WO2022180780A1 - Substrate holder storage method and plating device - Google Patents

Substrate holder storage method and plating device Download PDF

Info

Publication number
WO2022180780A1
WO2022180780A1 PCT/JP2021/007332 JP2021007332W WO2022180780A1 WO 2022180780 A1 WO2022180780 A1 WO 2022180780A1 JP 2021007332 W JP2021007332 W JP 2021007332W WO 2022180780 A1 WO2022180780 A1 WO 2022180780A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate holder
water
stocker
substrate
plating
Prior art date
Application number
PCT/JP2021/007332
Other languages
French (fr)
Japanese (ja)
Inventor
大輝 石塚
Original Assignee
株式会社荏原製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社荏原製作所 filed Critical 株式会社荏原製作所
Priority to JP2022516187A priority Critical patent/JP7097523B1/en
Priority to PCT/JP2021/007332 priority patent/WO2022180780A1/en
Publication of WO2022180780A1 publication Critical patent/WO2022180780A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D17/00Constructional parts, or assemblies thereof, of cells for electrolytic coating
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D17/00Constructional parts, or assemblies thereof, of cells for electrolytic coating
    • C25D17/06Suspending or supporting devices for articles to be coated
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/283Deposition of conductive or insulating materials for electrodes conducting electric current
    • H01L21/288Deposition of conductive or insulating materials for electrodes conducting electric current from a liquid, e.g. electrolytic deposition

Definitions

  • This application relates to a substrate holder storage method and a plating apparatus.
  • wiring is formed in fine wiring grooves, holes, or resist openings provided on the surface of a semiconductor wafer, etc., or bumps (protruding shapes) electrically connected to package electrodes, etc., are formed on the surface of a semiconductor wafer, etc. electrodes) are being formed.
  • Electroplating, vapor deposition, printing, ball bumping, and the like are known as methods for forming such wiring and bumps. With the recent increase in the number of I/Os and finer pitches of semiconductor chips, the electroplating method, which enables miniaturization and has relatively stable performance, has come into wide use.
  • Plating equipment used in electroplating may use a substrate holder that seals the end and back surfaces of a substrate such as a semiconductor wafer and holds the surface (surface to be plated) exposed.
  • the substrate holder holding the substrate is immersed in the plating solution. Further, after the plating process, the substrate is washed together with the substrate holder in a rinse module to wash off the remaining plating solution adhering to the substrate holder.
  • a rinse module to wash off the remaining plating solution adhering to the substrate holder.
  • Patent Document 1 discloses that a substrate holder holding a plated substrate is immersed in a rinse solution, and the rinse solution is agitated by bubbling, a paddle, or the like to wash the substrate and the substrate holder. It is stated that In Japanese Patent Application Laid-Open No. 2014-19900 (Patent Document 2), the substrate holder is cleaned by immersing the substrate holder holding the dummy substrate in a cleaning liquid so that the contacts do not come into contact with water. It also describes that two cleaning tanks are provided for cleaning substrate holders holding dummy substrates, and that one of the cleaning tanks is used as a stocker by preventing liquid from flowing into one of the cleaning tanks.
  • JP 2019-71382 A Japanese Patent Application Laid-Open No. 2014-19900
  • the plating solution residue (for example, a liquid with a concentration of about 1%) that cannot be completely removed even by washing in the rinse module adheres to the substrate holder.
  • the substrate holder carries water containing a plating solution with a concentration of about 1%.
  • the plating solution components adhering to the substrate holder dissolve in the plating bath, causing particles on the substrate surface. There is a possibility that it will be.
  • no consideration is given to countermeasures against the residual plating solution remaining and adhering to the substrate holder.
  • One of the purposes of the present invention is to remove the plating solution remaining on the substrate holder after cleaning in the rinse module.
  • Another object of the present invention is to remove the plating solution remaining on the substrate holder after cleaning in the rinse module while suppressing a decrease in the throughput of the apparatus.
  • a method for storing a substrate holder in an apparatus for plating a substrate comprising storing and/or temporarily placing the substrate holder without holding the substrate in a state of being immersed in water.
  • the substrate holder is immersed in the water that has been stored in advance, and the plating solution remaining in the substrate holder is diffused into the water to wash the substrate holder, and the water is filled with an inert gas. and/or reducing the dissolved oxygen concentration in the water by degassing while circulating the water.
  • FIG. Fig. 2 is a schematic diagram showing a substrate holder; It is a schematic diagram showing a stocker. It is a schematic diagram showing another example of a stocker. It is a schematic diagram showing another example of a stocker. It is a flow chart of plating processing. It is a graph which shows the change of pH of the water in a stocker. It is an explanatory view explaining a mechanism of corrosion of metal parts. It is an experimental result of wire corrosion with inert gas bubbling. It is an experimental result of wire corrosion without inert gas bubbling.
  • substrate includes not only semiconductor substrates, glass substrates, liquid crystal substrates, and printed circuit boards, but also magnetic recording media, magnetic recording sensors, mirrors, optical elements, micromechanical elements, or partially manufactured substrates. Includes integrated circuits and any other object to be processed. Substrates include those of any shape, including polygonal and circular. In addition, expressions such as “front”, “rear”, “front”, “back”, “upper”, “lower”, “left”, “right” are used in this specification, but these are for convenience of explanation. The above shows the positions and directions on the paper surface of the illustrated drawings, and may differ in the actual arrangement when the apparatus is used.
  • FIG. 1 is an overall layout diagram of a plating apparatus according to one embodiment.
  • the plating apparatus 100 performs a plating process on a substrate (wafer) while the substrate is held by a substrate holder 11 (FIG. 2).
  • the plating apparatus 100 is roughly divided into a load/unload station 110 that loads or unloads substrates onto or from the substrate holder 11, a processing station 120 that processes the substrates, and a cleaning station 50a.
  • the processing station 120 includes a pre-processing/post-processing station 120A for pre-processing and post-processing of substrates, and a plating station 120B for plating substrates.
  • the loading/unloading station 110 has one or more cassette tables 25 and substrate loading/unloading modules 29 .
  • the cassette table 25 mounts a cassette 25a containing substrates.
  • the substrate loading/unloading module 29 is configured to load/unload a substrate onto/from the substrate holder 11 .
  • a stocker 30 for storing the substrate holder 11 that does not hold the substrate is provided near (for example, below) the substrate attachment/detachment module 29 .
  • the cleaning station 50a has a cleaning module 50 for cleaning and drying the plated substrate.
  • the cleaning module 50 is, for example, a spin rinse dryer.
  • a transport robot 27 that transports substrates between these units is arranged.
  • the transport robot 27 is configured to be travelable by a travel mechanism 28 .
  • the transport robot 27, takes out the substrate before plating from the cassette 25a, transports it to the substrate attachment/detachment module 29, receives the plated substrate from the substrate attachment/detachment module 29, transports the plated substrate to the cleaning module 50, and cleans it. And the dried substrate is taken out from the cleaning module 50 and stored in the cassette 25a.
  • the pre-treatment/post-treatment station 120A has a pre-wet module 32, a pre-soak module 33, a first rinse module 34, a blow module 35, and a second rinse module 36.
  • the pre-wet module 32 is configured to perform a pre-wet process that replaces (degases) the air in the pattern openings of the substrate with a processing liquid such as water.
  • the pre-wet process replaces the processing liquid in the pattern openings with the plating liquid during plating, making it easier to supply the plating liquid into the pattern openings.
  • the presoak module 33 performs a presoak treatment for cleaning or activating the surface of the plating base by etching away an oxide film having a large electrical resistance existing on the surface of the seed layer of the substrate or the like with a treatment liquid such as sulfuric acid or hydrochloric acid.
  • a treatment liquid such as sulfuric acid or hydrochloric acid.
  • the pre-soaked substrate is washed together with the substrate holder 11 with a cleaning liquid (pure water or the like).
  • a cleaning liquid pure water or the like
  • the blow module 35 liquid draining from the substrate after cleaning is performed.
  • the second rinsing module 36 the plated substrate is washed together with the substrate holder 11 with a cleaning liquid (pure water or the like).
  • the pre-wet module 32, pre-soak module 33, first rinse module 34, blow module 35, and second rinse module 36 are arranged in this order. Note that this configuration is an example and is not limited to the configuration described above, and the pre-processing/post-processing station 120A can adopt other configurations.
  • the plating station 120B has a plating module 39 having a plurality of plating cells and an overflow tank 38. Each plating cell accommodates one substrate therein and immerses the substrate in a plating solution held therein to perform plating such as copper plating on the surface of the substrate.
  • the type of plating solution is not particularly limited, and various plating solutions are used depending on the application.
  • This configuration of the plating station 120B is an example, and the plating station 120B can adopt other configurations.
  • the plating apparatus 100 has a conveying device 37 that is positioned to the side of each of these devices and that conveys the substrate holder 11 between each of these devices and that employs, for example, a linear motor system.
  • the transfer device 37 includes one or more transporters 37A, and includes a substrate removal module 29, a stocker 30, a pre-wet module 32, a pre-soak module 33, a first rinse module 34, a blow module 35, a second rinse module 36, and plating station 120B.
  • the plating apparatus 100 configured as described above has a control module (controller) 175 as a control section configured to control each section described above.
  • the controller 175 has a memory 175B storing a predetermined program and a CPU 175A executing the program in the memory 175B.
  • a storage medium constituting the memory 175B stores various setting data, various programs including a program for controlling the plating apparatus 100, and the like.
  • the program includes, for example, transfer control of the transfer robot 27, attachment/detachment control of the substrate to/from the substrate holder 11 in the substrate attachment/detachment module 29, transfer control of the transfer device 37, control of the stocker 30, control of processing in each processing module, plating module 39 and a program for controlling the cleaning station 50a.
  • the storage media may include non-volatile and/or volatile storage media.
  • a computer-readable memory such as ROM, RAM, and flash memory
  • a known disk storage medium such as a hard disk, CD-ROM, DVD-ROM, and flexible disk can be used.
  • the controller 175 is configured to be able to communicate with a host controller (not shown) that controls the plating apparatus 100 and other related devices, and can exchange data with a database owned by the host controller.
  • a part or all of the functions of the controller 175 can be configured by hardware such as ASIC.
  • a part or all of the functions of the controller 175 may be composed of a sequencer.
  • Part or all of controller 175 may be located inside and/or outside the enclosure of plating apparatus 100 .
  • a part or all of the controller 175 is communicably connected to each part of the plating apparatus 100 by wire and/or wirelessly.
  • FIG. 2 is a schematic diagram showing a substrate holder.
  • the substrate holder 11 includes a first holding member 12 and a second holding member 13 , and holds the substrate by sandwiching it between the first holding member 12 and the second holding member 13 .
  • the second holding member 13 is connected to the first holding member 12 via a hinge, for example, and can be opened and closed with respect to the first holding member 12 .
  • the second holding member 13 may be configured to move in translation so as to approach and separate from the first holding member 12 and sandwich and hold the substrate together with the first holding member 12 .
  • the first holding member 12 and the second holding member 13 are provided with a locking mechanism (not shown) that locks the first holding member 12 and the second holding member 13 with the substrate sandwiched therebetween.
  • a plurality of contacts 41 indicated by dashed lines in the figure are provided on the rear surface of the second holding member 13 . These contacts 41 are connected to an external power supply via wiring (not shown) inside the substrate holder 11 . When held between the first holding member 12 and the second holding member 13, these contacts 41 come into contact with the seed layer of the substrate, allowing a plating current to flow from an external power supply to the substrate.
  • FIG. 3 is a schematic diagram showing a stocker according to one embodiment.
  • the stocker 30 is a module that stores and/or temporarily stores a plurality of substrate holders 11 that do not hold substrates.
  • the stocker 30 is configured as a wet stocker that stores the substrate holder 11 in a state where water (for example, pure water such as DIW) is stored. That is, the substrate holder 11 is stored and/or temporarily placed while being immersed in water until it is carried out for plating.
  • water for example, pure water such as DIW
  • the stocker 30 includes a stocker tank 60 and a gas supply device 62 arranged inside the stocker tank 60 .
  • the stocker 30 is provided with a water supply section (water supply line) 61.
  • DIW is supplied from the water supply section 61 into the stocker tank 60, and DIW is stored in the stocker tank 60.
  • the stocker 30 may be provided with a discharge port (not shown) for discharging the DIW.
  • the DIW water level in the stocker tank 60 is set to a height at which the entire substrate holders 11 are immersed.
  • the acidity pH of DIW in the stocker tank 60 (initial stocker tank) before the plated substrate holder 11 is carried in is about 6.
  • a controller 175 controls the stocker 30 and each part of the device associated with the stocker 30 (including the water supply part 61 and the valve 64 ).
  • the gas supply device 62 is composed of, for example, a tubular body having one or a plurality of discharge ports 62a, and is fluidly connected to the gas supply source 63 via a channel 65.
  • the gas supply source 63 is a supply source that supplies inert gas.
  • the inert gas can be a noble gas such as nitrogen, argon, or the like. When nitrogen is used as the inert gas, the DIW can be filled with the inert gas relatively safely and inexpensively.
  • a valve 64 consisting of an on-off valve or a flow control valve may be provided on the flow path 65 .
  • the supply of the inert gas from the gas supply device 62 is controlled by the controller 175 by controlling the opening/closing or the degree of opening of the valve 64, for example.
  • the inert gas supplied from the gas supply source 63 to the gas supply device 62 is supplied from one or a plurality of discharge ports 62a of the gas supply device 62 into the DIW in the stocker tank 60, and the inert gas bubbles in the DIW. and bubble the DIW. Bubbling with an inert gas is performed at a supply rate of, for example, 12.5 L/min.
  • the gas supply device 62 functions as a dissolved oxygen concentration adjustment device that operates to suppress or reduce the dissolved oxygen concentration of water in the wet stocker 30 .
  • the gas supply device 62 is arranged below the substrate holder 11 or at the bottom of the stocker tank 60, and generates bubbles from bottom to top.
  • the arrangement of the discharge port 62a of the gas supply device 62 is adjusted so that the inert gas bubbles enter between the adjacent substrate holders 11, thereby reducing the concentration of dissolved oxygen in the entire DIW around each substrate holder. make it It is preferable that the inert gas be supplied to the DIW continuously while the DIW is stored in the stocker tank 60 and the substrate holder 11 is accommodated.
  • the inert gas may be supplied intermittently according to changes in the acidity of DIW.
  • the plated substrate holder 11 is immersed in DIW in the stocker tank 60 to dilute and /or Diffusion into DIW due to concentration differential for cleaning. Further, when the cleaned substrate holder 11 is taken out from the stocker 30 , the water level in the stocker tank 60 is kept constant by supplying DIW for the volume of the taken out substrate holder 11 from the water supply unit 61 .
  • the DIW in the stocker tank 60 gradually becomes acidic (lowering in pH).
  • 7.9 mL of plating solution with a copper sulfate concentration of 1% per substrate holder is brought into the stocker 30 and the pH of the DIW is lowered to about 5.1. Therefore, in the present embodiment, the DIW in the tank is continuously filled with an inert gas by the gas supply device 62 to lower the dissolved oxygen concentration in the DIW, and the metal parts of the substrate holder 11 are made of highly acidic DIW. I try to suppress the reaction that corrodes. That is, the corrosion of the metal parts of the substrate holder 11 is suppressed by replacing the oxygen dissolved in the DIW, which is involved in the corrosion reaction, with an inert gas that is not involved in the corrosion reaction.
  • FIG. 7 is a graph showing changes in pH of water in the stocker.
  • the vertical axis indicates the pH of DIW in the stocker 30, and the horizontal axis indicates the number of processed substrates (wafers), that is, the number of substrate holders 11 carried into the stocker 30 after plating and post-treatment.
  • the pH of the original plating solution (the plating solution in the plating module 39) is 0.5
  • the pH of the DIW in the stocker 30 before the substrate holder 11 after plating and post-treatment is brought in is 6, and the substrate holder
  • the amount of the plating solution carried out per substrate holder is 7.9 mL
  • the plating solution of 1% copper sulfate concentration and 7.9 mL of plating solution is brought into the stocker 30 per substrate holder.
  • the DIW of 9.59 L excluding the volume of the substrate holder 11 was used to dilute the remaining plating solution in the substrate holder 11, and the stocker 30 dropped every time the substrate holder 11 was unloaded.
  • FIG. 8 is an explanatory diagram for explaining the mechanism of corrosion of metal parts.
  • the drawing shows contacts 41 of the substrate holder 11 , wiring (wires) 42 electrically connected to the contacts 41 , and screws and washers 43 for fixing the wires 42 to the contacts 41 .
  • the material of the contact 41 is SUS, and the surface is plated with gold-cobalt.
  • the material of the wire 42 is annealed copper, which is plated with gold on a base of nickel.
  • the material of the screw and washer 43 is SUS.
  • a metal having a standard electrode potential comes into contact with a solution (conductivity) Q containing copper sulfate, a local battery is formed, and electrons are exchanged between dissimilar metals.
  • the metal with a low standard electrode potential emits electrons to the metal with a high standard electrode potential, becomes ions (Ni + in the figure) and dissolves, and dissolved oxygen in the solution receives electrons e ⁇ , resulting in hydroxylation.
  • a reaction occurs to form the product ion OH ⁇ .
  • the standard electrode potential (when hydrogen is 0) is -0.257 (V) for nickel, +0.342 (V) for copper, and SUS is about the same as the standard electrode potential for copper.
  • the surface of the wire 42 is gold-plated, it may be physically damaged or peeled off at the bent portion or the portion where it is tightened to the contact 41 by the screw and washer 43, exposing the underlying nickel.
  • the underlying nickel of the wire 42 and the SUS of the screw and washer 43 come into contact with each other. Since nickel has a lower standard electrode potential than SUS, it emits electrons and dissolves in the liquid. As a result, peeling of the underlying nickel occurs and the annealed copper is exposed. As a countermeasure, the dissolved oxygen concentration in the solution can be lowered to slow down the reaction rate of nickel dissolution.
  • the DIW in the stocker 30 is continuously filled with the inert gas, and the dissolved oxygen in the DIW is replaced with the inert gas, thereby lowering the dissolved oxygen concentration in the DIW. , peeling of the film (undercoat, plating) of the metal parts of the substrate holder 11 can be suppressed.
  • the local battery effect due to the dissolved oxygen concentration gradient may cause a phenomenon in which annealed copper dissolves into the solution. Since it lowers the oxygen concentration, it also has the effect of suppressing the local battery effect due to the dissolved oxygen concentration gradient.
  • FIG. 9 shows the experimental results of wire corrosion when inert gas bubbling was performed.
  • FIG. 10 shows experimental results of wire corrosion when inert gas bubbling was not performed. This example shows the results of immersing the same wire component (material: annealed copper, base: nickel, surface: gold plating) as the wire 42 in water containing copper sulfate plating solution (adjusted to pH 5) for 4 weeks. As shown in FIG. 10, when bag ringing with an inert gas was not performed, a portion A where annealed copper of the material was exposed was generated in the wire part. On the other hand, as shown in FIG. 9, when bubbling with an inert gas was performed, there was no exposed portion of annealed copper in the wire component. From this result, it was found that the corrosion of metal parts can be effectively suppressed by bubbling with an inert gas in an acidic solution.
  • FIG. 6 is a flow chart of the plating process. Control by this flow is controlled by the controller 175 .
  • step S ⁇ b>10 the substrate holder 11 stored or temporarily placed in the DIW in the stocker 30 is taken out from the stocker 30 and transported to the substrate attachment/detachment module 29 .
  • step S ⁇ b>20 the substrate is attached to the substrate holder 11 in the substrate attaching/detaching module 29 .
  • step S30 the substrate held by the substrate holder 11 is subjected to pretreatment (pre-wet module 32, pre-soak module 33, first rinse module 34).
  • step S40 the substrate held by the substrate holder 11 is plated (plating station 120B).
  • step S50 the substrate held by the substrate holder 11 is subjected to post-processing (second rinse module 36, blow module 35).
  • step S ⁇ b>60 the substrate is removed from the substrate holder 11 in the substrate attaching/detaching module 29 .
  • step S70 the substrate holder 11 is stored in the stocker 30, and is immersed in DIW previously stored in the stocker tank 60 for storage or temporary placement. Diffusion in DIW cleans. As a result, the plating solution remaining on the substrate holder 11 after being washed by the second rinse module 36 is diluted and/or diffused and washed.
  • the DIW is continuously filled with an inert gas, and the dissolved oxygen concentration in the DIW is maintained at a low level, thereby suppressing corrosion of the metal parts of the substrate holder 11 .
  • a series of these processes are performed on a plurality of substrate holders in the stocker.
  • a set of a plurality of (for example, two) substrate holders is removed from the stocker 30 , subjected to the above series of processes, and returned to the stocker 30 .
  • the plating solution remaining on the substrate holder that cannot be completely removed by the rinse module can be removed.
  • the dissolved oxygen in the DIW in the stocker 30 is replaced with an inert gas to lower the dissolved oxygen concentration in the DIW. Corrosion of 11 metal parts can be suppressed.
  • FIG. 4 is a schematic diagram showing the stocker 30 according to the second embodiment. Note that only points different from the above embodiment will be described, and the same or similar configurations will be given the same reference numerals as in the above embodiment, and description thereof will be omitted.
  • the stocker 30 is connected to a circulation flow path 73 on which a pump 71 and a first module 72 are provided.
  • the first module 72 functions as a dissolved oxygen concentration adjustment device that operates to suppress or reduce the dissolved oxygen concentration of water in the wet stocker.
  • the first module 72 is a degassing module that removes oxygen-containing gas from the DIW using a vacuum pump or the like, or a replacement module that replaces oxygen-containing gas with an inert gas.
  • the DIW in the stocker tank 60 is led out to the circulation flow path 73 by the pump 71 , degassed or replaced with inert gas in the first module 72 , and circulated so as to be returned to the stocker tank 60 . That is, the DIW in the stocker tank 60 is degassed or replaced with an inert gas while being circulated.
  • the water level of the DIW which drops due to the unloading of the substrate holder 11, is replenished from the water supply unit 61 to the stocker tank 60 in the same manner as described above.
  • the stocker 30 and each part of the apparatus associated with the stocker 30 (including the water supply section 61 , the pump 71 and the first module 72 ) are controlled by the controller 175 . According to this configuration, the DIW in the stocker tank 60 is deaerated or replaced with an inert gas by the first module 72, so that the dissolved oxygen concentration in the DIW can be lowered. Similar effects are obtained.
  • FIG. 5 is a schematic diagram showing the stocker 30 according to the third embodiment.
  • a piezoelectric element 81 is provided inside the stocker tank 60 of the stocker 30 .
  • the piezoelectric element 81 functions as a dissolved oxygen concentration adjusting device that operates to suppress or reduce the dissolved oxygen concentration of water in the wet stocker.
  • the piezoelectric element 81 is connected to an AC voltage source 82 via wiring 83 .
  • Piezoelectric element 81 receives an AC voltage from AC voltage source 82 and generates or provides ultrasonic waves into the DIW in stocker tub 60 .
  • the piezoelectric element 81 is preferably made of an acid-resistant material that can withstand the acidity of the DIW in the stocker tank 60, or is preferably coated with an acid-resistant material.
  • the water level of the DIW which drops due to the unloading of the substrate holder 11, is replenished from the water supply unit 61 to the stocker tank 60 in the same manner as described above.
  • a controller 175 controls the stocker 30 and each part of the device associated with the stocker 30 (including the water supply part 61 , the piezoelectric element 81 , and the AC voltage source 82 ).
  • a pressure difference (high-pressure part and low-pressure part) is formed in DIW by ultrasonic waves, and dissolved oxygen in DIW can be removed to lower the dissolved oxygen concentration. It works and works.
  • the substrate holder for a circular substrate has been described as an example, but the above-described embodiment can be applied to a substrate holder for a substrate having a polygonal shape such as a square or any other shape.
  • the plating apparatus (so-called dipping type) in which the substrate is plated by immersing the substrate holder in the plating solution has been described as an example.
  • the above-described embodiments may be applied to a plating apparatus (so-called face-down type or cup type) that plate a substrate by contact.
  • the present invention can also be described as the following forms.
  • a method for storing a substrate holder in an apparatus for plating a substrate wherein the substrate holder that does not hold the substrate is stored and/or temporarily placed in a state of being immersed in stored water.
  • the substrate holder is immersed in the water that has been stored in advance, and the plating solution remaining in the substrate holder is diffused into the water to clean the substrate holder, and the water is filled with an inert gas. and/or reducing the dissolved oxygen concentration in the water by degassing while circulating the water.
  • the stocker for storing and/or temporarily placing the substrate holder is configured as a wet stocker that stores water.
  • the substrate holders are stored and/or temporarily placed in the stocker while being immersed in water.
  • the substrate holder is immersed in pre-stored water, and while the substrate holder is stored and/or temporarily placed in the stocker, the plating solution remaining in the substrate holder (after washing with the rinse module after plating) Plating solution residue that could not be completely removed) can be diffused in water and washed.
  • the water in the stocker is subjected to inert gas replacement treatment or degassing treatment to lower the dissolved oxygen concentration in the water. Therefore, it is possible to suppress the reaction in which the metal of the substrate holder component dissolves into water due to the difference in the standard electrode potential, thereby suppressing the corrosion of the substrate holder component. Further, even when almost no plating solution remains on the substrate holder, the substrate holder component can be maintained in good condition by maintaining the dissolved oxygen concentration in the water at a low level.
  • the substrate holder immediately after removal of the plated substrate is stored and/or temporarily placed in a stocker containing water, the plating solution remaining in the substrate holder is prevented from being left in a dry state for a long time. As a result, it is possible to prevent the components in the plating solution from solidifying or the components of the substrate holder from being disassembled.
  • plating residues can be cleaned while the substrate holder is being stored and/or temporarily placed in the stocker, it is possible to suppress a decrease in throughput and an increase in footprint. Since plating residue can be cleaned while the substrate holder is stored and/or temporarily placed in the stocker, there is no need to install a separate substrate holder cleaning device, or the frequency of use of the substrate holder cleaning device can be reduced, resulting in lower throughput. can be suppressed.
  • the substrate holder in the stocker is plated while being held by the substrate holder, and the substrate holder holding the substrate is washed with a rinse module. After that, it is performed on the substrate holder from which the substrate is removed.
  • the plating solution remaining on the substrate holder that has not been completely removed after washing in the rinsing module after plating is diffused into water and washed while the substrate holder is stored and/or temporarily placed in the stocker. be able to.
  • inert gas bubbles can be supplied from the bottom to the top inside the stocker, and the dissolved oxygen in the water in the stocker can be efficiently replaced with the inert gas.
  • deaeration or inert gas replacement processing is performed on the water by a module arranged on a circulation flow path for circulating the water of the stocker. reduces the dissolved oxygen concentration in the water.
  • the dissolved oxygen concentration in the water in the stocker can be reduced by performing degassing or inert gas replacement processing on the water in the stocker in the module arranged on the circulation flow path.
  • the modules are installed outside the stocker, it is possible to suppress an increase in the size of the stocker.
  • the inert gas is nitrogen.
  • inert gas replacement can be performed relatively safely and inexpensively by using nitrogen as the inert gas.
  • the piezoelectric element arranged in the stocker generates ultrasonic waves in the water to deaerate the water.
  • the water in the stocker can be efficiently degassed by the ultrasonic waves generated by the piezoelectric element.
  • an apparatus for plating while holding a substrate in a substrate holder wherein the stocker stores and/or temporarily stores the substrate holder that does not hold the substrate while immersed in water.
  • a gas supply device arranged in the stocker for supplying an inert gas to the water and generating bubbles of the inert gas upward from below the substrate holder; and a carrier for carrying the substrate holder
  • An apparatus comprising: an apparatus; and a control module for controlling the transfer device to immerse the substrate holder in water pre-stored in the stocker.
  • the stocker is a wet stocker.
  • the gas supply device is a dissolved oxygen concentration adjusting device that operates to fill water in the wet stocker with an inert gas to lower the dissolved oxygen concentration of the water.
  • the effects described in the first embodiment are obtained, and inert gas bubbles are generated in the water in the stocker from the bottom to the top, so that the dissolved oxygen in the water in the stocker is efficiently rendered inert. It can be replaced by active gas.
  • an apparatus for plating while holding a substrate in a substrate holder wherein the stocker stores and/or temporarily stores the substrate holder that does not hold the substrate while immersed in water.
  • a circulation channel connected to the stocker to circulate the water; a first module arranged on the circulation channel to deaerate or replace the water with an inert gas; and the substrate holder.
  • An apparatus is provided that includes a transport device that transports substrates, and a control module that controls the transport device to immerse the substrate holder in water that has been stored in advance in the stocker.
  • the stocker is a wet stocker.
  • the first module is a dissolved oxygen concentration adjusting device that operates to reduce the dissolved oxygen concentration of water by performing degassing or inert gas replacement treatment on water in the wet stocker.
  • the effects described in the first embodiment are obtained, and the water in the stocker is degassed or replaced with an inert gas by the module arranged on the circulation flow path. Dissolved oxygen concentration can be lowered. In addition, since the modules are installed outside the stocker, it is possible to suppress an increase in the size of the stocker.
  • the inert gas is nitrogen.
  • inert gas replacement can be performed relatively safely and inexpensively by using nitrogen as the inert gas.
  • an apparatus for plating while holding a substrate in a substrate holder wherein the substrate holder that does not hold the substrate is stored and/or temporarily placed in a state of being immersed in water.
  • a stocker a piezoelectric element that is arranged in the stocker and generates ultrasonic waves in the water, a transport device that transports the substrate holder, and a substrate holder that is immersed in water previously stored in the stocker and a control module for controlling the transport device.
  • the stocker is a wet stocker.
  • the piezoelectric element is a dissolved oxygen concentration adjusting device that operates to degas the water in the wet stocker and reduce the dissolved oxygen concentration of the water.
  • the action and effect described in the first embodiment can be obtained, and the water in the stocker can be efficiently degassed by the ultrasonic waves generated by the piezoelectric element.

Abstract

The present invention removes a plating liquid remaining in a substrate holder after cleaning in a rinse module. This method for storing a substrate holder in a device for plating a substrate includes: cleaning a substrate holder which is not holding a substrate by immersing, in a stocker for storing and/or temporarily storing substrate holders in a state of being immersed in water, the substrate holder in pre-stored water and by diffusing a plating liquid remaining in the substrate holder in the water; and reducing the concentration of oxygen dissolved in the water by loading an inert gas in the water and/or degassing the water while circulating same.

Description

基板ホルダの保管方法、めっき装置Substrate holder storage method, plating equipment
 本願は、基板ホルダの保管方法及びめっき装置に関する。 This application relates to a substrate holder storage method and a plating apparatus.
 従来、半導体ウェハ等の表面に設けられた微細な配線用溝、ホール、又はレジスト開口部に配線を形成したり、半導体ウェハ等の表面にパッケージの電極等と電気的に接続するバンプ(突起状電極)を形成したりすることが行われている。このような配線及びバンプを形成する方法として、例えば、電解めっき法、蒸着法、印刷法、ボールバンプ法等が知られている。近年の半導体チップのI/O数の増加、細ピッチ化に伴い、微細化が可能で性能が比較的安定している電解めっき法が多く用いられるようになってきている。 Conventionally, wiring is formed in fine wiring grooves, holes, or resist openings provided on the surface of a semiconductor wafer, etc., or bumps (protruding shapes) electrically connected to package electrodes, etc., are formed on the surface of a semiconductor wafer, etc. electrodes) are being formed. Electroplating, vapor deposition, printing, ball bumping, and the like are known as methods for forming such wiring and bumps. With the recent increase in the number of I/Os and finer pitches of semiconductor chips, the electroplating method, which enables miniaturization and has relatively stable performance, has come into wide use.
 電解めっき法に用いるめっき装置では、半導体ウェハ等の基板の端面及び裏面をシールし、表面(被めっき面)を露出させて保持する基板ホルダを使用する場合がある。本めっき装置において基板表面にめっき処理を行うときは、基板を保持した基板ホルダをめっき液中に浸漬させる。また、めっき処理の後、基板を基板ホルダと共にリンスモジュールで洗浄し、基板ホルダに付着しためっき液残りを洗い流している。例えば、特開2019-71382号公報(特許文献1)には、めっき後の基板を保持した基板ホルダをリンス液に浸漬し、バブリングやパドル等によってリンス液を攪拌し、基板及び基板ホルダを洗浄することが記載されている。特開2014-19900号公報(特許文献2)には、コンタクトに水が接触しないようにダミー基板を保持した基板ホルダを洗浄液に浸漬することにより、基板ホルダを洗浄している。また、ダミー基板を保持した基板ホルダを洗浄する洗浄槽を2台設け、一方の洗浄槽に液体が流入しないようにしてその洗浄槽をストッカとして使用することが記載されている。 Plating equipment used in electroplating may use a substrate holder that seals the end and back surfaces of a substrate such as a semiconductor wafer and holds the surface (surface to be plated) exposed. When plating the substrate surface in this plating apparatus, the substrate holder holding the substrate is immersed in the plating solution. Further, after the plating process, the substrate is washed together with the substrate holder in a rinse module to wash off the remaining plating solution adhering to the substrate holder. For example, Japanese Unexamined Patent Application Publication No. 2019-71382 (Patent Document 1) discloses that a substrate holder holding a plated substrate is immersed in a rinse solution, and the rinse solution is agitated by bubbling, a paddle, or the like to wash the substrate and the substrate holder. It is stated that In Japanese Patent Application Laid-Open No. 2014-19900 (Patent Document 2), the substrate holder is cleaned by immersing the substrate holder holding the dummy substrate in a cleaning liquid so that the contacts do not come into contact with water. It also describes that two cleaning tanks are provided for cleaning substrate holders holding dummy substrates, and that one of the cleaning tanks is used as a stocker by preventing liquid from flowing into one of the cleaning tanks.
特開2019-71382号公報JP 2019-71382 A 特開2014-19900号公報Japanese Patent Application Laid-Open No. 2014-19900
 めっき処理の後にリンスモジュールにおける洗浄によっても完全には除去できないめっき液残り(例えば、約1%濃度の液体)が基板ホルダには付着している。つまり、基板ホルダは、約1%濃度のめっき液が含まれた水を持ち運んでいる。水が蒸発しめっき液成分が濃縮されると基板ホルダの部品にダメージを与え、次の基板の搬送時に基板ホルダに付着しためっき液成分がめっき槽内に溶解して、基板表面のパーティクルの原因となるおそれがある。上記特許文献では、基板ホルダに残留して付着しているめっき液残りに対する対策について検討されていない。 After the plating process, the plating solution residue (for example, a liquid with a concentration of about 1%) that cannot be completely removed even by washing in the rinse module adheres to the substrate holder. In other words, the substrate holder carries water containing a plating solution with a concentration of about 1%. When the water evaporates and the plating solution components become concentrated, it damages the parts of the substrate holder. When the next substrate is transported, the plating solution components adhering to the substrate holder dissolve in the plating bath, causing particles on the substrate surface. There is a possibility that it will be. In the above-mentioned patent document, no consideration is given to countermeasures against the residual plating solution remaining and adhering to the substrate holder.
 本発明の目的の1つは、リンスモジュールにおける洗浄後に基板ホルダに残るめっき液を除去することにある。また、本発明の目的の1つは、装置のスループット低下を抑制しつつ、リンスモジュールにおける洗浄後に基板ホルダに残るめっき液を除去することにある。 One of the purposes of the present invention is to remove the plating solution remaining on the substrate holder after cleaning in the rinse module. Another object of the present invention is to remove the plating solution remaining on the substrate holder after cleaning in the rinse module while suppressing a decrease in the throughput of the apparatus.
 一実施形態によれば、 基板をめっきする装置において基板ホルダを保管する方法であって、 基板を保持しない状態の基板ホルダを貯留した水の中に浸漬した状態で保管及び/又は一時仮置きするストッカにおいて、前記基板ホルダを予め貯留した前記水の中に浸漬して、前記基板ホルダに残存するめっき液を前記水に拡散させて前記基板ホルダを洗浄すること、 前記水に不活性ガスを充填すること及び/又は前記水を循環させながら脱気することにより、前記水の中の溶存酸素濃度を低下させること、を含む方法が提供される。 According to one embodiment, there is provided a method for storing a substrate holder in an apparatus for plating a substrate, comprising storing and/or temporarily placing the substrate holder without holding the substrate in a state of being immersed in water. In the stocker, the substrate holder is immersed in the water that has been stored in advance, and the plating solution remaining in the substrate holder is diffused into the water to wash the substrate holder, and the water is filled with an inert gas. and/or reducing the dissolved oxygen concentration in the water by degassing while circulating the water.
一実施形態に係るめっき装置の全体配置図である。1 is an overall layout diagram of a plating apparatus according to one embodiment; FIG. 基板ホルダを示す概略図である。Fig. 2 is a schematic diagram showing a substrate holder; ストッカを示す概略図である。It is a schematic diagram showing a stocker. ストッカの他の例を示す概略図である。It is a schematic diagram showing another example of a stocker. ストッカの他の例を示す概略図である。It is a schematic diagram showing another example of a stocker. めっき処理のフローチャートである。It is a flow chart of plating processing. ストッカ内の水のpHの変化を示すグラフである。It is a graph which shows the change of pH of the water in a stocker. 金属部品の腐食のメカニズムを説明する説明図である。It is an explanatory view explaining a mechanism of corrosion of metal parts. 不活性ガスバブリングありの場合のワイヤ腐食の実験結果である。It is an experimental result of wire corrosion with inert gas bubbling. 不活性ガスバブリングなしの場合のワイヤ腐食の実験結果である。It is an experimental result of wire corrosion without inert gas bubbling.
 以下、本発明の実施形態について図面を参照して説明する。添付図面において、同一または類似の要素には同一または類似の参照符号が付され、各実施形態の説明において同一または類似の要素に関する重複する説明は省略することがある。また、各実施形態で示される特徴は、互いに矛盾しない限り他の実施形態にも適用可能である。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the accompanying drawings, the same or similar elements are denoted by the same or similar reference numerals, and duplicate descriptions of the same or similar elements may be omitted in the description of each embodiment. Also, the features shown in each embodiment can be applied to other embodiments as long as they are not mutually contradictory.
 本明細書において「基板」には、半導体基板、ガラス基板、液晶基板、プリント回路基板だけでなく、磁気記録媒体、磁気記録センサ、ミラー、光学素子、微小機械素子、あるいは部分的に製作された集積回路、その他任意の被処理対象物を含む。基板は、多角形、円形を含む任意の形状のものを含む。また、本明細書において「前面」、「後面」、「フロント」、「バック」、「上」、「下」、「左」、「右」等の表現を用いるが、これらは、説明の都合上、例示の図面の紙面上における位置、方向を示すものであり、装置使用時等の実際の配置では異なる場合がある。 In this specification, "substrate" includes not only semiconductor substrates, glass substrates, liquid crystal substrates, and printed circuit boards, but also magnetic recording media, magnetic recording sensors, mirrors, optical elements, micromechanical elements, or partially manufactured substrates. Includes integrated circuits and any other object to be processed. Substrates include those of any shape, including polygonal and circular. In addition, expressions such as “front”, “rear”, “front”, “back”, “upper”, “lower”, “left”, “right” are used in this specification, but these are for convenience of explanation. The above shows the positions and directions on the paper surface of the illustrated drawings, and may differ in the actual arrangement when the apparatus is used.
 (第1実施形態)
 図1は、一実施形態に係るめっき装置の全体配置図である。めっき装置100は、基板ホルダ11(図2)に基板(ウェハ)を保持した状態で基板にめっき処理を施すものである。めっき装置100は、基板ホルダ11に基板をロードし、又は基板ホルダ11から基板をアンロードするロード/アンロードステーション110と、基板を処理する処理ステーション120と、洗浄ステーション50aとに大きく分けられる。処理ステーション120には、基板の前処理及び後処理を行う前処理・後処理ステーション120Aと、基板にめっき処理を行うめっきステーション120Bとが配置されている。
(First embodiment)
FIG. 1 is an overall layout diagram of a plating apparatus according to one embodiment. The plating apparatus 100 performs a plating process on a substrate (wafer) while the substrate is held by a substrate holder 11 (FIG. 2). The plating apparatus 100 is roughly divided into a load/unload station 110 that loads or unloads substrates onto or from the substrate holder 11, a processing station 120 that processes the substrates, and a cleaning station 50a. The processing station 120 includes a pre-processing/post-processing station 120A for pre-processing and post-processing of substrates, and a plating station 120B for plating substrates.
 ロード/アンロードステーション110は、1又は複数のカセットテーブル25と、基板脱着モジュール29とを有する。カセットテーブル25は、基板を収納したカセット25aを搭載する。基板脱着モジュール29は、基板を基板ホルダ11に着脱するように構成される。また、基板脱着モジュール29の近傍(例えば下方)には、基板を保持しない状態の基板ホルダ11を収容するためのストッカ30が設けられる。洗浄ステーション50aは、めっき処理後の基板を洗浄して乾燥させる洗浄モジュール50を有する。洗浄モジュール50は、例えば、スピンリンスドライヤである。 The loading/unloading station 110 has one or more cassette tables 25 and substrate loading/unloading modules 29 . The cassette table 25 mounts a cassette 25a containing substrates. The substrate loading/unloading module 29 is configured to load/unload a substrate onto/from the substrate holder 11 . A stocker 30 for storing the substrate holder 11 that does not hold the substrate is provided near (for example, below) the substrate attachment/detachment module 29 . The cleaning station 50a has a cleaning module 50 for cleaning and drying the plated substrate. The cleaning module 50 is, for example, a spin rinse dryer.
 カセットテーブル25、基板着脱モジュール29、及び洗浄ステーション50aで囲まれる位置には、これらのユニット間で基板を搬送する搬送ロボット27が配置されている。搬送ロボット27は、走行機構28により走行可能に構成される。搬送ロボット27は、例えば、めっき前の基板をカセット25aから取り出して基板着脱モジュール29に搬送し、めっき後の基板を基板着脱モジュール29から受け取り、めっき後の基板を洗浄モジュール50に搬送し、洗浄及び乾燥された基板を洗浄モジュール50から取り出してカセット25aに収納するように構成される。 At a position surrounded by the cassette table 25, the substrate loading/unloading module 29, and the cleaning station 50a, a transport robot 27 that transports substrates between these units is arranged. The transport robot 27 is configured to be travelable by a travel mechanism 28 . The transport robot 27, for example, takes out the substrate before plating from the cassette 25a, transports it to the substrate attachment/detachment module 29, receives the plated substrate from the substrate attachment/detachment module 29, transports the plated substrate to the cleaning module 50, and cleans it. And the dried substrate is taken out from the cleaning module 50 and stored in the cassette 25a.
 前処理・後処理ステーション120Aは、プリウェットモジュール32と、プリソークモジュール33と、第1リンスモジュール34と、ブローモジュール35と、第2リンスモジュール36と、を有する。プリウェットモジュール32は、基板のパターン開口内の空気を水等の処理液で置換する(脱気する)プリウェット処理を施すように構成される。プリウェット処理により、めっき時にパターン開口内の処理液をめっき液に置換し、パターン開口内にめっき液を供給しやすくする。プリソークモジュール33は、例えば、基板のシード層表面等に存在する電気抵抗の大きい酸化膜を硫酸や塩酸などの処理液でエッチング除去してめっき下地表面を洗浄または活性化するプリソーク処理を施すように構成される。第1リンスモジュール34では、プリソーク後の基板が基板ホルダ11と共に洗浄液(純水等)で洗浄される。ブローモジュール35では、洗浄後の基板の液切りが行われる。第2リンスモジュール36では、めっき後の基板が基板ホルダ11と共に洗浄液(純水等)で洗浄される。プリウェットモジュール32、プリソークモジュール33、第1リンスモジュール34、ブローモジュール35、第2リンスモジュール36は、この順に配置されている。なお、この構成は一例であり、上述した構成に限定されず、前処理・後処理ステーション120Aは、他の構成を採用することが可能である。 The pre-treatment/post-treatment station 120A has a pre-wet module 32, a pre-soak module 33, a first rinse module 34, a blow module 35, and a second rinse module 36. The pre-wet module 32 is configured to perform a pre-wet process that replaces (degases) the air in the pattern openings of the substrate with a processing liquid such as water. The pre-wet process replaces the processing liquid in the pattern openings with the plating liquid during plating, making it easier to supply the plating liquid into the pattern openings. For example, the presoak module 33 performs a presoak treatment for cleaning or activating the surface of the plating base by etching away an oxide film having a large electrical resistance existing on the surface of the seed layer of the substrate or the like with a treatment liquid such as sulfuric acid or hydrochloric acid. configured to In the first rinse module 34, the pre-soaked substrate is washed together with the substrate holder 11 with a cleaning liquid (pure water or the like). In the blow module 35, liquid draining from the substrate after cleaning is performed. In the second rinsing module 36, the plated substrate is washed together with the substrate holder 11 with a cleaning liquid (pure water or the like). The pre-wet module 32, pre-soak module 33, first rinse module 34, blow module 35, and second rinse module 36 are arranged in this order. Note that this configuration is an example and is not limited to the configuration described above, and the pre-processing/post-processing station 120A can adopt other configurations.
 めっきステーション120Bは、複数のめっきセルを有するめっきモジュール39と、オーバーフロー槽38とを有する。各めっきセルは、内部に一つの基板を収納し、内部に保持しためっき液中に基板を浸漬させて基板表面に銅めっき等のめっきを行う。ここで、めっき液の種類は、特に限られることはなく、用途に応じて様々なめっき液が用いられる。このめっきステーション120Bの構成は一例であり、めっきステーション120Bは、他の構成を採用することが可能である。 The plating station 120B has a plating module 39 having a plurality of plating cells and an overflow tank 38. Each plating cell accommodates one substrate therein and immerses the substrate in a plating solution held therein to perform plating such as copper plating on the surface of the substrate. Here, the type of plating solution is not particularly limited, and various plating solutions are used depending on the application. This configuration of the plating station 120B is an example, and the plating station 120B can adopt other configurations.
 めっき装置100は、これらの各機器の側方に位置して、これらの各機器の間で基板ホルダ11を搬送する、例えばリニアモータ方式を採用した搬送装置37を有する。この搬送装置37は、1又は複数のトランスポータ37Aを備え、基板脱着モジュール29、ストッカ30、プリウェットモジュール32、プリソークモジュール33、第1リンスモジュール34、ブローモジュール35、第2リンスモジュール36、及びめっきステーション120Bとの間で基板ホルダ11を搬送するように構成される。 The plating apparatus 100 has a conveying device 37 that is positioned to the side of each of these devices and that conveys the substrate holder 11 between each of these devices and that employs, for example, a linear motor system. The transfer device 37 includes one or more transporters 37A, and includes a substrate removal module 29, a stocker 30, a pre-wet module 32, a pre-soak module 33, a first rinse module 34, a blow module 35, a second rinse module 36, and plating station 120B.
 以上のように構成されるめっき装置100は、上述した各部を制御するように構成された制御部としての制御モジュール(コントローラ)175を有する。コントローラ175は、所定のプログラムを格納したメモリ175Bと、メモリ175Bのプログラムを実行するCPU175Aとを有する。メモリ175Bを構成する記憶媒体は、各種の設定データ、めっき装置100を制御するプログラムを含む各種のプログラムなどを格納している。プログラムは、例えば、搬送ロボット27の搬送制御、基板脱着モジュール29における基板の基板ホルダ11への着脱制御、搬送装置37の搬送制御、ストッカ30における制御、各処理モジュールにおける処理の制御、めっきモジュール39におけるめっき処理の制御、洗浄ステーション50aの制御を実行するプログラムを含む。記憶媒体は、不揮発性及び/又は揮発性の記憶媒体を含むことが可能である。記憶媒体としては、例えば、コンピュータで読み取り可能なROM、RAM、フラッシュメモリなどのメモリや、ハードディスク、CD-ROM、DVD-ROMやフレキシブルディスクなどのディスク状記憶媒体などの公知のものが使用され得る。 The plating apparatus 100 configured as described above has a control module (controller) 175 as a control section configured to control each section described above. The controller 175 has a memory 175B storing a predetermined program and a CPU 175A executing the program in the memory 175B. A storage medium constituting the memory 175B stores various setting data, various programs including a program for controlling the plating apparatus 100, and the like. The program includes, for example, transfer control of the transfer robot 27, attachment/detachment control of the substrate to/from the substrate holder 11 in the substrate attachment/detachment module 29, transfer control of the transfer device 37, control of the stocker 30, control of processing in each processing module, plating module 39 and a program for controlling the cleaning station 50a. The storage media may include non-volatile and/or volatile storage media. As the storage medium, for example, a computer-readable memory such as ROM, RAM, and flash memory, and a known disk storage medium such as a hard disk, CD-ROM, DVD-ROM, and flexible disk can be used. .
 コントローラ175は、めっき装置100及びその他の関連装置を統括制御する図示しない上位コントローラと通信可能に構成され、上位コントローラが有するデータベースとの間でデータのやり取りをすることができる。コントローラ175の一部又は全部の機能は、ASIC等のハードウェアで構成することができる。コントローラ175の一部又は全部の機能は、シーケンサで構成してもよい。コントローラ175の一部又は全部は、めっき装置100の筐体の内部及び/又は外部に配置することができる。コントローラ175の一部又は全部は、有線及び/又は無線によりめっき装置100の各部と通信可能に接続される。 The controller 175 is configured to be able to communicate with a host controller (not shown) that controls the plating apparatus 100 and other related devices, and can exchange data with a database owned by the host controller. A part or all of the functions of the controller 175 can be configured by hardware such as ASIC. A part or all of the functions of the controller 175 may be composed of a sequencer. Part or all of controller 175 may be located inside and/or outside the enclosure of plating apparatus 100 . A part or all of the controller 175 is communicably connected to each part of the plating apparatus 100 by wire and/or wirelessly.
 図2は、基板ホルダを示す概略図である。基板ホルダ11は、第1保持部材12と、第2保持部材13とを備え、第1保持部材12と第2保持部材13との間に基板を挟んで保持する。第2保持部材13は、例えば、ヒンジを介して第1保持部材12に連結され、第1保持部材12に対して開閉可能になっている。なお、第2保持部材13は、第1保持部材12に対して接近離間するように並進運動し、第1保持部材12と共に基板を挟んで保持する構成であってもよい。また、第1保持部材12及び第2保持部材13には、基板を挟んだ状態で第1保持部材12及び第2保持部材13を互いにロックするロック機構(図示略)が設けられている。第2保持部材13の裏面には、同図において破線で示す複数のコンタクト41が設けられている。これらのコンタクト41は、基板ホルダ11内の配線(図示略)を介して外部の電源に接続される。第1保持部材12及び第2保持部材13で挟んで保持した際に、これらのコンタクト41が基板のシード層に接触し、外部の電源から基板にめっき電流を流すことが可能になっている。 FIG. 2 is a schematic diagram showing a substrate holder. The substrate holder 11 includes a first holding member 12 and a second holding member 13 , and holds the substrate by sandwiching it between the first holding member 12 and the second holding member 13 . The second holding member 13 is connected to the first holding member 12 via a hinge, for example, and can be opened and closed with respect to the first holding member 12 . In addition, the second holding member 13 may be configured to move in translation so as to approach and separate from the first holding member 12 and sandwich and hold the substrate together with the first holding member 12 . Further, the first holding member 12 and the second holding member 13 are provided with a locking mechanism (not shown) that locks the first holding member 12 and the second holding member 13 with the substrate sandwiched therebetween. A plurality of contacts 41 indicated by dashed lines in the figure are provided on the rear surface of the second holding member 13 . These contacts 41 are connected to an external power supply via wiring (not shown) inside the substrate holder 11 . When held between the first holding member 12 and the second holding member 13, these contacts 41 come into contact with the seed layer of the substrate, allowing a plating current to flow from an external power supply to the substrate.
 図3は、一実施形態に係るストッカを示す概略図である。ストッカ30は、基板を保持していない状態の複数の基板ホルダ11を保管及び/又は一時仮置きするモジュールである。本実施形態では、ストッカ30は、水(例えば、DIW等の純水)を貯留した状態で基板ホルダ11を保管等するウェットストッカとして構成される。即ち、基板ホルダ11は、めっき処理のために搬出されるまでの間、水中に浸漬された状態で保管及び/又は一時仮置きされる。以下では、水がDIWである場合を例に挙げて説明する。 FIG. 3 is a schematic diagram showing a stocker according to one embodiment. The stocker 30 is a module that stores and/or temporarily stores a plurality of substrate holders 11 that do not hold substrates. In this embodiment, the stocker 30 is configured as a wet stocker that stores the substrate holder 11 in a state where water (for example, pure water such as DIW) is stored. That is, the substrate holder 11 is stored and/or temporarily placed while being immersed in water until it is carried out for plating. In the following, the case where water is DIW will be described as an example.
 ストッカ30は、ストッカ槽60と、ストッカ槽60の内部に配置された気体供給装置62とを備えている。また、ストッカ30には、水供給部(水供給ライン)61が設けられており、水供給部61からストッカ槽60内にDIWが供給され、ストッカ槽60にDIWが貯留されるようになっている。また、ストッカ30には、DIWを排出する排出口(図示略)が設けられてもよい。ストッカ槽60内のDIWの水位は、複数の基板ホルダ11の全体が浸漬される高さとする。めっき処理後の基板ホルダ11が搬入される前のストッカ槽60(初期ストッカ槽)のDIWの酸性度pHは約6とする。ストッカ30及びストッカ30に関連する装置の各部(水供給部61、バルブ64を含む)は、コントローラ175により制御される。 The stocker 30 includes a stocker tank 60 and a gas supply device 62 arranged inside the stocker tank 60 . In addition, the stocker 30 is provided with a water supply section (water supply line) 61. DIW is supplied from the water supply section 61 into the stocker tank 60, and DIW is stored in the stocker tank 60. there is Further, the stocker 30 may be provided with a discharge port (not shown) for discharging the DIW. The DIW water level in the stocker tank 60 is set to a height at which the entire substrate holders 11 are immersed. The acidity pH of DIW in the stocker tank 60 (initial stocker tank) before the plated substrate holder 11 is carried in is about 6. A controller 175 controls the stocker 30 and each part of the device associated with the stocker 30 (including the water supply part 61 and the valve 64 ).
 気体供装置62は、例えば、1又は複数の吐出口62aを有する管体で構成され、流路65を介して気体供給源63に流体的に接続されている。気体供給源63は、不活性ガスを供給する供給源である。不活性ガスは、窒素、アルゴン等の希ガスとすることができる。なお、不活性ガスとして窒素を使用する場合、比較的安全かつ安価に不活性ガスをDIWに充填することができる。また、流路65上には開閉弁又は流量制御弁からなるバルブ64が設けられてもよい。気体供給装置62からの不活性ガスの供給は、例えば、バルブ64の開閉又は開度を制御することでコントローラ175により制御される。気体供給源63から気体供給装置62に供給される不活性ガスは、気体供給装置62の1又は複数の吐出口62aからストッカ槽60内のDIW中に供給され、DIW中に不活性ガスのバブルを形成し、DIWをバブリングする。不活性ガスによるバブリングは、例えば、12.5L/minの供給速度とする。 The gas supply device 62 is composed of, for example, a tubular body having one or a plurality of discharge ports 62a, and is fluidly connected to the gas supply source 63 via a channel 65. The gas supply source 63 is a supply source that supplies inert gas. The inert gas can be a noble gas such as nitrogen, argon, or the like. When nitrogen is used as the inert gas, the DIW can be filled with the inert gas relatively safely and inexpensively. A valve 64 consisting of an on-off valve or a flow control valve may be provided on the flow path 65 . The supply of the inert gas from the gas supply device 62 is controlled by the controller 175 by controlling the opening/closing or the degree of opening of the valve 64, for example. The inert gas supplied from the gas supply source 63 to the gas supply device 62 is supplied from one or a plurality of discharge ports 62a of the gas supply device 62 into the DIW in the stocker tank 60, and the inert gas bubbles in the DIW. and bubble the DIW. Bubbling with an inert gas is performed at a supply rate of, for example, 12.5 L/min.
 本実施形態では、気体供給装置62は、ウェットストッカ30内の水の溶存酸素濃度を抑制又は低下させるように動作する溶存酸素濃度調整装置として機能する。気体供給装置62は、基板ホルダ11の下方又はストッカ槽60の底部に配置され、下から上に向かうバブルを発生させる。ストッカ槽60内のDIW中に不活性ガスを連続的に充填することにより、DIW中の溶存酸素を不活性ガスと置換し、DIW中の溶存酸素濃度を低下させて、DIWを脱酸素水とする。このとき、不活性ガスのバブルが、隣接する基板ホルダ11の間に入るように気体供給装置62の吐出口62aの配置を調整し、各基板ホルダの周囲のDIW全体の溶存酸素濃度を低下させるようにする。DIWへの不活性ガスの供給は、ストッカ槽60にDIWを貯留し、基板ホルダ11を収容している間、常時連続的に行うことが好ましい。なお、不活性ガスの供給は、DIWの酸性度の変化に応じて、間欠的に実施してもよい。 In this embodiment, the gas supply device 62 functions as a dissolved oxygen concentration adjustment device that operates to suppress or reduce the dissolved oxygen concentration of water in the wet stocker 30 . The gas supply device 62 is arranged below the substrate holder 11 or at the bottom of the stocker tank 60, and generates bubbles from bottom to top. By continuously filling the DIW in the stocker tank 60 with an inert gas, the dissolved oxygen in the DIW is replaced with the inert gas, the dissolved oxygen concentration in the DIW is lowered, and the DIW is converted into deoxygenated water. do. At this time, the arrangement of the discharge port 62a of the gas supply device 62 is adjusted so that the inert gas bubbles enter between the adjacent substrate holders 11, thereby reducing the concentration of dissolved oxygen in the entire DIW around each substrate holder. make it It is preferable that the inert gas be supplied to the DIW continuously while the DIW is stored in the stocker tank 60 and the substrate holder 11 is accommodated. The inert gas may be supplied intermittently according to changes in the acidity of DIW.
 このストッカ30では、めっき後の基板ホルダ11をストッカ槽60内でDIWに浸漬させることにより、基板ホルダ11に付着しためっき液残り(模式的に示す図2のQ’)をDIWで希釈し及び/又は濃度差によりDIW中に拡散させて、洗浄する。また、洗浄後の基板ホルダ11がストッカ30から取り出されると、取り出された基板ホルダ11の体積分のDIWを水供給部61から供給することにより、ストッカ槽60内の水位を一定に保つ。 In this stocker 30, the plated substrate holder 11 is immersed in DIW in the stocker tank 60 to dilute and /or Diffusion into DIW due to concentration differential for cleaning. Further, when the cleaned substrate holder 11 is taken out from the stocker 30 , the water level in the stocker tank 60 is kept constant by supplying DIW for the volume of the taken out substrate holder 11 from the water supply unit 61 .
 一方、基板ホルダ11に付着しためっき液残りがDIWに溶け込む度に、ストッカ槽60内のDIWが徐々に酸性側(pHが低下)になる現象が発生する。一例では、基板ホルダ1つ当たり、硫酸銅濃度1%、7.9mLのめっき液がストッカ30に持ち込まれ、DIWのpHが約5.1まで低下する。そこで、本実施形態では、気体供給装置62により槽内のDIWに連続的に不活性ガスを充填し、DIW内の溶存酸素濃度を低下させ、基板ホルダ11の金属部品が酸性度の高いDIWで腐食される反応を抑制するようにしている。即ち、腐食反応に関わるDIW中の溶存酸素を、腐食反応に関わらない不活性ガスに置換することで、基板ホルダ11の金属部品の腐食を抑制する。 On the other hand, every time the residual plating solution adhering to the substrate holder 11 dissolves into the DIW, a phenomenon occurs in which the DIW in the stocker tank 60 gradually becomes acidic (lowering in pH). In one example, 7.9 mL of plating solution with a copper sulfate concentration of 1% per substrate holder is brought into the stocker 30 and the pH of the DIW is lowered to about 5.1. Therefore, in the present embodiment, the DIW in the tank is continuously filled with an inert gas by the gas supply device 62 to lower the dissolved oxygen concentration in the DIW, and the metal parts of the substrate holder 11 are made of highly acidic DIW. I try to suppress the reaction that corrodes. That is, the corrosion of the metal parts of the substrate holder 11 is suppressed by replacing the oxygen dissolved in the DIW, which is involved in the corrosion reaction, with an inert gas that is not involved in the corrosion reaction.
 図7は、ストッカ内の水のpHの変化を示すグラフである。図中、縦軸はストッカ30内のDIWのpHを示し、横軸は、基板(ウェハ)の処理枚数、即ち、ストッカ30に搬入されためっき及び後処理後の基板ホルダ11の枚数を示す。この例では、元のめっき液(めっきモジュール39内のめっき液)のpHを0.5、めっき及び後処理後の基板ホルダ11が搬入される前のストッカ30のDIWのpHを6、基板ホルダ1つ当たりのめっき液持ち出し量を7.9mLとし、基板ホルダ1つ当たり硫酸銅濃度1%、7.9mLのめっき液がストッカ30に持ち込まれるとした。また、ストッカ30では、基板ホルダ11の体積分を除いた9.59LのDIWで、基板ホルダ11のめっき液残りが希釈されるとし、基板ホルダ11が搬出される度に、ストッカ30において下がった水分のDIW(pH=6)が補給されるとした。図7に示すように、基板の処理枚数(めっき後の基板ホルダがストッカ30に搬入される数)が増加するに従い、ストッカ30内のDIWのpHが減少し(酸性側に傾き)、pH=約5.1で収束することが分かった。 FIG. 7 is a graph showing changes in pH of water in the stocker. In the figure, the vertical axis indicates the pH of DIW in the stocker 30, and the horizontal axis indicates the number of processed substrates (wafers), that is, the number of substrate holders 11 carried into the stocker 30 after plating and post-treatment. In this example, the pH of the original plating solution (the plating solution in the plating module 39) is 0.5, the pH of the DIW in the stocker 30 before the substrate holder 11 after plating and post-treatment is brought in is 6, and the substrate holder It is assumed that the amount of the plating solution carried out per substrate holder is 7.9 mL, and the plating solution of 1% copper sulfate concentration and 7.9 mL of plating solution is brought into the stocker 30 per substrate holder. In the stocker 30, the DIW of 9.59 L excluding the volume of the substrate holder 11 was used to dilute the remaining plating solution in the substrate holder 11, and the stocker 30 dropped every time the substrate holder 11 was unloaded. It was assumed that water DIW (pH=6) was replenished. As shown in FIG. 7, as the number of processed substrates (the number of plated substrate holders carried into the stocker 30) increases, the pH of the DIW in the stocker 30 decreases (tilts toward the acidic side), and pH= It was found to converge at about 5.1.
 図8は、金属部品の腐食のメカニズムを説明する説明図である。同図には、基板ホルダ11のコンタクト41、コンタクト41に電気的に接続される配線(ワイヤ)42、及びワイヤ42をコンタクト41に固定するネジ及びワッシャー43を示す。この例では、コンタクト41の材質はSUSであり、表面に金コバルトのめっきが施されている。ワイヤ42の材質は軟銅であり、ニッケルの下地の上に金めっきが施されている。ネジ及びワッシャー43の材質はSUSである。同図に示すように、硫酸銅が含まれる溶液(電導性)Qに標準電極電位差のある金属が接触すると局部電池が構成され、異種金属間での電子のやりとりが行われる。このとき、標準電極電位が低い金属は、標準電極電位が高い金属に電子を放出し、イオン(図中、Ni)になって溶解し、溶液中の溶存酸素が電子eを受け取り水酸化物イオンOHとなる反応が起こる。標準電極電位(水素を0としたとき)は、ニッケルが-0.257(V)、銅が+0.342(V)、SUSは銅の標準電極電位と同程度である。 FIG. 8 is an explanatory diagram for explaining the mechanism of corrosion of metal parts. The drawing shows contacts 41 of the substrate holder 11 , wiring (wires) 42 electrically connected to the contacts 41 , and screws and washers 43 for fixing the wires 42 to the contacts 41 . In this example, the material of the contact 41 is SUS, and the surface is plated with gold-cobalt. The material of the wire 42 is annealed copper, which is plated with gold on a base of nickel. The material of the screw and washer 43 is SUS. As shown in the figure, when a metal having a standard electrode potential comes into contact with a solution (conductivity) Q containing copper sulfate, a local battery is formed, and electrons are exchanged between dissimilar metals. At this time, the metal with a low standard electrode potential emits electrons to the metal with a high standard electrode potential, becomes ions (Ni + in the figure) and dissolves, and dissolved oxygen in the solution receives electrons e , resulting in hydroxylation. A reaction occurs to form the product ion OH . The standard electrode potential (when hydrogen is 0) is -0.257 (V) for nickel, +0.342 (V) for copper, and SUS is about the same as the standard electrode potential for copper.
 ワイヤ42の表面は金めっきであるが、曲げ箇所、ネジ及びワッシャー43によりコンタクト41に締め付けられる箇所にて、物理的な傷または剥がれが生じて下地のニッケルが露出することがある。このとき、ワイヤ42の下地のニッケルと、ネジ及びワッシャー43のSUSとが接触する。SUSと比較してニッケルの方が、標準電極電位が低いため電子を放出し、ニッケルが液中に溶解する。そのため、下地ニッケルの剥離が生じて軟銅が露出する。この対策として、溶液中の溶存酸素濃度を低下させることで、ニッケルが溶解する反応の反応速度を遅くすることができる。上述したように、本実施形態では、ストッカ30内のDIWに連続的に不活性ガスを充填し、DIW中の溶存酸素を不活性ガスに置換することにより、DIW中の溶存酸素濃度を下げるため、基板ホルダ11の金属部品の被膜(下地、めっき)の剥離を抑制することができる。 Although the surface of the wire 42 is gold-plated, it may be physically damaged or peeled off at the bent portion or the portion where it is tightened to the contact 41 by the screw and washer 43, exposing the underlying nickel. At this time, the underlying nickel of the wire 42 and the SUS of the screw and washer 43 come into contact with each other. Since nickel has a lower standard electrode potential than SUS, it emits electrons and dissolves in the liquid. As a result, peeling of the underlying nickel occurs and the annealed copper is exposed. As a countermeasure, the dissolved oxygen concentration in the solution can be lowered to slow down the reaction rate of nickel dissolution. As described above, in the present embodiment, the DIW in the stocker 30 is continuously filled with the inert gas, and the dissolved oxygen in the DIW is replaced with the inert gas, thereby lowering the dissolved oxygen concentration in the DIW. , peeling of the film (undercoat, plating) of the metal parts of the substrate holder 11 can be suppressed.
 また、溶液中の溶存酸素濃度が高い場合、溶存酸素濃度勾配による局部電池効果により、軟銅が溶液中に溶け出す現象も発生するおそれがあるが、不活性ガス置換によりストッカ30のDIW中の溶存酸素濃度を下げるため、溶存酸素濃度勾配による局部電池効果を抑制する効果もある。 In addition, when the dissolved oxygen concentration in the solution is high, the local battery effect due to the dissolved oxygen concentration gradient may cause a phenomenon in which annealed copper dissolves into the solution. Since it lowers the oxygen concentration, it also has the effect of suppressing the local battery effect due to the dissolved oxygen concentration gradient.
 図9は、不活性ガスによるバブリングを行った場合のワイヤ腐食の実験結果である。図10は、不活性ガスによるバブリングを行わなかった場合のワイヤ腐食の実験結果である。この例では、硫酸銅めっき液を含んだ水(pH5に調整)に上記ワイヤ42と同じワイヤ部品(材質:軟銅、下地:ニッケル、表面:金めっき)を4週間浸漬した結果を示す。図10に示すように、不活性ガスによるバグリングを行わない場合には、ワイヤ部品に材質の軟銅が露出する部分Aが生じた。一方、図9に示すように、不活性ガスによるバブリングを行った場合には、ワイヤ部品に材質の軟銅が露出した部分は発生しなかった。この結果から、酸性溶液中で不活性ガスによるバブリングを行うことにより、金属部品の腐食を効果的に抑制できることが分かった。 Fig. 9 shows the experimental results of wire corrosion when inert gas bubbling was performed. FIG. 10 shows experimental results of wire corrosion when inert gas bubbling was not performed. This example shows the results of immersing the same wire component (material: annealed copper, base: nickel, surface: gold plating) as the wire 42 in water containing copper sulfate plating solution (adjusted to pH 5) for 4 weeks. As shown in FIG. 10, when bag ringing with an inert gas was not performed, a portion A where annealed copper of the material was exposed was generated in the wire part. On the other hand, as shown in FIG. 9, when bubbling with an inert gas was performed, there was no exposed portion of annealed copper in the wire component. From this result, it was found that the corrosion of metal parts can be effectively suppressed by bubbling with an inert gas in an acidic solution.
 図6は、めっき処理のフローチャートである。このフローによる制御は、コントローラ175により制御される。ステップS10では、ストッカ30においてDIW中に保管又は一時仮置きされている基板ホルダ11が、ストッカ30から取り出され、基板着脱モジュール29に搬送される。ステップS20では、基板着脱モジュール29において基板が基板ホルダ11に取り付けられる。ステップS30では、基板ホルダ11に保持された基板に対して、前処理(プリウェットモジュール32、プリソークモジュール33、第1リンスモジュール34)が施される。ステップS40では、基板ホルダ11に保持された基板に対して、めっき処理(めっきステーション120B)が施される。ステップS50では、基板ホルダ11に保持された基板に対して、後処理(第2リンスモジュール36、ブローモジュール35)が施される。ステップS60では、基板着脱モジュール29において基板ホルダ11から基板が取り外される。ステップS70では、基板ホルダ11がストッカ30に収納され、ストッカ槽60に予め貯留されたDIW中に浸漬されて保管又は一時仮置きされる間に、基板ホルダ11に付着しているめっき液残りがDIW中に拡散されることで洗浄される。これにより、第2リンスモジュール36で洗浄した後に基板ホルダ11に残留するめっき液が希釈及び/又は拡散され、洗浄される。このとき、前述したように、DIWに連続的に不活性ガスが充填され、DIW中の溶存酸素濃度が低い状態に維持されることにより、基板ホルダ11の金属部品の腐食が抑制される。これらの一連の処理が、ストッカ内の複数の基板ホルダに対して実施される。一例では、複数枚(例えば2枚)の基板ホルダを1組としてストッカ30から取り出され、上記一連の処理が実施され、ストッカ30に戻される。 FIG. 6 is a flow chart of the plating process. Control by this flow is controlled by the controller 175 . In step S<b>10 , the substrate holder 11 stored or temporarily placed in the DIW in the stocker 30 is taken out from the stocker 30 and transported to the substrate attachment/detachment module 29 . In step S<b>20 , the substrate is attached to the substrate holder 11 in the substrate attaching/detaching module 29 . In step S30, the substrate held by the substrate holder 11 is subjected to pretreatment (pre-wet module 32, pre-soak module 33, first rinse module 34). In step S40, the substrate held by the substrate holder 11 is plated (plating station 120B). In step S50, the substrate held by the substrate holder 11 is subjected to post-processing (second rinse module 36, blow module 35). In step S<b>60 , the substrate is removed from the substrate holder 11 in the substrate attaching/detaching module 29 . In step S70, the substrate holder 11 is stored in the stocker 30, and is immersed in DIW previously stored in the stocker tank 60 for storage or temporary placement. Diffusion in DIW cleans. As a result, the plating solution remaining on the substrate holder 11 after being washed by the second rinse module 36 is diluted and/or diffused and washed. At this time, as described above, the DIW is continuously filled with an inert gas, and the dissolved oxygen concentration in the DIW is maintained at a low level, thereby suppressing corrosion of the metal parts of the substrate holder 11 . A series of these processes are performed on a plurality of substrate holders in the stocker. In one example, a set of a plurality of (for example, two) substrate holders is removed from the stocker 30 , subjected to the above series of processes, and returned to the stocker 30 .
 上記実施形態によれば、めっき、及びリンスモジュールでの洗浄後の基板ホルダをストッカ30内のDIWに浸漬させることにより、リンスモジュールで落とし切れない基板ホルダに残存するめっき液を除去することができる。これにより、基板ホルダに残存するめっき液が、基板ホルダにダメージを与えることを抑制できる。また、基板ホルダに残存するめっき液に起因する基板ホルダの分解物等が、次の基板搬送時に各処理モジュールに広がり、基板表面にパーティクルを発生させることを抑制することができる。 According to the above embodiment, by immersing the substrate holder after plating and cleaning in the rinse module in DIW in the stocker 30, the plating solution remaining on the substrate holder that cannot be completely removed by the rinse module can be removed. . As a result, it is possible to prevent the plating solution remaining on the substrate holder from damaging the substrate holder. In addition, it is possible to suppress the decomposition of the substrate holder caused by the plating solution remaining in the substrate holder from spreading to each processing module during the next substrate transfer and generating particles on the substrate surface.
 また、上記実施形態によれば、ストッカ30内のDIW中の溶存酸素を不活性ガスで置換し、DIW中の溶存酸素濃度を低下させるので、DIWのpHが酸性に傾いたとしても、基板ホルダ11の金属部品の腐食を抑制することができる。 Further, according to the above embodiment, the dissolved oxygen in the DIW in the stocker 30 is replaced with an inert gas to lower the dissolved oxygen concentration in the DIW. Corrosion of 11 metal parts can be suppressed.
 (第2実施形態)
 図4は、第2実施形態に係るストッカ30を示す概略図である。なお、上記実施形態と異なる点のみを説明し、同一又は同様の構成には上記実施形態と同一の符号を付し、説明を省略する。本実施形態では、ストッカ30は、循環流路73に接続されており、循環流路73上にはポンプ71、第1モジュール72が設けられている。第1モジュール72は、ウェットストッカ内の水の溶存酸素濃度を抑制又は低下させるように動作する溶存酸素濃度調整装置として機能する。第1モジュール72は、真空ポンプ等により酸素を含む気体をDIWから除去する脱気モジュール、又は、酸素を含む気体を不活性ガスに置換する置換モジュールである。ストッカ槽60内のDIWは、ポンプ71により循環流路73に導出され、第1モジュール72において脱気又は不活性ガス置換され、ストッカ槽60に戻されるように、循環される。つまり、ストッカ槽60内のDIWは、循環されながら、脱気又は不活性ガス置換される。基板ホルダ11の搬出により下がるDIWの水位は、前記同様に水供給部61からストッカ槽60に補充される。ストッカ30及びストッカ30に関連する装置の各部(水供給部61、ポンプ71、第1モジュール72を含む)は、コントローラ175により制御される。この構成によれば、第1モジュール72により、ストッカ槽60内のDIWに脱気又は不活性ガス置換処理が施されるため、DIW中の溶存酸素濃度を下げることができ、第1実施形態と同様の作用効果を奏する。
(Second embodiment)
FIG. 4 is a schematic diagram showing the stocker 30 according to the second embodiment. Note that only points different from the above embodiment will be described, and the same or similar configurations will be given the same reference numerals as in the above embodiment, and description thereof will be omitted. In this embodiment, the stocker 30 is connected to a circulation flow path 73 on which a pump 71 and a first module 72 are provided. The first module 72 functions as a dissolved oxygen concentration adjustment device that operates to suppress or reduce the dissolved oxygen concentration of water in the wet stocker. The first module 72 is a degassing module that removes oxygen-containing gas from the DIW using a vacuum pump or the like, or a replacement module that replaces oxygen-containing gas with an inert gas. The DIW in the stocker tank 60 is led out to the circulation flow path 73 by the pump 71 , degassed or replaced with inert gas in the first module 72 , and circulated so as to be returned to the stocker tank 60 . That is, the DIW in the stocker tank 60 is degassed or replaced with an inert gas while being circulated. The water level of the DIW, which drops due to the unloading of the substrate holder 11, is replenished from the water supply unit 61 to the stocker tank 60 in the same manner as described above. The stocker 30 and each part of the apparatus associated with the stocker 30 (including the water supply section 61 , the pump 71 and the first module 72 ) are controlled by the controller 175 . According to this configuration, the DIW in the stocker tank 60 is deaerated or replaced with an inert gas by the first module 72, so that the dissolved oxygen concentration in the DIW can be lowered. Similar effects are obtained.
 (第3実施形態)
 図5は、第3実施形態に係るストッカ30を示す概略図である。本実施形態では、ストッカ30のストッカ槽60内に圧電素子81が設けられる。圧電素子81は、ウェットストッカ内の水の溶存酸素濃度を抑制又は低下させるように動作する溶存酸素濃度調整装置として機能する。圧電素子81は、配線83を介して交流電圧源82に接続されている。圧電素子81は、交流電圧源82から交流電圧を受信し、ストッカ槽60内のDIW中に超音波を発生させる又は供給する。圧電素子81は、ストッカ槽60内のDIWの酸性度にも耐えうる耐酸性を有する材質で形成されるか、耐酸性を有する材質で被覆されることが好ましい。基板ホルダ11の搬出により下がるDIWの水位は、前記同様に水供給部61からストッカ槽60に補充される。ストッカ30及びストッカ30に関連する装置の各部(水供給部61、圧電素子81、交流電圧源82を含む)は、コントローラ175により制御される。本実施形態では、DIW中に超音波による圧力差(高圧部及び低圧部)を形成して、DIW中の溶存酸素を除去して溶存酸素濃度を下げることができ、第1実施形態と同様の作用効果を奏する。
(Third embodiment)
FIG. 5 is a schematic diagram showing the stocker 30 according to the third embodiment. In this embodiment, a piezoelectric element 81 is provided inside the stocker tank 60 of the stocker 30 . The piezoelectric element 81 functions as a dissolved oxygen concentration adjusting device that operates to suppress or reduce the dissolved oxygen concentration of water in the wet stocker. The piezoelectric element 81 is connected to an AC voltage source 82 via wiring 83 . Piezoelectric element 81 receives an AC voltage from AC voltage source 82 and generates or provides ultrasonic waves into the DIW in stocker tub 60 . The piezoelectric element 81 is preferably made of an acid-resistant material that can withstand the acidity of the DIW in the stocker tank 60, or is preferably coated with an acid-resistant material. The water level of the DIW, which drops due to the unloading of the substrate holder 11, is replenished from the water supply unit 61 to the stocker tank 60 in the same manner as described above. A controller 175 controls the stocker 30 and each part of the device associated with the stocker 30 (including the water supply part 61 , the piezoelectric element 81 , and the AC voltage source 82 ). In this embodiment, a pressure difference (high-pressure part and low-pressure part) is formed in DIW by ultrasonic waves, and dissolved oxygen in DIW can be removed to lower the dissolved oxygen concentration. It works and works.
 (他の実施形態)
 (1)上記実施形態では、円形の基板の基板ホルダを例に挙げて説明したが、四角形等の多角形、その他任意の形状の基板の基板ホルダに上記実施形態を適用可能である。
(Other embodiments)
(1) In the above-described embodiment, the substrate holder for a circular substrate has been described as an example, but the above-described embodiment can be applied to a substrate holder for a substrate having a polygonal shape such as a square or any other shape.
 (2)上記実施形態では、めっき液に基板ホルダを浸漬させて基板にめっきするめっき装置(いわゆるディップ式)を例に挙げて説明したが、基板を基板ホルダで下向きに保持してめっき液に接触させて基板にめっきするめっき装置(いわゆるフェースダウン式又はカップ式)に、上記実施形態を適用してもよい。 (2) In the above embodiment, the plating apparatus (so-called dipping type) in which the substrate is plated by immersing the substrate holder in the plating solution has been described as an example. The above-described embodiments may be applied to a plating apparatus (so-called face-down type or cup type) that plate a substrate by contact.
 本発明は、以下の形態としても記載することができる。
 第1形態によれば、基板をめっきする装置において基板ホルダを保管する方法であって、基板を保持しない状態の基板ホルダを貯留した水の中に浸漬した状態で保管及び/又は一時仮置きするストッカにおいて、前記基板ホルダを予め貯留した前記水の中に浸漬して、前記基板ホルダに残存するめっき液を前記水に拡散させて前記基板ホルダを洗浄すること、 前記水に不活性ガスを充填すること及び/又は前記水を循環させながら脱気することにより、前記水の中の溶存酸素濃度を低下させること、を含む方法が提供される。
The present invention can also be described as the following forms.
According to the first embodiment, there is provided a method for storing a substrate holder in an apparatus for plating a substrate, wherein the substrate holder that does not hold the substrate is stored and/or temporarily placed in a state of being immersed in stored water. In the stocker, the substrate holder is immersed in the water that has been stored in advance, and the plating solution remaining in the substrate holder is diffused into the water to clean the substrate holder, and the water is filled with an inert gas. and/or reducing the dissolved oxygen concentration in the water by degassing while circulating the water.
 この形態によれば、基板ホルダを保管及び/又は一時仮置きするストッカを、水を貯留したウェットストッカとして構成する。このストッカでは、基板ホルダは、水に浸漬された状態でストッカに保管及び/又は一時仮置きされる。この構成によれば、予め貯留された水に基板ホルダを浸漬し、基板ホルダをストッカで保管及び/又は一時仮置きする間に、基板ホルダに残留するめっき液(めっき後にリンスモジュールで洗浄した後に落とし切れなかっためっき液残り)を水に拡散させて、洗浄することができる。 According to this aspect, the stocker for storing and/or temporarily placing the substrate holder is configured as a wet stocker that stores water. In this stocker, the substrate holders are stored and/or temporarily placed in the stocker while being immersed in water. According to this configuration, the substrate holder is immersed in pre-stored water, and while the substrate holder is stored and/or temporarily placed in the stocker, the plating solution remaining in the substrate holder (after washing with the rinse module after plating) Plating solution residue that could not be completely removed) can be diffused in water and washed.
 また、基板ホルダの洗浄により累積する酸性成分により水の酸性度が上昇したとしても、ストッカの水に対して不活性ガス置換処理又は脱気処理を施し、水中の溶存酸素濃度を低下させている(溶存酸素濃度の上昇を抑制している)ため、標準電極電位の差に起因して基板ホルダ部品の金属が水中に溶け出す反応を抑制し、基板ホルダ部品の腐食を抑制することができる。また、基板ホルダにめっき液残りが殆どない場合であっても、水の溶存酸素濃度を低い状態に維持することにより、基板ホルダ部品を良好な状態に維持することができる。 In addition, even if the acidity of the water increases due to the acidic components accumulated by cleaning the substrate holder, the water in the stocker is subjected to inert gas replacement treatment or degassing treatment to lower the dissolved oxygen concentration in the water. Therefore, it is possible to suppress the reaction in which the metal of the substrate holder component dissolves into water due to the difference in the standard electrode potential, thereby suppressing the corrosion of the substrate holder component. Further, even when almost no plating solution remains on the substrate holder, the substrate holder component can be maintained in good condition by maintaining the dissolved oxygen concentration in the water at a low level.
 また、めっき後の基板を取り外した直後の基板ホルダを、水が貯留されたストッカに保管及び/又は一時仮置きするため、基板ホルダに残留するめっき液が長時間乾燥状態に置かれることを抑制し、めっき液中の成分が固化する又は基板ホルダの部品が分解されるのを防止できる。 In addition, since the substrate holder immediately after removal of the plated substrate is stored and/or temporarily placed in a stocker containing water, the plating solution remaining in the substrate holder is prevented from being left in a dry state for a long time. As a result, it is possible to prevent the components in the plating solution from solidifying or the components of the substrate holder from being disassembled.
 また、ストッカでの基板ホルダの保管及び/又は一時仮置き中にめっき残りを洗浄できるので、スループットの低下を抑制し、フットプリントの増加を抑制することができる。ストッカでの基板ホルダの保管及び/又は一時仮置き中にめっき残りを洗浄できるので、基板ホルダ洗浄装置を別途配置する必要がないか、あるいは、基板ホルダ洗浄装置の使用頻度を抑制してスループット低下を抑制できる。 In addition, since plating residues can be cleaned while the substrate holder is being stored and/or temporarily placed in the stocker, it is possible to suppress a decrease in throughput and an increase in footprint. Since plating residue can be cleaned while the substrate holder is stored and/or temporarily placed in the stocker, there is no need to install a separate substrate holder cleaning device, or the frequency of use of the substrate holder cleaning device can be reduced, resulting in lower throughput. can be suppressed.
 第2形態によれば、第1形態の方法において、 前記ストッカにおける前記基板ホルダの洗浄は、前記基板を前記基板ホルダに保持した状態でめっきし、前記基板を保持する基板ホルダをリンスモジュールで洗浄した後に、前記基板を取り外した前記基板ホルダに対して実施される。 According to a second embodiment, in the method of the first embodiment, the substrate holder in the stocker is plated while being held by the substrate holder, and the substrate holder holding the substrate is washed with a rinse module. After that, it is performed on the substrate holder from which the substrate is removed.
 この形態によれば、めっき後にリンスモジュールで洗浄した後に落とし切れなかった基板ホルダに残留するめっき液を、基板ホルダをストッカで保管及び/又は一時仮置きする間に水に拡散させて、洗浄することができる。 According to this aspect, the plating solution remaining on the substrate holder that has not been completely removed after washing in the rinsing module after plating is diffused into water and washed while the substrate holder is stored and/or temporarily placed in the stocker. be able to.
 第3形態によれば、第1又は第2形態の方法において、 前記ストッカ内の底部に配置された気体供給装置から前記水に前記不活性ガスを供給することにより、前記水の中に下から上に向かう前記不活性ガスのバブルを発生させる。 According to a third aspect, in the method of the first or second aspect, by supplying the inert gas to the water from a gas supply device arranged at the bottom in the stocker, Generating a bubble of inert gas directed upwards.
 この形態によれば、ストッカ内部で下から上に不活性ガスのバブルを供給し、ストッカ内の水の中の溶存酸素を効率よく不活性ガスに置換することができる。 According to this form, inert gas bubbles can be supplied from the bottom to the top inside the stocker, and the dissolved oxygen in the water in the stocker can be efficiently replaced with the inert gas.
 第4形態によれば、第1又は第2形態の方法において、 前記ストッカの前記水を循環させる循環流路上に配置されたモジュールにより前記水に対して脱気又は不活性ガス置換処理を行うことにより、前記水の中の溶存酸素濃度を低下させる。 According to a fourth aspect, in the method of the first or second aspect, deaeration or inert gas replacement processing is performed on the water by a module arranged on a circulation flow path for circulating the water of the stocker. reduces the dissolved oxygen concentration in the water.
 この方法によれば、循環流路上に配置されたモジュールでストッカ内の水に脱気又は不活性ガス置換処理を施すことにより、ストッカ内の水中の溶存酸素濃度を低下させることができる。また、ストッカの外部にモジュールを設置するため、ストッカの大型化を抑制することができる。 According to this method, the dissolved oxygen concentration in the water in the stocker can be reduced by performing degassing or inert gas replacement processing on the water in the stocker in the module arranged on the circulation flow path. In addition, since the modules are installed outside the stocker, it is possible to suppress an increase in the size of the stocker.
 第5形態によれば、第1から第4形態の何れかの方法において、 前記不活性ガスは、窒素である。 According to a fifth aspect, in any one of the first to fourth aspects, the inert gas is nitrogen.
 この形態によれば、不活性ガスとして窒素を用いることにより、比較的安全かつ安価に不活性ガス置換を行うことができる。 According to this form, inert gas replacement can be performed relatively safely and inexpensively by using nitrogen as the inert gas.
 第6形態によれば、第1又は第2形態の方法において、 前記ストッカ内に配置した圧電素子により前記水の中に超音波を発生させ、前記水を脱気する。 According to the sixth mode, in the method of the first or second mode, the piezoelectric element arranged in the stocker generates ultrasonic waves in the water to deaerate the water.
 この形態によれば、圧電素子により生成される超音波によりストッカ内の水を効率よく脱気することができる。 According to this form, the water in the stocker can be efficiently degassed by the ultrasonic waves generated by the piezoelectric element.
 第7形態によれば、 基板を基板ホルダに保持してめっきする装置であって、 前記基板を保持しない前記基板ホルダを、貯留した水の中に浸漬した状態保管及び/又は一時仮置きするストッカと、 前記ストッカ内に配置され、前記水に不活性ガスを供給し、前記基板ホルダの下方から上方に向かって前記不活性ガスのバブルを発生させる気体供給装置と、 前記基板ホルダを搬送する搬送装置と、 前記ストッカに予め貯留した水に前記基板ホルダを浸漬するように前記搬送装置を制御する制御モジュールと、を備える装置が提供される。前記ストッカは、ウェットストッカである。前記気体供給装置は、ウェットストッカ内の水に不活性ガスを充填し、水の溶存酸素濃度を低下させるように動作する溶存酸素濃度調整装置である。 According to the seventh embodiment, there is provided an apparatus for plating while holding a substrate in a substrate holder, wherein the stocker stores and/or temporarily stores the substrate holder that does not hold the substrate while immersed in water. a gas supply device arranged in the stocker for supplying an inert gas to the water and generating bubbles of the inert gas upward from below the substrate holder; and a carrier for carrying the substrate holder An apparatus is provided, comprising: an apparatus; and a control module for controlling the transfer device to immerse the substrate holder in water pre-stored in the stocker. The stocker is a wet stocker. The gas supply device is a dissolved oxygen concentration adjusting device that operates to fill water in the wet stocker with an inert gas to lower the dissolved oxygen concentration of the water.
 この形態によれば、第1形態で述べた作用効果を奏すると共に、ストッカ内の水に下から上に向かう不活性ガスのバブルを発生させ、ストッカ内の水の中の溶存酸素を効率よく不活性ガスに置換することができる。 According to this embodiment, the effects described in the first embodiment are obtained, and inert gas bubbles are generated in the water in the stocker from the bottom to the top, so that the dissolved oxygen in the water in the stocker is efficiently rendered inert. It can be replaced by active gas.
 第8形態によれば、 基板を基板ホルダに保持してめっきする装置であって、 前記基板を保持しない前記基板ホルダを、貯留した水の中に浸漬した状態保管及び/又は一時仮置きするストッカと、 前記ストッカに接続され、前記水を循環させる循環流路と、 前記循環流路上に配置され、前記水に対して脱気又は不活性ガス置換処理を施す第1モジュールと、 前記基板ホルダを搬送する搬送装置と、 前記ストッカに予め貯留した水に前記基板ホルダを浸漬するように前記搬送装置を制御する制御モジュールと、を備える装置が提供される。前記ストッカは、ウェットストッカである。前記第1モジュールは、ウェットストッカ内の水に脱気又は不活性ガス置換処理を施し、水の溶存酸素濃度を低下させるように動作する溶存酸素濃度調整装置である。 According to the eighth form, an apparatus for plating while holding a substrate in a substrate holder, wherein the stocker stores and/or temporarily stores the substrate holder that does not hold the substrate while immersed in water. a circulation channel connected to the stocker to circulate the water; a first module arranged on the circulation channel to deaerate or replace the water with an inert gas; and the substrate holder. An apparatus is provided that includes a transport device that transports substrates, and a control module that controls the transport device to immerse the substrate holder in water that has been stored in advance in the stocker. The stocker is a wet stocker. The first module is a dissolved oxygen concentration adjusting device that operates to reduce the dissolved oxygen concentration of water by performing degassing or inert gas replacement treatment on water in the wet stocker.
 この方法によれば、第1形態で述べた作用効果を奏すると共に、循環流路上に配置されたモジュールでストッカ内の水に脱気又は不活性ガス置換処理を施すことにより、ストッカ内の水中の溶存酸素濃度を低下させることができる。また、ストッカの外部にモジュールを設置するため、ストッカの大型化を抑制することができる。 According to this method, the effects described in the first embodiment are obtained, and the water in the stocker is degassed or replaced with an inert gas by the module arranged on the circulation flow path. Dissolved oxygen concentration can be lowered. In addition, since the modules are installed outside the stocker, it is possible to suppress an increase in the size of the stocker.
 第9形態によれば、第7又は第8形態の装置において、 前記不活性ガスは窒素である。 According to a ninth form, in the device of the seventh or eighth form, the inert gas is nitrogen.
 この形態によれば、不活性ガスとして窒素を用いることにより、比較的安全かつ安価に不活性ガス置換を行うことができる。 According to this form, inert gas replacement can be performed relatively safely and inexpensively by using nitrogen as the inert gas.
 第10形態によれば、 基板を基板ホルダに保持してめっきする装置であって、 前記基板を保持しない前記基板ホルダを、貯留した水の中に浸漬した状態で保管及び/又は一時仮置きするストッカと、 前記ストッカ内に配置され、前記水の中に超音波を発生させる圧電素子と、 前記基板ホルダを搬送する搬送装置と、 前記ストッカに予め貯留した水に前記基板ホルダを浸漬するように前記搬送装置を制御する制御モジュールと、を備える装置が提供される。前記ストッカは、ウェットストッカである。前記圧電素子は、ウェットストッカ内の水を脱気し、水の溶存酸素濃度を低下させるように動作する溶存酸素濃度調整装置である。 According to the tenth form, an apparatus for plating while holding a substrate in a substrate holder, wherein the substrate holder that does not hold the substrate is stored and/or temporarily placed in a state of being immersed in water. a stocker, a piezoelectric element that is arranged in the stocker and generates ultrasonic waves in the water, a transport device that transports the substrate holder, and a substrate holder that is immersed in water previously stored in the stocker and a control module for controlling the transport device. The stocker is a wet stocker. The piezoelectric element is a dissolved oxygen concentration adjusting device that operates to degas the water in the wet stocker and reduce the dissolved oxygen concentration of the water.
 この形態によれば、第1形態で述べた作用効果を奏すると共に、圧電素子により生成される超音波によりストッカ内の水を効率よく脱気することができる。 According to this embodiment, the action and effect described in the first embodiment can be obtained, and the water in the stocker can be efficiently degassed by the ultrasonic waves generated by the piezoelectric element.
 以上、本発明の実施の形態について説明してきたが、上記した発明の実施の形態は、本発明の理解を容易にするためのものであり、本発明を限定するものではない。本発明は、その趣旨を逸脱することなく、変更、改良され得るとともに、本発明にはその均等物が含まれることはもちろんである。また、上述した課題の少なくとも一部を解決できる範囲、または、効果の少なくとも一部を奏する範囲において、実施形態および変形例の任意の組み合わせが可能であり、特許請求の範囲および明細書に記載された各構成要素の任意の組み合わせ、または、省略が可能である。特開2019-71382号公報(特許文献1)及び特開2014-19900号公報(特許文献2)の明細書、特許請求の範囲、図面及び要約書を含む全ての開示は、参照により全体として本願に組み込まれる。 Although the embodiments of the present invention have been described above, the above-described embodiments of the present invention are intended to facilitate understanding of the present invention, and do not limit the present invention. The present invention may be modified and improved without departing from its spirit, and the present invention includes equivalents thereof. In addition, any combination of the embodiments and modifications is possible within the scope of solving at least part of the above-described problems or achieving at least part of the effects, and is described in the scope of claims and the specification. Any combination or omission of each component is possible. The entire disclosure, including the specification, claims, drawings and abstract of Japanese Patent Application Laid-Open Nos. 2019-71382 (Patent Document 1) and 2014-19900 (Patent Document 2), is hereby incorporated by reference in its entirety. incorporated into.
 11    基板ホルダ
 12    第1保持部材
 13    第2保持部材
 25    カセットテーブル
 25a   カセット
 27    搬送ロボット
 28    走行機構
 29    基板脱着モジュール
 32    プリウェットモジュール
 33    プリソークモジュール
 34    第1リンスモジュール
 35    ブローモジュール
 36    第2リンスモジュール
 37    搬送装置
 38    オーバーフロー槽
 39    めっきモジュール
 41    コンタクト
 42    配線(ワイヤ)
 43    ネジ
 50    洗浄モジュール
 50a   洗浄ステーション
 60    ストッカ槽
 61    水供給部
 62    気体供給装置
 63    気体供給源
 64    バルブ
 65    流路
 71    ポンプ
 72    第1モジュール
 73    循環流路
 81    圧電素子
 82    交流電圧源
 83    配線
 100   めっき装置
 110   ロード/アンロードステーション
 120   処理ステーション
 120A  前処理・後処理ステーション
 120B  めっきステーション
 175   制御モジュール(コントローラ)
 175B  メモリ
 175A  CPU
REFERENCE SIGNS LIST 11 substrate holder 12 first holding member 13 second holding member 25 cassette table 25a cassette 27 transport robot 28 travel mechanism 29 substrate removal/removal module 32 pre-wet module 33 pre-soak module 34 first rinse module 35 blow module 36 second rinse module 37 Conveyor 38 Overflow tank 39 Plating module 41 Contact 42 Wiring (wire)
43 screw 50 cleaning module 50a cleaning station 60 stocker tank 61 water supply unit 62 gas supply device 63 gas supply source 64 valve 65 channel 71 pump 72 first module 73 circulation channel 81 piezoelectric element 82 AC voltage source 83 wiring 100 plating device 110 load/unload station 120 treatment station 120A pre-treatment/post-treatment station 120B plating station 175 control module (controller)
175B Memory 175A CPU

Claims (8)

  1.  基板をめっきする装置において基板ホルダを保管する方法であって、
     基板を保持しない状態の基板ホルダを貯留した水の中に浸漬した状態で保管及び/又は一時仮置きするストッカにおいて、前記基板ホルダを予め貯留した前記水の中に浸漬して、前記基板ホルダに残存するめっき液を前記水に拡散させて前記基板ホルダを洗浄すること、
     前記水に不活性ガスを充填すること及び/又は前記水を循環させながら脱気することにより、前記水の中の溶存酸素濃度を低下させること、
    を含む方法。
    A method of storing a substrate holder in an apparatus for plating a substrate, comprising:
    In a stocker for storing and/or temporarily placing a substrate holder that does not hold a substrate in a state of being immersed in reserved water, the substrate holder is immersed in the water that has been reserved in advance, and is attached to the substrate holder. washing the substrate holder by diffusing the remaining plating solution into the water;
    Reducing the dissolved oxygen concentration in the water by filling the water with an inert gas and/or degassing the water while circulating it;
    method including.
  2.  請求項1に記載の方法において、
     前記ストッカにおける前記基板ホルダの洗浄は、前記基板を前記基板ホルダに保持した状態でめっきし、前記基板を保持する基板ホルダをリンスモジュールで洗浄した後に、前記基板を取り外した前記基板ホルダに対して実施される、方法。
    The method of claim 1, wherein
    The cleaning of the substrate holder in the stocker is carried out by performing plating while the substrate is held in the substrate holder, cleaning the substrate holder holding the substrate with a rinse module, and then cleaning the substrate holder from which the substrate has been removed. A method that is carried out.
  3.  請求項1又は2に記載の方法において、
     前記ストッカ内の底部に配置された気体供給装置から前記水に前記不活性ガスを供給することにより、前記水の中に下から上に向かう前記不活性ガスのバブルを発生させる、方法。
    3. The method of claim 1 or 2,
    A method of generating bubbles of the inert gas in the water from bottom to top by supplying the inert gas to the water from a gas supply device located at the bottom in the stocker.
  4.  請求項1又は2に記載の方法において、
     前記ストッカの前記水を循環させる循環流路上に配置されたモジュールにより前記水に対して脱気又は不活性ガス置換処理を行うことにより、前記水の中の溶存酸素濃度を低下させる、方法。
    3. The method of claim 1 or 2,
    A method of reducing the concentration of dissolved oxygen in the water by subjecting the water to degassing or inert gas replacement by means of a module arranged on a circulation flow path for circulating the water of the stocker.
  5.  請求項1又は2に記載の方法において、
     前記ストッカ内に配置した圧電素子により前記水の中に超音波を発生させ、前記水を脱気する、方法。
    3. The method of claim 1 or 2,
    A method in which ultrasonic waves are generated in the water by a piezoelectric element arranged in the stocker to deaerate the water.
  6.  基板を基板ホルダに保持してめっきする装置であって、
     前記基板を保持しない前記基板ホルダを、貯留した水の中に浸漬した状態で保管及び/又は一時仮置きするストッカと、
     前記ストッカ内に配置され、前記水に不活性ガスを供給し、前記基板ホルダの下方から上方に向かって前記不活性ガスのバブルを発生させる気体供給装置と、
     前記基板ホルダを搬送する搬送装置と、
     前記ストッカに予め貯留した水に前記基板ホルダを浸漬するように前記搬送装置を制御する制御モジュールと、
    を備える装置。
    A device for plating while holding a substrate in a substrate holder,
    a stocker for storing and/or temporarily placing the substrate holder that does not hold the substrate while being immersed in water;
    a gas supply device disposed in the stocker for supplying inert gas to the water and generating bubbles of the inert gas from below to above the substrate holder;
    a transport device that transports the substrate holder;
    a control module for controlling the transfer device so as to immerse the substrate holder in the water stored in advance in the stocker;
    A device comprising
  7.  基板を基板ホルダに保持してめっきする装置であって、
     前記基板を保持しない前記基板ホルダを、貯留した水の中に浸漬した状態で保管及び/又は一時仮置きするストッカと、
     前記ストッカに接続され、前記水を循環させる循環流路と、
     前記循環流路上に配置され、前記水に対して脱気又は不活性ガス置換処理を施す第1モジュールと、
     前記基板ホルダを搬送する搬送装置と、
     前記ストッカに予め貯留した水に前記基板ホルダを浸漬するように前記搬送装置を制御する制御モジュールと、
    を備える装置。
    A device for plating while holding a substrate in a substrate holder,
    a stocker for storing and/or temporarily placing the substrate holder that does not hold the substrate while being immersed in water;
    a circulation channel connected to the stocker for circulating the water;
    a first module disposed on the circulation flow path and performing degassing or inert gas replacement processing on the water;
    a transport device that transports the substrate holder;
    a control module for controlling the transfer device so as to immerse the substrate holder in the water stored in advance in the stocker;
    A device comprising
  8.  基板を基板ホルダに保持してめっきする装置であって、
     前記基板を保持しない前記基板ホルダを、貯留した水の中に浸漬した状態で保管及び/又は一時仮置きするストッカと、
     前記ストッカ内に配置され、前記水の中に超音波を発生させる圧電素子と、
     前記基板ホルダを搬送する搬送装置と、
     前記ストッカに予め貯留した水に前記基板ホルダを浸漬するように前記搬送装置を制御する制御モジュールと、
    を備える装置。
    A device for plating while holding a substrate in a substrate holder,
    a stocker for storing and/or temporarily placing the substrate holder that does not hold the substrate while being immersed in water;
    a piezoelectric element disposed in the stocker for generating ultrasonic waves in the water;
    a transport device that transports the substrate holder;
    a control module for controlling the transfer device so as to immerse the substrate holder in the water stored in advance in the stocker;
    A device comprising
PCT/JP2021/007332 2021-02-26 2021-02-26 Substrate holder storage method and plating device WO2022180780A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2022516187A JP7097523B1 (en) 2021-02-26 2021-02-26 How to store the board holder, plating equipment
PCT/JP2021/007332 WO2022180780A1 (en) 2021-02-26 2021-02-26 Substrate holder storage method and plating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/007332 WO2022180780A1 (en) 2021-02-26 2021-02-26 Substrate holder storage method and plating device

Publications (1)

Publication Number Publication Date
WO2022180780A1 true WO2022180780A1 (en) 2022-09-01

Family

ID=82320476

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/007332 WO2022180780A1 (en) 2021-02-26 2021-02-26 Substrate holder storage method and plating device

Country Status (2)

Country Link
JP (1) JP7097523B1 (en)
WO (1) WO2022180780A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008045179A (en) * 2006-08-18 2008-02-28 Ebara Corp Plating apparatus and plating method
JP2016089253A (en) * 2014-11-10 2016-05-23 株式会社荏原製作所 Non-electrolytic plating device operation method
JP2019085613A (en) * 2017-11-07 2019-06-06 株式会社荏原製作所 Pretreatment apparatus, plating apparatus therewith, and pretreatment method

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6022836B2 (en) * 2012-07-18 2016-11-09 株式会社荏原製作所 Plating apparatus and substrate holder cleaning method
JP6836980B2 (en) * 2017-10-11 2021-03-03 株式会社荏原製作所 Substrate cleaning method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008045179A (en) * 2006-08-18 2008-02-28 Ebara Corp Plating apparatus and plating method
JP2016089253A (en) * 2014-11-10 2016-05-23 株式会社荏原製作所 Non-electrolytic plating device operation method
JP2019085613A (en) * 2017-11-07 2019-06-06 株式会社荏原製作所 Pretreatment apparatus, plating apparatus therewith, and pretreatment method

Also Published As

Publication number Publication date
JPWO2022180780A1 (en) 2022-09-01
JP7097523B1 (en) 2022-07-07

Similar Documents

Publication Publication Date Title
US20090311429A1 (en) Plating method and apparatus
JP7227875B2 (en) Substrate holder and plating equipment
JP7081063B1 (en) Plating method and plating equipment
JP4136830B2 (en) Plating equipment
JP2005097732A (en) Plating apparatus
JP2020139206A (en) Plating apparatus
JP2019085613A (en) Pretreatment apparatus, plating apparatus therewith, and pretreatment method
JP7373615B2 (en) Substrate holder, plating equipment, plating method, and storage medium
WO2022180780A1 (en) Substrate holder storage method and plating device
JP6942045B2 (en) Substrate processing equipment, plating equipment, and substrate processing method
JP2005113162A (en) Plating method and plating apparatus
KR102279435B1 (en) Substrate manufacturing method and substrate
US10508354B2 (en) Feeder capable of feeding anode and plating apparatus
TW202236489A (en) Storage method of substrate holder and coating device removing the plating solution remaining in the substrate holder after cleaning in the rinse module
JP2006225715A (en) Plating apparatus and plating method
JP2002249896A (en) Liquid treating apparatus and method
TWI790526B (en) Substrate holder, plating device, plating method, and memory medium
JP7460504B2 (en) Plating Equipment
JP7357824B1 (en) Plating equipment and plating method
WO2023053182A1 (en) Plating apparatus
JP2019196505A (en) Plating device
JP7174201B1 (en) Plating equipment
JP7194305B1 (en) Substrate holder, plating equipment, and plating method
WO2023032191A1 (en) Plating method and plating apparatus
JP7161646B1 (en) Plating equipment and plating method

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2022516187

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21927882

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21927882

Country of ref document: EP

Kind code of ref document: A1