WO2023243409A1 - Substrate treatment device and substrate treatment method - Google Patents

Substrate treatment device and substrate treatment method Download PDF

Info

Publication number
WO2023243409A1
WO2023243409A1 PCT/JP2023/020290 JP2023020290W WO2023243409A1 WO 2023243409 A1 WO2023243409 A1 WO 2023243409A1 JP 2023020290 W JP2023020290 W JP 2023020290W WO 2023243409 A1 WO2023243409 A1 WO 2023243409A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
electrode
liquid
processing apparatus
processing
Prior art date
Application number
PCT/JP2023/020290
Other languages
French (fr)
Japanese (ja)
Inventor
倫太郎 樋口
光則 中森
至 菅野
Original Assignee
東京エレクトロン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東京エレクトロン株式会社 filed Critical 東京エレクトロン株式会社
Publication of WO2023243409A1 publication Critical patent/WO2023243409A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25FPROCESSES FOR THE ELECTROLYTIC REMOVAL OF MATERIALS FROM OBJECTS; APPARATUS THEREFOR
    • C25F3/00Electrolytic etching or polishing
    • C25F3/02Etching
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25FPROCESSES FOR THE ELECTROLYTIC REMOVAL OF MATERIALS FROM OBJECTS; APPARATUS THEREFOR
    • C25F3/00Electrolytic etching or polishing
    • C25F3/02Etching
    • C25F3/04Etching of light metals
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25FPROCESSES FOR THE ELECTROLYTIC REMOVAL OF MATERIALS FROM OBJECTS; APPARATUS THEREFOR
    • C25F3/00Electrolytic etching or polishing
    • C25F3/02Etching
    • C25F3/06Etching of iron or steel
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25FPROCESSES FOR THE ELECTROLYTIC REMOVAL OF MATERIALS FROM OBJECTS; APPARATUS THEREFOR
    • C25F3/00Electrolytic etching or polishing
    • C25F3/02Etching
    • C25F3/08Etching of refractory metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/304Mechanical treatment, e.g. grinding, polishing, cutting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/3063Electrolytic etching

Definitions

  • the present disclosure relates to a substrate processing apparatus and a substrate processing method.
  • the removal target in the substrate processing method that etches the resist film, metal film, metal nitride film, and polymer residue (hereinafter collectively referred to as the removal target) on the surface of the substrate, sulfuric acid and hydrogen peroxide solution are used as the removal target on the surface of the substrate. is supplied to.
  • the sulfuric acid and hydrogen peroxide solution supplied to the surface of the substrate can peel off the object to be removed from the substrate by their oxidizing power.
  • UV light is irradiated onto droplets of a mixture of oxygen gas and ozone water without using sulfuric acid, and the droplets are applied to a resist film.
  • a substrate processing apparatus is disclosed that removes a resist film by supplying a resist film.
  • the target to be removed on the surface of the substrate can be efficiently removed.
  • FIG. 7(A) is a schematic plan view showing a first electrode according to a fifth modification.
  • FIG. 7(B) is a schematic plan view showing the first electrode according to the sixth modification.
  • FIG. 7 is a schematic explanatory diagram partially showing a substrate processing apparatus according to a seventh modification. It is a schematic explanatory view partially showing a substrate processing apparatus according to an eighth modification.
  • FIG. 12 is a schematic plan view partially showing a substrate processing apparatus according to a ninth modification.
  • FIG. 7 is a schematic plan view partially showing a substrate processing apparatus according to a tenth modification.
  • the substrate processing apparatus 1 performs an etching process to remove the removal target A by supplying a processing liquid L to the removal target A on the surface of the substrate W as substrate processing. Further, the substrate processing apparatus 1 shown in FIG. 1 is configured as a single-wafer type apparatus that processes the substrates W one by one.
  • the polymer residue is a polymer foreign substance that remains unintentionally on the surface of the substrate W due to substrate processing different from this embodiment.
  • an example of removing a resist film on a substrate W having a resist film as a removal target A will be described.
  • the holding unit 20 holds the substrate W horizontally inside the processing container 10 during substrate processing.
  • the holding unit 20 includes a disk-shaped base 21 and a chuck mechanism 22 that holds the surface of the substrate W (removal target A) in a state facing upward in the vertical direction.
  • the chuck mechanism 22 is a mechanical chuck that grips the outer peripheral edge of the substrate W in FIG. 1, it is not limited to this, and may be, for example, a vacuum chuck, an electrostatic chuck, or the like.
  • the holding unit 20 is provided with a plurality of lift pins (not shown) that levitate the substrate W from the chuck mechanism 22 and receive and transfer the substrate W to and from the transport device 2 .
  • the holding section 20 is supported by a substrate rotating section 61, which is one of the rotating sections 60 of the substrate processing apparatus 1.
  • the rotating section 60 rotates at least one of the substrate W and the first electrode 41 of the power feeding section 40 relative to the other. Note that the rotating section 60 according to this embodiment is configured to rotate both the substrate W and the first electrode 41.
  • the liquid supply unit 30 discharges a liquid onto the surface of the substrate W held by the holding unit 20.
  • the liquid supply unit 30 includes, for example, a tubular nozzle 31 having a liquid flow path therein, and a nozzle moving unit 32 that moves the nozzle 31 inside the processing container 10.
  • the liquid supply unit 30 also includes an external supply unit 70 that supplies liquid to the nozzle 31 from outside the processing container 10 .
  • the nozzle 31 is arranged above the substrate W held by the holding part 20.
  • the nozzle 31 has an L-shape in side view, extends horizontally from the side wall of the processing container 10 toward the vicinity of the center of the holding part 20 , and has a protruding end portion bent downward near the center of the holding part 20 . are doing.
  • a discharge port 31a that communicates with the flow path of the nozzle 31 and discharges liquid onto the surface of the substrate W is provided at the lower end of the protruding end.
  • the nozzle moving unit 32 moves the nozzle 31 in the horizontal and vertical directions.
  • the nozzle moving section 32 has a motor and a drive transmission mechanism (not shown), and is communicably connected to the control section 90.
  • the nozzle moving unit 32 operates under the control of the control unit 90 to arrange the nozzle 31 at a nozzle retracted position where the nozzle is retracted from the cup 50 and at an ejection position where the ejection port 31a is located approximately at the center of the substrate W.
  • the external supply unit 70 supplies liquid to the nozzle 31 from outside the processing container 10 during substrate processing.
  • the liquid used for substrate processing include a processing liquid L (chemical liquid) used for etching processing and a rinsing liquid for replacing processing liquid L after etching processing.
  • FIG. 1 illustrates a configuration in which one nozzle 31 sequentially discharges a processing liquid L and a rinsing liquid
  • the substrate processing apparatus 1 may also have a configuration in which a plurality of nozzles 31 discharge different types of processing liquid L. good.
  • the external supply unit 70 further discharges a drying liquid (for example, an organic solvent such as isopropylene alcohol) that is more volatile than the rinsing liquid to replace the rinsing liquid with the drying liquid.
  • a drying liquid for example, an organic solvent such as isopropylene alcohol
  • It can also be a configuration.
  • the processing liquid L it is preferable to select an aqueous solution containing an appropriate electrolyte depending on the type (anode, cathode) of the first electrode 41 of the power supply section 40 facing the substrate W, and the like.
  • the first electrode 41 is an anode
  • Me4NOH tetramethylammonium hydroxide: Me4NOH
  • H2SO4 tetramethylammonium hydroxide: Me4NOH
  • H2SO4 tetramethylammonium hydroxide: H2SO4 , H3PO4 , HNO3, etc.
  • an alkaline aqueous solution is more preferable in order to promote dissolution.
  • an aqueous solution containing H 2 O 2 may be used, such as SC1 (NH 4 OH+H 2 O 2 ), SC2 (HCl+H 2 O 2 ), and the like.
  • the rinsing liquid is, for example, DIW (deionized water).
  • the external supply unit 70 includes a processing liquid supply path 71 that supplies the processing liquid L to the nozzle 31, a processing liquid source 72 provided upstream of the processing liquid supply path 71, and a rinsing liquid supply path that supplies the rinsing liquid to the nozzle 31. 73 and a rinsing liquid source 74 provided upstream of the rinsing liquid supply path 73.
  • the processing liquid supply path 71 and the rinsing liquid supply path 73 are constituted by tubes each having a flow path through which a liquid can flow, and are provided with valves 71v and 73v at intermediate positions to open and close the flow path.
  • the processing liquid supply path 71 and the rinsing liquid supply path 73 are provided with a pump that pumps the processing liquid L, a flow rate regulator that adjusts the flow rate of the processing liquid L, a temperature regulator that adjusts the temperature of the processing liquid L, and the like. (both not shown). Further, the rinsing liquid supply path 73 joins the processing liquid supply path 71 at an intermediate position. Thereby, the external supply unit 70 can selectively supply the processing liquid L and the rinsing liquid to the nozzle 31 under the control of the control unit 90.
  • the power supply unit 40 has a pair of electrodes that apply a voltage to the processing liquid L discharged during the etching process, and generates OH radicals (hydroxyl radicals) in the processing liquid L by electrolysis of the processing liquid L by the pair of electrodes.
  • the power supply unit 40 includes a pair of electrodes, a first electrode 41 and a second electrode 42 , a power source 43 that applies voltage to the pair of electrodes, an electrode rotation unit 44 that rotates the first electrode 41 , and a first electrode 41 .
  • an electrode moving section 45 that moves the electrode. That is, the electrode rotating section 44 constitutes a part of the rotating section 60 that rotates the first electrode 41 relative to the substrate W. Further, the electrode moving unit 45 moves the first electrode 41 between a processing position facing the substrate W held by the holding unit 20 and an electrode retraction position where the first electrode 41 is retracted to the outside of the cup 50. Place.
  • the first electrode 41 is an electrode that is arranged at a distance from the substrate W held by the holding unit 20 and generates OH radicals in the processing liquid L that comes into contact with it.
  • the first electrode 41 may be either an anode or a cathode depending on the connection form with the power source 43. However, if an anode is used, the treatment liquid L (electrolyte aqueous solution) and electrode material will be applied depending on the anode, and if a cathode is used, the treatment liquid L and electrode material will be applied according to the cathode. do.
  • the first electrode 41 includes a facing part 411 that is arranged to face the holding part 20 and an electrode shaft part 412 that supports the center of the facing part 411.
  • the opposing portion 411 is formed in a perfect circular shape having approximately the same diameter as the substrate W in plan view, and has an electrode surface 411a facing the entire surface of the substrate W.
  • the electrode shaft part 411 is arranged so that its center coincides with the center of the substrate W and is parallel to the surface of the substrate W held by the holding part 20.
  • Supported by A processing space PS is formed between the electrode surface 411a and the surface of the substrate W, through which the processing liquid L can flow during etching processing.
  • the width of the processing space PS (distance D between the electrode surface 411a of the opposing portion 411 and the surface of the substrate W: see FIG. 3) is preferably set in a range of 0.5 mm to 5 mm, for example. Thereby, the OH radicals of the generated processing liquid L are smoothly applied to the resist film that is the removal target A. If the width of the processing space PS is less than 0.5 mm, it may be difficult for the processing liquid L discharged from the nozzle 31 to enter the processing space PS. Furthermore, if the width of the processing space PS exceeds 5 mm, there is a high possibility that the OH radicals generated at the first electrode 41 will disappear without reaching the substrate W, and there is a possibility that the processing efficiency will decrease.
  • the first electrode 41 is an anode
  • boron-doped diamond hereinafter referred to as BDD
  • the boron doping concentration of the BDD used as the first electrode 41 is preferably set to a mass in the range of 1000 ppm to 20000 ppm.
  • the first electrode 41 when the first electrode 41 is a cathode, chemically resistant noble metal, carbon, or BDD may be used.
  • chemically resistant noble metals include gold (Au) and palladium (Pd).
  • platinum (Pt) which is one of the noble metals, is preferably not applied to the first electrode 41. This is because platinum acts as a catalyst and decomposes H 2 O 2 in an aqueous solution.
  • the first electrode 41 may have a disk-shaped base portion made of another conductive material, and only the electrode surface 411a may be coated with the above-mentioned material (gold, palladium, carbon, BDD).
  • the facing part 411 of the first electrode 41 has a plurality of holes (four through holes 413) at a short distance from the center (electrode shaft part 412) toward the outside in the radial direction. Equipped with Each through hole 413 is spaced from the electrode shaft portion 412 by the same distance, and is arranged at equal intervals from each other. Each through hole 413 allows the processing liquid L discharged from the nozzle 31 to pass from the upper surface side of the opposing portion 411 to the processing space PS on the electrode surface 411a side. The processing liquid L supplied to the processing space PS is supplied to the entire substrate W in the radial direction by centrifugal force. Note that, of course, the number of through holes 413 is not particularly limited.
  • the first electrode 41 is not limited to having a plurality of through holes 413 near the center of the flat plate of the opposing portion 411, and may employ various forms of the opposing portion 411.
  • the opposing portion 411A may be formed by weaving a plurality of electrode wires 414 so as to have a mesh (holes) as a whole. Thereby, the facing part 411A can more easily guide the processing liquid L discharged from the nozzle 31 to the processing space PS below the facing part 411A.
  • the electrode shaft portion 412 is made of a conductive material and has a rod shape.
  • the upper end portion of the electrode shaft portion 412 is connected to the electrode rotating portion 44 and the electrode moving portion 45 inside the processing container 10 .
  • the lower end of the electrode shaft portion 412 is fixed to the center of the opposing portion 411.
  • the opposing portion 411 and the electrode shaft portion 412 may be made of different materials and connected by appropriate joining means, or may be integrally molded from the same material.
  • the electrode rotating section 44 is constituted by a motor and a drive transmission mechanism (not shown), and is connected to the control section 90.
  • the electrode rotating section 44 rotates the electrode shaft section 412 and the opposing section 411 at a target rotation speed under the control of the control section 90.
  • the rotation direction of the first electrode 41 may be set, for example, to be opposite to the rotation direction of the substrate W by the substrate rotation unit 61.
  • the first electrode 41 and the substrate W each face the discharge port 31a of the nozzle 31 at different timings, and the processing liquid L discharged from the discharge port 31a can be smoothly spread over the entire surface of the substrate W. Can be done.
  • the rotating unit 60 adjusts the relative position between the first electrode 41 and the substrate W by making the rotation direction of the first electrode 41 and the rotation direction of the second electrode 42 the same, and by shifting their target rotation speeds. It may be changed.
  • the electrode moving unit 45 is composed of a motor and a drive transmission mechanism (not shown), and is connected to the control unit 90.
  • the electrode rotating section 44 moves the electrode shaft section 412 and the opposing section 411 in the horizontal and vertical directions under the control of the control section 90, and arranges the first electrode 41 at the processing position and the electrode retraction position as described above. do.
  • the power feeding section 40 may include a mechanical section that integrates the electrode rotating section 44 and the electrode moving section 45.
  • the second electrode 42 is provided in the middle of the nozzle 31 and within the flow path, so that it can constantly contact the processing liquid L flowing through the nozzle 31.
  • the material of the second electrode 42 is not particularly limited as long as it has conductivity and chemical resistance.
  • the power source 43 is connected to the first electrode 41 via a wiring 46 and to the second electrode 42 via a wiring 47.
  • the wiring form of the power source 43 may be arbitrarily set depending on the polarity of the first electrode 41 facing the substrate W. Below, as shown in FIG. 1, a case will be described in which the first electrode 41 is used as an anode and the second electrode 42 is used as a cathode.
  • the power source 43 is communicatively connected to the control unit 90 and applies a DC voltage to the first electrode 41 and the second electrode 42 under the control of the control unit 90.
  • the output value of the voltage applied by the power source 43 is preferably in the range of 1.8V to 2.2V, for example.
  • oxygen will be generated as the anode voltage is increased, but with the first electrode 41 to which BDD is applied, oxygen overvoltage is large and oxygen is difficult to generate. . Therefore, the power source 43 can apply a high voltage, and can satisfactorily generate active oxygen such as OH radicals around the first electrode 41.
  • the first electrode 41 and the second electrode 42 configured as described above are electrically connected through the processing liquid L during the etching process.
  • the processing liquid L for example, TMAH
  • the processing space PS is applied to the electrode surface 411a of the facing portion 411 of the first electrode 41 and the second electrode 42. is in contact with.
  • the power supply unit 40 applies a voltage of a predetermined output value (for example, 2V) to the first electrode 41 and the second electrode 42.
  • a predetermined output value for example, 2V
  • the lifetime of the OH radicals generated by the above reaction is as short as 200 ⁇ s or less.
  • the electrode surface 411a at a position sufficiently close to the surface of the substrate W (the width of the processing space PS is 5 mm or less)
  • OH radicals can be easily guided to the resist film that is the removal target A.
  • OH radicals have strong oxidizing power and oxidize the resist film that comes into contact with them. As a result, the resist film can be smoothly peeled off from the surface of the substrate W.
  • the cup 50 provided inside the processing container 10 surrounds the outer periphery of the substrate W held by the holding part 20, and receives the processing liquid L scattered from the outer periphery of the substrate W.
  • the cup 50 does not rotate in this embodiment, it may be configured to rotate together with the holding shaft portion 62.
  • a drain pipe 51 for discharging the liquid accumulated inside the cup 50 and an exhaust pipe 52 for discharging the gas accumulated inside the cup 50 are provided on the bottom wall of the cup 50.
  • the substrate processing apparatus 1 includes a detection unit 80 that detects OH radicals generated by applying a voltage to the processing liquid L at a position different from the processing container 10 (outside the processing container 10).
  • the detection unit 80 includes an extraction path 81 that branches from the processing liquid supply path 71, a reaction liquid source 82 that supplies a reaction liquid that reacts with OH radicals, and a reaction liquid supply path 83 through which the reaction liquid from the reaction liquid source 82 flows. , and a reactor 84 into which a mixed liquid of the processing liquid L and the reaction liquid flows.
  • the extraction path 81 and the reaction liquid supply path 83 merge in a merging path 85 on the upstream side of the reactor 84 to form a mixed liquid.
  • a detection mechanism 86 is provided on the downstream side of the reactor 84 to detect the amount of OH radicals generated within the mixed liquid.
  • the extraction path 81 is constituted by a tube that has a flow path inside thereof through which the processing liquid L can flow, and is provided with a valve 81v that opens and closes the flow path at an intermediate position.
  • the reaction liquid supply path 83 is constituted by a tube having a flow path through which the reaction liquid can flow, the reaction liquid source 82 is connected to the upstream end of the tube, and a valve 83v for opening and closing the flow path is provided at an intermediate position. Be prepared.
  • terephthalic acid which is a scavenger of OH radicals and does not react with other radicals (O 2 radical, HO 2 radical, H 2 O 2 radical).
  • TA terephthalic acid
  • HTA 2-hydroxyterephthalic acid
  • the detection mechanism 86 can detect the amount of OH radicals by irradiating the liquid mixture discharged from the reactor 84 with excitation light of a predetermined wavelength and receiving the fluorescence of HTA.
  • the reactor 84 into which the mixed liquid flows has a structure that can temporarily store the mixed liquid and apply a voltage to the mixed liquid.
  • the reactor 84 includes a cylindrical container 841, a first detection electrode 842 connected to the wiring 46 between the power source 43 and the first electrode 41, and a first detection electrode 842 connected to the power source 43 and the second electrode 42. and a second detection electrode 843 connected to the wiring 47 between them.
  • the container 841 has a confluence path 85 connected to one end in the axial direction, and a detection mechanism 86 to the other end in the axial direction.
  • the first detection electrode 842 and the second detection electrode 843 are exposed inside the container 841 and come into contact with the liquid mixture that has flowed into the container 841 from the confluence path 85 .
  • the distance between the first detection electrode 842 and the second detection electrode 843 is preferably set to be approximately equal to the distance between the first electrode 41 and the second electrode 42 of the processing container 10.
  • the detection unit 80 determines the conditions for electrolyzing the mixed solution by applying a voltage to the first detection electrode 842 and the second detection electrode 843 in the reactor 84 and the conditions for electrolyzing the mixed liquid by applying a voltage to the first detection electrode 842 and the second detection electrode 843 in the processing container 10.
  • the conditions for electrolyzing the treatment liquid L by applying a voltage to the two electrodes 42 can be made equal.
  • the detection mechanism 86 optically detects the fluorescent substance generated in the reactor.
  • the detection mechanism 86 includes a sample tube 861 connected to the reactor 84, an irradiation section 862 that irradiates excitation light to the detected section 861a of the sample tube 861, and a light receiving section 863 that receives fluorescence generated in the detected section 861a. has.
  • the irradiation section 862 is connected to the control section 90, and under the control of the control section 90 projects excitation light having a wavelength of, for example, 310 nm onto the detected section 861a.
  • the light receiving section 863 is connected to the control section 90 and transmits an electric signal to the control section 90 according to the amount of received fluorescence.
  • the control unit 90 calculates the amount of OH radicals generated in the mixed liquid based on this electrical signal.
  • the control unit 90 of the substrate processing apparatus 1 is a control computer that includes a processor 91, a memory 92, an input/output interface (not shown), an electronic circuit, etc.
  • the processor 91 includes one or more of a CPU (Central Processing Unit), a GPU (Graphics Processing Unit), an ASIC (Application Specific Integrated Circuit), an FPGA (Field-Programmable Gate Array), a circuit made of a plurality of discrete semiconductors, etc. It is a combination.
  • the memory 92 includes a nonvolatile memory (for example, a compact disk, a DVD, a hard disk, a flash memory, etc.) and a volatile memory, and forms the storage section of the control unit 90.
  • the control unit 90 controls the overall operation of the substrate processing apparatus 1 by having the processor 91 execute a program stored in the memory 92.
  • the control unit 90 causes the holding unit 20, the liquid supply unit 30 (including the external supply unit 70), the power supply unit 40, the rotation unit 60, and the detection unit 80 to interlock with each other to sequentially perform predetermined steps.
  • the substrate processing apparatus 1 may have a configuration in which the control unit 90 directly controls a plurality of configurations, and is provided with a control board for each of the plurality of configurations, and the control unit 90 transmits commands to each control board so that each control board can control the control board.
  • a configuration that controls the operation may also be used.
  • the substrate processing apparatus 1 is basically configured as described above, and its operation (substrate processing method) will be described below with reference to the flowchart in FIG. 4.
  • the control unit 90 of the substrate processing apparatus 1 first carries the substrate W into the processing container 10 (step S1). At this time, the control section 90 opens the gate valve 12, causes the transfer device 2 to move the substrate W above the holding section 20, and performs an operation to transfer the substrate W to the plurality of lifted lift pins. After the transport device 2 retreats, the control section 90 lowers each lift pin and further operates the chuck mechanism 22 to hold the substrate W horizontally by the holding section 20. Further, the processing container 10 is sealed by a gate valve 12 .
  • control unit 90 operates the detection unit 80 installed outside the processing container 10 to perform a voltage adjustment step (step S2). Note that the voltage adjustment step may be performed before loading the substrate W into the processing container 10.
  • the control unit 90 opens the valves 81v and 83v while closing the valves 71v and 73v.
  • the processing liquid L (TMAH) flows from the processing liquid source 72 into the extraction path 81
  • the reaction liquid (TA) flows from the reaction liquid source 82 into the reaction liquid supply path 83
  • the processing liquid L and the reaction solution merge.
  • the mixed liquid of the processing liquid L and the reaction liquid flows into the reactor 84 from the confluence path 85.
  • the control unit 90 starts electrolyzing the mixed liquid in the reactor 84.
  • the control unit 90 applies a predetermined voltage to the first detection electrode 842 and the second detection electrode 843 to generate OH radicals in the mixed liquid in the reactor 84 .
  • This OH radical reacts with the mixed reaction solution to become fluorescent 2-hydroxyterephthalic acid (HTA).
  • a mixed liquid containing HTA depending on the reaction state of the reactor 84 flows into the sample tube 861 of the detection mechanism 86 .
  • the detection mechanism 86 irradiates excitation light from the irradiation section 862 to the detected section 861a of the sample tube 861, and when the light receiving section 863 receives the fluorescence of HTA, transmits an electric signal corresponding to the amount of fluorescence to the control section 90. .
  • the control unit 90 calculates the amount of OH radicals based on this electrical signal, and determines whether the calculated amount of OH radicals is within the target range. If it is outside the target range, the voltage applied from the power source 43 to the first detection electrode 842 and the second detection electrode 843 is adjusted. For example, when the calculated amount of OH radicals is less than the target range, the voltage is adjusted to be increased, and when the calculated amount of OH radicals is more than the target range, the voltage is adjusted to be lowered. Thereby, the substrate processing apparatus 1 can optimize in advance the voltage that the power supply 43 actually applies to the first electrode 41 and the second electrode 42 in the processing container 10.
  • the voltage adjustment step is not limited to being performed every time one substrate W is processed, but may be performed as necessary.
  • the control unit 90 may be configured to perform the voltage adjustment step first after startup or maintenance of the substrate processing apparatus 1, and not perform the voltage adjustment step during subsequent substrate processing.
  • the control unit 90 may be configured to perform the voltage adjustment step when the processing liquid source 72 is filled with the processing liquid L.
  • the control unit 90 After adjusting the voltage scheduled to be applied in the voltage adjustment step, the control unit 90 closes the valves 81v and 83v, ends the voltage adjustment step, and moves to etching processing (steps S3 to S7), which is substrate processing.
  • the control unit 90 first operates the rotating unit 60 to rotate the substrate W and the first electrode 41 (step S3).
  • the substrate rotation unit 61 rotates the substrate W in a predetermined rotation direction and at a set target rotation speed for the substrate.
  • the electrode rotation unit 44 rotates the first electrode 41 in the opposite direction to the rotation direction of the substrate W and at a set target rotation speed for the electrode.
  • control unit 90 opens the valve 71v of the processing liquid supply path 71 to cause the processing liquid L from the processing liquid source 72 to flow into the nozzle 31, and supplies the processing liquid L to the substrate W from the discharge port 31a of the nozzle 31. (Step S4).
  • the processing liquid L falling from the discharge port 31a passes through each through hole 413 of the first electrode 41 and hits the surface of the substrate W.
  • the processing liquid L wets and spreads toward the outside in the radial direction of the substrate W due to the centrifugal force accompanying the rotation of the substrate W and the opposing portion 411. Thereby, the entire electrode surface 411a of the first electrode 41 and the entire surface of the substrate W come into contact with the processing liquid L in the processing space PS.
  • the control unit 90 operates the power supply unit 40 to apply a voltage of a predetermined output value (for example, 2V) from the power supply 43 to the first electrode 41 and the second electrode 42 that are in contact with the processing liquid L. (Step S5). Thereby, the first electrode 41 and the second electrode 42 are electrically connected through the processing liquid L, and the processing liquid L is electrolyzed. Due to electrolysis, OH radicals are generated in the processing liquid L near the electrode surface 411a of the first electrode 41. The OH radicals separate the resist film from the substrate W by reacting with the resist film that is the removal target A of the substrate W.
  • the substrate processing apparatus 1 can uniformly remove the resist film on the entire surface of the substrate W by the opposing portion 411 facing the entire surface of the substrate W.
  • the control unit 90 measures the period during which the etching process is performed upon the start of electrolysis of the treatment liquid L, and determines whether a predetermined set period has elapsed (step S6).
  • the set period is a period during which the resist film of the substrate W is removed by OH radicals, which is determined through experiments, simulations, and the like.
  • the substrate processing apparatus 1 continues the relative rotation of the substrate W and the first electrode 41, the supply of the processing liquid L, and the supply of power (electrolysis) to the processing liquid L until the etching processing period passes the set period. By doing so, the resist film can be reliably removed.
  • control unit 90 ends the etching process (step S7). At this time, the control unit 90 stops the power supply to the first electrode 41 and the second electrode 42, and also stops the supply of the processing liquid L to the nozzle 31 by closing the valve 71v.
  • control unit 90 performs a rinsing process for the substrate W as substrate processing in order to drain the processing liquid L remaining on the surface of the substrate W (step S8).
  • the valve 73v is opened, and the rinsing liquid from the rinsing liquid source 74 is allowed to flow into the nozzle 31 while the substrate W is rotated by the rotation unit 60, and the rinsing liquid is applied to the substrate W from the discharge port 31a of the nozzle 31. supply The rinsing liquid spreads on the surface of the substrate W due to the centrifugal force of rotation, and the processing liquid L is discharged from the surface of the substrate W.
  • the control unit 90 After the rinsing process, the control unit 90 performs a spin drying process as substrate processing in order to dry the rinsing liquid on the surface of the substrate W (step S9).
  • the spin drying process the rinsing liquid on the surface of the substrate W is dried by rotating the substrate W by the rotation unit 60.
  • a drying liquid which is the processing liquid L, may be supplied from the liquid supply unit 30 to the surface of the substrate W to replace the rinsing liquid with the drying liquid.
  • control unit 90 releases the holding of the substrate W by the holding unit 20, opens the gate valve 12, causes the transfer device 2 to enter the processing container 10, and transfers the substrate W to the transfer device 2. , the substrate W is carried out from inside the processing container 10 (step S10). Thereby, the substrate processing apparatus 1 can satisfactorily obtain the substrate W from which the resist film has been removed.
  • the substrate processing apparatus 1 and the substrate processing method voltage is applied to the first electrode 41 and the second electrode 42 while the first electrode 41 and the substrate W are in contact with the processing liquid L supplied from the liquid supply section 30. Apply. Therefore, OH radicals are generated in the processing liquid L near the first electrode 41, and the OH radicals can be smoothly applied to the removal target A of the substrate W. Thereby, the substrate processing apparatus 1 and the substrate processing method can efficiently remove the removal target A on the surface of the substrate W. Further, since the substrate processing apparatus 1 does not use sulfuric acid, it is possible to eliminate the treatment necessary for disposing of sulfuric acid, and as a result, reduce the environmental load.
  • the substrate processing apparatus 1 can easily spread the processing liquid L supplied to the surface of the substrate W over the entire surface by rotating at least one of the first electrode 41 and the substrate W using the rotating section 60.
  • the first electrode 41 has at least one layer of gold, palladium, carbon, and boron-doped diamond (BDD) on the electrode surface 411a to increase oxygen overvoltage and direct OH radicals into the processing liquid L. can be easily generated.
  • BDD boron-doped diamond
  • the opposing parts 411 and 411A of the first electrode 41 have holes (through holes 413, mesh) through which the processing liquid L discharged from the upper nozzle 31 passes, so that the surface of the substrate W can be stably processed. Liquid L can be continuously supplied.
  • the substrate processing apparatus 1 and the substrate processing method by using an aqueous solution containing an electrolyte as the processing liquid L, it becomes possible to promote electrolysis of the processing liquid L.
  • the aqueous solution contains at least one of HF, HCl, NH 4 OH, TMAH, H 2 O 2 , H 2 SO 4 , H 3 PO 4 , and HNO 3 to sufficiently generate OH radicals. Can be done.
  • the substrate processing apparatus 1 by detecting OH radicals generated in the processing liquid L separately from the processing container 10 using the detection unit 80, it is possible to accurately adjust the voltage applied by the power supply unit 40. can.
  • the substrate processing apparatus 1 easily detects the amount of OH radicals by optically detecting a fluorescent substance generated by reacting with OH radicals in the reactor 84. becomes possible.
  • the substrate processing apparatus 1 reacts with OH radicals, becomes fluorescent, and can stably detect the amount of OH radicals.
  • the substrate processing apparatus 1 and substrate processing method of the present disclosure are not limited to the above embodiments, and may take various modifications.
  • the substrate processing apparatus 1 uses the resist film as the removal target A, but the same substrate processing can also be performed on the metal film, metal nitride film, and polymer residue on the surface of the substrate W.
  • the metal film is at least one of W, TiN, Co, Ni, Ru, Mo, and Al, the metal film can be effectively removed by the OH radicals generated in the treatment liquid L.
  • the first electrode 41 has a facing portion 411B that partially covers the surface of the substrate W, and the facing portion 411B is rotated by the electrode rotating portion 44 (see FIG. 1).
  • a configuration may also be adopted in which the rotation is performed.
  • the opposing portion 411B is formed, for example, into an elongated rectangular flat plate extending beyond the diameter of the substrate W, and can face the entire surface of the substrate W as it rotates.
  • the processing liquid L discharged from the nozzle 31 is supplied to the surface of the substrate W when the opposing portion 411B is not opposed to the discharge port 31a. Even in this case, the power supply section 40 can satisfactorily remove the removal target A of the substrate W by generating OH radicals near the opposing section 411B by power supply.
  • the first electrode 41 has a fan-shaped facing part 411C with a narrow center and a wide outer peripheral edge, and the facing part 411C is rotated by the electrode rotating part 44.
  • a configuration may also be adopted in which the By applying the facing part 411C in this way, the facing part 411C can face the surface near the outer periphery of the substrate W for a longer time, and the removal target A near the outer periphery of the substrate W can be more stably removed. Can be removed.
  • the rotating section 60 may be configured to include a fixing structure 48 for fixing the first electrode 41 without including the electrode rotating section 44 (see FIG. 1).
  • the rotating unit 60 causes the substrate rotating unit 61 to rotate the substrate W, and spreads the processing liquid L supplied to the surface of the substrate W over the entire surface of the substrate W.
  • the power supply unit 40 can generate OH radicals in the processing liquid L by applying a voltage to the first electrode 41 via the fixed structure 48 .
  • the means for supplying the processing liquid L to the entire surface of the substrate W in the substrate processing apparatus 1 is not particularly limited as long as it can generate OH radicals over the entire surface of the substrate W.
  • the rotating unit 60 includes the electrode rotating unit 44 but does not include the substrate rotating unit 61 (does not rotate the substrate W), as the first electrode 41 rotates, the surface of the substrate W may be rotated.
  • the processing liquid L can be spread over the entire area.
  • the first electrode 41A according to the fifth modification does not have a configuration in which the removal target A is removed from the entire surface of the substrate W as in the above-described embodiment.
  • the configuration is such that the removal target A near the periphery is removed.
  • the first electrode 41A includes a connecting portion 415 fixed to the fixing structure 48, and a protruding portion 416 that is supported by the connecting portion 415 and protrudes briefly above the surface of the substrate W.
  • the protrusion 416 is set to a length such that it can face only the outer peripheral edge of the substrate W, and is close to a portion of the outer peripheral edge of the substrate W in the circumferential direction.
  • the substrate processing apparatus 1 supplies the processing liquid L to the surface of the substrate W from the nozzle 31 while rotating the substrate W using the rotating section 60 (substrate rotating section 61), and supplies the processing liquid L to the surface of the substrate W from the nozzle 31, and also supplies the first electrode 41A and the second electrode using the power supply section 40.
  • a voltage is applied to the electrode 42.
  • the protrusion 416 of the first electrode 41A generates OH radicals in the processing liquid L near the outer periphery of the substrate W, and the object to be removed near the outer periphery can be favorably removed by the OH radicals.
  • the first electrode 41B according to the sixth modification rotates around the outer periphery of the substrate instead of the protrusion 416 in order to remove the removal target A near the outer periphery of the substrate W. It has a ring part 417. Even in this case, the substrate processing apparatus 1 can effectively remove the object to be removed near the outer peripheral edge of the substrate W.
  • the substrate processing apparatus 1 has a flow path 412a formed inside the electrode shaft portion 412 of the first electrode 41C, and the protruding end of the nozzle 31 inserted into the flow path 412a. It is inserted.
  • the flow path 412a communicates with an opening formed at the center of the opposing portions 411, 411A to 411C of the first electrode 41.
  • the liquid supply unit 30 and the power supply unit 40 cause the processing liquid L discharged from the discharge port 31a of the nozzle 31 to flow into the processing space PS from the opening.
  • the electrode moving unit 45 is configured to move the nozzle 31 and the first electrode 41 together.
  • the substrate processing apparatus 1A is configured to apply a voltage to the first electrode 41 and the second electrode 42 while the substrate W is immersed in the processing liquid L.
  • the holding part 20 has a chuck mechanism 22 that vacuum-chucks the substrate W, and also has a frame part 23 that protrudes outward in the radial direction of the substrate W and above the substrate W, and that circulates annularly in the circumferential direction.
  • the liquid supply unit 30 has a nozzle 31 that supplies the processing liquid L above the storage space 24.
  • the nozzle 31 retreats from the cup 50 after supplying the processing liquid L.
  • the nozzle 31 may be configured to stand by above the storage space 24 during the etching process and replenish the processing liquid L when the processing liquid L in the storage space 24 decreases.
  • the power feeding unit 40 includes a first electrode 41 having a facing portion 411 facing the substrate W, and a second electrode 42 inserted into the storage space 24 on the horizontal outer side of the first electrode 41.
  • the first electrode 41 is connected to an electrode moving section 45 . Note that although this modification does not include the rotating section 60 (the substrate rotating section 61 and the electrode rotating section 44), the substrate processing apparatus 1A is equipped with the rotating section 60 that rotates the substrate W and the first electrode 41. It can also be a configuration.
  • this substrate processing apparatus 1A when a voltage is applied to the first electrode 41 and the second electrode 42 by the power source 43 with the processing liquid L stored in the storage space 24, the electrode surface of the first electrode 41 OH radicals are generated near 411a. Therefore, this substrate processing apparatus 1A can also remove the removal target A on the surface of the substrate W using the generated OH radicals. In particular, the substrate processing apparatus 1A can more uniformly remove the removal target A by suppressing the turbulent flow of the processing liquid L during electrolysis.
  • the substrate processing apparatus 1B is configured to simultaneously clean the first electrode 41 that has been subjected to the etching process during the rinsing process of the substrate W.
  • the substrate processing apparatus 1B includes a support arm 45a that supports the first electrode 41 as an electrode moving section 45, and an arm rotation section 45b that rotates the support arm 45a.
  • the substrate processing apparatus 1B disposes the first electrode 41 above the substrate W in the vertical direction and in the vicinity of the substrate W, and generates OH radicals in the processing liquid L during the etching process. By generating, the removal target A of the substrate W is removed.
  • the substrate processing apparatus 1B rotates the support arm 45a using the arm rotating section 45b to move the first electrode 41 to the electrode retracted position. As a result, the surface of the substrate W is exposed, and the first electrode 41 can perform another process at the electrode retracted position.
  • the substrate processing apparatus 1B performs the above-mentioned rinsing process and spin drying process on the exposed substrate W (see also FIG. 4). For example, in the rinsing process, the substrate processing apparatus 1B moves the cleaning nozzle 33 that discharges a rinsing liquid (DIW) above the substrate W, and rotates the substrate W while supplying the rinsing liquid.
  • DIW rinsing liquid
  • the first electrode 41 placed in the electrode retracted position is subjected to an electrode rinsing process and an air blow drying process in this order.
  • the substrate processing apparatus 1B moves the bar nozzle 34 that discharges the rinsing liquid (DIW) above (or below) the first electrode 41, and slides the bar nozzle 34 while supplying the rinsing liquid. let Thereby, the first electrode 41 used for electrolysis can be cleaned.
  • the substrate processing apparatus 1B moves a blower (not shown) above (or below) the first electrode 41 to remove the rinse liquid adhering to the first electrode 41. In this way, by cleaning the first electrode 41, the substrate processing apparatus 1B can increase the durability of the first electrode 41 and use the first electrode 41 for a long period of time.
  • the substrate processing apparatus 1C may be configured as a batch-type apparatus that simultaneously processes a plurality of substrates W.
  • the batch-type substrate processing apparatus 1C has a processing tank 15 (processing container) that stores processing liquid L and can accommodate a plurality of substrates W. are immersed in one batch. For example, each substrate W is held by a holding section (not shown) so as to extend along the vertical direction.
  • the substrate processing apparatus 1C has a liquid supply section (not shown) that supplies the processing liquid L into the processing tank 15.
  • the substrate processing apparatus 1C arranges the first electrodes 41 at positions near each substrate W in the held state. Further, the second electrode 42 is arranged at an appropriate position within the processing tank 15. Thereby, the substrate processing apparatus 1C can generate OH radicals for each of the plurality of first electrodes 41 by applying an appropriate voltage from the power source 43 to the first electrode 41 and the second electrode 42. In the substrate W disposed adjacent to each first electrode 41, the removal target A is successfully removed by the OH radicals.
  • the substrate processing apparatus 1 and substrate processing method according to the embodiment disclosed herein are illustrative in all respects and are not restrictive.
  • the embodiments can be modified and improved in various ways without departing from the scope and spirit of the appended claims.
  • the matters described in the plurality of embodiments described above may be configured in other ways without being inconsistent, and may be combined without being inconsistent.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Cleaning Or Drying Semiconductors (AREA)

Abstract

This substrate treatment device removes an object to be removed from a substrate using a treatment solution. The substrate treatment device comprises: a holding unit that holds the substrate; a solution supply unit that supplies treatment solution to the substrate that is held by the holding unit; an electrode that is disposed so as not to be in contact with the substrate that is held by the holding unit, and makes contact with the treatment solution that is supplied from the solution supply unit; an electric power source that applies a voltage to the electrode; and a control unit that controls the solution supply unit and the electric power source. The control unit generates OH radicals in the treatment solution that is supplied from the solution supply unit, by applying a voltage to the electrode with the electrode and the substrate in contact with the treatment solution, and provides the OH radicals to the object to be removed.

Description

基板処理装置、および基板処理方法Substrate processing equipment and substrate processing method
 本開示は、基板処理装置、および基板処理方法に関する。 The present disclosure relates to a substrate processing apparatus and a substrate processing method.
 従来、基板の表面のレジスト膜、金属膜、窒化金属膜、ポリマの残渣(以下、まとめて除去対象という)をエッチングする基板処理方法では、硫酸と過酸化水素水とを基板の表面の除去対象に供給している。基板の表面に供給された硫酸および過酸化水素水は、その酸化力によって除去対象を基板から剥離することができる。 Conventionally, in the substrate processing method that etches the resist film, metal film, metal nitride film, and polymer residue (hereinafter collectively referred to as the removal target) on the surface of the substrate, sulfuric acid and hydrogen peroxide solution are used as the removal target on the surface of the substrate. is supplied to. The sulfuric acid and hydrogen peroxide solution supplied to the surface of the substrate can peel off the object to be removed from the substrate by their oxidizing power.
 また、特許文献1には、環境負荷を軽減するために硫酸を用いずに、酸素ガスと、オゾン水とを混合させた液滴に対してUV光を照射し、この液滴をレジスト膜に供給することで、レジスト膜を除去する基板処理装置が開示されている。 Furthermore, in order to reduce the environmental impact, UV light is irradiated onto droplets of a mixture of oxygen gas and ozone water without using sulfuric acid, and the droplets are applied to a resist film. A substrate processing apparatus is disclosed that removes a resist film by supplying a resist film.
特開2021-148955号公報Japanese Patent Application Publication No. 2021-148955
 本開示は、基板の表面の除去対象を効率的に除去することができる技術を提供する。 The present disclosure provides a technique that can efficiently remove a target to be removed from the surface of a substrate.
 本開示の一態様によれば、基板の除去対象を処理液で除去する基板処理装置であって、前記基板を保持する保持部と、前記保持部に保持された前記基板に前記処理液を供給する液供給部と、前記保持部に保持された前記基板に対して間隔をおいて配置され、かつ前記液供給部から供給される前記処理液に接触する電極と、前記電極に電圧を印加する電源と、前記液供給部および前記電源を制御する制御部と、を備え、前記制御部は、前記液供給部から供給した前記処理液に前記電極および前記基板を接触させた状態として前記電極に電圧を印加することで、前記処理液にOHラジカルを生成して、前記OHラジカルを前記除去対象に付与する、基板処理装置が提供される。 According to one aspect of the present disclosure, there is provided a substrate processing apparatus that removes a target to be removed from a substrate using a processing liquid, the apparatus comprising: a holding part that holds the substrate; and a holding part that supplies the processing liquid to the substrate held by the holding part. a liquid supply unit for applying a voltage to the electrode, an electrode arranged at a distance from the substrate held by the holding unit and in contact with the processing liquid supplied from the liquid supply unit; a power supply; a control unit that controls the liquid supply unit and the power supply; A substrate processing apparatus is provided that generates OH radicals in the processing liquid and applies the OH radicals to the object to be removed by applying a voltage.
 一態様によれば、基板の表面の除去対象を効率的に除去することができる。 According to one embodiment, the target to be removed on the surface of the substrate can be efficiently removed.
一実施形態に係る基板処理装置の全体構成を示す概略説明図である。1 is a schematic explanatory diagram showing the overall configuration of a substrate processing apparatus according to an embodiment. 図2(A)は、一実施形態に係る第1電極の対向部を示す概略平面図である。図2(B)は、第1変形例に係る対向部を示す概略平面図である。FIG. 2(A) is a schematic plan view showing the facing portion of the first electrode according to one embodiment. FIG. 2(B) is a schematic plan view showing the facing portion according to the first modification. 基板処理装置の電解によるOHラジカルの生成を拡大して示す断面図である。FIG. 3 is an enlarged cross-sectional view showing the generation of OH radicals due to electrolysis in the substrate processing apparatus. 一実施形態に係る基板処理方法のフローチャートである。3 is a flowchart of a substrate processing method according to one embodiment. 図5(A)は、第2変形例に係る対向部を示す概略平面図である。図5(B)は、第3変形例に係る対向部を示す概略平面図である。FIG. 5(A) is a schematic plan view showing the facing portion according to the second modification. FIG. 5(B) is a schematic plan view showing the facing portion according to the third modification. 第4変形例に係る基板処理装置を部分的に示す概略説明図である。FIG. 7 is a schematic explanatory diagram partially showing a substrate processing apparatus according to a fourth modification. 図7(A)は、第5変形例に係る第1電極を示す概略平面図である。図7(B)は、第6変形例に係る第1電極を示す概略平面図である。FIG. 7(A) is a schematic plan view showing a first electrode according to a fifth modification. FIG. 7(B) is a schematic plan view showing the first electrode according to the sixth modification. 第7変形例に係る基板処理装置を部分的に示す概略説明図である。FIG. 7 is a schematic explanatory diagram partially showing a substrate processing apparatus according to a seventh modification. 第8変形例に係る基板処理装置を部分的に示す概略説明図である。It is a schematic explanatory view partially showing a substrate processing apparatus according to an eighth modification. 第9変形例に係る基板処理装置を部分的に示す概略平面図である。FIG. 12 is a schematic plan view partially showing a substrate processing apparatus according to a ninth modification. 第10変形例に係る基板処理装置を部分的に示す概略平面図である。FIG. 7 is a schematic plan view partially showing a substrate processing apparatus according to a tenth modification.
 以下、図面を参照して本開示を実施するための形態について説明する。各図面において、同一構成部分には同一符号を付し、重複した説明を省略する場合がある。 Hereinafter, embodiments for implementing the present disclosure will be described with reference to the drawings. In each drawing, the same components are given the same reference numerals, and redundant explanations may be omitted.
 一実施形態に係る基板処理装置1は、図1に示すように、基板処理として、基板Wの表面の除去対象Aに処理液Lを供給して、除去対象Aを除去するエッチング処理を行う。また、図1に示す基板処理装置1は、基板Wを一枚ずつ処理する枚葉式の装置に構成されている。 As shown in FIG. 1, the substrate processing apparatus 1 according to one embodiment performs an etching process to remove the removal target A by supplying a processing liquid L to the removal target A on the surface of the substrate W as substrate processing. Further, the substrate processing apparatus 1 shown in FIG. 1 is configured as a single-wafer type apparatus that processes the substrates W one by one.
 基板Wの表面から除去する除去対象Aとしては、例えば、レジスト膜、金属膜または窒化金属膜、もしくは基板Wに残存するポリマ(樹脂)残渣があげられる。レジスト膜は、樹脂(ポリマ)と感光剤を含む。なお、レジスト膜は、イオン線を露光することにより硬化されたものでもよい。金属膜は、タングステン(W)、窒化チタン(TiN)、コバルト(Co)、ニッケル(Ni)、ルテニウム(Ru)、モリブデン(Mo)、アルミ(Al)のうち少なくとも1つを含むものがあげられる。金属膜は、単金属でも合金でもよい。窒化金属膜としては、例えば、窒化チタン(TiN)があげられる。また、ポリマ残渣は、本実施形態とは別の基板処理によって、基板Wの表面に意図せずに残ったポリマの異物である。以下では、除去対象Aとしてレジスト膜を有する基板Wにおいて、当該レジスト膜を除去する例を説明していく。 The removal target A to be removed from the surface of the substrate W includes, for example, a resist film, a metal film, a metal nitride film, or a polymer (resin) residue remaining on the substrate W. The resist film includes a resin (polymer) and a photosensitizer. Note that the resist film may be cured by exposure to ion beams. The metal film includes at least one of tungsten (W), titanium nitride (TiN), cobalt (Co), nickel (Ni), ruthenium (Ru), molybdenum (Mo), and aluminum (Al). . The metal film may be a single metal or an alloy. Examples of the metal nitride film include titanium nitride (TiN). Further, the polymer residue is a polymer foreign substance that remains unintentionally on the surface of the substrate W due to substrate processing different from this embodiment. In the following, an example of removing a resist film on a substrate W having a resist film as a removal target A will be described.
 基板処理装置1は、処理容器10と、処理容器10内で基板Wを保持する保持部20と、処理容器10内の基板Wに処理液Lを供給する液供給部30と、処理液Lに電力を給電する給電部40と、使用した処理液Lを回収するカップ50と、を含む。また、基板処理装置1は、この基板処理装置1の各構成を制御する制御部90を備える。 The substrate processing apparatus 1 includes a processing container 10, a holding section 20 that holds the substrate W within the processing container 10, a liquid supply section 30 that supplies the processing liquid L to the substrate W within the processing container 10, and a It includes a power supply unit 40 that supplies power, and a cup 50 that collects the used processing liquid L. Further, the substrate processing apparatus 1 includes a control section 90 that controls each component of the substrate processing apparatus 1.
 処理容器10は、保持部20およびカップ50を内部に収容する箱状に形成されている。処理容器10は、ゲート11と、ゲート11を開閉するゲートバルブ12と、を有する。基板Wは、搬送装置2により搬送され、ゲートバルブ12の開放状態で、ゲート11を介して処理容器10の内部に搬入される。その後、ゲートバルブ12がゲート11を気密に閉塞すると、基板Wは、処理容器10の内部にてエッチング処理が施される。基板処理後にゲートバルブ12が開放すると、基板Wは、処理容器10の内部に進入した搬送装置2に受け渡され、ゲート11を介して処理容器10の外部に搬出される。 The processing container 10 is formed into a box shape that accommodates the holding portion 20 and the cup 50 therein. The processing container 10 has a gate 11 and a gate valve 12 that opens and closes the gate 11. The substrate W is transported by the transport device 2 and loaded into the processing container 10 via the gate 11 with the gate valve 12 in an open state. Thereafter, when the gate valve 12 hermetically closes the gate 11, the substrate W is subjected to an etching process inside the processing container 10. When the gate valve 12 is opened after substrate processing, the substrate W is transferred to the transport device 2 that has entered the processing container 10 and is carried out to the outside of the processing container 10 via the gate 11.
 保持部20は、基板処理時に、処理容器10の内部において基板Wを水平に保持する。保持部20は、円盤状のベース21と、基板Wの表面(除去対象A)を鉛直方向上側に向けた状態で保持するチャック機構22と、を有する。チャック機構22は、図1において基板Wの外周縁を把持するメカニカルチャックを適用しているが、これに限定されるものではなく、例えば、真空吸着チャック、静電チャック等でもよい。また、保持部20には、チャック機構22から基板Wを浮上させて、搬送装置2との間で基板Wの受け取りおよび受け渡しを行う図示しない複数のリフトピンが設けられている。 The holding unit 20 holds the substrate W horizontally inside the processing container 10 during substrate processing. The holding unit 20 includes a disk-shaped base 21 and a chuck mechanism 22 that holds the surface of the substrate W (removal target A) in a state facing upward in the vertical direction. Although the chuck mechanism 22 is a mechanical chuck that grips the outer peripheral edge of the substrate W in FIG. 1, it is not limited to this, and may be, for example, a vacuum chuck, an electrostatic chuck, or the like. Further, the holding unit 20 is provided with a plurality of lift pins (not shown) that levitate the substrate W from the chuck mechanism 22 and receive and transfer the substrate W to and from the transport device 2 .
 保持部20は、基板処理装置1の回転部60の一方である基板回転部61に支持されている。回転部60は、基板Wおよび給電部40の第1電極41のうち少なくとも一方を、他方に対して相対的に回転させる。なお、本実施形態に係る回転部60は、基板Wおよび第1電極41の両方を回転させる構成としている。 The holding section 20 is supported by a substrate rotating section 61, which is one of the rotating sections 60 of the substrate processing apparatus 1. The rotating section 60 rotates at least one of the substrate W and the first electrode 41 of the power feeding section 40 relative to the other. Note that the rotating section 60 according to this embodiment is configured to rotate both the substrate W and the first electrode 41.
 基板回転部61は、上端部において保持部20のベース21を固定する保持軸部62と、保持軸部62の下端部を支持してこの保持軸部62を回転させる回転ユニット63と、を含む。回転ユニット63は、図示しないモータおよび駆動伝達機構を有し、また制御部90に通信可能に接続されている。回転ユニット63は、制御部90の制御下にモータを駆動させることで、保持軸部62を介して保持部20に保持された基板Wを目標回転速度で回転させる。 The substrate rotating section 61 includes a holding shaft section 62 that fixes the base 21 of the holding section 20 at its upper end, and a rotation unit 63 that supports the lower end of the holding shaft section 62 and rotates the holding shaft section 62. . The rotation unit 63 has a motor and a drive transmission mechanism (not shown), and is communicably connected to the control section 90. The rotation unit 63 rotates the substrate W held by the holding part 20 via the holding shaft part 62 at a target rotation speed by driving a motor under the control of the control part 90.
 液供給部30は、保持部20に保持された基板Wの表面に液体を吐出する。液供給部30は、例えば、液体の流路を内部に有する管状のノズル31と、処理容器10の内部においてノズル31を移動させるノズル移動部32と、を含む。また、液供給部30は、処理容器10の外部からノズル31に液体を供給する外部供給部70を有する。 The liquid supply unit 30 discharges a liquid onto the surface of the substrate W held by the holding unit 20. The liquid supply unit 30 includes, for example, a tubular nozzle 31 having a liquid flow path therein, and a nozzle moving unit 32 that moves the nozzle 31 inside the processing container 10. The liquid supply unit 30 also includes an external supply unit 70 that supplies liquid to the nozzle 31 from outside the processing container 10 .
 ノズル31は、保持部20に保持された基板Wよりも上方に配置されている。ノズル31は、側面視でL字状を呈し、処理容器10の側壁から保持部20の中心付近に向かって水平に延在し、保持部20の中心付近において下方に屈曲する突出端部を有している。突出端部の下端には、ノズル31の流路に連通して、基板Wの表面に液体を吐出する吐出口31aが設けられている。 The nozzle 31 is arranged above the substrate W held by the holding part 20. The nozzle 31 has an L-shape in side view, extends horizontally from the side wall of the processing container 10 toward the vicinity of the center of the holding part 20 , and has a protruding end portion bent downward near the center of the holding part 20 . are doing. A discharge port 31a that communicates with the flow path of the nozzle 31 and discharges liquid onto the surface of the substrate W is provided at the lower end of the protruding end.
 ノズル移動部32は、ノズル31を水平方向および鉛直方向に移動させる。ノズル移動部32は、図示しないモータおよび駆動伝達機構を有し、また制御部90に通信可能に接続されている。ノズル移動部32は、制御部90の制御下に動作することで、カップ50から退避させたノズル退避位置と、吐出口31aが基板Wの略中心に位置する吐出位置と、にノズル31を配置させる。 The nozzle moving unit 32 moves the nozzle 31 in the horizontal and vertical directions. The nozzle moving section 32 has a motor and a drive transmission mechanism (not shown), and is communicably connected to the control section 90. The nozzle moving unit 32 operates under the control of the control unit 90 to arrange the nozzle 31 at a nozzle retracted position where the nozzle is retracted from the cup 50 and at an ejection position where the ejection port 31a is located approximately at the center of the substrate W. let
 外部供給部70は、基板処理時に、処理容器10の外部からノズル31に液体を供給する。基板処理に使用する液体としては、例えば、エッチング処理に用いる処理液L(薬液)と、エッチング処理後に処理液Lと置換するためのリンス液と、があげられる。図1では、1つのノズル31が処理液Lとリンス液を順番に吐出する構成を例示しているが、基板処理装置1は、複数のノズル31により異なる種類の処理液Lを吐出する構成でもよい。なお、外部供給部70は、リンス液の吐出後に、当該リンス液よりも揮発性が高い乾燥液(例えば、イソプロピレンアルコール等の有機溶剤)をさらに吐出して、リンス液を乾燥液に置換する構成でもよい。 The external supply unit 70 supplies liquid to the nozzle 31 from outside the processing container 10 during substrate processing. Examples of the liquid used for substrate processing include a processing liquid L (chemical liquid) used for etching processing and a rinsing liquid for replacing processing liquid L after etching processing. Although FIG. 1 illustrates a configuration in which one nozzle 31 sequentially discharges a processing liquid L and a rinsing liquid, the substrate processing apparatus 1 may also have a configuration in which a plurality of nozzles 31 discharge different types of processing liquid L. good. Note that, after discharging the rinsing liquid, the external supply unit 70 further discharges a drying liquid (for example, an organic solvent such as isopropylene alcohol) that is more volatile than the rinsing liquid to replace the rinsing liquid with the drying liquid. It can also be a configuration.
 処理液Lは、基板Wに対向する給電部40の第1電極41の種類(陽極、陰極)等に応じて、適切な電解質を含む水溶液を選択することが好ましい。例えば、第1電極41が陽極の場合には、HF、HCl、NHOH、TMAH(水酸化テトラメチルアンモニウム:MeNOH)、HSO、HPO、HNO等のうち少なくとも1つを含む水溶液を用いるとよい。特に、除去対象Aがレジスト膜である場合には、溶解を促進するために、アルカリ水溶液がより好ましい。また、第1電極41が陰極の場合には、Hを含む水溶液を用いるとよく、例えば、SC1(NHOH+H)、SC2(HCl+H)等があげられる。一方、リンス液は、例えば、DIW(脱イオン水)である。 As the processing liquid L, it is preferable to select an aqueous solution containing an appropriate electrolyte depending on the type (anode, cathode) of the first electrode 41 of the power supply section 40 facing the substrate W, and the like. For example, when the first electrode 41 is an anode, at least one of HF, HCl, NH4OH , TMAH (tetramethylammonium hydroxide: Me4NOH ), H2SO4 , H3PO4 , HNO3, etc. It is preferable to use an aqueous solution containing one of them. In particular, when the object A to be removed is a resist film, an alkaline aqueous solution is more preferable in order to promote dissolution. Furthermore, when the first electrode 41 is a cathode, an aqueous solution containing H 2 O 2 may be used, such as SC1 (NH 4 OH+H 2 O 2 ), SC2 (HCl+H 2 O 2 ), and the like. On the other hand, the rinsing liquid is, for example, DIW (deionized water).
 外部供給部70は、ノズル31に処理液Lを供給する処理液供給経路71と、処理液供給経路71の上流に設けられる処理液源72と、ノズル31にリンス液を供給するリンス液供給経路73と、リンス液供給経路73の上流に設けられるリンス液源74と、を含む。処理液供給経路71およびリンス液供給経路73は、液体を流通可能な流路を内側に有するチューブによって構成され、途中位置に流路を開閉するバルブ71v、73vを備える。さらに、処理液供給経路71およびリンス液供給経路73には、処理液Lを圧送するポンプ、処理液Lの流量を調整する流量調整器、処理液Lの温度を調整する温度調整器等が設けられる(共に不図示)。また、リンス液供給経路73は、処理液供給経路71の途中位置で合流している。これにより、外部供給部70は、制御部90の制御下に、処理液Lおよびリンス液を選択的にノズル31に供給できる。 The external supply unit 70 includes a processing liquid supply path 71 that supplies the processing liquid L to the nozzle 31, a processing liquid source 72 provided upstream of the processing liquid supply path 71, and a rinsing liquid supply path that supplies the rinsing liquid to the nozzle 31. 73 and a rinsing liquid source 74 provided upstream of the rinsing liquid supply path 73. The processing liquid supply path 71 and the rinsing liquid supply path 73 are constituted by tubes each having a flow path through which a liquid can flow, and are provided with valves 71v and 73v at intermediate positions to open and close the flow path. Furthermore, the processing liquid supply path 71 and the rinsing liquid supply path 73 are provided with a pump that pumps the processing liquid L, a flow rate regulator that adjusts the flow rate of the processing liquid L, a temperature regulator that adjusts the temperature of the processing liquid L, and the like. (both not shown). Further, the rinsing liquid supply path 73 joins the processing liquid supply path 71 at an intermediate position. Thereby, the external supply unit 70 can selectively supply the processing liquid L and the rinsing liquid to the nozzle 31 under the control of the control unit 90.
 給電部40は、エッチング処理時に吐出する処理液Lに電圧を印加する一対の電極を有し、一対の電極による処理液Lの電解により、処理液LにOHラジカル(ヒドロキシルラジカル)を生成する。給電部40は、一対の電極である第1電極41および第2電極42と、一対の電極に電圧を印加する電源43と、第1電極41を回転させる電極回転部44と、第1電極41を移動させる電極移動部45と、を含む。すなわち、電極回転部44は、基板Wと相対的に第1電極41を回転させる回転部60の一部を構成している。また、電極移動部45は、第1電極41を移動させて、保持部20に保持された基板Wに対向する処理位置と、カップ50の外側に退避した電極退避位置と、に第1電極41を配置する。 The power supply unit 40 has a pair of electrodes that apply a voltage to the processing liquid L discharged during the etching process, and generates OH radicals (hydroxyl radicals) in the processing liquid L by electrolysis of the processing liquid L by the pair of electrodes. The power supply unit 40 includes a pair of electrodes, a first electrode 41 and a second electrode 42 , a power source 43 that applies voltage to the pair of electrodes, an electrode rotation unit 44 that rotates the first electrode 41 , and a first electrode 41 . an electrode moving section 45 that moves the electrode. That is, the electrode rotating section 44 constitutes a part of the rotating section 60 that rotates the first electrode 41 relative to the substrate W. Further, the electrode moving unit 45 moves the first electrode 41 between a processing position facing the substrate W held by the holding unit 20 and an electrode retraction position where the first electrode 41 is retracted to the outside of the cup 50. Place.
 第1電極41は、保持部20に保持された基板Wに隣接する位置において間隔をおいて配置され、接触した処理液L内にOHラジカルを生成する電極である。第1電極41は、電源43との接続形態に応じて、陽極および陰極のうちいずれを採用してもよい。ただし、陽極を採った場合には、陽極に応じた処理液L(電解質水溶液)および電極の材料を適用し、陰極を採った場合には、陰極に応じた処理液Lおよび電極の材料を適用する。 The first electrode 41 is an electrode that is arranged at a distance from the substrate W held by the holding unit 20 and generates OH radicals in the processing liquid L that comes into contact with it. The first electrode 41 may be either an anode or a cathode depending on the connection form with the power source 43. However, if an anode is used, the treatment liquid L (electrolyte aqueous solution) and electrode material will be applied depending on the anode, and if a cathode is used, the treatment liquid L and electrode material will be applied according to the cathode. do.
 第1電極41は、保持部20に対向可能に配置される対向部411と、対向部411の中心を支持する電極軸部412と、を備える。対向部411は、平面視で、基板Wと略同程度の直径を有する正円状に形成され、基板Wの表面全体に対向する電極面411aを有する。対向部411は、処理位置に配置された状態で、その中心が基板Wの中心に一致し、かつ保持部20に保持された基板Wの表面に対して平行にとなるように電極軸部412に支持される。電極面411aと基板Wの表面との間には、エッチング処理において処理液Lを流通可能な処理空間PSが形成される。 The first electrode 41 includes a facing part 411 that is arranged to face the holding part 20 and an electrode shaft part 412 that supports the center of the facing part 411. The opposing portion 411 is formed in a perfect circular shape having approximately the same diameter as the substrate W in plan view, and has an electrode surface 411a facing the entire surface of the substrate W. When the opposing part 411 is placed at the processing position, the electrode shaft part 411 is arranged so that its center coincides with the center of the substrate W and is parallel to the surface of the substrate W held by the holding part 20. Supported by A processing space PS is formed between the electrode surface 411a and the surface of the substrate W, through which the processing liquid L can flow during etching processing.
 処理空間PSの幅(対向部411の電極面411aと基板Wの表面との間隔D:図3参照)は、例えば、0.5mm~5mmの範囲に設定されることが好ましい。これにより、生成された処理液LのOHラジカルが、除去対象Aであるレジスト膜とスムーズに付与されるようになる。仮に、処理空間PSの幅が0.5mm未満の場合には、ノズル31から吐出された処理液Lが処理空間PSに入り込み難くなる可能性がある。また、処理空間PSの幅が5mmを超える場合には、第1電極41で生成したOHラジカルが基板Wに届かずに消失する可能性が高くなり、処理効率が低下するおそれがある。 The width of the processing space PS (distance D between the electrode surface 411a of the opposing portion 411 and the surface of the substrate W: see FIG. 3) is preferably set in a range of 0.5 mm to 5 mm, for example. Thereby, the OH radicals of the generated processing liquid L are smoothly applied to the resist film that is the removal target A. If the width of the processing space PS is less than 0.5 mm, it may be difficult for the processing liquid L discharged from the nozzle 31 to enter the processing space PS. Furthermore, if the width of the processing space PS exceeds 5 mm, there is a high possibility that the OH radicals generated at the first electrode 41 will disappear without reaching the substrate W, and there is a possibility that the processing efficiency will decrease.
 対向部411を構成する材料は、上記したように電極の種類(陽極、陰極)等に応じて適切なものを選択することが好ましい。例えば、第1電極41が陽極の場合には、ボロンドープダイアモンド(以下、BDDという)を適用するとよい。第1電極41として用いるBDDのボロンドープ濃度としては、1000ppm~20000ppmの範囲の質量に設定されることが好ましい。このBDDを適用することにより、第1電極41は、処理液Lに印加する電圧を増やした場合でも、酸素過電圧を大きくして、処理液Lから酸素を発生させ難くすることができる。そのため、給電部40は、高電圧をかけることができ、酸素の代わりにOHラジカル等の活性酸素を効率的に生成することが可能となる。 As described above, it is preferable to select an appropriate material for the facing portion 411 depending on the type of electrode (anode, cathode), etc. For example, when the first electrode 41 is an anode, boron-doped diamond (hereinafter referred to as BDD) may be used. The boron doping concentration of the BDD used as the first electrode 41 is preferably set to a mass in the range of 1000 ppm to 20000 ppm. By applying this BDD, the first electrode 41 can increase the oxygen overvoltage and make it difficult to generate oxygen from the processing liquid L even when the voltage applied to the processing liquid L is increased. Therefore, the power supply unit 40 can apply a high voltage and can efficiently generate active oxygen such as OH radicals instead of oxygen.
 一方、第1電極41が陰極の場合には、耐薬性のある貴金属、もしくはカーボンやBDDを適用するとよい。耐薬性がある貴金属の種類としては、金(Au)、パラジウム(Pd)があげられる。ただし、貴金属の1つであるプラチナ(Pt)については、第1電極41に適用しないことが好ましい。プラチナは、触媒となって水溶液であるHを分解してしまうからである。なお、第1電極41は、円盤状のベース部分を別の導電性を有する材料によって構成し、電極面411aのみを上記の材料(金、パラジウム、カーボン、BDD)によってコーティングしてもよい。 On the other hand, when the first electrode 41 is a cathode, chemically resistant noble metal, carbon, or BDD may be used. Examples of chemically resistant noble metals include gold (Au) and palladium (Pd). However, platinum (Pt), which is one of the noble metals, is preferably not applied to the first electrode 41. This is because platinum acts as a catalyst and decomposes H 2 O 2 in an aqueous solution. Note that the first electrode 41 may have a disk-shaped base portion made of another conductive material, and only the electrode surface 411a may be coated with the above-mentioned material (gold, palladium, carbon, BDD).
 図2(A)に示すように、第1電極41の対向部411は、中心(電極軸部412)から径方向外側に向かって短く離れた位置に、複数の孔(4つの貫通孔413)を備える。各貫通孔413は、電極軸部412から同じ距離だけ離れ、また相互に等間隔に配置されている。各貫通孔413は、ノズル31から吐出された処理液Lを、対向部411の上面側から電極面411a側の処理空間PSに通過させる。処理空間PSに供給された処理液Lは遠心力によって基板Wの径方向全体に供給される。なお、貫通孔413の数は、特に限定されないことは勿論である。 As shown in FIG. 2(A), the facing part 411 of the first electrode 41 has a plurality of holes (four through holes 413) at a short distance from the center (electrode shaft part 412) toward the outside in the radial direction. Equipped with Each through hole 413 is spaced from the electrode shaft portion 412 by the same distance, and is arranged at equal intervals from each other. Each through hole 413 allows the processing liquid L discharged from the nozzle 31 to pass from the upper surface side of the opposing portion 411 to the processing space PS on the electrode surface 411a side. The processing liquid L supplied to the processing space PS is supplied to the entire substrate W in the radial direction by centrifugal force. Note that, of course, the number of through holes 413 is not particularly limited.
 あるいは、第1電極41は、対向部411の平板状の中心付近に複数の貫通孔413を備える構成に限定されず、種々の形態の対向部411を採用してよい。例えば図3Bに示す第1変形例のように、対向部411Aは、複数の電極線414を編み込むことによって全体としてメッシュ(網目:孔)を有するように形成されたものを適用できる。これにより、対向部411Aは、ノズル31から吐出された処理液Lを、対向部411Aの下方の処理空間PSに一層容易に導くことができる。 Alternatively, the first electrode 41 is not limited to having a plurality of through holes 413 near the center of the flat plate of the opposing portion 411, and may employ various forms of the opposing portion 411. For example, as in the first modification shown in FIG. 3B, the opposing portion 411A may be formed by weaving a plurality of electrode wires 414 so as to have a mesh (holes) as a whole. Thereby, the facing part 411A can more easily guide the processing liquid L discharged from the nozzle 31 to the processing space PS below the facing part 411A.
 電極軸部412は、導電性を有する材料により棒状により形成されている。電極軸部412の上端部は、処理容器10の内部において電極回転部44および電極移動部45に接続されている。電極軸部412の下端部は、対向部411の中心に固定されている。対向部411および電極軸部412は、異なる材料により構成されて適宜の接合手段によって連結したものでもよく、同じ材料により一体成形されたものでもよい。 The electrode shaft portion 412 is made of a conductive material and has a rod shape. The upper end portion of the electrode shaft portion 412 is connected to the electrode rotating portion 44 and the electrode moving portion 45 inside the processing container 10 . The lower end of the electrode shaft portion 412 is fixed to the center of the opposing portion 411. The opposing portion 411 and the electrode shaft portion 412 may be made of different materials and connected by appropriate joining means, or may be integrally molded from the same material.
 電極回転部44は、図示しないモータおよび駆動伝達機構により構成され、かつ制御部90に接続されている。電極回転部44は、制御部90の制御下に、電極軸部412および対向部411を目標回転速度で回転させる。第1電極41の回転方向は、例えば、基板回転部61による基板Wの回転方向と逆回りに設定されるとよい。これにより、ノズル31の吐出口31aに対して第1電極41および基板Wの各々が別タイミングで対向することになり、吐出口31aから吐出した処理液Lを基板Wの全面にスムーズに広げることができる。なお、回転部60は、第1電極41の回転方向と第2電極42の回転方向とを同じ向きとし、相互の目標回転速度をずらすことで、第1電極41と基板Wとの相対位置を変化させてもよい。 The electrode rotating section 44 is constituted by a motor and a drive transmission mechanism (not shown), and is connected to the control section 90. The electrode rotating section 44 rotates the electrode shaft section 412 and the opposing section 411 at a target rotation speed under the control of the control section 90. The rotation direction of the first electrode 41 may be set, for example, to be opposite to the rotation direction of the substrate W by the substrate rotation unit 61. As a result, the first electrode 41 and the substrate W each face the discharge port 31a of the nozzle 31 at different timings, and the processing liquid L discharged from the discharge port 31a can be smoothly spread over the entire surface of the substrate W. Can be done. Note that the rotating unit 60 adjusts the relative position between the first electrode 41 and the substrate W by making the rotation direction of the first electrode 41 and the rotation direction of the second electrode 42 the same, and by shifting their target rotation speeds. It may be changed.
 電極移動部45は、図示しないモータおよび駆動伝達機構により構成され、かつ制御部90に接続されている。電極回転部44は、制御部90の制御下に、電極軸部412および対向部411を水平方向かつ鉛直方向に移動させ、上記したように処理位置と電極退避位置とに第1電極41を配置する。なお、給電部40は、電極回転部44と、電極移動部45とを一体にした機構部を備えてもよい。 The electrode moving unit 45 is composed of a motor and a drive transmission mechanism (not shown), and is connected to the control unit 90. The electrode rotating section 44 moves the electrode shaft section 412 and the opposing section 411 in the horizontal and vertical directions under the control of the control section 90, and arranges the first electrode 41 at the processing position and the electrode retraction position as described above. do. Note that the power feeding section 40 may include a mechanical section that integrates the electrode rotating section 44 and the electrode moving section 45.
 第2電極42は、ノズル31の途中位置かつ流路内に設けられることで、ノズル31を流通する処理液Lに定常的に接触することができる。この第2電極42は、導電性および耐薬性を有していれば、その材料については特に限定されない。 The second electrode 42 is provided in the middle of the nozzle 31 and within the flow path, so that it can constantly contact the processing liquid L flowing through the nozzle 31. The material of the second electrode 42 is not particularly limited as long as it has conductivity and chemical resistance.
 電源43は、配線46を介して第1電極41に接続され、配線47を介して第2電極42に接続されている。電源43の配線形態は、基板Wと対向する第1電極41の極性に応じて任意に設定してよい。以下では、図1に示すように、第1電極41を陽極とし、第2電極42を陰極した場合について説明していく。 The power source 43 is connected to the first electrode 41 via a wiring 46 and to the second electrode 42 via a wiring 47. The wiring form of the power source 43 may be arbitrarily set depending on the polarity of the first electrode 41 facing the substrate W. Below, as shown in FIG. 1, a case will be described in which the first electrode 41 is used as an anode and the second electrode 42 is used as a cathode.
 電源43は、制御部90に通信可能に接続されており、制御部90の制御下に第1電極41および第2電極42に直流電圧を印加する。電源43が印加する電圧の出力値としては、例えば1.8V~2.2Vの範囲であるとよい。ここで、ガラス状カーボン等の一般的な電極は、陽極の電圧を上げていくと酸素が発生することになるが、BDDを適用した第1電極41は、酸素過電圧が大きく酸素が発生し難い。このため、電源43は、高電圧を印加することが可能となり、第1電極41の周辺にOHラジカル等の活性酸素を良好に生成できる。 The power source 43 is communicatively connected to the control unit 90 and applies a DC voltage to the first electrode 41 and the second electrode 42 under the control of the control unit 90. The output value of the voltage applied by the power source 43 is preferably in the range of 1.8V to 2.2V, for example. Here, with general electrodes such as glassy carbon, oxygen will be generated as the anode voltage is increased, but with the first electrode 41 to which BDD is applied, oxygen overvoltage is large and oxygen is difficult to generate. . Therefore, the power source 43 can apply a high voltage, and can satisfactorily generate active oxygen such as OH radicals around the first electrode 41.
 以上のように構成された第1電極41および第2電極42は、エッチング処理時に、処理液Lを通して電気的に導通する。具体的には、図3に示すように、ノズル31および処理空間PSに存在する処理液L(例えば、TMAH)は、第1電極41の対向部411の電極面411aと、第2電極42とに接触している。この状態で、給電部40は、第1電極41および第2電極42に所定の出力値(例えば、2V)の電圧を印加する。これにより、電極面411aの周辺では、以下の[1]および[2]の反応が生じる。
[1]2HO=O+4H+4e
[2]HO=・OH+H+e
The first electrode 41 and the second electrode 42 configured as described above are electrically connected through the processing liquid L during the etching process. Specifically, as shown in FIG. 3, the processing liquid L (for example, TMAH) present in the nozzle 31 and the processing space PS is applied to the electrode surface 411a of the facing portion 411 of the first electrode 41 and the second electrode 42. is in contact with. In this state, the power supply unit 40 applies a voltage of a predetermined output value (for example, 2V) to the first electrode 41 and the second electrode 42. As a result, the following reactions [1] and [2] occur around the electrode surface 411a.
[1]2H 2 O=O 2 +4H + +4e -
[2] H 2 O=・OH+H + +e
 すなわち、[2]の反応により直接的にOHラジカル(・OH)が生成される。さらに、電極面411a付近では、高電圧が印加されることにより、オゾン(O)および過酸化水素水(H)を生成する以下の[3]および[4]の反応が生じる。そして、反応により生成されたオゾン(O)および過酸化水素水(H)によって、以下の[5]の反応がさらに生じて、間接的にOHラジカルが生成される。
[3]2HO=H+2H+2e
[4]3HO=O+6H+6e
[5]O+H=・OH+HO+O
That is, OH radicals (.OH) are directly generated by the reaction [2]. Further, near the electrode surface 411a, by applying a high voltage, the following reactions [3] and [4] that generate ozone (O 3 ) and hydrogen peroxide (H 2 O 2 ) occur. Then, the following reaction [5] further occurs due to ozone (O 3 ) and hydrogen peroxide solution (H 2 O 2 ) generated by the reaction, and OH radicals are indirectly generated.
[3]2H 2 O=H 2 O 2 +2H + +2e -
[4]3H 2 O=O 3 +6H + +6e -
[5] O 3 +H 2 O 2 =・OH+HO 2 +O 2
 上記の反応によって生成されたOHラジカルの寿命は、200μs以下と短い。しかしながら、電極面411aが基板Wの表面に充分に近い位置(処理空間PSの幅が5mm以下)に配置されていることで、除去対象Aであるレジスト膜にOHラジカルを容易に導くことができる。OHラジカルは、強い酸化力を有しており、接触したレジスト膜を酸化させる。その結果、基板Wの表面からレジスト膜を円滑に剥離することが可能となる。 The lifetime of the OH radicals generated by the above reaction is as short as 200 μs or less. However, by arranging the electrode surface 411a at a position sufficiently close to the surface of the substrate W (the width of the processing space PS is 5 mm or less), OH radicals can be easily guided to the resist film that is the removal target A. . OH radicals have strong oxidizing power and oxidize the resist film that comes into contact with them. As a result, the resist film can be smoothly peeled off from the surface of the substrate W.
 図1に戻り、処理容器10の内部に設けられるカップ50は、保持部20に保持されている基板Wの外周縁を囲み、基板Wの外周縁から飛散する処理液Lを受ける。カップ50は、本実施形態において非回転であるが、保持軸部62と共に回転する構成でもよい。カップ50の底壁には、カップ50の内部に溜まった液体を排出する排液管51と、カップ50の内部に溜まった気体を排出する排気管52とが設けられる。 Returning to FIG. 1, the cup 50 provided inside the processing container 10 surrounds the outer periphery of the substrate W held by the holding part 20, and receives the processing liquid L scattered from the outer periphery of the substrate W. Although the cup 50 does not rotate in this embodiment, it may be configured to rotate together with the holding shaft portion 62. A drain pipe 51 for discharging the liquid accumulated inside the cup 50 and an exhaust pipe 52 for discharging the gas accumulated inside the cup 50 are provided on the bottom wall of the cup 50.
 また、基板処理装置1は、処理容器10と異なる位置(処理容器10の外部)に、処理液Lに電圧を印加することにより生成されるOHラジカルを検出する検出ユニット80を備える。検出ユニット80は、処理液供給経路71から分岐する抽出経路81と、OHラジカルと反応する反応液を供給する反応液源82と、反応液源82の反応液が流通する反応液供給経路83と、処理液Lおよび反応液の混合液が流入するリアクタ84と、を有する。抽出経路81および反応液供給経路83は、リアクタ84の上流側の合流経路85において合流して混合液となる。また、リアクタ84の下流側には、混合液内で生成されたOHラジカルの量を検出する検出機構86が設けられている。 Further, the substrate processing apparatus 1 includes a detection unit 80 that detects OH radicals generated by applying a voltage to the processing liquid L at a position different from the processing container 10 (outside the processing container 10). The detection unit 80 includes an extraction path 81 that branches from the processing liquid supply path 71, a reaction liquid source 82 that supplies a reaction liquid that reacts with OH radicals, and a reaction liquid supply path 83 through which the reaction liquid from the reaction liquid source 82 flows. , and a reactor 84 into which a mixed liquid of the processing liquid L and the reaction liquid flows. The extraction path 81 and the reaction liquid supply path 83 merge in a merging path 85 on the upstream side of the reactor 84 to form a mixed liquid. Furthermore, a detection mechanism 86 is provided on the downstream side of the reactor 84 to detect the amount of OH radicals generated within the mixed liquid.
 抽出経路81は、処理液Lを流通可能な流路を内側に有するチューブによって構成され、途中位置に流路を開閉するバルブ81vを備える。同様に、反応液供給経路83は、反応液を流通可能な流路を内側に有するチューブによって構成され、その上流端に反応液源82が接続され、途中位置に流路を開閉するバルブ83vを備える。 The extraction path 81 is constituted by a tube that has a flow path inside thereof through which the processing liquid L can flow, and is provided with a valve 81v that opens and closes the flow path at an intermediate position. Similarly, the reaction liquid supply path 83 is constituted by a tube having a flow path through which the reaction liquid can flow, the reaction liquid source 82 is connected to the upstream end of the tube, and a valve 83v for opening and closing the flow path is provided at an intermediate position. Be prepared.
 反応液源82が供給する反応液としては、OHラジカルのスカベンジャーであり、他のラジカル(Oラジカル、HOラジカル、Hラジカル)と反応しないテレフタル酸(TA)を適用することがあげられる。テレフタル酸は、OHラジカルと反応する前は非蛍光性を有するが、OHラジカルと反応すると2-ヒドロキシテレフタル酸(HTA)となって蛍光性をもつようになる。したがって、検出機構86は、リアクタ84から排出された混合液に所定波長の励起光を照射して、HTAの蛍光を受光することで、OHラジカルの量を検出することができる。 As the reaction liquid supplied by the reaction liquid source 82, terephthalic acid (TA), which is a scavenger of OH radicals and does not react with other radicals (O 2 radical, HO 2 radical, H 2 O 2 radical), can be used. can give. Terephthalic acid has non-fluorescence before reacting with OH radicals, but when it reacts with OH radicals, it becomes 2-hydroxyterephthalic acid (HTA) and becomes fluorescent. Therefore, the detection mechanism 86 can detect the amount of OH radicals by irradiating the liquid mixture discharged from the reactor 84 with excitation light of a predetermined wavelength and receiving the fluorescence of HTA.
 混合液が流入するリアクタ84は、この混合液を一時的に貯留可能かつ混合液に電圧を印加可能な構造を呈している。具体的には、リアクタ84は、円筒状の容器841と、電源43と第1電極41との間の配線46に接続される第1検出用電極842と、電源43と第2電極42との間の配線47に接続される第2検出用電極843と、を含む。容器841は、軸方向一端部に合流経路85が連結されており、軸方向他端部に検出機構86が連結されている。 The reactor 84 into which the mixed liquid flows has a structure that can temporarily store the mixed liquid and apply a voltage to the mixed liquid. Specifically, the reactor 84 includes a cylindrical container 841, a first detection electrode 842 connected to the wiring 46 between the power source 43 and the first electrode 41, and a first detection electrode 842 connected to the power source 43 and the second electrode 42. and a second detection electrode 843 connected to the wiring 47 between them. The container 841 has a confluence path 85 connected to one end in the axial direction, and a detection mechanism 86 to the other end in the axial direction.
 第1検出用電極842と第2検出用電極843は、容器841内に露出していることで、合流経路85から容器841内に流入した混合液に接触する。第1検出用電極842と、第2検出用電極843との間の距離は、処理容器10の第1電極41と第2電極42の距離と略等しく設定されることが好ましい。これにより、検出ユニット80は、リアクタ84内で第1検出用電極842および第2検出用電極843に電圧を印加して混合液を電解する条件と、処理容器10内で第1電極41および第2電極42に電圧を印加して処理液Lを電解する条件とを等しくできる。 The first detection electrode 842 and the second detection electrode 843 are exposed inside the container 841 and come into contact with the liquid mixture that has flowed into the container 841 from the confluence path 85 . The distance between the first detection electrode 842 and the second detection electrode 843 is preferably set to be approximately equal to the distance between the first electrode 41 and the second electrode 42 of the processing container 10. Thereby, the detection unit 80 determines the conditions for electrolyzing the mixed solution by applying a voltage to the first detection electrode 842 and the second detection electrode 843 in the reactor 84 and the conditions for electrolyzing the mixed liquid by applying a voltage to the first detection electrode 842 and the second detection electrode 843 in the processing container 10. The conditions for electrolyzing the treatment liquid L by applying a voltage to the two electrodes 42 can be made equal.
 検出機構86は、リアクタにおいて生成された蛍光性を持つ物質を光学的に検出する。検出機構86は、リアクタ84に接続されるサンプルチューブ861と、サンプルチューブ861の被検出部861aに励起光を照射する照射部862と、被検出部861aで生じる蛍光を受光する受光部863と、を有する。照射部862は、制御部90に接続され、制御部90の制御下に、例えば310nmの波長を有する励起光を被検出部861aに投光する。受光部863は、制御部90に接続され、受光した蛍光量に応じた電気信号を制御部90に送信する。制御部90は、この電気信号に基づき混合液内で生成されたOHラジカルの量を算出する。 The detection mechanism 86 optically detects the fluorescent substance generated in the reactor. The detection mechanism 86 includes a sample tube 861 connected to the reactor 84, an irradiation section 862 that irradiates excitation light to the detected section 861a of the sample tube 861, and a light receiving section 863 that receives fluorescence generated in the detected section 861a. has. The irradiation section 862 is connected to the control section 90, and under the control of the control section 90 projects excitation light having a wavelength of, for example, 310 nm onto the detected section 861a. The light receiving section 863 is connected to the control section 90 and transmits an electric signal to the control section 90 according to the amount of received fluorescence. The control unit 90 calculates the amount of OH radicals generated in the mixed liquid based on this electrical signal.
 基板処理装置1の制御部90は、プロセッサ91、メモリ92、図示しない入出力インタフェースおよび電子回路等を有する制御用コンピュータである。プロセッサ91は、CPU(Central Processing Unit)、GPU(Graphics Processing Unit)、ASIC(Application Specific Integrated Circuit)、FPGA(Field-Programmable Gate Array)、複数のディスクリート半導体からなる回路等のうち1つまたは複数を組み合わせたものである。メモリ92は、不揮発性メモリ(例えば、コンパクトディスク、DVD、ハードディスク、フラッシュメモリなど)および揮発性メモリを含み、制御部90の記憶部を形成している。 The control unit 90 of the substrate processing apparatus 1 is a control computer that includes a processor 91, a memory 92, an input/output interface (not shown), an electronic circuit, etc. The processor 91 includes one or more of a CPU (Central Processing Unit), a GPU (Graphics Processing Unit), an ASIC (Application Specific Integrated Circuit), an FPGA (Field-Programmable Gate Array), a circuit made of a plurality of discrete semiconductors, etc. It is a combination. The memory 92 includes a nonvolatile memory (for example, a compact disk, a DVD, a hard disk, a flash memory, etc.) and a volatile memory, and forms the storage section of the control unit 90.
 制御部90は、メモリ92に記憶されたプログラムをプロセッサ91が実行することにより、基板処理装置1全体の動作を制御する。制御部90は、基板処理において、保持部20、液供給部30(外部供給部70を含む)、給電部40、回転部60、検出ユニット80を相互に連動させて所定の工程を順次実施していく。なお、基板処理装置1は、複数の構成を制御部90が直接制御する構成でもよく、複数の構成毎に制御基板を備え、制御部90から各制御基板に指令を送信して各制御基板により動作を制御する構成でもよい。 The control unit 90 controls the overall operation of the substrate processing apparatus 1 by having the processor 91 execute a program stored in the memory 92. In substrate processing, the control unit 90 causes the holding unit 20, the liquid supply unit 30 (including the external supply unit 70), the power supply unit 40, the rotation unit 60, and the detection unit 80 to interlock with each other to sequentially perform predetermined steps. To go. Note that the substrate processing apparatus 1 may have a configuration in which the control unit 90 directly controls a plurality of configurations, and is provided with a control board for each of the plurality of configurations, and the control unit 90 transmits commands to each control board so that each control board can control the control board. A configuration that controls the operation may also be used.
 本実施形態に係る基板処理装置1は、基本的には以上のように構成されるものであり、以下その動作(基板処理方法)について、図4のフローチャートを参照しながら説明する。 The substrate processing apparatus 1 according to this embodiment is basically configured as described above, and its operation (substrate processing method) will be described below with reference to the flowchart in FIG. 4.
 基板処理装置1の制御部90は、基板Wのレジスト膜(除去対象A)を除去する基板処理において、まず処理容器10内に基板Wを搬入させる(ステップS1)。この際、制御部90は、ゲートバルブ12を開放して、搬送装置2により保持部20の上方に基板Wを移動させ、上昇した複数のリフトピンに基板Wを受け渡す動作を行う。そして搬送装置2の後退後に、制御部90は、各リフトピンを下降し、さらにチャック機構22を作動させることで、保持部20により基板Wを水平に保持する。また処理容器10は、ゲートバルブ12により密閉される。 In substrate processing to remove the resist film (removal target A) of the substrate W, the control unit 90 of the substrate processing apparatus 1 first carries the substrate W into the processing container 10 (step S1). At this time, the control section 90 opens the gate valve 12, causes the transfer device 2 to move the substrate W above the holding section 20, and performs an operation to transfer the substrate W to the plurality of lifted lift pins. After the transport device 2 retreats, the control section 90 lowers each lift pin and further operates the chuck mechanism 22 to hold the substrate W horizontally by the holding section 20. Further, the processing container 10 is sealed by a gate valve 12 .
 次に、制御部90は、処理液Lに印加する電圧を調整するために、処理容器10の外部に設置した検出ユニット80を動作させて電圧調整工程を行う(ステップS2)。なお、電圧調整工程は、処理容器10内に基板Wを搬入する前に実施してもよい。 Next, in order to adjust the voltage applied to the processing liquid L, the control unit 90 operates the detection unit 80 installed outside the processing container 10 to perform a voltage adjustment step (step S2). Note that the voltage adjustment step may be performed before loading the substrate W into the processing container 10.
 電圧調整工程において、制御部90は、バルブ71v、73vを閉塞した状態で、バルブ81v、83vを開放する。これにより、処理液源72から抽出経路81に処理液L(TMAH)が流入すると共に、反応液源82から反応液供給経路83に反応液(TA)が流入し、合流経路85において処理液Lと反応液が合流する。そして、処理液Lと反応液の混合液は、合流経路85からリアクタ84に流入する。 In the voltage adjustment step, the control unit 90 opens the valves 81v and 83v while closing the valves 71v and 73v. As a result, the processing liquid L (TMAH) flows from the processing liquid source 72 into the extraction path 81 , the reaction liquid (TA) flows from the reaction liquid source 82 into the reaction liquid supply path 83 , and the processing liquid L and the reaction solution merge. Then, the mixed liquid of the processing liquid L and the reaction liquid flows into the reactor 84 from the confluence path 85.
 この状態で、制御部90は、リアクタ84内の混合液の電解を開始する。制御部90は、第1検出用電極842および第2検出用電極843に所定の電圧を印加して、リアクタ84内の混合液にOHラジカルを生じさせる。このOHラジカルは、混合している反応液と反応することで、蛍光性を有する2-ヒドロキシテレフタル酸(HTA)となる。検出機構86のサンプルチューブ861には、リアクタ84の反応状態に応じたHTAを含む混合液が流入するようになる。検出機構86は、照射部862からサンプルチューブ861の被検出部861aに励起光を照射し、受光部863においてHTAの蛍光を受光すると、その蛍光量に応じた電気信号を制御部90に送信する。 In this state, the control unit 90 starts electrolyzing the mixed liquid in the reactor 84. The control unit 90 applies a predetermined voltage to the first detection electrode 842 and the second detection electrode 843 to generate OH radicals in the mixed liquid in the reactor 84 . This OH radical reacts with the mixed reaction solution to become fluorescent 2-hydroxyterephthalic acid (HTA). A mixed liquid containing HTA depending on the reaction state of the reactor 84 flows into the sample tube 861 of the detection mechanism 86 . The detection mechanism 86 irradiates excitation light from the irradiation section 862 to the detected section 861a of the sample tube 861, and when the light receiving section 863 receives the fluorescence of HTA, transmits an electric signal corresponding to the amount of fluorescence to the control section 90. .
 制御部90は、この電気信号に基づきOHラジカルの量を算出し、算出したOHラジカルの量が目標範囲内にあるか否かを判定する。目標範囲外にある場合には、電源43から第1検出用電極842および第2検出用電極843に印加する電圧を調整する。例えば、算出したOHラジカルの量が目標範囲よりも少ない場合には、電圧を上げる調整を行い、算出したOHラジカルの量が目標範囲よりも多い場合には、電圧を下げる調整を行う。これにより、基板処理装置1は、実際に電源43が処理容器10内の第1電極41および第2電極42に印加する電圧を、事前に最適化することが可能となる。 The control unit 90 calculates the amount of OH radicals based on this electrical signal, and determines whether the calculated amount of OH radicals is within the target range. If it is outside the target range, the voltage applied from the power source 43 to the first detection electrode 842 and the second detection electrode 843 is adjusted. For example, when the calculated amount of OH radicals is less than the target range, the voltage is adjusted to be increased, and when the calculated amount of OH radicals is more than the target range, the voltage is adjusted to be lowered. Thereby, the substrate processing apparatus 1 can optimize in advance the voltage that the power supply 43 actually applies to the first electrode 41 and the second electrode 42 in the processing container 10.
 なお、電圧調整工程は、1枚の基板Wを基板処理する毎に実施することに限定されず、必要に応じて実施すればよい。例えば、制御部90は、基板処理装置1の起動開始やメンテナンスを行った後の最初に電圧調整工程を実施し、その後の基板処理では電圧調整工程を行わない構成とすることができる。あるいは、制御部90は、処理液源72に対して処理液Lを充填した際に、電圧調整工程を行う構成でもよい。 Note that the voltage adjustment step is not limited to being performed every time one substrate W is processed, but may be performed as necessary. For example, the control unit 90 may be configured to perform the voltage adjustment step first after startup or maintenance of the substrate processing apparatus 1, and not perform the voltage adjustment step during subsequent substrate processing. Alternatively, the control unit 90 may be configured to perform the voltage adjustment step when the processing liquid source 72 is filled with the processing liquid L.
 電圧調整工程において印加予定の電圧の調整を行うと、制御部90は、バルブ81v、83vを閉塞して電圧調整工程を終了し、基板処理であるエッチング処理(ステップS3~S7)に移行する。エッチング処理において、制御部90は、まず回転部60を動作させて、基板Wおよび第1電極41を回転させる(ステップS3)。この際、基板回転部61は、所定の回転方向かつ設定した基板用の目標回転速度で基板Wを回転させる。また、電極回転部44は、基板Wの回転方向と逆回りかつ設定した電極用の目標回転速度で第1電極41を回転させる。 After adjusting the voltage scheduled to be applied in the voltage adjustment step, the control unit 90 closes the valves 81v and 83v, ends the voltage adjustment step, and moves to etching processing (steps S3 to S7), which is substrate processing. In the etching process, the control unit 90 first operates the rotating unit 60 to rotate the substrate W and the first electrode 41 (step S3). At this time, the substrate rotation unit 61 rotates the substrate W in a predetermined rotation direction and at a set target rotation speed for the substrate. Further, the electrode rotation unit 44 rotates the first electrode 41 in the opposite direction to the rotation direction of the substrate W and at a set target rotation speed for the electrode.
 さらに、制御部90は、処理液供給経路71のバルブ71vを開放して、処理液源72の処理液Lをノズル31に流入させ、ノズル31の吐出口31aから基板Wに処理液Lを供給する(ステップS4)。吐出口31aから落下した処理液Lは、第1電極41の各貫通孔413を通過して基板Wの表面に当たる。そして、処理液Lは、基板Wや対向部411の回転に伴う遠心力によって、基板Wの径方向外側に向かって濡れ広がる。これにより、第1電極41の電極面411a全体と基板Wの表面全体とが、処理空間PSの処理液Lに接触した状態となる。 Furthermore, the control unit 90 opens the valve 71v of the processing liquid supply path 71 to cause the processing liquid L from the processing liquid source 72 to flow into the nozzle 31, and supplies the processing liquid L to the substrate W from the discharge port 31a of the nozzle 31. (Step S4). The processing liquid L falling from the discharge port 31a passes through each through hole 413 of the first electrode 41 and hits the surface of the substrate W. Then, the processing liquid L wets and spreads toward the outside in the radial direction of the substrate W due to the centrifugal force accompanying the rotation of the substrate W and the opposing portion 411. Thereby, the entire electrode surface 411a of the first electrode 41 and the entire surface of the substrate W come into contact with the processing liquid L in the processing space PS.
 制御部90は、給電部40を動作して処理液Lに接触している第1電極41および第2電極42に対して、電源43から所定の出力値(例えば、2V)の電圧を印加する(ステップS5)。これにより、第1電極41および第2電極42は、処理液Lを通して導通し、この処理液Lを電解する。電解に伴い第1電極41の電極面411a付近の処理液L内には、OHラジカルが生成される。OHラジカルは、基板Wの除去対象Aであるレジスト膜と反応することで、レジスト膜を基板Wから分離させる。基板処理装置1は、基板Wの表面全体に対向した対向部411により、基板Wの表面全体のレジスト膜を均一的に除去することができる。 The control unit 90 operates the power supply unit 40 to apply a voltage of a predetermined output value (for example, 2V) from the power supply 43 to the first electrode 41 and the second electrode 42 that are in contact with the processing liquid L. (Step S5). Thereby, the first electrode 41 and the second electrode 42 are electrically connected through the processing liquid L, and the processing liquid L is electrolyzed. Due to electrolysis, OH radicals are generated in the processing liquid L near the electrode surface 411a of the first electrode 41. The OH radicals separate the resist film from the substrate W by reacting with the resist film that is the removal target A of the substrate W. The substrate processing apparatus 1 can uniformly remove the resist film on the entire surface of the substrate W by the opposing portion 411 facing the entire surface of the substrate W.
 制御部90は、処理液Lの電解の開始に伴いエッチング処理の実施期間を計測し、予め定めた設定期間が経過したか否かを判定する(ステップS6)。設定期間は、OHラジカルにより基板Wのレジスト膜が除去される期間を、実験やシミュレーション等を行って求めたものである。基板処理装置1は、エッチング処理の実施期間が設定期間を経過するまで、基板Wおよび第1電極41の相対回転と、処理液Lの供給と、処理液Lへの給電(電解)とを継続することで、レジスト膜を確実に除去することができる。 The control unit 90 measures the period during which the etching process is performed upon the start of electrolysis of the treatment liquid L, and determines whether a predetermined set period has elapsed (step S6). The set period is a period during which the resist film of the substrate W is removed by OH radicals, which is determined through experiments, simulations, and the like. The substrate processing apparatus 1 continues the relative rotation of the substrate W and the first electrode 41, the supply of the processing liquid L, and the supply of power (electrolysis) to the processing liquid L until the etching processing period passes the set period. By doing so, the resist film can be reliably removed.
 エッチング処理の実施期間が設定期間を経過すると、制御部90は、エッチング処理を終了する(ステップS7)。この際、制御部90は、第1電極41および第2電極42への給電を停止すると共に、バルブ71vを閉塞することでノズル31への処理液Lの供給を停止する。 When the implementation period of the etching process has exceeded the set period, the control unit 90 ends the etching process (step S7). At this time, the control unit 90 stops the power supply to the first electrode 41 and the second electrode 42, and also stops the supply of the processing liquid L to the nozzle 31 by closing the valve 71v.
 その後、制御部90は、基板Wの表面に残る処理液Lを排液するために、基板処理として基板Wのリンス洗浄工程を行う(ステップS8)。リンス洗浄工程では、バルブ73vを開放し、回転部60により基板Wを回転させながら、リンス液源74のリンス液をノズル31に流入させて、ノズル31の吐出口31aから基板Wにリンス液を供給する。リンス液は、基板Wの表面において回転の遠心力により濡れ広がり、基板Wの表面から処理液Lを排出する。 Thereafter, the control unit 90 performs a rinsing process for the substrate W as substrate processing in order to drain the processing liquid L remaining on the surface of the substrate W (step S8). In the rinsing cleaning process, the valve 73v is opened, and the rinsing liquid from the rinsing liquid source 74 is allowed to flow into the nozzle 31 while the substrate W is rotated by the rotation unit 60, and the rinsing liquid is applied to the substrate W from the discharge port 31a of the nozzle 31. supply The rinsing liquid spreads on the surface of the substrate W due to the centrifugal force of rotation, and the processing liquid L is discharged from the surface of the substrate W.
 リンス洗浄工程後、制御部90は、基板Wの表面のリンス液を乾燥させるために、基板処理としてスピン乾燥工程を行う(ステップS9)。スピン乾燥工程では、回転部60により基板Wを回転させることで、基板Wの表面のリンス液を乾燥させる。なお、基板処理では、スピン乾燥工程の前に、液供給部30から処理液Lである乾燥液を基板Wの表面に供給して、リンス液を乾燥液に置換するようにしてもよい。このスピン乾燥工程が終了すると、処理容器10内に収容した基板Wに対する基板処理が完了する。 After the rinsing process, the control unit 90 performs a spin drying process as substrate processing in order to dry the rinsing liquid on the surface of the substrate W (step S9). In the spin drying process, the rinsing liquid on the surface of the substrate W is dried by rotating the substrate W by the rotation unit 60. Note that in the substrate processing, before the spin drying process, a drying liquid, which is the processing liquid L, may be supplied from the liquid supply unit 30 to the surface of the substrate W to replace the rinsing liquid with the drying liquid. When this spin drying step is completed, the substrate processing for the substrate W accommodated in the processing container 10 is completed.
 最後に、制御部90は、保持部20による基板Wの保持を解除し、ゲートバルブ12を開放して搬送装置2を処理容器10内に進入させ、搬送装置2に基板Wを受け渡すことで、処理容器10の内部から基板Wを搬出する(ステップS10)。これにより、基板処理装置1は、レジスト膜を除去した基板Wを良好に得ることができる。 Finally, the control unit 90 releases the holding of the substrate W by the holding unit 20, opens the gate valve 12, causes the transfer device 2 to enter the processing container 10, and transfers the substrate W to the transfer device 2. , the substrate W is carried out from inside the processing container 10 (step S10). Thereby, the substrate processing apparatus 1 can satisfactorily obtain the substrate W from which the resist film has been removed.
 以上のように、基板処理装置1および基板処理方法は、液供給部30から供給した処理液Lに第1電極41および基板Wを接触させた状態として第1電極41および第2電極42に電圧を印加する。そのため、第1電極41付近の処理液L内には、OHラジカルが生成され、このOHラジカルを基板Wの除去対象Aにスムーズに付与することが可能となる。これにより、基板処理装置1および基板処理方法は、基板Wの表面の除去対象Aを効率的に除去することができる。また、基板処理装置1は、硫酸を使用しないことで、硫酸の廃棄に必要な処理をなくし、結果的に環境負荷を軽減することができる。 As described above, in the substrate processing apparatus 1 and the substrate processing method, voltage is applied to the first electrode 41 and the second electrode 42 while the first electrode 41 and the substrate W are in contact with the processing liquid L supplied from the liquid supply section 30. Apply. Therefore, OH radicals are generated in the processing liquid L near the first electrode 41, and the OH radicals can be smoothly applied to the removal target A of the substrate W. Thereby, the substrate processing apparatus 1 and the substrate processing method can efficiently remove the removal target A on the surface of the substrate W. Further, since the substrate processing apparatus 1 does not use sulfuric acid, it is possible to eliminate the treatment necessary for disposing of sulfuric acid, and as a result, reduce the environmental load.
 また、基板処理装置1は、回転部60により第1電極41および基板Wのうち少なくとも一方を回転させることで、基板Wの表面に供給した処理液Lを表面全体に容易に広げることができる。また、第1電極41は、金、パラジウム、カーボン、ボロンドープダイアモンド(BDD)のうち少なくとも1つの層を電極面411aに有することで、酸素過電圧を大きくして、OHラジカルを処理液L内に容易に生成することができる。特に、第1電極41が陽極の場合には、BDDを適用することで、第1電極41によるOHラジカルの生成を一層効率化することが可能となる。また、第1電極41の対向部411、411Aは、上方のノズル31から吐出される処理液Lを通過させる孔(貫通孔413、メッシュ)を有することで、基板Wの表面に安定的に処理液Lを供給し続けることができる。 Further, the substrate processing apparatus 1 can easily spread the processing liquid L supplied to the surface of the substrate W over the entire surface by rotating at least one of the first electrode 41 and the substrate W using the rotating section 60. Further, the first electrode 41 has at least one layer of gold, palladium, carbon, and boron-doped diamond (BDD) on the electrode surface 411a to increase oxygen overvoltage and direct OH radicals into the processing liquid L. can be easily generated. In particular, when the first electrode 41 is an anode, by applying BDD, it is possible to further improve the efficiency of generating OH radicals by the first electrode 41. In addition, the opposing parts 411 and 411A of the first electrode 41 have holes (through holes 413, mesh) through which the processing liquid L discharged from the upper nozzle 31 passes, so that the surface of the substrate W can be stably processed. Liquid L can be continuously supplied.
 さらに、基板処理装置1および基板処理方法は、処理液Lとして電解質を含む水溶液を用いることで、処理液Lの電解を促進することが可能となる。特に、水溶液として、HF、HCl、NHOH、TMAH、H、HSO、HPO、HNOのうち少なくとも1つを含むことで、OHラジカルを充分に生成することができる。 Further, in the substrate processing apparatus 1 and the substrate processing method, by using an aqueous solution containing an electrolyte as the processing liquid L, it becomes possible to promote electrolysis of the processing liquid L. In particular, the aqueous solution contains at least one of HF, HCl, NH 4 OH, TMAH, H 2 O 2 , H 2 SO 4 , H 3 PO 4 , and HNO 3 to sufficiently generate OH radicals. Can be done.
 またさらに、基板処理装置1および基板処理方法は、検出ユニット80により処理容器10とは別に処理液Lに生じるOHラジカルを検出することで、給電部40により印加する電圧を精度よく調整することができる。特に、基板処理装置1は、リアクタ84においてOHラジカルと反応して生成された蛍光性を持つ物質を、光学的に検出する検出機構86により検出することで、OHラジカルの量を容易に検出することが可能となる。基板処理装置1は、反応液としてテレフタル酸を適用することで、OHラジカルと反応して蛍光性を持つようになり、OHラジカルの量を安定的に検出することができる。 Furthermore, in the substrate processing apparatus 1 and the substrate processing method, by detecting OH radicals generated in the processing liquid L separately from the processing container 10 using the detection unit 80, it is possible to accurately adjust the voltage applied by the power supply unit 40. can. In particular, the substrate processing apparatus 1 easily detects the amount of OH radicals by optically detecting a fluorescent substance generated by reacting with OH radicals in the reactor 84. becomes possible. By applying terephthalic acid as a reaction liquid, the substrate processing apparatus 1 reacts with OH radicals, becomes fluorescent, and can stably detect the amount of OH radicals.
 なお、本開示の基板処理装置1および基板処理方法は、上記の実施形態に限定されず、種々の変形例をとり得る。例えば上記の説明では、基板処理装置1は、レジスト膜を除去対象Aとしたが、基板Wの表面にある金属膜、窒化金属膜、ポリマ残渣についても、同様の基板処理を行うことができる。例えば、金属膜は、W、TiN、Co、Ni、Ru、Mo、Alのうち少なくとも1つであることで、処理液Lで生成されたOHラジカルによって良好に除去される。 Note that the substrate processing apparatus 1 and substrate processing method of the present disclosure are not limited to the above embodiments, and may take various modifications. For example, in the above description, the substrate processing apparatus 1 uses the resist film as the removal target A, but the same substrate processing can also be performed on the metal film, metal nitride film, and polymer residue on the surface of the substrate W. For example, if the metal film is at least one of W, TiN, Co, Ni, Ru, Mo, and Al, the metal film can be effectively removed by the OH radicals generated in the treatment liquid L.
 以下、他の変形例に係る基板処理装置1および基板処理方法について、図5~図11を参照しながら説明していく。 Hereinafter, a substrate processing apparatus 1 and a substrate processing method according to other modified examples will be described with reference to FIGS. 5 to 11.
 図5(A)に示す第2変形例のように、第1電極41は、基板Wの表面を部分的に覆う対向部411Bを有し、電極回転部44(図1参照)により対向部411Bを回転させる構成を採ってもよい。対向部411Bは、例えば、基板Wの直径以上に延在する細長い長方形状の平板に形成され、回転に伴って基板Wの表面全体に対向することができる。また、ノズル31から吐出される処理液Lは、対向部411Bが吐出口31aに非対向の際に、基板Wの表面に供給される。この場合でも、給電部40は、給電により対向部411B付近にOHラジカルを生成することで、基板Wの除去対象Aを良好に除去することができる。 As in the second modification shown in FIG. 5A, the first electrode 41 has a facing portion 411B that partially covers the surface of the substrate W, and the facing portion 411B is rotated by the electrode rotating portion 44 (see FIG. 1). A configuration may also be adopted in which the rotation is performed. The opposing portion 411B is formed, for example, into an elongated rectangular flat plate extending beyond the diameter of the substrate W, and can face the entire surface of the substrate W as it rotates. Furthermore, the processing liquid L discharged from the nozzle 31 is supplied to the surface of the substrate W when the opposing portion 411B is not opposed to the discharge port 31a. Even in this case, the power supply section 40 can satisfactorily remove the removal target A of the substrate W by generating OH radicals near the opposing section 411B by power supply.
 図5(B)に示す第3変形例のように、第1電極41、中心部が幅狭で外周縁が幅広な扇状の対向部411Cを有し、電極回転部44により対向部411Cを回転させる構成を採ってもよい。このように対向部411Cを適用することで、基板Wの外周縁付近の表面に対して対向部411Cがより長く対向するようになり、基板Wの外周縁付近の除去対象Aをより安定的に除去することができる。 As in the third modification shown in FIG. 5(B), the first electrode 41 has a fan-shaped facing part 411C with a narrow center and a wide outer peripheral edge, and the facing part 411C is rotated by the electrode rotating part 44. A configuration may also be adopted in which the By applying the facing part 411C in this way, the facing part 411C can face the surface near the outer periphery of the substrate W for a longer time, and the removal target A near the outer periphery of the substrate W can be more stably removed. Can be removed.
 図6に示す第4変形例のように、回転部60は、電極回転部44(図1参照)を備えずに、第1電極41を固定する固定構造48を備えた構成でもよい。この場合、回転部60は、基板回転部61により基板Wを回転させ、基板Wの表面に供給された処理液Lを基板Wの表面全体に広げる。また、給電部40は、固定構造48を介して第1電極41に電圧を印加することで、処理液L内にOHラジカルを生成することができる。要するに、基板処理装置1は、基板Wの表面全体にOHラジカルを生成できれば、基板Wの表面全体に処理液Lを供給する手段について特に限定されない。例えば、回転部60は、電極回転部44を備える一方で、基板回転部61を備えない(基板Wを回転させない)構成であっても、第1電極41の回転に伴って基板Wの表面上に処理液Lを広げることができる。 As in the fourth modification shown in FIG. 6, the rotating section 60 may be configured to include a fixing structure 48 for fixing the first electrode 41 without including the electrode rotating section 44 (see FIG. 1). In this case, the rotating unit 60 causes the substrate rotating unit 61 to rotate the substrate W, and spreads the processing liquid L supplied to the surface of the substrate W over the entire surface of the substrate W. Furthermore, the power supply unit 40 can generate OH radicals in the processing liquid L by applying a voltage to the first electrode 41 via the fixed structure 48 . In short, the means for supplying the processing liquid L to the entire surface of the substrate W in the substrate processing apparatus 1 is not particularly limited as long as it can generate OH radicals over the entire surface of the substrate W. For example, even if the rotating unit 60 includes the electrode rotating unit 44 but does not include the substrate rotating unit 61 (does not rotate the substrate W), as the first electrode 41 rotates, the surface of the substrate W may be rotated. The processing liquid L can be spread over the entire area.
 図7(A)に示すように、第5変形例に係る第1電極41Aは、上記の実施形態のように基板Wの表面全体の除去対象Aを除去する構成とせずに、基板Wの外周縁付近の除去対象Aを除去する構成となっている。具体的には、第1電極41Aは、固定構造48に固定される連結部415と、連結部415に支持されて基板Wの表面の上方に短く突出する突部416とを有する。突部416は、基板Wの外周縁のみに対向可能な長さに設定され、かつ基板Wの外周縁の周方向の一部分に近接している。基板処理装置1は、回転部60(基板回転部61)により基板Wを回転させつつ、ノズル31から基板Wの表面に処理液Lを供給し、また給電部40により第1電極41Aおよび第2電極42に電圧を印加する。これにより、第1電極41Aの突部416は、基板Wの外周縁付近の処理液L内にOHラジカルを生成し、このOHラジカルにより外周縁付近の除去対象を良好に除去することができる。 As shown in FIG. 7(A), the first electrode 41A according to the fifth modification does not have a configuration in which the removal target A is removed from the entire surface of the substrate W as in the above-described embodiment. The configuration is such that the removal target A near the periphery is removed. Specifically, the first electrode 41A includes a connecting portion 415 fixed to the fixing structure 48, and a protruding portion 416 that is supported by the connecting portion 415 and protrudes briefly above the surface of the substrate W. The protrusion 416 is set to a length such that it can face only the outer peripheral edge of the substrate W, and is close to a portion of the outer peripheral edge of the substrate W in the circumferential direction. The substrate processing apparatus 1 supplies the processing liquid L to the surface of the substrate W from the nozzle 31 while rotating the substrate W using the rotating section 60 (substrate rotating section 61), and supplies the processing liquid L to the surface of the substrate W from the nozzle 31, and also supplies the first electrode 41A and the second electrode using the power supply section 40. A voltage is applied to the electrode 42. Thereby, the protrusion 416 of the first electrode 41A generates OH radicals in the processing liquid L near the outer periphery of the substrate W, and the object to be removed near the outer periphery can be favorably removed by the OH radicals.
 図7(B)に示すように、第6変形例に係る第1電極41Bは、基板Wの外周縁付近の除去対象Aを除去するため、突部416に代えて基板の外周縁付近を周回するリング部417を有する。この場合でも、基板処理装置1は、基板Wの外周縁付近の除去対象を良好に除去することができる。 As shown in FIG. 7B, the first electrode 41B according to the sixth modification rotates around the outer periphery of the substrate instead of the protrusion 416 in order to remove the removal target A near the outer periphery of the substrate W. It has a ring part 417. Even in this case, the substrate processing apparatus 1 can effectively remove the object to be removed near the outer peripheral edge of the substrate W.
 図8に示すように、第7変形例に係る基板処理装置1は、第1電極41Cの電極軸部412の内部に流路412aを形成し、この流路412aにノズル31の突出端部を挿入している。流路412aは、第1電極41の対向部411、411A~411Cの中心に形成された開口に連通している。液供給部30および給電部40は、ノズル31の吐出口31aから吐出した処理液Lを、開口から処理空間PSに流入させる。またこの場合、電極移動部45は、ノズル31および第1電極41を一体に移動させるように構成される。 As shown in FIG. 8, the substrate processing apparatus 1 according to the seventh modification has a flow path 412a formed inside the electrode shaft portion 412 of the first electrode 41C, and the protruding end of the nozzle 31 inserted into the flow path 412a. It is inserted. The flow path 412a communicates with an opening formed at the center of the opposing portions 411, 411A to 411C of the first electrode 41. The liquid supply unit 30 and the power supply unit 40 cause the processing liquid L discharged from the discharge port 31a of the nozzle 31 to flow into the processing space PS from the opening. Further, in this case, the electrode moving unit 45 is configured to move the nozzle 31 and the first electrode 41 together.
 このように電極軸部412の内部を通して処理液Lを供給する構成でも、基板処理装置1は、電極面411aと基板Wの表面の間の処理空間PSに処理液Lを安定的に供給して、処理液Lの電解を行うことができる。したがって、第1電極41付近で生成されたOHラジカルが基板Wの除去対象Aを良好に除去できる。特に、この構成では、対向部411に貫通孔413を備える必要がなくなるため、対向部411の上面に処理液Lが当たることによる飛び散りを確実に回避することができる。 Even with this configuration in which the processing liquid L is supplied through the inside of the electrode shaft portion 412, the substrate processing apparatus 1 can stably supply the processing liquid L to the processing space PS between the electrode surface 411a and the surface of the substrate W. , the treatment liquid L can be electrolyzed. Therefore, the OH radicals generated near the first electrode 41 can effectively remove the removal target A of the substrate W. In particular, with this configuration, since it is not necessary to provide the through hole 413 in the facing part 411, it is possible to reliably avoid scattering caused by the processing liquid L hitting the upper surface of the facing part 411.
 図9に示すように、第8変形例に係る基板処理装置1Aは、処理液Lに基板Wを浸漬した状態で、第1電極41および第2電極42に電圧を印加する構成となっている。具体的には、保持部20は、基板Wを真空吸着するチャック機構22を有すると共に、基板Wの径方向外側に基板Wよりも上方に突出し、また周方向に環状に周回する枠部23を有する。これにより、基板Wを載置する載置面および枠部23の内側は、処理液Lを貯留可能な貯留空間24となる。 As shown in FIG. 9, the substrate processing apparatus 1A according to the eighth modification is configured to apply a voltage to the first electrode 41 and the second electrode 42 while the substrate W is immersed in the processing liquid L. . Specifically, the holding part 20 has a chuck mechanism 22 that vacuum-chucks the substrate W, and also has a frame part 23 that protrudes outward in the radial direction of the substrate W and above the substrate W, and that circulates annularly in the circumferential direction. have Thereby, the mounting surface on which the substrate W is mounted and the inside of the frame portion 23 become a storage space 24 in which the processing liquid L can be stored.
 液供給部30は、貯留空間24の上方で、処理液Lを供給するノズル31を有する。ノズル31は、処理液Lを供給した後にカップ50から退避する。なお、ノズル31は、エッチング処理時に貯留空間24の上方に待機し、貯留空間24の処理液Lが減った場合に処理液Lを補充する構成でもよい。 The liquid supply unit 30 has a nozzle 31 that supplies the processing liquid L above the storage space 24. The nozzle 31 retreats from the cup 50 after supplying the processing liquid L. Note that the nozzle 31 may be configured to stand by above the storage space 24 during the etching process and replenish the processing liquid L when the processing liquid L in the storage space 24 decreases.
 給電部40は、基板Wに対向する対向部411を有する第1電極41と、第1電極41の水平方向外側において貯留空間24に挿入される第2電極42と、を有する。第1電極41は、電極移動部45に接続されている。なお、本変形例では回転部60(基板回転部61および電極回転部44)を備えない構成であるが、基板処理装置1Aは、基板Wや第1電極41を回転させる回転部60を備えた構成でもよい。 The power feeding unit 40 includes a first electrode 41 having a facing portion 411 facing the substrate W, and a second electrode 42 inserted into the storage space 24 on the horizontal outer side of the first electrode 41. The first electrode 41 is connected to an electrode moving section 45 . Note that although this modification does not include the rotating section 60 (the substrate rotating section 61 and the electrode rotating section 44), the substrate processing apparatus 1A is equipped with the rotating section 60 that rotates the substrate W and the first electrode 41. It can also be a configuration.
 このように構成された基板処理装置1Aは、貯留空間24に処理液Lを貯留した状態で、電源43により第1電極41および第2電極42に電圧を印加すると、第1電極41の電極面411a付近にOHラジカルが生成される。したがって、この基板処理装置1Aでも、生成したOHラジカルにより基板Wの表面の除去対象Aを除去することができる。特に、基板処理装置1Aは、電解時に処理液Lの乱流が抑制されることで、除去対象Aをより均一的に除去することが可能となる。 In the substrate processing apparatus 1A configured as described above, when a voltage is applied to the first electrode 41 and the second electrode 42 by the power source 43 with the processing liquid L stored in the storage space 24, the electrode surface of the first electrode 41 OH radicals are generated near 411a. Therefore, this substrate processing apparatus 1A can also remove the removal target A on the surface of the substrate W using the generated OH radicals. In particular, the substrate processing apparatus 1A can more uniformly remove the removal target A by suppressing the turbulent flow of the processing liquid L during electrolysis.
 図10(A)~図10(C)に示す第9変形例に係る基板処理装置1Bは、基板Wのリンス洗浄工程時に、エッチング処理を行った第1電極41を合わせて洗浄する構成としている。詳細には、基板処理装置1Bは、電極移動部45として第1電極41を支持する支持アーム45aと、支持アーム45aを回転させるアーム回転部45bと、を有する。図10(A)に示すように、基板処理装置1Bは、エッチング処理時に、基板Wの鉛直方向上側かつ基板Wの近傍位置に第1電極41を配置して、処理液L内にOHラジカルを生成することより、基板Wの除去対象Aを除去する。 The substrate processing apparatus 1B according to the ninth modification shown in FIGS. 10(A) to 10(C) is configured to simultaneously clean the first electrode 41 that has been subjected to the etching process during the rinsing process of the substrate W. . Specifically, the substrate processing apparatus 1B includes a support arm 45a that supports the first electrode 41 as an electrode moving section 45, and an arm rotation section 45b that rotates the support arm 45a. As shown in FIG. 10A, the substrate processing apparatus 1B disposes the first electrode 41 above the substrate W in the vertical direction and in the vicinity of the substrate W, and generates OH radicals in the processing liquid L during the etching process. By generating, the removal target A of the substrate W is removed.
 そして、エッチング処理後に、基板処理装置1Bは、アーム回転部45bにより支持アーム45aを回転させて、第1電極41を電極退避位置に移動させる。これにより、基板Wの表面が露出されると共に、第1電極41は電極退避位置において別の処理を行うことが可能となる。 After the etching process, the substrate processing apparatus 1B rotates the support arm 45a using the arm rotating section 45b to move the first electrode 41 to the electrode retracted position. As a result, the surface of the substrate W is exposed, and the first electrode 41 can perform another process at the electrode retracted position.
 基板処理装置1Bは、露出された基板Wに対しては上記したリンス洗浄工程およびスピン乾燥工程を行う(図4も参照)。例えば、基板処理装置1Bは、リンス洗浄工程において、リンス液(DIW)を吐出する洗浄用ノズル33を基板Wの上方に移動させて、リンス液を供給しつつ基板Wを回転させる。 The substrate processing apparatus 1B performs the above-mentioned rinsing process and spin drying process on the exposed substrate W (see also FIG. 4). For example, in the rinsing process, the substrate processing apparatus 1B moves the cleaning nozzle 33 that discharges a rinsing liquid (DIW) above the substrate W, and rotates the substrate W while supplying the rinsing liquid.
 一方、電極退避位置に配置された第1電極41に対しては、電極リンス工程およびエアブロー乾燥工程を順に行う。例えば、基板処理装置1Bは、電極リンス工程において、リンス液(DIW)を吐出するバーノズル34を第1電極41の上方(または下方)に移動させて、リンス液を供給しつつ当該バーノズル34をスライドさせる。これにより、電解に使用した第1電極41を洗浄することができる。その後のエアブロー乾燥工程でも、基板処理装置1Bは、図示しないブロアを第1電極41の上方(または下方)に移動させて、第1電極41に付着したリンス液を除去する。このように、基板処理装置1Bは、第1電極41を洗浄することで、第1電極41の耐久性を高めて、第1電極41を長期にわたって使用することができる。 On the other hand, the first electrode 41 placed in the electrode retracted position is subjected to an electrode rinsing process and an air blow drying process in this order. For example, in the electrode rinsing step, the substrate processing apparatus 1B moves the bar nozzle 34 that discharges the rinsing liquid (DIW) above (or below) the first electrode 41, and slides the bar nozzle 34 while supplying the rinsing liquid. let Thereby, the first electrode 41 used for electrolysis can be cleaned. In the subsequent air blow drying step as well, the substrate processing apparatus 1B moves a blower (not shown) above (or below) the first electrode 41 to remove the rinse liquid adhering to the first electrode 41. In this way, by cleaning the first electrode 41, the substrate processing apparatus 1B can increase the durability of the first electrode 41 and use the first electrode 41 for a long period of time.
 また、図11に示す第10変形例のように、基板処理装置1Cは、基板Wを複数枚ずつ同時に処理するバッチ式の装置に構成されてもよい。バッチ式の基板処理装置1Cは、処理液Lを貯留すると共に、複数の基板Wを収容可能な処理槽15(処理容器)を有し、処理槽15に貯留した処理液Lに複数の基板Wが一括で浸漬される。例えば、各基板Wは、図示しない保持部により鉛直方向に沿って延在するように保持される。さらに、基板処理装置1Cは、処理槽15内に処理液Lを供給する図示しない液供給部を有する。 Further, as in the tenth modification shown in FIG. 11, the substrate processing apparatus 1C may be configured as a batch-type apparatus that simultaneously processes a plurality of substrates W. The batch-type substrate processing apparatus 1C has a processing tank 15 (processing container) that stores processing liquid L and can accommodate a plurality of substrates W. are immersed in one batch. For example, each substrate W is held by a holding section (not shown) so as to extend along the vertical direction. Furthermore, the substrate processing apparatus 1C has a liquid supply section (not shown) that supplies the processing liquid L into the processing tank 15.
 そして、基板処理装置1Cは、保持状態の各基板Wの近傍位置に、第1電極41をそれぞれ配置する。また、第2電極42は、処理槽15内の適宜の位置に配置される。これにより、基板処理装置1Cは、電源43から第1電極41および第2電極42に適宜の電圧を印加することで、複数の第1電極41毎にOHラジカルを生成することができる。各第1電極41に隣接して配置された基板Wは、OHラジカルにより除去対象Aが良好に除去されることになる。 Then, the substrate processing apparatus 1C arranges the first electrodes 41 at positions near each substrate W in the held state. Further, the second electrode 42 is arranged at an appropriate position within the processing tank 15. Thereby, the substrate processing apparatus 1C can generate OH radicals for each of the plurality of first electrodes 41 by applying an appropriate voltage from the power source 43 to the first electrode 41 and the second electrode 42. In the substrate W disposed adjacent to each first electrode 41, the removal target A is successfully removed by the OH radicals.
 今回開示された実施形態に係る基板処理装置1および基板処理方法は、すべての点において例示であって制限的なものではない。実施形態は、添付の請求の範囲およびその主旨を逸脱することなく、様々な形態で変形および改良が可能である。上記複数の実施形態に記載された事項は、矛盾しない範囲で他の構成も取り得ることができ、また、矛盾しない範囲で組み合わせることができる。 The substrate processing apparatus 1 and substrate processing method according to the embodiment disclosed herein are illustrative in all respects and are not restrictive. The embodiments can be modified and improved in various ways without departing from the scope and spirit of the appended claims. The matters described in the plurality of embodiments described above may be configured in other ways without being inconsistent, and may be combined without being inconsistent.
 本願は、日本特許庁に2022年6月14日に出願された基礎出願2022‐095874号の優先権を主張するものであり、その全内容を参照によりここに援用する。 This application claims priority to Basic Application No. 2022-095874 filed with the Japan Patent Office on June 14, 2022, and its entire contents are incorporated herein by reference.
1     基板処理装置
20    保持部
30    液供給部
41    第1電極
42    第2電極
43    電源
90    制御部
A     除去対象
L     処理液
W     基板
1 Substrate processing apparatus 20 Holding section 30 Liquid supply section 41 First electrode 42 Second electrode 43 Power supply 90 Control section A Removal target L Processing liquid W Substrate

Claims (20)

  1.  基板の除去対象を処理液で除去する基板処理装置であって、
     前記基板を保持する保持部と、
     前記保持部に保持された前記基板に前記処理液を供給する液供給部と、
     前記保持部に保持された前記基板に対して間隔をおいて配置され、かつ前記液供給部から供給される前記処理液に接触する電極と、
     前記電極に電圧を印加する電源と、
     前記液供給部および前記電源を制御する制御部と、を備え、
     前記制御部は、前記液供給部から供給した前記処理液に前記電極および前記基板を接触させた状態として前記電極に電圧を印加することで、前記処理液にOHラジカルを生成して、前記OHラジカルを前記除去対象に付与する、
     基板処理装置。
    A substrate processing apparatus that removes a substrate to be removed using a processing liquid,
    a holding part that holds the substrate;
    a liquid supply unit that supplies the processing liquid to the substrate held by the holding unit;
    an electrode disposed at a distance from the substrate held by the holding unit and in contact with the processing liquid supplied from the liquid supply unit;
    a power source that applies voltage to the electrode;
    A control unit that controls the liquid supply unit and the power supply,
    The control unit generates OH radicals in the processing liquid by applying a voltage to the electrodes with the electrodes and the substrate in contact with the processing liquid supplied from the liquid supply unit. applying radicals to the removal target;
    Substrate processing equipment.
  2.  前記電極および前記保持部に保持された前記基板のうち少なくとも一方を、他方に対して相対的に回転させる回転部を有し、
     前記制御部は、基板処理において設定した目標回転速度で前記回転部を回転させる、
     請求項1に記載の基板処理装置。
    a rotating part that rotates at least one of the electrode and the substrate held by the holding part relative to the other;
    The control unit rotates the rotating unit at a target rotation speed set in substrate processing.
    The substrate processing apparatus according to claim 1.
  3.  前記電極は、第1電極および第2電極を含み、
     前記第1電極は、当該第1電極と前記基板の間に流入した前記処理液に接触し、
     前記第2電極は、前記第1電極よりも前記基板から離れた位置で、前記液供給部により供給され続ける前記処理液を通して前記第1電極と導通する、
     請求項1に記載の基板処理装置。
    The electrode includes a first electrode and a second electrode,
    the first electrode contacts the processing liquid that has flowed between the first electrode and the substrate;
    The second electrode is electrically connected to the first electrode through the processing liquid that is continuously supplied by the liquid supply unit at a position farther from the substrate than the first electrode.
    The substrate processing apparatus according to claim 1.
  4.  前記第1電極は、金、パラジウム、カーボン、ボロンドープダイアモンドのうち少なくとも1つの層を電極面に有する、
     請求項3に記載の基板処理装置。
    The first electrode has at least one layer of gold, palladium, carbon, and boron-doped diamond on the electrode surface.
    The substrate processing apparatus according to claim 3.
  5.  前記第1電極は、陽極であり、
     前記陽極は、ボロンドープダイアモンドを前記電極面に有する、
     請求項4に記載の基板処理装置。
    The first electrode is an anode,
    The anode has boron-doped diamond on the electrode surface.
    The substrate processing apparatus according to claim 4.
  6.  前記第1電極と、前記保持部に保持された前記基板との間隔は、0.5mm~5mmの範囲に設定される、
     請求項3に記載の基板処理装置。
    The distance between the first electrode and the substrate held by the holding part is set in a range of 0.5 mm to 5 mm.
    The substrate processing apparatus according to claim 3.
  7.  前記第1電極は、前記保持部に保持された前記基板の表面全体に対向する対向部を有し、
     前記対向部は、前記液供給部から吐出された前記処理液を通過させる複数の孔を有する、
     請求項3に記載の基板処理装置。
    The first electrode has a facing portion facing the entire surface of the substrate held by the holding portion,
    The opposing part has a plurality of holes through which the processing liquid discharged from the liquid supply part passes.
    The substrate processing apparatus according to claim 3.
  8.  前記第1電極を回転させる回転部を有し、
     前記第1電極は、前記保持部に保持された前記基板の中心から外周まで延在する長方形状の対向部を有する、
     請求項3に記載の基板処理装置。
    comprising a rotating part that rotates the first electrode,
    The first electrode has a rectangular facing portion extending from the center to the outer periphery of the substrate held by the holding portion.
    The substrate processing apparatus according to claim 3.
  9.  前記第1電極を回転させる回転部を有し、
     前記第1電極は、前記基板の中心から外周に向かって周方向の幅が広がる扇状の対向部を有する、
     請求項3に記載の基板処理装置。
    comprising a rotating part that rotates the first electrode,
    The first electrode has a fan-shaped opposing portion whose circumferential width increases from the center of the substrate toward the outer periphery.
    The substrate processing apparatus according to claim 3.
  10.  前記基板を回転させる回転部を有し、
     前記第1電極は、前記保持部に保持された前記基板の外周縁の周方向の一部分のみと対向する突部を有する、
     請求項3に記載の基板処理装置。
    comprising a rotating part that rotates the substrate,
    The first electrode has a protrusion that faces only a portion in the circumferential direction of the outer periphery of the substrate held by the holding part.
    The substrate processing apparatus according to claim 3.
  11.  前記第1電極は、前記保持部に保持された前記基板の外周縁を周方向に延在するリング部を有する、
     請求項3に記載の基板処理装置。
    The first electrode has a ring portion that extends in a circumferential direction around the outer periphery of the substrate held by the holding portion.
    The substrate processing apparatus according to claim 3.
  12.  前記第1電極は、前記保持部に保持された前記基板の表面に対向する対向部と、前記対向部を支持する電極軸部と、を有し、
     前記液供給部は、前記電極軸部の内部の流路を介して前記対向部と前記基板の表面の間に前記処理液を供給する、
     請求項3に記載の基板処理装置。
    The first electrode has a facing part facing the surface of the substrate held by the holding part, and an electrode shaft part supporting the facing part,
    The liquid supply section supplies the processing liquid between the opposing section and the surface of the substrate via a flow path inside the electrode shaft section.
    The substrate processing apparatus according to claim 3.
  13.  前記処理液は、電解質を含む水溶液である、
     請求項1に記載の基板処理装置。
    The treatment liquid is an aqueous solution containing an electrolyte,
    The substrate processing apparatus according to claim 1.
  14.  前記水溶液は、HF、HCl、NHOH、TMAH、H、HSO、HPO、HNOのうち少なくとも1つを含む、
     請求項13に記載の基板処理装置。
    The aqueous solution contains at least one of HF , HCl, NH4OH , TMAH, H2O2 , H2SO4 , H3PO4 , and HNO3 .
    The substrate processing apparatus according to claim 13.
  15.  前記除去対象は、前記基板の表面に形成されたレジスト膜、金属膜または窒化金属膜、もしくは前記基板の表面に残存するポリマ残渣である、
     請求項1に記載の基板処理装置。
    The object to be removed is a resist film, a metal film, or a metal nitride film formed on the surface of the substrate, or a polymer residue remaining on the surface of the substrate.
    The substrate processing apparatus according to claim 1.
  16.  前記除去対象は、前記金属膜である場合にW、Co、Ni、Ru、Mo、Alのうち少なくとも1つを含み、前記窒化金属膜である場合にTiNを含む、
     請求項15に記載の基板処理装置。
    The object to be removed contains at least one of W, Co, Ni, Ru, Mo, and Al when the object is the metal film, and contains TiN when the object is the nitride metal film.
    The substrate processing apparatus according to claim 15.
  17.  前記基板を処理する処理容器と、
     前記処理容器とは別に設けられ、前記処理容器に供給する前記処理液が別に流入される検出ユニットを備え、
     前記検出ユニットは、流入した前記処理液に対して前記処理容器の前記電極と同じ電圧を印加することで、前記処理液に生じる前記OHラジカルを検出する、
     請求項1乃至16のいずれか1項に記載の基板処理装置。
    a processing container for processing the substrate;
    a detection unit provided separately from the processing container, into which the processing liquid supplied to the processing container is separately introduced;
    The detection unit detects the OH radicals generated in the processing liquid by applying the same voltage as the electrode of the processing container to the processing liquid that has flowed in.
    A substrate processing apparatus according to any one of claims 1 to 16.
  18.  前記検出ユニットは、生成された前記OHラジカルと反応して蛍光性を持つ物質に生成される反応液と、前記処理液とを混合した混合液に電圧を印加するリアクタと、前記リアクタにおいて生成された蛍光性を持つ物質を光学的に検出する検出機構と、を有する、
     請求項17に記載の基板処理装置。
    The detection unit includes a reactor that applies a voltage to a mixture of the treatment liquid and a reaction liquid that reacts with the generated OH radicals to produce a fluorescent substance, and a a detection mechanism for optically detecting a fluorescent substance;
    The substrate processing apparatus according to claim 17.
  19.  前記反応液は、テレフタル酸である、
     請求項18に記載の基板処理装置。
    the reaction solution is terephthalic acid,
    The substrate processing apparatus according to claim 18.
  20.  基板の除去対象を処理液で除去する基板処理方法であって、
     保持部により前記基板を保持する工程と、
     前記保持部に保持された前記基板に前記処理液を供給する工程と、
     前記保持部に保持された前記基板に対して間隔をおいて配置される電極に、電源から電圧を印加する工程と、を有し、
     前記処理液を供給する工程では、前記処理液に前記電極および前記基板を接触させた状態とし、
     前記電圧を印加する工程では、当該電圧の印加に伴い前記電極に接触した前記処理液にOHラジカルを生成して、前記OHラジカルを前記除去対象に付与する、
     基板処理方法。
    A substrate processing method for removing a target to be removed on a substrate with a processing liquid, the method comprising:
    holding the substrate by a holding part;
    supplying the processing liquid to the substrate held by the holding section;
    applying a voltage from a power source to electrodes arranged at intervals with respect to the substrate held by the holding part,
    In the step of supplying the processing liquid, the electrode and the substrate are brought into contact with the processing liquid,
    In the step of applying the voltage, OH radicals are generated in the treatment liquid in contact with the electrode as the voltage is applied, and the OH radicals are applied to the removal target.
    Substrate processing method.
PCT/JP2023/020290 2022-06-14 2023-05-31 Substrate treatment device and substrate treatment method WO2023243409A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022095874 2022-06-14
JP2022-095874 2022-06-14

Publications (1)

Publication Number Publication Date
WO2023243409A1 true WO2023243409A1 (en) 2023-12-21

Family

ID=89191001

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/020290 WO2023243409A1 (en) 2022-06-14 2023-05-31 Substrate treatment device and substrate treatment method

Country Status (2)

Country Link
TW (1) TW202403471A (en)
WO (1) WO2023243409A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004342841A (en) * 2003-05-15 2004-12-02 Sharp Corp Cleaning method and cleaning equipment
JP2006013143A (en) * 2004-06-25 2006-01-12 Sharp Corp Apparatus and method for wet treatment
WO2015125739A1 (en) * 2014-02-24 2015-08-27 倉敷紡績株式会社 Hydroxyl radical-containing water supply device and hydroxyl radical-containing water supply method
JP2021534319A (en) * 2018-08-16 2021-12-09 シーラス マテリアルズ サイエンス リミテッドCirrus Materials Science Limited Methods for Producing Polymers and Metal-Polymer Composites

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004342841A (en) * 2003-05-15 2004-12-02 Sharp Corp Cleaning method and cleaning equipment
JP2006013143A (en) * 2004-06-25 2006-01-12 Sharp Corp Apparatus and method for wet treatment
WO2015125739A1 (en) * 2014-02-24 2015-08-27 倉敷紡績株式会社 Hydroxyl radical-containing water supply device and hydroxyl radical-containing water supply method
JP2021534319A (en) * 2018-08-16 2021-12-09 シーラス マテリアルズ サイエンス リミテッドCirrus Materials Science Limited Methods for Producing Polymers and Metal-Polymer Composites

Also Published As

Publication number Publication date
TW202403471A (en) 2024-01-16

Similar Documents

Publication Publication Date Title
JP4762098B2 (en) Substrate processing apparatus and substrate processing method
JP6168271B2 (en) Substrate processing apparatus and substrate processing method
JP7181764B2 (en) Substrate processing method and substrate processing apparatus
KR101833684B1 (en) Substrate processing method and substrate processing apparatus
JP2008034779A (en) Method and equipment for processing substrate
US20090311429A1 (en) Plating method and apparatus
JPH08274054A (en) Replacement of treating liquid in substrate treating device and substrate treating device
JP7233294B2 (en) SUBSTRATE PROCESSING METHOD, SEMICONDUCTOR MANUFACTURING METHOD AND SUBSTRATE PROCESSING APPARATUS
JP2008091364A (en) Method and equipment for processing substrate
JP5872382B2 (en) Ultrasonic cleaning method
WO2023243409A1 (en) Substrate treatment device and substrate treatment method
CN111508865A (en) Dissolved ozone removal unit, substrate processing apparatus including the same, and substrate processing method
CN108203838B (en) Plating device, plating method, and computer-readable recording medium
CN113471099A (en) Substrate processing apparatus and substrate processing method
JP2010274399A (en) Machining device, machining method and storage medium
JP2000319797A (en) Plating device
US20220148888A1 (en) Substrate processing method, semiconductor production method, and substrate processing apparatus
CN114068352A (en) Substrate processing apparatus and substrate processing method
JP5194044B2 (en) Treatment liquid supply apparatus and treatment liquid supply method
CN114270478A (en) Method and apparatus for manufacturing structure
JP6867818B2 (en) Substrate processing equipment and substrate processing method
JP6710582B2 (en) Substrate liquid processing apparatus, substrate liquid processing method and storage medium
JP2020088085A (en) Substrate processing method and substrate processing apparatus
JP2020119928A (en) Substrate processing device and substrate processing method
WO2022180780A1 (en) Substrate holder storage method and plating device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23823703

Country of ref document: EP

Kind code of ref document: A1