を参照して説明する。なお、以下の説明において、各実施の形態において共通する構成要素には同一の参照符号を付し、繰り返しの説明を省略する。
2. Specific Examples of Embodiments Hereinafter, specific examples of embodiments of the present invention will be described with reference to the drawings. In addition, in the following description, the same reference numerals are given to the same component in each embodiment, and repeated description is omitted.
 図1は、実施の形態に係る測定装置1の構成を示す機能ブロック図である。図1に示す測定装置1は、測定対象物(DUT:Device Under Test)20の電気的特性を測定する機器である。測定装置1として、4端子法による電気的特性の一例であるインピーダンスの測定が可能なLCRメータやキャパシタンスメータ、4端子によるバッテリテスタ等を例示することができる。実施の形態では、測定装置1が電気的特性値としてインピーダンス値を測定するバッテリテスタである場合を例にとり、説明する。 FIG. 1 is a functional block diagram showing the configuration of a measuring device 1 according to an embodiment. A measuring device 1 shown in FIG. 1 is a device that measures the electrical characteristics of a device under test (DUT) 20. Examples of the measuring device 1 include an LCR meter, a capacitance meter, and a four-terminal battery tester that can measure impedance, which is an example of electrical characteristics using a four-terminal method. In the embodiment, an example will be described in which the measuring device 1 is a battery tester that measures an impedance value as an electrical characteristic value.
 図2は、実施の形態に係る測定方法における測定対象物20のインピーダンス値を計測する検査工程の一例を示す図である。図2に示すように、実施の形態において、測定装置1は、例えば、円筒型のバッテリセルの生産ラインにおける内部抵抗の検査工程において用いられる。実施の形態において、生産ラインにおいて用いられるトレー100の上におけるバッテリセルそれぞれの搭載位置を、インピーダンス値の測定領域の一例とする。このトレー100の上には、1または複数、すなわち、N個(Nは1以上の自然数)のバッテリセルを配置することができる。実施の形態では、トレー100の上の1または複数のバッテリセルのうち1つを測定対象物20として、内部抵抗の検査を行う際の他のバッテリセルから生じる渦電流などの影響による誤差を低減するために、測定装置1による測定方法を実行する。なお、実施の形態では、図5などに示すように、測定領域の数が、1以上の自然数である10個の測定領域101~110である例について説明する。 FIG. 2 is a diagram showing an example of an inspection process for measuring the impedance value of the measurement object 20 in the measurement method according to the embodiment. As shown in FIG. 2, in the embodiment, the measuring device 1 is used, for example, in an internal resistance testing process in a production line for cylindrical battery cells. In the embodiment, the mounting position of each battery cell on the tray 100 used in the production line is an example of the impedance value measurement area. On this tray 100, one or more, that is, N (N is a natural number of 1 or more) battery cells can be arranged. In the embodiment, one of the one or more battery cells on the tray 100 is used as the measurement target 20 to reduce errors caused by effects such as eddy currents generated from other battery cells when testing internal resistance. In order to do this, a measuring method using the measuring device 1 is performed. In the embodiment, an example will be described in which the number of measurement areas is 10 measurement areas 101 to 110, which are natural numbers of 1 or more, as shown in FIG. 5 and the like.
 図1に示すように、測定装置1は、ハイ側センス端子111、ハイ側ソース端子112、ロー側センス端子121、ロー側ソース端子122、信号生成回路13、電圧検出回路14、電流検出回路15、A/D変換回路16、A/D変換回路17、データ処理制御部18、記憶部19、操作部21、表示部22を備える。 As shown in FIG. 1, the measuring device 1 includes a high-side sense terminal 111, a high-side source terminal 112, a low-side sense terminal 121, a low-side source terminal 122, a signal generation circuit 13, a voltage detection circuit 14, and a current detection circuit 15. , an A/D conversion circuit 16, an A/D conversion circuit 17, a data processing control section 18, a storage section 19, an operation section 21, and a display section 22.
 ハイ側センス端子111、ハイ側ソース端子112、ロー側センス端子121、及びロー側ソース端子122は、測定対象物20を接続するための外部端子である。例えば、ハイ側センス端子111及びハイ側ソース端子112には、測定対象物20の一方の端子が接続され、ロー側センス端子121及びロー側ソース端子122には、測定対象物20の他方の端子が接続される。 The high-side sense terminal 111, the high-side source terminal 112, the low-side sense terminal 121, and the low-side source terminal 122 are external terminals for connecting the measurement object 20. For example, one terminal of the object to be measured 20 is connected to the high-side sense terminal 111 and the high-side source terminal 112, and the other terminal of the object to be measured 20 is connected to the low-side sense terminal 121 and the low-side source terminal 122. is connected.
 測定装置1は、例えば、ハイ側センス端子111及びハイ側ソース端子112とロー側センス端子121及びロー側ソース端子122との間に接続された測定対象物20に対してハイ側ソース端子112から交流信号等を印加し、そのときのハイ側センス端子111と測定対象物20を介してロー側センス端子121との間に発生する電圧と、ハイ側ソース端子112から測定対象物20を介してロー側ソース端子122に流れる電流とを測定し、測定した電圧及び電流に基づいて測定対象物20の電気的特性(インピーダンス)を測定する。なお、信号生成回路13が定電流回路である場合、信号生成回路13で生成される電流値は、既知である。この場合に、測定装置1は、測定した電圧及び既知の電流に基づいて測定対象物20のインピーダンスを測定してもよい。 For example, the measuring device 1 is configured to conduct a measurement from a high-side source terminal 112 to a measurement object 20 connected between a high-side sense terminal 111 and a high-side source terminal 112 and a low-side sense terminal 121 and a low-side source terminal 122. When an AC signal or the like is applied, the voltage generated between the high-side sense terminal 111 and the low-side sense terminal 121 via the measurement object 20 and the voltage generated from the high-side source terminal 112 via the measurement object 20 The current flowing through the low-side source terminal 122 is measured, and the electrical characteristics (impedance) of the object to be measured 20 are measured based on the measured voltage and current. Note that when the signal generation circuit 13 is a constant current circuit, the current value generated by the signal generation circuit 13 is known. In this case, the measuring device 1 may measure the impedance of the object to be measured 20 based on the measured voltage and known current.
 信号生成回路13は、測定対象物20のインピーダンスを測定するために測定対象物20に印加する交流信号(例えば、正弦波交流信号)を生成する回路である。信号生成回路13の交流信号を出力するための出力端子は、ハイ側ソース端子112に接続されている。 The signal generation circuit 13 is a circuit that generates an AC signal (for example, a sine wave AC signal) to be applied to the measurement target 20 in order to measure the impedance of the measurement target 20. An output terminal of the signal generation circuit 13 for outputting an AC signal is connected to the high-side source terminal 112.
 電圧検出回路14は、ハイ側センス端子111とロー側センス端子121とに夫々接続され、ハイ側センス端子111とロー側センス端子121との間の電圧を検出する回路である。電圧検出回路14は、例えば、演算増幅器を有しており、検出したハイ側センス端子111とロー側センス端子121との間の電圧を演算増幅器によって増幅し、電圧信号として出力する。 The voltage detection circuit 14 is a circuit that is connected to the high-side sense terminal 111 and the low-side sense terminal 121, respectively, and detects the voltage between the high-side sense terminal 111 and the low-side sense terminal 121. The voltage detection circuit 14 includes, for example, an operational amplifier, and amplifies the detected voltage between the high-side sense terminal 111 and the low-side sense terminal 121 with the operational amplifier and outputs it as a voltage signal.
 A/D変換回路16は、電圧検出回路14から出力された電圧信号を所定のサンプリング周期(例えば、信号生成回路13から出力される交流信号の周期に対して十分に短い周期)でサンプリングすることにより、電圧信号をデジタル信号に変換し、電圧データとして出力する。 The A/D conversion circuit 16 samples the voltage signal output from the voltage detection circuit 14 at a predetermined sampling period (for example, a period sufficiently shorter than the period of the AC signal output from the signal generation circuit 13). converts the voltage signal into a digital signal and outputs it as voltage data.
 電流検出回路15は、ロー側ソース端子122と接続され、測定対象物20に流れる電流を検出する回路である。電流検出回路15は、例えば、信号生成回路13から測定対象物20に交流信号を印加したときに測定対象物20に流れる電流を、ロー側ソース端子122を介して入力し、入力した電流を電圧に変換して電流信号として出力する。 The current detection circuit 15 is a circuit that is connected to the low-side source terminal 122 and detects the current flowing through the measurement object 20. For example, the current detection circuit 15 inputs the current flowing through the measurement object 20 when an AC signal is applied to the measurement object 20 from the signal generation circuit 13 via the low-side source terminal 122, and converts the input current into a voltage. Convert it into a current signal and output it as a current signal.
 A/D変換回路17は、A/D変換回路16と同様に、電流検出回路15から出力された電流信号を所定のサンプリング周期でサンプリングすることにより、電流信号をデジタル信号に変換し、電流データとして出力する。 Similar to the A/D conversion circuit 16, the A/D conversion circuit 17 samples the current signal output from the current detection circuit 15 at a predetermined sampling period, converts the current signal into a digital signal, and converts the current signal into a digital signal. Output as .
 記憶部19は、測定装置1としての機能を実現するための各種プログラム、インピーダンスを測定するための演算に用いられる各種パラメータ、及び測定結果等のデータを記憶するための機能部である。記憶部19は、例えば、ROMやRAM、フラッシュメモリ等の公知の記憶装置(記憶媒体)によって実現されている。記憶部19に記憶されている各種プログラムには、本発明に係る測定プログラムを含む。 The storage unit 19 is a functional unit that stores data such as various programs for realizing the functions of the measuring device 1, various parameters used in calculations for measuring impedance, and measurement results. The storage unit 19 is realized by, for example, a known storage device (storage medium) such as a ROM, RAM, or flash memory. The various programs stored in the storage unit 19 include the measurement program according to the present invention.
 記憶部19には、測定対象物20の基準測定対象物20Sの基準インピーダンス値を記憶する記憶領域が設けられている。また、記憶部19には、測定領域101~110における基準測定対象物20Sのインピーダンス値(以下「測定領域別インピーダンス値」という。)を記憶する記憶領域が設けられている。また、記憶部19には、基準測定対象物20Sの基準インピーダンス値と測定領域別インピーダンス値とのずれ量を記憶する記憶領域が設けられている。また、記憶部19には、測定部185が測定したインピーダンス値を記憶する記憶領域が設けられている。さらに、記憶部19には、補正部186が補正した補正インピーダンス値を記憶する記憶領域が設けられている。基準測定対象物20Sの基準インピーダンス値、測定領域別インピーダンス値、及び、ずれ量の詳細は後述する。 The storage unit 19 is provided with a storage area that stores the reference impedance value of the reference measurement object 20S of the measurement object 20. Furthermore, the storage unit 19 is provided with a storage area for storing impedance values of the reference measurement object 20S in the measurement areas 101 to 110 (hereinafter referred to as "impedance values by measurement area"). Furthermore, the storage unit 19 is provided with a storage area that stores the amount of deviation between the reference impedance value of the reference measurement object 20S and the impedance value for each measurement region. Further, the storage unit 19 is provided with a storage area for storing impedance values measured by the measurement unit 185. Furthermore, the storage section 19 is provided with a storage area for storing the corrected impedance value corrected by the correction section 186. Details of the reference impedance value, measurement area-specific impedance value, and deviation amount of the reference measurement object 20S will be described later.
 操作部21は、ユーザが測定装置1を操作するための入力インターフェースである。操作部21としては、各種のボタンやタッチパネル等を例示することができる。例えば、ユーザが操作部21を操作することにより、測定対象物20を測定するための各種測定条件等を測定装置1に設定するとともに、測定の実行及び停止を測定装置1に指示することができる。なお、操作部21は、上述したボタンやタッチパネルに限定されず、ユーザが測定装置1を操作するための入力を受け付けることができる機能を有していればよい。操作部21は、例えば、通信インターフェース(LAN、USB、RS-232C等)のコマンドによる操作を受け付けるものであってもよく、また、音声によるコマンド入力で操作を受け付けるものであってもよい。 The operation unit 21 is an input interface for a user to operate the measuring device 1. Examples of the operation unit 21 include various buttons, a touch panel, and the like. For example, by operating the operation unit 21, the user can set various measurement conditions for measuring the measurement object 20 in the measuring device 1, and can instruct the measuring device 1 to execute and stop the measurement. . Note that the operation unit 21 is not limited to the above-mentioned buttons or touch panel, and may have any function as long as it can receive input for the user to operate the measuring device 1. The operation unit 21 may be, for example, one that accepts operations using commands from a communication interface (LAN, USB, RS-232C, etc.), or may accept operations that are input by voice commands.
 表示部22は、測定装置1における測定条件や測定結果などの各種情報を出力するための機能部である。表示部22は、例えば、LCD(Liquid Crystal Display)や有機ELを備えた表示装置である。なお、表示部22は、操作部21としての一部の機能を実現するタッチパネルを備えた表示装置であってもよい。また、表示部22は、測定結果等のデータを有線または無線によって外部に出力する通信回路等を含んでいてもよい。 The display unit 22 is a functional unit for outputting various information such as measurement conditions and measurement results in the measuring device 1. The display unit 22 is a display device including, for example, an LCD (Liquid Crystal Display) or an organic EL. Note that the display unit 22 may be a display device including a touch panel that implements some of the functions of the operation unit 21. Further, the display unit 22 may include a communication circuit or the like that outputs data such as measurement results to the outside by wire or wirelessly.
 データ処理制御部18は、測定装置1内の各機能部を統括的に制御する機能部である。データ処理制御部18は、例えば、CPU等のプロセッサを含んで構成されている。 The data processing control unit 18 is a functional unit that centrally controls each functional unit within the measuring device 1. The data processing control unit 18 includes, for example, a processor such as a CPU.
 データ処理制御部18は、例えば、記憶部19に記憶されているプログラムに従って各種演算を実行することにより測定装置1内の各機能部を制御する。 The data processing control unit 18 controls each functional unit in the measuring device 1 by executing various calculations according to a program stored in the storage unit 19, for example.
 データ処理制御部18は、A/D変換回路16,17から出力された電圧データ及び電流データを入力し、入力した電圧データ及び電流データに基づいて各データ処理を実行することにより、測定対象物20の電気的特性(インピーダンス)を測定し、測定結果を記憶部19に記憶する。 The data processing control unit 18 inputs the voltage data and current data output from the A/ D conversion circuits 16 and 17, and executes each data process based on the input voltage data and current data. The electrical characteristics (impedance) of 20 are measured and the measurement results are stored in the storage unit 19.
 また、データ処理制御部18は、記憶されているプログラムを実行することにより、測定方法を実現するための機能部として、ずれ量算出部180、測定領域情報受付部181、ずれ量特定部182、出力部183、測定部185、及び、補正部186を実現する。 The data processing control unit 18 also includes a deviation amount calculation unit 180, a measurement area information reception unit 181, a deviation amount identification unit 182, as functional units for realizing the measurement method by executing a stored program. An output section 183, a measurement section 185, and a correction section 186 are realized.
 ずれ量算出部180は、基準測定対象物20Sの基準インピーダンス値と、測定領域101~110に対応して測定した測定領域別インピーダンス値とのずれの量を、ずれ量として算出する。ずれ量の算出処理については後述する。 The deviation amount calculation unit 180 calculates the amount of deviation between the reference impedance value of the reference measurement object 20S and the impedance value for each measurement area measured corresponding to the measurement areas 101 to 110, as the deviation amount. The process of calculating the amount of deviation will be described later.
 測定領域情報受付部181は、測定対象物20が測定領域101~110に搭載されている状態における実際のインピーダンス値を測定する際に、測定領域101~110の位置を特定する情報、すなわち、測定領域情報を受け付ける。測定領域情報受付部181は、具体的には、例えば、操作部21から測定対象物20のトレー100の上における測定領域情報、具体的には測定領域101、測定領域102、…、測定領域110を特定する情報の入力を受け付ける。なお、測定領域情報受付部181が受け付ける測定領域情報は、操作部21から入力される情報に限定されない。 The measurement area information reception unit 181 receives information that specifies the positions of the measurement areas 101 to 110 when measuring the actual impedance value in a state where the measurement object 20 is mounted on the measurement areas 101 to 110. Accepts area information. Specifically, the measurement area information reception unit 181 receives measurement area information on the tray 100 of the measurement target 20 from the operation unit 21, specifically, measurement area 101, measurement area 102, ..., measurement area 110. Accepts input of information to identify. Note that the measurement area information accepted by the measurement area information receiving unit 181 is not limited to information input from the operation unit 21.
 ずれ量特定部182は、測定領域情報受付部181によって特定された測定領域101~110に対応するずれ量D1~D10を記憶部19から読み出す。ずれ量特定部182は、例えば、測定領域情報受付部181が受け付けた測定領域情報が測定領域105である場合に、測定領域105に対応したずれ量D5を、記憶部19に記憶されている測定領域101~110に対応するずれ量D1~D10から特定して読み出す。 The deviation amount specifying unit 182 reads the deviation amounts D1 to D10 corresponding to the measurement areas 101 to 110 specified by the measurement area information receiving unit 181 from the storage unit 19. For example, when the measurement area information received by the measurement area information receiving unit 181 is the measurement area 105, the deviation amount specifying unit 182 determines the deviation amount D5 corresponding to the measurement area 105 from the measurement stored in the storage unit 19. The deviation amounts D1 to D10 corresponding to the regions 101 to 110 are specified and read out.
 測定部185は、電圧検出回路14によって検出した電圧値を取得する。測定部185は、電流検出回路15によって検出した電流値、または既知の電流値を取得する。測定部185は、取得した電圧値及び電流値に基づいて、測定対象物20のインピーダンスを算出する。例えば、測定部185は、取得した電圧値を電流値で除算することにより、測定対象物20及び基準測定対象物20Sのインピーダンス値を算出する。 The measurement unit 185 acquires the voltage value detected by the voltage detection circuit 14. The measurement unit 185 acquires the current value detected by the current detection circuit 15 or a known current value. The measurement unit 185 calculates the impedance of the measurement object 20 based on the obtained voltage value and current value. For example, the measurement unit 185 calculates the impedance values of the measurement object 20 and the reference measurement object 20S by dividing the obtained voltage value by the current value.
 補正部186は、測定部185によって算出したインピーダンス値を、ずれ量特定部182が特定したずれ量D1~D10に基づいて補正する。 The correction unit 186 corrects the impedance value calculated by the measurement unit 185 based on the deviation amounts D1 to D10 specified by the deviation amount identification unit 182.
 出力部183は、補正部186によって補正された測定領域別インピーダンス値を測定対象物20の測定結果として表示部22に出力(表示)させる。なお、出力部183は、上記ずれ量を表示部22に出力させてもよい。 The output unit 183 outputs (displays) the measurement region-specific impedance value corrected by the correction unit 186 to the display unit 22 as the measurement result of the measurement object 20. Note that the output unit 183 may output the amount of deviation to the display unit 22.
 基準測定対象物20Sの基準インピーダンス値P1、測定領域101~110における基準測定対象物20Sの測定領域別インピーダンス値M1~M10、及び、ずれ量D1~D10の取得の方法について説明する。 A method for obtaining the reference impedance value P1 of the reference measurement object 20S, the measurement region-specific impedance values M1 to M10 of the reference measurement object 20S in the measurement regions 101 to 110, and the deviation amounts D1 to D10 will be described.
 図3は、実施の形態に係る測定方法における基準測定対象物20Sの基準インピーダンス値P1、測定領域別インピーダンス値M1~M10、及びずれ量Dの一例を示す図である。 FIG. 3 is a diagram showing an example of the reference impedance value P1, the impedance values M1 to M10 by measurement area, and the deviation amount D of the reference measurement object 20S in the measurement method according to the embodiment.
 図3に示すように、実施の形態に係る測定装置1において、ずれ量算出部180は、検査工程に即してトレー100の上での測定領域101~110に対応して計測した測定領域別インピーダンス値M1~M10から、測定対象物20の周囲に金属のない状態(誘導電圧、渦電流の影響がない状態)で測定した基準インピーダンス値P1に基づいて算出したずれ量Dを算出する。ずれ量D1~D10は、例えば、基準インピーダンス値P1から測定領域別インピーダンス値M1~M10を加減算した値である。ずれ量D1~D10は、記憶領域に記憶させる。 As shown in FIG. 3, in the measuring device 1 according to the embodiment, the deviation amount calculation unit 180 calculates the amount of deviation calculated by the measurement area corresponding to the measurement areas 101 to 110 on the tray 100 in accordance with the inspection process. From the impedance values M1 to M10, a deviation amount D is calculated based on a reference impedance value P1 measured with no metal around the object to be measured 20 (no influence of induced voltage or eddy current). The deviation amounts D1 to D10 are, for example, values obtained by adding or subtracting the measurement region-specific impedance values M1 to M10 from the reference impedance value P1. The deviation amounts D1 to D10 are stored in a storage area.
 図4は、基準測定対象物20Sを模式的に示す図である。 FIG. 4 is a diagram schematically showing the reference measurement object 20S.
 まず、測定装置1の測定部185を用いて、基準測定対象物20Sの基準インピーダンス値P1を測定する。 First, the measurement unit 185 of the measurement device 1 is used to measure the reference impedance value P1 of the reference measurement object 20S.
 実施の形態において、基準測定対象物20Sとは、測定対象物20のうち、インピーダンス値を計測する際にインピーダンス値が既知となっていて測定対象物20のインピーダンス値の基準となるものである。基準測定対象物20Sは、測定対象物20と同等の電気的特性を有している。具体的に、基準測定対象物20Sは、例えば、測定対象物20がバッテリセルである場合、1つまたは複数のバッテリセルにおいて、他のバッテリセルとは異なる個体であるが同一形式(型番等)の製品である。 In the embodiment, the reference measurement object 20S is one of the measurement objects 20 that has a known impedance value when measuring the impedance value and serves as a reference for the impedance value of the measurement object 20. The reference measurement object 20S has the same electrical characteristics as the measurement object 20. Specifically, for example, when the measurement object 20 is a battery cell, the reference measurement object 20S is an individual that is different from other battery cells but has the same type (model number, etc.) as one or more battery cells. It is a product of
 基準インピーダンス値P1は、例えば、基準測定対象物20Sの周囲に他のバッテリや金属などを置かず、また、金属製のトレー100の上に置かないようにして、周囲からの渦電流の影響を除いて計測することが望ましい。ここで、基準測定対象物20Sの基準インピーダンス値P1を測定する前に、測定装置1のゼロアジャスト補正を行ってもよい。図4に示すように、基準測定対象物20Sの基準インピーダンス値P1は、例えば、1.000mΩと測定される。 The reference impedance value P1 is determined by, for example, not placing other batteries or metals around the reference measurement object 20S, or placing it on a metal tray 100 to reduce the influence of eddy currents from the surroundings. It is desirable to measure without removing the Here, before measuring the reference impedance value P1 of the reference measurement object 20S, zero adjustment correction of the measuring device 1 may be performed. As shown in FIG. 4, the reference impedance value P1 of the reference measurement object 20S is measured to be, for example, 1.000 mΩ.
 測定装置1は、取得された基準インピーダンス値P1を、記憶部19の記憶領域に記憶させる。 The measuring device 1 stores the acquired reference impedance value P1 in the storage area of the storage unit 19.
 図5~図7は、実施の形態に係る抵抗測定方法における基準測定対象物20Sの測定領域101~110に対応する測定領域別インピーダンス値M1~M10を取得するステップを示す模式図である。図5~図7において、トレー100の測定領域101~110と測定対象物20とを対応付けるために、測定対象物20に測定対象物20_1~20_10の符号を付す。 FIGS. 5 to 7 are schematic diagrams illustrating the steps of acquiring measurement region-specific impedance values M1 to M10 corresponding to measurement regions 101 to 110 of the reference measurement object 20S in the resistance measurement method according to the embodiment. In FIGS. 5 to 7, in order to associate the measurement areas 101 to 110 of the tray 100 with the measurement object 20, the measurement object 20 is labeled with measurement objects 20_1 to 20_10.
 図5、図6、及び図7に示すように、測定領域に対応する基準測定対象物20Sの測定領域別インピーダンス値は、トレー100の上における異なる位置に規定される1つまたは複数の測定領域それぞれに基準測定対象物20Sを搭載して計測する。測定領域別インピーダンス値は、トレー100において基準測定対象物20Sの周囲に他の測定対象物20_1~20_10を搭載した状態で、すなわち、バッテリセルの量産時の検査工程に即した状況と同様に、周囲からの渦電流の影響を受ける状況において計測する。 As shown in FIGS. 5, 6, and 7, the impedance values for each measurement area of the reference measurement object 20S corresponding to the measurement area are determined in one or more measurement areas defined at different positions on the tray 100. A reference measurement object 20S is mounted on each of them and measured. The impedance values for each measurement area are determined when the other measurement objects 20_1 to 20_10 are mounted around the reference measurement object 20S on the tray 100, that is, in the same manner as in the inspection process during mass production of battery cells. Measurement is performed in situations where eddy currents from the surroundings are affected.
 記憶部19の記憶領域において、測定領域別インピーダンス値は、トレー100の上における測定領域101~110の情報に対応付けられて記憶させる。トレー100の上におけるバッテリの搭載位置は、例えば、トレー100の一端側(図5、図6、及び図7において紙面左端)の位置を測定領域101として、トレー100の他端側(図5、図6、及び図7において紙面右端)に向かって順に測定領域102、…、測定領域105、…、測定領域109、測定領域110、というように、トレー100の上における測定対象物20_1~20_10及び基準測定対象物20Sの測定領域を特定することができるような情報を付されて記憶されている。 In the storage area of the storage unit 19, the impedance values for each measurement area are stored in association with information on the measurement areas 101 to 110 on the tray 100. The mounting position of the battery on the tray 100 is, for example, one end of the tray 100 (the left end in FIGS. 5, 6, and 7) as the measurement area 101, and the other end of the tray 100 (in FIGS. Measurement areas 102,..., measurement area 105,..., measurement area 109, measurement area 110 in order toward the right end of the paper in FIGS. 6 and 7), the measurement objects 20_1 to 20_10 and It is stored with information that allows the measurement area of the reference measurement object 20S to be specified.
 図5に示すように、測定領域101における測定領域別インピーダンス値M1は、例えば、1.001mΩと測定される。図6に示すように、測定領域105における測定領域別インピーダンス値M5は、例えば、1.005mΩと測定される。図7に示すように、測定領域110における測定領域別インピーダンス値M10は、例えば、1.010mΩと測定される。 As shown in FIG. 5, the measurement region-specific impedance value M1 in the measurement region 101 is measured to be, for example, 1.001 mΩ. As shown in FIG. 6, the impedance value M5 for each measurement region in the measurement region 105 is measured to be, for example, 1.005 mΩ. As shown in FIG. 7, the measurement region-specific impedance value M10 in the measurement region 110 is measured to be, for example, 1.010 mΩ.
 測定装置1は、図5、図6、及び図7に示したように取得された測定領域別インピーダンス値を、測定領域101~110の情報に対応づけて記憶部19の記憶領域に記憶させる。具体的には、記憶領域において、測定領域101~110における基準測定対象物20Sの測定領域別インピーダンス値は、例えば、測定領域101で測定された測定領域別インピーダンス値M1、測定領域105で測定された測定領域別インピーダンス値M5、測定領域110で測定された測定領域別インピーダンス値M10、というように記憶されている。 The measuring device 1 stores the acquired impedance values for each measurement area as shown in FIGS. 5, 6, and 7 in the storage area of the storage unit 19 in association with information on the measurement areas 101 to 110. Specifically, in the storage area, the measurement region-specific impedance values of the reference measurement object 20S in the measurement regions 101 to 110 are, for example, the measurement region-specific impedance value M1 measured in the measurement region 101 and the measurement region-specific impedance value M1 measured in the measurement region 105. The impedance value M5 for each measurement area measured in the measurement area 110 is stored as the impedance value M10 for each measurement area measured in the measurement area 110.
 以上のように取得された基準測定対象物20Sの基準インピーダンス値P1と測定領域別インピーダンス値M1~M10とを用いて、ずれ量算出部180は、ずれ量D1~D10を算出する。具体的には、図5、図6、及び図7に示したように取得された測定領域別インピーダンス値M1、…測定領域別インピーダンス値M10から、図5に示した基準インピーダンス値P1:1.000mΩを加算または減算して、ずれ量D1~D10を算出する。 Using the reference impedance value P1 of the reference measurement object 20S acquired as described above and the impedance values M1 to M10 for each measurement area, the deviation amount calculation unit 180 calculates the deviation amounts D1 to D10. Specifically, the reference impedance values P1:1 . . . shown in FIG. 5 are determined from the impedance values M1, . By adding or subtracting 000 mΩ, the deviation amounts D1 to D10 are calculated.
 図5に示すように、測定領域101におけるずれ量D1は、例えば、0.001mΩと算出される。図6に示すように、測定領域105におけるずれ量D5は、例えば、0.005mΩと算出される。図7に示すように、測定領域110におけるずれ量D10は、例えば、0.010mΩと算出される。 As shown in FIG. 5, the deviation amount D1 in the measurement area 101 is calculated to be, for example, 0.001 mΩ. As shown in FIG. 6, the deviation amount D5 in the measurement area 105 is calculated to be, for example, 0.005 mΩ. As shown in FIG. 7, the deviation amount D10 in the measurement area 110 is calculated to be, for example, 0.010 mΩ.
 図8は、実施の形態に係る測定方法におけるずれ量D1~D10の記憶領域の一例を示す模式図である。図8に示すように、算出したずれ量D1~D10は、測定領域101とずれ量D1、…、測定領域105とずれ量D5、…、測定領域110とずれ量D10、というように、基準測定対象物20Sのトレー100上における測定領域、すなわち、測定領域101~110に対応付けられて記憶部19の記憶領域に記憶される。 FIG. 8 is a schematic diagram showing an example of a storage area for the deviation amounts D1 to D10 in the measurement method according to the embodiment. As shown in FIG. 8, the calculated deviation amounts D1 to D10 are calculated based on the reference measurement area 101 and the deviation amount D1, ..., the measurement area 105 and the deviation amount D5, ..., the measurement area 110 and the deviation amount D10, and so on. It is stored in the storage area of the storage unit 19 in association with the measurement area of the object 20S on the tray 100, that is, the measurement areas 101 to 110.
 補正部186は、ずれ量D1~D10を用いて、バッテリセルの検査工程において、測定装置1により測定対象物20のインピーダンス値を測定する際に、トレー100上の測定領域101~110における他のバッテリセルや金属による誘導電圧、渦電流の影響を補正する。つまり、バッテリセルの検査工程において、測定装置1により測定対象物20のインピーダンス値を測定する際に、測定されたインピーダンス値をずれ量Dを用いて補正する。このようにすることで、測定装置1によれば、トレー100上の測定領域を問わず誘導電圧、渦電流の影響が低減された測定対象物20のインピーダンス値を得ることができる。従って、測定装置1を用いることで、バッテリセルの検査工程における選別をより正確に実施することができる。 The correction unit 186 uses the deviation amounts D1 to D10 to correct other values in the measurement areas 101 to 110 on the tray 100 when measuring the impedance value of the measurement object 20 with the measurement device 1 in the battery cell inspection process. Corrects the effects of induced voltage and eddy current due to battery cells and metals. That is, in the battery cell inspection process, when measuring the impedance value of the measurement object 20 with the measuring device 1, the measured impedance value is corrected using the deviation amount D. By doing so, according to the measuring device 1, it is possible to obtain an impedance value of the object to be measured 20 in which the effects of induced voltage and eddy current are reduced regardless of the measurement area on the tray 100. Therefore, by using the measuring device 1, selection in the battery cell inspection process can be carried out more accurately.
 従来、バッテリテスタの調整としてゼロアジャストボードなどのゼロアジャスト補正用の器具を用いて行われていたゼロアジャスト補正は、テストリードの配置や、測定対象物20の周囲の金属環境などが変化しない前提で行われていた。一方、測定装置1において、周辺の環境により生じる誤差を低減しようとするゼロアジャスト補正とは異なり、実際の測定する状況に基づいて誤差の補正が行うことができる。 Conventionally, zero adjustment correction was performed using a device for zero adjustment correction such as a zero adjustment board to adjust a battery tester, but the zero adjustment correction was performed on the assumption that the arrangement of the test leads and the metal environment around the measurement target 20 did not change. It was held in On the other hand, in the measuring device 1, unlike zero adjustment correction that attempts to reduce errors caused by the surrounding environment, error correction can be performed based on the actual measurement situation.
 図9は、実施の形態に係る測定方法におけるずれ量算出処理の一例を示すフローチャートである。図9に示すフローチャートを参照して、実施の形態に係る測定方法に用いられるずれ量の算出処理を説明する。 FIG. 9 is a flowchart illustrating an example of the deviation amount calculation process in the measurement method according to the embodiment. With reference to the flowchart shown in FIG. 9, the calculation process of the amount of deviation used in the measurement method according to the embodiment will be described.
 測定装置1は、図4に示したように、基準測定対象物20Sの基準インピーダンス値を、記憶部19に記憶する(ステップS101)。 As shown in FIG. 4, the measuring device 1 stores the reference impedance value of the reference measurement object 20S in the storage unit 19 (step S101).
 測定装置1は、図5から図7に示したように、測定領域101~110における基準測定対象物20Sのインピーダンス値を、測定領域101~110に対応して測定し、その結果を測定領域別インピーダンス値M1~M10として記憶部19の記憶領域に記憶する(ステップS102)。 As shown in FIGS. 5 to 7, the measuring device 1 measures the impedance value of the reference measurement object 20S in the measurement regions 101 to 110 corresponding to the measurement regions 101 to 110, and divides the results by measurement region. The impedance values are stored in the storage area of the storage unit 19 as impedance values M1 to M10 (step S102).
 測定装置1は、ずれ量算出部180により、基準インピーダンス値P1と測定領域別インピーダンス値M1~M10とのずれ量D1~D10を、算出する(ステップS103)。 The measuring device 1 uses the deviation amount calculation unit 180 to calculate the deviation amounts D1 to D10 between the reference impedance value P1 and the measurement region-specific impedance values M1 to M10 (step S103).
 測定装置1は、図8に示したように、算出したずれ量を測定領域101~110に対応付けて記憶部19の記憶領域に記憶する(ステップS104)。 As shown in FIG. 8, the measuring device 1 stores the calculated deviation amount in the storage area of the storage unit 19 in association with the measurement areas 101 to 110 (step S104).
 図10は、実施の形態に係る測定方法における測定対象物のインピーダンス値測定処理の一例を示すフローチャートである。図10に示すフローチャートを参照して、実施の形態に係る測定方法を説明する。 FIG. 10 is a flowchart illustrating an example of an impedance value measurement process of a measurement object in the measurement method according to the embodiment. The measurement method according to the embodiment will be described with reference to the flowchart shown in FIG.
 測定装置1において、測定領域情報受付部181は、測定対象物20の実際のインピーダンス値を測定する際の測定領域101~110の位置情報、つまり、測定領域情報を受け付ける(ステップS201)。 In the measurement device 1, the measurement region information reception unit 181 receives position information of the measurement regions 101 to 110 when measuring the actual impedance value of the measurement object 20, that is, measurement region information (step S201).
 測定装置1において、ずれ量特定部182は、記憶領域に記憶されている測定領域101~110に対応するずれ量D1~D10から、入力された測定領域情報に対応したずれ量D1~D10を特定する(ステップS202)。 In the measuring device 1, the deviation amount specifying unit 182 specifies the deviation amounts D1 to D10 corresponding to the input measurement area information from the deviation amounts D1 to D10 corresponding to the measurement areas 101 to 110 stored in the storage area. (Step S202).
 測定装置1において、測定部185は、取得した電圧値及び電流値に基づいて、測定対象物20のインピーダンスを算出する(ステップS203)。 In the measuring device 1, the measuring unit 185 calculates the impedance of the measuring object 20 based on the acquired voltage value and current value (step S203).
 測定装置1において、補正部186は、測定部185によって算出したインピーダンス値を、ずれ量特定部182が特定したずれ量D1~D10に基づいて補正する(ステップS204)。 In the measurement device 1, the correction unit 186 corrects the impedance value calculated by the measurement unit 185 based on the deviation amounts D1 to D10 specified by the deviation amount identification unit 182 (step S204).
 測定装置1は、出力部183が、補正したインピーダンス値を表示部22に出力する(ステップS205)。 In the measuring device 1, the output unit 183 outputs the corrected impedance value to the display unit 22 (step S205).
3.実施の形態の効果
 以上説明した実施の形態に係る測定装置1により実行する測定方法によれば、以下の効果を奏することができる。
3. Effects of the Embodiment According to the measurement method executed by the measuring device 1 according to the embodiment described above, the following effects can be achieved.
 測定装置1により実行する測定方法は、基準測定対象物20Sの基準インピーダンス値と測定領域別インピーダンス値とのずれ量を算出し、測定領域別インピーダンス値を測定した1つまたは複数の測定領域に対応付けて、このずれ量を記憶領域に記憶している。ずれ量は、測定対象物20の測定領域における実際のインピーダンス値を測定する際に、測定対象物20のトレー100上の位置を特定する測定領域情報を、操作部21から受け付けることで、測定領域情報に対応した値が特定される。測定装置1は、測定対象物20のトレー100に搭載された状態における実際のインピーダンス値から、特定したずれ量を加減算した値を、出力部183から出力する。 The measurement method performed by the measuring device 1 calculates the amount of deviation between the reference impedance value of the reference measurement object 20S and the impedance value for each measurement area, and corresponds to one or more measurement areas where the impedance value for each measurement area was measured. The amount of deviation is stored in the storage area. When measuring the actual impedance value in the measurement area of the measurement object 20, the amount of deviation is determined by receiving measurement area information that specifies the position of the measurement object 20 on the tray 100 from the operation unit 21. A value corresponding to the information is identified. The measuring device 1 outputs, from the output unit 183, a value obtained by adding or subtracting the specified amount of deviation from the actual impedance value of the measuring object 20 mounted on the tray 100.
 測定装置1の測定対象として、トレー100に、測定対象物20に隣接して他の測定対象物20が搭載されている。ここで、基準測定対象物20S及び測定対象物20は、他の測定対象物20の有無に起因した誘導電圧、渦電流の影響によりインピーダンス値が相違する。また、基準測定対象物20Sは、測定対象物20と同等の特性を有する製品である。 As a measurement target of the measuring device 1, another measurement target 20 is mounted on the tray 100 adjacent to the measurement target 20. Here, the reference measurement object 20S and the measurement object 20 have different impedance values due to the effects of induced voltage and eddy current caused by the presence or absence of other measurement objects 20. Further, the reference measurement object 20S is a product having the same characteristics as the measurement object 20.
 以上のような測定装置1によれば、測定領域(検査工程におけるトレー100上)における測定領域101~110の相違による誘導電圧、渦電流の影響を、実際の測定時(検査工程時)に取得する測定対象物20のインピーダンス値に反映することができる。つまり、測定装置1によれば、トレー100上の測定領域101~110を問わず誘導電圧、渦電流の影響が低減されたインピーダンス値を得ることができる。このため、測定装置1をバッテリセルの検査工程に用いることにより、バッテリセルの選別をより正確に実施することができる。 According to the measuring device 1 as described above, the influence of induced voltage and eddy current due to the difference between the measurement areas 101 to 110 in the measurement area (on the tray 100 in the inspection process) can be acquired during actual measurement (during the inspection process). This can be reflected in the impedance value of the measured object 20 to be measured. That is, according to the measuring device 1, it is possible to obtain an impedance value in which the effects of induced voltage and eddy current are reduced regardless of the measurement areas 101 to 110 on the tray 100. Therefore, by using the measuring device 1 in the battery cell inspection process, battery cells can be sorted more accurately.
 ≪実施の形態の拡張≫
 以上、本願発明者らによってなされた発明を実施の形態に基づいて具体的に説明したが、本発明はそれに限定されるものではなく、その要旨を逸脱しない範囲において種々変更可能であることは言うまでもない。
≪Expansion of the embodiment≫
Although the invention made by the present inventors has been specifically explained based on the embodiments above, it goes without saying that the present invention is not limited thereto and can be modified in various ways without departing from the gist thereof. stomach.
 図11は、実施の形態に係る測定方法における測定対象物のインピーダンス値を計測する検査工程の変形例1を示す図である。図12は、実施の形態に係る測定方法における測定対象物のインピーダンス値を計測する検査工程の変形例2を示す図である。 FIG. 11 is a diagram showing a first modification of the inspection process of measuring the impedance value of the object to be measured in the measurement method according to the embodiment. FIG. 12 is a diagram showing a second modification of the inspection process of measuring the impedance value of the object to be measured in the measurement method according to the embodiment.
 以上説明した実施の形態において、測定装置1は、図2に示した円筒型のバッテリセルの生産ラインにおける内部抵抗の検査工程において用いられる一例について説明した。しかしながら、測定装置1の測定対象物20となるバッテリセルは、円筒型のバッテリセルに限定されず、例えば、図11に示す変形例1のように角型のバッテリセル、あるいは図12に示す変形例2のようにラミネートパウチ型のバッテリセルの生産ラインにおける内部抵抗の検査工程において用いられてもよい。 In the embodiment described above, an example has been described in which the measuring device 1 is used in an internal resistance testing process in a production line for cylindrical battery cells shown in FIG. However, the battery cell serving as the measurement object 20 of the measuring device 1 is not limited to a cylindrical battery cell, and may, for example, be a square battery cell as in Modification 1 shown in FIG. 11 or a modification as shown in FIG. 12. As in Example 2, it may be used in an internal resistance testing process in a production line for laminated pouch type battery cells.
 例えば、上記実施の形態では、測定装置1がバッテリセルの生産ラインにおける内部抵抗の検査工程において用いられる例について説明したが、測定装置1は、生産ライン以外においても内部抵抗の測定に用いてもよい。 For example, in the above embodiment, an example has been described in which the measuring device 1 is used in an internal resistance testing process in a battery cell production line, but the measuring device 1 can also be used to measure internal resistance in a process other than the production line. good.
 例えば、上記実施の形態では、トレー100の上に搭載される測定対象物20の個数が10個である例について説明したが、測定対象物20の個数は上述の例に限定されない。また、トレー100における測定対象物20は、10個が1列に搭載された例について説明したが、2以上の複数列に測定対象物20が搭載されていてもよい。さらに、トレー100における測定対象物20は、測定領域101~110を特定することができれば、列状に並べられていなくてもよい。 For example, in the above embodiment, an example was described in which the number of measurement objects 20 mounted on the tray 100 was 10, but the number of measurement objects 20 is not limited to the above example. Further, although an example has been described in which ten measurement objects 20 are mounted in one row on the tray 100, the measurement objects 20 may be mounted in two or more rows. Further, the measurement objects 20 on the tray 100 do not need to be arranged in a row as long as the measurement areas 101 to 110 can be specified.
 例えば、上記実施の形態では、基準インピーダンス値及び測定領域別インピーダンス値は、図4から図7に示したように測定装置1を用いて基準測定対象物20Sのインピーダンス値を測定して取得していたが、基準インピーダンス値及び測定領域別インピーダンス値を操作部21からの入力により設定してもよい。 For example, in the above embodiment, the reference impedance value and the impedance value by measurement area are obtained by measuring the impedance value of the reference measurement object 20S using the measuring device 1 as shown in FIGS. 4 to 7. However, the reference impedance value and the measurement region-specific impedance value may be set by inputting from the operation unit 21.
 例えば、上記実施の形態では、測定領域情報、測定領域別インピーダンス値、及びずれ量を特定する番号は、1から始まる数字であったが、列を示す文字と数字との組み合わせであってもよい。具体的には、トレー100の上に各列12個の測定対象物20が2列に並べられている場合に、例えば、1列目:A1~A12、2列目:B1~B12、とすることが考えられる。 For example, in the above embodiment, the measurement area information, the impedance value by measurement area, and the number specifying the amount of deviation are numbers starting from 1, but they may be a combination of letters and numbers indicating columns. . Specifically, when the measurement objects 20 are arranged in two rows on the tray 100, each row having 12 objects, for example, the first row: A1 to A12, and the second row: B1 to B12. It is possible that
 例えば、上記実施の形態では、ずれ量算出部180が、基準インピーダンス値と1つまたは複数の測定領域に対応して計測した測定領域別インピーダンス値との加減算によりずれ量を算出し、補正部186が、測定したインピーダンス値に対してずれ量を加減算することによりインピーダンス値を補正していたが、本開示においてこれに限定されない。例えば、ずれ量算出部180が、基準インピーダンス値と1つまたは複数の測定領域に対応する測定領域別インピーダンス値との比から補正係数を算出してもよい。この場合において、補正部186は、実際に測定したインピーダンス値からこの補正係数を乗除算する。 For example, in the embodiment described above, the deviation amount calculation unit 180 calculates the deviation amount by adding and subtracting the reference impedance value and the impedance value for each measurement area measured corresponding to one or more measurement areas, and the correction unit 186 Although the impedance value is corrected by adding or subtracting the amount of deviation from the measured impedance value, the present disclosure is not limited to this. For example, the deviation amount calculation unit 180 may calculate the correction coefficient from the ratio between the reference impedance value and the impedance value for each measurement area corresponding to one or more measurement areas. In this case, the correction unit 186 multiplies and divides the actually measured impedance value by this correction coefficient.
 例えば、上記実施の形態では、図4に示したように、周囲からの渦電流の影響を除いて計測するために、基準インピーダンス値P1は、基準測定対象物20Sの周囲に他のバッテリや金属などを置かず、また、金属製のトレー100の上に置かないようにして測定していたが、本開示においてこれに限定されない。例えば、基準インピーダンス値P1は、金属製のトレー100の上に基準測定対象物20Sを置いて、周囲に他のバッテリや金属などがある状態で測定してもよい。 For example, in the above embodiment, as shown in FIG. 4, in order to perform measurement without the influence of eddy currents from the surroundings, the reference impedance value P1 is determined by the presence of other batteries or metals around the reference measurement object 20S. Although measurements were taken without placing any metal objects or on the metal tray 100, the present disclosure is not limited thereto. For example, the reference impedance value P1 may be measured by placing the reference measurement object 20S on the metal tray 100 and surrounding it with other batteries, metals, etc.
 例えば、上記実施の形態では、生産ラインにおいて用いられるトレー100の上におけるバッテリセルそれぞれの搭載位置を、インピーダンス値の測定領域の一例として説明した。本実施の形態における測定領域には、測定対象物20及び基準測定対象物20Sの電気的特性を測定する際において、測定対象物の周辺にある他の測定対象物や金属などの測定に影響を与える、測定環境に起因する要素を含む。 For example, in the above embodiment, the mounting position of each battery cell on the tray 100 used in the production line was described as an example of the impedance value measurement area. In the measurement area in this embodiment, when measuring the electrical characteristics of the measurement object 20 and the reference measurement object 20S, there is a measurement area that does not affect the measurement of other measurement objects or metals in the vicinity of the measurement object. including factors resulting from the measurement environment.
 例えば、上記実施の形態では、測定領域101~110における基準測定対象物20Sの測定領域別インピーダンス値M1~M10、及び、測定領域101~110で測定される測定対象物20のインピーダンス値は、測定装置1の外部端子(ハイ側センス端子111、ハイ側ソース端子112、ロー側センス端子121、及びロー側ソース端子122)により測定される。ここで、基準測定対象物20S及び測定対象物20のインピーダンスを測定する際に、測定装置1の外部端子は、位置が固定されていてトレー100が外部端子に対して移動する例に限らない。例えば、測定装置1の外部端子は、トレー100の測定領域101~110に搭載される基準測定対象物20S及び測定対象物20に対して移動可能であってもよい。 For example, in the above embodiment, the measurement region-specific impedance values M1 to M10 of the reference measurement object 20S in the measurement regions 101 to 110 and the impedance values of the measurement object 20 measured in the measurement regions 101 to 110 are It is measured by external terminals of the device 1 (high side sense terminal 111, high side source terminal 112, low side sense terminal 121, and low side source terminal 122). Here, when measuring the impedance of the reference measurement object 20S and the measurement object 20, the external terminal of the measuring device 1 is not limited to the example in which the position is fixed and the tray 100 moves relative to the external terminal. For example, the external terminal of the measuring device 1 may be movable with respect to the reference measurement object 20S and the measurement object 20 mounted in the measurement areas 101 to 110 of the tray 100.
 例えば、上記実施の形態において、測定領域の違いにより変化する誤差には、測定時に用いられる測定用の外部端子などの影響による変化も含まれる。このため、インピーダンス値は、測定対象物20の隣にある他の測定対象物20やテストリード配置によって実測値が変化してしまう。したがって、本実施の形態において、インピーダンス値のずれ量は、位置情報と紐付けて記録している。 For example, in the embodiment described above, the error that changes due to the difference in the measurement area also includes changes due to the influence of external measurement terminals used during measurement. Therefore, the actual impedance value changes depending on other measurement objects 20 adjacent to the measurement object 20 and the test lead arrangement. Therefore, in this embodiment, the amount of shift in impedance value is recorded in association with position information.
 例えば、上記実施の形態において記載したように、操作部21により受け付けられる、通信インターフェース、または、音声により入力される情報としては、例えば、インピーダンス値を測定する測定対象物20の位置情報、すなわち、測定領域を特定する情報である測定領域情報が含まれる。 For example, as described in the above embodiment, the information received by the operation unit 21 and input through the communication interface or voice includes, for example, the position information of the measurement object 20 whose impedance value is to be measured, that is, Measurement area information, which is information that specifies a measurement area, is included.
 1…測定装置、111…ハイ側センス端子、112…ハイ側ソース端子、121…ロー側センス端子、ロー側ソース端子122、13…信号生成回路、14…電圧検出回路、15…電流検出回路、16,17…A/D変換回路、18…データ処理制御部、19…記憶部、20…測定対象物(DUT:Device Under Test)、20S…基準測定対象物、21…操作部、22…表示部、100…トレー、101,102,105,109,110…測定領域、180…ずれ量算出部、181…測定領域情報受付部、182…ずれ量特定部、183…出力部、185…測定部、186…補正部 1... Measuring device, 111... High side sense terminal, 112... High side source terminal, 121... Low side sense terminal, low side source terminal 122, 13... Signal generation circuit, 14... Voltage detection circuit, 15... Current detection circuit, 16, 17...A/D conversion circuit, 18...Data processing control unit, 19...Storage unit, 20...Measurement object (DUT: Device Under Test), 20S...Reference measurement object, 21...Operation unit, 22...Display Part, 100... Tray, 101, 102, 105, 109, 110... Measurement area, 180... Displacement amount calculation section, 181... Measurement area information reception section, 182... Displacement amount identification section, 183... Output section, 185... Measurement section , 186...correction section

Claims (12)

  1.  少なくとも1つの測定領域に配置された測定対象物の電気的特性値を測定する測定装置であって、
     前記測定対象物の基準である基準測定対象物の電気的特性の基準値と前記測定領域において測定された前記基準測定対象物の電気的特性値とのずれ量を前記測定領域に対応付けて記憶する記憶部と、
     前記測定対象物の電気的特性値を測定する際における実際の前記測定領域を特定する情報を受け付ける測定領域情報受付部と、
     前記測定領域を特定する情報に対応した前記ずれ量を特定するずれ量特定部と、
     前記測定対象物の電気的特性値を測定する測定部と、
     特定した前記ずれ量に応じて前記測定対象物の電気的特性値を補正する補正部と、
     を備える、
     測定装置。
    A measuring device for measuring electrical characteristic values of a measurement target placed in at least one measurement area,
    A deviation amount between a reference value of an electrical characteristic of a reference measurement object, which is a reference of the measurement object, and an electrical characteristic value of the reference measurement object measured in the measurement area is stored in association with the measurement area. a memory section to
    a measurement area information reception unit that receives information specifying the actual measurement area when measuring the electrical characteristic value of the measurement object;
    a deviation amount specifying unit that specifies the deviation amount corresponding to information specifying the measurement area;
    a measurement unit that measures electrical characteristic values of the measurement target;
    a correction unit that corrects the electrical characteristic value of the measurement object according to the specified amount of deviation;
    Equipped with
    measuring device.
  2.  前記ずれ量を算出するずれ量算出部を備える、
     請求項1に記載の測定装置。
    comprising a shift amount calculation unit that calculates the shift amount;
    The measuring device according to claim 1.
  3.  前記ずれ量算出部は、前記測定領域において測定された前記基準測定対象物の電気的特性値から前記基準値を加減算した値を前記ずれ量として算出する、
     請求項2に記載の測定装置。
    The deviation amount calculation unit calculates, as the deviation amount, a value obtained by adding or subtracting the reference value from the electrical characteristic value of the reference measurement object measured in the measurement area.
    The measuring device according to claim 2.
  4.  前記ずれ量算出部は、前記測定領域において測定された前記基準測定対象物の電気的特性値から前記基準値との比を前記ずれ量として算出する、
     請求項2に記載の測定装置。
    The deviation amount calculation unit calculates a ratio of the electrical characteristic value of the reference measurement object measured in the measurement area to the reference value as the deviation amount.
    The measuring device according to claim 2.
  5.  前記測定部が測定した前記測定対象物の電気的特性値または前記補正部により補正された補正後の前記測定対象物の電気的特性値のいずれか一方を出力する出力部を備える、
     請求項1または2に記載の測定装置。
    comprising an output section that outputs either the electrical characteristic value of the measurement object measured by the measurement section or the electrical characteristic value of the measurement object after correction corrected by the correction section;
    The measuring device according to claim 1 or 2.
  6.  前記基準測定対象物は、前記測定対象物のうち1つである、
     請求項1に記載の測定装置。
    The reference measurement object is one of the measurement objects,
    The measuring device according to claim 1.
  7.  前記基準測定対象物及び前記測定対象物は、バッテリである、
     請求項1に記載の測定装置。
    the reference measurement object and the measurement object are batteries;
    The measuring device according to claim 1.
  8.  前記測定部は、前記基準測定対象物の電気的特性値を測定する、
     請求項1に記載の測定装置。
    The measurement unit measures an electrical characteristic value of the reference measurement object.
    The measuring device according to claim 1.
  9.  少なくとも1つの測定領域に配置された測定対象物の電気的特性値を測定する測定方法であって、
     前記測定対象物の電気的特性値を測定する際における実際の前記測定領域を特定する情報を受け付けるステップと、
     前記測定対象物の基準である基準測定対象物の電気的特性の基準値と前記測定領域における前記基準測定対象物の電気的特性値とのずれ量が、前記測定領域に対応付けて記憶されている記憶部から、前記測定領域に対応した前記ずれ量を特定するステップと、
     前記測定対象物の電気的特性値を測定するステップと、
     特定した前記ずれ量に応じて前記測定対象物の電気的特性値を補正するステップと、
     を実行する測定方法。
    A measurement method for measuring electrical characteristic values of a measurement target placed in at least one measurement area, the method comprising:
    receiving information specifying the actual measurement area when measuring the electrical characteristic value of the measurement object;
    A deviation amount between a reference value of an electrical property of a reference measurement object, which is a reference of the measurement object, and an electrical property value of the reference measurement object in the measurement area is stored in association with the measurement area. identifying the amount of deviation corresponding to the measurement area from a storage unit in which the measurement area is stored;
    Measuring electrical characteristic values of the object to be measured;
    correcting the electrical characteristic value of the measurement object according to the identified amount of deviation;
    Measurement method to perform.
  10.  前記基準値を前記記憶部に記憶するステップと、
     前記測定領域における前記基準測定対象物の電気的特性値を前記測定領域に対応付けて前記記憶部に記憶するステップと、
     を実行する、
     請求項9に記載の測定方法。
    storing the reference value in the storage unit;
    storing electrical characteristic values of the reference measurement object in the measurement area in the storage unit in association with the measurement area;
    execute,
    The measuring method according to claim 9.
  11.  少なくとも1つの測定領域に配置された測定対象物の電気的特性値を測定する処理をコンピュータに実行させる測定プログラムであって、
     前記測定対象物の電気的特性値を測定する際における実際の前記測定領域を特定する情報を受け付けるステップと、
     前記測定対象物の基準である基準測定対象物の電気的特性の基準値と前記測定領域における前記基準測定対象物の電気的特性値とのずれ量が、前記測定領域に対応付けて記憶されている記憶部から、前記測定領域に対応した前記ずれ量を特定するステップと、
     前記測定対象物の電気的特性値を測定するステップと、
     特定した前記ずれ量に応じて前記測定対象物の電気的特性値を補正するステップと、
     を前記コンピュータに実行させる測定プログラム。
    A measurement program that causes a computer to execute a process of measuring electrical characteristic values of a measurement target placed in at least one measurement area,
    receiving information specifying the actual measurement area when measuring the electrical characteristic value of the measurement object;
    A deviation amount between a reference value of an electrical property of a reference measurement object, which is a reference of the measurement object, and an electrical property value of the reference measurement object in the measurement area is stored in association with the measurement area. identifying the amount of deviation corresponding to the measurement area from a storage unit in which the measurement area is stored;
    Measuring electrical characteristic values of the object to be measured;
    correcting the electrical characteristic value of the measurement object according to the identified amount of deviation;
    A measurement program that causes the computer to execute.
  12.  前記基準値を前記記憶部に記憶するステップと、
     前記測定領域における前記基準測定対象物の電気的特性値を前記測定領域に対応付けて前記記憶部に記憶するステップと、
     を前記コンピュータに実行させる、
     請求項11に記載の測定プログラム。
    storing the reference value in the storage unit;
    storing electrical characteristic values of the reference measurement object in the measurement area in the storage unit in association with the measurement area;
    causing the computer to execute
    The measurement program according to claim 11.
PCT/JP2023/021655 2022-06-14 2023-06-12 Measurement device, measurement method, and measurement program WO2023243578A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022096084 2022-06-14
JP2022-096084 2022-06-14

Publications (1)

Publication Number Publication Date
WO2023243578A1 true WO2023243578A1 (en) 2023-12-21

Family

ID=89191219

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/021655 WO2023243578A1 (en) 2022-06-14 2023-06-12 Measurement device, measurement method, and measurement program

Country Status (1)

Country Link
WO (1) WO2023243578A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5740949A (en) * 1980-08-23 1982-03-06 Kokusai Electric Co Ltd Measurement of resistivity of semiconductor
JPS6447960A (en) * 1987-08-19 1989-02-22 Mitsubishi Petrochemical Co Method and apparatus for measuring resistivity
JPH02300627A (en) * 1989-05-16 1990-12-12 Mitsubishi Electric Corp Drift correcting device of measurement system
JP2009252976A (en) * 2008-04-04 2009-10-29 Hitachi Kokusai Denki Engineering:Kk Semiconductor wafer resistivity measuring apparatus
JP2011211060A (en) * 2010-03-30 2011-10-20 Hitachi Kokusai Denki Engineering:Kk Semiconductor wafer resistivity measuring apparatus
WO2020149247A1 (en) * 2019-01-15 2020-07-23 日置電機株式会社 Measurement device
WO2021153100A1 (en) * 2020-01-31 2021-08-05 日本電産リード株式会社 Semiconductor measurement device, semiconductor measurement system, and semiconductor measurement method
CN115118221A (en) * 2021-03-23 2022-09-27 嘉兴阿特斯技术研究院有限公司 Testing method of battery testing machine

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5740949A (en) * 1980-08-23 1982-03-06 Kokusai Electric Co Ltd Measurement of resistivity of semiconductor
JPS6447960A (en) * 1987-08-19 1989-02-22 Mitsubishi Petrochemical Co Method and apparatus for measuring resistivity
JPH02300627A (en) * 1989-05-16 1990-12-12 Mitsubishi Electric Corp Drift correcting device of measurement system
JP2009252976A (en) * 2008-04-04 2009-10-29 Hitachi Kokusai Denki Engineering:Kk Semiconductor wafer resistivity measuring apparatus
JP2011211060A (en) * 2010-03-30 2011-10-20 Hitachi Kokusai Denki Engineering:Kk Semiconductor wafer resistivity measuring apparatus
WO2020149247A1 (en) * 2019-01-15 2020-07-23 日置電機株式会社 Measurement device
WO2021153100A1 (en) * 2020-01-31 2021-08-05 日本電産リード株式会社 Semiconductor measurement device, semiconductor measurement system, and semiconductor measurement method
CN115118221A (en) * 2021-03-23 2022-09-27 嘉兴阿特斯技术研究院有限公司 Testing method of battery testing machine

Similar Documents

Publication Publication Date Title
CN108287633B (en) Calibration method and device of pressure sensor
EP2733466B1 (en) A Hall effect measurement instrument with temperature compensation
US20090057038A1 (en) Load cell-type electronic balance
EP2060884A1 (en) Load cell unit, weight checker, electronic weighting instrument, and weighting instrument
JP2006343109A (en) Electric power measuring apparatus
CN112556927B (en) Pressure sensor self-correcting method, equipment, storage medium and device
CN103513195A (en) Hall sensor measurement system and temperature compensation method
CN109239473A (en) A kind of the humidity influence bearing calibration and system of line-frequency electric field measuring device
WO2023243578A1 (en) Measurement device, measurement method, and measurement program
CN114624642A (en) Digital correction algorithm to improve battery voltage measurement accuracy
CN111521857B (en) Multi-conductor current measuring system based on TMR tunnel magnetic resistance
CN113093087A (en) Method, device and equipment for checking instrument integrity of mutual inductor and storage medium
JP2007132897A (en) Measuring instrument
US10697872B2 (en) Measurement device and material tester
CN115856745A (en) Test device, calibration method, calibration device, chip test method, and storage medium
JPH0795022B2 (en) Material testing machine
CN108562813A (en) A kind of test device of SiC Mosfet electrical properties
US6329817B1 (en) Electronic sensor apparatus
JP2013106359A (en) Digital protection control device
WO2023112686A1 (en) Measurement device and recording medium
CN113189272A (en) Method for correcting monitoring data of gas sensor and cooking equipment
CN104714143A (en) Method for correcting and debugging detection system
KR101849805B1 (en) Calibration detection system and method
CN116660611B (en) Measuring method, measuring platform, equipment and medium of heavy current mobile measuring platform
JP7258197B1 (en) A data processing control device, an inspection device, a data processing control method, and a data processing control program.

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23823868

Country of ref document: EP

Kind code of ref document: A1