WO2023243337A1 - Method for smelting metal with use of hydrogen obtained in molten salt - Google Patents

Method for smelting metal with use of hydrogen obtained in molten salt Download PDF

Info

Publication number
WO2023243337A1
WO2023243337A1 PCT/JP2023/019245 JP2023019245W WO2023243337A1 WO 2023243337 A1 WO2023243337 A1 WO 2023243337A1 JP 2023019245 W JP2023019245 W JP 2023019245W WO 2023243337 A1 WO2023243337 A1 WO 2023243337A1
Authority
WO
WIPO (PCT)
Prior art keywords
hydrogen
metal
molten salt
gas
metal compound
Prior art date
Application number
PCT/JP2023/019245
Other languages
French (fr)
Japanese (ja)
Inventor
律夫 吉岡
靖彦 伊藤
誠二 寺田
亨 中西
Original Assignee
株式会社トリウムテックソリューション
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社トリウムテックソリューション filed Critical 株式会社トリウムテックソリューション
Publication of WO2023243337A1 publication Critical patent/WO2023243337A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B13/00Making spongy iron or liquid steel, by direct processes
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B15/00Obtaining copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B19/00Obtaining zinc or zinc oxide
    • C22B19/20Obtaining zinc otherwise than by distilling
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B23/00Obtaining nickel or cobalt
    • C22B23/02Obtaining nickel or cobalt by dry processes
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B25/00Obtaining tin
    • C22B25/02Obtaining tin by dry processes
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B34/00Obtaining refractory metals
    • C22B34/30Obtaining chromium, molybdenum or tungsten
    • C22B34/34Obtaining molybdenum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B5/00General methods of reducing to metals
    • C22B5/02Dry methods smelting of sulfides or formation of mattes
    • C22B5/12Dry methods smelting of sulfides or formation of mattes by gases
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water

Definitions

  • the present invention relates to a metal manufacturing method, a hydrogen manufacturing method, a metal manufacturing method using hydrogen obtained by the hydrogen manufacturing method, and the like.
  • metals are smelted by reducing minerals (mainly metal oxides, metal sulfides, metal chlorides, etc.) using carbothermal reduction or metal thermal reduction methods, and in some cases, metals are smelted by reducing minerals (mainly metal oxides, metal sulfides, metal chlorides, etc.). It is further refined to further increase its purity.
  • reducing minerals mainly metal oxides, metal sulfides, metal chlorides, etc.
  • Patent Document 1 the purpose is to reduce metal oxides to obtain metals at near room temperature without emitting global warming gases such as carbon dioxide.
  • a method of reducing the activated metal oxide powder by placing it in a container, applying physical energy to the metal oxide powder to activate it, and introducing a reducing gas into the container, bringing the reducing gas into contact with the activated metal oxide powder. is proposed.
  • Patent Document 2 when obtaining molten metal by melting and reducing chromium ore, iron ore, etc. in a smelting-reduction furnace, the exhaust gas discharged from the smelting-reduction furnace is removed without using a carbon dioxide separation device.
  • Patent Document 5 discloses a method for producing hydrogen gas by high-temperature molten salt electrolysis in a humid atmosphere, in which hydrogen gas is produced by molten salt electrolysis in a humid molten salt electrolysis environment.
  • the temperature of the salt is 150-1000°C
  • the water vapor content of the molten salt protective atmosphere is 0.1-100 Vol. %
  • the molten salt electrolyte is a mixture of one or more alkali metal and/or alkaline earth metal halides.
  • the present invention provides a technology for producing a metal by reducing a metal compound, which can further reduce manufacturing costs without emitting carbon dioxide gas into the environment as much as possible, and a technology that can also be used for metal production by reducing such a metal compound.
  • the main objective of each project is to develop technologies that can produce large quantities of hydrogen.
  • the present inventors have discovered that hydrogen can be obtained by electrolyzing water in molten salt, and that metals can be produced by reducing metal compounds using the hydrogen thus obtained.
  • the present invention has been completed. Therefore, the present invention is as follows. Note that it is generally a liquid obtained by melting a salt made by neutralizing an acid and an alkali at a high temperature.
  • metal hydroxide is a type of molten salt.
  • “generation of hydrogen” means “generation of hydrogen atoms”
  • “generation of hydrogen” means “generation of hydrogen gas”
  • “generation of hydrogen” means “generation of hydrogen gas”.
  • “Manufacturing” may include the meanings of "producing” and "generating”.
  • the present invention provides a metal manufacturing method in which a metal is manufactured by reducing a metal compound with hydrogen obtained by electrolyzing water in a molten salt.
  • the present invention provides a method for producing hydrogen, in which hydrogen is obtained by electrolyzing water in a molten salt.
  • the metal compound may be in the form of particles.
  • the electrolysis may be based on electrical energy and/or thermal energy supplied from a molten salt nuclear reactor.
  • the metal compound includes one or more metal elements selected from the group consisting of iron, copper, zinc, nickel, tin, lead, cobalt, and molybdenum, and the group consisting of oxygen atoms, sulfur atoms, and chlorine atoms. It may be a metal compound containing one or more selected nonmetallic elements.
  • the molten salt is (a) at least one of an alkali metal halide or an alkaline earth metal halide, or (b) at least one of an alkali metal hydroxide or an alkaline earth metal hydroxide.
  • alkali metal chloride alkaline earth metal chloride, alkali metal hydroxide, alkaline earth metal hydroxide, alkali metal fluoride, alkaline earth metal fluoride, alkali metal nitrate, alkali metal It may contain one or more selected from sulfates, alkali metal carbonates, alkali metal acetates, and alkali metal phosphates.
  • the present invention is a technology for producing metals by reducing metal compounds, which can further reduce production costs without emitting carbon dioxide gas into the environment as much as possible, and can also be used for metal production by reducing such metal compounds. It is possible to provide a technology for producing hydrogen more easily and easily. Note that the effects of the present invention are not necessarily limited to the effects described herein, and may be any of the effects described herein.
  • FIG. 1 is a diagram showing an example of a schematic diagram of a metal manufacturing system including one metal manufacturing apparatus and one molten salt nuclear reactor that reduce a metal compound using a molten salt nuclear reactor. It is a figure showing the current steel manufacturing cost, the manufacturing cost in the present invention case 1 (in the case of only a power generation furnace) and the present invention case 2 (in the case of a combined thermoelectric furnace).
  • FIG. 2 is a diagram showing a schematic diagram of the final configuration of the RIMS base (an example of a system for the molten salt iron manufacturing method) in this embodiment. It is a figure which shows that efficiency can be improved when a molten salt nuclear reactor is used as a power generation-only reactor when used as a combined heat and power reactor.
  • FIG. 3 is a diagram showing changes over time in current values and both electrode potentials in this example (Test Example 1). Left vertical axis: potential/V vs. MoQRE, horizontal axis: time/s, right vertical axis: current/A.
  • FIG. 2 is a diagram showing a secondary electron image of iron oxide particles before an experiment in this example (Test Example 1).
  • FIG. 2 is a diagram showing a secondary electron image of iron oxide particles after an experiment in this example (Test Example 1). This is a diagram showing changes over time in the current value, both electrode potentials, and the potential difference between the electrodes in this example (Test Example 1).
  • FIG. 3 is a diagram showing X-ray diffraction after electrolysis (measurement conditions: X-ray: Cu/40 kV/40 mA, scan speed: 2°/min) in this example.
  • FIG. 2 is a diagram showing a secondary electron image of iron oxide particles after an electrolytic experiment in this example (Test Example 1).
  • FIG. 2 is a schematic diagram of an electrolytic cell for electrolytic reduction of molten salt of iron oxide by supplying water vapor in this example (Test Example 3).
  • FIG. 3 is a diagram showing a secondary electron image after electrically reducing iron oxide particles (5 g) by supplying water vapor in this example (Test Example 3). Shows X-ray diffraction (measurement conditions: X-ray: Cu/40kV/15mA, scan speed: 2°/min) after electrically reducing iron oxide particles (5 g) by supplying water vapor in Example (Test Example 3) It is a diagram.
  • the present inventors have completed the present invention by deriving new ideas and new technical ideas from their own unique viewpoints, as described below.
  • the following explanation uses iron as a metal applicable to the present invention for convenience, the present invention is not limited to iron and can be applied to a wide range of metals.
  • the present invention relates to a metal manufacturing method or smelting method, etc., in which hydrogen is obtained in a molten salt, a metal compound such as iron oxide, which is a raw material, is reduced by the hydrogen, and a metal such as iron, which is not a raw material metal compound, is obtained. It is something. Furthermore, by obtaining the electricity and high-temperature heat necessary to obtain hydrogen from a molten salt nuclear reactor, it is also possible to provide a smelting method (iron manufacturing method in the case of iron) that does not emit carbon dioxide. .
  • the metal obtained by the metal production method of the present invention is preferably a metal that has been further reduced compared to the metal compound before reduction, and for example, it may be a partially reduced metal compound. , metals that have been reduced from the metal compound before reduction to the same degree or more than conventional smelting techniques are more suitable.
  • iron oxide mostly Fe 2 O 3
  • iron making is a reduction technology that extracts oxygen from iron oxide to obtain iron (Fe).
  • Fe iron
  • the iron element in iron oxide is strongly bound to oxygen, and it requires a large amount of energy to separate the oxygen, so a method of reducing it to iron using high-temperature carbon has been adopted. This method has not changed at all in the 3,000 years of human history of iron manufacturing. In other words, the carbon used has simply changed from charcoal to coal.
  • the chemical formula for the reduction method using carbon is as follows.
  • FIG. 1 shows the relationship between reduction rate and temperature in an example of a principle experiment in which iron oxide is reduced in a hydrogen atmosphere. From this, the present inventors believe that 100% of iron oxide can be reduced to iron by reacting hydrogen with iron oxide in a fluid (gas, liquid) at a high temperature of 550° C. or higher.
  • the present inventors believe that since hydrogen is optimal for reducing iron ore, it would be most efficient if (a) hydrogen could be produced at a low cost and (b) iron oxide could be reduced with the hydrogen. Ta. The inventors also considered it important to (c) avoid using fossil fuels as much as possible.
  • One of the features of the present invention is that the present inventors used molten salt as a medium that can simultaneously achieve the above (a) and (b). Note that (c) will be described later.
  • LiCl lithium chloride
  • iron oxide particles when iron oxide particles are introduced into molten salt near the cathode, they are reduced by the above-mentioned generated hydrogen atoms, and the iron oxide particles become iron particles (Fe).
  • the iron oxide particles are also reduced by the above-mentioned generated hydrogen molecules to become iron particles.
  • LiCl molten salt an example using LiCl molten salt was first described.
  • chloride has a high melting point
  • LiCl has a melting point of 613°C. Therefore, other suitable molten salts include alkali metal hydroxides and/or alkaline earth metal hydroxides (for example, LiOH, NaOH, KOH, RbOH, CsOH, MG(OH) 2 , Ca(OH) 2 , Sr(OH) 2 , Ba(OH) 2 , etc.), and at least one of these or a combination thereof is suitable.
  • alkali metal hydroxides and/or alkaline earth metal hydroxides for example, LiOH, NaOH, KOH, RbOH, CsOH, MG(OH) 2 , Ca(OH) 2 , Sr(OH) 2 , Ba(OH) 2 , etc.
  • NaOH has a melting point of 318°C and a boiling point of 1388°C
  • KOH has a melting point of 360°C and a boiling point of 1320°C, so the melting point is lower than that of chlorides such as LiCl, and the present invention can be carried out better even with a low temperature heat source.
  • This allows for a large degree of freedom in selecting heat sources.
  • these two types of hydroxides, NaOH and KOH have a high deliquescent property and can take in a large amount of water vapor, so they have the advantage of a higher reaction rate than chlorides.
  • NaOH is a type of solvent and is not consumed. Also, in the case of lithium chloride, it is not consumed.
  • the chemical formula for water electrolysis in sodium hydroxide is as follows. Note that the NaOH molten salt is composed of Na + ions and OH - ions, Na has a strong tendency to ionize, and Na remains unchanged. That is, NaOH is a type of solvent and is not consumed.
  • iron oxide particles are introduced into a molten salt of an alkali metal hydroxide (for example, NaOH), they are reduced by hydrogen, and the chemical reaction formula in which the iron oxide becomes iron particles (Fe) is based on the above-mentioned LiCl as the molten salt.
  • an alkali metal hydroxide for example, NaOH
  • Fe iron particles
  • one of the features of the present invention relates to the above-mentioned (a), that is, an inexpensive method for producing hydrogen.
  • a water electrolysis requires a large amount of electrical energy.
  • the present invention can obtain hydrogen with less energy using both electrical energy and thermal energy.
  • solid electrolytes were considered, they currently require a temperature of about 1000° C., and various problems associated with this have prevented them from being put into practical use.
  • the high-temperature steam electrolysis of the present invention can be carried out at a practical temperature of about 300° C. to 700° C., and hydrogen can be obtained with less energy.
  • thermal power generation is a technology for obtaining electrical energy and thermal energy at the same time, but thermal power generation uses fossil fuels, so the possibility of reducing carbon dioxide emissions is out of the question.
  • the reality is that solar cells and wind power, which are considered promising sources of renewable energy, can only generate electricity.
  • the present inventors discovered that a molten salt nuclear reactor, which can supply both electrical energy and high heat, can be used as an energy source, reduce carbon dioxide emissions, and be done at a lower cost. This is another feature of the invention ((c) above).
  • thermochemical method a method in which water is electrolyzed using a combination of electrical energy (electrolytic method) and thermal energy (thermochemical method) is called a “hybrid thermochemical method.”
  • electrolysis method a method in which water is electrolyzed using a combination of electrical energy (electrolytic method) and thermal energy (thermochemical method)
  • thermochemical method a method in which thermolysis and thermochemical methods.
  • the required energy is only about 3kWh per cubic meter of hydrogen, which is cheaper than the conventional water electrolysis method (about 5kWh).
  • the present inventors have already studied and developed various techniques for injecting water into molten salt and electrolyzing this water. For example, there is a technology that utilizes this technology for ammonia synthesis, and this technology is a technology that generates hydrogen atoms by electrolysis (see Fig. 7 of Non-Patent Document 3).
  • the present inventors have discovered the present invention, in which hydrogen is produced in molten salt by electrolysis, and the produced hydrogen is utilized for reducing iron oxide. This mechanism has been confirmed in principle experiments described later in [Example]. Furthermore, the present inventors heated lithium chloride (LiCl) molten salt to about 650° C. by using the metal compound reduction device using hydrogen in this embodiment shown in FIG. If this water is electrolyzed, hydrogen will come out at the cathode and oxygen will come out at the anode.Furthermore, if iron oxide particles are present in the molten salt near the cathode, the iron oxide particles will be reduced by hydrogen, and the iron oxide will be reduced. It has been found that it becomes a reduced product, and as the reduction progresses further, it becomes iron particles (Fe).
  • LiCl lithium chloride
  • the iron manufacturing method and the iron manufacturing equipment of the present invention are extremely simple equipment for iron manufacturing, and the temperature required for iron manufacturing is lower than the approximately 2000°C that is used in current iron manufacturing. It is.
  • the molten salt used in the iron manufacturing method and the iron manufacturing equipment of the present invention has a very low vapor pressure and hardly evaporates, so it has the advantage that it can be operated at normal pressure.
  • the raw materials required for the iron manufacturing method and the iron manufacturing equipment of the present invention are only iron ore and water, and the molten salt is advantageous in that it can be used continuously because it is not consumed. Moreover, with the iron manufacturing method and the iron manufacturing apparatus of the present invention, as is clear from the chemical formula, no CO 2 is generated.
  • the iron manufacturing method and iron manufacturing apparatus of the present invention shown in FIG. 3 are designed to blow the water (preferably water vapor at a temperature exceeding 100° C.) initially introduced into the molten salt.
  • the water preferably water vapor at a temperature exceeding 100° C.
  • the iron manufacturing method and the iron manufacturing apparatus of the present invention although hydrogen is produced by electrolysis of the initially introduced water, it is returned to water by reduction of iron oxide. Therefore, in the iron manufacturing method and the iron manufacturing equipment of the present invention, the reactions of hydrogen generation and iron oxide reduction should proceed with the water initially contained in the molten salt without directly blowing water into the molten salt. In order to replenish enough water into the molten salt and make the reaction proceed better, it is more reliable to blow water into the molten salt.
  • the present inventors developed a second embodiment of the present invention that has a configuration that allows hydrogen and oxygen to be discharged separately, as shown in FIG. Discovered iron manufacturing methods and iron manufacturing equipment. According to the iron manufacturing method and iron manufacturing apparatus according to the second embodiment of the present invention, this surplus hydrogen is again blown into the molten salt system, and this hydrogen can also be used for reducing iron oxide.
  • a manufacturing method and iron manufacturing apparatus thereof according to a third embodiment of the present invention can also be considered, which has a configuration that can be introduced and used for reducing iron oxide.
  • the main characteristic elements of the present invention discovered by the present inventors are the following three items. Although embodiments and examples regarding iron smelting have been described in this specification, the following three items also apply to metals (other than iron, which are produced as metal compounds such as oxides and sulfides). For example, it can also be applied to the smelting of copper, zinc, etc.).
  • metals other than iron, which are produced as metal compounds such as oxides and sulfides.
  • it can also be applied to the smelting of copper, zinc, etc.
  • Metal oxides such as iron oxide are reduced by hydrogen obtained by electrolysis.
  • the necessary electric power and high-temperature heat are obtained using a molten salt nuclear reactor (commonly known as FUJI).
  • RIMS Reduction of Iron-oxide by Molten Salt
  • the economic efficiency of RIMS will be evaluated below.
  • the energy for producing iron (Fe) by RIMS is equivalent to the energy for producing hydrogen, which is approximately 2,500 kWh per ton of iron. Therefore, if the power generation cost by the molten salt furnace FUJI is 5 yen/kWh, it is 12,500 yen. Since RIMS is a simple system, the equipment cost (capital cost) is expected to be considerably lower than that of a molten metal furnace.
  • the heat generation efficiency of the molten salt furnace is approximately 44%, which means that half of the calorific value is wasted. Therefore, if part of the high-temperature heat used for power generation in the molten salt furnace could be used as is, efficiency would be further improved and costs would be reduced.
  • the above-described technology for combined heat and power reactors can also be applied to other nuclear reactors, such as high-temperature gas reactors that can discharge high temperature.
  • the outlet temperature of the molten salt furnace is about 700°C, and since the molten salts are liquids, heat exchange is easy.
  • the molten salt used in the molten salt furnace is a fluoride
  • the molten salt used in this RIMS is a chloride or a hydroxide, but the physical properties as a liquid are not significantly different. Both are chemically inert and stable substances.
  • Case 1 of the present invention is a trial calculation for the original molten salt furnace FUJI exclusively for power generation
  • Case 2 of the present invention is an evaluation for a combined heat and power furnace.
  • the standard power generation capacity of the molten salt furnace FUJI is 200,000 kWe (200 MWe), and 2,500 kWh is consumed to produce hydrogen for one ton of iron, resulting in a production rate of 80 tons per hour. Therefore, 700,000 tons of iron can be produced annually.
  • Japan has about 30 molten metal furnaces (blast furnaces) and produces about 90 million tons annually. That is, on average, one unit produces 3 million tons per year. From the above, as shown in Figure 7, it is desirable to have about 5 FUJI units per blast furnace (as there is a periodic inspection once every two years, the annual average operating rate is assumed to be about 90%). Based on this assumption, if Japan as a whole were to produce 700,000 tons of steel per year, 150 FUJI units would be required, and 20 times that number, 3,000 units, would be needed worldwide.
  • the molten salt electrolysis method for hydrogen production has the potential to produce other metals such as aluminum, titanium, potassium, calcium, sodium, and magnesium more advantageously than by simple electrolysis; for example, using a nuclear reactor. It may also be applicable to chloride reprocessing (dry reprocessing) of spent fuel.
  • the present invention fundamentally changes the 3,000-year history of steel manufacturing. Furthermore, it can also be applied to the field of smelting and refining, in which metal compounds such as other metal oxides are reduced to produce metals other than metal compounds from metal compounds such as oxides. Furthermore, the present invention greatly contributes to the prevention of global warming by not emitting CO 2 .
  • a molten salt nuclear reactor (hereinafter referred to as a molten salt reactor, commonly known as FUJI) is a nuclear reactor that uses liquid fuel containing uranium, thorium, etc., and has been proposed as a power reactor (for example, Non-Patent Document 4).
  • a molten salt reactor has a moderator in its core, and when liquid fuel flows through the moderator, a nuclear fission reaction occurs, generating thermal energy, which is used for power generation.
  • Molten salt reactors have been attracting attention in recent years as an inexpensive power generation system because the fuel is liquid, so there is no fuel damage, no hydrogen explosions, and other safety features.Furthermore, the structure is simple. There is. The power generation cost of 5 yen/kWh using the molten salt furnace FUJI is shown in Non-Patent Document 5.
  • thermochemical method a method in which water is electrolyzed using a combination of electrical energy (electrolytic method) and thermal energy (thermochemical method) is called a “hybrid thermochemical method.”
  • electrolytic method electrolytic method
  • thermochemical method thermal energy
  • the present inventors assume, from FIG. 2 described above, that the thermal energy and electrical energy required for water electrolysis (hydrogen production) at 650° C. are approximately half. Assuming that the electric output of the original FUJI molten salt furnace exclusively for power generation was 200,000 kWe and the thermal efficiency was 50%, we now set the power generation amount to 100,000 kWe as shown in Figure 2, and the thermal energy for the remaining 100,000 kWe (approximately 200,000 kWe). kWt), approximately 1.5 times more energy can be supplied. This calculation process is shown in FIG.
  • the present inventors were able to show that if a combined heat and power furnace is used, the hydrogen production cost will be reduced to 1/1.5, and hydrogen can be produced at a cost of about 10 yen per 1 m 3 of hydrogen.
  • the present inventors show the comparison results with the current hydrogen cost in FIG. 9, and were able to demonstrate that the present invention can achieve a significant cost reduction.
  • the present inventors also examined the feasibility of solar cells, which are well known as eco-energy, in a hydrogen society.
  • the site area of one mega solar power plant is said to be approximately 20,000 square meters , which is equivalent to one baseball field, and the total area of 2,500 mega solar power plants is equivalent to 2,500 baseball fields.
  • the present inventors also examined the feasibility of wind power generation, which is well known as eco-energy, in a hydrogen society. For this type of wind power generation, if we target mega-class (1,000 kWe) wind turbines, the average operating rate is about 20%, so 2,500 mega-scale wind turbines are required. Assuming that one mega wind turbine is built every 500 meters, 2,500 mega wind turbines would cover an area of 1,250 km.
  • Japan's hydrogen society is uncertain, it is estimated that Japan alone will require tens of billions of cubic meters of hydrogen per year, and solar power generation and wind power generation will not exceed Japan's annual hydrogen needs. , it turns out that it is very difficult to cover.
  • hydrogen and oxygen can be obtained by introducing water vapor into a high-temperature molten salt and performing electrolysis using a hybrid thermochemical method. If the obtained hydrogen is discharged, recovered, or supplied from the electrolytic section and introduced into a container different from the electrolytic section (preferably the hydrogen production section) in which iron oxide particles are arranged, iron oxide can be reduced by hydrogen.
  • the inventors have found that it is possible to obtain iron (more reduced iron or iron compounds) that is not in its initial oxide form.
  • the energy required for reducing iron oxide is equal to the energy for producing hydrogen, so the economic efficiency (manufacturing cost) of the present invention is equivalent to and superior to the above-mentioned iron manufacturing technology.
  • An example of a technique in the present invention in which generated hydrogen is introduced into a separate container and a metal compound is reduced by the hydrogen to obtain a metal is shown in FIG. 10, but the technique is not particularly limited to this configuration.
  • This embodiment describes a metal manufacturing method for manufacturing or obtaining a metal by reducing a metal compound in a molten salt with hydrogen obtained by electrolyzing water in the molten salt, and a method for manufacturing a metal used for smelting.
  • a manufacturing method or a smelting method can be provided.
  • the metal manufacturing method of this embodiment can be understood with reference to FIGS. 3, 4, 10, 6, and 7.
  • the present embodiment provides a method for producing a metal, including a hydrogen production process of producing hydrogen by electrolysis in a molten salt, and/or a metal compound reduction process of reducing a metal compound with the hydrogen. You can also do that.
  • the hydrogen production process may employ a water electrolysis process, and hydrogen may be generated or generated at the cathode by electrolysis of the water.
  • the water electrolysis step preferably includes a hydrogen production step of producing or generating hydrogen at the cathode and an oxygen production step of producing oxygen at the anode.
  • the hydrogen production step and the metal compound reduction step in this embodiment can be performed separately or at the same time, and it is also possible to perform the metal compound reduction step using the obtained hydrogen after the hydrogen production step.
  • the hydrogen generated in the hydrogen production process is recovered or stored, and the recovered or stored hydrogen is further widely used or reused in the metal compound reduction process or the metal production process (for example, in the metal compound reduction process or the metal production process). It is also possible to reuse it by returning it to the compound reduction process, etc.).
  • hydrogen obtained by electrolyzing the water is, for example, hydrogen obtained from the electrolytic section or the hydrogen production section, more preferably “hydrogen obtained by electrolyzing the water” It may also be hydrogen discharged, recovered, or transferred from a hydrogen production section that is configured (for example, see FIGS. 4 and 10).
  • oxygen removal and/or hydrogen adsorption materials or equipment may be used to reduce the oxygen concentration or substantially eliminate oxygen. Hydrogen may be obtained and hydrogen with reduced oxygen concentration may be used.
  • the hydrogen production process and the metal compound reduction process in this embodiment are performed in the same reaction vessel from the viewpoint of reducing the metal compound with the obtained hydrogen, reducing carbon dioxide emissions, manufacturing cost reduction, and manufacturing efficiency.
  • a diaphragm electrolytic method may be adopted if desired from the viewpoint of the above, and if necessary.
  • the hydrogen production process and the metal compound reduction process can be performed in separate reaction vessels or reaction devices, and in such a case, the hydrogen generated in the hydrogen production process is transferred to a gas recovery mechanism or a gas supply mechanism. It is preferable that the metal compound be supplied to a metal compound reduction step carried out in a separate reaction vessel or the like using a flow path such as piping or the like.
  • the hydrogen production process in this embodiment it is preferable to electrolyze water in a molten salt to obtain hydrogen.
  • the hydrogen production process used in this embodiment is not particularly limited, but it is possible to adopt an electrolysis process configured to use molten salt as an electrolytic bath, and to produce hydrogen using the electrolysis process. can be manufactured.
  • the electrolysis mechanism or hydrogen production mechanism preferably includes a water supply mechanism to the molten salt, cathode and anode electrodes, and a reaction vessel (electrolytic section) containing the molten salt as an electrolytic bath. Further, the vertical cross-sectional view of the reaction vessel may be U-shaped as shown in FIG. 3, but it is convenient to have an H-shape as shown in FIGS. 4 and 10.
  • hydrogen can be easily separated from the oxygen production region, hydrogen can be brought into contact with metal compounds in the region where the amount of oxygen atoms is reduced and the amount of hydrogen is increased, and/or each gas can be mixed. This is suitable because it is easy to generate and recover without any waste.
  • the electrolysis unit (or tank) that performs electrolysis preferably includes a molten salt and cathode and anode electrodes (see, for example, FIGS. 3, 4, and 10), and further includes: It is more preferable to have a hydrogen production section (also referred to as a cathode chamber) equipped with a cathode and an oxygen production section (also referred to as an anode chamber) equipped with an anode. It is further advantageous to provide a connection configured to allow movement of the electrolytic bath (see, for example, FIGS. 4, 10).
  • the hydrogen production section includes a liquid region in which a molten salt and a cathode exist, and a gas region in which hydrogen generated from the liquid region exists.
  • the oxygen production section includes a liquid region in which molten salt and an anode exist, and a gas region in which oxygen generated from the liquid region exists.
  • the structure may be such that there is no gas region in the hydrogen production section and/or the oxygen production section.
  • the connection section is connected so that the gas existing in the gas regions of the hydrogen production section and the oxygen production section cannot move between each other.
  • the structure is such that only the molten salt exists and can move between the two parts, and even more preferably, the liquid level of the molten salt that exists in both the hydrogen production section and the oxygen production section is It is also preferable to arrange the connection section below the surface.
  • the electrolysis mechanism is configured so that hydrogen and oxygen can be obtained from water contained in the molten salt by passing a direct current through the cathode and anode.
  • the electrolytic current value in this embodiment is not particularly limited, but for example, when a metal chloride (also referred to as metal chloride) (such as LiCl) is used as a molten salt, the cathode side reaches the metal (Li) deposition potential, and the anode side
  • the current value is set to be as large as possible within the range up to the potential at which chloride gas (for example, Cl, etc.) is generated, and electrolysis can be carried out while checking changes in the cathode and anode potentials over time.
  • the current density is preferably 1 A/m 2 or more, and 100 A/m 2 or less, for example.
  • the cathode and anode which are electrodes
  • the cathode and anode are not particularly limited, and any known cathode or anode used for electrolysis in molten salt can be employed. It is preferable that the electrode is arranged so that there is a gap between the inner wall and the electrode so that the electrode does not come into direct contact with the inner wall of the reaction vessel.
  • the material of the base of the electrode is not limited as long as it has conductivity sufficient to allow current to flow at the temperature at which electrolysis occurs in molten salt, and the size of the base is also not limited. It can be selected as appropriate depending on the purpose of use of the bath and substrate.
  • Examples of the material of the electrode include nickel, iron, molybdenum, tungsten, graphite, flash carbon, ferrite, and electron conductive ceramic, and one or more selected from these can be used.
  • nickel or the like can be used as the cathode, and graphite or the like can be used as the anode.
  • a temperature control mechanism for example, a heating furnace, etc. that can control the reaction temperature in the reaction vessel, and it is more preferable that the reaction vessel is a closed type reaction vessel. be.
  • Normal pressure in this specification refers to the pressure when no special operation to change the atmospheric pressure, such as pressurization or depressurization, is applied, and is usually about 1 ⁇ 0.05 atm (101,325 pa).
  • the temperature during electrolysis (preferably temperature under normal pressure) is not particularly limited, but its preferred lower limit is preferably 20°C or higher, more preferably 30°C or higher; The upper limit is preferably 1000°C or less, more preferably 900°C or less, and the preferred numerical range is preferably 20 to 1000°C.
  • the temperature for the reduction reaction of the metal compound described below can be appropriately adopted.
  • the water supply mechanism is preferably provided with a water supply mechanism configured to be able to supply a fluid (preferably gas) containing water to the electrolytic bath.
  • the water supply mechanism may be configured to supply a gas containing water to the gas region in the reaction vessel, but it is not possible to supply a gas containing water to the liquid surface or in the liquid of the molten salt that is the electrolytic bath. Such a configuration is suitable.
  • the water supply mechanism can, for example, supply water-containing gas to the gas region to create a humid atmosphere, or blow water-containing gas into the liquid region to supply water into molten salt, which is an electrolytic bath.
  • the water used for the "water-containing fluid" is preferably water vapor, and the water vapor may be heated water vapor or water vapor produced by a spraying device, etc., but in this embodiment, heated
  • the amount of water reacting with the molten salt can be adjusted by adjusting the heating.
  • the gas used for the "fluid containing water” is not particularly limited, but an inert gas is suitable, and examples of the inert gas include helium gas, neon gas, argon gas, krypton gas, xenon gas, radon gas, etc.
  • examples of the inert gas include helium gas, neon gas, argon gas, krypton gas, xenon gas, radon gas, etc.
  • examples include rare gases and nitrogen gas, and one or more selected from these can be used. Among these, rare gases are preferred, and helium gas and/or argon gas are more preferred.
  • the amount of water added to the molten salt is not particularly limited, but can be calculated, for example, from the following reaction formula, and the minimum necessary amount of water used for reduction of the metal compound can be determined.
  • the water content can be determined from the reaction formula of the metal.
  • the amount of water to be added can be set in consideration of the fact that 3/2 H 2 O is required for Fe to be reduced. 3/2H 2 O ⁇ 3/2H 2 +3/4O 2 1/2Fe 2 O 3 + 3/2H 2 ⁇ Fe+3/2H 2 O
  • the temperature of the "water-containing fluid” may be about the melting point temperature of the molten salt, but is not particularly limited, and the lower limit thereof is preferably 20°C or higher, or more. Preferably it is 50°C or higher, more preferably 95 to 100°C or higher, and its preferred upper limit is preferably 150°C or lower, more preferably 120°C or lower, and in the case of NaOH, the preferred numerical range The temperature is 100 to 150°C.
  • this embodiment further includes a gas recovery mechanism, whereby hydrogen and oxygen generated in the electrolytic section can be recovered in a mixed state or in separate states.
  • a gas recovery mechanism whereby hydrogen and oxygen generated in the electrolytic section can be recovered in a mixed state or in separate states.
  • an electrolytic section electrolytic cell
  • an oxygen production section anode chamber
  • an oxygen production section anode chamber
  • oxygen and hydrogen are mixed in this gas region. It is preferable to discharge or recover these gases together using a gas recovery mechanism.
  • the hydrogen production section is provided with a hydrogen recovery mechanism that is provided with piping in the gas region
  • the oxygen production section is provided with an oxygen recovery mechanism that is provided with piping in the gas region. Since the gases generated separately can be recovered, each hydrogen and oxygen can be recovered with higher purity and reused.
  • a configuration may be adopted in which the recovered gas or the gas generated in another gas generator is returned to or supplied to the molten salt, for example, the recovered gas or the gas generated in another gas generator can be returned to or supplied to the molten salt. It is possible to adopt a configuration in which a hydrogen supply line is provided to blow the supplied hydrogen into the molten salt.
  • Electrolytic Bath it is preferable to use the molten salt as an electrolytic solution in the electrolytic section (electrolytic reaction vessel), and the molten salt can be used as the electrolytic bath.
  • the molten salts include, but are not particularly limited to, chemical forms of halides (chlorides, bromides, fluorides, etc.), hydroxides, carbonates, sulfates, phosphates, acetates, nitrates, and silicate salts. It is preferable to use one or more selected from acid salts.
  • the metal used to form the salt for example, one or two selected from alkali metals (e.g., sodium, potassium, lithium, etc.), alkaline earth metals (e.g., magnesium, calcium, etc.), aluminum, tin, etc.
  • alkali metals e.g., sodium, potassium, lithium, etc.
  • alkaline earth metals e.g., magnesium, calcium, etc.
  • aluminum tin, etc.
  • examples of the halogen include fluorine, chlorine, bromine, and iodine, and one or more selected from these can be used.
  • metal halides e.g., metal chlorides, metal fluorides
  • metal hydroxides e.g., metal nitrates, metal sulfates, metal carbonates, metal acetates, metal phosphates, metal silicates
  • a molten salt containing one or more selected from the following is preferable from the viewpoints of high water absorption, improvement in power efficiency for hydrogen production, improvement in reaction efficiency for metal compound reduction, etc., and furthermore, a molten salt containing one or more selected from metal halides and A molten salt containing/or a metal hydroxide is preferable, and it is more preferable to use a metal halide.
  • alkali metal hydroxides and/or alkaline earth metal hydroxides have high water absorption properties, improved power efficiency for hydrogen production, improved reaction efficiency for metal compound reduction, etc. suitable.
  • One or more selected from alkali metal hydroxides and alkaline earth metal hydroxides can be used.
  • alkali metal hydroxides are more suitable from the viewpoints of melting point, cost, etc.
  • Examples of the alkali metal hydroxide include, but are not particularly limited to, alkali metal hydroxides such as LiOH, NaOH, KOH, RbOH, and CsOH. Among these, NaOH and/or KOH are more suitable from the viewpoint of melting point, cost, etc.
  • alkaline earth metal hydroxide is not particularly limited, and examples thereof include Mg(OH) 2 , Ca(OH) 2 , Sr(OH) 2 , and Ba(OH) 2 .
  • Mg(OH) 2 Mg(OH) 2
  • Ca(OH) 2 Ca(OH) 2
  • Sr(OH) 2 Sr(OH) 2
  • Ba(OH) 2 Ba(OH) 2 .
  • One or more selected from these hydroxides can be used.
  • alkali metal halides and/or alkaline earth metal halides are preferred from the viewpoints of high water absorption, improvement in power efficiency for hydrogen production, improvement in reaction efficiency for reduction of metal compounds, etc. .
  • One or more selected from alkali metal halides and alkaline earth metal halides can be used.
  • the alkali metal halides include, but are not particularly limited to, alkali metal fluorides such as LiF, NaF, KF, RbF, and CsF; alkali metal chlorides such as LiCl, NaCl, KCl, RbCl, and CsCl; LiBr, NaBr, Examples include alkali metal bromides such as KBr, RbBr, and CsBr; alkali metal iodides such as LiI, NaI, KI, RbI, and CsI. One or more selected from these halides can be used.
  • the alkaline earth metal halides are not particularly limited, but include, for example, alkaline earth metal fluorides such as MgF 2 , CaF 2 , SrF 2 , BaF 2 ; alkaline earths such as MgCl 2 , CaCl 2 , SrCl 2 , BaCl 2 , etc.
  • Metal chlorides alkaline earth metal bromides such as MgBr 2 , CaBr 2 , SrBr 2 and BaBr 2 ; alkaline earth iodides such as MgI 2 , CaI 2 , SrI 2 and BaI 2 ; and the like.
  • alkaline earth metal fluorides such as MgF 2 , CaF 2 , SrF 2 , BaF 2
  • alkaline earths such as MgCl 2 , CaCl 2 , SrCl 2 , BaCl 2 , etc.
  • Metal chlorides alkaline earth metal bromides such as MgBr 2 ,
  • alkali metal halogen chlorides are more preferred, and alkali metal chlorides (more preferably lithium chloride) are even more preferred.
  • those having a melting point of 300° C. or lower are easy to handle.
  • a molten salt with a high melting point is preferable. That is, among the above-mentioned molten salts, those that can dissolve hydrogen and can be heated to about 1000° C. are preferable.
  • the above molten salt compounds can be used alone or in combination of two or more.
  • the combination of these compounds, the number of compounds to be combined, the mixing ratio, etc. are not limited, and can be appropriately selected depending on the type of metal used for electrolysis, etc.
  • impurities, solubilizing agents, electrolytic auxiliary agents, and the like may be appropriately blended or used as other components mentioned above.
  • the other components include oxides, hydroxides, and carbonates of alkali metals or alkaline earth metals such as Li 2 O, LiOH, and Li 2 CO 3 .
  • One type or two or more types selected from these can be used.
  • the temperature of the molten salt (preferably temperature under normal pressure) is not particularly limited, but from the viewpoint of hydrogen production efficiency and energy efficiency, a suitable lower limit is preferably 500°C or higher, more preferably 600°C or higher. °C or higher, more preferably 650°C or higher, and a suitable upper limit is not particularly limited, but from the viewpoint of reducing energy loss and reducing deterioration of the base material, preferably 1000°C or lower, more preferably 900°C or lower, More preferably, it is 800°C or less, and the preferred numerical range is more preferably 600°C to 900°C.
  • Metal compound reduction step In the metal compound reduction step in this embodiment, it is preferable to reduce the metal compound with hydrogen (more preferably hydrogen produced by electrolyzing water in a molten salt). In this way, a metal obtained by reducing a metal compound can be obtained.
  • hydrogen more preferably hydrogen produced by electrolyzing water in a molten salt.
  • One of the advantages of water electrolysis in molten salt is that hydrogen is produced or generated in molten salt, and by bringing the hydrogen present in the molten salt into contact with the metal compound, a reduction reaction of the metal compound can be achieved. can be further promoted.
  • the metal compound to be reduced may be present in the molten salt in the electrolysis section or the hydrogen production section, and/or in the fluid (e.g., gas such as hydrogen gas, liquid such as molten salt) in the metal compound reduction section. It is preferable to make it exist.
  • the fluid e.g., gas such as hydrogen gas, liquid such as molten salt
  • the fluid is a liquid
  • the structure of the electrolysis mechanism described above can be adopted as appropriate.
  • hydrogen in the molten salt comes into contact with the metal compound near the cathode in the molten salt, Metal compounds can be strongly reduced with good power efficiency and reaction efficiency.
  • the fluid is a gas
  • the metal compound can be reduced with hydrogen gas under heating.
  • the reduction temperature of the metal compound (preferably the temperature under normal pressure) is not particularly limited, and the above-mentioned temperature of the molten salt or known techniques can be adopted as appropriate, and from the viewpoint of reaction efficiency and energy efficiency, it is suitable
  • the lower limit value is preferably 500°C or higher, more preferably 600°C or higher, even more preferably 650°C or higher, and even more preferably 700°C or higher, and the preferred upper limit value is not particularly limited, but energy loss reduction
  • the temperature is preferably 1000°C or less, more preferably 900°C or less, even more preferably 800°C or less, and the preferred numerical range is more preferably 600°C to 900°C. .
  • heating energy in the metal compound reduction process it is more preferable to use thermal energy than to use electrical energy from the viewpoint of cost reduction, and it is preferable to use thermal energy obtained by heat exchange from the heat source of the molten salt furnace. is more suitable.
  • the hydrogen generated by the hydrogen production process or method described above is introduced into a container (part) different from the container (part) in which the hydrogen was generated, and the metal compound is reduced with the hydrogen. It is also possible that the separate container (part) is a metal compound reduction part. Thereby, it is possible to obtain a metal obtained by reducing a metal compound, and it is also possible to effectively utilize hydrogen generated in the atmosphere.
  • Examples of the metal compound used in this embodiment include, but are not limited to, ores, metal oxides, metal sulfides, and metal chlorides, and one or more selected from these may be used. can.
  • the "metal" of the metal compound used in this embodiment is not particularly limited, but it is preferable to include a metal element, and it may also include a metal element and a non-metal element.
  • the metal element is not particularly limited, but for example, one selected from the group consisting of iron, copper, zinc, nickel, tin, lead, cobalt, molybdenum, aluminum, titanium, potassium, calcium, sodium, and magnesium. Or two or more types can be mentioned.
  • the nonmetallic element is not particularly limited, but may include one or more selected from the group consisting of oxygen atoms, sulfur atoms, chlorine atoms, and the like.
  • the metal compound is, for example, one or more metals selected from the group consisting of iron, copper, zinc, nickel, tin, lead, cobalt, molybdenum, aluminum, titanium, potassium, calcium, sodium, and magnesium.
  • it is a metal compound containing an element and one or more nonmetallic elements selected from the group consisting of oxygen atoms, sulfur atoms, and chlorine atoms.
  • the metal compound is, for example, one or more selected from the group consisting of iron, copper, zinc, nickel, tin, lead, cobalt, molybdenum, aluminum, titanium, potassium, calcium, sodium, and magnesium. Suitable are metal oxides, metal sulfides, or metal chlorides containing metals.
  • a more preferable metal element is one selected from the group consisting of iron, copper, zinc, nickel, tin, lead, cobalt, molybdenum, etc., and more preferably one selected from the group consisting of iron, copper, nickel, cobalt, molybdenum, etc.
  • a species or two or more species may be mentioned.
  • the metal compound is in the form of particles.
  • the size of the particles is not particularly limited to the particle diameter at 50% of the integrated value in the particle size distribution determined by laser diffraction scattering method (average particle diameter D50), but the upper limit of the preferred "average particle diameter D50"
  • the value is preferably 10 mm or less, more preferably 5 mm or less, still more preferably 3 mm or less, more preferably 1 mm or less, and still more preferably 100 ⁇ m, 50 ⁇ m or less, or 10 ⁇ m or less from the viewpoint of reaction efficiency, and its suitable
  • the lower limit of the "average particle diameter D50" is preferably 0.01 ⁇ m or more, more preferably 0.1 ⁇ m or more, even more preferably 0.5 ⁇ m or more, and the preferred numerical range is, for example, 0.01 ⁇ m to It may be 5 mm.
  • D10 is the particle diameter at which the volume-based cumulative value in the particle size distribution of metal compound particles is 10%
  • D50 is the particle diameter at which 50%, as measured by laser diffraction scattering method
  • the diameter is set to D90.
  • the average particle size can be determined, for example, from a volumetric integrated value measured by a laser diffraction scattering particle size distribution analyzer.
  • the size of the metal compound is preferably a particle diameter (average particle diameter D50) at 50% of the integrated value in the particle size distribution determined by a laser diffraction scattering method.
  • a laser diffraction scattering particle size distribution analyzer (Microtrac HRA, manufactured by Nikkiso Co., Ltd.) can be used.
  • a support part for holding or supporting the metal compound and its reduced product used in this embodiment, and the support part is resistant to heat, combustion, etc.
  • a material having impact resistance is suitable.
  • the shape of the support part is not particularly limited, and examples thereof include a container (for example, cup shape, dish shape, box shape, etc.), and one or more of these can be used (for example, as shown in the figure). cup-shaped in Figure 3, plate-shaped in Figure 4, etc.). It is preferable that a cathode is further connected to the support part of the container, etc., and one or more support parts (for example, rod-shaped) may be further provided to move, hold, support, etc. the container.
  • a support rod When reducing a metal compound in a molten salt, a support rod may be used to easily take it in and out of the molten salt, and/or a container may be provided with a mesh or porous structure to facilitate the removal of the liquid.
  • a part of the support part that supports the metal compound used in the molten salt may be connected to the cathode.
  • a plurality of metal compounds arranged in the support part are arranged near the cathode, and the cathode and its Metal compounds can be efficiently reduced using hydrogen obtained from nearby water by electrolysis.
  • the materials of the support part, reaction vessel, etc. for supporting the metal compound are not particularly limited.
  • the support part When the support part is used on the cathode side or near the cathode, it preferably has electrical insulation (also referred to as non-conductivity) and thermal shock resistance.
  • electrical insulation also referred to as non-conductivity
  • thermal shock resistance examples of the electrically insulating material include ceramics such as alumina, and one or more selected from these can be used.
  • This embodiment can provide a hydrogen production method in which hydrogen is produced by electrolyzing water in a molten salt.
  • the produced hydrogen is preferably used to reduce metal compounds in the molten salt, but may also be recovered and used as hydrogen fuel.
  • the hydrogen production process and the metal compound reduction process can be performed at the same time or in the same manner. It may be configured such that the reaction is carried out within a reaction vessel (for example, see FIGS. 3 and 4).
  • the hydrogen recovery mechanism may further include a flow path (for example, piping) and a valve (on-off valve, flow rate control valve) for releasing hydrogen gas outside the reaction vessel, which is outside the hydrogen production system.
  • a flow path for example, piping
  • a valve on-off valve, flow rate control valve
  • One end of the channel for discharging hydrogen gas out of the system projects inside the reaction vessel and is provided in the upper part of the reaction vessel (preferably in the gas region and upper part).
  • the flow path is further provided with a fluid pump and/or a flow rate control valve for transferring (collecting, suctioning, discharging, etc.) the hydrogen gas in the flow path.
  • a hydrogen adsorption mechanism including a hydrogen adsorbent capable of adsorbing and releasing hydrogen gas in the flow path and/or a hydrogen supply mechanism (preferably It is preferable to include a hydrogen circulation mechanism, a hydrogen reuse mechanism, etc.).
  • a known hydrogen adsorbent can be used as the hydrogen adsorbent, and examples thereof include metal alloys, ceramics, porous materials (zeolite, etc.), but are not limited to these.
  • Metal manufacturing device, hydrogen manufacturing device, electrolyzer, etc., and their systems according to the present embodiment In the description of the metal manufacturing device, hydrogen manufacturing device, electrolyzer, etc., and these systems according to the present embodiment, the above-mentioned Electrolysis mechanism, hydrogen production method or process, metal compound reduction method or process, molten salt, metal production method, control, etc. that overlap with "1.” to "3.” and “5.” described later, content, etc. Although descriptions of each configuration and each method will be omitted as appropriate, the descriptions of "1.” to “5.” etc. apply to this embodiment and can be adopted as appropriate.
  • This embodiment describes a metal manufacturing device configured to reduce a metal compound, and one or more nuclear reactors configured to supply electrical energy and/or thermal energy to the metal manufacturing device, etc. (preferably a molten salt nuclear reactor), it is possible to provide a system for metal production, hydrogen production, etc. (see, for example, FIGS. 5 and 7).
  • This embodiment is a metal manufacturing apparatus configured to produce hydrogen by electrolysis of water and/or configured to reduce a hydrogen metal compound using hydrogen obtained by electrolysis of water. and one or more nuclear reactors (preferably molten salt reactors) configured to supply electrical energy and/or thermal energy to the metal manufacturing equipment, etc. can be provided.
  • the metal production equipment, etc. may perform the hydrogen production process and/or metal compound reduction process as explained in "2-1.” and "2-2.” above in the same or separate reaction vessels. good.
  • the hydrogen production process and the metal compound reduction process may be carried out in the same reaction vessel or department, for example, in an apparatus configured to also carry out the metal compound reduction process within the hydrogen production unit, or in a metal compound reduction unit.
  • the device may also be configured so that it can also perform the hydrogen production process.
  • This embodiment includes an electrolysis unit including a cathode and an anode capable of electrolyzing water in molten salt; a sealable reaction vessel containing a molten salt as an electrolytic bath; a water supply configured to supply water to the molten salt; An electrolyzer, a metal manufacturing device, a manufacturing device for reducing a metal compound to obtain a metal, etc. can be provided (see, for example, FIGS. 3, 4, 10, 5, and 7).
  • the manufacturing apparatus and the like further include a temperature control section configured to control the reaction temperature.
  • the reaction vessel is preferably equipped with a cathode and an anode, and includes a hydrogen production region where hydrogen is produced or generated near the cathode by electrolysis of water in molten salt, and an oxygen production region where oxygen is produced or generated near the anode. These regions may be of a non-separable type (for example, a U-shaped reaction vessel in the vertical section in FIG. 3) or a separated type (for example, a A letter-shaped reaction vessel) may also be used. More preferably, the reaction vessel further includes a hydrogen production section (a section is also referred to as a region) that includes a cathode, an oxygen production section that includes an anode, and a connection section that connects the liquid regions of these sections. Preferably, each of the hydrogen production section and the oxygen production section is comprised of a gas region and a liquid region, respectively.
  • the metal compound reduction section includes a temperature control section outside the metal compound reduction section that can control the temperature of the reduction reaction.
  • the hydrogen generated from the hydrogen production section be introduced into a container or section separate from the hydrogen production section or the electrolysis section.
  • This separate container or section can also be used as a metal compound reduction section in which particles of a plurality of metal compounds can be placed.
  • another container or section may be used as a hydrogen recovery section or a hydrogen storage section, and the recovered or stored hydrogen is transferred to a metal compound reduction section, a hydrogen production section, and a hydrogen supply section equipped with piping or a flow path. or an electrolysis section. More specifically, it is more preferable that the tip of the piping of the hydrogen supply section is disposed in a liquid region so that hydrogen can be blown into the molten salt of the hydrogen production section.
  • Each of these parts may be appropriately equipped with piping or flow paths, fluid transfer or circulation pumps, fluid flow rate control valves, etc. so that hydrogen can be transferred, circulated, or refluxed.
  • This embodiment includes various devices such as the metal manufacturing device, the electrolysis device, the hydrogen production device, and the hydrogen production device, and a melting device configured to supply electrical energy and/or thermal energy to the device. It is preferable to include a salt nuclear reactor (see FIGS. 5 and 7).
  • This embodiment is an electrolysis reaction device or a metal manufacturing device, which further includes a molten salt nuclear reactor 100 configured to supply electrical energy and/or thermal energy to various devices 1 such as the metal manufacturing device.
  • a manufacturing apparatus 1000 for obtaining a metal by reducing a compound, an electrolysis reaction system 10000, or a manufacturing system 1000 for obtaining a metal by reducing a metal compound is more suitable (for example, see FIG. 5).
  • the heat exchange mechanism provided in the manufacturing apparatus 1000, the manufacturing system 1000, etc. is preferably equipped with a circulation flow path, a heat exchanger, etc., as appropriate.
  • the electrical energy supply mechanism 130 includes a primary heat exchange mechanism 106 provided in the molten salt nuclear reactor 101 and a generator 131 such as a steam turbine that uses a heat source from the primary heat exchange mechanism 106. It is more preferable to include a power generation device 132 that generates electricity and obtains electrical energy, and a power transmission mechanism 133 (including electric wires, a transformer device, etc.) that transmits electrical energy from the power generation device 132 to a metal manufacturing device or the like. Thereby, electrical energy can be supplied to metal manufacturing equipment, hydrogen manufacturing equipment, and the like.
  • the thermal energy supply mechanism 120 includes a primary heat exchange mechanism 106 provided in the molten salt nuclear reactor, and a secondary heat exchanger that converts the heat source from the primary heat exchange mechanism 106 into a heat source for the metal manufacturing equipment, etc. It is more preferable to include a secondary heat exchange mechanism 120 that transfers a heat source (such as water vapor) via 121 .
  • a tertiary heat exchange mechanism including a tertiary heat exchanger or the like may be further provided in the metal manufacturing apparatus 1 or the like.
  • water can be converted into steam (e.g.
  • the heat source received from the tertiary heat exchanger can be used in the metal manufacturing apparatus 1.
  • thermal energy can be supplied to metal manufacturing equipment, hydrogen manufacturing equipment, and the like.
  • This embodiment is a metal manufacturing apparatus that includes an electrolysis section that includes an anode and a cathode that are configured to electrolyze water in molten salt, and a metal compound reduction section that is configured to reduce a metal compound. It is preferable to provide Another aspect of this embodiment can also provide a hydrogen production device that includes an electrolysis section that includes an anode and a cathode that are configured to electrolyze water in a molten salt. Furthermore, this embodiment preferably includes a temperature control section that controls the molten salt temperature of the electrolytic section and/or the reduction temperature of the metal compound reduction section.
  • the electrolytic section and/or the metal compound reducing section include a container for electrolysis and/or a container for reducing the metal compound that can be sealed.
  • this embodiment preferably further includes a water supply section configured to supply a fluid containing water into the molten salt, and the water supply section includes piping or a fluid flow path, More preferably, the tip of the piping or fluid flow path is located within the molten salt.
  • the water supply section of this embodiment may be configured to be able to mix heated steam using a heat source supplied from a molten salt nuclear reactor or the like with gas from the gas supply section.
  • this embodiment is configured to connect a hydrogen production section including a cathode and an oxygen production section including an anode, so that the molten salt that is an electrolytic bath can move between the two sections. It is preferable to include a connecting portion.
  • the hydrogen production section and the oxygen production section may be configured such that they each consist of only a liquid region in which molten salt exists and have substantially no gas region, or they may have a structure in which they each include a gas region in which generated gas exists. , and a liquid region in which molten salt is present.
  • This embodiment is configured such that a metal compound (for example, a metal oxide, etc.) placed near the cathode can be reduced in the hydrogen production section using hydrogen obtained at the cathode in a molten salt.
  • the hydrogen generated in the hydrogen production section is introduced into a metal compound reduction section separate from the electrolysis section, and it is more preferable to reduce the metal compound using the introduced hydrogen. This is preferred, and it is even more preferred to reduce the metal compound at a temperature of 650° C. or higher in a hydrogen atmosphere.
  • a hydrogen recovery device configured to recover hydrogen generated in the electrolytic section as a gas, and configured to supply the recovered hydrogen into the molten salt. It is preferable to further include a hydrogen supply device.
  • first to third embodiments will be described as examples of the metal manufacturing apparatus using hydrogen obtained by electrolysis of water in molten salt in this embodiment. It is not limited to this.
  • the first embodiment, the second embodiment, and the third embodiment are constructed by appropriately combining or adding the configurations and parts adopted in the first to third embodiments. Good too.
  • the metal manufacturing device in this embodiment can also be used as a hydrogen manufacturing device that manufactures hydrogen by electrolysis of water in molten salt, and even if it is equipped with metal compound particles and the metal compound reduction process is performed at the same time.
  • the hydrogen production process may be mainly performed without providing metal compound particles.
  • the metal production apparatus in this embodiment has a configuration in which a hydrogen production apparatus for producing hydrogen by electrolysis of water in molten salt is incorporated, and a metal compound reduction process is performed in a separate apparatus from the hydrogen production apparatus. It may be.
  • the first embodiment includes an electrolysis region that includes a cathode 2 and an anode 3 and uses a molten salt as an electrolytic bath 4, and a metal compound reduction region that reduces a metal compound 5 disposed near the cathode in the molten salt.
  • a metal manufacturing apparatus 1a can be provided, which includes a reaction vessel 6 including a reaction vessel 6, and a heating furnace 7 that controls the temperature of the reaction vessel (see FIG. 3).
  • the heating furnace 7 is preferably equipped with a heating mechanism such as a heating coil, a cooling mechanism such as a cooling fan, a control section for controlling the reaction temperature, and the like.
  • the reaction vessel is U-shaped in vertical section, and the gas region of the hydrogen production region including the cathode and the gas region of the oxygen production region including the anode are in a non-separated state.
  • the reaction in the first embodiment is preferably carried out in a closed system.
  • a member in contact with the upper part of the reaction vessel 6 may be used as a closed system, or a closed intermediate vessel 9 may be used.
  • a reaction container 6 may also be provided.
  • the first embodiment preferably includes a water supply section 20 configured to blow water into the molten salt of the electrolytic bath 4.
  • the water supply section 20 includes a gas supply section 21 equipped with a gas cylinder or the like for supplying a gas (preferably an inert gas) for blowing a gas containing water into the molten salt, and a gas supply section 21 that includes a gas cylinder or the like for supplying a gas (preferably an inert gas) for blowing a gas containing water into the molten salt. It is preferable to include a mixing section 22 for containing the water in the molten salt, and a flow path 23 for blowing the water-containing gas from the mixing section 22 into the molten salt.
  • the gas from the gas supply section is preferably transferred to the mixing section 22 through a pipe 24, and if water is present in the mixing section, the pipe 24 is preferably inserted so as to blow into the water. It is. Further, it is preferable that the pipe 23 be connected to the gas region of the mixing section 22 without contacting the water region, and configured to be able to transfer the gas containing water present in the gas region. Further, the water supply section 20 may be appropriately equipped with a compressor, a flow rate control valve, and the like. Further, in the first embodiment, a bubbling type mixing section 22 is shown, but a configuration that can mix heated steam from a molten salt nuclear reactor or the like and gas from a gas supply section may be used.
  • the first embodiment preferably further includes a support section 15 that supports the metal compound 5 and is configured to be able to reduce the metal compound 5 without contacting the inner wall of the reaction vessel 6.
  • the metal compound 5 may be connected to the cathode 2, and it is preferable that the metal compound 5 is disposed near the cathode 2.
  • the metal compound (preferably in particulate form) is reduced by the obtained hydrogen in the presence of the molten salt, and the metal compound is reduced to a further reduced level, or a reduced metal compound is obtained.
  • the metal can be obtained, and the molten salt may be heated to control the temperature.
  • a gas recovery mechanism 30 for discharging or recovering gas (hydrogen gas, oxygen gas) generated by water electrolysis.
  • the gas recovery mechanism 30 arranges the tip of a pipe in the gas region so as to collect the gas present in the gas region, and the pipe 31 connected to the gas recovery device 30 transfers the gas into the gas recovery device 30.
  • a flow rate control valve 32 for adjusting the flow rate of the gas to be collected
  • a gas storage section 33 for further separating the recovered gas, removing impurities, storing the gas, etc.
  • the second embodiment includes a cathode chamber 10 that includes a cathode 2 and produces hydrogen through electrolysis of water in molten salt, an anode chamber 11 that includes an anode 3 that produces oxygen, and a liquid region in these chambers.
  • a reaction vessel 6a comprising an electrolytic region using a molten salt as an electrolytic bath 4; and a metal compound reduction region that reduces a metal compound disposed near the cathode in the molten salt;
  • a metal manufacturing apparatus 1b including a heating furnace 8 that controls the temperature of the reaction vessel can be provided (see FIG. 4).
  • the second embodiment further includes a support section 15 configured to support the metal compound 5 and perform reduction without contacting the inner wall of the reaction vessel 6a.
  • the reaction container 6a is in a closed state. Note that it is desirable that there be a gap between each of the reaction container 6a, intermediate container 8, and heating furnace 8 to the extent that these do not come into contact with each other.
  • the reaction vessel 6a is configured such that a hydrogen production region 10 including a cathode and an oxygen production region 11 including an anode are separated. At this time, it is preferable to employ three parts: the hydrogen production section 10, the oxygen production section 11, and the connection section 12.
  • the production sections 10 and 11 are provided with liquid regions 14a and 14b, respectively, and the connection section 12 is
  • the molten salt 4 is configured to be able to move between the manufacturing section 10 (liquid region 14a) and the manufacturing section 11 (liquid region 14b).
  • the reaction vessel 6a may be provided with gas regions 13a, 13b and liquid regions 14a, 14b in the respective manufacturing sections 10, 11, respectively. It is preferable that the structure is such that hydrogen and oxygen in the gas regions 13a and 13b cannot move.
  • the gas recovery mechanism 30a is a hydrogen gas recovery mechanism
  • the gas recovery mechanism 30b is an oxygen gas recovery mechanism
  • the configuration of the recovery mechanism can appropriately adopt the gas recovery mechanism of the first embodiment.
  • the water supply mechanism 20 can appropriately employ the water supply mechanism of the first embodiment.
  • the support part 15 can appropriately adopt the support part of the first embodiment.
  • the obtained hydrogen is brought into contact with the metal compound (preferably particulate) more efficiently in the presence of the molten salt, and is reduced, so that the metal compound is further reduced.
  • Metal compounds or reduced metals can be obtained.
  • the cathode chamber 10 may be composed of a liquid region 14a of molten salt and a gas region 13a containing hydrogen gas. It is preferable to include a mechanism 30a.
  • the recovered hydrogen may be used by being supplied to another reaction system using piping or a flow path, or it may be refluxed or supplied to the cathode chamber 10 where the hydrogen was produced for the reduction of metal compounds. Hydrogen may be reused.
  • the third embodiment includes a cathode chamber 10 for producing hydrogen, an anode chamber 11 for producing oxygen, and a connection part 12 for connecting the liquid regions 14a and 14b of these chambers by electrolysis in molten salt.
  • a hydrogen production section 50a includes a reaction vessel 6a having an electrolysis region using molten salt as an electrolytic bath, and a heating furnace 8 for controlling the temperature of the reaction vessel, and hydrogen generated by the hydrogen production section is introduced. , and a metal compound reducing section 50b that reduces the metal compound in the hydrogen atmosphere (see FIG. 10).
  • the hydrogen production section 50a in the third embodiment includes a reaction vessel 6a that can perform the hydrogen production process without disposing the metal compound 5, and the reaction vessel 6a is described in the second embodiment above. It is possible to employ a reaction vessel 6a having a similar structure.
  • the gas recovery mechanism 30a in the third embodiment is preferably provided with a flow path for introducing hydrogen generated in the hydrogen production section 50a into a metal compound reduction section 50b, which is another container or device. A configuration in which the hydrogen generated in the section 50a can be transferred to the metal compound reducing section 50b is preferable, and the gas recovery mechanism 50 of the first embodiment described above can be adopted as appropriate.
  • the metal compound reduction unit 50b in the third embodiment can reduce the metal compound by controlling heating in a hydrogen atmosphere, and may employ a known metal compound reduction apparatus or method.
  • the metal compound reducing section may be configured to adopt the metal compound reducing step used in this embodiment and reduce the metal compound with hydrogen in a molten salt.
  • the water supply mechanism 20 can appropriately employ the water supply mechanism of the first embodiment.
  • the hydrogen generated by electrolysis of water is introduced into another part, and the hydrogen is efficiently brought into contact with the metal compound and reduced to obtain a more reduced metal compound or a metal. Since the reduced product of the metal compound is not in the molten salt but in the atmosphere, there is no need to remove the molten salt or to cool down the molten salt, and subsequent recovery is easy.
  • the molten salt nuclear reactor 100 is preferably a nuclear reactor configured to use molten salt as a fuel and can serve as a power source and/or a heat source, and is a general or known molten salt reactor.
  • the molten salt reactor 100 includes a reactor core 102 that uses molten salt as fuel to cause a nuclear reaction to generate heat, and a reactor core 102 in which a primary fluid (for example, primary coolant) 105 containing fuel circulates in a reactor vessel 101.
  • a primary fluid for example, primary coolant
  • control rods are typically used to start or stop a nuclear fission reaction, and may also be used to control the nuclear fission reaction and control the in-reactor power.
  • the molten salt reactor 100 may be equipped with a fuel circulation pump for controlling the circulation of the primary fluid, and the primary fluid circulation mechanism in the reactor core is equipped with the fuel circulation pump, and the pump head is equipped with the fuel circulation pump.
  • the flow rate, speed, etc. of the fluid in the primary fluid circulation may be controlled by operation control.
  • one or more block members are arranged that generate heat through a nuclear reaction when the molten salt fuel passes through, and the core is constituted by the one or more block members. is suitable, and the block member is preferably a graphite block.
  • thermometer used in this embodiment may be either a contact type or a non-contact type, and the thermometer may be placed, for example, inside molten salt, its flow path, or inside a power source or heat source.
  • various temperatures can be monitored or measured.
  • contact type thermometers include thermistors, thermocouples, resistance temperature detectors, etc.
  • non-contact type thermometers include radiation thermometers, color thermometers, etc., and one or two types of these can be used. You can select from the above.
  • the "molten salt fuel fluid" of the molten salt nuclear reactor is referred to as the "primary fluid", the "fluid for receiving heat from the molten salt fuel fluid through heat exchange” as the “secondary fluid”, and the "the fluid ( A fluid that is heated using a secondary fluid as a heating source medium is also called a tertiary fluid.
  • a system using a primary fluid as a heat source preferably a fluid circulation mechanism in which molten salt fuel fluid circulates
  • a secondary fluid that exchanges heat with the primary fluid of the primary system is used as a heat source.
  • a system to be used is a secondary system, a system that uses a tertiary fluid that exchanges heat with a secondary fluid of the secondary system, or a system that uses a tertiary fluid as a tertiary heat source.
  • a system preferably a tertiary fluid circulation mechanism or a tertiary heat source
  • n-th numbers such as primary, secondary, and tertiary are added for convenience of explanation, and by adding n-th, this embodiment is not limited in a narrow sense, but is particularly limited. isn't it.
  • the molten salt nuclear reactor 100 can use the molten salt fuel fluid in the molten salt nuclear reactor as a primary fluid, and can give heat to a fluid (secondary fluid) for receiving heat from the primary fluid by heat exchange. Then, the secondary fluid circulates through the circulation channel, and during the circulation, a mechanism or device serving as a power supply source and/or heat supply source generates electrical energy and/or Thermal energy can be supplied to other mechanisms, devices, systems, etc. In this way, the heat receiving fluid of the secondary or tertiary fluid can be used as a heating source medium.
  • a power generation mechanism or device e.g., a steam turbine
  • power generation mechanisms e.g., power generation mechanisms equipped with a generator connected to a generator, a condenser that cools steam and returns it to water, etc.
  • a heat source it is usually preferable to use it in a mechanism or device that uses a tertiary fluid that has received heat from a secondary fluid through a secondary heat exchange mechanism as a heat source.
  • the heated steam can be used as water for electrolysis.
  • the molten salt reactor used in this embodiment is not particularly limited in terms of output scale, size, etc., but by controlling the output of the molten salt reactor of this embodiment, even if the output is small, There is an advantage that a stable amount of heat can be given to the secondary fluid from the molten salt nuclear reactor which is the heat source.
  • the molten salt nuclear reactor is preferably a small molten salt nuclear reactor of 200,000 kW or less, 10,000 to 50,000 kW, or 10,000 to 30,000 kW. Note that 1 watt is the power that produces energy equal to 1 joule per second.
  • the temperature inside the molten salt nuclear reactor during operation or at which the secondary fluid can be supplied in this embodiment is not particularly limited, but for example, in FIG. °C, more preferably 500 to 900 °C, still more preferably 500 to 700 °C. Further, the reactor and cooling system may be at normal pressure.
  • the molten salt of the fuel used in the molten salt nuclear reactor is not particularly limited, but is stable, for example, by melting at 500°C and not decomposing the molten salt when the anode and cathode are immersed and a current is applied. It is preferable that the potential window, which is the range of potential that can be electrolyzed, is wide.
  • the molten salt used in the electrolysis mechanism described above may be appropriately employed, and the molten salt of the fuel used in this embodiment is not particularly limited, but may be selected from protonium, uranium, thorium, etc. Examples include molten salts containing one or more of the following, and thorium molten salts are preferred.
  • the secondary fluid used in this embodiment it is preferable to use one or more fluids selected from fluids that can be used as coolants for nuclear reactors, such as metal fluids, the above-mentioned molten salts, and the like.
  • the metal may be selected from, for example, potassium metal (melting point 64°C), sodium metal (melting point 98°C), lithium (melting point 181°C), sodium-potassium alloy (for example, 56% sodium-44% potassium (melting point 19°C)), etc.
  • potassium metal melting point 64°C
  • sodium metal melting point 98°C
  • lithium melting point 181°C
  • sodium-potassium alloy for example, 56% sodium-44% potassium (melting point 19°C)
  • sodium molten salt or sodium metal is preferred as the secondary fluid, and sodium metal is more preferred.
  • An apparatus or system that utilizes the metal production method, hydrogen production process, metal compound reduction process, method of smelting metal using hydrogen obtained in molten salt, etc. according to the present embodiment includes at least the above-mentioned methods. It is preferable that an apparatus such as an electrolysis reaction apparatus or a metal manufacturing apparatus equipped with a control unit is provided, or that the method according to the present embodiment is incorporated as a program or the like.
  • a system such as an electrolysis reaction system or a metal production system of the present embodiment has a control unit or a control device for electrolysis reaction or metal production, etc. equipped with the control unit, and other units or other devices. , a communication unit capable of transmitting and receiving wirelessly and/or by wire may be further provided.
  • the method according to the present embodiment may be applied to a device or control unit including a CPU in a management device (for example, a computer, PLC, server, cloud service, etc.) for the production of metal obtained by electrolysis reaction or reduction of a metal compound. It is also possible to realize this by Further, the method according to the present embodiment is stored as a program in a hardware resource including a recording medium (non-volatile memory (USB memory, SSD, etc.), HDD, CD, DVD, Blu-ray disc, etc.), and is realized by the control unit. It is also possible. With the control unit, it is also possible to provide an apparatus including the control unit or the system, such as a management system for electrolysis reactions or metal production. Further, the device may include an input unit such as a keyboard, a communication unit such as a network, a display unit such as a display, and the like.
  • a management device for example, a computer, PLC, server, cloud service, etc.
  • the method according to the present embodiment is stored as a program
  • a management device or a management system for electrolysis reactions, metal manufacturing, etc. can include an input unit such as a keyboard, a communication unit such as a network, an output unit such as a display, a storage unit such as an HDD, and the like.
  • the device or system preferably includes an input section, an output section, and a storage section, and further preferably includes a communication section and/or a measurement section.
  • the input unit can receive user operations by an operator who performs the method of this embodiment.
  • the input unit can include, for example, a mouse and/or a keyboard.
  • the display surface of the display device may be configured as an input unit that accepts touch operations.
  • the output unit can output various situations such as electrolysis reactions or metal manufacturing, and information related thereto (for example, tables, diagrams, explanatory text, etc.).
  • Examples of the output unit include, but are not limited to, a display device that displays an image, a speaker that outputs sound, a printing device that prints on a print medium such as paper, and the like.
  • the storage unit can store data input by an operator, data set for monitoring or executing various conditions of electrolysis reactions, or metal production, and information related thereto. .
  • the storage unit may include, for example, a recording medium.
  • the system according to this embodiment can be executed by using programs and hardware.
  • An embodiment (not shown) of a computer 1 includes, but is not limited to, at least a CPU as components of the computer 1, and further includes a RAM, a storage section, an output section, and an input section. It is preferable to include one or two selected from the following: a RAM, a storage section, an output section, and an input section; , a measuring section, a ROM, and the like. Preferably, the respective components are connected by, for example, a bus serving as a data transmission path.
  • the present technology can also adopt the following configuration.
  • Electrolysis method It is preferable to produce or obtain a metal by reducing a metal compound in the molten salt with hydrogen in the molten salt generated by water electrolysis.
  • ⁇ [2] Includes a hydrogen production process in which hydrogen is obtained by electrolyzing water in a molten salt, and a metal compound reduction process in which a metal compound is reduced with the hydrogen to produce a metal or a metal is obtained. , metal manufacturing method, smelting method, or chemical electrolysis method.
  • molten salt reactor a small molten salt reactor is suitable from the viewpoint of zero carbon dioxide gas emission and cost reduction, and furthermore, by using multiple small molten salt reactors in conjunction, it can be stably operated. This is suitable from the viewpoint of stably supplying electrical energy and thermal energy.
  • the molten salt is (a) a metal halide (preferably a metal chloride, a metal fluoride), a metal hydroxide, a metal nitrate, a metal carbonate, a metal sulfate, a metal acetate, a metal phosphorus.
  • a metal halide preferably a metal chloride, a metal fluoride
  • a metal hydroxide preferably a metal nitrate, a metal carbonate, a metal sulfate, a metal acetate, a metal phosphorus.
  • the molten salt preferably contains a metal hydroxide, more preferably an alkali metal hydroxide or an alkaline earth metal hydroxide (LiOH, NaOH, KOH, RbOH, CsOH, Mg(OH) ) 2 , Ca(OH) 2 , Sr(OH) 2 , and Ba(OH) 2 ), or both thereof.
  • a metal hydroxide more preferably an alkali metal hydroxide or an alkaline earth metal hydroxide (LiOH, NaOH, KOH, RbOH, CsOH, Mg(OH) ) 2 , Ca(OH) 2 , Sr(OH) 2 , and Ba(OH) 2 ), or both thereof.
  • the metal compound is a metal compound containing a metal element and a non-metal element.
  • More preferred metal elements are one or more selected from the group consisting of Groups 4A and 5A, and more preferred nonmetallic elements are hydrogen, nitrogen atom, chlorine atom, carbon atom, and boron atom. , sulfur atoms, and oxygen atoms.
  • the metal is from the group consisting of iron, copper, zinc, nickel, tin, lead, cobalt, molybdenum, aluminum, titanium, potassium, calcium, sodium, and magnesium, more preferably iron, copper, zinc. , nickel, tin, lead, cobalt, and molybdenum.
  • the nonmetallic element is one or more selected from the group consisting of oxygen atoms, sulfur atoms, and chlorine atoms.
  • the water in the molten salt is water that is present in the molten salt due to the hygroscopic action of a gas containing water in a humid atmosphere from the surface of the molten salt, and/or water that is present in the molten salt by a gas containing water being absorbed into the molten salt.
  • a moisture-containing inert gas for example, rare gas, etc.
  • the molten salt includes (a) a metal halide (preferably a metal chloride, a metal fluoride), a metal hydroxide, a metal nitrate, a metal carbonate, a metal sulfate, a metal acetate, and a metal One or more selected from phosphates, etc., (b) at least one of an alkali metal chloride or an alkaline earth metal chloride, or (c) an alkali metal hydroxide or an alkaline earth metal chloride.
  • a metal halide preferably a metal chloride, a metal fluoride
  • a metal hydroxide preferably a metal nitrate, a metal carbonate, a metal sulfate, a metal acetate, and a metal One or more selected from phosphates, etc.
  • metal hydroxides at least one of metal hydroxides, or (d) alkali metal chloride, alkaline earth metal chloride, alkali metal hydroxide, and alkaline earth metal hydroxide, alkali metal fluoride, alkaline earth
  • metal fluorides alkali metal nitrates, alkali metal sulfates, alkali metal carbonates, alkali metal acetates, and alkali metal phosphates, (e) (b) and (c) The method according to [10] above, which comprises a mixture of.
  • a hydrogen production region including a cathode and an oxygen production region including an anode The method according to [10] or [11] above, wherein hydrogen is obtained in the hydrogen production region by electrolyzing water in molten salt in the hydrogen production region.
  • ⁇ [13] Further comprising a region or a container (for hydrogen storage, metal compound reduction, etc.) separate from the hydrogen production region and the oxygen production region, The method according to any one of [10] to [12], wherein the hydrogen produced or generated in the hydrogen production region is transferred or introduced into the other region or another container.
  • the hydrogen production region and the oxygen production region are each separate regions, and the liquid regions of these regions are connected to each other via a flow path through which molten salt can move. 13].
  • a hydrogen production region including a cathode and an oxygen production region including an anode Any of the above [1] to [10], wherein a metal is produced by reducing a metal compound using hydrogen obtained in the hydrogen production region by electrolyzing water in molten salt in the hydrogen production region.
  • an electrolysis mechanism comprising an anode and a cathode that can be electrolyzed with water in molten salt; a water supply mechanism for supplying water to the molten salt; a sealable molten salt container containing molten salt; A metal manufacturing device, an electrolysis reaction device, or a manufacturing device for reducing a metal compound to obtain a metal.
  • the device further includes a molten salt temperature adjustment mechanism that adjusts the temperature of the molten salt.
  • the container includes a hydrogen production region, an oxygen production region, and a flow path region connecting the liquid region (molten salt) of these regions.
  • the hydrogen production region is provided with a cathode and the oxygen production region is provided with an anode, and each region is composed of a liquid region where molten salt exists and a gas region where generated gas exists. It is more preferable that - [21]
  • a metal manufacturing device or a hydrogen manufacturing device comprising a control unit that implements the method according to any one of [1] to [18] or controls the implementation of the method.
  • an electrolytic reaction device or A manufacturing device or an electrolysis reaction system for reducing a metal compound to obtain a metal or a manufacturing system for reducing a metal compound to obtain a metal.
  • the present inventors conducted experiments to determine whether it is actually possible to produce hydrogen through electrolysis in molten salt and to reduce iron oxide particles to iron using the hydrogen.
  • Electrolyte anhydrous LiCl (Wako special grade), 320g
  • Iron oxide sample Fe 2 O 3 particles (purity 99.5%), average particle size (D50) particles 2 to 5 mm, 15 g
  • Constituent materials of the electrolyzer and electrolytic cell used in this example Table 1 shows the constituent materials of the electrolytic cell, their properties, and dimensions.
  • a schematic diagram of the electrolyzer used in this example can be seen in FIG.
  • Example 1 1, and the main components, from the outside, are an Inconel container, an alumina protective container, a graphite crucible, an alumina crucible, and an iron oxide The particles were placed in an alumina crucible.
  • a pipe for supplying inert gas (Ar gas) containing water is extended below the liquid level of the molten salt and blown into the molten salt.
  • the supply pipe is a pipe that is shortened to about half so as not to come into contact with the liquid surface of the molten salt, and is configured to supply an inert gas containing water to the gas region inside the container.
  • the electrolyzer used in this example was further equipped with an electrochemical measuring device.
  • As the lead wires for the cathode and anode Cu wire was used in the preliminary experiment, and Ni wire was used in the reduction confirmation experiment.
  • electrolysis was performed for 1.5 hours or more at an electrolysis temperature of 670° C. and an electrolysis current of 10 A or less.
  • Ar gas was passed through a container containing water at a rate of 100 mL/min to 600 mL/min to supply water vapor (an inert gas containing moisture) into an Inconel container. did.
  • the amount of water vapor supplied was also adjusted by heating a container containing water to 30°C to 50°C in a water bath.
  • the electrolytic current value was set so that the cathode side was within the Li deposition potential and the anode side was within the range of the chlorine gas generation potential.
  • the Ar gas supply rate was set at 600 mL/min, and the water bath temperature was set at room temperature (25°C). ), a constant amount of water vapor is supplied, and the electrolytic current value is set as large as possible within the range of Li deposition potential on the cathode side and chlorine gas generation potential on the anode side. Electrolysis was performed while checking the change over time.
  • FIG. 12 shows the X-ray diffraction pattern of the iron oxide particles before the experiment
  • FIG. 13 shows the X-ray diffraction pattern of the iron oxide particles taken out from the molten salt after the experiment, washed and dried to remove the salt.
  • FIG. 14 shows a secondary electron image of the iron oxide particles before the experiment
  • FIG. 15 shows a secondary electron image of the iron oxide particles after the salt was washed and dried after the experiment.
  • Figure 16 shows the changes over time in the current value, both electrode potential, and interelectrode potential difference when electrolysis was carried out with the Ar gas flow rate fixed at 600 mL/min and the water bath temperature fixed at 25°C. Hydrogen concentration was measured using a gas detection tube (total current flow: 27,187 coulombs).
  • Li 2 Fe 3 O 5 is generated by the following reaction. I assume that it was generated by. 3Fe 2 O 3 +4Li + +H 2 O+e - ⁇ 2Li 2 Fe 3 O 5 +H 2 In any case, in the preliminary experiment, the secondary electron images of the iron oxide particles before and after the experiment in FIGS. 14 and 15 show that the large particles before the experiment were Li 2 Fe 3 with a particle shape of around 10 ⁇ m after the experiment. It was confirmed that it was reduced to O5 .
  • hydrogen atoms directly attack Fe 2 O 3 in the solid phase and reduce it to Fe.
  • the present invention provides a technology for producing a metal by reducing a metal compound, which can further reduce manufacturing costs without emitting carbon dioxide gas into the environment as much as possible, and a technology that can also be used for metal production by reducing such a metal compound.
  • the main objective is to provide a technology that can produce hydrogen more easily.
  • the present invention provides a method for producing a metal, in which a metal is produced by reducing a metal compound with hydrogen obtained by electrolyzing water in a molten salt; It is possible to provide a hydrogen production method in which hydrogen is obtained by electrolyzing.
  • [Test Example 2] The present inventors melted water vapor according to [Test Example 1] except that the molten salt used in [Test Example 1] was replaced with "molten sodium hydroxide" and iron oxide was not added to the molten salt.
  • Steam electrolysis can be performed using an electrolyte that is blown into sodium hydroxide and electrolyzes water in molten sodium hydroxide to produce hydrogen and oxygen.
  • an electrolyzer including one electrolytic cell as shown in FIG. 3, and an electrolyzer having a hydrogen production section and an oxygen production section as shown in FIG. 4 can be used.
  • the melting point of sodium hydroxide is 328°C, so the temperature of the electrolyte could be maintained at 330-450°C.
  • P H2O water partial pressure
  • temperature 336°C, 385°C, 412°C, 440°C
  • W/O water solubility
  • Electrolytic cell constituent materials The constituent materials of the electrolytic cell, their materials and dimensions are shown in Table 2, and a schematic diagram of the electrolytic cell is shown in FIG.
  • the electrolytic cell device configuration employs almost the same configuration as the above ⁇ 1-1.1 Materials and electrolytic cell>.
  • the cathode lead wire was used by threading the tip of a Fe round rod with a diameter of 3 mm and joining it to the Fe disk. Further, as shown in FIG. 20, the lead wire of the anode was a Ni wire with a diameter of 1 mm passed through a hole made in the upper part of the graphite crucible and joined.
  • the supply pipe of the electrolytic cell device shown in Fig. 20 is similar to the electrolytic cell device of [Test Example 1] described above, and is a pipe that is shortened to about half so as not to come into contact with the liquid surface of the molten salt. The structure is such that an inert gas containing water is supplied.
  • the total amount of current to be reduced to Fe was 18,131 coulombs, which exceeds the theoretically required amount of 18,126 coulombs.
  • the weight of the particulate Fe recovered after being taken out from the molten salt, washed and dried was 1.9419 g, and the weight of the sponge Fe was 1.7886 g, for a total of 3.7305 g.
  • the amount of weight decrease was 1.2695 g, and the calculated weight of oxygen in 5 g of iron oxide powder was 1.503 g, resulting in a decrease in oxygen of about 84.5%.
  • a secondary electron beam image after electrolytically reducing 5 g of iron oxide powder is shown in FIG. 20, and an X-ray diffraction pattern is shown in FIG.
  • Test Example 4 ⁇ Reduction experiment using only hydrogen gas>
  • electrolysis was not performed, and a reduction experiment was performed while supplying hydrogen gas, in order to confirm whether iron oxide could be reduced to iron by simply supplying hydrogen gas into the molten salt. I did it.
  • a reduction experiment was conducted for 3.5 hours while supplying 10 mL/min of hydrogen gas and 590 mL/min of Ar gas to 5 g of Fe 2 O 3 powder in molten salt (670° C.). After the reduction experiment, the raw material sample was taken out from the molten salt, the salt was washed and dried, and the weight of the Fe 2 O 3 powder was 4.8256 g, which was a weight decrease of 0.1746 g.
  • Non-Patent Document 6 the hydrogen atoms (H) generated above are known to have high activity and are called “hydrogen radicals” because they easily cause chemical reactions. If these hydrogen radicals react with each other to form hydrogen molecules and stabilize, the original high activity is lost. From this, it can be easily concluded that hydrogen radicals have higher activity than hydrogen molecules (hydrogen gas) (Non-Patent Document 6). Further, this is explained as being mentioned in Tafel's paper from 1905 (Non-Patent Document 7). From the above phenomenon, it is expected that if iron oxide is placed near hydrogen radicals before they become hydrogen molecules, a chemical reaction will occur with the iron oxide, and the iron oxide will be reduced.
  • the inventors used molten salt to chemically react hydrogen radicals generated by electrolytic reduction of H 2 O with iron oxide, thereby achieving a highly efficient reaction. This has been proven by the inventors' experimental results. In other words, results have been obtained in which the reduction efficiency of iron oxide by hydrogen radicals in the molten salt is higher than the reduction efficiency of iron oxide by hydrogen molecules. Although hydrogen radicals cannot be directly observed, we believe that we have comprehensively proven the effect of hydrogen radicals in molten salt from the above theory and experimental results.
  • a "system” may be a mechanism, a device, a means, or a section;
  • a “mechanism” may be a system, a device, a means, or a section;
  • a “device” may be a mechanism, a device, a means, or a section; It may be a system, a mechanism, a means, or a section;
  • "means” may be a mechanism, a system, a device, or a section;
  • a “section” may be a mechanism, a means, a device, or a system; Alternatively, it may be a mechanism, means, or device for preparing for these.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Electrolytic Production Of Metals (AREA)

Abstract

The present invention provides: a technology for producing a metal by means of the reduction of a metal compound, while suppressing a carbon dioxide gas to be discharged into the environment as much as possible, the technology being capable of further reducing the production cost; and a technology for producing a larger amount of hydrogen, the technology being able to be applied to the production of a metal by means of the reduction of a metal compound. The present invention provides a method for producing a metal, wherein a metal is produced by reducing a metal compound by means of hydrogen that is obtained by electrolyzing water in a molten salt. The present invention also provides a method for producing hydrogen, wherein hydrogen is obtained by electrolyzing water in a molten salt.

Description

熔融塩中に得られた水素を用いて金属を製錬する方法Method for smelting metals using hydrogen obtained in molten salt
 本発明は、金属の製造方法、水素製造方法、当該水素製造方法により得られた水素を用いる金属の製造方法等に関する。 The present invention relates to a metal manufacturing method, a hydrogen manufacturing method, a metal manufacturing method using hydrogen obtained by the hydrogen manufacturing method, and the like.
 近年、電力供給や熱源供給の分野において、地球温暖化やSDGs(Sustainable Development Goals(持続可能な開発目標)の観点から、カーボンニュートラルや二酸化炭素削減が求められるようになってきており、このため、石炭、石油、天然ガスの化石燃料ではなく、自然エネルギー等を利用した機構や装置の研究開発が進められるようになってきている。しかし、これら自然エネルギー等の利用においても、安定的供給やコスト低減等が求められている。 In recent years, in the fields of electricity supply and heat source supply, carbon neutrality and carbon dioxide reduction have been required from the perspective of global warming and SDGs (Sustainable Development Goals). Research and development of mechanisms and devices that use natural energy, etc., rather than fossil fuels such as coal, oil, and natural gas, is progressing. However, even in the use of these natural energies, stable supply and cost are difficult. There is a need for reduction.
 現在、炭素熱還元又は金属熱還元の方法で、鉱物(主に、金属酸化物、金属硫化物、金属塩化物等)を還元することによる金属の製錬を行っており、場合によっては金属の純度をより高めるために精錬を更に行ったりしている。しかし、このような金属を製造する際の最大の欠点は、温室ガスである二酸化炭素ガスの大量発生であり、また、原料である還元剤の資源不足にも直面している。 Currently, metals are smelted by reducing minerals (mainly metal oxides, metal sulfides, metal chlorides, etc.) using carbothermal reduction or metal thermal reduction methods, and in some cases, metals are smelted by reducing minerals (mainly metal oxides, metal sulfides, metal chlorides, etc.). It is further refined to further increase its purity. However, the biggest drawback in manufacturing such metals is the generation of large amounts of carbon dioxide gas, which is a greenhouse gas, and we also face a shortage of resources for reducing agents, which are raw materials.
 例えば、特許文献1では、二酸化炭素などの地球温暖化効果ガスの排出を伴わず、かつ常温に近い状態で金属酸化物を還元し、金属を得ることを目的とし、金属酸化物の粉末を密閉したコンテナ内に入れ、金属酸化物粉末に物理的エネルギーを与えて活性化させるとともにコンテナ内に還元性ガスを導入し、還元性ガスと活性化した金属酸化物粉末とを接触させて還元する方法が提案されている。
 また、例えば、特許文献2では、クロム鉱石や鉄鉱石などを溶融還元炉にて溶融還元して金属溶湯を得るにあたり、溶融還元炉から排出される排ガスを、二酸化炭素の分離装置を用いることなく湿式除塵装置によって除塵するだけで、湿式除塵処理後の排ガスを還元用ガス又は燃料ガスとして有効利用することのできる溶融還元方法が提案されている。
 また、特許文献5では、湿潤雰囲気下での高温溶融塩電解による水素ガスの製造方法であって、湿潤溶融塩電解環境下で溶融塩電解により水素ガスを製造する方法であり、ここで、溶融塩の温度は150~1000℃であり、溶融塩保護雰囲気の水蒸気含有量は0.1~100Vol.%であり、溶融塩電解質はアルカリ金属及び/又はアルカリ土類金属のハロゲン化物の1 種またはそれ以上の混合物であることを特徴とする湿潤雰囲気下での高温溶融塩電解による水素ガスの製造方法が開示されている。
For example, in Patent Document 1, the purpose is to reduce metal oxides to obtain metals at near room temperature without emitting global warming gases such as carbon dioxide. A method of reducing the activated metal oxide powder by placing it in a container, applying physical energy to the metal oxide powder to activate it, and introducing a reducing gas into the container, bringing the reducing gas into contact with the activated metal oxide powder. is proposed.
For example, in Patent Document 2, when obtaining molten metal by melting and reducing chromium ore, iron ore, etc. in a smelting-reduction furnace, the exhaust gas discharged from the smelting-reduction furnace is removed without using a carbon dioxide separation device. A melt reduction method has been proposed in which the exhaust gas after wet dust removal can be effectively used as reducing gas or fuel gas by simply removing dust with a wet dust removal device.
Further, Patent Document 5 discloses a method for producing hydrogen gas by high-temperature molten salt electrolysis in a humid atmosphere, in which hydrogen gas is produced by molten salt electrolysis in a humid molten salt electrolysis environment. The temperature of the salt is 150-1000°C, and the water vapor content of the molten salt protective atmosphere is 0.1-100 Vol. %, and the molten salt electrolyte is a mixture of one or more alkali metal and/or alkaline earth metal halides. is disclosed.
特開2001-64733号公報Japanese Patent Application Publication No. 2001-64733 特開2011-006744号公報Japanese Patent Application Publication No. 2011-006744 特表2021-517209号公報Special Publication No. 2021-517209 特開2016-042090号公報Japanese Patent Application Publication No. 2016-042090 特開2001-133572号公報Japanese Patent Application Publication No. 2001-133572
 上述のように、現在において環境に二酸化炭素ガスをできるだけ排出することなく、金属化合物を還元させた金属を効率よく製造する技術、及びこのような金属化合物の還元にも用いることが可能で効率よく大量に水素を製造する技術が、それぞれ求められている。しかも、産業上、製造コストも重視される。 As mentioned above, there are currently technologies that can efficiently produce metals by reducing metal compounds without emitting as much carbon dioxide gas into the environment as possible, and technologies that can be used to efficiently reduce such metal compounds. There is a need for technology to produce hydrogen in large quantities. Moreover, industrially, manufacturing costs are also important.
 そこで、本発明は、二酸化炭素ガスをできるだけ環境に排出することなく、製造コストのさらなる低減ができる、金属化合物を還元させる金属を製造する技術、このような金属化合物の還元による金属製造にも用いることが可能で大量に水素を製造できる技術を、それぞれ主な目的とする。 Therefore, the present invention provides a technology for producing a metal by reducing a metal compound, which can further reduce manufacturing costs without emitting carbon dioxide gas into the environment as much as possible, and a technology that can also be used for metal production by reducing such a metal compound. The main objective of each project is to develop technologies that can produce large quantities of hydrogen.
 本発明者らは、鋭意検討した結果、熔融塩中で水を電気分解することによって水素を得ること、及び、このようにして得られた水素により金属化合物を還元した金属が製造できることを、それぞれ見出し、本発明を完成させた。よって、本発明は、以下のとおりである。
 なお、一般的に酸とアルカリを中和してできた塩を高温で融解した液体である。但し、本明細書では、金属水酸化物は熔融塩の一種である。また、本明細書において、特段の説明がない場合には、「水素の生成」は「水素原子の生成」を意味し、「水素の発生」は「水素ガスの発生」を意味し、水素製造の「製造」は、「生成」及び「発生」の意味を含んでもよい。
As a result of extensive studies, the present inventors have discovered that hydrogen can be obtained by electrolyzing water in molten salt, and that metals can be produced by reducing metal compounds using the hydrogen thus obtained. The present invention has been completed. Therefore, the present invention is as follows.
Note that it is generally a liquid obtained by melting a salt made by neutralizing an acid and an alkali at a high temperature. However, in this specification, metal hydroxide is a type of molten salt. In addition, in this specification, unless otherwise specified, "generation of hydrogen" means "generation of hydrogen atoms", "generation of hydrogen" means "generation of hydrogen gas", and "generation of hydrogen" means "generation of hydrogen gas". "Manufacturing" may include the meanings of "producing" and "generating".
 本発明は、熔融塩中で水を電気分解することによって得られた水素により、金属化合物を還元して、金属を製造する、金属製造方法を提供するものである。
 本発明は、熔融塩中で水を電気分解することによって、水素を得る、水素製造方法を提供するものである。
The present invention provides a metal manufacturing method in which a metal is manufactured by reducing a metal compound with hydrogen obtained by electrolyzing water in a molten salt.
The present invention provides a method for producing hydrogen, in which hydrogen is obtained by electrolyzing water in a molten salt.
 前記金属化合物は、粒子状であってもよい。
 前記電気分解は、熔融塩原子炉から供給された電気エネルギー及び/又は熱エネルギーによるものであってもよい。
 前記金属化合物は、鉄、銅、亜鉛、ニッケル、スズ、鉛、コバルト、モリブデンからなる群から選択される1種又は2種以上の金属元素と、酸素原子、硫黄原子及び塩素原子からなる群から選択される1種又は2種以上の非金属元素とを含む、金属化合物であってもよい。
 前記熔融塩は、(a)アルカリ金属ハロゲン化物又はアルカリ土類金属ハロゲン化物のうちの少なくとも1つ、又は、(b)アルカリ金属水酸化物又はアルカリ土類金属水酸化物のうちの少なくとも1つ、又は、(c)アルカリ金属塩化物、アルカリ土類金属塩化物、アルカリ金属水酸化物、アルカリ土類金属水酸化物、アルカリ金属フッ化物、アルカリ土類金属フッ化物、アルカリ金属硝酸塩、アルカリ金属硫酸塩、アルカリ金属炭酸塩、アルカリ金属酢酸塩、アルカリ金属燐酸塩から選択される1種又は2種以上を含むものであってもよい。
The metal compound may be in the form of particles.
The electrolysis may be based on electrical energy and/or thermal energy supplied from a molten salt nuclear reactor.
The metal compound includes one or more metal elements selected from the group consisting of iron, copper, zinc, nickel, tin, lead, cobalt, and molybdenum, and the group consisting of oxygen atoms, sulfur atoms, and chlorine atoms. It may be a metal compound containing one or more selected nonmetallic elements.
The molten salt is (a) at least one of an alkali metal halide or an alkaline earth metal halide, or (b) at least one of an alkali metal hydroxide or an alkaline earth metal hydroxide. or (c) alkali metal chloride, alkaline earth metal chloride, alkali metal hydroxide, alkaline earth metal hydroxide, alkali metal fluoride, alkaline earth metal fluoride, alkali metal nitrate, alkali metal It may contain one or more selected from sulfates, alkali metal carbonates, alkali metal acetates, and alkali metal phosphates.
 本発明は、二酸化炭素ガスをできるだけ環境に排出することなく、製造コストのさらなる低減ができる、金属化合物を還元させる金属を製造する技術、このような金属化合物の還元による金属製造にも用いることが可能でより簡便に水素を製造する技術を提供することができる。なお、本発明の効果は、ここに記載された効果に、必ずしも限定されるものではなく、本明細書中に記載されたいずれかの効果であってもよい。 The present invention is a technology for producing metals by reducing metal compounds, which can further reduce production costs without emitting carbon dioxide gas into the environment as much as possible, and can also be used for metal production by reducing such metal compounds. It is possible to provide a technology for producing hydrogen more easily and easily. Note that the effects of the present invention are not necessarily limited to the effects described herein, and may be any of the effects described herein.
本実施形態における酸化鉄を水素により鉄に還元する場合の還元率(%)と温度(℃)との関係を示す一例である。It is an example which shows the relationship between reduction rate (%) and temperature (degreeC) when iron oxide is reduced to iron with hydrogen in this embodiment. 本実施形態において、水の電気分解に用いる電気分解の電圧(V)とエネルギー(MJ/Kg-HO)と、熔融塩の温度(エネルギー)(℃)との関係を示す。In this embodiment, the relationship between the electrolysis voltage (V) and energy (MJ/Kg-H 2 O) used for water electrolysis and the temperature (energy) (° C.) of the molten salt is shown. 本実施形態において、熔融塩中で電気分解を用いて得られた水素により金属化合物を還元物して金属を製造する概略図(本第1実施形態)である。In this embodiment, it is a schematic diagram (this 1st embodiment) which manufactures metal by reducing a metal compound with hydrogen obtained using electrolysis in a molten salt. 本実施形態における熔融塩中で得られた水素を用いる金属化合物還元装置、及び金属製造する際に発生する水素の回収を示す概略図(本第2実施形態)である。It is a schematic diagram (this 2nd embodiment) which shows the metal compound reduction apparatus which uses the hydrogen obtained in the molten salt in this embodiment, and the recovery of the hydrogen generated when metal manufacturing is carried out. 熔融塩原子炉を用いて、金属化合物を還元させる金属製造装置1基及び熔融塩原子炉1基との金属製造システムの概略図の一例を示す図である。1 is a diagram showing an example of a schematic diagram of a metal manufacturing system including one metal manufacturing apparatus and one molten salt nuclear reactor that reduce a metal compound using a molten salt nuclear reactor. 現状の製鉄コスト、本発明ケース1(発電専用炉のみの場合)及び本発明ケース2(熱電併用炉の場合)における製造コストを示す図である。It is a figure showing the current steel manufacturing cost, the manufacturing cost in the present invention case 1 (in the case of only a power generation furnace) and the present invention case 2 (in the case of a combined thermoelectric furnace). 本実施形態における最終的なRIMS基地の構成の概略図(熔融塩製鉄法のシステムの一例)を示す図である。FIG. 2 is a diagram showing a schematic diagram of the final configuration of the RIMS base (an example of a system for the molten salt iron manufacturing method) in this embodiment. 熱電併給炉として用いる場合、熔融塩原子炉を発電専用炉として用いる場合と比較し、効率向上ができることが示す図である。It is a figure which shows that efficiency can be improved when a molten salt nuclear reactor is used as a power generation-only reactor when used as a combined heat and power reactor. 現状の水素価格、本発明ケース1(発電専用炉のみの場合)及び本発明ケース2(熱電併用炉の場合)における水素コストを示す図である。It is a figure showing the current hydrogen price, the hydrogen cost in present invention case 1 (in the case of only a power generation furnace) and present invention case 2 (in the case of a combined thermoelectric furnace). 本実施形態における水素製造装置及び金属化合物還元装置を示す概略図(本第3実施形態)である。It is a schematic diagram showing a hydrogen production device and a metal compound reduction device in this embodiment (this 3rd embodiment). 本実施例(試験例1)における電流値と両電極電位の経時変化を示す図である。左縦軸:電位/V vs MoQRE、横軸:時間/s、右縦軸:電流/A。FIG. 3 is a diagram showing changes over time in current values and both electrode potentials in this example (Test Example 1). Left vertical axis: potential/V vs. MoQRE, horizontal axis: time/s, right vertical axis: current/A. 本実施例(試験例1)における電解前の酸化鉄試料のX線回折(測定条件:X線:Cu/40kV/40mA、スキャンスピード:2°/min)を示す図である。試料:Fe、左縦軸:強度(Counts)、横軸:2θ(deg)。It is a figure showing the X-ray diffraction (measurement conditions: X-ray: Cu/40kV/40mA, scan speed: 2 degrees/min) of the iron oxide sample before electrolysis in this example (test example 1). Sample: Fe 2 O 3 , left vertical axis: intensity (Counts), horizontal axis: 2θ (deg). 本実施例における電解後のX線回折(測定条件、X線:Cu/40kV/40mA、スキャンスピード:2°/min)を示す図である。試料:LiFe、左縦軸:強度(Counts)、横軸:2θ(deg)。It is a figure which shows the X-ray diffraction (measurement conditions, X-ray: Cu/40kV/40mA, scan speed: 2 degrees/min) after electrolysis in this Example. Sample: Li 2 Fe 3 O 5 , left vertical axis: intensity (Counts), horizontal axis: 2θ (deg). 本実施例(試験例1)における実験前の酸化鉄粒子の二次電子像を示す図である。FIG. 2 is a diagram showing a secondary electron image of iron oxide particles before an experiment in this example (Test Example 1). 本実施例(試験例1)における実験後の酸化鉄粒子の二次電子像を示す図である。FIG. 2 is a diagram showing a secondary electron image of iron oxide particles after an experiment in this example (Test Example 1). 本実施例(試験例1)における電流値と両電極電位及び極間電位差の経時変化を示す図であり、上図は電流値及び極間電位差の経時変化であり(右縦軸:電流/A、横軸:時間/s)、下図は両電極電位及び極間電位差の経時変化である(右縦軸:電位/V vs MoQRE、横軸:時間/s、右縦軸:極間電位差/V)。This is a diagram showing changes over time in the current value, both electrode potentials, and the potential difference between the electrodes in this example (Test Example 1). The upper diagram shows the changes over time in the current value and the potential difference between the electrodes (right vertical axis: current/A , horizontal axis: time/s), the figure below shows the temporal change in both electrode potential and the potential difference between the electrodes (right vertical axis: potential/V vs MoQRE, horizontal axis: time/s, right vertical axis: potential difference between the electrodes/V ). 本実施例における電解後のX線回折(測定条件:X線:Cu/40kV/40mA、スキャンスピード:2°/min)を示す図である。試料:LiFe4、左縦軸:強度(Counts)、横軸:2θ(deg)。FIG. 3 is a diagram showing X-ray diffraction after electrolysis (measurement conditions: X-ray: Cu/40 kV/40 mA, scan speed: 2°/min) in this example. Sample: Li 2 Fe 3 O 4 , left vertical axis: intensity (Counts), horizontal axis: 2θ (deg). 本実施例(試験例1)における電解実験後の酸化鉄粒子の二次電子像を示す図である。FIG. 2 is a diagram showing a secondary electron image of iron oxide particles after an electrolytic experiment in this example (Test Example 1). 本実施例(試験例3)における、水蒸気供給による酸化鉄の熔融塩電解還元用電解セル概略図である。FIG. 2 is a schematic diagram of an electrolytic cell for electrolytic reduction of molten salt of iron oxide by supplying water vapor in this example (Test Example 3). 本実施例(試験例3)における、水蒸気供給により酸化鉄粒子(5g)を電気還元した後の二次電子像を示す図である。FIG. 3 is a diagram showing a secondary electron image after electrically reducing iron oxide particles (5 g) by supplying water vapor in this example (Test Example 3). 実施例(試験例3)における、水蒸気供給により酸化鉄粒子(5g)を電気還元した後のX線回折(測定条件:X線:Cu/40kV/15mA、スキャンスピード:2°/min)を示す図である。試料:Fe、左縦軸:強度(Counts)、横軸:2θ(deg)。Shows X-ray diffraction (measurement conditions: X-ray: Cu/40kV/15mA, scan speed: 2°/min) after electrically reducing iron oxide particles (5 g) by supplying water vapor in Example (Test Example 3) It is a diagram. Sample: Fe 2 O 3 , left vertical axis: intensity (Counts), horizontal axis: 2θ (deg). 本試験例4における水素ガスによる還元後のX線回折(測定条件:X線:Cu/40kV/15mA、スキャンスピード:2°/min)を示す図である。試料:Fe、左縦軸:強度(Counts)、横軸:2θ(deg)。It is a figure which shows the X-ray diffraction (measurement conditions: X-ray: Cu/40kV/15mA, scan speed: 2 degrees/min) after reduction with hydrogen gas in this test example 4. Sample: Fe 2 O 3 , left vertical axis: intensity (Counts), horizontal axis: 2θ (deg).
 以下、本技術を実施するための好適な実施形態について説明する。なお、以下に説明する実施形態は、本技術の代表的な実施形態の一例を示したものであり、これにより本技術の範囲が狭く解釈されることはない。なお、説明は、以下の順序にて行う。 Hereinafter, a preferred embodiment for implementing the present technology will be described. Note that the embodiment described below shows an example of a typical embodiment of the present technology, and therefore the scope of the present technology should not be interpreted narrowly. Note that the explanation will be given in the following order.
1.本技術の概要
1-1.本技術における金属化合物の還元による金属製造及び電気分解による水素製造の概要について
1-2.本技術における水素製造の概要について
1-3.水素社会への実現性の検討について
1-4.本技術における水素を用いる製鉄方法の概要について
2.本実施形態に係る金属の製造方法
2-1.水素製造工程
2-1-1.電気分解機構
2-1-2.電解浴
2-2.金属化合物還元工程
3.本実施形態に係る熔融塩を用いる水素製造方法
4.本実施形態に係る金属製造装置、水素製造装置、電気分解装置等及びこれらのシステム
4-1.本実施形態に係る金属製造装置等
4-1-1.<本第1実施形態>
4-1-2.<本第2実施形態>
4-1-3.<本第3実施形態>
4-2.熔融塩原子炉
5.本実施形態の別の側面
1. Overview of this technology 1-1. 1-2. Overview of metal production by reduction of metal compounds and hydrogen production by electrolysis in this technology. 1-3. Overview of hydrogen production using this technology. Regarding the feasibility of creating a hydrogen society 1-4. 2. Overview of the iron manufacturing method using hydrogen in this technology. Metal manufacturing method according to the present embodiment 2-1. Hydrogen production process 2-1-1. Electrolysis mechanism 2-1-2. Electrolytic bath 2-2. Metal compound reduction step 3. Hydrogen production method using molten salt according to this embodiment 4. Metal production equipment, hydrogen production equipment, electrolysis equipment, etc. and systems thereof according to the present embodiment 4-1. 4-1-1. Metal manufacturing equipment, etc. according to the present embodiment. <First embodiment>
4-1-2. <Second embodiment>
4-1-3. <Third Embodiment>
4-2. Molten salt reactor 5. Another aspect of this embodiment
1.本技術の概要 1. Overview of this technology
 本発明者らは、以下のように、本発明者らの独自の視点にて、新たな着想及び新たな技術思想を導き出すことによって、本発明を完成させた。なお、本発明に適用できる金属は、以下の説明は便宜上鉄を用いて説明しているが、本発明は、鉄に限定されるものではなく、幅広い金属に適用することができる。 The present inventors have completed the present invention by deriving new ideas and new technical ideas from their own unique viewpoints, as described below. In addition, although the following explanation uses iron as a metal applicable to the present invention for convenience, the present invention is not limited to iron and can be applied to a wide range of metals.
 本発明は、熔融塩中で水素を得、その水素により、原料となる酸化鉄などの金属化合物を還元せしめ、原料の金属化合物でない鉄などの金属を得る、金属製造方法又は製錬方法などに関するものである。更に、その水素を得るのに必要な電力と高温の熱を熔融塩原子炉から得ることにより、二酸化炭素を排出しない製錬法(鉄の場合は製鉄法)などを提供することも可能である。なお、本発明における金属製造方法により得られる金属とは、還元前の金属化合物と比較し更に還元された金属であることが好適であり、例えば、一部還元された金属化合物であってもよく、従来の製錬技術と同程度及びそれ以上に還元前の金属化合物から還元された金属がより好適である。 The present invention relates to a metal manufacturing method or smelting method, etc., in which hydrogen is obtained in a molten salt, a metal compound such as iron oxide, which is a raw material, is reduced by the hydrogen, and a metal such as iron, which is not a raw material metal compound, is obtained. It is something. Furthermore, by obtaining the electricity and high-temperature heat necessary to obtain hydrogen from a molten salt nuclear reactor, it is also possible to provide a smelting method (iron manufacturing method in the case of iron) that does not emit carbon dioxide. . The metal obtained by the metal production method of the present invention is preferably a metal that has been further reduced compared to the metal compound before reduction, and for example, it may be a partially reduced metal compound. , metals that have been reduced from the metal compound before reduction to the same degree or more than conventional smelting techniques are more suitable.
1-1.本技術における金属化合物の還元による金属製造及び電気分解による水素製造の概要について 1-1. Overview of metal production by reduction of metal compounds and hydrogen production by electrolysis using this technology
 地球上に存在する鉄鉱石は全て酸化鉄(殆どはFe)であり、製鉄とは酸化鉄から酸素を引き抜いて鉄(Fe)を得るという還元技術である。しかし、酸化鉄の鉄元素は酸素と強力に結合しており、酸素を引き離すには大きなエネルギーが必要で、高温の炭素を用いて鉄に還元する方法が採用されている。この方法は人類3000年の製鉄の歴史で全く変わっていない。しいていえば、使用する炭素が木炭から石炭に変わっただけである。炭素による還元法を化学式で示すと下記の通りである。 All iron ore existing on the earth is iron oxide (mostly Fe 2 O 3 ), and iron making is a reduction technology that extracts oxygen from iron oxide to obtain iron (Fe). However, the iron element in iron oxide is strongly bound to oxygen, and it requires a large amount of energy to separate the oxygen, so a method of reducing it to iron using high-temperature carbon has been adopted. This method has not changed at all in the 3,000 years of human history of iron manufacturing. In other words, the carbon used has simply changed from charcoal to coal. The chemical formula for the reduction method using carbon is as follows.
 3C+3O→3CO       (炭素燃焼)
 3C+3CO→6CO       (CO生成)
 2Fe+6CO→4Fe+6CO(酸化鉄の還元)
3C+3O 2 →3CO 2 (carbon combustion)
3C + 3CO 2 → 6CO (CO generation)
2Fe 2 O 3 +6CO→4Fe+6CO 2 (reduction of iron oxide)
 また、これらの工程では、鉄1トンの製造に、0.5トンの石炭が必要で、その際に2トンの炭酸ガス(CO)を排出する。現在、地球環境問題の観点から、COを排出しない製鉄法が求められているが、現時点で実用的な技術は存在しない。 In addition, in these processes, 0.5 tons of coal is required to produce 1 ton of iron, and 2 tons of carbon dioxide (CO 2 ) are emitted during this process. Currently, from the perspective of global environmental issues, there is a need for a steel manufacturing method that does not emit CO2 , but no practical technology currently exists.
 ところで、化学分野においては、水素が強力な還元剤であることは良く知られており、酸化鉄を水素で鉄に還元することが可能である(例えば、非特許文献1)。水素による還元法を化学式で示すと下記の通りである。また、そのとき酸化鉄を水素雰囲気で還元する原理実験の一例の還元率と温度との関係を図1に示す。このことから、本発明者らは、550℃以上の高温状態の流体(気体、液体)中で水素を酸化鉄に反応させれば、酸化鉄の100%を鉄に還元できると考える。 By the way, in the chemical field, it is well known that hydrogen is a strong reducing agent, and it is possible to reduce iron oxide to iron with hydrogen (for example, Non-Patent Document 1). The chemical formula for the reduction method using hydrogen is as follows. Further, FIG. 1 shows the relationship between reduction rate and temperature in an example of a principle experiment in which iron oxide is reduced in a hydrogen atmosphere. From this, the present inventors believe that 100% of iron oxide can be reduced to iron by reacting hydrogen with iron oxide in a fluid (gas, liquid) at a high temperature of 550° C. or higher.
 Fe+3H→2Fe+3HFe 2 O 3 +3H 2 →2Fe+3H 2 O
 但し、水素は気体なので、石炭のような固体に比べて極めて希薄なエネルギーで、同じ体積で比べると石炭の1/3000のエネルギーしかない。従って、本発明者らは、従来の技術であれば、同じ熱量を得るためには、大量のガスを吹き込む必要があると考えた。また、水素は発火しやすく、大量の水素を安全に扱うことも難しいことが一般的に知られている。これらが、水素による製鉄(水素製鉄)が実現できないでいる理由の1つとされている。
 また、仮に水素製鉄が可能だとしても、現在の技術では、水素は主にメタンなどの化石燃料から生成されており、水素製造時にCOやCOを排出してしまう実情があり、このようにして発生させた水素を用いる水素製鉄は、総合的には二酸化炭素や一酸化炭素を排出したことになる。その過程を化学式で示すと下記の通りである。
However, since hydrogen is a gas, its energy is extremely dilute compared to solids such as coal, and when compared with the same volume, it has only 1/3000 of the energy of coal. Therefore, the present inventors thought that in order to obtain the same amount of heat using conventional techniques, it would be necessary to blow in a large amount of gas. Furthermore, it is generally known that hydrogen is easily ignited and that it is difficult to safely handle large amounts of hydrogen. These are considered to be one of the reasons why steelmaking using hydrogen (hydrogen steelmaking) has not been realized.
Furthermore, even if hydrogen steelmaking were possible, with current technology, hydrogen is mainly generated from fossil fuels such as methane, and the actual situation is that CO2 and CO are emitted during hydrogen production. Hydrogen steelmaking, which uses the hydrogen generated by hydrogen, will overall emit carbon dioxide and carbon monoxide. The process is shown below using a chemical formula.
 CH+2O→CO+2HO  (高温水蒸気生成)
 CH+HO→CO+3H  (水素発生)
CH 4 +2O 2 →CO 2 +2H 2 O (high temperature steam generation)
CH 4 +H 2 O → CO + 3H 2 (hydrogen generation)
 本発明者らは、上述のように、鉄鉱石の還元には水素が最適なので、(a)水素を安価で製造でき、(b)その水素で酸化鉄を還元できれば、最も効率が良いと考えた。また、本発明者らは、その際に(c)化石燃料をできるだけ使用しないことも重要であると考えた。そして、本発明者らが上記(a)(b)を同時に実現できる媒体として熔融塩を用いたのが、本発明の特徴の1つである。なお、(c)については後述する。 As mentioned above, the present inventors believe that since hydrogen is optimal for reducing iron ore, it would be most efficient if (a) hydrogen could be produced at a low cost and (b) iron oxide could be reduced with the hydrogen. Ta. The inventors also considered it important to (c) avoid using fossil fuels as much as possible. One of the features of the present invention is that the present inventors used molten salt as a medium that can simultaneously achieve the above (a) and (b). Note that (c) will be described later.
 熔融塩は数千種類あるとされており、例えば、融点613℃の塩化リチウム(LiCl)熔融塩を用いることも考えられる。この塩を約650℃に加熱し、ここに水を吹き込み、更に、この水を電気分解すれば、後述のNaOH熔融塩の場合と同様に、陰極に水素(H)、陽極に酸素(O)が出てくる。
 厳密には、上記の水の電気分解においては、陰極において、以下の反応が進行する。
 H+ +e→H
 HO+e→H+OH
 OH+e→H+O--
 すなわち、水素イオンなどから水素原子(H)が生成する。その後、水素原子2個が結合し、水素分子(H)、つまり水素ガスが発生する。
It is said that there are several thousand types of molten salt, and for example, lithium chloride (LiCl) molten salt having a melting point of 613° C. may be used. If this salt is heated to about 650°C, water is blown into it, and this water is further electrolyzed, hydrogen (H 2 ) is produced at the cathode and oxygen (O 2 ) will appear.
Strictly speaking, in the water electrolysis described above, the following reaction proceeds at the cathode.
H + +e - →H
H 2 O+e - →H+OH -
OH - +e - →H+O --
That is, hydrogen atoms (H) are generated from hydrogen ions and the like. Thereafter, two hydrogen atoms combine to generate hydrogen molecules (H 2 ), that is, hydrogen gas.
 本発明者らは、酸化鉄粒子を熔融塩中の陰極付近に投入すると、上述の生成水素原子により還元され、酸化鉄粒子が鉄粒子(Fe)となることに着目した。
 Fe+6H→2Fe+3H
 また、上述の発生水素分子によっても酸化鉄粒子が還元されて鉄粒子となる。
 Fe+3H→2Fe+3H
The present inventors have noticed that when iron oxide particles are introduced into molten salt near the cathode, they are reduced by the above-mentioned generated hydrogen atoms, and the iron oxide particles become iron particles (Fe).
Fe2O3 + 6H →2Fe+ 3H2O
Further, the iron oxide particles are also reduced by the above-mentioned generated hydrogen molecules to become iron particles.
Fe 2 O 3 +3H 2 →2Fe+3H 2 O
 上記では、最初にLiCl熔融塩を使用した例について記載した。但し、塩化物は融点が高く、LiClでも融点が613℃である。そこで、他の適切な熔融塩としては、アルカリ金属水酸化物及び/又はアルカリ土類金属水酸化物(例えば、LiOH、NaOH、KOH、RbOH、CsOH、MG(OH)、Ca(OH)、Sr(OH)、及び、Ba(OH)等)があり、これらの内の少なくとも一つ又はこれらの組み合わせが、適切である。特に、NaOHの融点は318℃で沸点は1388℃、KOHの融点は360℃で沸点は1320℃なので、LiClなどの塩化物よりも融点が低く、低い温度の熱源でも本発明をより良好に実施でき、熱源の自由度が大きい。かつ、これらNaOH及びKOHの2種類の水酸化物は潮解性も大きいので、水蒸気を多く取り入れることができるため、塩化物よりも反応速度が大きいという利点がある。 In the above, an example using LiCl molten salt was first described. However, chloride has a high melting point, and even LiCl has a melting point of 613°C. Therefore, other suitable molten salts include alkali metal hydroxides and/or alkaline earth metal hydroxides (for example, LiOH, NaOH, KOH, RbOH, CsOH, MG(OH) 2 , Ca(OH) 2 , Sr(OH) 2 , Ba(OH) 2 , etc.), and at least one of these or a combination thereof is suitable. In particular, NaOH has a melting point of 318°C and a boiling point of 1388°C, and KOH has a melting point of 360°C and a boiling point of 1320°C, so the melting point is lower than that of chlorides such as LiCl, and the present invention can be carried out better even with a low temperature heat source. This allows for a large degree of freedom in selecting heat sources. In addition, these two types of hydroxides, NaOH and KOH, have a high deliquescent property and can take in a large amount of water vapor, so they have the advantage of a higher reaction rate than chlorides.
 なお、後述のように、NaOHは一種の溶媒であって、消耗しない。また、塩化リチウムの場合も、消耗しない。 Note that, as described later, NaOH is a type of solvent and is not consumed. Also, in the case of lithium chloride, it is not consumed.
 水酸化ナトリウム(苛性ソーダ:NaOH)における水の電気分解の化学式は、次の通りである。なお、NaOH熔融塩は、NaイオンとOHイオンから成り立っており、Naはイオン化傾向が大きく、Naはそのままで変化しない。即ち、NaOHは一種の溶媒であって、消耗しない。 The chemical formula for water electrolysis in sodium hydroxide (caustic soda: NaOH) is as follows. Note that the NaOH molten salt is composed of Na + ions and OH - ions, Na has a strong tendency to ionize, and Na remains unchanged. That is, NaOH is a type of solvent and is not consumed.
 4HO+4e→2H+4OH(陰極から水素が発生)
 4OH→O+2HO+4e(陽極側で酸素が発生)
4H 2 O+4e - →2H 2 +4OH - (Hydrogen is generated from the cathode)
4OH - →O 2 +2H 2 O+4e - (Oxygen is generated on the anode side)
 この2つの化学式から、結局、水が水素と酸素へと変化したことになる。化学式で示すと下記の通りである。
 2HO→2H+O
From these two chemical formulas, it follows that water was transformed into hydrogen and oxygen. The chemical formula is as follows.
2H 2 O → 2H 2 +O 2
 更に、酸化鉄粒子をアルカリ金属水酸化物(例えばNaOH)の熔融塩に投入すると、水素により還元され、酸化鉄が鉄粒子(Fe)となる化学反応式は、前記のLiClを熔融塩として用いた場合と同じで、下記の通りである。
 Fe+3H→2Fe+3H
Furthermore, when iron oxide particles are introduced into a molten salt of an alkali metal hydroxide (for example, NaOH), they are reduced by hydrogen, and the chemical reaction formula in which the iron oxide becomes iron particles (Fe) is based on the above-mentioned LiCl as the molten salt. The situation is the same as in the case below.
Fe 2 O 3 +3H 2 →2Fe+3H 2 O
 更に、本発明の特徴の一つは、前述の(a)、即ち、安い水素の製造法に関するものである。一般に水の電気分解は非常に大きい電気エネルギーを必要とする。それに対し、本発明は、電気エネルギーと熱エネルギーの両方により、少ないエネルギーで水素を得ることができる。
 固体電解質も視野に入れ検討したが、現状1000℃程度の温度を必要とされており、それに伴う種々の問題により、実用化には至っていなかった。本発明の高温水蒸気電解は、300℃~700℃程度の実用可能な温度で実施でき、少ないエネルギーで水素を得ることができる。
Furthermore, one of the features of the present invention relates to the above-mentioned (a), that is, an inexpensive method for producing hydrogen. Generally, water electrolysis requires a large amount of electrical energy. In contrast, the present invention can obtain hydrogen with less energy using both electrical energy and thermal energy.
Although solid electrolytes were considered, they currently require a temperature of about 1000° C., and various problems associated with this have prevented them from being put into practical use. The high-temperature steam electrolysis of the present invention can be carried out at a practical temperature of about 300° C. to 700° C., and hydrogen can be obtained with less energy.
 ところで、電気エネルギーと熱エネルギーを同時に得る技術としては火力発電があるが、火力発電は化石燃料を使用するもので、二酸化炭素排出削減の可能性は、論外である。また、再生エネルギーとして有力視されている太陽電池や風力は、電力しか生み出すことができないのが実情である。これに対して、本発明者らが、電気エネルギーと高熱の両方を供給できる熔融塩原子炉をエネルギー源として利用でき、かつ二酸化炭素の削減ができ及びより安価でできることを見出したのが、本発明のもう一つの特徴である(前述の(c))。
 一般的に、水の電気分解を電気エネルギー(電解法)と熱エネルギー(熱化学法)の併用により行う方法を「ハイブリッド熱化学法」と称している。電解法と熱化学法の併用で、必要エネルギーは水素1m当たり約3kWhで済み、従来の水電解法(約5kWh)より安価である。
By the way, thermal power generation is a technology for obtaining electrical energy and thermal energy at the same time, but thermal power generation uses fossil fuels, so the possibility of reducing carbon dioxide emissions is out of the question. Furthermore, the reality is that solar cells and wind power, which are considered promising sources of renewable energy, can only generate electricity. In contrast, the present inventors discovered that a molten salt nuclear reactor, which can supply both electrical energy and high heat, can be used as an energy source, reduce carbon dioxide emissions, and be done at a lower cost. This is another feature of the invention ((c) above).
Generally, a method in which water is electrolyzed using a combination of electrical energy (electrolytic method) and thermal energy (thermochemical method) is called a "hybrid thermochemical method." Using a combination of electrolysis and thermochemical methods, the required energy is only about 3kWh per cubic meter of hydrogen, which is cheaper than the conventional water electrolysis method (about 5kWh).
 図2の下側曲線に示すように、水の電気分解は常温でも可能であるが、高い電圧(エネルギー)が必要である。しかし、電気分解の際の温度を上げれば、電圧が低くて済むことが分かる。
 図2の上側曲線は、投入した電気エネルギー(ΔG)と、熱エネルギー(TΔS)の合計エンタルピー(ΔH)を示している。この曲線から、高温に上げることができれば、合計の必要エネルギー量が少なくて済むことが分かる。本発明では、熔融塩とその容器が現時点で実現可能な650℃を設定することが望ましい。しかし、今後、容器の高温に対する耐久性などが実証されたり向上できれば、更なる高温で実施でき、更に少ないエネルギーで(即ち、安いコストで)製錬が可能になる。
As shown in the lower curve of FIG. 2, water electrolysis is possible even at room temperature, but requires high voltage (energy). However, it turns out that if the temperature during electrolysis is raised, the voltage can be lowered.
The upper curve in FIG. 2 shows the total enthalpy (ΔH) of the input electrical energy (ΔG) and thermal energy (TΔS). This curve shows that the higher the temperature, the less total energy required. In the present invention, it is desirable to set the temperature of the molten salt and its container to 650°C, which is currently possible. However, if the durability of the container against high temperatures is proven or improved in the future, it will be possible to carry out smelting at even higher temperatures and with even less energy (that is, at a lower cost).
 本発明者らは、既に、熔融塩中に水を吹き込み、この水を電気分解する技術を種々検討し開発してきた。例えば、この技術をアンモニア合成に利用した技術があり、この技術は、電気分解により水素原子を生成せしめる技術である(非特許文献3のFig.7参照)。 The present inventors have already studied and developed various techniques for injecting water into molten salt and electrolyzing this water. For example, there is a technology that utilizes this technology for ammonia synthesis, and this technology is a technology that generates hydrogen atoms by electrolysis (see Fig. 7 of Non-Patent Document 3).
 本発明者らは、更に鋭意検討した結果、熔融塩中に電気分解により水素を製造せしめ、製造した水素を酸化鉄の還元に利用する本発明を見出したのである。この仕組みは、後記〔実施例〕における原理実験で確認されている。更に、本発明者らは、図3に示す本実施形態における水素を使用する金属化合物の還元装置を用いることで、塩化リチウム(LiCl)熔融塩を約650℃に加熱し、ここに水を吹き込み、この水を電気分解すれば、陰極に水素、陽極に酸素が出てくること、更に酸化鉄粒子を熔融塩中に陰極付近に存在させると、酸化鉄粒子は水素により還元され、酸化鉄の還元物となり、更に還元が進行することで鉄粒子(Fe)となることを見出した。 As a result of further intensive studies, the present inventors have discovered the present invention, in which hydrogen is produced in molten salt by electrolysis, and the produced hydrogen is utilized for reducing iron oxide. This mechanism has been confirmed in principle experiments described later in [Example]. Furthermore, the present inventors heated lithium chloride (LiCl) molten salt to about 650° C. by using the metal compound reduction device using hydrogen in this embodiment shown in FIG. If this water is electrolyzed, hydrogen will come out at the cathode and oxygen will come out at the anode.Furthermore, if iron oxide particles are present in the molten salt near the cathode, the iron oxide particles will be reduced by hydrogen, and the iron oxide will be reduced. It has been found that it becomes a reduced product, and as the reduction progresses further, it becomes iron particles (Fe).
 この図3から分かる様に、本発明の製鉄法及びその製鉄装置は、製鉄法としては極めて単純な設備であり、製鉄に必要な温度も、現在の製鉄での約2000℃に比べれば、低温である。本発明の製鉄法及びその製鉄装置に使用する熔融塩は蒸気圧が非常に低く、殆ど揮発しないので、常圧で運転できるという利点がある。本発明の製鉄法及びその製鉄装置に必要な原料は、鉄鉱石と水だけであり、熔融塩は消耗しないので継続して使用できるという利点がある。また、本発明の製鉄法及びその製鉄装置であれば、化学式から明らかなように、COも発生しない。 As can be seen from Fig. 3, the iron manufacturing method and the iron manufacturing equipment of the present invention are extremely simple equipment for iron manufacturing, and the temperature required for iron manufacturing is lower than the approximately 2000°C that is used in current iron manufacturing. It is. The molten salt used in the iron manufacturing method and the iron manufacturing equipment of the present invention has a very low vapor pressure and hardly evaporates, so it has the advantage that it can be operated at normal pressure. The raw materials required for the iron manufacturing method and the iron manufacturing equipment of the present invention are only iron ore and water, and the molten salt is advantageous in that it can be used continuously because it is not consumed. Moreover, with the iron manufacturing method and the iron manufacturing apparatus of the present invention, as is clear from the chemical formula, no CO 2 is generated.
 なお、図3における本発明の製鉄法及びその製鉄装置では、最初に投入する水(好適には、100℃を越えている水蒸気)を熔融塩中に吹き込む設計としている。しかし、前述のように、本発明の製鉄法及びその製鉄装置では、最初に投入した水は電気分解で水素が生成するものの、酸化鉄の還元で再び水に戻ることになる。従って、本発明の製鉄法及びその製鉄装置では、熔融塩中に水を直接吹き込まなくても、熔融塩に最初に含まれる水分で水素生成及び酸化鉄還元の反応は進行するはずであるが、十分な水を熔融塩中に補給し当該反応をより良好に進行させるためには、水を熔融塩中に吹き込むほうがより確実である。 Note that the iron manufacturing method and iron manufacturing apparatus of the present invention shown in FIG. 3 are designed to blow the water (preferably water vapor at a temperature exceeding 100° C.) initially introduced into the molten salt. However, as described above, in the iron manufacturing method and the iron manufacturing apparatus of the present invention, although hydrogen is produced by electrolysis of the initially introduced water, it is returned to water by reduction of iron oxide. Therefore, in the iron manufacturing method and the iron manufacturing equipment of the present invention, the reactions of hydrogen generation and iron oxide reduction should proceed with the water initially contained in the molten salt without directly blowing water into the molten salt. In order to replenish enough water into the molten salt and make the reaction proceed better, it is more reliable to blow water into the molten salt.
 また、製造された水素は100%のすべてを、酸化鉄の還元に用いることができずに、一部の余剰な水素は熔融塩の上部から気体となって出て行きやすい。そこで、本発明者らは、水素は酸素と混合すると発火の可能性があるので、図4に示すように、水素と酸素を別々に排出できるような構成を備える本発明の第2実施形態の製鉄法及びその製鉄装置を見出した。
 本発明の第2実施形態の製鉄法及びその製鉄装置により、この余剰の水素は、再び、熔融塩体系に吹き込まれ、この水素を酸化鉄の還元に利用することもできる。あるいは、水素は熔融塩中でなくても酸化鉄を還元できるので、本発明者らは、図10に示すように、この余剰の発生した水素を(例えば、熔融塩の無い)別の容器に導入し、酸化鉄の還元に用いることができるような構成を備える本発明の第3実施形態の製造方法及その製鉄装置も考えられる。
Furthermore, not all of the 100% of the produced hydrogen can be used for the reduction of iron oxide, and some surplus hydrogen tends to escape from the upper part of the molten salt in the form of gas. Therefore, since there is a possibility of ignition when hydrogen is mixed with oxygen, the present inventors developed a second embodiment of the present invention that has a configuration that allows hydrogen and oxygen to be discharged separately, as shown in FIG. Discovered iron manufacturing methods and iron manufacturing equipment.
According to the iron manufacturing method and iron manufacturing apparatus according to the second embodiment of the present invention, this surplus hydrogen is again blown into the molten salt system, and this hydrogen can also be used for reducing iron oxide. Alternatively, since hydrogen can reduce iron oxide even if it is not in the molten salt, the inventors can transfer this excess generated hydrogen to another container (e.g., free of molten salt), as shown in FIG. A manufacturing method and iron manufacturing apparatus thereof according to a third embodiment of the present invention can also be considered, which has a configuration that can be introduced and used for reducing iron oxide.
 上述の過程をまとめると、本発明者らが見出した本発明の特徴的な主な要素は、以下の3項目である。なお、本明細書には、鉄の製錬についての実施形態及び実施例を記述したが、以下の3項目は、鉄以外にも、酸化物や硫化物などの金属化合物として産出する、金属(例えば、銅や亜鉛など)の製錬にも適用できる。
 (1)熔融塩中で、水を電気分解する。
 (2)電気分解により得られた水素により、酸化鉄などの金属酸化物を還元する。
 (3)水の電気分解において、必要な電力と高温の熱を熔融塩原子炉(通称FUJI)によって得る。
To summarize the above-mentioned process, the main characteristic elements of the present invention discovered by the present inventors are the following three items. Although embodiments and examples regarding iron smelting have been described in this specification, the following three items also apply to metals (other than iron, which are produced as metal compounds such as oxides and sulfides). For example, it can also be applied to the smelting of copper, zinc, etc.).
(1) Electrolyze water in molten salt.
(2) Metal oxides such as iron oxide are reduced by hydrogen obtained by electrolysis.
(3) In water electrolysis, the necessary electric power and high-temperature heat are obtained using a molten salt nuclear reactor (commonly known as FUJI).
 上記の熔融塩製鉄法をRIMS(Reduction of Iron-oxide by Molten Salt)と称することとし、RIMSの経済性について以下に評価する。RIMSによる鉄(Fe)の製造エネルギーは、水素製造エネルギーに等しく、鉄1トン当たり約2,500kWhである。従って、熔融塩炉FUJIによる発電コスト5円/kWhとすれば12,500円である。RIMSは単純なシステムなので、設備費(資本費)は熔鉱炉に比べればかなり安いと思われる。 The above molten salt iron manufacturing method will be referred to as RIMS (Reduction of Iron-oxide by Molten Salt), and the economic efficiency of RIMS will be evaluated below. The energy for producing iron (Fe) by RIMS is equivalent to the energy for producing hydrogen, which is approximately 2,500 kWh per ton of iron. Therefore, if the power generation cost by the molten salt furnace FUJI is 5 yen/kWh, it is 12,500 yen. Since RIMS is a simple system, the equipment cost (capital cost) is expected to be considerably lower than that of a molten metal furnace.
 一方、前述のように、鉄1トンの製造に、0.5トンの石炭が必要で、その際に2トンのCO)を排出する。2021年末の石炭費はトン当たり2万円を越えており、現状の鉄1トン当たりの石炭費は10,000円となり、RIMSによるコストとほぼ同程度である。更に、CO1トン排出時の炭素税を1万円と想定すれば、(鉄鉱石原料費を除いた)製錬の目標コストは約3万円となり、RIMSの製造コスト(14,000円)はこの値を十分に下回る。 On the other hand, as mentioned above, 0.5 tons of coal is required to produce 1 ton of iron, and 2 tons of CO 2 ) are emitted during this process. The coal cost at the end of 2021 is over 20,000 yen per ton, and the current coal cost per ton of iron is 10,000 yen, which is almost the same as the cost from RIMS. Furthermore, if we assume that the carbon tax per ton of CO 2 emitted is 10,000 yen, the target cost for smelting (excluding iron ore raw material costs) is approximately 30,000 yen, and the manufacturing cost of RIMS (14,000 yen). ) is well below this value.
 更に、図5のように、熔融塩炉から熱を供給すれば、上記よりも更に安くなるはずである。即ち、熔融塩炉の発電熱効率は約44%であり、いわば発熱量の半分を捨てていることになる。従って、熔融塩炉で発電用に使用していた高温の熱の一部をそのまま利用できれば、更に効率が上がり、コストが安くなるはずである。以上の熱電併給炉の技術は、高温を排出することができる高温ガス炉など、他の原子炉にも適用可能である。
 なお、熔融塩炉の出口温度は約700℃であり、しかも熔融塩という液体同士なので、熱交換しやすい。熔融塩炉で使用する熔融塩はフッ化物で、今回のRIMSの熔融塩は塩化物や水酸化物という違いがあるが、液体としての物性は大きく違わない。いずれも化学的に不活性で、安定な物質である。
Furthermore, if heat is supplied from a molten salt furnace as shown in FIG. 5, it should be even cheaper than the above. That is, the heat generation efficiency of the molten salt furnace is approximately 44%, which means that half of the calorific value is wasted. Therefore, if part of the high-temperature heat used for power generation in the molten salt furnace could be used as is, efficiency would be further improved and costs would be reduced. The above-described technology for combined heat and power reactors can also be applied to other nuclear reactors, such as high-temperature gas reactors that can discharge high temperature.
The outlet temperature of the molten salt furnace is about 700°C, and since the molten salts are liquids, heat exchange is easy. The molten salt used in the molten salt furnace is a fluoride, and the molten salt used in this RIMS is a chloride or a hydroxide, but the physical properties as a liquid are not significantly different. Both are chemically inert and stable substances.
 上記の経済性評価の結果を図6に示す。上述のように、資本費及び鉄鉱石原料費を除いた製錬のコストを比較している。本発明ケース1は、元々の発電専用熔融塩炉FUJIに、ついての試算で、本発明ケース2は、熱電併給炉についての評価である。 The results of the above economic evaluation are shown in Figure 6. As mentioned above, the smelting costs excluding capital costs and iron ore raw material costs are compared. Case 1 of the present invention is a trial calculation for the original molten salt furnace FUJI exclusively for power generation, and Case 2 of the present invention is an evaluation for a combined heat and power furnace.
 熔融塩炉FUJIの標準的な発電容量は20万kWe(200MWe)で、鉄1トン生産の水素製造に2,500kWhを消費するので、1時間当たり80トンの生産量である。従って、年間70万トンの鉄を生産できる。一方、日本の熔鉱炉(高炉)は約30基で、年間約9000万トンを生産している。即ち、平均的に年間1基が300万トンを生産している。以上から、図7に示すように、高炉1基当たり、約5基のFUJIが望ましい(2年に一度の定期検査があるので、年平均稼働率を約90%と想定)。この想定からすると日本全体では、年間70万トンの鉄を生産する場合には150基のFUJIが必要となり、全世界ではその20倍の3,000基が必要となるであろう。 The standard power generation capacity of the molten salt furnace FUJI is 200,000 kWe (200 MWe), and 2,500 kWh is consumed to produce hydrogen for one ton of iron, resulting in a production rate of 80 tons per hour. Therefore, 700,000 tons of iron can be produced annually. On the other hand, Japan has about 30 molten metal furnaces (blast furnaces) and produces about 90 million tons annually. That is, on average, one unit produces 3 million tons per year. From the above, as shown in Figure 7, it is desirable to have about 5 FUJI units per blast furnace (as there is a periodic inspection once every two years, the annual average operating rate is assumed to be about 90%). Based on this assumption, if Japan as a whole were to produce 700,000 tons of steel per year, 150 FUJI units would be required, and 20 times that number, 3,000 units, would be needed worldwide.
 また、これらの供給電力を太陽光発電や風力発電などの再生エネルギーで賄えるか、考察する。後述の水素製造の項目で検討したように、熔融塩炉FUJIの1基分でさえ、再生エネルギーで賄うことは非現実的であり、まして、日本全体で150基分の熔融塩炉FUJIの電力を得ることは不可能である。従って、本発明は経済性に優れ、かつ、実現可能なものである。 In addition, we will consider whether this power supply can be covered by renewable energy such as solar power generation or wind power generation. As discussed in the section on hydrogen production below, it is unrealistic to use renewable energy to power even one FUJI molten salt reactor, much less the power needed to power 150 FUJI molten salt reactors in Japan. It is impossible to obtain. Therefore, the present invention is highly economical and feasible.
 また、鉄のほか、酸化物や硫化物として産出する銅、亜鉛、ニッケル、錫、鉛、コバルト、モリブデンなどの金属も、現在、炭素による還元法が採用されており、前述のRIMSを適用することにより、COを出さない製錬ができる。
 更に、水素製造の熔融塩電解法であれば、アルミニウム、チタン、カリウム、カルシウム、ナトリウム、マグネシウムなどの他の金属も、単なる電解より、有利に製造できる可能性があり、例えば、原子炉の使用済み燃料の塩化物再処理(乾式再処理)にも適用できる可能性がある。
In addition to iron, metals such as copper, zinc, nickel, tin, lead, cobalt, and molybdenum, which are produced as oxides and sulfides, are currently reduced using carbon, and the RIMS described above is applied. This allows smelting without emitting CO2 .
Furthermore, the molten salt electrolysis method for hydrogen production has the potential to produce other metals such as aluminum, titanium, potassium, calcium, sodium, and magnesium more advantageously than by simple electrolysis; for example, using a nuclear reactor. It may also be applicable to chloride reprocessing (dry reprocessing) of spent fuel.
 以上のように、本発明は、人類3000年の製鉄の歴史を根本的に変えるものである。更にその他の金属酸化物などの金属化合物を還元して、酸化物等の金属化合物から金属化合物でない金属を製造する製錬分野にも応用できる。また、本発明は、COを出さないことにより、地球温暖化防止に大きく貢献する。 As described above, the present invention fundamentally changes the 3,000-year history of steel manufacturing. Furthermore, it can also be applied to the field of smelting and refining, in which metal compounds such as other metal oxides are reduced to produce metals other than metal compounds from metal compounds such as oxides. Furthermore, the present invention greatly contributes to the prevention of global warming by not emitting CO 2 .
 熔融塩原子炉(以下、熔融塩炉、通称FUJI)とは、ウランやトリウムなどを含む液体燃料を用いた原子炉であり、発電炉として提案されている(例えば非特許文献4)。熔融塩炉は炉心内に減速材を備え、液体燃料が減速材の中を流れる際に、核分裂反応を起こし、熱エネルギーを発生させ、その熱が発電に利用される。熔融塩炉は、燃料が液体であるため、燃料破損が起きない点や、水素爆発が起こらないことなど、安全性に優れ、また構造が単純なため、安価な発電システムとして、近年注目されている。熔融塩炉FUJIによる発電コスト5円/kWhについては非特許文献5に示されている。 A molten salt nuclear reactor (hereinafter referred to as a molten salt reactor, commonly known as FUJI) is a nuclear reactor that uses liquid fuel containing uranium, thorium, etc., and has been proposed as a power reactor (for example, Non-Patent Document 4). A molten salt reactor has a moderator in its core, and when liquid fuel flows through the moderator, a nuclear fission reaction occurs, generating thermal energy, which is used for power generation. Molten salt reactors have been attracting attention in recent years as an inexpensive power generation system because the fuel is liquid, so there is no fuel damage, no hydrogen explosions, and other safety features.Furthermore, the structure is simple. There is. The power generation cost of 5 yen/kWh using the molten salt furnace FUJI is shown in Non-Patent Document 5.
1-2.本技術における水素製造の概要について 1-2. Overview of hydrogen production using this technology
 一般的に、水の電気分解を電気エネルギー(電解法)と熱エネルギー(熱化学法)の併用により行う方法を「ハイブリッド熱化学法」と称している。前述のような電解法と熱化学法の併用で、製鉄における必要エネルギーは水素1m当たり約3kWhで済む。上記のように、熔融塩炉FUJIによる発電コスト5円/kWhとすれば、水素1m当たりのコストは15円となり、現在100円程度とされる製造コストを大幅に削減できる。 Generally, a method in which water is electrolyzed using a combination of electrical energy (electrolytic method) and thermal energy (thermochemical method) is called a "hybrid thermochemical method." By using the above-mentioned electrolytic method and thermochemical method in combination, the energy required for iron manufacturing is only about 3 kWh per cubic meter of hydrogen. As mentioned above, if the power generation cost using the molten salt furnace FUJI is 5 yen/kWh, the cost per cubic meter of hydrogen will be 15 yen, which can significantly reduce the manufacturing cost, which is currently around 100 yen.
 更に、前述の図5のような構成を採用した熔融塩製鉄RIMSに関し、熔融塩炉FUJIから、熱と電気の両方を供給する方式(熱電併給炉)についてコストを本発明者らが評価すると、下記の通りである。即ち、本発明者らは、前述の図2から、650℃での水の電解(水素製造)に必要な熱エネルギーと電気エネルギーは、凡そ半々と仮定する。元々の発電専用熔融塩炉FUJIの電気出力を20万kWe、熱効率50%とすると、今回、図2のように発電量を10万kWeとし、残りの10万kWe分の熱エネルギー(約20万kWt)の両方を供給すれば、約1.5倍のエネルギーを供給できることになる。この計算過程を図9に示す。
 よって、本発明者らは、熱電併給炉とすれば、水素製造コストは1/1.5になり、水素1m当たり約10円で製造できることになることを示すことができた。本発明者らは現状の水素コストとの比較結果を図9に示すが、本発明により、大幅なコスト低減を図ることができることを示すことができた。
Furthermore, regarding the molten salt iron manufacturing RIMS that adopts the configuration as shown in FIG. It is as follows. That is, the present inventors assume, from FIG. 2 described above, that the thermal energy and electrical energy required for water electrolysis (hydrogen production) at 650° C. are approximately half. Assuming that the electric output of the original FUJI molten salt furnace exclusively for power generation was 200,000 kWe and the thermal efficiency was 50%, we now set the power generation amount to 100,000 kWe as shown in Figure 2, and the thermal energy for the remaining 100,000 kWe (approximately 200,000 kWe). kWt), approximately 1.5 times more energy can be supplied. This calculation process is shown in FIG.
Therefore, the present inventors were able to show that if a combined heat and power furnace is used, the hydrogen production cost will be reduced to 1/1.5, and hydrogen can be produced at a cost of about 10 yen per 1 m 3 of hydrogen. The present inventors show the comparison results with the current hydrogen cost in FIG. 9, and were able to demonstrate that the present invention can achieve a significant cost reduction.
1-3.水素社会への実現性の検討について
 上記のように、ハイブリッド熱化学法で水素1mを製造するのに3kWhが必要なので、発電専用の熔融塩炉FUJI(20万kWe)一基の時間当たり水素製造量は67,000m/時である(=200,000kWe/3kWh)。従って、年間製造量は90%稼働率とすれば、5.3億m/年である(=67000x24x365x0.9)。熱電併給方式にすれば、この1.5倍となり、100,000m/時、及び8億m/年となることを本発明者らは示すことができた。
1-3. Regarding the feasibility of creating a hydrogen society As mentioned above, 3 kWh is required to produce 1 m 3 of hydrogen using the hybrid thermochemical method. The production volume is 67,000 m 3 /hour (=200,000 kWe/3 kWh). Therefore, the annual production amount is 530 million m 3 /year (=67000x24x365x0.9) if the operating rate is 90%. The present inventors were able to show that if a combined heat and power system is used, the amount will be 1.5 times this, 100,000 m 3 /hour, and 800 million m 3 /year.
 一方で、本発明者らは、エコエネルギーとしてよく知られている太陽光電池についての水素社会への実現性についても検討した。本発明者らは、いわゆるメガソーラー(定格時1000kW)を対象に、平均稼働率を約20%と想定する。そして、水素1mを従来の電気分解法で製造するのに5kWhが必要なので、時間当たり水素製造量は40m/時である(=200kWe/5kWh)。従って、年間製造量は35万m/年である(=40x24x365)。ここで、熱電併給方式のFUJI1基と同じ水素製造量を得るには、メガソーラーが2500基必要となる。メガソーラー1基の敷地面積は野球場1個に相当する約2万mといわれており、メガソーラー2500基の合計では野球場2500個分に当たる。
 また、本発明者らは、エコエネルギーとしてよく知られている風力発電についての水素社会への実現性についても検討した。こちらの風力発電もメガ級(1000kWe)の巨大風車を対象にすると、平均稼働率は約20%なので、メガ風車が2500基必要となる。メガ風車1基を500m毎に建設するとして、メガ風車2500基では、1250kmもの広がりとなる。
 従って、日本の水素社会の将来は不確かだが、日本だけでも年間で数百億mの水素が必要と見込まれており、太陽光発電や風力発電では、日本で年間に必要とされる水素が、とても賄えないことが分かる。
On the other hand, the present inventors also examined the feasibility of solar cells, which are well known as eco-energy, in a hydrogen society. The present inventors assume that the average operation rate is about 20% for so-called mega solar (rated 1000 kW). Since 5 kWh is required to produce 1 m 3 of hydrogen using the conventional electrolysis method, the amount of hydrogen produced per hour is 40 m 3 /hour (=200 kWe/5 kWh). Therefore, the annual production amount is 350,000 m 3 /year (=40x24x365). In order to produce the same amount of hydrogen as one FUJI combined heat and power generation system, 2,500 mega solar units would be required. The site area of one mega solar power plant is said to be approximately 20,000 square meters , which is equivalent to one baseball field, and the total area of 2,500 mega solar power plants is equivalent to 2,500 baseball fields.
The present inventors also examined the feasibility of wind power generation, which is well known as eco-energy, in a hydrogen society. For this type of wind power generation, if we target mega-class (1,000 kWe) wind turbines, the average operating rate is about 20%, so 2,500 mega-scale wind turbines are required. Assuming that one mega wind turbine is built every 500 meters, 2,500 mega wind turbines would cover an area of 1,250 km.
Therefore, although the future of Japan's hydrogen society is uncertain, it is estimated that Japan alone will require tens of billions of cubic meters of hydrogen per year, and solar power generation and wind power generation will not exceed Japan's annual hydrogen needs. , it turns out that it is very difficult to cover.
1-4.本技術における水素を用いる製鉄方法の概要について
 上述した水素製造の技術は、熔融塩中において水の電気分解を行うものである。所で、図1で示すように、気体の水素雰囲気においても、酸化鉄を還元することが可能である。この気体の水素雰囲気下においてもできることは、本発明における水素製造方法により発生せしめた水素を別容器に導入し、当該水素により金属化合物を還元し、金属を得る、金属製造方法に内包するものである。
1-4. Overview of the steel manufacturing method using hydrogen in the present technology The hydrogen production technology described above involves electrolysis of water in molten salt. By the way, as shown in FIG. 1, it is possible to reduce iron oxide even in a gaseous hydrogen atmosphere. What can be done even in this gaseous hydrogen atmosphere is to introduce the hydrogen generated by the hydrogen production method of the present invention into a separate container, reduce the metal compound with the hydrogen, and obtain the metal, which is included in the metal production method. be.
 即ち、本発明において、高温の熔融塩中に水蒸気を導入し、ハイブリッド熱化学法により電気分解を行えば、水素と酸素が得られる。この内の得られた水素を電解部から排出又は回収や供給し、酸化鉄粒子を配置した電解部(好適には水素製造部)とは別の容器に導入すれば、酸化鉄が水素によって還元され、開始前の酸化物でない鉄(より還元された鉄又は鉄化合物)を得ることができることを本発明者らは見出した。前述のように、酸化鉄の還元に要するエネルギーは、水素製造エネルギーと等しいので、本発明による経済性(製造コスト)は、前述の製鉄技術と同等であり優れている。本発明における、発生せしめた水素を別容器に導入し、当該水素により、金属化合物を還元し、金属を得る技術の一例を図10に示すが、当該技術はこの構成に特に限定されない。 That is, in the present invention, hydrogen and oxygen can be obtained by introducing water vapor into a high-temperature molten salt and performing electrolysis using a hybrid thermochemical method. If the obtained hydrogen is discharged, recovered, or supplied from the electrolytic section and introduced into a container different from the electrolytic section (preferably the hydrogen production section) in which iron oxide particles are arranged, iron oxide can be reduced by hydrogen. The inventors have found that it is possible to obtain iron (more reduced iron or iron compounds) that is not in its initial oxide form. As mentioned above, the energy required for reducing iron oxide is equal to the energy for producing hydrogen, so the economic efficiency (manufacturing cost) of the present invention is equivalent to and superior to the above-mentioned iron manufacturing technology. An example of a technique in the present invention in which generated hydrogen is introduced into a separate container and a metal compound is reduced by the hydrogen to obtain a metal is shown in FIG. 10, but the technique is not particularly limited to this configuration.
2.本実施形態に係る金属の製造方法
 本実施形態に係る金属の製造方法の例の説明において、上述した「1.」、後述する「3.」~「5.」及び内容などと重複する、電気分解機構、水素製造方法又は工程、金属化合物(好適には金属酸化物)の還元方法又は工程、熔融塩、金属の製造方法、制御などの各構成、各方法などの説明については適宜省略するが、当該「1.」~「5.」等の説明が、本実施形態にも当てはまり、適宜採用することができる。
2. Metal Manufacturing Method According to the Present Embodiment In the explanation of the example of the metal manufacturing method according to the present embodiment, the electrical Descriptions of each structure and each method, such as the decomposition mechanism, hydrogen production method or process, metal compound (preferably metal oxide) reduction method or process, molten salt, metal production method, control, etc., will be omitted as appropriate. , the explanations “1.” to “5.” etc. also apply to this embodiment and can be adopted as appropriate.
 本実施形態は、熔融塩中で水を電気分解することによって得られた水素により、熔融塩中の金属化合物を還元して金属を製造する又は得る、金属の製造方法、製錬に用いる金属の製造方法又は製錬方法を提供することができる。本実施形態の金属の製造方法は、図3、図4、図10、図6、図7などを参照にして理解することができる。 This embodiment describes a metal manufacturing method for manufacturing or obtaining a metal by reducing a metal compound in a molten salt with hydrogen obtained by electrolyzing water in the molten salt, and a method for manufacturing a metal used for smelting. A manufacturing method or a smelting method can be provided. The metal manufacturing method of this embodiment can be understood with reference to FIGS. 3, 4, 10, 6, and 7.
 また、本実施形態は、熔融塩中で電気分解することで水素を製造する水素製造工程、及び/又は、当該水素により金属化合物を還元する金属化合物還元工程を含む、金属の製造方法を提供することもできる。また、当該水素製造工程は、水の電気分解工程を採用し、当該水の電気分解によって陰極に水素を生成又は発生させてもよい。水の電気分解工程は、陰極にて水素を生成又は発生させる水素製造工程及び陽極にて酸素を発生させる酸素製造工程を含むことが好適である。また、本実施形態における金属化合物還元工程を経ることで、還元前の金属化合物と比較し、更に還元された金属化合物又は金属を得ることができる。 Further, the present embodiment provides a method for producing a metal, including a hydrogen production process of producing hydrogen by electrolysis in a molten salt, and/or a metal compound reduction process of reducing a metal compound with the hydrogen. You can also do that. Further, the hydrogen production process may employ a water electrolysis process, and hydrogen may be generated or generated at the cathode by electrolysis of the water. The water electrolysis step preferably includes a hydrogen production step of producing or generating hydrogen at the cathode and an oxygen production step of producing oxygen at the anode. Moreover, by going through the metal compound reduction step in this embodiment, it is possible to obtain a metal compound or metal that is further reduced compared to the metal compound before reduction.
 本実施形態における前記水素製造工程及び前記金属化合物還元工程は、別々に又は同時期に行うことができ、当該水素製造工程次いで当該得られた水素を用いる金属化合物還元工程を行うことも可能であり、また、当該水素製造工程で発生させた水素を回収又は貯蔵し、当該回収又は貯蔵された水素を、更に金属化合物還元工程又は金属製造工程などに幅広く利用すること又は再利用すること(例えば金属化合物還元工程等に戻して再利用することなど)も可能である。 The hydrogen production step and the metal compound reduction step in this embodiment can be performed separately or at the same time, and it is also possible to perform the metal compound reduction step using the obtained hydrogen after the hydrogen production step. In addition, the hydrogen generated in the hydrogen production process is recovered or stored, and the recovered or stored hydrogen is further widely used or reused in the metal compound reduction process or the metal production process (for example, in the metal compound reduction process or the metal production process). It is also possible to reuse it by returning it to the compound reduction process, etc.).
 本実施形態において、「前記水を電気分解することによって得られた水素」としては、例えば、電解部又は水素製造部から、より好適には「水の電気分解により得られる酸素と混合しないように構成されている水素製造部」から、排出又は回収、移送された水素であってもよい(例えば、図4、図10など参照)。また、発生した水素に陽極で発生した酸素が混在するような場合には、酸素除去及び/又は水素吸着のような材もしくは装置を使用して酸素濃度を低減又は酸素が実質的に含まれない水素を得、酸素濃度が低減された水素を用いてもよい。 In this embodiment, "hydrogen obtained by electrolyzing the water" is, for example, hydrogen obtained from the electrolytic section or the hydrogen production section, more preferably "hydrogen obtained by electrolyzing the water" It may also be hydrogen discharged, recovered, or transferred from a hydrogen production section that is configured (for example, see FIGS. 4 and 10). In addition, if the generated hydrogen is mixed with oxygen generated at the anode, oxygen removal and/or hydrogen adsorption materials or equipment may be used to reduce the oxygen concentration or substantially eliminate oxygen. Hydrogen may be obtained and hydrogen with reduced oxygen concentration may be used.
 また、本実施形態における水素製造工程及び金属化合物還元工程は、同じ反応容器内にて行うことが、得られた水素によって金属化合物を還元できる観点、二酸化炭素の排出削減、製造コスト低減及び製造効率の観点から望ましく、また、必要に応じて隔膜式電解法を採用してもよい。また、当該水素製造工程及び金属化合物還元工程は、別々の反応容器又は反応装置にて行うこともでき、このような場合、前記水素製造工程で発生させた水素を、気体回収機構や気体供給機構等の配管等の流路を用いて、別の反応容器等にて実施する金属化合物還元工程に供給するように構成されていることが好適である。 In addition, the hydrogen production process and the metal compound reduction process in this embodiment are performed in the same reaction vessel from the viewpoint of reducing the metal compound with the obtained hydrogen, reducing carbon dioxide emissions, manufacturing cost reduction, and manufacturing efficiency. A diaphragm electrolytic method may be adopted if desired from the viewpoint of the above, and if necessary. Further, the hydrogen production process and the metal compound reduction process can be performed in separate reaction vessels or reaction devices, and in such a case, the hydrogen generated in the hydrogen production process is transferred to a gas recovery mechanism or a gas supply mechanism. It is preferable that the metal compound be supplied to a metal compound reduction step carried out in a separate reaction vessel or the like using a flow path such as piping or the like.
2-1.水素製造工程
 本実施形態における水素製造工程は、熔融塩中で水を電気分解して水素を得ることが好適である。
 本実施形態に用いる水素製造工程として、特に限定されないが、熔融塩を電解浴として用いることが可能なように構成されている電気分解工程を採用することができ、当該電気分解工程を用いて水素を製造することができる。
 電気分解機構又は水素製造機構は、熔融塩への水供給機構、陰極及び陽極の電極、熔融塩を電解浴として含む反応容器(電解部)を備えることが好適である。また、反応容器は、垂直断面図が、図3のようなU形状であってもよいが、図4及び図10のようはH形状であることが、簡便な形状であるが、水素製造領域と酸素製造領域とを容易に区分けでき、酸素原子の量を少なくして水素の量が高まった領域内で水素を金属化合物に接触させて還元ができることから、及び/又は、それぞれの気体が混ざることなく発生及び回収が容易であることから、好適である。
2-1. Hydrogen Production Process In the hydrogen production process in this embodiment, it is preferable to electrolyze water in a molten salt to obtain hydrogen.
The hydrogen production process used in this embodiment is not particularly limited, but it is possible to adopt an electrolysis process configured to use molten salt as an electrolytic bath, and to produce hydrogen using the electrolysis process. can be manufactured.
The electrolysis mechanism or hydrogen production mechanism preferably includes a water supply mechanism to the molten salt, cathode and anode electrodes, and a reaction vessel (electrolytic section) containing the molten salt as an electrolytic bath. Further, the vertical cross-sectional view of the reaction vessel may be U-shaped as shown in FIG. 3, but it is convenient to have an H-shape as shown in FIGS. 4 and 10. This is because hydrogen can be easily separated from the oxygen production region, hydrogen can be brought into contact with metal compounds in the region where the amount of oxygen atoms is reduced and the amount of hydrogen is increased, and/or each gas can be mixed. This is suitable because it is easy to generate and recover without any waste.
2-1-1.電気分解機構
 本実施形態において電気分解を行う電解部(又は槽)は、熔融塩と、陰極及び陽極の電極とを備えることが好適であり(例えば、図3、4、10参照)、更に、陰極を備える水素製造部(陰極室ともいう)と、陽極を備える酸素製造部(陽極室ともいう)とを備えることがより好適であり、これら水素製造部及び酸素製造部を接続し液体である電解浴が移動できるように構成されている接続部を備えることが更に好適である(例えば、図4、10参照)。
 前記水素製造部は、熔融塩及び陰極が存在する液体領域と当該液体領域から発生した水素が存在する気体領域から構成されていることが好適である。また、前記酸素製造部は、熔融塩及び陽極が存在する液体領域と、当該液体領域から発生した酸素が存在する気体領域と、から構成されていることが好適である。但し、水素製造部及び/又は酸素製造部において、気体領域がないような構成であってもよい。
 また、前記接続部は、水素製造部及び酸素製造部のぞれぞれの気体領域に存在する気体が相互に移動できないように接続されていることが好適であり、より具体的には、液体である熔融塩のみが存在し両部を相互に移動できるような構成であることがより好適であり、更に好適には水素製造部及び酸素製造部の両部に存在する熔融塩の液面よりも下に接続部を配置することが好適である。
2-1-1. Electrolysis Mechanism In this embodiment, the electrolysis unit (or tank) that performs electrolysis preferably includes a molten salt and cathode and anode electrodes (see, for example, FIGS. 3, 4, and 10), and further includes: It is more preferable to have a hydrogen production section (also referred to as a cathode chamber) equipped with a cathode and an oxygen production section (also referred to as an anode chamber) equipped with an anode. It is further advantageous to provide a connection configured to allow movement of the electrolytic bath (see, for example, FIGS. 4, 10).
Preferably, the hydrogen production section includes a liquid region in which a molten salt and a cathode exist, and a gas region in which hydrogen generated from the liquid region exists. Further, it is preferable that the oxygen production section includes a liquid region in which molten salt and an anode exist, and a gas region in which oxygen generated from the liquid region exists. However, the structure may be such that there is no gas region in the hydrogen production section and/or the oxygen production section.
Further, it is preferable that the connection section is connected so that the gas existing in the gas regions of the hydrogen production section and the oxygen production section cannot move between each other. It is more preferable that the structure is such that only the molten salt exists and can move between the two parts, and even more preferably, the liquid level of the molten salt that exists in both the hydrogen production section and the oxygen production section is It is also preferable to arrange the connection section below the surface.
 電気分解機構は、陰極及び陽極に直流電流を流すことで、熔融塩中に含まれる水から水素及び酸素が得られるように構成されている。
 本実施形態における電解電流値は、特に限定されないが、例えば、金属塩化物(塩化金属ともいう)(LiClなど)を熔融塩とした場合には、陰極側は金属(Li)析出電位まで、陽極側は塩化ガス(例えばClなど)発生電位までの範囲内で可能な限り大きな電流値とし、陰極及び陽極電位の経時変化を確認しながら電解を行うことができる。また、電流密度として、例えば、1A/m2以上が好適であり、また、100A/m2以下が好適である。
The electrolysis mechanism is configured so that hydrogen and oxygen can be obtained from water contained in the molten salt by passing a direct current through the cathode and anode.
The electrolytic current value in this embodiment is not particularly limited, but for example, when a metal chloride (also referred to as metal chloride) (such as LiCl) is used as a molten salt, the cathode side reaches the metal (Li) deposition potential, and the anode side On the other hand, the current value is set to be as large as possible within the range up to the potential at which chloride gas (for example, Cl, etc.) is generated, and electrolysis can be carried out while checking changes in the cathode and anode potentials over time. Further, the current density is preferably 1 A/m 2 or more, and 100 A/m 2 or less, for example.
 本実施形態において、電極である陰極及び陽極は、特に限定されず、熔融塩中で電気分解するために、用いられている公知の陰極、陽極を採用することができる。前記電極は、反応容器の内壁に直接接触しないように、内壁と電極との間に隙間があるように配置されていることが好適である。 In this embodiment, the cathode and anode, which are electrodes, are not particularly limited, and any known cathode or anode used for electrolysis in molten salt can be employed. It is preferable that the electrode is arranged so that there is a gap between the inner wall and the electrode so that the electrode does not come into direct contact with the inner wall of the reaction vessel.
 前記電極の基体の材質としては、熔融塩中で電気分解を行う温度で電流が流れる程度の導電性を有していれば限定されず、基体の大きさ等についても限定されず、使用する電解浴、基体の使用目的等に応じて適宜選択することができる。 The material of the base of the electrode is not limited as long as it has conductivity sufficient to allow current to flow at the temperature at which electrolysis occurs in molten salt, and the size of the base is also not limited. It can be selected as appropriate depending on the purpose of use of the bath and substrate.
 前記電極の材質としては、例えば、ニッケル、鉄、モリブデン、タングステン、黒鉛、グラッシュカーボン、フェライト、電子伝導性セラミック等が挙げられ、これらから選択される1種又は2種以上を用いることができる。例えば、陰極としてニッケル等を、陽極として黒鉛等を用いることができる。 Examples of the material of the electrode include nickel, iron, molybdenum, tungsten, graphite, flash carbon, ferrite, and electron conductive ceramic, and one or more selected from these can be used. For example, nickel or the like can be used as the cathode, and graphite or the like can be used as the anode.
 本実施形態では、更に、前記反応容器での反応温度を制御できる温度制御機構(例えば、加熱炉等)を更に用いることが好適であり、また、密閉式の反応容器であることがより好適である。 In this embodiment, it is preferable to further use a temperature control mechanism (for example, a heating furnace, etc.) that can control the reaction temperature in the reaction vessel, and it is more preferable that the reaction vessel is a closed type reaction vessel. be.
 電気分解において、熔融塩を用いる利点として、高温でも常圧下で行うことができることにある。本明細書における「常圧」とは、加圧や減圧などの気圧を変化させる特別な操作を加えていないときの圧力をいい、通常1±0.05気圧(101325pa)程度である。
 電気分解の際の温度(好適には常圧下での温度)としては、特に限定されないが、その好適な下限値として、好ましくは20℃以上、より好ましくは30℃以上であり、また、その好適な上限値として、好ましくは1000℃以下、より好ましくは900℃以下であり、当該好適な数値範囲としては、好ましくは20~1000℃である。また、電解部又は水素製造部に存在する熔融塩中において金属化合物を還元する場合には、後述する金属化合物の還元反応の温度を適宜採用することができる。
An advantage of using molten salt in electrolysis is that it can be carried out at high temperatures and under normal pressure. "Normal pressure" in this specification refers to the pressure when no special operation to change the atmospheric pressure, such as pressurization or depressurization, is applied, and is usually about 1±0.05 atm (101,325 pa).
The temperature during electrolysis (preferably temperature under normal pressure) is not particularly limited, but its preferred lower limit is preferably 20°C or higher, more preferably 30°C or higher; The upper limit is preferably 1000°C or less, more preferably 900°C or less, and the preferred numerical range is preferably 20 to 1000°C. In addition, when reducing a metal compound in the molten salt existing in the electrolysis section or the hydrogen production section, the temperature for the reduction reaction of the metal compound described below can be appropriately adopted.
 前記水供給機構は、水を含む流体(好適には気体)を電解浴に供給できるように構成されている水供給機構を備えることが好適である。当該水供給機構は、反応容器内の気体領域に水を含む気体を供給するような構成であってもよいが、電解浴である熔融塩の液面又は液中に水を含む気体を供給するような構成が好適である。水供給機構は、例えば、気体領域に水を含む気体を供給して湿潤雰囲気にしたり、液体領域に水を含む気体を吹き込み電解浴である熔融塩中に水を供給したりすることができる。
 前記「水を含む流体」に用いる水は、水蒸気が好適であり、当該水蒸気は、加熱された水蒸気であってもよく、噴霧装置などによる水蒸気であってもよいが、本実施形態では、加熱による水蒸気であることが好適であり、加熱の調整により熔融塩と反応する水量を調整できる。
The water supply mechanism is preferably provided with a water supply mechanism configured to be able to supply a fluid (preferably gas) containing water to the electrolytic bath. The water supply mechanism may be configured to supply a gas containing water to the gas region in the reaction vessel, but it is not possible to supply a gas containing water to the liquid surface or in the liquid of the molten salt that is the electrolytic bath. Such a configuration is suitable. The water supply mechanism can, for example, supply water-containing gas to the gas region to create a humid atmosphere, or blow water-containing gas into the liquid region to supply water into molten salt, which is an electrolytic bath.
The water used for the "water-containing fluid" is preferably water vapor, and the water vapor may be heated water vapor or water vapor produced by a spraying device, etc., but in this embodiment, heated The amount of water reacting with the molten salt can be adjusted by adjusting the heating.
 前記「水を含む流体」に用いる気体は、特に限定されないが、不活性ガスが好適であり、当該不活性ガスとして、例えば、ヘリウムガス、ネオンガス、アルゴンガス、クリプトンガス、キセノンガス、ラドンガスなどの希ガス、及び、窒素ガス等が挙げられ、これらから選択される1種又は2種以上を用いることができる。このうち、希ガスが好適であり、より好適には、ヘリウムガス及び/又はアルゴンガスである。 The gas used for the "fluid containing water" is not particularly limited, but an inert gas is suitable, and examples of the inert gas include helium gas, neon gas, argon gas, krypton gas, xenon gas, radon gas, etc. Examples include rare gases and nitrogen gas, and one or more selected from these can be used. Among these, rare gases are preferred, and helium gas and/or argon gas are more preferred.
 前記熔融塩に投入する水分量は、特に限定されないが、例えば、以下のような反応式から、算出でき、金属化合物の還元に用いる必要最小限度の水分量を求めることができる。但し、鉄以外の金属の場合には、その金属の反応式から水分量を求めることができる。以下の反応式を例にすると、還元するFeに対して、3/2HOが、必要となることを考慮して、投入する水分量を設定することができる。
 3/2HO→3/2H+3/4O
 1/2Fe+3/2H→Fe+3/2H
The amount of water added to the molten salt is not particularly limited, but can be calculated, for example, from the following reaction formula, and the minimum necessary amount of water used for reduction of the metal compound can be determined. However, in the case of metals other than iron, the water content can be determined from the reaction formula of the metal. Using the following reaction formula as an example, the amount of water to be added can be set in consideration of the fact that 3/2 H 2 O is required for Fe to be reduced.
3/2H 2 O→3/2H 2 +3/4O 2
1/2Fe 2 O 3 + 3/2H 2 →Fe+3/2H 2 O
 前記「水を含む流体」(好適には水蒸気)の温度は、熔融塩の融点温度程度とすることが考えられるが、特に限定されず、その好適な下限値として、好ましくは20℃以上、より好ましくは50℃以上、より好ましくは95乃至100℃以上であり、その好適な上限値として、好ましくは150℃以下、より好ましくは120℃以下であり、NaOHの場合には、当該好適な数値範囲として、100~150℃である。 The temperature of the "water-containing fluid" (preferably water vapor) may be about the melting point temperature of the molten salt, but is not particularly limited, and the lower limit thereof is preferably 20°C or higher, or more. Preferably it is 50°C or higher, more preferably 95 to 100°C or higher, and its preferred upper limit is preferably 150°C or lower, more preferably 120°C or lower, and in the case of NaOH, the preferred numerical range The temperature is 100 to 150°C.
 また、本実施形態は、気体回収機構を更に備えることが好適であり、これにより、電解部内で発生した水素及び酸素を混合の状態で又は別々の状態で回収することができる。図3に示すような、水素製造部(陰極室)及び酸素製造部(陽極室)に分けられていない電解部(電解槽)の場合には、この気体領域には酸素及び水素が混在するので、これら気体を一緒に排出又は回収等を気体回収機構にて行うことが好適である。また、水素製造部と酸素製造部とにそれぞれ分けられている場合には、それぞれに気体回収機構を設け、それぞれの気体を回収することが好適である。より好適には、水素製造部には当該気体領域に配管を設けた水素回収機構を、酸素製造部には当該気体領域に配管を設けた酸素回収機構を、それぞれ設けることが好適であり、このように別々に発生した気体をそれぞれ回収できるので、それぞれの水素及び酸素をより高い純度で回収し、再利用することができる。更に、回収された気体又は別の気体発生装置にて発生した気体を熔融塩に戻す又は供給するような構成を採用することができ、例えば、水素製造部から回収された又は別の電解部から供給された水素を、熔融塩中に吹き込むような水素供給ラインを設ける構成を採用することができる。 Furthermore, it is preferable that this embodiment further includes a gas recovery mechanism, whereby hydrogen and oxygen generated in the electrolytic section can be recovered in a mixed state or in separate states. In the case of an electrolytic section (electrolytic cell) that is not divided into a hydrogen production section (cathode chamber) and an oxygen production section (anode chamber) as shown in Figure 3, oxygen and hydrogen are mixed in this gas region. It is preferable to discharge or recover these gases together using a gas recovery mechanism. Furthermore, when the hydrogen production section and the oxygen production section are separated, it is preferable to provide a gas recovery mechanism in each section to recover the respective gases. More preferably, the hydrogen production section is provided with a hydrogen recovery mechanism that is provided with piping in the gas region, and the oxygen production section is provided with an oxygen recovery mechanism that is provided with piping in the gas region. Since the gases generated separately can be recovered, each hydrogen and oxygen can be recovered with higher purity and reused. Furthermore, a configuration may be adopted in which the recovered gas or the gas generated in another gas generator is returned to or supplied to the molten salt, for example, the recovered gas or the gas generated in another gas generator can be returned to or supplied to the molten salt. It is possible to adopt a configuration in which a hydrogen supply line is provided to blow the supplied hydrogen into the molten salt.
2-1-2.電解浴
 本実施形態では、熔融塩を、電解部(電解反応容器)中の電解液としても用いることが好適であり、熔融塩を電解浴として用いることができる。
2-1-2. Electrolytic Bath In this embodiment, it is preferable to use the molten salt as an electrolytic solution in the electrolytic section (electrolytic reaction vessel), and the molten salt can be used as the electrolytic bath.
 また、前記熔融塩として、特に限定されないが、例えば、化学形態がハロゲン化物(塩化物、臭化物、フッ化物など)、水酸化物、炭酸塩、硫酸塩、リン酸塩、酢酸塩、硝酸塩及びケイ酸塩から選択される1種又は2種以上を用いることが好適である。塩を形成するために用いる金属として、例えば、アルカリ金属(例えばナトリウム、カリウム、リチウム等)、アルカリ土類金属(例えば、マグネシウム、カルシウム等)、アルミニウム、スズ等から選択される1種又は2種以上を用いることができる。また、ハロゲンとしては、フッ素、塩素、臭素、ヨウ素等が挙げられ、これらから選択される1種又は2種以上を用いることができる。 In addition, the molten salts include, but are not particularly limited to, chemical forms of halides (chlorides, bromides, fluorides, etc.), hydroxides, carbonates, sulfates, phosphates, acetates, nitrates, and silicate salts. It is preferable to use one or more selected from acid salts. As the metal used to form the salt, for example, one or two selected from alkali metals (e.g., sodium, potassium, lithium, etc.), alkaline earth metals (e.g., magnesium, calcium, etc.), aluminum, tin, etc. The above can be used. Furthermore, examples of the halogen include fluorine, chlorine, bromine, and iodine, and one or more selected from these can be used.
 前記熔融塩のうち、金属ハロゲン化物(例えば、金属塩化物、金属フッ化物)、金属水酸化物、金属硝酸塩、金属硫酸塩、金属炭酸塩、金属酢酸塩、金属リン酸塩、金属ケイ酸塩などから選択される1種又は2種以上を含む熔融塩が、高吸水性、水素製造の電力効率向上、金属化合物還元の反応効率向上等の観点から、好適であり、さらに、金属ハロゲン化物及び/又は金属水酸化物を含む熔融塩が好適であり、更に、金属ハロゲン化物を用いることが、より好適である。 Among the molten salts, metal halides (e.g., metal chlorides, metal fluorides), metal hydroxides, metal nitrates, metal sulfates, metal carbonates, metal acetates, metal phosphates, metal silicates A molten salt containing one or more selected from the following is preferable from the viewpoints of high water absorption, improvement in power efficiency for hydrogen production, improvement in reaction efficiency for metal compound reduction, etc., and furthermore, a molten salt containing one or more selected from metal halides and A molten salt containing/or a metal hydroxide is preferable, and it is more preferable to use a metal halide.
 前記金属水酸化物のうち、アルカリ金属水酸化物、及び/又は、アルカリ土類金属水酸化物が、高吸水性、水素製造の電力効率向上、金属化合物還元の反応効率向上等の観点から、好適である。アルカリ金属水酸化物、アルカリ土類金属水酸化物から選択される1種又は2種以上を用いることができる。更に、アルカリ金属水酸化物が、融点及びコスト等の観点から、より好適である。
 前記アルカリ金属水酸化物として、特に限定されないが、例えば、LiOH、NaOH、KOH、RbOH、及びCsOH等のアルカリ金属水酸化物等が挙げられる。このうち、NaOH及び/又はKOHが、融点及びコスト等の観点から、より好適である。また、前記アルカリ土類金属水酸化物として、特に限定されないが、例えば、Mg(OH)、Ca(OH)、Sr(OH)、及びBa(OH)等が挙げられる。これら水酸化物から選択される1種又は2種以上を用いることができる。
Among the metal hydroxides, alkali metal hydroxides and/or alkaline earth metal hydroxides have high water absorption properties, improved power efficiency for hydrogen production, improved reaction efficiency for metal compound reduction, etc. suitable. One or more selected from alkali metal hydroxides and alkaline earth metal hydroxides can be used. Furthermore, alkali metal hydroxides are more suitable from the viewpoints of melting point, cost, etc.
Examples of the alkali metal hydroxide include, but are not particularly limited to, alkali metal hydroxides such as LiOH, NaOH, KOH, RbOH, and CsOH. Among these, NaOH and/or KOH are more suitable from the viewpoint of melting point, cost, etc. Further, the alkaline earth metal hydroxide is not particularly limited, and examples thereof include Mg(OH) 2 , Ca(OH) 2 , Sr(OH) 2 , and Ba(OH) 2 . One or more selected from these hydroxides can be used.
 前記金属ハロゲン化合物のうち、アルカリ金属ハロゲン化物、及び/又は、アルカリ土類金属ハロゲン化物が、高吸水性、水素製造の電力効率向上、金属化合物還元の反応効率向上等の観点から、好適である。アルカリ金属ハロゲン化物、及びアルカリ土類金属ハロゲン化物から選択される1種又は2種以上を用いることができる。 Among the metal halogen compounds, alkali metal halides and/or alkaline earth metal halides are preferred from the viewpoints of high water absorption, improvement in power efficiency for hydrogen production, improvement in reaction efficiency for reduction of metal compounds, etc. . One or more selected from alkali metal halides and alkaline earth metal halides can be used.
 前記アルカリ金属ハロゲン化物として、特に限定されないが、例えば、LiF、NaF、KF、RbF、CsF等のアルカリ金属フッ化物;LiCl、NaCl、KCl、RbCl、CsCl等のアルカリ金属塩化物;LiBr、NaBr、KBr、RbBr、CsBr等のアルカリ金属臭化物;LiI、NaI、KI、RbI、CsI等のアルカリ金属ヨウ化物等が挙げられる。これらハロゲン化物から選択される1種又は2種以上を用いることができる。 The alkali metal halides include, but are not particularly limited to, alkali metal fluorides such as LiF, NaF, KF, RbF, and CsF; alkali metal chlorides such as LiCl, NaCl, KCl, RbCl, and CsCl; LiBr, NaBr, Examples include alkali metal bromides such as KBr, RbBr, and CsBr; alkali metal iodides such as LiI, NaI, KI, RbI, and CsI. One or more selected from these halides can be used.
 前記アルカリ土類金属ハロゲン化物として、特に限定されないが、例えば、MgF、CaF、SrF、BaF等のアルカリ土類金属フッ化物;MgCl、CaCl、SrCl、BaCl等アルカリ土類金属塩化物;MgBr、CaBr、SrBr、BaBr等アルカリ土類金属臭化物;MgI、CaI、SrI、BaI等アルカリ土類ヨウ化物等が挙げられる。これらハロゲン化物から選択される1種又は2種以上を用いることができる。 The alkaline earth metal halides are not particularly limited, but include, for example, alkaline earth metal fluorides such as MgF 2 , CaF 2 , SrF 2 , BaF 2 ; alkaline earths such as MgCl 2 , CaCl 2 , SrCl 2 , BaCl 2 , etc. Metal chlorides; alkaline earth metal bromides such as MgBr 2 , CaBr 2 , SrBr 2 and BaBr 2 ; alkaline earth iodides such as MgI 2 , CaI 2 , SrI 2 and BaI 2 ; and the like. One or more selected from these halides can be used.
 前記熔融塩のうち、より良好な高吸水性、より良好な水素製造の電力効率向上、より良好な金属化合物を還元して得られる金属の製造効率向上、製造コスト等の観点から、アルカリ金属ハロゲン化物がより好適であり、更にアルカリ金属塩化物(より好適には塩化リチウム)がより好適である。
 また、前記熔融塩のうち、融点が300℃以下のものが扱い易い。但し、水素製造効率の観点からは、融点が高い熔融塩が好ましい。即ち、前記熔融塩のうち、水素を溶解でき、1000℃程度まで加熱可能なものが、好ましい。
Among the molten salts, alkali metal halogen chlorides are more preferred, and alkali metal chlorides (more preferably lithium chloride) are even more preferred.
Moreover, among the above-mentioned molten salts, those having a melting point of 300° C. or lower are easy to handle. However, from the viewpoint of hydrogen production efficiency, a molten salt with a high melting point is preferable. That is, among the above-mentioned molten salts, those that can dissolve hydrogen and can be heated to about 1000° C. are preferable.
 上記熔融塩の化合物は単独で使用することもできるし、2種以上を組み合わせて使用することもできる。これらの化合物の組み合わせ、組み合わせる化合物の数、混合比等も限定されず、電気分解に用いられる金属の種類等に応じて適宜選択することができる。 The above molten salt compounds can be used alone or in combination of two or more. The combination of these compounds, the number of compounds to be combined, the mixing ratio, etc. are not limited, and can be appropriately selected depending on the type of metal used for electrolysis, etc.
 本実施形態に用いる電解浴には、上記その他の成分として、適宜、不純物、溶解補助剤、電解補助剤等を配合又は使用してもよい。当該その他の成分として、例えば、LiO、LiOH、LiCO等のアルカリ金属又はアルカリ土類金属の酸化物、水酸化物、炭酸塩等が挙げられる。これらから選択される1種又は2種以上を用いることができる。 In the electrolytic bath used in this embodiment, impurities, solubilizing agents, electrolytic auxiliary agents, and the like may be appropriately blended or used as other components mentioned above. Examples of the other components include oxides, hydroxides, and carbonates of alkali metals or alkaline earth metals such as Li 2 O, LiOH, and Li 2 CO 3 . One type or two or more types selected from these can be used.
 また、前記熔融塩の温度(好適には常圧下での温度)は、特に限定されないが、水素製造効率及びエネルギー効率の観点から、好適な下限値として、好ましくは500℃以上、より好ましくは600℃以上、更に好ましくは650℃以上であり、また好適な上限値として、特に限定されないが、エネルギーロス低減及び基材の劣化低減の観点から、好ましくは1000℃以下、より好ましくは900℃以下、更に好ましくは800℃以下であり、当該好適な数値範囲としては、より好ましくは600℃~900℃である。 Further, the temperature of the molten salt (preferably temperature under normal pressure) is not particularly limited, but from the viewpoint of hydrogen production efficiency and energy efficiency, a suitable lower limit is preferably 500°C or higher, more preferably 600°C or higher. ℃ or higher, more preferably 650℃ or higher, and a suitable upper limit is not particularly limited, but from the viewpoint of reducing energy loss and reducing deterioration of the base material, preferably 1000℃ or lower, more preferably 900℃ or lower, More preferably, it is 800°C or less, and the preferred numerical range is more preferably 600°C to 900°C.
2-2.金属化合物還元工程
 本実施形態における金属化合物還元工程は、水素(より好適には熔融塩中で水を電気分解することによって製造された水素)により、金属化合物を還元することが好適であり、これにより、金属化合物を還元した金属を得ることができる。熔融塩中の水電解の利点の1つとして、熔融塩中に水素を生成又は発生させ、その水素を、熔融塩中に存在する水素と金属化合物とを接触させることで、金属化合物の還元反応がより促進することができることにある。
2-2. Metal compound reduction step In the metal compound reduction step in this embodiment, it is preferable to reduce the metal compound with hydrogen (more preferably hydrogen produced by electrolyzing water in a molten salt). In this way, a metal obtained by reducing a metal compound can be obtained. One of the advantages of water electrolysis in molten salt is that hydrogen is produced or generated in molten salt, and by bringing the hydrogen present in the molten salt into contact with the metal compound, a reduction reaction of the metal compound can be achieved. can be further promoted.
 還元させる金属化合物は、電気分解部又は水素製造部中の熔融塩中に存在させること、及び/又は、金属化合物還元部中の流体(例えば水素ガスなどの気体、熔融塩などの液体)中に存在させること、が好適である。当該流体が、液体の場合には、上述した電気分解機構の構成などを適宜採用することができ、例えば、熔融塩中の陰極付近にて、当該熔融塩中の水素が金属化合物に接触し当該金属化合物を電力効率よく及び反応効率よく強力に還元することができる。また、当該流体が、気体の場合には、加熱下において水素ガスにより金属化合物を還元することができる。
 金属化合物の還元温度(好適には常圧下での温度)は、特に限定されず、上述した熔融塩の温度又は公知の技術を適宜採用することができ、反応効率及びエネルギー効率の観点から、好適な下限値として、好ましくは500℃以上、より好ましくは600℃以上、更に好ましくは650℃以上、より好ましくは700℃以上であり、また、好適な上限値として、特に限定されないが、エネルギーロス低減及び基材の劣化低減の観点から、好ましくは1000℃以下、より好ましくは900℃以下、更に好ましくは800℃以下であり、当該好適な数値範囲としては、より好ましくは600℃~900℃である。
The metal compound to be reduced may be present in the molten salt in the electrolysis section or the hydrogen production section, and/or in the fluid (e.g., gas such as hydrogen gas, liquid such as molten salt) in the metal compound reduction section. It is preferable to make it exist. When the fluid is a liquid, the structure of the electrolysis mechanism described above can be adopted as appropriate. For example, hydrogen in the molten salt comes into contact with the metal compound near the cathode in the molten salt, Metal compounds can be strongly reduced with good power efficiency and reaction efficiency. Further, when the fluid is a gas, the metal compound can be reduced with hydrogen gas under heating.
The reduction temperature of the metal compound (preferably the temperature under normal pressure) is not particularly limited, and the above-mentioned temperature of the molten salt or known techniques can be adopted as appropriate, and from the viewpoint of reaction efficiency and energy efficiency, it is suitable The lower limit value is preferably 500°C or higher, more preferably 600°C or higher, even more preferably 650°C or higher, and even more preferably 700°C or higher, and the preferred upper limit value is not particularly limited, but energy loss reduction And from the viewpoint of reducing deterioration of the base material, the temperature is preferably 1000°C or less, more preferably 900°C or less, even more preferably 800°C or less, and the preferred numerical range is more preferably 600°C to 900°C. .
 金属化合物還元工程における加熱エネルギーとして、電気エネルギーを用いるよりも、熱エネルギーを用いた方が、コスト低減の観点から好適であり、熔融塩炉の熱源から熱交換により得られた熱エネルギーを用いることがより好適である。 As the heating energy in the metal compound reduction process, it is more preferable to use thermal energy than to use electrical energy from the viewpoint of cost reduction, and it is preferable to use thermal energy obtained by heat exchange from the heat source of the molten salt furnace. is more suitable.
 更に、上述した水素製造工程又はその方法により発生せしめた水素を、当該水素を発生させた容器(部)とは、別の容器(部)に導入し、当該水素により、金属化合物を還元することも可能であり、別の容器(部)が金属化合物還元部であることが好適である。これにより、金属化合物を還元した金属を得ることもでき、また、雰囲気中に発生した水素を有効利用することもできる。 Furthermore, the hydrogen generated by the hydrogen production process or method described above is introduced into a container (part) different from the container (part) in which the hydrogen was generated, and the metal compound is reduced with the hydrogen. It is also possible that the separate container (part) is a metal compound reduction part. Thereby, it is possible to obtain a metal obtained by reducing a metal compound, and it is also possible to effectively utilize hydrogen generated in the atmosphere.
 本実施形態で用いる金属化合物として、特に限定されないが、例えば、鉱石、金属酸化物、金属硫化物、及び金属塩化物などが挙げられ、これらから選択される1種又は2種以上を用いることができる。
 本実施形態で用いる金属化合物の「金属」として、特に限定されないが、金属元素を含むものが好適であり、金属元素及び非金属元素を含むものであってもよい。
 前記金属元素として、特に限定されないが、例えば、鉄、銅、亜鉛、ニッケル、スズ、鉛、コバルト、モリブデン、アルミニウム、チタン、カリウム、カルシウム、ナトリウム、及びマグネシウムなどからなる群から選択される1種又は2種以上が挙げられる。
 前記非金属元素として、特に限定されないが、酸素原子、硫黄原子及び塩素原子などからなる群から選択される1種又は2種以上が挙げられる。
 前記金属化合物は、例えば、鉄、銅、亜鉛、ニッケル、スズ、鉛、コバルト、モリブデン、アルミニウム、チタン、カリウム、カルシウム、ナトリウム、及びマグネシウムからなる群から選択される1種又は2種以上の金属元素と、酸素原子、硫黄原子及び塩素原子からなる群から選択される1種又は2種以上の非金属元素とを含む、金属化合物であることが好適である。
 また、前記金属化合物は、例えば、鉄、銅、亜鉛、ニッケル、錫、鉛、コバルト、モリブデン、アルミニウム、チタン、カリウム、カルシウム、ナトリウム、及びマグネシウムからなる群から選択される1種又は2種以上の金属を含む、金属酸化物、金属硫化物、又は金属塩化物から選択されるものが好適である。
 より好適な金属元素として、鉄、銅、亜鉛、ニッケル、スズ、鉛、コバルト、モリブデンなどからなる群、さらに好適には、鉄、銅、ニッケル、コバルト、モリブデンなどからなる群から選択される1種又は2種以上が挙げられる。
Examples of the metal compound used in this embodiment include, but are not limited to, ores, metal oxides, metal sulfides, and metal chlorides, and one or more selected from these may be used. can.
The "metal" of the metal compound used in this embodiment is not particularly limited, but it is preferable to include a metal element, and it may also include a metal element and a non-metal element.
The metal element is not particularly limited, but for example, one selected from the group consisting of iron, copper, zinc, nickel, tin, lead, cobalt, molybdenum, aluminum, titanium, potassium, calcium, sodium, and magnesium. Or two or more types can be mentioned.
The nonmetallic element is not particularly limited, but may include one or more selected from the group consisting of oxygen atoms, sulfur atoms, chlorine atoms, and the like.
The metal compound is, for example, one or more metals selected from the group consisting of iron, copper, zinc, nickel, tin, lead, cobalt, molybdenum, aluminum, titanium, potassium, calcium, sodium, and magnesium. Preferably, it is a metal compound containing an element and one or more nonmetallic elements selected from the group consisting of oxygen atoms, sulfur atoms, and chlorine atoms.
Further, the metal compound is, for example, one or more selected from the group consisting of iron, copper, zinc, nickel, tin, lead, cobalt, molybdenum, aluminum, titanium, potassium, calcium, sodium, and magnesium. Suitable are metal oxides, metal sulfides, or metal chlorides containing metals.
A more preferable metal element is one selected from the group consisting of iron, copper, zinc, nickel, tin, lead, cobalt, molybdenum, etc., and more preferably one selected from the group consisting of iron, copper, nickel, cobalt, molybdenum, etc. A species or two or more species may be mentioned.
 前記金属化合物は、粒子状であることが好適である。当該粒子状の大きさは、レーザー回折散乱法により求めた粒度分布における積算値50%での粒子径(平均粒径D50)は、特に限定されないが、その好適な「平均粒径D50」の上限値として、好ましくは10mm以下、より好ましくは5mm以下、更に好ましくは3mm以下、より好ましくは1mm以下、さらに好ましくは、反応効率の観点から、100μm、50μm以下又は10μm以下であり、また、その好適な「平均粒径D50」の下限値として、好ましくは0.01μm以上、より好ましくは0.1μm以上、更に好ましくは0.5μm以上であり、当該好適な数値範囲として、例えば、0.01μm~5mmでもよい。 It is preferable that the metal compound is in the form of particles. The size of the particles is not particularly limited to the particle diameter at 50% of the integrated value in the particle size distribution determined by laser diffraction scattering method (average particle diameter D50), but the upper limit of the preferred "average particle diameter D50" The value is preferably 10 mm or less, more preferably 5 mm or less, still more preferably 3 mm or less, more preferably 1 mm or less, and still more preferably 100 μm, 50 μm or less, or 10 μm or less from the viewpoint of reaction efficiency, and its suitable The lower limit of the "average particle diameter D50" is preferably 0.01 μm or more, more preferably 0.1 μm or more, even more preferably 0.5 μm or more, and the preferred numerical range is, for example, 0.01 μm to It may be 5 mm.
 本明細書において、レーザー回折散乱法で測定される、金属化合物粒子の粒度分布における体積基準の累積値が10%となる粒子径をD10、50%となる粒子径をD50、90%となる粒子径をD90とする。なお、平均粒径は、例えば、レーザー回折散乱式粒度分布計により測定される体積積算値から求めることができる。
 金属化合物の大きさは、レーザー回折散乱法により求めた粒度分布における積算値50%での粒子径(平均粒径D50)であることが好適である。
 例えば、レーザー回折散乱式粒度分布測定装置(日機装株式会社製、マイクロトラックHRA)を用いることができる。
In this specification, D10 is the particle diameter at which the volume-based cumulative value in the particle size distribution of metal compound particles is 10%, D50 is the particle diameter at which 50%, as measured by laser diffraction scattering method, The diameter is set to D90. Note that the average particle size can be determined, for example, from a volumetric integrated value measured by a laser diffraction scattering particle size distribution analyzer.
The size of the metal compound is preferably a particle diameter (average particle diameter D50) at 50% of the integrated value in the particle size distribution determined by a laser diffraction scattering method.
For example, a laser diffraction scattering particle size distribution analyzer (Microtrac HRA, manufactured by Nikkiso Co., Ltd.) can be used.
 金属化合物還元の工程又は装置内において、本実施形態に用いる金属化合物及びその還元物を保持又は支持するための支持部を用いることが好適であり、当該支持部は、熱や燃焼などに対して衝撃性を有するものが好適である。当該支持部の形状は、特に限定されず、例えば、容器(例えば、カップ状、皿状、箱状等)などが挙げられ、これらから1種又は2種以上を用いることができる(例えば、図3のカップ状、図4の皿状など)。当該容器等の支持部に、更に陰極が接続されていることが好適であり、また、容器を移動、保持又は支持等するために更に支持部(例えば棒状)を単数又は複数設けてもよい。 In the process or apparatus for reducing metal compounds, it is preferable to use a support part for holding or supporting the metal compound and its reduced product used in this embodiment, and the support part is resistant to heat, combustion, etc. A material having impact resistance is suitable. The shape of the support part is not particularly limited, and examples thereof include a container (for example, cup shape, dish shape, box shape, etc.), and one or more of these can be used (for example, as shown in the figure). cup-shaped in Figure 3, plate-shaped in Figure 4, etc.). It is preferable that a cathode is further connected to the support part of the container, etc., and one or more support parts (for example, rod-shaped) may be further provided to move, hold, support, etc. the container.
 熔融塩中で金属化合物を還元する場合には、熔融塩から出し入れしやすいように支持棒及び/又は液体を除去しやすいように網目や多孔等を備えた容器であってもよい。熔融塩中で使用する金属化合物を支持する支持部は、その一部が陰極と接続されていてもよく、例えば、支持部に配置した複数の金属化合物を陰極付近に配置して、陰極及びその付近から水の電気分解にて得られた水素を用いて金属化合物を効率よく還元することができる。 When reducing a metal compound in a molten salt, a support rod may be used to easily take it in and out of the molten salt, and/or a container may be provided with a mesh or porous structure to facilitate the removal of the liquid. A part of the support part that supports the metal compound used in the molten salt may be connected to the cathode. For example, a plurality of metal compounds arranged in the support part are arranged near the cathode, and the cathode and its Metal compounds can be efficiently reduced using hydrogen obtained from nearby water by electrolysis.
 金属化合物を支持するための支持部、反応容器等の材質は、特に限定されない。当該支持部を陰極側又は陰極付近で使用する場合には、電気絶縁性(非導電性ともいう)及び熱衝撃性を有するものが好ましい。電気絶縁性の材質としては、例えば、アルミナのようなセラミックなどが挙げられ、これらから選択される1種又は2種以上を用いることができる。 The materials of the support part, reaction vessel, etc. for supporting the metal compound are not particularly limited. When the support part is used on the cathode side or near the cathode, it preferably has electrical insulation (also referred to as non-conductivity) and thermal shock resistance. Examples of the electrically insulating material include ceramics such as alumina, and one or more selected from these can be used.
3.本実施形態に係る熔融塩を用いる水素製造方法
 本実施形態に係る熔融塩を用いる水素製造方法の例の説明において、上述した「1.」「2.」、後述する「4.」「5.」及び内容などと重複する、電気分解機構、水素製造方法又は工程、金属化合物(好適には金属酸化物)の還元方法又は工程、熔融塩、金属の製造方法、制御などの各構成、各方法などの説明については適宜省略するが、当該「1.」~「5.」等の説明が、本実施形態にも当てはまり、適宜採用することができる。
3. Hydrogen production method using molten salt according to the present embodiment In the description of an example of the hydrogen production method using a molten salt according to the present embodiment, the above-mentioned "1." and "2." and the later-described "4." and "5. '' and content that overlaps with the electrolysis mechanism, hydrogen production method or process, metal compound (preferably metal oxide) reduction method or process, molten salt, metal production method, control, etc. configurations and methods Although explanations such as "1." to "5." are omitted as appropriate, the explanations "1." to "5." etc. also apply to this embodiment and can be adopted as appropriate.
 本実施形態は、熔融塩中で水を電気分解して水素製造を行う、水素製造方法を提供することができる。製造された水素は、熔融塩中の金属化合物を還元するために用いることが好適であるが、回収され水素燃料として用いてもよい。
 また、本実施形態における水素製造において、上記「2.本実施形態に係る金属の製造方法」に関する構成を採用することで、水素製造工程と金属化合物還元工程とを同時期に行うような又は同じ反応容器内で行うような構成としてもよい(例えば、図3及び図4参照)。
This embodiment can provide a hydrogen production method in which hydrogen is produced by electrolyzing water in a molten salt. The produced hydrogen is preferably used to reduce metal compounds in the molten salt, but may also be recovered and used as hydrogen fuel.
In addition, in hydrogen production in this embodiment, by adopting the configuration related to "2. Metal manufacturing method according to this embodiment" above, the hydrogen production process and the metal compound reduction process can be performed at the same time or in the same manner. It may be configured such that the reaction is carried out within a reaction vessel (for example, see FIGS. 3 and 4).
 前記製造された水素を還元剤として用いることが、電力効率及び反応効率の観点からも、好適である。また、水素製造系外である反応容器外に水素ガスを放出するための、流路(例えば、配管)、弁(開閉弁、流量調節弁)を備えた水素回収機構を更に備えてもよく、これにより、生成後に熔融塩から雰囲気中に放出された水素ガスを、水素製造系外に、放出抑制、又は、回収、吸引又は放出することができる。水素ガスを系外に放出するための流路の一方の端部は、反応容器内側に突出し、反応容器の上方部分(好適には気体領域かつ上方部分)に設けられていることが、水素ガスの質量が軽いことから好適であり、更に流路中の水素ガスを、移送(回収、吸引、放出等)するための流体ポンプ及び/又は流量調節弁を更に流路に備えることが、より好適である。更に、流路に、水素ガスを吸着及び放出できる水素吸着材を含む水素吸着機構及び/又は水素ガスを水素製造反応系(好適には反応容器内)に注入又は再び戻す水素供給機構(好適には水素循環機構、水素再利用機構等)を備えることが好適である。水素吸着材は、公知の水素吸着材を用いることができ、例えば、金属合金、セラミック、多孔質材料(ゼオライト等)等が挙げられるが、これらに限定されない。 It is preferable to use the hydrogen produced above as a reducing agent from the viewpoint of power efficiency and reaction efficiency. Furthermore, the hydrogen recovery mechanism may further include a flow path (for example, piping) and a valve (on-off valve, flow rate control valve) for releasing hydrogen gas outside the reaction vessel, which is outside the hydrogen production system. Thereby, hydrogen gas released into the atmosphere from the molten salt after generation can be suppressed, recovered, sucked, or released outside the hydrogen production system. One end of the channel for discharging hydrogen gas out of the system projects inside the reaction vessel and is provided in the upper part of the reaction vessel (preferably in the gas region and upper part). It is preferable because the mass of the hydrogen gas is light, and it is more preferable that the flow path is further provided with a fluid pump and/or a flow rate control valve for transferring (collecting, suctioning, discharging, etc.) the hydrogen gas in the flow path. It is. Further, a hydrogen adsorption mechanism including a hydrogen adsorbent capable of adsorbing and releasing hydrogen gas in the flow path and/or a hydrogen supply mechanism (preferably It is preferable to include a hydrogen circulation mechanism, a hydrogen reuse mechanism, etc.). A known hydrogen adsorbent can be used as the hydrogen adsorbent, and examples thereof include metal alloys, ceramics, porous materials (zeolite, etc.), but are not limited to these.
4.本実施形態に係る金属製造装置、水素製造装置、電気分解装置等及びこれらのシステム
 本実施形態に係る金属製造装置、水素製造装置、電気分解装置等及びこれらのシステムの例の説明において、上述した「1.」~「3.」、後述する「5.」及び内容などと重複する、電気分解機構、水素製造方法又は工程、金属化合物の還元方法又は工程、熔融塩、金属の製造方法、制御などの各構成、各方法などの説明については適宜省略するが、当該「1.」~「5.」等の説明が、本実施形態にも当てはまり、適宜採用することができる。
4. Metal manufacturing device, hydrogen manufacturing device, electrolyzer, etc., and their systems according to the present embodiment In the description of the metal manufacturing device, hydrogen manufacturing device, electrolyzer, etc., and these systems according to the present embodiment, the above-mentioned Electrolysis mechanism, hydrogen production method or process, metal compound reduction method or process, molten salt, metal production method, control, etc. that overlap with "1." to "3." and "5." described later, content, etc. Although descriptions of each configuration and each method will be omitted as appropriate, the descriptions of "1." to "5." etc. apply to this embodiment and can be adopted as appropriate.
 本実施形態は、金属化合物を還元するように構成されている金属製造装置等と、当該金属製造装置等に電気エネルギー及び/又は熱エネルギーを供給するように構成されている単数又は複数の原子炉(好適には熔融塩原子炉)とを備える、金属製造、水素製造等のシステムを提供することができる(例えば、図5、図7参照)。 This embodiment describes a metal manufacturing device configured to reduce a metal compound, and one or more nuclear reactors configured to supply electrical energy and/or thermal energy to the metal manufacturing device, etc. (preferably a molten salt nuclear reactor), it is possible to provide a system for metal production, hydrogen production, etc. (see, for example, FIGS. 5 and 7).
 本実施形態は、水の電気分解によって水素を製造させるように構成されている及び/又は水の電気分解によって得られた水素を用いて水素金属化合物を還元するように構成されている金属製造装置等と、当該金属製造装置等に電気エネルギー及び/又は熱エネルギーを供給するように構成されている単数又は複数の原子炉(好適には熔融塩原子炉)とを備える、金属製造等のシステムを提供することができる。当該金属製造装置等は、上記「2-1.」及び「2-2.」等で説明したような水素製造工程及び/又は金属化合物還元工程を同一又は別々の反応容器にて実施してもよい。水素製造工程と金属化合物還元工程とは同じ反応容器内又は部内で実施してもよく、例えば、水素製造部内で金属化合物還元工程も実施できるように構成されている装置、又は、金属化合物還元部内で水素製造工程も実施できるように構成されている装置としてもよい。 This embodiment is a metal manufacturing apparatus configured to produce hydrogen by electrolysis of water and/or configured to reduce a hydrogen metal compound using hydrogen obtained by electrolysis of water. and one or more nuclear reactors (preferably molten salt reactors) configured to supply electrical energy and/or thermal energy to the metal manufacturing equipment, etc. can be provided. The metal production equipment, etc. may perform the hydrogen production process and/or metal compound reduction process as explained in "2-1." and "2-2." above in the same or separate reaction vessels. good. The hydrogen production process and the metal compound reduction process may be carried out in the same reaction vessel or department, for example, in an apparatus configured to also carry out the metal compound reduction process within the hydrogen production unit, or in a metal compound reduction unit. The device may also be configured so that it can also perform the hydrogen production process.
 本実施形態は、熔融塩中の水を電気分解可能な陰極及び陽極を備える電気分解部と、
 電解浴として熔融塩を含む密閉可能な反応容器と、
 熔融塩に水を供給するように構成されている水供給部と、を備える、
 電気分解装置、金属製造装置、又は金属化合物を還元させて金属を得るための製造装置等を提供することができる(例えば、図3、図4、図10、図5及び図7など参照)。当該製造装置等は、反応温度を制御するように構成されている温度制御部をさらに備えることが好適である。
This embodiment includes an electrolysis unit including a cathode and an anode capable of electrolyzing water in molten salt;
a sealable reaction vessel containing a molten salt as an electrolytic bath;
a water supply configured to supply water to the molten salt;
An electrolyzer, a metal manufacturing device, a manufacturing device for reducing a metal compound to obtain a metal, etc. can be provided (see, for example, FIGS. 3, 4, 10, 5, and 7). Preferably, the manufacturing apparatus and the like further include a temperature control section configured to control the reaction temperature.
 前記反応容器は、陰極及び陽極を備えるものが好適であり、熔融塩中で水の電気分解により、陰極付近から水素が生成又は発生する水素製造領域、陽極付近から酸素が生成又は発生する酸素製造領域を有し、これら領域が、非分離型(例えば、図3の垂直断面でU字状の反応容器)であってもよいし、分離型(例えば、図4、図10の垂直断面でH字状の反応容器)でもよい。
 前記反応容器は、更に陰極を備える水素製造部(部を、領域ともいう)と、陽極を備える酸素製造部と、これら部の液体領域を接続する接続部とを備えることがより好適である。それぞれの水素製造部及び酸素製造部は、それぞれ、気体領域及び液体領域から構成されることが好適である。
The reaction vessel is preferably equipped with a cathode and an anode, and includes a hydrogen production region where hydrogen is produced or generated near the cathode by electrolysis of water in molten salt, and an oxygen production region where oxygen is produced or generated near the anode. These regions may be of a non-separable type (for example, a U-shaped reaction vessel in the vertical section in FIG. 3) or a separated type (for example, a A letter-shaped reaction vessel) may also be used.
More preferably, the reaction vessel further includes a hydrogen production section (a section is also referred to as a region) that includes a cathode, an oxygen production section that includes an anode, and a connection section that connects the liquid regions of these sections. Preferably, each of the hydrogen production section and the oxygen production section is comprised of a gas region and a liquid region, respectively.
 本実施形態では、前記水素製造領域又は前記水素製造部は、陰極付近に複数の金属化合物の粒子を配置することが、金属化合物の還元の観点から好適であり、当該水素製造部を、金属化合物還元部としても利用することができる。これにより、熔融塩中の水電解で製造された水素が高濃度で存在している領域に金属化合物を存在させるため、当該金属化合物を電力効率よく及び反応効率よく還元させることができる。金属化合物還元部は、還元反応の温度が制御できる温度制御部を金属化合物還元部の外側に備えることが好適である。 In this embodiment, in the hydrogen production region or the hydrogen production section, it is preferable that particles of a plurality of metal compounds are arranged near the cathode from the viewpoint of reduction of the metal compound, and the hydrogen production region or the hydrogen production section is It can also be used as a reduction section. Thereby, the metal compound is present in a region where hydrogen produced by water electrolysis in the molten salt is present at a high concentration, so that the metal compound can be reduced with good power efficiency and reaction efficiency. It is preferable that the metal compound reduction section includes a temperature control section outside the metal compound reduction section that can control the temperature of the reduction reaction.
 また、本実施形態では、前記水素製造部から発生した水素を前記水素製造部又は電気分解部とは別の容器又は部に導入するように構成されていることが好適である。当該別の容器又は部は、複数の金属化合物の粒子を配置できる金属化合物還元部としても利用することができる。また、別の容器又は部は、水素回収部又は水素貯留部として利用してもよく、当該回収又は貯留された水素は、配管又は流路を備える水素供給部により、金属化合物還元部、水素製造部又は電気分解部に供給されてもよい。水素供給部の配管などの先端は、より具体的には、水素製造部の熔融塩に水素が吹き込めるように液体領域に配置されていることがより好適である。これら各部は、水素が、移送、循環又は還流などの移動できるように、配管又は流路、流体の移送又は循環ポンプ、流体の流量調節弁などを適宜備えてもよい。 Further, in this embodiment, it is preferable that the hydrogen generated from the hydrogen production section be introduced into a container or section separate from the hydrogen production section or the electrolysis section. This separate container or section can also be used as a metal compound reduction section in which particles of a plurality of metal compounds can be placed. In addition, another container or section may be used as a hydrogen recovery section or a hydrogen storage section, and the recovered or stored hydrogen is transferred to a metal compound reduction section, a hydrogen production section, and a hydrogen supply section equipped with piping or a flow path. or an electrolysis section. More specifically, it is more preferable that the tip of the piping of the hydrogen supply section is disposed in a liquid region so that hydrogen can be blown into the molten salt of the hydrogen production section. Each of these parts may be appropriately equipped with piping or flow paths, fluid transfer or circulation pumps, fluid flow rate control valves, etc. so that hydrogen can be transferred, circulated, or refluxed.
 本実施形態は、前記金属製造装置、前記電気分解装置、前記水素製造装置、前記水素製造装置等の各種装置と、当該装置に電気エネルギー及び/又は熱エネルギーを供給するように構成されている熔融塩原子炉とを備えることが好適である(図5、図7参照)。 This embodiment includes various devices such as the metal manufacturing device, the electrolysis device, the hydrogen production device, and the hydrogen production device, and a melting device configured to supply electrical energy and/or thermal energy to the device. It is preferable to include a salt nuclear reactor (see FIGS. 5 and 7).
 本実施形態は、前記金属製造装置等の各種装置1に、更に、電気エネルギー及び/又は熱エネルギーを供給するように構成されている熔融塩原子炉100と、を備える、電気分解反応装置或いは金属化合物を還元させて金属を得るための製造装置1000、又は電気分解反応システム10000或いは金属化合物を還元させて金属を得るための製造システム1000がより好適である(例えば、図5参照)。なお、前記製造装置1000、製造システム1000等に備えられる熱交換機構には、適宜、循環式の流路、熱交換器などが備えられていることが好適である。 This embodiment is an electrolysis reaction device or a metal manufacturing device, which further includes a molten salt nuclear reactor 100 configured to supply electrical energy and/or thermal energy to various devices 1 such as the metal manufacturing device. A manufacturing apparatus 1000 for obtaining a metal by reducing a compound, an electrolysis reaction system 10000, or a manufacturing system 1000 for obtaining a metal by reducing a metal compound is more suitable (for example, see FIG. 5). Note that the heat exchange mechanism provided in the manufacturing apparatus 1000, the manufacturing system 1000, etc. is preferably equipped with a circulation flow path, a heat exchanger, etc., as appropriate.
 前記電気エネルギー供給機構130は、熔融塩原子炉101内に備える1次熱交換機構106、1次熱交換機構106からの熱源を用いる蒸気タービン等の発電機131を備え、当該発電機131にて発電し電気エネルギーを得る発電装置132、当該発電装置132から電気エネルギーを金属製造装置等に送電する送電機構133(電線、変電装置などを備える)を備えることがより好適である。これにより、金属製造装置、水素製造装置等に電気エネルギーを供給することができる。 The electrical energy supply mechanism 130 includes a primary heat exchange mechanism 106 provided in the molten salt nuclear reactor 101 and a generator 131 such as a steam turbine that uses a heat source from the primary heat exchange mechanism 106. It is more preferable to include a power generation device 132 that generates electricity and obtains electrical energy, and a power transmission mechanism 133 (including electric wires, a transformer device, etc.) that transmits electrical energy from the power generation device 132 to a metal manufacturing device or the like. Thereby, electrical energy can be supplied to metal manufacturing equipment, hydrogen manufacturing equipment, and the like.
 前記熱エネルギーの供給機構120は、熔融塩原子炉内に備える1次熱交換機構106、1次熱熱交換機構106からの熱源を前記金属製造装置等の熱源になるように2次熱交換器121を介して熱源(水蒸気など)を移送する2次熱交換機構120を備えることがより好適である。金属製造装置1等内に、更に3次熱交換器などを備えた3次熱交換機構を備えてもよい。また、2次熱交換機構又は3次熱交換機構などを用いて熔融塩原子炉から供給される熱エネルギーを利用して水を水蒸気(例えば、650℃以上の加熱水蒸気、室温(20~30℃)程度の水蒸気等)とし、これを電気分解の水として用いることも可能である。これにより3次熱交換器から受熱された熱源を金属製造装置1に利用することができる。これにより、金属製造装置、水素製造装置等に熱エネルギーを供給することができる。 The thermal energy supply mechanism 120 includes a primary heat exchange mechanism 106 provided in the molten salt nuclear reactor, and a secondary heat exchanger that converts the heat source from the primary heat exchange mechanism 106 into a heat source for the metal manufacturing equipment, etc. It is more preferable to include a secondary heat exchange mechanism 120 that transfers a heat source (such as water vapor) via 121 . A tertiary heat exchange mechanism including a tertiary heat exchanger or the like may be further provided in the metal manufacturing apparatus 1 or the like. In addition, using thermal energy supplied from a molten salt nuclear reactor using a secondary heat exchange mechanism or a tertiary heat exchange mechanism, water can be converted into steam (e.g. heated steam at 650°C or higher, room temperature (20 to 30°C ) and can be used as water for electrolysis. Thereby, the heat source received from the tertiary heat exchanger can be used in the metal manufacturing apparatus 1. Thereby, thermal energy can be supplied to metal manufacturing equipment, hydrogen manufacturing equipment, and the like.
4-1.本実施形態に係る金属製造装置等 4-1. Metal manufacturing equipment, etc. according to this embodiment
 本実施形態は、熔融塩中の水を電気分解するように構成されている陽極及び陰極を備える電解部、及び、金属化合物を還元するように構成されている金属化合物還元部を備える金属製造装置を提供することが好適である。本実施形態の別の態様は、熔融塩中の水を電気分解するように構成されている陽極及び陰極を備える電解部を備える、水素製造装置を提供することも可能である。
 更に、本実施形態は、前記電解部の熔融塩温度及び/又は前記金属化合物還元部の還元温度を制御する温度制御部を備えることがより好適である。
 更に、本実施形態は、前記電解部及び/又は前記金属化合物還元部は、電気分解する容器及び/又は金属化合物を還元する容器が密閉可能な容器であることが好適である。
 更に、本実施形態は、熔融塩中に水を含む流体を供給するように構成されている水供給部を更に備えることが好適であり、前記水供給部が、配管又は流体流路を備え、当該配管又は流体流路の先端が、熔融塩内にあるように配置されていることがより好適である。更に、本実施形態の水供給部は、熔融塩原子炉等から供給される熱源を利用した加熱水蒸気と気体供給部からの気体を混合できるような構成であってもよい。
This embodiment is a metal manufacturing apparatus that includes an electrolysis section that includes an anode and a cathode that are configured to electrolyze water in molten salt, and a metal compound reduction section that is configured to reduce a metal compound. It is preferable to provide Another aspect of this embodiment can also provide a hydrogen production device that includes an electrolysis section that includes an anode and a cathode that are configured to electrolyze water in a molten salt.
Furthermore, this embodiment preferably includes a temperature control section that controls the molten salt temperature of the electrolytic section and/or the reduction temperature of the metal compound reduction section.
Further, in the present embodiment, it is preferable that the electrolytic section and/or the metal compound reducing section include a container for electrolysis and/or a container for reducing the metal compound that can be sealed.
Furthermore, this embodiment preferably further includes a water supply section configured to supply a fluid containing water into the molten salt, and the water supply section includes piping or a fluid flow path, More preferably, the tip of the piping or fluid flow path is located within the molten salt. Furthermore, the water supply section of this embodiment may be configured to be able to mix heated steam using a heat source supplied from a molten salt nuclear reactor or the like with gas from the gas supply section.
 更に、本実施形態は、陰極を備える水素製造部及び陽極を備える酸素製造部と、これらの電解浴である熔融塩が両部を移動できるようにこれら両部を接続するように構成されている接続部とを備えることが好適である。前記水素製造部及び前記酸素製造部は、それぞれ熔融塩が存在する液体領域のみから構成され、実質的に気体領域がないような構成であってもよいし、発生する気体が存在する気体領域と、熔融塩が存在する液体領域とから構成されていてもよい。
 本実施形態は、水素製造部において、熔融塩中で、陰極で得られた水素を用いて、陰極付近に配置した金属化合物(例えば金属酸化物など)を、還元できるように構成されていることが好適である。
 本実施形態は、水素製造部の気体領域に存在する水素を回収することが好適である。
 本実施形態は、更に、水素製造部で発生した水素を電解部とは別の金属化合物還元部に導入することが好適であり、当該導入された水素を用いて金属化合物を還元することがより好適であり、このときの水素雰囲気下で、温度650℃以上で金属化合物の還元を行うことが更に好適である。
Furthermore, this embodiment is configured to connect a hydrogen production section including a cathode and an oxygen production section including an anode, so that the molten salt that is an electrolytic bath can move between the two sections. It is preferable to include a connecting portion. The hydrogen production section and the oxygen production section may be configured such that they each consist of only a liquid region in which molten salt exists and have substantially no gas region, or they may have a structure in which they each include a gas region in which generated gas exists. , and a liquid region in which molten salt is present.
This embodiment is configured such that a metal compound (for example, a metal oxide, etc.) placed near the cathode can be reduced in the hydrogen production section using hydrogen obtained at the cathode in a molten salt. is suitable.
In this embodiment, it is preferable to recover hydrogen existing in the gas region of the hydrogen production section.
In this embodiment, it is further preferable that the hydrogen generated in the hydrogen production section is introduced into a metal compound reduction section separate from the electrolysis section, and it is more preferable to reduce the metal compound using the introduced hydrogen. This is preferred, and it is even more preferred to reduce the metal compound at a temperature of 650° C. or higher in a hydrogen atmosphere.
 更に、前記電解部で発生した水素を気体として回収するように構成されている、水素回収装置を更に備えることが好適であり、当該回収された水素を熔融塩内に供給するように構成されている水素供給装置を更に備えることが好適である。 Furthermore, it is preferable to further include a hydrogen recovery device configured to recover hydrogen generated in the electrolytic section as a gas, and configured to supply the recovered hydrogen into the molten salt. It is preferable to further include a hydrogen supply device.
 以下に、本実施形態における、熔融塩中で水の電気分解により得られた水素を用いる金属製造装置の例として、本第1実施形態~本第3実施形態を説明するが、本実施形態はこれに限定されない。本第1実施形態、本第2実施形態、本第3実施形態は、本第1実施形態~本第3実施形態で採用する各構成や各部等を、適宜、組み合わせたり、追加したりしてもよい。 Below, the first to third embodiments will be described as examples of the metal manufacturing apparatus using hydrogen obtained by electrolysis of water in molten salt in this embodiment. It is not limited to this. The first embodiment, the second embodiment, and the third embodiment are constructed by appropriately combining or adding the configurations and parts adopted in the first to third embodiments. Good too.
 また、本実施形態における金属製造装置は、熔融塩中で水の電気分解により水素を製造する水素製造装置として用いることもでき、金属化合物粒子を備えていて金属化合物還元工程を同時期にしてもよいし、金属化合物粒子を備えずに主に水素製造工程を行ってもよい。また、本実施形態における金属製造装置は、熔融塩中で水の電気分解により水素を製造する水素製造装置を組み込み、当該水素製造装置とは別の装置にて金属化合物還元工程を行うような構成であってもよい。 Further, the metal manufacturing device in this embodiment can also be used as a hydrogen manufacturing device that manufactures hydrogen by electrolysis of water in molten salt, and even if it is equipped with metal compound particles and the metal compound reduction process is performed at the same time. Alternatively, the hydrogen production process may be mainly performed without providing metal compound particles. Further, the metal production apparatus in this embodiment has a configuration in which a hydrogen production apparatus for producing hydrogen by electrolysis of water in molten salt is incorporated, and a metal compound reduction process is performed in a separate apparatus from the hydrogen production apparatus. It may be.
4-1-1.<本第1実施形態>
 本第1実施形態は、陰極2及び陽極3を備え、熔融塩を電解浴4とする電気分解領域と、当該熔融塩中の陰極付近に配置された金属化合物5を還元する金属化合物還元領域とを備える反応容器6と、当該反応容器の温度を制御する加熱炉7とを備える、金属製造装置1aを提供することができる(図3参照)。当該加熱炉7は、加熱コイル等の加熱機構、冷却ファン等の冷却機構、反応温度を制御する制御部等を備えることが好適である。反応容器は、図3に示すように、垂直断面においてU字状であり、陰極を備える水素製造領域の気体領域と陽極を備える酸素製造領域の気体領域とは非分離の状態になっている。
4-1-1. <First embodiment>
The first embodiment includes an electrolysis region that includes a cathode 2 and an anode 3 and uses a molten salt as an electrolytic bath 4, and a metal compound reduction region that reduces a metal compound 5 disposed near the cathode in the molten salt. A metal manufacturing apparatus 1a can be provided, which includes a reaction vessel 6 including a reaction vessel 6, and a heating furnace 7 that controls the temperature of the reaction vessel (see FIG. 3). The heating furnace 7 is preferably equipped with a heating mechanism such as a heating coil, a cooling mechanism such as a cooling fan, a control section for controlling the reaction temperature, and the like. As shown in FIG. 3, the reaction vessel is U-shaped in vertical section, and the gas region of the hydrogen production region including the cathode and the gas region of the oxygen production region including the anode are in a non-separated state.
 本第1実施形態における反応は密閉式にて行うことが好適であり、例えば、反応容器6の上部に接する部材にて密閉式反応容器にしてもよく、また、密閉式の中間容器9内に反応容器6を備えてもよい。更に、反応容器6又は密閉容器7と、加熱炉7との間には、中間容器8を備えることが、より密閉性を高める観点から、より好適である。なお、密閉容器7、中間容器9、加熱炉8のそれぞれ間には、これらが接触しない程度の隙間があることが望ましい。 The reaction in the first embodiment is preferably carried out in a closed system. For example, a member in contact with the upper part of the reaction vessel 6 may be used as a closed system, or a closed intermediate vessel 9 may be used. A reaction container 6 may also be provided. Further, it is more preferable to provide an intermediate container 8 between the reaction container 6 or the closed container 7 and the heating furnace 7 from the viewpoint of further improving the sealing performance. Note that it is desirable that there be a gap between the closed container 7, the intermediate container 9, and the heating furnace 8 to the extent that these do not come into contact with each other.
 本第1実施形態には、電解浴4の熔融塩中に水を吹き込むように構成されている水供給部20がされに備えられえていることが好適である。当該水供給部20は、熔融塩中に水を含む気体を吹き込むための気体(好適には不活性ガス)を供給するためのガスボンベ等を備える気体供給部21、供給された気体中に水を含ませるため混合部22、混合部22からの水を含む気体を熔融塩中に吹き込むための流路23を備えることが好適である。気体供給部からの気体は、配管24を通じて混合部22に移送されることが好適であり、配管24は、混合部に水が存在する場合には水中に吹き込むように差し込まれていることが好適である。また、配管23は、混合部22の水領域に接触せずに気体領域に接続され、気体領域に存在する水を含む気体を移送できるような構成であることが好適である。また、水供給部20には、コンプレッサー、流量調節弁等を適宜備えてもよい。また、本第1実施形態では、バブリング式の混合部22を示したが、熔融塩原子炉等からの加熱水蒸気と気体供給部からの気体を混合できるような構成であってもよい。
 本第1実施形態は、金属化合物5を、支持し、反応容器6の内壁に接触せずに還元ができるように構成されている支持部15を更に備えることが好適であり、支持部15は陰極2と接続されていてもよく、陰極2付近に金属化合物5が配置されることが好適である。
The first embodiment preferably includes a water supply section 20 configured to blow water into the molten salt of the electrolytic bath 4. The water supply section 20 includes a gas supply section 21 equipped with a gas cylinder or the like for supplying a gas (preferably an inert gas) for blowing a gas containing water into the molten salt, and a gas supply section 21 that includes a gas cylinder or the like for supplying a gas (preferably an inert gas) for blowing a gas containing water into the molten salt. It is preferable to include a mixing section 22 for containing the water in the molten salt, and a flow path 23 for blowing the water-containing gas from the mixing section 22 into the molten salt. The gas from the gas supply section is preferably transferred to the mixing section 22 through a pipe 24, and if water is present in the mixing section, the pipe 24 is preferably inserted so as to blow into the water. It is. Further, it is preferable that the pipe 23 be connected to the gas region of the mixing section 22 without contacting the water region, and configured to be able to transfer the gas containing water present in the gas region. Further, the water supply section 20 may be appropriately equipped with a compressor, a flow rate control valve, and the like. Further, in the first embodiment, a bubbling type mixing section 22 is shown, but a configuration that can mix heated steam from a molten salt nuclear reactor or the like and gas from a gas supply section may be used.
The first embodiment preferably further includes a support section 15 that supports the metal compound 5 and is configured to be able to reduce the metal compound 5 without contacting the inner wall of the reaction vessel 6. The metal compound 5 may be connected to the cathode 2, and it is preferable that the metal compound 5 is disposed near the cathode 2.
 これにより、本第1実施形態では、熔融塩の存在下、得られた水素により金属化合物(好適には粒子状)を還元し、金属化合物がより還元された金属化合物を得ること又は還元された金属を得ることができ、このとき熔融塩の温度調節のため加熱してもよい。更に、水の電気分解により発生する気体(水素ガス、酸素ガス)を排出又は回収するための気体回収機構30を備えることが好適である。気体回収機構30は、気体領域中に存在する気体を回収するように気体領域に配管の先端を配置し、気体回収装置30に接続されている配管31、配管31内に気体回収装置30に移送する気体の流量を調節するための流量調節弁32、回収した気体を更に分離や不純物の除去や気体の貯蔵等を行う気体貯蔵部33などの1種又は2種以上を備えてもよい。 As a result, in the first embodiment, the metal compound (preferably in particulate form) is reduced by the obtained hydrogen in the presence of the molten salt, and the metal compound is reduced to a further reduced level, or a reduced metal compound is obtained. The metal can be obtained, and the molten salt may be heated to control the temperature. Furthermore, it is preferable to include a gas recovery mechanism 30 for discharging or recovering gas (hydrogen gas, oxygen gas) generated by water electrolysis. The gas recovery mechanism 30 arranges the tip of a pipe in the gas region so as to collect the gas present in the gas region, and the pipe 31 connected to the gas recovery device 30 transfers the gas into the gas recovery device 30. One or more of the following may be provided: a flow rate control valve 32 for adjusting the flow rate of the gas to be collected; and a gas storage section 33 for further separating the recovered gas, removing impurities, storing the gas, etc.
 本第1実施形態の例の説明において、後述する本第2実施形態及び本第3実施形態の内容などと重複する、各構成、各方法などの説明については適宜省略するが、これらの説明は、本第1実施形態にも当てはまり、適宜採用することができる。 In the description of the example of the first embodiment, explanations of each configuration, each method, etc. that overlap with the contents of the second embodiment and the third embodiment, which will be described later, will be omitted as appropriate, but these explanations will be omitted. , which also applies to the first embodiment and can be adopted as appropriate.
4-1-2.<本第2実施形態>
 本第2実施形態は、熔融塩中の水の電気分解により、陰極2を備え水素を製造する陰極室10と、陽極3を備え酸素を製造する陽極室11と、これらの室の液体領域を接続する接続部13とを備え、熔融塩を電解浴4とする電気分解領域と、当該熔融塩中の陰極付近に配置された金属化合物を還元する金属化合物還元領域とを備える反応容器6aと、当該反応容器の温度を制御する加熱炉8とを備える、金属製造装置1bを提供することができる(図4参照)。本第2実施形態は、金属化合物5を、支持し、反応容器6aの内壁に接触せずに還元ができるように構成されている支持部15を更に備えることが好適である。また、反応容器6aは、密閉状態であることが好適である。なお、反応容器6a、中間容器8、加熱炉8のそれぞれ間には、これらが接触しない程度の隙間があることが望ましい。
4-1-2. <Second embodiment>
The second embodiment includes a cathode chamber 10 that includes a cathode 2 and produces hydrogen through electrolysis of water in molten salt, an anode chamber 11 that includes an anode 3 that produces oxygen, and a liquid region in these chambers. a reaction vessel 6a comprising an electrolytic region using a molten salt as an electrolytic bath 4; and a metal compound reduction region that reduces a metal compound disposed near the cathode in the molten salt; A metal manufacturing apparatus 1b including a heating furnace 8 that controls the temperature of the reaction vessel can be provided (see FIG. 4). It is preferable that the second embodiment further includes a support section 15 configured to support the metal compound 5 and perform reduction without contacting the inner wall of the reaction vessel 6a. Moreover, it is suitable that the reaction container 6a is in a closed state. Note that it is desirable that there be a gap between each of the reaction container 6a, intermediate container 8, and heating furnace 8 to the extent that these do not come into contact with each other.
 反応容器6aは、陰極を備える水素製造領域10と陽極を備える酸素製造領域11とが分離するように構成されている。このとき水素製造部10と酸素製造部11と接続部12との3パーツを採用することが好適であり、製造部10,11に、それぞれ液体領域14a,14bを設け、接続部12は製造部10(液体領域14a)と製造部11(液体領域14bで)との間で熔融塩4が移動できるように構成されていることが好適である。
 また、反応容器6aは、それぞれの製造部10,11に、それぞれ、気体領域13a,13bと、液体領域14a,14bを設けてもよい。気体領域13a,13bの水素及び酸素が移動できないように構成されていることが好適である。このような構成を採用することで、水素製造部10の液体領域14aにおいて水電解にて水素を得、この水素が、液体領域14aに存在する金属化合物に接触するので、電力効率よく及び反応効率よく、当該金属化合物の還元を促進させることができる。
 また、接続部の上部の内壁は、水素製造部及び酸素製造部の各液体領域14a,14bの液面を超えず、その液面よりも下になるように構成されていることが好適である。このような分離構成を採用することで、それぞれの気体領域13a,13bで発生する水素及び酸素を、簡便に効率よくそれぞれが混合することなく気体回収機構30a,30bを用いて、水素及び酸素をそれぞれ簡便に効率よく回収することができるような構成となっている。気体回収機構30aは、水素ガス回収機構であり、気体回収機構30bは、酸素ガス回収機構であり、回収機構としての構成は、上記本第1実施形態の気体回収機構を適宜採用することができる。また、水供給機構20は、上記本第1実施形態の水供給機構を適宜採用することができる。また、支持部15は、上記本第1実施形態の支持部を適宜採用することができる。
The reaction vessel 6a is configured such that a hydrogen production region 10 including a cathode and an oxygen production region 11 including an anode are separated. At this time, it is preferable to employ three parts: the hydrogen production section 10, the oxygen production section 11, and the connection section 12.The production sections 10 and 11 are provided with liquid regions 14a and 14b, respectively, and the connection section 12 is It is preferable that the molten salt 4 is configured to be able to move between the manufacturing section 10 (liquid region 14a) and the manufacturing section 11 (liquid region 14b).
Further, the reaction vessel 6a may be provided with gas regions 13a, 13b and liquid regions 14a, 14b in the respective manufacturing sections 10, 11, respectively. It is preferable that the structure is such that hydrogen and oxygen in the gas regions 13a and 13b cannot move. By adopting such a configuration, hydrogen is obtained by water electrolysis in the liquid region 14a of the hydrogen production section 10, and this hydrogen comes into contact with the metal compound present in the liquid region 14a, so that power efficiency and reaction efficiency can be improved. It can often promote the reduction of the metal compound.
Further, it is preferable that the inner wall of the upper part of the connection part is configured not to exceed the liquid level of each of the liquid regions 14a and 14b of the hydrogen production part and the oxygen production part, but to be below the liquid level. . By adopting such a separation configuration, hydrogen and oxygen generated in the respective gas regions 13a and 13b can be easily and efficiently removed using the gas recovery mechanisms 30a and 30b without mixing them. Each is configured to be easily and efficiently collected. The gas recovery mechanism 30a is a hydrogen gas recovery mechanism, and the gas recovery mechanism 30b is an oxygen gas recovery mechanism, and the configuration of the recovery mechanism can appropriately adopt the gas recovery mechanism of the first embodiment. . Further, the water supply mechanism 20 can appropriately employ the water supply mechanism of the first embodiment. Moreover, the support part 15 can appropriately adopt the support part of the first embodiment.
 これにより、本第2実施形態では、熔融塩の存在下、得られた水素をより効率よく金属化合物(好適には粒子状)に接触させ、これを還元させ、当該金属化合物がより還元された金属化合物を得ること又は還元された金属を得ることができる。
 更に、前記陰極室10は、熔融塩の液体領域14aと、水素ガスを含む気体領域13aとから構成されてもよく、このとき、当該気体領域13aから配管を通過して水素を回収する気体回収機構30aを備えることが好適である。回収された水素は、配管又は流路を用いて、別の反応系に供給し使用してもよいし、前記水素が製造された陰極室10に還流又は供給し、金属化合物の還元のために水素を再利用してもよい。
As a result, in the second embodiment, the obtained hydrogen is brought into contact with the metal compound (preferably particulate) more efficiently in the presence of the molten salt, and is reduced, so that the metal compound is further reduced. Metal compounds or reduced metals can be obtained.
Further, the cathode chamber 10 may be composed of a liquid region 14a of molten salt and a gas region 13a containing hydrogen gas. It is preferable to include a mechanism 30a. The recovered hydrogen may be used by being supplied to another reaction system using piping or a flow path, or it may be refluxed or supplied to the cathode chamber 10 where the hydrogen was produced for the reduction of metal compounds. Hydrogen may be reused.
4-1-3.<本第3実施形態>
 本第3実施形態は、熔融塩中の電気分解により、水素を製造する陰極室10と、酸素を製造する陽極室11と、これらの室の液体領域14a,14bを接続する接続部12とを備え、熔融塩を電解浴とする電気分解領域を備える反応容器6aと、当該反応容器の温度を制御する加熱炉8とを備える水素製造部50aと、当該水素製造部により発生した水素を導入し、当該水素の雰囲気下で金属化合物を還元する金属化合物還元部50bとを備える、金属製造装置1cを提供することができる(図10参照)。
4-1-3. <Third Embodiment>
The third embodiment includes a cathode chamber 10 for producing hydrogen, an anode chamber 11 for producing oxygen, and a connection part 12 for connecting the liquid regions 14a and 14b of these chambers by electrolysis in molten salt. A hydrogen production section 50a includes a reaction vessel 6a having an electrolysis region using molten salt as an electrolytic bath, and a heating furnace 8 for controlling the temperature of the reaction vessel, and hydrogen generated by the hydrogen production section is introduced. , and a metal compound reducing section 50b that reduces the metal compound in the hydrogen atmosphere (see FIG. 10).
 本第3実施形態における水素製造部50aは、金属化合物5を配置せずに、水素製造工程を実施することができる反応容器6aを備え、当該反応容器6aは、上記本第2実施形態で説明した反応容器6aを採用することができる。
 本第3実施形態における気体回収機構30aは、水素製造部50aにて発生した水素を、別の容器又は装置である金属化合物還元部50bに導入する流路を備えることが好適であり、水素製造部50aで発生した水素を金属化合物還元部50bに移送できるような構成が好適であり、また、上記本第1実施形態の気体回収機構50を適宜採用することができる。
The hydrogen production section 50a in the third embodiment includes a reaction vessel 6a that can perform the hydrogen production process without disposing the metal compound 5, and the reaction vessel 6a is described in the second embodiment above. It is possible to employ a reaction vessel 6a having a similar structure.
The gas recovery mechanism 30a in the third embodiment is preferably provided with a flow path for introducing hydrogen generated in the hydrogen production section 50a into a metal compound reduction section 50b, which is another container or device. A configuration in which the hydrogen generated in the section 50a can be transferred to the metal compound reducing section 50b is preferable, and the gas recovery mechanism 50 of the first embodiment described above can be adopted as appropriate.
 本第3実施形態における金属化合物還元部50bは、水素雰囲気下において加熱制御することにより金属化合物を還元することができ、公知の金属化合物還元の装置又は方法を採用してもよい。また、本実施形態に用いる金属化合物還元工程を採用し、熔融塩中で水素により金属化合物を還元するような構成を備える金属化合物還元部であってもよい。
 また、水供給機構20は、上記本第1実施形態の水供給機構を適宜採用することができる。
The metal compound reduction unit 50b in the third embodiment can reduce the metal compound by controlling heating in a hydrogen atmosphere, and may employ a known metal compound reduction apparatus or method. Alternatively, the metal compound reducing section may be configured to adopt the metal compound reducing step used in this embodiment and reduce the metal compound with hydrogen in a molten salt.
Further, the water supply mechanism 20 can appropriately employ the water supply mechanism of the first embodiment.
 これにより、水の電気分解で発生した水素を、別の部に導入し、当該水素により効率よく金属化合物に接触させ、還元し、より還元された金属化合物を得ること又は金属を得ることができ、当該金属化合物の還元物は熔融塩中でなく雰囲気下であるため、熔融塩の除去や熔融塩の冷却期間などが不要であり、その後の回収が容易である。 As a result, the hydrogen generated by electrolysis of water is introduced into another part, and the hydrogen is efficiently brought into contact with the metal compound and reduced to obtain a more reduced metal compound or a metal. Since the reduced product of the metal compound is not in the molten salt but in the atmosphere, there is no need to remove the molten salt or to cool down the molten salt, and subsequent recovery is easy.
4-2.熔融塩原子炉
 本実施形態に用いる熔融塩原子炉について図5を参照して説明するが、これに特に限定されない。熔融塩原子炉100は、熔融塩を燃料として用い、電力源及び/又は熱源となり得るように構成されている原子炉であることが好適であり、一般的な又は公知の熔融塩炉であってもよい(例えば、特許文献4及び特許文献5参照)。例えば、熔融塩炉100は、炉容器101内に、熔融塩を燃料として核反応を生じさせ熱を発生させる炉心102と、燃料を含む1次流体(例えば1次冷却材)105が循環する1次流体循環機構106と、炉内の核分裂反応を制御するための制御棒103と当該制御棒を炉心内に出し入れするための駆動を制御するための制御棒駆動機構104を少なくとも備えている。更に、前記制御棒は、通常、核分裂反応を起動又は停止させるために用いられ、更に核分裂反応を制御し炉内出力を制御するために用いられてもよい。
4-2. Molten Salt Nuclear Reactor The molten salt nuclear reactor used in this embodiment will be described with reference to FIG. 5, but is not particularly limited thereto. The molten salt nuclear reactor 100 is preferably a nuclear reactor configured to use molten salt as a fuel and can serve as a power source and/or a heat source, and is a general or known molten salt reactor. (For example, see Patent Document 4 and Patent Document 5). For example, the molten salt reactor 100 includes a reactor core 102 that uses molten salt as fuel to cause a nuclear reaction to generate heat, and a reactor core 102 in which a primary fluid (for example, primary coolant) 105 containing fuel circulates in a reactor vessel 101. It is provided with at least a fluid circulation mechanism 106, a control rod 103 for controlling the nuclear fission reaction in the reactor, and a control rod drive mechanism 104 for controlling the drive for moving the control rod in and out of the reactor core. Furthermore, the control rods are typically used to start or stop a nuclear fission reaction, and may also be used to control the nuclear fission reaction and control the in-reactor power.
 更に、熔融塩炉100には、1次流体の循環を制御するための燃料循環ポンプが付設されていてもよく、炉心内の1次流体循環機構に当該燃料循環ポンプを備え、当該ポンプヘッドの動作制御により当該1次流体循環における流体の流量や速度等を制御してもよい。
 更に、熔融塩炉100の炉心内には、熔融塩燃料を通過させる際に核反応により熱を発生させるブロック部材が単数又は複数配置され、単数又は複数のブロック部材で炉心が構成されていることが好適であり、当該ブロック部材は、黒鉛ブロックが好適である。
Furthermore, the molten salt reactor 100 may be equipped with a fuel circulation pump for controlling the circulation of the primary fluid, and the primary fluid circulation mechanism in the reactor core is equipped with the fuel circulation pump, and the pump head is equipped with the fuel circulation pump. The flow rate, speed, etc. of the fluid in the primary fluid circulation may be controlled by operation control.
Furthermore, in the core of the molten salt reactor 100, one or more block members are arranged that generate heat through a nuclear reaction when the molten salt fuel passes through, and the core is constituted by the one or more block members. is suitable, and the block member is preferably a graphite block.
 なお、本実施形態に用いる温度計(図示せず)は、接触式又は非接触式のいずれでもよく、当該温度計を、例えば熔融塩内やその流路内、また電力源内及び熱源内等に備えて、各種温度を監視又は測定することができる。接触式の温度計として、例えば、サーミスタ、熱電対、測温抵抗体等が挙げられ、非接触式の温度計として、放射温度計、色温度計等が挙げられ、これらから1種又は2種以上を選択することができる。 The thermometer (not shown) used in this embodiment may be either a contact type or a non-contact type, and the thermometer may be placed, for example, inside molten salt, its flow path, or inside a power source or heat source. In addition, various temperatures can be monitored or measured. Examples of contact type thermometers include thermistors, thermocouples, resistance temperature detectors, etc., and examples of non-contact type thermometers include radiation thermometers, color thermometers, etc., and one or two types of these can be used. You can select from the above.
 本実施形態では、熔融塩原子炉の「熔融塩燃料流体」を「1次流体」、「熔融塩燃料流体から熱交換により熱を受け取るための流体」を「2次流体」、「当該流体(2次流体)を加熱源媒体として使用して加熱される流体」を「3次流体」ともいう。また、本実施形態では、1次流体を熱源とする系(好適には熔融塩燃料流体が循環する流体循環機構)を1次系、1次系の1次流体と熱交換する2次流体を利用する系(好適には、2次流体が循環する流体循環機構)を2次系、2次系の2次流体と熱交換する3次流体を利用する系又は2次流体を3次熱源とする系(好適には3次流体循環機構又は3次熱源)を3次系ともいう。ただし、この1次、2次、3次のn次の番号は、説明の便宜上付したものであり、n次を付すことにより、本実施形態が、狭義に限定されず、特に限定されるものではない。 In this embodiment, the "molten salt fuel fluid" of the molten salt nuclear reactor is referred to as the "primary fluid", the "fluid for receiving heat from the molten salt fuel fluid through heat exchange" as the "secondary fluid", and the "the fluid ( A fluid that is heated using a secondary fluid as a heating source medium is also called a tertiary fluid. In addition, in this embodiment, a system using a primary fluid as a heat source (preferably a fluid circulation mechanism in which molten salt fuel fluid circulates) is used as a primary system, and a secondary fluid that exchanges heat with the primary fluid of the primary system is used as a heat source. A system to be used (preferably a fluid circulation mechanism in which a secondary fluid circulates) is a secondary system, a system that uses a tertiary fluid that exchanges heat with a secondary fluid of the secondary system, or a system that uses a tertiary fluid as a tertiary heat source. A system (preferably a tertiary fluid circulation mechanism or a tertiary heat source) is also referred to as a tertiary system. However, the n-th numbers such as primary, secondary, and tertiary are added for convenience of explanation, and by adding n-th, this embodiment is not limited in a narrow sense, but is particularly limited. isn't it.
 熔融塩原子炉100は、熔融塩原子炉内の熔融塩燃料流体を1次流体として、当該1次流体から熱交換により熱を受け取るための流体(2次流体)に熱を与えることができる。そして、当該2次流体が循環流路を循環し、循環の際に、2次流体又は3次流体に基づき、電力供給源及び/又は熱供給源となる機構又は装置にて電気エネルギー及び/又は熱エネルギーを他の機構や装置、システム等に供給することができる。このように、当該2次流体又は3次流体の受熱流体を、加熱源媒体として使用することができる。
 電力源の場合、通常、2次流体から、2次熱交換機構(好適には2次熱交換器)により、熱を受け取った3次流体を利用する発電機構又は装置(例えば、蒸気タービン、これに接続する発電機、蒸気を冷却し水に戻す復水器等を備える発電機構等)に使用することが好適である。
 熱源の場合、通常、2次流体から、2次熱交換機構により、熱を受け取った3次流体を熱源として利用する機構又は装置に使用することが好適であり、また熱交換器を用いて水から加熱水蒸気にすることができ、加熱水蒸気を電気分解の水として用いることができる。
The molten salt nuclear reactor 100 can use the molten salt fuel fluid in the molten salt nuclear reactor as a primary fluid, and can give heat to a fluid (secondary fluid) for receiving heat from the primary fluid by heat exchange. Then, the secondary fluid circulates through the circulation channel, and during the circulation, a mechanism or device serving as a power supply source and/or heat supply source generates electrical energy and/or Thermal energy can be supplied to other mechanisms, devices, systems, etc. In this way, the heat receiving fluid of the secondary or tertiary fluid can be used as a heating source medium.
In the case of a power source, a power generation mechanism or device (e.g., a steam turbine, It is suitable for use in power generation mechanisms (e.g., power generation mechanisms equipped with a generator connected to a generator, a condenser that cools steam and returns it to water, etc.).
In the case of a heat source, it is usually preferable to use it in a mechanism or device that uses a tertiary fluid that has received heat from a secondary fluid through a secondary heat exchange mechanism as a heat source. The heated steam can be used as water for electrolysis.
 また、本実施形態に用いる熔融塩原子炉は、出力の規模、大きさ等について特に限定されないが、本実施形態の熔融塩原子炉の出力制御を行うことで、小型の出力であっても、熱源である熔融塩原子炉から2次流体に安定的な熱量を与えることができるという利点がある。熔融塩原子炉は、20万kW以下、又は、1万~5万Kw又は1万~3万kWの小型熔融塩原子炉であることが好適である。なお、1ワットは毎秒1ジュールに等しいエネルギーを生じさせる仕事率のことである。また、本実施形態における稼働時又は2次流体に供給可能な熔融塩原子炉内の温度は、特に限定されないが、例えば、図2では約700℃が好適であり、より好適には500~1000℃、より好適には500~900℃、更に好適には500~700℃である。また、原子炉、冷却系が常圧であってもよい。 Further, the molten salt reactor used in this embodiment is not particularly limited in terms of output scale, size, etc., but by controlling the output of the molten salt reactor of this embodiment, even if the output is small, There is an advantage that a stable amount of heat can be given to the secondary fluid from the molten salt nuclear reactor which is the heat source. The molten salt nuclear reactor is preferably a small molten salt nuclear reactor of 200,000 kW or less, 10,000 to 50,000 kW, or 10,000 to 30,000 kW. Note that 1 watt is the power that produces energy equal to 1 joule per second. Further, the temperature inside the molten salt nuclear reactor during operation or at which the secondary fluid can be supplied in this embodiment is not particularly limited, but for example, in FIG. °C, more preferably 500 to 900 °C, still more preferably 500 to 700 °C. Further, the reactor and cooling system may be at normal pressure.
 また、熔融塩原子炉に用いる燃料の熔融塩は、特に限定されないが、例えば、500℃で溶解し、陽極と陰極を浸漬して電流を流した際に前記熔融塩を分解することのない安定に電解できる電位の範囲である電位窓が広いものであることが好適である。具体的には、上述した電気分解機構に用いる熔融塩を適宜採用してもよく、更に本実施形態に用いる燃料の熔融塩としては、特に限定されないが、例えば、プロトニウム、ウラン、トリウム等から選択される1種又は2種以上を含む熔融塩が挙げられ、トリウム熔融塩が好適である。
 また、本実施形態に用いる2次流体は、原子炉の冷却材として使用可能な流体、例えば、金属流体、上記熔融塩等から選択される1種又は2種以上を用いることが好適である。当該金属として、例えば、金属カリウム(融点64℃)、金属ナトリウム(融点98℃)、リチウム(融点181℃)、ナトリウムカリウム合金(例えば、ナトリウム56%-カリウム44%(融点19℃)等から選択される1種又は2種以上を用いることができる。このうち、2次流体として、ナトリウム熔融塩又はナトリウム金属が、好適であり、より好適にはナトリウム金属である。
Moreover, the molten salt of the fuel used in the molten salt nuclear reactor is not particularly limited, but is stable, for example, by melting at 500°C and not decomposing the molten salt when the anode and cathode are immersed and a current is applied. It is preferable that the potential window, which is the range of potential that can be electrolyzed, is wide. Specifically, the molten salt used in the electrolysis mechanism described above may be appropriately employed, and the molten salt of the fuel used in this embodiment is not particularly limited, but may be selected from protonium, uranium, thorium, etc. Examples include molten salts containing one or more of the following, and thorium molten salts are preferred.
Further, as the secondary fluid used in this embodiment, it is preferable to use one or more fluids selected from fluids that can be used as coolants for nuclear reactors, such as metal fluids, the above-mentioned molten salts, and the like. The metal may be selected from, for example, potassium metal (melting point 64°C), sodium metal (melting point 98°C), lithium (melting point 181°C), sodium-potassium alloy (for example, 56% sodium-44% potassium (melting point 19°C)), etc. Among these, sodium molten salt or sodium metal is preferred as the secondary fluid, and sodium metal is more preferred.
5.本実施形態の別の側面
 本実施形態の別の側面の例の説明において、上述した「1.」~「4.」、後述する内容などと重複する、電気分解機構、水素製造工程、金属化合物還元工程、熔融塩、金属の製造方法などの各構成、各方法などの説明については適宜省略するが、当該「1.」~「4.」及び後述する内容等の説明が、本実施形態にも当てはまり、適宜採用することができる。本実施形態に用いる制御部は、本実施形態における方法を実行するように構成されており、当該制御部に代えて、操作者(ヒト)が本実施形態における方法を適宜実行してもよい。
5. Another Aspect of the Present Embodiment In the description of the example of another aspect of the present embodiment, the electrolysis mechanism, hydrogen production process, metal compound, etc., which overlap with the above-mentioned "1." to "4." and the content described later, will be described. Although explanations of each structure and each method such as the reduction process, molten salt, and metal manufacturing method will be omitted as appropriate, the explanations of "1." to "4." and the contents to be described later will be explained in this embodiment. This also applies and can be adopted as appropriate. The control unit used in this embodiment is configured to execute the method in this embodiment, and instead of the control unit, an operator (human) may appropriately execute the method in this embodiment.
 本実施形態に係る金属の製造方法、水素製造工程、金属化合物還元工程、熔融塩中に得られた水素を用いて金属を製錬する方法等を利用する、装置又はシステムには、上述した少なくとも制御部を備える電気分解反応装置、金属の製造装置等の装置が備えられていること又は本実施形態に関する方法がプログラム等として組み込まれていることが好適である。本実施形態の電気分解反応システム、又は金属の製造システム等のシステムは、制御部又は当該制御部を備える電気分解反応、又は金属の製造等の管理装置と、他の部又は他の装置とが、無線及び/又は有線にて、送受信可能な通信部を更に設けてもよい。 An apparatus or system that utilizes the metal production method, hydrogen production process, metal compound reduction process, method of smelting metal using hydrogen obtained in molten salt, etc. according to the present embodiment includes at least the above-mentioned methods. It is preferable that an apparatus such as an electrolysis reaction apparatus or a metal manufacturing apparatus equipped with a control unit is provided, or that the method according to the present embodiment is incorporated as a program or the like. A system such as an electrolysis reaction system or a metal production system of the present embodiment has a control unit or a control device for electrolysis reaction or metal production, etc. equipped with the control unit, and other units or other devices. , a communication unit capable of transmitting and receiving wirelessly and/or by wire may be further provided.
 なお、本実施形態に関する方法を、電気分解反応、又は金属化合物を還元して得られる金属の製造の管理装置(例えば、コンピュータ、PLC、サーバ、クラウドサービスなど)におけるCPUなどを含む装置又は制御部によって実現させることも可能である。また、本実施形態に関する方法を、記録媒体(不揮発性メモリ(USBメモリ、SSDなど)、HDD、CD、DVD、ブルーレイディスクなど)などを備えるハードウェア資源にプログラムとして格納し、制御部によって実現させることも可能である。当該制御部によって、電気分解反応、又は金属の製造の管理システムなど、当該制御部もしくは当該システムを備える装置を提供することも可能である。また、当該装置には、キーボードなどの入力部、ネットワークなどの通信部、ディスプレイなどの表示部などを備えてもよい。 Note that the method according to the present embodiment may be applied to a device or control unit including a CPU in a management device (for example, a computer, PLC, server, cloud service, etc.) for the production of metal obtained by electrolysis reaction or reduction of a metal compound. It is also possible to realize this by Further, the method according to the present embodiment is stored as a program in a hardware resource including a recording medium (non-volatile memory (USB memory, SSD, etc.), HDD, CD, DVD, Blu-ray disc, etc.), and is realized by the control unit. It is also possible. With the control unit, it is also possible to provide an apparatus including the control unit or the system, such as a management system for electrolysis reactions or metal production. Further, the device may include an input unit such as a keyboard, a communication unit such as a network, a display unit such as a display, and the like.
 電気分解反応、又は金属の製造等の管理装置又は管理システムは、キーボードなどの入力部、ネットワークなどの通信部、ディスプレイなどの出力部、HDDなどの記憶部などを備えることができる。当該装置又はシステムは、入力部、出力部、記憶部を備えることが好ましく、更に、通信部及び/又は測定部を備えることが好ましい。
 前記入力部は、本実施形態の方法を行う操作者によって、ユーザ操作を受け付けることができる。当該入力部は、例えばマウス及び/又はキーボードなどを含むことができる。また、表示装置のディスプレイ面がタッチ操作を受け付ける入力部として構成されてもよい。
 前記出力部は、電気分解反応、又は金属の製造等の各種状況及びこれらに関連する情報(例えば、表、図、説明文等)などを出力することができる。当該出力部は、例えば、画像を表示する表示装置、音を出力するスピーカー、紙などの印刷媒体に印刷する印刷装置などを挙げることができるが、これらに限定されない。
 前記記憶部は、操作者が入力したデータ、電気分解反応、又は金属の製造の各種状況及びこれらに関連する情報を監視するために又は実行するために設定されているデータを記憶することができる。当該記憶部は、例えば記録媒体を含んでよい。
 また、本実施形態に係るシステムは、プログラム及びハードウェアを利用することによって実行することができる。本発明の一実施形態に係るコンピュータ1の一実施形態(図示せず)は、これに限定されないが、コンピュータ1の構成要素として、CPUを少なくとも備え、更に、RAM、記憶部、出力部、入力部、通信部、ROM、及び測定部などから選択される1種又は2種を備えることができ、このうちRAM、記憶部、出力部及び入力部を備えることが好適であり、更に、通信部、測定部、ROMなどを少なくとも1つ備えることが好適である。それぞれの構成要素は、例えばデータの伝送路としてのバスで接続されていることが好適である。
A management device or a management system for electrolysis reactions, metal manufacturing, etc. can include an input unit such as a keyboard, a communication unit such as a network, an output unit such as a display, a storage unit such as an HDD, and the like. The device or system preferably includes an input section, an output section, and a storage section, and further preferably includes a communication section and/or a measurement section.
The input unit can receive user operations by an operator who performs the method of this embodiment. The input unit can include, for example, a mouse and/or a keyboard. Further, the display surface of the display device may be configured as an input unit that accepts touch operations.
The output unit can output various situations such as electrolysis reactions or metal manufacturing, and information related thereto (for example, tables, diagrams, explanatory text, etc.). Examples of the output unit include, but are not limited to, a display device that displays an image, a speaker that outputs sound, a printing device that prints on a print medium such as paper, and the like.
The storage unit can store data input by an operator, data set for monitoring or executing various conditions of electrolysis reactions, or metal production, and information related thereto. . The storage unit may include, for example, a recording medium.
Furthermore, the system according to this embodiment can be executed by using programs and hardware. An embodiment (not shown) of a computer 1 according to an embodiment of the present invention includes, but is not limited to, at least a CPU as components of the computer 1, and further includes a RAM, a storage section, an output section, and an input section. It is preferable to include one or two selected from the following: a RAM, a storage section, an output section, and an input section; , a measuring section, a ROM, and the like. Preferably, the respective components are connected by, for example, a bus serving as a data transmission path.
 本技術は、以下の構成を採用することもできる。
・〔1〕 熔融塩中で水を電気分解することによって得られた水素により、金属化合物を還元して金属を製造する又は金属を得る、金属製造方法、又は、製錬方法、又は、化学的電気分解方法。水電解で発生させた熔融塩中の水素により熔融塩中の金属化合物を還元して金属を製造する又は金属を得ることが好適である。
・〔2〕 熔融塩中で水を電気分解することによって、水素を得る、水素製造工程と、当該水素により、金属化合物を還元して金属を製造する又は金属を得る金属化合物還元工程とを含む、金属製造方法、又は、製錬方法、又は、化学的電気分解方法。
The present technology can also adopt the following configuration.
・[1] A metal manufacturing method, a smelting method, or a chemical method in which a metal compound is reduced using hydrogen obtained by electrolyzing water in a molten salt to produce or obtain a metal. Electrolysis method. It is preferable to produce or obtain a metal by reducing a metal compound in the molten salt with hydrogen in the molten salt generated by water electrolysis.
・[2] Includes a hydrogen production process in which hydrogen is obtained by electrolyzing water in a molten salt, and a metal compound reduction process in which a metal compound is reduced with the hydrogen to produce a metal or a metal is obtained. , metal manufacturing method, smelting method, or chemical electrolysis method.
・〔3〕 前記金属化合物は、粒子状である、前記〔1〕又は〔2〕に記載の方法。当該粒子状の大きさは、レーザー回折散乱法により求めた粒度分布における積算値50%での粒子径(平均粒径D50)が、小さいほどよく、好適には、10mm以下である。
・〔4〕 前記水素が、水素製造の反応容器から別の容器(金属化合物還元の反応容器)に導入した水素であり、当該水素を用いる、前記〔1〕~〔3〕のいずれか1つに記載の方法。当該別の容器とは、水を電気分解する容器(より好適には水素製造部及び酸素製造部)とは別の容器のことが好適である。とはより好適には当該別の容器内にて、金属化合物を還元して金属を得ることが好適である。
- [3] The method according to [1] or [2] above, wherein the metal compound is in the form of particles. Regarding the size of the particles, the smaller the particle size (average particle size D50) at 50% of the integrated value in the particle size distribution determined by laser diffraction scattering method, the better, and is preferably 10 mm or less.
・[4] Any one of [1] to [3] above, in which the hydrogen is introduced from a reaction container for hydrogen production into another container (reaction container for metal compound reduction), and the hydrogen is used. The method described in. The other container is preferably a container different from the container for electrolyzing water (more preferably the hydrogen production section and the oxygen production section). More preferably, the metal compound is reduced to obtain the metal in the separate container.
・〔5〕 前記電気分解は、熔融塩原子炉から供給された電気エネルギー及び/又は熱エネルギーによるものである、前記〔1〕~〔4〕のいずれか1つ記載の方法。当該熔融塩原子炉は、小型熔融塩原子炉が、二酸化炭素ガス排出ゼロ、コスト削減等の観点から、好適であり、更に複数の小型熔融塩原子炉を連携して用いることで、安定的に電気エネルギー及び熱エネルギーを安定的に供給できる観点から好適である。
・〔6〕 前記熔融塩は、(a)金属ハロゲン化物(好適には金属塩化物、金属フッ化物)、金属水酸化物、金属硝酸塩、金属炭酸塩、金属硫酸塩、金属酢酸塩、金属リン酸塩、金属ケイ酸塩などから選択される1種又は2種以上、(b)アルカリ金属塩化物又はアルカリ土類金属塩化物のうちの少なくとも1つ、又は、(c)アルカリ金属水酸化物又はアルカリ土類金属水酸化物のうちの少なくとも1つ、又は、(d)アルカリ金属塩化物、アルカリ土類金属塩化物、アルカリ金属水酸化物、及びアルカリ土類金属水酸化物などから選択される1種又は2種以上、(e)当該(b)及び(c)の混合物を含むものである、前記〔1〕~〔5〕のいずれか1つ記載の方法。さらに、前記熔融塩は、金属水酸化物を含むものが好適であり、より好適にはアルカリ金属水酸化物又はアルカリ土類金属水酸化物(LiOH、NaOH、KOH、RbOH、CsOH、Mg(OH)2、Ca(OH) 2、Sr(OH) 2、及び、Ba(OH) 2)のうちの少なくとも1つ或いはその両方を含むものである。
- [5] The method according to any one of [1] to [4], wherein the electrolysis is performed using electrical energy and/or thermal energy supplied from a molten salt nuclear reactor. As for the molten salt reactor, a small molten salt reactor is suitable from the viewpoint of zero carbon dioxide gas emission and cost reduction, and furthermore, by using multiple small molten salt reactors in conjunction, it can be stably operated. This is suitable from the viewpoint of stably supplying electrical energy and thermal energy.
・[6] The molten salt is (a) a metal halide (preferably a metal chloride, a metal fluoride), a metal hydroxide, a metal nitrate, a metal carbonate, a metal sulfate, a metal acetate, a metal phosphorus. One or more selected from acid salts, metal silicates, etc., (b) at least one of alkali metal chlorides or alkaline earth metal chlorides, or (c) alkali metal hydroxides. or (d) selected from alkali metal chlorides, alkaline earth metal chlorides, alkali metal hydroxides, alkaline earth metal hydroxides, etc. (e) a mixture of (b) and (c). Further, the molten salt preferably contains a metal hydroxide, more preferably an alkali metal hydroxide or an alkaline earth metal hydroxide (LiOH, NaOH, KOH, RbOH, CsOH, Mg(OH) ) 2 , Ca(OH) 2 , Sr(OH) 2 , and Ba(OH) 2 ), or both thereof.
・〔7〕 前記金属化合物は、金属元素と、非金属元素とを含む金属化合物である、前記〔1〕~〔6〕のいずれか1つに記載の方法。より好適な金属元素は、4A及び5A族からなる群より選択される1種又は2種以上のものであり、より好適な非金属元素は、水素、窒素原子、塩素原子、炭素原子、ホウ素原子、硫黄原子及び酸素原子から選択される1種以上のものである。更に好適には、前記金属は、鉄、銅、亜鉛、ニッケル、スズ、鉛、コバルト、モリブデン、アルミニウム、チタン、カリウム、カルシウム、ナトリウム、及びマグネシウムからなる群、より好適には鉄、銅、亜鉛、ニッケル、スズ、鉛、コバルト、モリブデンからなる群、から選択される1種又は2種以上である。また、更に好適には、前記非金属元素は、酸素原子、硫黄原子及び塩素原子からなる群から選択される1種又は2種以上であることが好適である。 - [7] The method according to any one of [1] to [6], wherein the metal compound is a metal compound containing a metal element and a non-metal element. More preferred metal elements are one or more selected from the group consisting of Groups 4A and 5A, and more preferred nonmetallic elements are hydrogen, nitrogen atom, chlorine atom, carbon atom, and boron atom. , sulfur atoms, and oxygen atoms. More preferably, the metal is from the group consisting of iron, copper, zinc, nickel, tin, lead, cobalt, molybdenum, aluminum, titanium, potassium, calcium, sodium, and magnesium, more preferably iron, copper, zinc. , nickel, tin, lead, cobalt, and molybdenum. Further, more preferably, the nonmetallic element is one or more selected from the group consisting of oxygen atoms, sulfur atoms, and chlorine atoms.
・〔8〕 前記熔融塩中の水は、湿潤雰囲気下にある水を含む気体が熔融塩表面から吸湿作用等により熔融塩に存在させた水、及び/又は、水を含む気体を熔融塩内に、吹き込み、撹拌、混合等の機械的な機構により熔融塩に存在させた水である、前記〔1〕~〔7〕のいずれか1つ記載の方法。当該水は、水分を含む不活性ガス(例えば、希ガス等)を熔融塩中に吹き込んだ水が、より好適である。
・〔9〕 前記金属の製造方法が、製錬として用いるものである、前記〔1〕~〔8〕のいずれか一つに記載の方法。
・[8] The water in the molten salt is water that is present in the molten salt due to the hygroscopic action of a gas containing water in a humid atmosphere from the surface of the molten salt, and/or water that is present in the molten salt by a gas containing water being absorbed into the molten salt. The method according to any one of [1] to [7] above, wherein the water is made to exist in the molten salt by a mechanical mechanism such as blowing, stirring, or mixing. More preferably, the water is water obtained by blowing a moisture-containing inert gas (for example, rare gas, etc.) into a molten salt.
- [9] The method according to any one of [1] to [8] above, wherein the method for producing the metal is used as smelting.
・〔10〕 熔融塩中で水を電気分解することによって、水素を得る、水素製造方法。
・〔11〕 前記熔融塩は、(a)金属ハロゲン化物(好適には金属塩化物、金属フッ化物)、金属水酸化物、金属硝酸塩、金属炭酸塩、金属硫酸塩、金属酢酸塩、及び金属リン酸塩などから選択される1種又は2種以上、(b)アルカリ金属塩化物又はアルカリ土類金属塩化物のうちの少なくとも1つ、又は、(c)アルカリ金属水酸化物又はアルカリ土類金属水酸化物のうちの少なくとも1つ、又は、(d)アルカリ金属塩化物、アルカリ土類金属塩化物、アルカリ金属水酸化物、及びアルカリ土類金属水酸化物、アルカリ金属フッ化物、アルカリ土類金属フッ化物、アルカリ金属硝酸塩、アルカリ金属硫酸塩、アルカリ金属炭酸塩、アルカリ金属酢酸塩、アルカリ金属燐酸塩から選択される1種又は2種以上、(e)当該(b)及び(c)の混合物を含むものである、前記〔10〕に記載の方法。
・[10] A hydrogen production method in which hydrogen is obtained by electrolyzing water in molten salt.
・[11] The molten salt includes (a) a metal halide (preferably a metal chloride, a metal fluoride), a metal hydroxide, a metal nitrate, a metal carbonate, a metal sulfate, a metal acetate, and a metal One or more selected from phosphates, etc., (b) at least one of an alkali metal chloride or an alkaline earth metal chloride, or (c) an alkali metal hydroxide or an alkaline earth metal chloride. at least one of metal hydroxides, or (d) alkali metal chloride, alkaline earth metal chloride, alkali metal hydroxide, and alkaline earth metal hydroxide, alkali metal fluoride, alkaline earth One or more selected from metal fluorides, alkali metal nitrates, alkali metal sulfates, alkali metal carbonates, alkali metal acetates, and alkali metal phosphates, (e) (b) and (c) The method according to [10] above, which comprises a mixture of.
・〔12〕 陰極を備える水素製造領域及び陽極を備える酸素製造領域を備え、
 水素製造領域の熔融塩中の水を電気分解することによって、当該水素製造領域に水素を得る、前記〔10〕又は〔11〕に記載の方法。
・〔13〕 前記水素製造領域及び前記酸素製造領域とは別の領域又は別の容器(水素貯蔵用、金属化合物還元用など)を、更に備え、
 前記水素製造領域に生成又は発生させた水素を、前記別の領域又は別の容器に、移送又は導入する、前記〔10〕~〔12〕のいずれか1つに記載の方法。
・[12] A hydrogen production region including a cathode and an oxygen production region including an anode,
The method according to [10] or [11] above, wherein hydrogen is obtained in the hydrogen production region by electrolyzing water in molten salt in the hydrogen production region.
・[13] Further comprising a region or a container (for hydrogen storage, metal compound reduction, etc.) separate from the hydrogen production region and the oxygen production region,
The method according to any one of [10] to [12], wherein the hydrogen produced or generated in the hydrogen production region is transferred or introduced into the other region or another container.
・〔14〕 前記水素製造領域及び前記酸素製造領域はそれぞれ別々の領域であり、これら領域の液体領域同士は、熔融塩が移動できる流路を介して接続されている、前記〔10〕~〔13〕のいずれか1つ記載の方法。 - [14] The hydrogen production region and the oxygen production region are each separate regions, and the liquid regions of these regions are connected to each other via a flow path through which molten salt can move. 13].
・〔15〕 前記〔10〕~〔14〕のいずれか1つ記載の水素製造方法により得られた水素により、金属化合物を還元して、金属を製造する、前記〔1〕~〔9〕のいずれか一つに記載の方法。
・〔16〕 前記〔10〕~〔15〕のいずれか1つ記載の水素製造方法により発生せしめた水素を別容器に導入し、当該水素により、金属化合物を還元し、金属を得る、前記〔1〕~〔9〕のいずれか一つに記載の方法。
・[15] The method of [1] to [9] above, in which a metal compound is reduced with hydrogen obtained by the hydrogen production method according to any one of [10] to [14] above, to produce a metal. Any one of the methods described.
・[16] The hydrogen produced by the hydrogen production method according to any one of [10] to [15] above is introduced into a separate container, and the metal compound is reduced with the hydrogen to obtain the metal, [ The method described in any one of [1] to [9].
・〔17〕 陰極を備える水素製造領域及び陽極を備える酸素製造領域を備え、
 水素製造領域の熔融塩中に水を電気分解することによって、水素製造領域に得られた水素を用いて、金属化合物を還元して、金属を製造する、前記〔1〕~〔10〕のいずれか一つに記載の方法。
・[17] A hydrogen production region including a cathode and an oxygen production region including an anode,
Any of the above [1] to [10], wherein a metal is produced by reducing a metal compound using hydrogen obtained in the hydrogen production region by electrolyzing water in molten salt in the hydrogen production region. The method described in one of the following.
・〔18〕 陰極を備える水素製造領域及び陽極を備える酸素製造領域、及びこれら領域とは別の領域又は別の容器(水素貯蔵用、金属化合物還元用など)を備え、
 前記別の領域又は別の容器には、水素製造領域の熔融塩中に水を電気分解することによって、水素製造領域に発生させた水素が、導入されており、
 当該別の領域又は別の容器に導入された水素を用いて、金属化合物を還元して、金属を製造する、前記〔1〕~〔10〕のいずれか一つに記載の方法。
・[18] A hydrogen production region equipped with a cathode and an oxygen production region equipped with an anode, and a region or another container (for hydrogen storage, metal compound reduction, etc.) separate from these regions,
Hydrogen generated in the hydrogen production region by electrolyzing water in molten salt in the hydrogen production region is introduced into the another region or another container,
The method according to any one of [1] to [10] above, wherein a metal is produced by reducing a metal compound using hydrogen introduced into the separate region or separate container.
・〔19〕
 熔融塩中の水で電気分解可能な陽極及び陰極を備える電気分解機構、
 熔融塩に水を供給するための水供給機構、
 熔融塩を含む、密閉可能な熔融塩容器、
を備える、金属製造装置、電気分解反応装置、又は金属化合物を還元させて金属を得るための製造装置。当該装置は、熔融塩の温度を調整する熔融塩温度調節機構をさらに備えることが好適である。
・〔20〕
 前記容器が、水素製造領域と、酸素製造領域と、これら領域の液体領域(熔融塩)を接続する流路領域とを備える、前記〔19〕に記載の装置。水素製造領域には陰極、酸素製造領域には陽極が備えられていることが好適であり、それぞれの領域は、熔融塩が存在する液体領域と、発生した気体が存在する気体領域とから構成されていることがより好適である。
・〔21〕 前記水素製造領域から得られた水素を導入するための熱の領域又は別の容器を備える、前記〔19〕に記載の装置。当該別の領域又は別の容器の内に導入された水素を利用又は貯留することが好適であり、当該導入された水素を還元に用いることがより好適である。
・〔22〕
 前記〔1〕~〔18〕のいずれか1に記載の方法を実施する又は当該方法の実施を制御する制御部を備える、金属製造装置又は水素製造装置。
・〔23〕
 更に、前記〔19〕~〔22〕のいずれか1に記載の装置と、電気エネルギー及び/又は熱エネルギーを供給するように構成されている熔融塩原子炉と、を備える、電気分解反応装置或いは金属化合物を還元させて金属を得るための製造装置、又は電気分解反応システム或いは金属化合物を還元させて金属を得るための製造システム。
・[19]
an electrolysis mechanism comprising an anode and a cathode that can be electrolyzed with water in molten salt;
a water supply mechanism for supplying water to the molten salt;
a sealable molten salt container containing molten salt;
A metal manufacturing device, an electrolysis reaction device, or a manufacturing device for reducing a metal compound to obtain a metal. Preferably, the device further includes a molten salt temperature adjustment mechanism that adjusts the temperature of the molten salt.
・[20]
The device according to [19] above, wherein the container includes a hydrogen production region, an oxygen production region, and a flow path region connecting the liquid region (molten salt) of these regions. It is preferable that the hydrogen production region is provided with a cathode and the oxygen production region is provided with an anode, and each region is composed of a liquid region where molten salt exists and a gas region where generated gas exists. It is more preferable that
- [21] The apparatus according to [19] above, comprising a heat region or another container for introducing the hydrogen obtained from the hydrogen production region. It is preferable to utilize or store the hydrogen introduced into the other region or another container, and more preferably to use the introduced hydrogen for reduction.
・[22]
A metal manufacturing device or a hydrogen manufacturing device, comprising a control unit that implements the method according to any one of [1] to [18] or controls the implementation of the method.
・[23]
Furthermore, an electrolytic reaction device or A manufacturing device or an electrolysis reaction system for reducing a metal compound to obtain a metal, or a manufacturing system for reducing a metal compound to obtain a metal.
 以下、実施例等に基づいて本発明を更に詳細に説明する。なお、以下に説明する実施例等は、本発明の代表的な実施例等の一例を示したものであり、これにより本発明の範囲が狭く解釈されることはない。 Hereinafter, the present invention will be explained in more detail based on Examples and the like. It should be noted that the examples described below are merely representative examples of the present invention, and the scope of the present invention should not be construed narrowly thereby.
 本発明者らは、熔融塩中における電気分解による水素製造と、その水素による酸化鉄粒子の鉄への還元が実際に可能かについて実験を行った。 The present inventors conducted experiments to determine whether it is actually possible to produce hydrogen through electrolysis in molten salt and to reduce iron oxide particles to iron using the hydrogen.
〔試験例1〕
<1-1.実験方法>
 本発明者らは、非特許文献2及び非特許文献3などに示す実験での経験を基に、電解条件確認のための予備実験を行った。次に予備実験結果を踏まえて、水蒸気流量一定の条件下で熔融塩中における電気分解による水素製造と、その水素による酸化鉄粒子の鉄への還元を確認するための実験を行った。
[Test Example 1]
<1-1. Experimental method>
The present inventors conducted a preliminary experiment to confirm the electrolytic conditions based on the experience in experiments shown in Non-Patent Document 2 and Non-Patent Document 3. Next, based on the preliminary experimental results, we conducted an experiment to confirm the production of hydrogen by electrolysis in molten salt under conditions of a constant water vapor flow rate, and the reduction of iron oxide particles to iron by the hydrogen.
<1-1.1 材料及び電解セル>
 実験に供した電解質、酸化鉄試料及び電解セル構成材料を以下に示す。
(1) 電解質;無水LiCl(和光特級)、320g
(2) 酸化鉄試料;Fe粒子(純度99.5%)、平均粒径(D50)粒子2~5mm、15g
(3)本実施例に用いた、電気分解装置及び電気分解セルの構成材料
 電気分解セルの構成材料とその材質、寸法を表1に示した。
 本実施例に用いた電気分解装置の概略図は図1を参照にすることができ、主要な構成の部材として、外側から、インコネル容器、アルミナ保護容器、黒鉛るつぼ、アルミナるつぼであり、酸化鉄粒子をアルミナるつぼに入れた。本実施例1で用いた電気分解装置は、図1に示すような、水を含む不活性ガス(Arガス)を供給する管は、熔融塩の液面より下に伸ばし当該熔融塩内に吹き込むような構成ではなく、当該供給管は、熔融塩の液面に接しないように半分程度に短くした管であり、容器内の気体領域に水を含む不活性ガスを供給するような構成としている。本実施例に用いた電気分解装置には、電気化学測定装置を更に備えた。なお、陰極及び陽極のリード線は、予備実験ではCu線を、還元確認実験ではNi線を用いた。
<1-1.1 Materials and electrolytic cell>
The electrolyte, iron oxide sample, and electrolytic cell constituent materials used in the experiment are shown below.
(1) Electrolyte; anhydrous LiCl (Wako special grade), 320g
(2) Iron oxide sample; Fe 2 O 3 particles (purity 99.5%), average particle size (D50) particles 2 to 5 mm, 15 g
(3) Constituent materials of the electrolyzer and electrolytic cell used in this example Table 1 shows the constituent materials of the electrolytic cell, their properties, and dimensions.
A schematic diagram of the electrolyzer used in this example can be seen in FIG. 1, and the main components, from the outside, are an Inconel container, an alumina protective container, a graphite crucible, an alumina crucible, and an iron oxide The particles were placed in an alumina crucible. In the electrolyzer used in Example 1, as shown in Fig. 1, a pipe for supplying inert gas (Ar gas) containing water is extended below the liquid level of the molten salt and blown into the molten salt. Rather than having such a configuration, the supply pipe is a pipe that is shortened to about half so as not to come into contact with the liquid surface of the molten salt, and is configured to supply an inert gas containing water to the gas region inside the container. . The electrolyzer used in this example was further equipped with an electrochemical measuring device. As the lead wires for the cathode and anode, Cu wire was used in the preliminary experiment, and Ni wire was used in the reduction confirmation experiment.
<1-1.2 実験条件>
 上記本実施例の電気分解装置にて、電解温度670℃、電解電流10A以下で、1.5時間以上の電解を行った。まず、予備実験では、不活性ガス供給機構を用いて、Arガス100mL/min~600mL/minを水の入った容器を通過させて水蒸気(水分を含む不活性ガス)を、インコネル容器内に供給した。
 また、水蒸気供給量は水の入った容器をウォーターバスで30℃~50℃に加熱することによっても調整した。
 なお、電解電流値は、陰極側はLi析出電位、陽極側は塩素ガス発生電位の範囲内となるように設定した。続いて、予備実験結果を参考に、電解にて製造した水素による還元が実際に可能下どうかを確認するための実験では、Arガス供給量を600mL/min、ウォーターバスの温度を常温(25℃)に設定し、一定の水蒸気量を供給し、電解電流値は、陰極側はLi析出電位まで、陽極側は塩素ガス発生電位までの範囲内で可能な限り大きな電流値とし、陰極及び陽極電位の経時変化を確認しながら電解を行った。
<1-1.2 Experimental conditions>
In the electrolyzer of the present example, electrolysis was performed for 1.5 hours or more at an electrolysis temperature of 670° C. and an electrolysis current of 10 A or less. First, in a preliminary experiment, using an inert gas supply mechanism, Ar gas was passed through a container containing water at a rate of 100 mL/min to 600 mL/min to supply water vapor (an inert gas containing moisture) into an Inconel container. did.
The amount of water vapor supplied was also adjusted by heating a container containing water to 30°C to 50°C in a water bath.
The electrolytic current value was set so that the cathode side was within the Li deposition potential and the anode side was within the range of the chlorine gas generation potential. Next, referring to the preliminary experiment results, in an experiment to confirm whether reduction using hydrogen produced by electrolysis is actually possible, the Ar gas supply rate was set at 600 mL/min, and the water bath temperature was set at room temperature (25°C). ), a constant amount of water vapor is supplied, and the electrolytic current value is set as large as possible within the range of Li deposition potential on the cathode side and chlorine gas generation potential on the anode side. Electrolysis was performed while checking the change over time.
<1-1.3 評価方法>
 電解後の試料を回収、洗浄後、X線回折装置((株)リガク製 RINT-Ultima III)及びエネルギー分散型X線分光装置(日本電子(株)製 JSM-6010PLUS/LA)により、酸化鉄粒子の還元状態等を評価、確認した。
<1-1.3 Evaluation method>
After collecting and washing the sample after electrolysis, iron oxide was analyzed using an X-ray diffraction device (RINT-Ultima III, manufactured by Rigaku Corporation) and an energy dispersive X-ray spectrometer (JSM-6010PLUS/LA, manufactured by JEOL Ltd.). The reduction state of the particles was evaluated and confirmed.
<1-2.実験結果>
<1-2.1 予備実験>
 実験開始約3.6時間経過後にArガス流量を600 mL/min、ウォーターバスの温度を30℃に固定して電解した時の電流値と両電極電位の経時変化を図11(総通電量; 17,147クーロン)に示す。
 実験前の酸化鉄粒子のX線回折を図12に、実験後に熔融塩より取り出し、塩を洗浄、乾燥した後の酸化鉄粒子のX線回折パターンを図13に示す。また実験前の酸化鉄粒子の二次電子像を図14に、実験後、塩を洗浄、乾燥した後の酸化鉄粒子の二次電子像を図15に示す。
<1-2. Experiment results>
<1-2.1 Preliminary experiment>
Approximately 3.6 hours after the start of the experiment, the Ar gas flow rate was fixed at 600 mL/min and the water bath temperature was fixed at 30°C. Figure 11 shows the changes in current value and potential of both electrodes over time (total current flow; 17,147 coulombs).
FIG. 12 shows the X-ray diffraction pattern of the iron oxide particles before the experiment, and FIG. 13 shows the X-ray diffraction pattern of the iron oxide particles taken out from the molten salt after the experiment, washed and dried to remove the salt. Further, FIG. 14 shows a secondary electron image of the iron oxide particles before the experiment, and FIG. 15 shows a secondary electron image of the iron oxide particles after the salt was washed and dried after the experiment.
<1-2.2 還元確認実験>
 Arガス流量を600mL/min、ウォーターバスの温度を25℃に固定して電解した時の電流値と両電極電位及び極間電位差の経時変化を図16に、実験終了時に電解セルガス排出部より水素ガス検知管により水素濃度を測定した(総通電量;27,187クーロン)。
<1-2.2 Reduction confirmation experiment>
Figure 16 shows the changes over time in the current value, both electrode potential, and interelectrode potential difference when electrolysis was carried out with the Ar gas flow rate fixed at 600 mL/min and the water bath temperature fixed at 25°C. Hydrogen concentration was measured using a gas detection tube (total current flow: 27,187 coulombs).
 実験後に熔融塩より取り出し、塩を洗浄、乾燥した後の酸化鉄粒子のX線回折を図17に、二次電子像を図18に示す。 After the experiment, the iron oxide particles were taken out from the molten salt, the salt was washed and dried, and the X-ray diffraction and secondary electron images are shown in FIG. 17 and FIG. 18, respectively.
<1-3.考察>
<1-3.1 予備実験>
 熔融塩中の水電解により水素を製造し、その水素により酸化鉄Feを鉄に還元する。
 Fe(s)+3H(g)→2Fe(s)+3[HO]LiCl
<1-3. Consideration>
<1-3.1 Preliminary experiment>
Hydrogen is produced by water electrolysis in molten salt, and the hydrogen reduces iron oxide Fe 2 O 3 to iron.
Fe 2 O 3 (s) + 3H 2 (g) → 2Fe (s) + 3[H 2 O] LiCl
 なお、Fe(分子量159.7g/mol)1モルが、6電子反応にて2モルのFeを生成することより、15gのFe(0.0939モル)すべてをFeに還元するためには、 0.0939(mol)×96,485(クーロン/mol)×6=54,377(クーロン)の電気量を通電する必要がある。
 予備実験における総通電量17,147クーロンは、理論通電量の約32%であり、酸化鉄Fe粒子はLiFeまで還元されたものの、Feまでには還元されなかったことが図8のX線回折パターンより明らかとなった。
In addition, since 1 mole of Fe 2 O 3 (molecular weight 159.7 g/mol) generates 2 moles of Fe in a 6-electron reaction, all 15 g of Fe 2 O 3 (0.0939 mol) is reduced to Fe. In order to do this, it is necessary to supply an amount of electricity of 0.0939 (mol) x 96,485 (coulombs/mol) x 6 = 54,377 (coulombs).
The total energization amount in the preliminary experiment was 17,147 coulombs, which was about 32% of the theoretical energization amount, and although the iron oxide Fe 2 O 3 particles were reduced to Li 2 Fe 3 O 5 , they were not reduced to Fe. This became clear from the X-ray diffraction pattern shown in FIG.
 なお、LiFeが生成する理由について、本発明者らは、熔融塩のLiCl中でHの存在は困難であることを考慮すると、LiFeは、以下の反応で生成したものと推測している。
 3Fe+4Li+HO+e→2LiFe+H
 いずれにしても、予備実験においては、図14と図15の酸化鉄粒子の実験前後の二次電子像から、実験前の大きな粒子が、実験後は10μm前後の粒子形状を有するLiFeに還元されることが確認できた。
Regarding the reason why Li 2 Fe 3 O 5 is generated, the present inventors believe that, considering that it is difficult for H + to exist in LiCl of the molten salt, Li 2 Fe 3 O 5 is generated by the following reaction. I assume that it was generated by.
3Fe 2 O 3 +4Li + +H 2 O+e - →2Li 2 Fe 3 O 5 +H 2
In any case, in the preliminary experiment, the secondary electron images of the iron oxide particles before and after the experiment in FIGS. 14 and 15 show that the large particles before the experiment were Li 2 Fe 3 with a particle shape of around 10 μm after the experiment. It was confirmed that it was reduced to O5 .
<1-3.2 還元確認実験>
 図9と図12の二次電子像を比較すると、予備実験よりも還元確認実験の粒径が細かくなっており、予備実験の通電量17,147クーロンと比べて還元確認実験の通電量が27,187クーロンと多く、還元が進んでいるものと考えられる。このことは、図11のX線回折結果においてFeが生成していることより明らかである。
<1-3.2 Reduction confirmation experiment>
Comparing the secondary electron images in Figures 9 and 12, the particle size in the reduction confirmation experiment is smaller than in the preliminary experiment, and the energization amount in the reduction confirmation experiment is 27 coulombs compared to 17,147 coulombs in the preliminary experiment. , 187 coulombs, indicating that reduction is progressing. This is clear from the fact that Fe 3 O 4 is produced in the X-ray diffraction results shown in FIG.
 したがって、本発明者らは、最終的には出発原料のFeは、次式に示すように陰極にてFeにまで還元されると考えた。
 6HO+6e→3H+6OH
 Fe+3H→2Fe+3H
 全反応式 Fe+3HO+6e→2Fe+6OH
Therefore, the present inventors thought that the starting material Fe 2 O 3 would eventually be reduced to Fe at the cathode as shown in the following formula.
6H 2 O+6e - →3H 2 +6OH -
Fe 2 O 3 +3H 2 →2Fe+3H 2 O
Total reaction formula Fe 2 O 3 +3H 2 O+6e - →2Fe+6OH -
 なお、本発明者らは、実験終了前に測定した水素ガス検知管の水素濃度が、測定上限1.5%を超えたのは、過剰に供給した水から発生した水素ガスを検知したものであり、陰極における還元反応は、水素原子が直接固相のFeをアタックし、Feにまで還元するものと考えた。 In addition, the inventors found that the hydrogen concentration in the hydrogen gas detection tube measured before the end of the experiment exceeded the measurement upper limit of 1.5% because hydrogen gas generated from excessively supplied water was detected. In the reduction reaction at the cathode, hydrogen atoms directly attack Fe 2 O 3 in the solid phase and reduce it to Fe.
<1-4.まとめ>
 本発明者らは、熔融塩(LiCl)中に水を供給しながら、このLiCl中に浸漬した酸化鉄(Fe)を陰極として電解すると、熔融塩中に製造した水素が酸化鉄を鉄(Fe)にまで還元する可能性を確認できた。
<1-4. Summary>
The present inventors discovered that when water is supplied into a molten salt (LiCl) and iron oxide (Fe 2 O 3 ) immersed in this LiCl is used as a cathode for electrolysis, the hydrogen produced in the molten salt converts the iron oxide. The possibility of reduction to iron (Fe) was confirmed.
 本発明者らは、このことも踏まえ、上記「1.本技術の概要」などを導き出し、本発明を完成させた。すなわち、本発明は、二酸化炭素ガスをできるだけ環境に排出することなく、製造コストのさらなる低減ができる、金属化合物を還元させる金属を製造する技術、このような金属化合物の還元による金属製造にも用いることが可能でより簡便に水素を製造する技術を提供することを主な目的とする。当該目的を達成するために、本発明は、熔融塩中で水を電気分解することによって得られた水素により、金属化合物を還元して、金属を製造する、金属製造方法;熔融塩中で水を電気分解することによって、水素を得る、水素製造方法を提供することができる。 Taking this into consideration, the present inventors derived the above-mentioned "1. Overview of the present technology" and completed the present invention. That is, the present invention provides a technology for producing a metal by reducing a metal compound, which can further reduce manufacturing costs without emitting carbon dioxide gas into the environment as much as possible, and a technology that can also be used for metal production by reducing such a metal compound. The main objective is to provide a technology that can produce hydrogen more easily. In order to achieve the object, the present invention provides a method for producing a metal, in which a metal is produced by reducing a metal compound with hydrogen obtained by electrolyzing water in a molten salt; It is possible to provide a hydrogen production method in which hydrogen is obtained by electrolyzing.
〔試験例2〕
 本発明者らは、〔試験例1〕で使用した熔融塩を「熔融水酸化ナトリウム」に代え、熔融塩中に酸化鉄を入れない以外は、〔試験例1〕に準じて、水蒸気を熔融水酸化ナトリウムに吹き込み、熔融水酸化ナトリウム中で水を電気分解して水素と酸素を製造する電解質を使用した水蒸気電解を行うことができる。このときの電気分解装置として、図3のような1つの電解槽を備える電気分解装置、及び図4のような水素製造部及び酸素製造部を有する電気分解装置を使用することができる。
[Test Example 2]
The present inventors melted water vapor according to [Test Example 1] except that the molten salt used in [Test Example 1] was replaced with "molten sodium hydroxide" and iron oxide was not added to the molten salt. Steam electrolysis can be performed using an electrolyte that is blown into sodium hydroxide and electrolyzes water in molten sodium hydroxide to produce hydrogen and oxygen. As the electrolyzer at this time, an electrolyzer including one electrolytic cell as shown in FIG. 3, and an electrolyzer having a hydrogen production section and an oxygen production section as shown in FIG. 4 can be used.
 図3のような電気分解装置を使用した場合、水酸化ナトリウムの融点は328℃であるため、電解質の温度を330~450℃に維持することができた。水部分加圧(PH2O:0~1.0atm)及び温度(336℃、385℃、412℃、440℃)において、吹き込まれた水は熔融水酸化ナトリウムに非常に溶解し、336℃でPH2O約0.8atmのときに、水の溶解性(W/O)は約2.8であった。水の溶解性は、336℃、385℃、412℃、440℃の順で低くなり、336℃のときの水の溶解性は、385℃の水の溶解性の約2.5倍程度であった。 When using an electrolyzer as shown in FIG. 3, the melting point of sodium hydroxide is 328°C, so the temperature of the electrolyte could be maintained at 330-450°C. At water partial pressure (P H2O : 0-1.0 atm) and temperature (336°C, 385°C, 412°C, 440°C), the injected water is highly soluble in molten sodium hydroxide, and at 336°C P At about 0.8 atm H2O , the water solubility (W/O) was about 2.8. The solubility of water decreases in the order of 336°C, 385°C, 412°C, and 440°C, and the solubility of water at 336°C is about 2.5 times that of water at 385°C. Ta.
 図4のような電気分解槽装置を使用する場合、熔融水酸化ナトリウムに水蒸気を吹き込んだときに、電流密度50A/dm、セル電圧1.79V、電流交流98%で、水素製造部側で高純度の水素を得ることができた。さらに発生させた水素ガスを回収機構にて回収をすることができた。 When using the electrolyzer device shown in Fig. 4, when water vapor is blown into molten sodium hydroxide, the hydrogen production section side High purity hydrogen could be obtained. Furthermore, the generated hydrogen gas could be recovered using a recovery mechanism.
 このように、熔融水酸化ナトリウム中に、水蒸気を吹き込みながら電気分解することによって、水素を得ることができる。また、試験例1も踏まえると、熔融水酸化ナトリウム中で水を電気分解することによって得られた水素により、金属還元物を還元して金属を製造することができる。 In this way, hydrogen can be obtained by electrolyzing molten sodium hydroxide while blowing water vapor into it. Also, based on Test Example 1, metals can be produced by reducing metal reduction products using hydrogen obtained by electrolyzing water in molten sodium hydroxide.
〔試験例3〕
<鉄への還元確認実験>
 熔融塩中に水を供給し、電解還元により酸化鉄が鉄にまで還元されることを確認するための材料および実験条件、ならびに評価方法を以下に示す。
[Test Example 3]
<Experiment to confirm reduction to iron>
The materials, experimental conditions, and evaluation method for supplying water into molten salt and confirming that iron oxide is reduced to iron by electrolytic reduction are shown below.
<3-1.材料>
 実験に供した電解質、酸化鉄試料及び電解セル構成材料を以下に示す。なお、前記〔試験例1〕に準じて材料及び電解セルを選択し用いている。
(1)電解質;無水LiCl(和光特級)、使用量;500g
(2)酸化鉄試料;Fe粉末(純度99.9%)、平均粒子径(D50)粒径1μm、使用量;5g
(3)電解セル構成材料
電気分解装置及び電気分解セル構成材料
 電解セル構成材料とその材料及び寸法を表2に示し、電解セルの概略図を図20に示す。電解セル装置構成は、上記<1-1.1 材料及び電解セル>とほぼ同じ構成を採用している。なお、陰極のリード線は、図20に示す様に、直径3mmのFe丸棒の先端部をねじ切りし、Feディスクに接合して使用した。また、陽極のリード線は、図20に示す様に、直径1mmのNi線を黒鉛るつぼの上部に開けた孔に通して接合した。図20の電解セル装置の供給管は、上記〔試験例1〕の電解セル装置と同様に、熔融塩の液面に接しないように半分程度に短くした管であり、容器内の気体領域に水を含む不活性ガスを供給するような構成としている。
<3-1. Material>
The electrolyte, iron oxide sample, and electrolytic cell constituent materials used in the experiment are shown below. Note that materials and electrolytic cells were selected and used in accordance with [Test Example 1] above.
(1) Electrolyte: Anhydrous LiCl (Wako special grade), amount used: 500g
(2) Iron oxide sample; Fe 2 O 3 powder (purity 99.9%), average particle size (D50) particle size 1 μm, amount used: 5 g
(3) Electrolytic cell constituent materials Electrolyzer and electrolytic cell constituent materials The constituent materials of the electrolytic cell, their materials and dimensions are shown in Table 2, and a schematic diagram of the electrolytic cell is shown in FIG. The electrolytic cell device configuration employs almost the same configuration as the above <1-1.1 Materials and electrolytic cell>. As shown in FIG. 20, the cathode lead wire was used by threading the tip of a Fe round rod with a diameter of 3 mm and joining it to the Fe disk. Further, as shown in FIG. 20, the lead wire of the anode was a Ni wire with a diameter of 1 mm passed through a hole made in the upper part of the graphite crucible and joined. The supply pipe of the electrolytic cell device shown in Fig. 20 is similar to the electrolytic cell device of [Test Example 1] described above, and is a pipe that is shortened to about half so as not to come into contact with the liquid surface of the molten salt. The structure is such that an inert gas containing water is supplied.
   
<3-2.実験条件>
 酸化鉄の仕込み量を5gの場合について、電解温度670℃で定電流電解を行った。電流値は、陰極側はLi析出電位、陽極側は塩素ガス発生電位の範囲内で可能な限り大きな電流値とし、陰極及び陽極電位の経時変化を確認しながら電解を行った。なお、熔融塩中への水の供給は、室温下でArガス600mL/minを水の入った容器を通過させて行った。
<3-2. Experimental conditions>
Constant current electrolysis was performed at an electrolysis temperature of 670° C. when the amount of iron oxide charged was 5 g. The current value was set to be as large as possible within the range of the Li deposition potential on the cathode side and the chlorine gas generation potential on the anode side, and electrolysis was performed while checking changes in the cathode and anode potentials over time. Note that water was supplied into the molten salt by passing Ar gas at 600 mL/min through a container containing water at room temperature.
<3-3. 評価方法>
 電解後の試料を回収、洗浄後、エネルギー分散型X線分光装置(日本電子(株)製 JSM-6010 PLUS/LA)及びX線回折装置((株)リガク製 MiniFlex)により評価、確認した。
<3-3. Evaluation method>
After collecting and washing the sample after electrolysis, it was evaluated and confirmed using an energy dispersive X-ray spectrometer (JSM-6010 PLUS/LA, manufactured by JEOL Ltd.) and an X-ray diffraction device (MiniFlex, manufactured by Rigaku Corporation).
<3-4.実験結果>
 室温下25℃でArガス600mL/minを水の入った容器に吹き込み、670℃の熔融塩中にArガスに同伴させた水蒸気を供給して、酸化鉄(仕込み量5g)を電解還元した。
 理論上完全にFeまで還元可能な電気量を通電するために酸化鉄の仕込み量を5gにして、電解還元実験を行った。室温下25℃でArガス600mL/minを水の入った容器に吹き込み、670℃の熔融塩中にArガスに同伴させた水蒸気を供給して、電解した時の電流値と両電極電位の経時変化を得た(図示せず)。なお、Feにまで還元するための総通電量は、理論的に必要な通電量18,126クーロンを上回る18,131クーロンを通電した。
 電解後、熔融塩より取り出し、塩を洗浄、乾燥後に回収した粒子状Feの重量は1.9419g、スポンジ状Feの重量は1.7886g、合計で3.7305gであった。重量減少量は1.2695gであり、酸化鉄粉末5g中、計算上の酸素重量は1.503gであることから、約84.5%の酸素が減少している結果となった。
 酸化鉄粉末5gを電解還元した後の二次電子線像を図20に示し、X線回折パターンを図21に示す。
 図20の電解還元後のサンプルの二次電子線像は、10μm以上の粒子も多く見られた。また図21のX線パターンにおいては、Feの100面、200面、211面の回折ピークのみが見られ、電解還元前のLiFeの回折ピークは消滅していた。
 理論的に必要な通電量を上回るクーロンを通電した結果、酸化鉄はFeにまで還元されることがわかった。
<3-4. Experiment results>
Ar gas (600 mL/min) was blown into a container containing water at room temperature at 25° C., and water vapor entrained in the Ar gas was supplied into the molten salt at 670° C. to electrolytically reduce iron oxide (amount charged: 5 g).
In order to supply an amount of electricity that can theoretically be completely reduced to Fe, an electrolytic reduction experiment was conducted with the amount of iron oxide charged as 5 g. Current value and potential of both electrodes over time when electrolyzed by blowing 600 mL/min of Ar gas into a container containing water at 25°C at room temperature and supplying water vapor accompanied by Ar gas into molten salt at 670°C changes were obtained (not shown). In addition, the total amount of current to be reduced to Fe was 18,131 coulombs, which exceeds the theoretically required amount of 18,126 coulombs.
After electrolysis, the weight of the particulate Fe recovered after being taken out from the molten salt, washed and dried was 1.9419 g, and the weight of the sponge Fe was 1.7886 g, for a total of 3.7305 g. The amount of weight decrease was 1.2695 g, and the calculated weight of oxygen in 5 g of iron oxide powder was 1.503 g, resulting in a decrease in oxygen of about 84.5%.
A secondary electron beam image after electrolytically reducing 5 g of iron oxide powder is shown in FIG. 20, and an X-ray diffraction pattern is shown in FIG.
In the secondary electron beam image of the sample after electrolytic reduction shown in FIG. 20, many particles of 10 μm or more were observed. Moreover, in the X-ray pattern of FIG. 21, only the diffraction peaks of the 100, 200, and 211 planes of Fe were seen, and the diffraction peak of Li 2 Fe 3 O 4 before electrolytic reduction had disappeared.
It was found that iron oxide was reduced to Fe as a result of applying a coulomb of electricity that exceeded the theoretically required amount of electricity.
〔試験例4〕
<水素ガスのみによる還元実験>
 試験例4では、電解は行わず、水素ガスを供給しつつ還元実験を行い、熔融塩中に水素ガスのみを供給するだけで酸化鉄が鉄にまで還元されるかどうかを確認するための実験を行った。熔融塩(670℃)中のFe粉末5gに、10mL/minの水素ガスとArガス590mL/minを供給しつつ、3.5時間の還元実験を行った。還元実験後、原料サンプルを熔融塩より取り出し、塩を洗浄、乾燥した後のFe粉末の重量は、4.8256gであり、0.1746gの重量減少があった。重量減少分がすべて酸素とすると、Fe粉末5g中に酸素は1.503g含まれていることから、約11.6%分の酸素が消費された結果となった。水素ガスによる還元後のX線回折パターンを図22に示す。このことから、水素ガスのみでは、酸化鉄の還元反応の速度がかなり遅いことがわかった。
[Test Example 4]
<Reduction experiment using only hydrogen gas>
In Test Example 4, electrolysis was not performed, and a reduction experiment was performed while supplying hydrogen gas, in order to confirm whether iron oxide could be reduced to iron by simply supplying hydrogen gas into the molten salt. I did it. A reduction experiment was conducted for 3.5 hours while supplying 10 mL/min of hydrogen gas and 590 mL/min of Ar gas to 5 g of Fe 2 O 3 powder in molten salt (670° C.). After the reduction experiment, the raw material sample was taken out from the molten salt, the salt was washed and dried, and the weight of the Fe 2 O 3 powder was 4.8256 g, which was a weight decrease of 0.1746 g. Assuming that all the weight loss was due to oxygen, 1.503 g of oxygen was contained in 5 g of Fe 2 O 3 powder, resulting in approximately 11.6% of oxygen being consumed. The X-ray diffraction pattern after reduction with hydrogen gas is shown in FIG. From this, it was found that the rate of the reduction reaction of iron oxide is quite slow when hydrogen gas alone is used.
〔試験例3及び4からの考察〕
(1)水素ガスのみによる還元実験
 酸化鉄を鉄にまで還元するために理論的に必要な水素ガス量を供給しつつ、熔融塩中の酸化鉄と反応させても、酸化鉄から鉄への還元は約11.6%しか起こらなかった。この原因としては、熔融塩中に供給した水素ガス濃度が薄く、酸化鉄と水素ガス分子との接触(衝突)頻度が、完全に還元反応を引き起こすまでには至らなかったものと考えられる。
(2)鉄への還元確認実験
 酸化鉄粒子に代わり酸化鉄粉末を原料に用い、熔融塩(LiCl)中にHOを供給しながら、LiCl中に浸漬した酸化鉄粉末を陰極として理論的に必要とされる電気量となるまで電解すると、酸化鉄を鉄にまで還元することが確認できた。
[Considerations from Test Examples 3 and 4]
(1) Reduction experiment using only hydrogen gas Even if the amount of hydrogen gas theoretically required to reduce iron oxide to iron is supplied and the iron oxide in the molten salt is reacted, iron oxide will not be converted to iron. Reduction occurred only about 11.6%. The reason for this is thought to be that the concentration of hydrogen gas supplied into the molten salt was low, and the frequency of contact (collision) between iron oxide and hydrogen gas molecules did not reach a point where a complete reduction reaction occurred.
(2) Experiment to confirm reduction to iron Using iron oxide powder instead of iron oxide particles as a raw material, supplying H 2 O to molten salt (LiCl), theoretically using iron oxide powder immersed in LiCl as a cathode. It was confirmed that iron oxide can be reduced to iron when electrolyzed until the amount of electricity required is reached.
 また、前述の〔0028〕において、下記の解説が述べられている。
 水の電気分解においては、陰極において、以下の反応が進行する。
 H+ +e→H
 HO+e→H+OH
 OH+e→H+O--
 すなわち、水素イオンなどから水素原子(H)が生成する。その後、水素原子2個が結合し、水素分子(H)、つまり水素ガスが発生する、と解説されている。
In addition, the following explanation is given in [0028] above.
In water electrolysis, the following reactions proceed at the cathode.
H + +e - →H
H 2 O+e - →H+OH -
OH - +e - →H+O --
That is, hydrogen atoms (H) are generated from hydrogen ions and the like. The explanation is that the two hydrogen atoms then combine to generate hydrogen molecules (H 2 ), that is, hydrogen gas.
 ここで更に付記すると、上記で生成した水素原子(H)は化学反応を起こしやすいので、「水素ラジカル」と称され、高い活性を有していることが知られている。この水素ラジカル同士が反応し、水素分子となって安定化すれば、元の高い活性度が失われてしまう訳である。このことから、水素ラジカルは、水素分子(水素ガス)よりも活性度が高いことが容易に結論できる(非特許文献6)。また、このことは、古くは1905年のTafel論文にも出ていると解説されている(非特許文献7)。
 上記の事象から、水素ラジカルが水素分子になる前に、その近辺に酸化鉄を配置すれば、酸化鉄と化学反応し、酸化鉄が還元されることが予想される。これを実現する為に、発明者らは熔融塩を利用し、HOの電解還元により生成した水素ラジカルと酸化鉄が化学反応することで、効率の高い反応を実現した。
 そのことは、発明者らの実験結果で証明されている。すなわち、水素分子での酸化鉄の還元効率よりも、熔融塩中での水素ラジカルによる酸化鉄の還元効率が高い結果が得られている。
 なお、水素ラジカルは直接的に観測することが出来ないが、上記の理論および実験結果から、熔融塩中の水素ラジカルの効果を総合的に証明した、と考えている。
It should be noted here that the hydrogen atoms (H) generated above are known to have high activity and are called "hydrogen radicals" because they easily cause chemical reactions. If these hydrogen radicals react with each other to form hydrogen molecules and stabilize, the original high activity is lost. From this, it can be easily concluded that hydrogen radicals have higher activity than hydrogen molecules (hydrogen gas) (Non-Patent Document 6). Further, this is explained as being mentioned in Tafel's paper from 1905 (Non-Patent Document 7).
From the above phenomenon, it is expected that if iron oxide is placed near hydrogen radicals before they become hydrogen molecules, a chemical reaction will occur with the iron oxide, and the iron oxide will be reduced. To achieve this, the inventors used molten salt to chemically react hydrogen radicals generated by electrolytic reduction of H 2 O with iron oxide, thereby achieving a highly efficient reaction.
This has been proven by the inventors' experimental results. In other words, results have been obtained in which the reduction efficiency of iron oxide by hydrogen radicals in the molten salt is higher than the reduction efficiency of iron oxide by hydrogen molecules.
Although hydrogen radicals cannot be directly observed, we believe that we have comprehensively proven the effect of hydrogen radicals in molten salt from the above theory and experimental results.
 なお、本明細書において、数値における上限値と下限値は、所望により、任意に組み合わせることができる。また、本明細書において、例えば「監視する(こと)」等の「する(こと)」を、工程、ステップ又は手段としてもよいし、「ステップ」を、「する(こと)」、工程、又は手段としてもよし、「工程」を、「する(こと)」、ステップ、又は手段としてもよし、「手段」を、「する(こと)」、工程又はステップとしてもよい。また、本明細書において、「システム(系)」は、機構、装置、手段又は部としてもよく、「機構」は、システム(系)、装置、手段又は部としてもよく、「装置」は、システム(系)、機構、手段又は部にしてもよく、「手段」は、機構、システム(系)、装置又は部としてもよく、「部」は、機構、手段、装置又はシステム(系)、又はこれらに備えるための機構、手段又は装置等としてもよい。 Note that in this specification, the upper and lower limits of numerical values can be arbitrarily combined as desired. In addition, in this specification, for example, "doing" such as "monitoring" may be used as a process, step, or means, and "step" may be replaced with "doing", process, or means. It may be used as a means, or a "process" may be used as a "doing", a step, or a means, and a "means" may be a "doing", a process, or a step. Furthermore, in this specification, a "system" may be a mechanism, a device, a means, or a section; a "mechanism" may be a system, a device, a means, or a section; a "device" may be a mechanism, a device, a means, or a section; It may be a system, a mechanism, a means, or a section; "means" may be a mechanism, a system, a device, or a section; a "section" may be a mechanism, a means, a device, or a system; Alternatively, it may be a mechanism, means, or device for preparing for these.
1 金属製造装置、2 陰極、3 陽極、4 熔融塩、5 金属化合物、6 反応容器、7 密閉容器、8 加熱炉、9 中間容器、10 陰極室、11 陽極室、12 接続部、13a,13b 気体領域、14a,14b 液体領域、15 支持部20 水供給機構、21 気体供給部、22 混合部、23 配管(流路)、24 配管(流路)、30 気体回収機構、30a 水素回収機構、30b 酸素回収機構、31 配管(流路)、32 流量調節弁、33 気体貯留部、50a 水素製造部、50b 金属化合物還元部、100 熔融塩原子炉、101 炉容器、102 炉心、103 制御棒、104 制御棒駆動制御装置、120 熱エネルギー供給機構、121 熱交換器、130 電気エネルギー供給機構、131 発電機構、132 発電装置、133 電線 1 Metal manufacturing equipment, 2 Cathode, 3 Anode, 4 Molten salt, 5 Metal compound, 6 Reaction container, 7 Closed container, 8 Heating furnace, 9 Intermediate container, 10 Cathode chamber, 11 Anode chamber, 12 Connection part, 13a, 13b Gas region, 14a, 14b liquid region, 15 support section 20 water supply mechanism, 21 gas supply section, 22 mixing section, 23 piping (flow path), 24 piping (flow path), 30 gas recovery mechanism, 30a hydrogen recovery mechanism, 30b oxygen recovery mechanism, 31 piping (flow path), 32 flow control valve, 33 gas storage section, 50a hydrogen production section, 50b metal compound reduction section, 100 molten salt reactor, 101 reactor vessel, 102 core, 103 control rod, 104 Control rod drive control device, 120 Thermal energy supply mechanism, 121 Heat exchanger, 130 Electric energy supply mechanism, 131 Power generation mechanism, 132 Power generation device, 133 Electric wire

Claims (9)

  1.  熔融塩中で水を電気分解することによって得られた水素により、金属化合物を還元して、金属を製造する、金属製造方法。 A metal production method in which metals are produced by reducing metal compounds with hydrogen obtained by electrolyzing water in molten salt.
  2.  熔融塩中で水を電気分解することによって、水素を得る、水素製造方法。 A hydrogen production method that obtains hydrogen by electrolyzing water in molten salt.
  3.  前記金属化合物は、粒子状である、請求項1に記載の金属製造方法。 The metal manufacturing method according to claim 1, wherein the metal compound is in a particulate form.
  4.  前記電気分解は、熔融塩原子炉から供給された電気エネルギー及び/又は熱エネルギーによるものである、請求項1に記載の金属製造方法。 The metal manufacturing method according to claim 1, wherein the electrolysis is performed using electrical energy and/or thermal energy supplied from a molten salt nuclear reactor.
  5.  前記電気分解は、熔融塩原子炉から供給された電気エネルギー及び/又は熱エネルギーによるものである、請求項2に記載の水素製造方法。 The hydrogen production method according to claim 2, wherein the electrolysis is performed using electrical energy and/or thermal energy supplied from a molten salt nuclear reactor.
  6.  前記金属化合物は、
     鉄、銅、亜鉛、ニッケル、スズ、鉛、コバルト、モリブデンからなる群から選択される1種又は2種以上の金属元素と、
     酸素原子、硫黄原子及び塩素原子からなる群から選択される1種又は2種以上の非金属元素とを含む、
    金属化合物である、請求項1又は請求項3に記載の金属製造方法。
    The metal compound is
    One or more metal elements selected from the group consisting of iron, copper, zinc, nickel, tin, lead, cobalt, and molybdenum;
    and one or more nonmetallic elements selected from the group consisting of oxygen atoms, sulfur atoms, and chlorine atoms.
    The metal manufacturing method according to claim 1 or 3, wherein the metal compound is a metal compound.
  7.  前記熔融塩は、アルカリ金属ハロゲン化物又はアルカリ土類金属ハロゲン化物のうちの少なくとも1つを含むものである、請求項1に記載の金属製造方法。 The metal manufacturing method according to claim 1, wherein the molten salt contains at least one of an alkali metal halide and an alkaline earth metal halide.
  8.  前記熔融塩は、アルカリ金属水酸化物又はアルカリ土類金属水酸化物のうちの少なくとも1つを含むものである、請求項1に記載の金属製造方法。 The metal manufacturing method according to claim 1, wherein the molten salt contains at least one of an alkali metal hydroxide or an alkaline earth metal hydroxide.
  9.  前記熔融塩は、アルカリ金属塩化物、アルカリ土類金属塩化物、アルカリ金属水酸化物、アルカリ土類金属水酸化物、アルカリ金属フッ化物、アルカリ土類金属フッ化物、アルカリ金属硝酸塩、アルカリ金属硫酸塩、アルカリ金属炭酸塩、アルカリ金属酢酸塩、及びアルカリ金属燐酸塩から選択される1種又は2種以上を含むものである、請求項2に記載の水素製造方法。 The molten salts include alkali metal chlorides, alkaline earth metal chlorides, alkali metal hydroxides, alkaline earth metal hydroxides, alkali metal fluorides, alkaline earth metal fluorides, alkali metal nitrates, and alkali metal sulfates. The method for producing hydrogen according to claim 2, which contains one or more selected from salts, alkali metal carbonates, alkali metal acetates, and alkali metal phosphates.
PCT/JP2023/019245 2022-06-17 2023-05-24 Method for smelting metal with use of hydrogen obtained in molten salt WO2023243337A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022097832 2022-06-17
JP2022-097832 2022-06-17

Publications (1)

Publication Number Publication Date
WO2023243337A1 true WO2023243337A1 (en) 2023-12-21

Family

ID=89191078

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/019245 WO2023243337A1 (en) 2022-06-17 2023-05-24 Method for smelting metal with use of hydrogen obtained in molten salt

Country Status (1)

Country Link
WO (1) WO2023243337A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5461100A (en) * 1977-10-25 1979-05-17 Hitachi Zosen Corp Steam supplying method in high temperature electrolysis of water using fused salt
JPS5589483A (en) * 1978-12-27 1980-07-07 Kernforschungsanlage Juelich Enhancing of current efficiency of molten salt electrolysis generating oxygen at anode
JP2014518585A (en) * 2011-04-05 2014-07-31 ブラックライト パワー インコーポレーティド H2O-based electrochemical hydrogen-catalyst power system
CN109853001A (en) * 2019-02-21 2019-06-07 东北大学 The device and method that direct-reduction metallic compound prepares metal or alloy powder
JP2021517209A (en) * 2018-07-10 2021-07-15 東北大学Northeastern University Electrochemical method by high temperature molten salt electrolysis in a moist atmosphere

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5461100A (en) * 1977-10-25 1979-05-17 Hitachi Zosen Corp Steam supplying method in high temperature electrolysis of water using fused salt
JPS5589483A (en) * 1978-12-27 1980-07-07 Kernforschungsanlage Juelich Enhancing of current efficiency of molten salt electrolysis generating oxygen at anode
JP2014518585A (en) * 2011-04-05 2014-07-31 ブラックライト パワー インコーポレーティド H2O-based electrochemical hydrogen-catalyst power system
JP2021517209A (en) * 2018-07-10 2021-07-15 東北大学Northeastern University Electrochemical method by high temperature molten salt electrolysis in a moist atmosphere
CN109853001A (en) * 2019-02-21 2019-06-07 东北大学 The device and method that direct-reduction metallic compound prepares metal or alloy powder

Similar Documents

Publication Publication Date Title
CN106517097B (en) Molten salt deoxidation method and deoxidized molten salt
CN112941567B (en) Electrochemical method and device for high-temperature molten salt electrolysis in humid atmosphere
EP2462653A1 (en) Heterogeneous hydrogen-catalyst power system
Zhang et al. Review on the production of high-purity lithium metal
CN102549836A (en) Heterogeneous hydrogen-catalyst power system
US10622112B2 (en) Conversion of spent uranium oxide fuel into molten salt reactor fuel
JP2012523068A5 (en)
Laasonen et al. Insights into carbon production by CO2 reduction in molten salt electrolysis in coaxial-type reactor
WO2023243337A1 (en) Method for smelting metal with use of hydrogen obtained in molten salt
CN103572318A (en) Deoxidized anode, fluoride fused salt electrolysis deoxidizing device and electrolytic method
JP4036647B2 (en) Generation method of hydrogen gas
CN109652816B (en) Synthesis of high-purity tungsten hexafluoride by using metal tungsten as anode to electrolyze molten salt
US11245127B2 (en) Carbon dioxide electrolysis/carbon fuel cell-integrated apparatus
Chen et al. Integrating preparation of borides and separation of alkaline-and rare-earth ions through an electrochemical alloying approach in molten salts
Sheikh The synthesis of cementitious compounds in molten salts
Telgerafchi et al. Magnesium production by molten salt electrolysis with liquid tin cathode and multiple effect distillation
Ushak et al. Advances in molten salt storage systems using other liquid sensible storage media for heat storage
JP7270224B2 (en) METHOD FOR PRODUCING METAL CARBIDE AND HYDROCARBON, AND METAL CARBIDE COMPOSITION
TW201104948A (en) Heterogeneous hydrogen-catalyst reactor
JP7270223B2 (en) METHOD FOR PRODUCING METAL CARBIDE AND HYDROCARBON, AND METAL CARBIDE COMPOSITION
WO2023157509A1 (en) Carbon-manufacturing method, carbon-manufacturing device, carbon dioxide recovery method, and carbon dioxide recovery device
Parfenov et al. A new non-electrolytic aluminum extraction method
Druyts Beryllium recycling: feasibility and challenges
WO2015003657A1 (en) K3namgcl6, preparation method therefor and use thereof
Licht et al. High Solubility Pathway for the Carbon Dioxide Free Production of

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23823637

Country of ref document: EP

Kind code of ref document: A1