TW201104948A - Heterogeneous hydrogen-catalyst reactor - Google Patents

Heterogeneous hydrogen-catalyst reactor Download PDF

Info

Publication number
TW201104948A
TW201104948A TW098125725A TW98125725A TW201104948A TW 201104948 A TW201104948 A TW 201104948A TW 098125725 A TW098125725 A TW 098125725A TW 98125725 A TW98125725 A TW 98125725A TW 201104948 A TW201104948 A TW 201104948A
Authority
TW
Taiwan
Prior art keywords
hydrogen
catalyst
reaction
metal
energy
Prior art date
Application number
TW098125725A
Other languages
Chinese (zh)
Other versions
TWI497809B (en
Inventor
Randell L Mills
Original Assignee
Blacklight Power Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Blacklight Power Inc filed Critical Blacklight Power Inc
Priority to TW098125725A priority Critical patent/TWI497809B/en
Publication of TW201104948A publication Critical patent/TW201104948A/en
Application granted granted Critical
Publication of TWI497809B publication Critical patent/TWI497809B/en

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Catalysts (AREA)

Abstract

A power source and hydride reactor is provided comprising a reaction cell for the catalysis of atomic hydrogen to form hydrinos, a source of atomic hydrogen, a source of a hydrogen catalyst comprising a solid, liquid, or heterogeneous catalyst reaction mixture. The catalysis reaction is activated or initiated and propagated by one or more chemical other reactions. These reactions maintained on a electrically conductive support can be of several classes such as (i) exothermic reactions which provide the activation energy for the hydrino catalysis reaction, (ii) coupled reactions that provide for at least one of a source of catalyst or atomic hydrogen to support the hydrino catalyst reaction, (iii) free radical reactions that serve as an acceptor of electrons from the catalyst during the hydrino catalysis reaction, (iv) oxidation-reduction reactions that, in an embodiment, serve as an acceptor of electrons from the catalyst during the hydrino catalysis reaction, (v) exchange reactions such as anion exchange that facilitate the action of the catalyst to become ionized as it accepts energy from atomic hydrogen to form hydrinos, and (vi) getter, support, or matrix-assisted hydrino reaction that may provide at least one of a chemical environment for the hydrino reaction, act to transfer electrons to facilitate the H catalyst function, undergoes a reversible phase or other physical change or change in its electronic state, and binds a lower-energy hydrogen product to increase at least one of the extent or rate of the hydrino reaction. Power and chemical plants that can be operated continuously using electrolysis or thermal regeneration reactions maintained in synchrony with at least one of power and lower-energy-hydrogen chemical production.

Description

201104948 六、發明說明: 【發明所屬之技術領域】 本發明係針對-種催化劑系統,其包含能夠引起呈η=ι 態之原子氫形成較低能態之氫催化劑、原子氫源及能夠引 發且擴展形成較低能量氫之反應之其他物f。在某些實施 例中,本發明係針對包含至少一種原子氫源及促進氮催化 形成低能量氫(hydrino)之催化劑或催化劑源的反應混合 物。本X中所揭示之固體及液體燃料之反應物及反應亦為 包含各相混合物之非均句燃料的反應物及反應。反應混合 物包含至纟兩種選自氫催化劑或氫催化劑源及原子氣源之 組份’其中原子氫與氫催化劑中之至少—者可由反應混合 物之反應形成。在其他實施例中,反應混合物進一步包含 在某些實施例中可具有導電性之載體、諸如有機溶劑或無 機溶劑之包括熔鹽的溶劑、吸氣劑及至少一種由於進行反 應而引起催化活化之反應物。 【發明内容】 可藉由一或多種化學反應來活化或引發且擴展形成低能 量氫之反應。此等反應可選自以下:⑴放熱反應,其為低 能量氯反應提供活化能4 ;⑼偶合反應,其提供催化劑 源或原子氫源中之至少一者以維持低能量氫反應;⑴丨)自 由基反應,在某些實施例中,其在低能量氫反應期間用作 來自催化劑之電子的受體;(iv)氧化還原反應,在某些實 施例中,其在低能量氫反應期間用作來自催化劑之電子的 受體;(v)交換反應,諸如陰離子交換,包括鹵離子、硫離 142257.doc 201104948 2氣離子、坤離子、氧離子、鱗離子及氮離子交換,在 -貫施例中交換反應在催化劑接受來自原子氫之能量時促 進催化劑發生電離作用形成低能量氫;及(vi)吸氣劑、載 體或基質輔助之低能I氫反應,其可提供用於低能量氮反 應之至J 一種化學環境,用以轉移電子以促進Η催化劑功 能,經歷可逆相變或其他物理變化或其電子態變化,且結 合較低能量氫產物以增加低能量氫反應之程度或速率中之 至少-者。在某些實施例中,導電性載料動活化反應。 在其他實施例中,本發明係針對包含至少兩種選自以下 ^組份的動力系、統:催化劑源或催化劑;原子氫源或原子 氫;形成催化劑源或催化劑及原子氫源或原子氫之反應 物,或多種引發原子氫催化之反應物;及起動催化劑之 載體, 其中該動力系統可進一步包含以下任一者:反應容器、 真空泵、功率變換器及諸如分離器系統 '電解器、用於逆 轉交換反應之熱系統及自反應產物使燃料再生之化學合成 反應盗的系統。 在其他實施例中,本發明係針對用於形成具有較低能態 氯之化合物、包含至少兩種選自以下之組份的系統:催化 劑源或.催化劑;原子氫源或原子氫;形成催化劑源或催化 劑及原子氫源或原子氫之反應物;一或多種引發原子氫催 化之反應物;及起動催化劑之載體, 其中用於形成具有較低能態氫之化合物的系統可進一步 包含以下任一者:反應容器、真空泵及諸如分離器系統、 I42257.doc 201104948 電解、用於逆轉交換反應之熱系統及由反應產物再生燃 料之化學合成反應器的系統。 本發明之其他貫施例係針對用於形成具有較低能態氫之 化合物、包含至少兩種選自以下之組份的電池組或燃料電 池系統:催化劑源或催化劑;原子氯源或原子氯;形成催 化劑源或催化劑及原子氫源或原子氫之反應物;—或多種 引發原子氫催化之反應物;及起動催化劑之載體, 其中用於形成具有車交低能態氫之化合物的電池組或燃料 電池系統可進一步包含以下任一者:反應容器、真空泵及 諸如分離m電解器、用於逆轉交換反應之熱系統及 自反應產物再生燃料之化學合成反應器的系統。 【實施方式】 本發明係針對催化劑系統,其自原子氫釋放能量以形成 電子2處於相對於原子核較近之位置之較低能態。所釋 放之肖b里用於產生動力且另外新的氫物質及化合物為所需 產物。此等能態由經典物理定律預測且需要催化劑接受來 自氫之能量以經歷相應能量釋放轉移。 經典物理學所示氫原子、氫陰離子、氫分子離子及氫分 ]0形式解,且預測具有分數主量子數之相應物質。 麥克斯爾方程式(Maxwell,s equati〇n),將電子結構推 :、邊界值問題,其中在躍遷期間該電子包含隨時間變化 ::磁場的源電流,其限制在於受缚㈣態電子不可發射 =二rt解答預測之反應包含共振、非輜射能‘自 疋原子虱轉移至能夠接受該能量之催化劑,從而 142257.doc 201104948 成能態比預先認為可能之能態低的氫。特定言之,經典物 理予預測原子氫可與提供淨焓為原子氫位能整數倍之反應 的某些原子、準分子、離子及雙原子氫化物進行催化反 應^一 27.2 #,其中五Α為一哈崔(Hartree)。需要特定物 質(例如,He+、Ar+、Sr+、K、Li、HCI反 NaH)與原子 I 一 同存在以催化該過程,該等物質可基於其已知之電子能階 來鑑別。反應包含非輻射能量轉移、接著g.13.6 連續譜 發射或g.13.6 eF轉移至丑,以形成非常熱之激發態丑及能量 比未反應原子氫低之對應於分數主量子數之氫原子。亦 即’在氫原子主要能階之公式中:201104948 VI. Description of the Invention: [Technical Field] The present invention is directed to a catalyst system comprising a hydrogen catalyst capable of causing atomic hydrogen in the η=ι state to form a lower energy state, an atomic hydrogen source, and capable of initiating The other substance f which forms a reaction of lower energy hydrogen is expanded. In certain embodiments, the present invention is directed to a reaction mixture comprising at least one source of atomic hydrogen and a catalyst or catalyst source that promotes the catalysis of nitrogen to form a low energy hydrino. The reactants and reactions of the solid and liquid fuels disclosed in this X are also the reactants and reactions of the non-homogeneous fuels comprising the mixtures of the phases. The reaction mixture comprises two components selected from the group consisting of a hydrogen catalyst or a hydrogen catalyst source and an atomic gas source, wherein at least one of the atomic hydrogen and the hydrogen catalyst is formed by the reaction of the reaction mixture. In other embodiments, the reaction mixture further comprises a carrier that can have electrical conductivity in certain embodiments, a solvent including a molten salt such as an organic solvent or an inorganic solvent, a getter, and at least one catalytic activation due to the reaction. Reactant. SUMMARY OF THE INVENTION The reaction of forming low energy hydrogen can be activated or initiated and expanded by one or more chemical reactions. These reactions may be selected from the following: (1) an exothermic reaction that provides an activation energy for a low energy chlorine reaction; (9) a coupling reaction that provides at least one of a catalyst source or an atomic hydrogen source to maintain a low energy hydrogen reaction; (1) 丨) A free radical reaction, in some embodiments, it acts as a acceptor for electrons from the catalyst during a low energy hydrogen reaction; (iv) a redox reaction, in some embodiments, it is used during a low energy hydrogen reaction As a receptor for electrons from the catalyst; (v) exchange reaction, such as anion exchange, including halide ion, sulfur ion 142257.doc 201104948 2 gas ion, kun ion, oxygen ion, scale ion and nitrogen ion exchange, in-through In the case where the exchange reaction promotes ionization of the catalyst to form low energy hydrogen when the catalyst receives energy from atomic hydrogen; and (vi) a getter, carrier or matrix assisted low energy I hydrogen reaction which provides for low energy nitrogen reaction J to a chemical environment for transferring electrons to promote rhodium catalyst function, undergoing reversible phase transitions or other physical changes or changes in their electronic states, combined with lower energy hydrogen production To increase the extent or rate of low-energy hydrogen reactions. In certain embodiments, the electrically conductive load is activated by a reaction. In other embodiments, the invention is directed to a powertrain comprising at least two components selected from the group consisting of: a catalyst source or a catalyst; an atomic hydrogen source or atomic hydrogen; a catalyst source or catalyst and an atomic hydrogen source or atomic hydrogen; a reactant, or a plurality of reactants that initiate atomic hydrogen catalysis; and a carrier for starting the catalyst, wherein the power system may further comprise any one of the following: a reaction vessel, a vacuum pump, a power converter, and an electrolyzer such as a separator system A system for reversing the thermal system of the exchange reaction and the chemical synthesis reaction of the fuel from the reaction product. In other embodiments, the invention is directed to a system for forming a compound having a lower energy state chlorine, comprising at least two components selected from the group consisting of: a catalyst source or a catalyst; an atomic hydrogen source or atomic hydrogen; forming a catalyst a source or catalyst and a reactant of an atomic hydrogen source or atomic hydrogen; one or more reactants that initiate atomic hydrogen catalysis; and a carrier for starting the catalyst, wherein the system for forming a compound having a lower energy state hydrogen may further comprise the following One: a reaction vessel, a vacuum pump, and a system such as a separator system, I42257.doc 201104948 electrolysis, a thermal system for reversing an exchange reaction, and a chemical synthesis reactor for regenerating fuel from a reaction product. Other embodiments of the invention are directed to a battery or fuel cell system for forming a compound having lower energy hydrogen, comprising at least two components selected from the group consisting of: a catalyst source or a catalyst; an atomic chlorine source or an atomic chlorine a reactant for forming a catalyst source or catalyst and an atomic hydrogen source or atomic hydrogen; or a plurality of reactants for initiating atomic hydrogen catalysis; and a carrier for starting the catalyst, wherein the battery for forming a compound having a low-energy hydrogen of the vehicle or The fuel cell system may further comprise any one of a reaction vessel, a vacuum pump, and a system such as a separation m electrolyzer, a thermal system for reversing the exchange reaction, and a chemical synthesis reactor for regenerating the fuel from the reaction product. [Embodiment] The present invention is directed to a catalyst system that releases energy from atomic hydrogen to form a lower energy state in which electrons 2 are closer relative to the nucleus. The released b is used to generate power and additional new hydrogen species and compounds are the desired products. These energy states are predicted by classical physical laws and require the catalyst to accept energy from hydrogen to undergo a corresponding energy release transfer. The classical physics shows a hydrogen atom, a hydrogen anion, a hydrogen molecular ion, and a hydrogen atom, and forms a solution, and predicts a corresponding substance having a fractional main quantum number. Maxwell, s equati〇n, pushes the electronic structure: a boundary value problem in which the electron contains changes over time during the transition: the source current of the magnetic field, the limitation being that the bound (four) state electrons are not emitable = The second rt solution predicts that the reaction consists of a resonance, non-radio energy transfer from a helium atom to a catalyst capable of accepting this energy, thus 142257.doc 201104948. The energy state is lower than the energy that is previously considered to be possible. In particular, classical physics predicts that atomic hydrogen can be catalyzed by certain atoms, excimers, ions, and diatomic hydrides that provide a net reaction to an integral multiple of the atomic hydrogen potential. ^27.2 #, where A Hartree. Specific materials (e.g., He+, Ar+, Sr+, K, Li, HCI anti-NaH) are required to be present along with atom I to catalyze the process, and such materials can be identified based on their known electronic energy levels. The reaction involves non-radiative energy transfer followed by g.13.6 continuum emission or g.13.6 eF transfer to ugly to form a very hot excited state ugly and energy lower than the unreacted atomic hydrogen corresponding to the fractional primary quantum number of hydrogen atoms. That is, in the formula of the main energy level of a hydrogen atom:

.En =__g2 _ _ 13.598 eV "n2^0aH ~^ (1) « = 1,2,3,... (2) 其中叫為氫原子之波耳半徑(Bohr radius)(52 947 pm),e 為电子電荷大小’且為真空電容率, 分數量子數:.En =__g2 _ _ 13.598 eV "n2^0aH ~^ (1) « = 1,2,3,... (2) where is the Bohr radius of the hydrogen atom (52 947 pm) , e is the electronic charge size 'and is the vacuum permittivity, the number of sub-numbers:

其中7^137為整數Where 7^137 is an integer

代替關於氫激發態之芮得伯方程式(Rydberg equaU〇n)中熟 知之參數《 =整數且表示較低能態氫原子,稱為「低能量 虱」。雖然氫之《=1態及氫之„ = 4態為非輻射的,但經由 非輻射能量轉移可能實現兩種非輻射態之間的轉移(比如 說12 1至^2-1/2)。氫為由方程式(1)及(3)所示之穩定狀態 的特例’其中氫或低能量氫原子之相應半徑如以下所示: 142257.doc 201104948Instead of the familiar parameter in the Rydberg equaU〇n equation for hydrogen excited states, the integer is a low-energy hydrogen atom called a low-energy enthalpy. Although the "=1 state of hydrogen and the „=4 state of hydrogen are non-radiative, transfer between two non-radiative states (eg, 12 1 to ^2-1/2) may be achieved via non-radiative energy transfer. Hydrogen is a special case of the steady state shown by equations (1) and (3) where the corresponding radius of hydrogen or low energy hydrogen atoms is as follows: 142257.doc 201104948

r = aH ~~P, (4) 其中p=l,2,3,…。為使能量守恆,能量必須以正常„=1態氫r = aH ~~P, (4) where p=l, 2, 3,... In order to conserve energy, energy must be in normal „=1 state hydrogen

原子之位能整數單位自氫原子轉移至催化劑,且半徑轉變 aH 成^^。低能量氫係由普通氫原子與具有以下淨反應焓之 適當催化劑反應形成 m.ll.2 eV (5) 其中m為整數。咸信當淨反應焓更緊密地與所.27.2 匹配 時催化速率增加。已發現具有在w.27 2 ^作丨。%、較佳±5〇/〇 内之淨反應焓的催化劑適合於大部分應用。 催化劑反應包含兩個能量釋放步驟:非輻射能量轉移至 催化劑,接著當半徑減小至相應穩定終態時進行另外能量 釋放。因此,通用反應如以下所示:The atomic energy unit is transferred from the hydrogen atom to the catalyst, and the radius is changed to aH. The low-energy hydrogen system is formed by reacting a common hydrogen atom with a suitable catalyst having the following net reaction enthalpy to form m.ll.2 eV (5) wherein m is an integer. The rate of catalysis increases when the net reaction 焓 is more closely matched to the .27.2. It has been found to have 22 at w.27. The catalyst with a net reaction enthalpy of %, preferably ±5 〇 / 适合 is suitable for most applications. The catalyst reaction involves two energy release steps: non-radiative energy is transferred to the catalyst, followed by additional energy release as the radius is reduced to the corresponding stable final state. Therefore, the general response is as follows:

27.2 eV + Cat1^ + Η -> Cat㈣+ + re~ + η * .aH L^」 _(m + p) + /W-27.2 eV (6) ⑺ ⑻27.2 eV + Cat1^ + Η -> Cat(4)+ + re~ + η * .aH L^" _(m + p) + /W-27.2 eV (6) (7) (8)

Cai(叫+ + + w‘27.2 eF 且 總反應為Cai (called + + + w‘27.2 eF and the total response is

H a" 4H aH J L(m + /7) + [(P + m)2-p2].U.6eV im+p) im+p) 原子半徑至 1 具有氫原子半徑(對應於分 「" Ί)及等於貝子球心電,之…+户)倍之球心電場,且 為半徑為//半徑之(w + /?)的相應穩態。當電子自氫 此距離之半徑徑向加速時,能量以特徵 142257.doc 201104948 光發射或第三體動能f式釋放。發射可呈具有 l(P + m) ~P ~2m]13-6eV( {(JTmy -p2_ 2m] nm )下之邊界且延伸至較 長波長的遠紫外線連續㈣形式。除輕射外,可發生共振 動能轉移以形成快。㈣藉由與背景&碰撞使此等快 巩原子激發,接著相應研„ = 3)快原子發射產生變寬 之巴耳麥α發射(Balmer a emission)。觀測到與預測一致的 顯著巴耳麥〇:譜線變寬(>10〇 eV)。 因此,合適催化劑可提供w.27.2 #之淨反應正焓。亦 即,催化劑共振接受來自氫原子之非輕射能量轉移,且向 周圍釋放該能量,以實現電子躍遷至分數量子能階。由於 非輻射能量轉移,所以氫原子變得不穩定且進一步發射能 里,直至其達到具有由方程式及(3)所示之主要能階的 較低能量非輻射態。因此,催化自氫原子釋放能量,伴隨 氫原子尺寸〜=«叫相應減小,其中„由方程式所示。舉 例而言,//(«=1)至付(„=1/4)之催化釋放2〇4 eV,且氫半徑 自αΗ減至。催化劑產物亦可與電子反應,形成 低能量氫氫陰離子丹Xl/p) ’或兩個//(1/ρ)可反應形成相應 分子低能量氫Η2(1/ρ)。 特定言之,催化產物//(1/夕)亦可與電子反應,形成具有 結合能£Β之新穎氫陰離子/Γ(1/ρ): ν _ fi2^s(s + Y) πμ^ίϊ1 ( 1 -L 22 a ^eal \ + yjs(s + \) 2所; 4 «ο3 \ 1 + yjJ(s + 1) 3 P L p 142257.doc -10· (10) 201104948 其中产整數>ι ’ π1/2 “為約化蒲郎克常數(pianck,s constat bar),a為真空磁導率,〜為電子質 memp v ^ 1+5所示之低電子質量,其中%為質子質量,…為波 耳半徑,且離子半徑為自方程式(1〇),計 算出氫陰離子電離能為0·75418 ep,且實驗值為6〇82 99士 0.15 cm·1 (0.75418 eV)。 向高磁場移位之NMR峰為半徑相對於普通氫陰離子減小 且質子反磁性屏蔽增加之較低能態氫存在的直接證據。位 移由普通氫陰離子7Γ之位移與歸因於較低能態之分量的和 所示: 碼 _ , &+ν^](1+α 〜)=-(29.9+i.3 〜), 01) 其中對於π而言,p=0,且對於而言,严整數y, 且α為精細結構常數。 孖(Ι/p)可與質子反應且兩個//(1/ρ)可反應,分別形成 付2(1/户)+及/fKl/p)。在不輻射之約束下由橢球座標中拉普 拉斯算子(Laplacian)解出氫分子離子及分子電荷及電流密 度函數、鍵距及能量。 (12) 在長球分子軌道之各焦點上具有之球心電場的氫分子 離子之總能量五r為 142257.doc -11. 201104948 E. r-~p - e ^πε„α. -(41n3-l-21n3) _ 2, 2, 4 庇。(2¾)3 叫 we mec2 pe (13) pe 2a, μH a " 4H aH JL(m + /7) + [(P + m)2-p2].U.6eV im+p) im+p) Atomic radius to 1 with hydrogen atom radius (corresponding to the point "" Ί) and equal to the beijing ball ECG, the ... + household) times the ball heart electric field, and the corresponding steady state of the radius / / radius (w + /?). When the electrons from the hydrogen radius of this distance radial acceleration At the time, the energy is released by the characteristic 142257.doc 201104948 light emission or the third body kinetic energy f. The emission may be performed with l(P + m) ~P ~2m]13-6eV ({(JTmy -p2_ 2m] nm) a continuous (four) form of far ultraviolet rays that extends to a longer wavelength. In addition to light shots, a common vibrational energy transfer can occur to form a fast. (4) These fast-splitting atoms are excited by collision with the background & 3) Fast atomic emission produces a broadened Balmer a emission. A significant barley was observed consistent with the prediction: the line broadened (>10〇 eV). Therefore, a suitable catalyst can provide a net reaction of w.27.2 #. That is, the catalyst resonance accepts a non-light-emitting energy transfer from a hydrogen atom and releases the energy to the surroundings to achieve an electronic transition to a fractional quantum energy level. Due to the non-radiative energy transfer, the hydrogen atoms become unstable and further emit energy until they reach a lower energy non-radiative state having the main energy levels shown by equations and (3). Therefore, the catalysis of the release of energy from a hydrogen atom is accompanied by a corresponding decrease in the size of the hydrogen atom, where „ is shown by the equation. For example, catalysis of //(«=1) to pay („=1/4) Release 2〇4 eV and the hydrogen radius is reduced from αΗ. The catalyst product may also react with electrons to form a low energy hydrazine anion X1/p) or two (1/ρ) which react to form a corresponding molecule of low energy hydroquinone 2 (1/ρ). In particular, the catalytic product / / (1) can also react with electrons to form a novel hydrogen anion / Γ (1/ρ) with binding energy: ν _ fi2^s(s + Y) πμ^ίϊ1 ( 1 -L 22 a ^eal \ + yjs(s + \) 2; 4 «ο3 \ 1 + yjJ(s + 1) 3 PL p 142257.doc -10· (10) 201104948 One of the integers > ' π1/2 ' is the pianck, s constat bar, a is the vacuum permeability, ~ is the low electron mass shown by the electron mass m v v ^ 1+5, where % is the proton mass, ... is the Boer radius, and the ionic radius is from the equation (1〇), and the ionization energy of the hydride anion is calculated to be 0·75418 ep, and the experimental value is 6〇82 99±0.15 cm·1 (0.75418 eV). The shifted NMR peak is direct evidence that the radius is reduced relative to the common hydride anion and the lower energy state of the proton diamagnetic shield increases. The displacement is caused by the displacement of the common hydrogen anion 7 与 and the component attributed to the lower energy state. And shown: Code_ , &+ν^](1+α 〜)=-(29.9+i.3 〜), 01) where p=0 for π, and for the strict integer y , and α is a fine structure constant. 孖(Ι/p) Proton reaction and two / / (1/ρ) can react, forming 2 (1/household) + and / fKl / p respectively. Under the constraint of non-radiation, the Laplacian operator is used in the ellipsoid coordinates ( Laplacian) solves the hydrogen molecular ion and molecular charge and current density function, bond distance and energy. (12) The total energy of the hydrogen molecular ion with a spherical electric field at each focus of the long-sphere orbital is 142257.doc -11. 201104948 E. r-~p - e ^πε„α. -(41n3-l-21n3) _ 2, 2, 4 shelter. (23⁄4)3 called we mec2 pe (13) pe 2a, μ

~ρ216.13392 βΚ-ρ30.118755 eV 其中P為整數,c為真空中光速,且;《為減少之核質量。在 長球分子軌道之各焦點上具有+pe之球心電場的氫分子之 總能量為 4庇οα03 1 + ^ ET = ~~p2 2V2 — V2 + pe2 pe2 8^0 f \3 ao 'P 8^〇 (1 +劍 ί Ρ (14)~ρ216.13392 βΚ-ρ30.118755 eV where P is an integer, c is the speed of light in the vacuum, and “for the reduction of the nuclear mass. The total energy of a hydrogen molecule having a spherical electric field of +pe at each focus of the long-sphere molecular orbit is 4 εα03 1 + ^ ET = ~~p2 2V2 — V2 + pe2 pe2 8^0 f \3 ao 'P 8 ^〇(1 +Sword Ρ Ρ (14)

= -/7231.351eF -p30.326469 eV 氫分子//2(l/p)之鍵解離能五D為相應氫原子總能量與心之 間的差 (15)= -/7231.351eF -p30.326469 eV hydrogen molecule / / 2 (l / p) bond dissociation energy five D is the difference between the total energy of the corresponding hydrogen atom and the heart (15)

ED = E(2H(l/p))-ET 其中ED = E(2H(l/p))-ET where

E(2H(l/p)) = -p227.20 eV 五ο由方程式(15-16)及(14)所示: 142257.doc -12· (16) 201104948E(2H(l/p)) = -p227.20 eV Five is shown by equations (15-16) and (14): 142257.doc -12· (16) 201104948

ED=-p221.20 eV-ET = -^227.20 eF-(-/7231.351 eF-^0.326469 eV)ED=-p221.20 eV-ET = -^227.20 eF-(-/7231.351 eF-^0.326469 eV)

(17) 催化產物氣體之NMR提供對理論上預測之馬(1/4)化學位 移的明確檢驗。一般而言,預測的(1/p)之NMR共振由 於橢圓座標中分數半徑而在付2之丨开]^]^11共振之高磁場, 其中電子顯著更接近核。針對馬(1/;?)預測之位移f由馬 位移與對//2(1/P)而言視户=整數而定之項的和所示: λ/2+O e2(17) NMR of the catalytic product gas provides a clear test of the theoretically predicted horse (1/4) chemical shift. In general, the predicted (1/p) NMR resonance is due to the fractional radius in the elliptical coordinates and the high magnetic field of the resonance of the 2nd, where the electrons are significantly closer to the nucleus. The displacement f predicted for horses (1/;?) is shown by the sum of the horse displacement and the term of the household = integer for //2 (1/P): λ/2+O e2

VZ+丄 e (λ 、 Ίϊ~\μβαϋτη}Χ + παρ^ (19) 其中對於沁而言,/7 = 0。實驗絕對沁氣相共振位移-28 〇 ppm與預測絕對氣相位移·28.01 ppm(方程式(丨9))極為一 致。 氫類型分子万2(1/p)自υ=0躍遷至υ=ι的振動能量五⑽為VZ+丄e (λ , Ίϊ~\μβαϋτη}Χ + παρ^ (19) where 沁 is /7 = 0. Experimental absolute 沁 gas phase resonance displacement -28 〇ppm and predicted absolute gas phase displacement · 28.01 ppm ( The equation (丨9)) is extremely consistent. Hydrogen type molecule wan 2 (1/p) from υ = 0 transition to υ = ι vibration energy five (10)

^ro^Ej^-Ej =y[^ + lj = (^ + 1)0.01509 eK (2 1) 其中P為整數,/為慣性矩。 轉動能之〆相依性由核間距之倒數p相依性及對慣性矩/ 之相應影響產生。預測i/2(l/p)之核間距2c'為^ro^Ej^-Ej =y[^ + lj = (^ + 1)0.01509 eK (2 1) where P is an integer and / is the moment of inertia. The dependence of the rotational energy is caused by the reciprocal p-dependence of the nuclear spacing and the corresponding effect on the moment of inertia. Predict the core spacing 2c' of i/2(l/p) as

2c'=^H P 〇 (22) 142257.doc ‘13· 201104948 來自許多研究技術之資料強烈且一致指出氫可以比預先 認為可能之能態低的能態存在。此資料證明此等稱為低能 量氫之「小氫」較低能態及相應氫陰離子及分子低能量氫 之存在。一些先前相關研究證明產生處於比傳統「基」 («=υ態能量低之分數量子態之氫的新穎原子氫反應之可 能性,該等研究包括遠紫外線(EUV)光譜學、來自催化劑 及氫陰離子產物之特徵發射、較低能量氫發射、化學形成 之電漿、巴耳麥〇:譜線變寬、开線粒子數反轉、升高電子溫 度、不規則電漿餘輝持續時間、動力產生及分析新穎化合 物。 本發明之催化較低能量氫躍遷需要一種催化劑,該催化 劑可呈未催化原子氫位能27 2 之整數w吸熱化學反應 之形式,接受來自原子Η之能量,以引起躍遷。該吸熱 催化劑反應可為一或多個電子自諸如原子或離子之物質 電離(例如,對而言,w = 3),且可進—步包含鍵 裂與一或多個電子自一或多種初始鍵成鍵體電離的協同 反應(例如,對爪丑而言’州=2)。好〆滿足催化劑 標準-焓變等於27.2 #整數倍之化學或物理過程,因為 其在54.417 ^ (為2.27.2 下電離。兩個氫原子亦可用 作具有相同捨之催化齊卜氫原子即/咖=1,2,3, 137可 進一步躍遷至由方程式(1)及(3)所示之較低能態,其中 一原子躍遷由共振且非輻射地接受讲_27 2 且伴隨位能對 換之第一原子催化。由w.27.2 eK共振轉移至研Η〆)而誘發 之付(1/P)躍遷至7/(1/〇? + w))之整個通用方程式由下式表 142257.doc -14· 201104948 示: + 押6er。 (η) 氫原子可用作催化劑,其中對於一及兩個原子而言分別為 m=l及m = 2 ’充當另一者之催化劑。當極快η與分子相撞形 成2/f時’兩原子催化劑2丑之速率可為高的,其中兩個原 子共振且非輻射地接受來自碰撞對之第三氫原子的544 eK。 在w=2下,催化劑//e+與2丑之產物為开(1/3),其快速反 應,形成丑(1/4)、接著形成分子低能量氫的(1/4)作為較佳 狀態。特定言之,在高氫原子濃度之狀況下,由方程式 (23)所不之i/(1/3)(p=3)進一步躍遷至叫1/4乂户+所=4)在好作 為催化劑〇’=1 ; w=1)下可為快速的:2c'=^H P 〇 (22) 142257.doc ‘13· 201104948 Information from many research techniques strongly and consistently states that hydrogen can exist in energy states that are lower than previously thought possible. This data demonstrates the existence of the lower energy states of the "small hydrogen" called low-energy hydrogen and the presence of corresponding hydrogen anions and low-energy hydrogen. Some previous related studies have demonstrated the possibility of reacting with novel atomic hydrogens of hydrogen in the fractional quantum state of the traditional "base" («= low-energy energy, including extreme ultraviolet (EUV) spectroscopy, from catalysts and hydrogen. Characteristic emission of anion products, lower energy hydrogen emission, chemically formed plasma, barley 〇: broadening of spectral lines, inversion of open-line particle number, increasing electron temperature, duration of irregular plasma afterglow, power generation And analysis of novel compounds. The catalytic lower energy hydrogen transition of the present invention requires a catalyst which can be in the form of an integral w endothermic chemical reaction of uncatalyzed atomic hydrogen potential energy 27 2, accepting energy from the atomic enthalpy to cause a transition. The endothermic catalyst reaction can ionize one or more electrons from a substance such as an atom or an ion (for example, w = 3), and can further include a bond splitting and one or more electrons from one or more initials. The synergistic reaction of the bond into the bond body ionization (for example, 'state = 2 for the claw ugly'). The catalyst meets the catalyst standard - the enthalpy is equal to 27.2 # integer multiple of the chemical or physical process, It is ionized at 54.417 ^ (2.27.2. Two hydrogen atoms can also be used to catalyze the same hydrogen atom, ie, /, = 1, 2, 3, 137 can be further transitioned to by equation (1) And (3) the lower energy state in which one atomic transition is resonantly and non-radiatively accepting _27 2 and the accompanying potential energy is catalyzed by the first atom. Transfer from w.27.2 eK resonance to mortar The entire general equation for the induced (1/P) transition to 7/(1/〇? + w)) is shown in the following table 142257.doc -14· 201104948: + 6er. The (η) hydrogen atom can be used as a catalyst in which, for one or two atoms, m = 1 and m = 2 ', respectively, act as a catalyst for the other. When the extremely fast η collides with the molecules to form 2/f, the rate of the two-atom catalyst 2 can be high, wherein the two atoms resonate and non-radiatively accept 544 eK from the third hydrogen atom of the collision pair. At w=2, the catalyst / / e + and 2 ugly products are open (1/3), which reacts rapidly, forming ugly (1/4), followed by formation of molecular low-energy hydrogen (1/4) as a better status. In particular, in the case of high hydrogen atom concentration, i/(1/3) (p=3) which is not in the equation (23) further jumps to 1/4 Settlement+==4) The catalyst 〇'=1; w=1) can be fast:

//(1/3)—//(1/4) + 95.2 eF 。 (24) 與觀測結果—致’相應分子低能量氫馬(1/4)及低能量氫氫 陰離子/f (1/4)為最終產物’此係因為㈣量子態具有超過 四極之多極性’使得叩/4)具有長理論壽命來進行進 催化。 預測非輻射能量轉移至催化劑的+及⑽分別錢- 電漿中對孖〆離子能階#〜乳 兩種催化劑而言,中間物孖* 原子半徑(對應卜於分母中之1}及等於f子球心電場3倍; 心電場,且為半徑為开半徑1/3之相應穩態。; aH • 2 + 1 P白充此且增加孖之電子激發溫度。對於 (方程式(6),w=2)具矣 142257.doc •15· 201104948 自氫原子半徑至1/3此距離之半徑徑向加速時,能量以特 徵光發射或第三體動能釋放。發射可呈具有54 4 6厂(22.8 nm)之邊界且延伸至較長波長的遠紫外線連續輻射形式。 發射可呈具有54.4 (22.8 nm)之邊界且延伸至較長波長 的遠紫外線連續輻射形式。或者,由於共振動能轉移而預 測具有快Η。預測第二連續譜帶由隨後催化產物(方程 式(4-7)及(23))快速躍遷至|態(其中原子氫接受來自t 之27.2 eK)而產生。關於微波及輝光及分別提供催化劑开〆 及2/f之氦-氫及單獨氫之脈衝釋放來記錄遠紫外線(euv)光 譜學及高解析度可見光譜學。對離子線充能伴隨氫的 添加而發生’且氫電漿之激發溫度在某些條件下極高。觀 測到22·8 nm與4〇.8 nm下EUV連續譜,且觀測到顯著(>5〇 eV)巴耳麥《譜線變寬.在收集自氦-氫、氫及水蒸氣輔助 之氫電漿且溶於CDC/3之氣體上藉由溶液^^^尺在丨.25 ppm 下觀測到私(1/4)。 類似地,Jr+至jr2+之反應具有27.63 eF之淨反應烚,其 在方程式(4-7)中相當於m=l。當用作催化劑時,觀測到 預測之其91.2 nm及45.6 nm連續譜以及其他特徵標誌:低 能量氫躍遷、對催化劑激發態充能、快Η及由溶液1^厘11在 1.25 ppm下觀測到的預測之氣體低能量氫產物馬(1/4)。考 慮此等結果及氦電漿之結果,觀測到對於付6+催化劑而言 臨限值在54.5 eF(『4)及40.8 eK(g = 3)下且對於jr+催化劑而 言臨限值在27.2 eF(g=2)及13.6 eFQM)下的^13 6 連續 譜。在低能量氫躍遷至較低能態’引起寬光譜範圍内高能 142257.doc • 16 · 201104948 連續輻射的情況下,可能具有高得多之9值。 在近來動力產生及產物表徵之研究中,將原子經及分子 祕用作催化劑,此係因為其符合催化劑標準,即焓變等 於原子氫位能27.2 eF之整數w倍的化學或物理過程(例如, 對於而言,㈣;且對於而言,…2)。使用化學產 生之催化反應物,測試基於新穎鹼齒化低能量氫氫化物化 • 合物(娜廣素)之相應低能量氫氫陰離 子丑-(1/4)及分子低能量氫迅⑴句能階之閉合形式方程式的 特定預測。 首先,測試h催化劑。使用Ζζ·及见作為原子鋰及氫 原子源。使用水流分批熱量測定,i g h·、〇 5 g 10 g h·办及15 g P^4/2〇3之實測功率為約16〇 w,能量平 衡」β=-19·1 M。觀測到之能量平衡為基於已知化學之最大 理論值的4.4倍。接著當於化學合成中使用動力反應混合 物時,將阮尼鎳(Raney nickel)(R-Ni)用作解離器,其中 h份用作催化產物丑(1/4)之吸氣劑,以形成尤以及捕集 馬(1/4)於晶體中。ToF-SIM展示峰。仏及尤出" 之1开MAS NMR展示與U基質中//-(1/4)匹配的約_2 5 ppm * 下巨大獨特高磁場共振。1 · 1 3 ppm下之NMR峰與間隙 : 好2〇/4)匹配,且在FTIR譜中在1989⑽-1下觀測到為普通 好2轉動頻率42倍的//JIM)轉動頻率。晶體上記錄之 XPS謂展示在約9.5 eV及12.3 eV下之峰,基於任何其他主 要元素峰之缺乏,該等峰不可歸因於任何已知元素,但其 與兩種化學環境中//-〇/4)之結合能匹配。高能過程之另一 142257.doc -17- 201104948 3為觀測f彳當原子與原子氫—起存在時在低溫(例如, ⑻幻及約1-2 V/cm之極低電場強度下形成稱為共振轉移 電聚或η電漿之電漿。觀測到對應於極快好之好巴耳麥〇線 的時間相關性譜線變寬(>40 eV)。 諸如W之包含氫及除氫以外至少一個元素Μ的本發明 化a物用作形成低能量氫之氫源及催化劑源。由从鍵 斷裂加上ί個電子自原子Μ各自電離至連續能階,使得鍵能 與^個電子之電離能之總和為約m.27.2 eF(其中m為整數), 來提供催化反應。一種此類催化系統包含鈉^ 鍵能為 1.9245 eF’且之第一及第二電離能分別為5139〇8 及 47.2864 eK ^基於此等能量,^^丑分子可用作催化劑源及 氫源’因為之鍵能加上至之二次電離(?=2)為 54·3 5 eF(2’27.2 eF)。催化劑反應如以下所示://(1/3)—//(1/4) + 95.2 eF. (24) And observations - the corresponding molecules low-energy hydrogen horse (1/4) and low-energy hydrogen hydride anion / f (1/4) are the final products 'this system because (4) quantum states have more than four polarities' Let 叩/4) have a long theoretical lifetime to carry out the catalysis. Predicting the transfer of non-radiative energy to the + and (10) of the catalyst - in the plasma-plasma, for the two catalysts, the intermediate 孖* atomic radius (corresponding to 1 in the denominator) and equal to f The sub-ball heart electric field is 3 times; the cardiac electric field is the corresponding steady state with a radius of 1/3 of the opening radius; aH • 2 + 1 P white charges and increases the electronic excitation temperature of 孖. For (Equation (6), w =2) With 矣 142257.doc •15· 201104948 From the radius of the hydrogen atom to the radius of 1/3 of this distance, when the radial acceleration, the energy is released by characteristic light emission or third body kinetic energy. The emission can be found with 54 4 6 plants ( The far-ultraviolet continuous radiation form of the boundary of 22.8 nm and extending to longer wavelengths. The emission can be in the form of far-ultraviolet continuous radiation with a boundary of 54.4 (22.8 nm) and extending to longer wavelengths. Or, due to the transfer of co-vibration energy The prediction is fast. The predicted second continuation band is generated by the rapid transition of the subsequent catalytic products (equations (4-7) and (23)) to the | state (where the atomic hydrogen accepts 27.2 eK from t). About microwaves and glows And provide catalyst opening and 2/f 氦-hydrogen and hydrogen alone Pulse release to record extreme ultraviolet (euv) spectroscopy and high-resolution visible spectroscopy. The charge of the ion line occurs with the addition of hydrogen' and the excitation temperature of the hydrogen plasma is extremely high under certain conditions. Observed 22· EUV continuum at 8 nm and 4 〇.8 nm, and significant (>5〇eV) Balm "line broadening was observed. The hydrogen plasma was collected from hydrazine-hydrogen, hydrogen and water vapor. On the CDC/3 gas, a private (1/4) was observed at 丨.25 ppm by a solution. Similarly, the reaction of Jr+ to jr2+ has a net reaction enthalpy of 27.63 eF, which is in the equation (4). In -7), it is equivalent to m=l. When used as a catalyst, the predicted 91.2 nm and 45.6 nm continuum and other characteristic signs are observed: low energy hydrogen transition, energization of the excited state of the catalyst, fast enthalpy and solution The predicted low-energy hydrogen product (1/4) of the gas observed at 12.5% at 1.25 ppm. Considering these results and the results of the tantalum plasma, it is observed that the threshold is 54.5 for the 6+ catalyst. The ^13 6 continuum at eF ("4) and 40.8 eK (g = 3) and for the jr+ catalyst with a threshold of 27.2 eF (g = 2) and 13.6 eFQM). In the case of low-energy hydrogen transitions to lower energy states, causing high energy in the broad spectral range, 142257.doc • 16 · 201104948 continuous radiation may have a much higher 9 value. In recent studies of power generation and product characterization, atomic and molecular secrets have been used as catalysts because they conform to the catalyst standard, ie chemical or physical processes in which the enthalpy is equal to an integer w times the atomic hydrogen potential of 27.2 eF (eg , for that, (four); and for that, ... 2). Using chemically generated catalytic reactants, the corresponding low-energy hydrogen hydride anion ugly-(1/4) and molecular low-energy hydrogen (1) based on the novel alkali-toothed low-energy hydro hydride physicochemical compound (Na Guangsu) can be tested. The specific prediction of the closed form equation of the order. First, the h catalyst was tested. Use Ζζ· and see as a source of atomic lithium and hydrogen atoms. Using the water flow batch calorimetry, the measured power of i g h·, 〇 5 g 10 g h·do and 15 g P^4/2〇3 is about 16 〇 w, and the energy balance is β=-19·1 M. The observed energy balance is 4.4 times the maximum theoretical value based on known chemistry. Next, when a kinetic reaction mixture is used in chemical synthesis, Raney nickel (R-Ni) is used as a dissociator, wherein h is used as a getter of the catalytic product ugly (1/4) to form Especially as well as trapping horses (1/4) in the crystal. ToF-SIM shows the peak.仏 尤 尤 之 开 MAS MAS MAS MAS NMR shows a large unique high magnetic field resonance of about _2 5 ppm * matched with //-(1/4) in the U matrix. NMR peaks and gaps at 1 · 1 3 ppm: good 2 〇 / 4) match, and in the FTIR spectrum, a jerk frequency of 42 times the normal 2 rotation frequency was observed at 1989 (10)-1. The XPS recorded on the crystal is shown to peak at about 9.5 eV and 12.3 eV. Based on the lack of any other major element peaks, these peaks are not attributable to any known element, but they are in two chemical environments. /4) The combination can match. Another high-energy process 142257.doc -17-201104948 3 is observed when the atom and atomic hydrogen are present at low temperatures (for example, (8) magical and about 1-2 V/cm at very low electric field strength is called Resonance transfer electropolymerization or η plasma plasma. Time-dependent spectral line broadening (>40 eV) corresponding to the very fast and good Babel line was observed. For example, W contains hydrogen and at least hydrogen. The element a of the present invention is used as a hydrogen source for forming low-energy hydrogen and a catalyst source. The ionization of the bond energy from the electrons is made by the bond cleavage plus the electrons from the atomic enthalpy to the continuous energy level. The sum of the energies is about m.27.2 eF (where m is an integer) to provide a catalytic reaction. One such catalytic system comprises a sodium bond energy of 1.9245 eF' and a first and second ionization energy of 5139 〇 8 and 47.2864 eK ^ Based on this energy, ^^ ugly molecules can be used as a catalyst source and a hydrogen source' because the secondary ionization (?=2) to which the bond can be applied is 54·3 5 eF (2'27.2 eF). The catalyst reaction is as follows:

5435 eV + NaHNa2++2e~+H +[32-12]·13.6 eF (25) (26) Να2* +2e~ + ΗΝαΗ + 54.35 eV 且總反應為 Η — Η45435 eV + NaHNa2++2e~+H +[32-12]·13.6 eF (25) (26) Να2* +2e~ + ΗΝαΗ + 54.35 eV and the total response is Η — Η4

+ [32-l2]-13.6eK (27) 產物//(1/3)快速反應形成幵(1/4)、接著形成分子低能量氫 //2(1/4),作為較佳狀態(方程式(24))。催化劑反應可 為協同反應,因為丑鍵能、至iVa2+之二次電離(ί=2)及 开位能之總和為81.56 eF (3.27.2 eF)。催化劑反應如以下 所示: 142257.doc -18· 201104948+ [32-l2]-13.6eK (27) The product / / (1/3) rapidly reacts to form 幵 (1/4), followed by the formation of low molecular energy hydrogen / /2 (1/4), as a preferred state ( Equation (24)). The catalyst reaction can be a synergistic reaction because the sum of the ugly bond energy, the secondary ionization to iVa2+ (ί=2), and the open energy is 81.56 eF (3.27.2 eF). The catalyst reaction is as follows: 142257.doc -18· 201104948

+ [42-l2]13.6eF (28)+ [42-l2]13.6eF (28)

81.56 eV + NaH + H ^Na2++2e'+H+,,+e~+H jQSt 481.56 eV + NaH + H ^Na2++2e'+H+,,+e~+H jQSt 4

Na2+ +2e'+H + H}ast +e~NaH + // + 81.56 eF (29) 且總反應為Na2+ +2e'+H + H}ast +e~NaH + // + 81.56 eF (29) and the total response is

+ [42-l2]-13.6eF (30) 其中為具有至少13.6 eV之動能的快氫原子。 /^(1/4)形成穩定鹵氫化物且與由反應2//(1/4)—开2(1/4)及 π(1/4)+/Τ-^//2(1/4)形成之相應分子一起為有利產物。 氫化鈉通常呈由氣態氫與金屬鈉反應形成之離子晶狀化 合物形式。且在氣態中,鈉包含具有74.8048 kJ/mol之鍵 能的共價分子。發現當將在氦氛圍下以極慢升 溫速率(0· 1 °C /min)加熱以形成7Va//(g)時,由差示掃描熱量 測定(DSC)在高溫下觀測到由方程式(25-27)所示之所預測 放熱反應。為實現高功率,設計一種極大地增加形 成之量及速率之化學系統。由生成熱計算之及至 Να20 良 氮释1&Η=-ΔΛ.Ί kJ/mol NaOH ..+ [42-l2]-13.6eF (30) where is a fast hydrogen atom having a kinetic energy of at least 13.6 eV. /^(1/4) forms a stable halohydride and reacts with 2//(1/4)-open 2(1/4) and π(1/4)+/Τ-^//2(1/ 4) The corresponding molecules formed together are advantageous products. Sodium hydride is usually in the form of an ionic crystalline compound formed by the reaction of gaseous hydrogen with sodium metal. And in the gaseous state, sodium contains a covalent molecule having a bond energy of 74.8048 kJ/mol. It was found that when heated at a very slow heating rate (0·1 ° C /min) to form 7 Va / / (g) in a helium atmosphere, the differential scanning calorimetry (DSC) was observed at a high temperature by equation (25). -27) The predicted exothermic reaction shown. To achieve high power, design a chemical system that greatly increases the amount and rate of formation. Calculated by the heat generated to Να20 Good nitrogen release 1&Η=-ΔΛ.Ί kJ/mol NaOH ..

NaOH + 2Na Na20 + NaH(s) AH = -44.7 kJ I mole NaOH ^ 此放熱反應可推導出之形成且用以推導由方程式 (25-27)所示之完全放熱反應。在原子氫存在下的再生反應為NaOH + 2Na Na20 + NaH(s) AH = -44.7 kJ I mole NaOH ^ This exothermic reaction can be deduced to form and is used to derive the complete exothermic reaction shown by equation (25-27). The regeneration reaction in the presence of atomic hydrogen is

Na20 + H ^NaOH + Na AH =-\\.6 U/mole NaOH (32)Na20 + H ^ NaOH + Na AH =-\\.6 U/mole NaOH (32)

NaH -^Na + H(V3) AH =-10,500 kJ/mole H (33) 142257.doc -19- (34) 201104948NaH -^Na + H(V3) AH = -10,500 kJ/mole H (33) 142257.doc -19- (34) 201104948

NaH -^Na + H(\/A) -\%ΊΟΟ kJ I mole H iWz/ί以獨特方式實現高動力學,因為該催化劑拓& 久屨取決 於固有丑之釋放,該固有//同時進行躍遷形成"(1/3) 一步反應形成//(1/4)。在氦氛圍下在極慢升 (0.1°C/min)下對離子執行高溫差示掃描熱 進 益速率 測定 (DSC),以增加分子形成之量。在640。(:至825。 之溫 度範圍内觀測到-177 之新穎放熱效應。 t ,Vii馬獲得 高功率,將具有約100 w3/g之表面積的R-Ni表面涂L、 I 上 Να〇Η 且使之與#α金屬反應形成iVa//。使用水流分批熱量、則& 當與iVa金屬反應時,自15 g R-Ni之實測功率為約n ' J υ·5 kW , 能量平衡為2//=-36 A:·/,而來自R-Ni起始物質R_Ni 1 o 之能量平衡為H。觀測到之心丑反應能瞀 、 里干衡為 -1.6X 104 ’ 超過-241.8 AJ7wo/ //2燃燒烚 66件 摻雜增至0.5 wt%的情況下,使用R-Ni介金屬之^置 換金屬作為還原劑來產生iVo"催化劑。當加熱至6〇1 時,15 g複合催化劑材料無需添加劑來釋放11.7 kJ過剩能 量及產生〇_25 kW之功率。關於溶於DMF-d7之產物氣體的 溶液NMR展示i/2(l/4)在1.2 ppm下。NaH -^Na + H(\/A) -\%ΊΟΟ kJ I mole H iWz/ί achieves high kinetics in a unique way, because the catalyst extension & long time depends on the release of the inherent ugly, the intrinsic / / at the same time The transition is formed "(1/3) one step reaction is formed //(1/4). High-temperature differential scanning thermal efficiency (DSC) was performed on the ions at very slow rises (0.1 °C/min) under a helium atmosphere to increase the amount of molecular formation. At 640. A novel exothermic effect of -177 was observed in the temperature range of (from 825.) t, the Vii horse obtained high power, and the surface of R-Ni having a surface area of about 100 w3/g was coated with L, I and Να〇Η and It reacts with #α metal to form iVa//. Uses water to batch heat, then & When reacting with iVa metal, the measured power from 15 g R-Ni is about n ' J υ · 5 kW , energy balance is 2 //=-36 A:·/, and the energy balance from the R-Ni starting material R_Ni 1 o is H. The observed ugly reaction can be 瞀, the balance is -1.6X 104 ' exceeds -241.8 AJ7wo/ In the case of /6 burning 烚66 doping increased to 0.5 wt%, the R-Ni intermetallic metal was used as a reducing agent to produce the iVo"catalyst. When heated to 6〇1, 15 g of composite catalyst material No additives were required to release 11.7 kJ of excess energy and produce a power of 〇25 kW. The solution NMR for the product gas dissolved in DMF-d7 showed i/2 (l/4) at 1.2 ppm.

ToF-SIM展示低能量氫化鈉爪2/^峰》及A^/f*C7 之丨// MAS NMR譜展示分別在-3.6 ppm及-4 ppm下與尺· (1/4)匹配之巨大獨特高磁場共振及1.1 ρριη下與i/2( 1/4)匹 配之NMR峰。來自與固體酸尺之反應、作為唯一 氫源之C/包含兩種分數氫狀態。在-3.97 ppm下觀測 到/Γ(l/4)NMR峰,且/Γ(l/3)峰亦存在於-3.15ppm下。分 142257.doc •20· 201104948 別在1.15 ppm下及1.7 ppm下觀測到相應//2(1/4)及//:(1/3) 峰。溶於DMF-d7之#aH*F的1NMR展示分別在1.2 ppm 及-3.86 ppm下的經分離馬(1/4)及/Γ(1/4),其中任何固體 基質效應之缺乏或可能替代分配證實固體NMR歸屬。對 記錄之XPS譜展示在約9.5 eV及12.3 eV下與由 ZzUr及A://*/產生之結果匹配的/T(l/4)峰;然而,低能量 氫化鈉展示在缺乏鹵化物峰的情況下另外具有6 eVT^-U/S) XPS峰的兩 種分數 氫狀態 《亦 自使用 12.5 keV電子束 激發之私(1/4)觀測到能量為普通坧能量42倍之預測轉動躍 遷° 諸如NMR位移、ToF-SIM質量、XPS結合能、ftir及發 射譜之此等資料表徵且鑑別包含本發明之一態樣的催化劑 糸統之低能量氯產物。 I·低能量氫 具有如以下所示之結合能的氫原子 (i/p)2 結合能 (其中P為大於i之整數,較佳2至137)為本發明之Η催价 應產物。原子、離子或分子之結合能(亦稱為電離能)肩 。 離子或分子移除一個電子所必需的能量。具肩 ,式(5)中所不之結合能的氫原子在下文中稱為「低截 =子:或「低能量氫」。具有半徑,(其、為普通耋 :之半俗且ρ為整數)之低能量氩的名稱為丑,。具肩 徑叫之氫原子在下文中稱為「普通氫原子」或〜一般| 142257.doc -21 - 201104948 子」。普通原子氫特徵為其具有13 6 eV之結合能。 低能置氫係由普通氫原子與具有以下淨反應焓之適當催 化劑反應形成ToF-SIM shows the low energy hydrogenated sodium claw 2/^ peak and A^/f*C7 // MAS NMR spectrum shows a huge match with the ruler (1/4) at -3.6 ppm and -4 ppm, respectively. Unique high magnetic field resonance and NMR peak matched to i/2 (1/4) at 1.1 ρριη. The C/, which is the sole source of hydrogen from the reaction with the solid acidity, contains two hydrino states. The /Γ(l/4) NMR peak was observed at -3.77 ppm, and the /Γ(l/3) peak was also present at -3.15 ppm. Points 142257.doc •20· 201104948 Do not observe the corresponding //2(1/4) and //:(1/3) peaks at 1.15 ppm and 1.7 ppm. 1 NMR of #aH*F in DMF-d7 shows isolated horses (1/4) and /Γ (1/4) at 1.2 ppm and -3.66 ppm, respectively, where any solid matrix effect is lacking or may be replaced The assignment confirmed solid NMR assignment. The recorded XPS spectra showed a /T(l/4) peak matched to the results produced by ZzUr and A://*/ at about 9.5 eV and 12.3 eV; however, low energy sodium hydride exhibited a lack of halide peaks. In the case of the other two hexahydrogen states of the 6 eVT^-U/S) XPS peak, "the predicted rotational rotation of the energy is 42 times the ordinary enthalpy energy from the private (1/4) of the 12.5 keV electron beam excitation. The data such as NMR shift, ToF-SIM mass, XPS binding energy, ftir and emission spectrum characterize and identify the low energy chlorine product of the catalyst system comprising one aspect of the invention. I. Low-energy hydrogen A hydrogen atom (i/p) 2 binding energy having a binding energy as shown below (wherein P is an integer greater than i, preferably 2 to 137) is a hydrazine product of the present invention. The binding energy (also known as ionization energy) of an atom, ion or molecule. The energy necessary to remove an electron by an ion or molecule. A hydrogen atom having a shoulder and a combination energy not in the formula (5) is hereinafter referred to as "low cut = sub: or "low energy hydrogen". The name of the low-energy argon having a radius, which is a common 耋: semi-custom and ρ is an integer, is ugly. The hydrogen atom having a shoulder diameter is hereinafter referred to as "ordinary hydrogen atom" or ~ general | 142257.doc -21 - 201104948 sub. Ordinary atomic hydrogen is characterized by a binding energy of 13 6 eV. Low-energy hydrogen formation is formed by the reaction of a common hydrogen atom with a suitable catalyst having the following net reaction enthalpy

TTi.27.2eF (36) 其中W為整數。咸信當淨反應焓更緊密地與m.27.2 eF匹配 時催化速率増加。已發現淨反應焓在m.27.2 ±10%、較 佳±5%内之催化劑適於大部分應用。 此催化自氫原子釋放能量,伴隨氫原子尺寸〜巧叫相應 減小。舉例而言,,可„=1)催化成丑(„=1/2)釋放4〇8 #, 且虱半徑自αΗ減至玉%。藉由M固電子各自自原子電離至連 續能階,使得?個電子電離能之總和為約w.27.2 (其中w 為整數)’來提供催化系統。 上文(方程式(6_9))所示之該等催化系統的另一實例包含 金屬鋰。鋰的第一及第二電離能分別為5 39172 #及 75·_8 因而Lz·至以2+之二次電離(_反應具有 81.0319 之淨反應焓,此相當於方程式(36)中所=3。 81.0319 eV + + ^ Li2++2e Li(m)+si.0319 eV 且總反應為 L P .TTi.27.2eF (36) where W is an integer. The rate of catalysis is increased when the net reaction is more closely matched to m.27.2 eF. Catalysts with a net reaction enthalpy of m. 27.2 ± 10%, preferably ± 5% have been found to be suitable for most applications. This catalysis releases energy from the hydrogen atoms, which decreases with the size of the hydrogen atoms. For example, „=1) can be catalyzed into ugly („=1/2) release 4〇8#, and the radius of the crucible is reduced from αΗ to jade%. By M-electrons each ionizing from atom to continuous energy level, so that? The sum of the electron ionization energies is about w.27.2 (where w is an integer)' to provide the catalytic system. Another example of such catalytic systems as shown above (Equation (6-9)) comprises metallic lithium. The first and second ionization energies of lithium are 5 39172 # and 75·_8, respectively, and thus Lz· to the second ionization of 2+ (the reaction has a net reaction enthalpy of 81.0319, which is equivalent to 3 in equation (36). 81.0319 eV + + ^ Li2++2e Li(m)+si.0319 eV and the total response is LP.

-^Li2+ + 2e-+H-^Li2+ + 2e-+H

〇H .(P + 3),〇H .(P + 3),

+ 办+ 3)2-p2].13.6eF (37) (38)+ Do + 3) 2-p2].13.6eF (37) (38)

aH — Η J L(P + 3)_ + [(P + 3)2-p2]13.6eF (39) 绝的第一及第二電 因而Cs至Ci2+之二 在另一貫施例中,催化系統包含鉋。 離能分別為 3.89390 eF 及 23.15745 eF。 142257.doc -22- 201104948 次電離(ί=2)反應具有27.05135 eF之淨反應焓,此相當於方 程式(36)中m=l。 ^•Cs2++2e' + //aH — Η JL(P + 3)_ + [(P + 3)2-p2]13.6eF (39) Absolute first and second electricity and thus Cs to Ci2+ in another embodiment, the catalytic system contains plane. The energy dissipation is 3.89390 eF and 23.15745 eF, respectively. 142257.doc -22- 201104948 The secondary ionization (ί=2) reaction has a net reaction enthalpy of 27.05135 eF, which is equivalent to m=l in equation (36). ^•Cs2++2e' + //

27.05135 eF+Ci(»i) + // Cs2++2e-4 Cj(w) + 27.05135 eF27.05135 eF+Ci(»i) + // Cs2++2e-4 Cj(w) + 27.05135 eF

aH (尸+1).aH (corpse +1).

+[(P + W].13.6eK (40) (41) 且總反應為 Η+[(P + W].13.6eK (40) (41) and the total response is Η

aH Η °H (尸+1)aH Η °H (corpse +1)

[(p + l)2-/72]13.6eF (42) 另一催化系統包含金屬鉀。鉀的第一、第二及第三電離 能分別為 4.34066 、31.63 eF、45.806 eF。因而尺至尺3 + 之三次電離(ί=3)反應具有81.7767 之淨反應焓,此相當 於方程式(36)中;72 = 3。[(p + l)2-/72] 13.6eF (42) Another catalytic system contains potassium metal. The first, second and third ionization energies of potassium are 4.34066, 31.63 eF and 45.806 eF, respectively. Thus the cubic ionization (ί = 3) reaction of the ruler to the ruler 3 + has a net reaction enthalpy of 81.7767, which is equivalent to equation (36); 72 = 3.

81.7767 eV + K(m)^H Ρ ~^Κ3+ (43) (44) Κ3+ +3e~ K(m) + Sl.7426 eV 且總反應為 Η °Η -^Η _ 1 ρ 1 L(P + 3) + [(p + 3)2-p2].i3.6eK 〇 (45) 作為動力源,催化期間放出之能量遠大於因供給催化劑所 丢失之能量。如與習知化學反應相比,釋放之能量為巨大 的。舉例而言,當氫氣與氧氣進行燃燒以形成水時 HAg) + \〇2{g)-^H20 (/) (46) 已知水之生成焓為每一氫原子△方广·286 W或1 Μ 相比之下,進行催化之各(《=1)普通氫原子釋放40.8 I42257.doc •23- 201104948 eF之淨焓。此 ” = i —i丄〜丄丄%卜,可發生進—步催化轉變: 2 3 ^ 4 4卜5,等。一旦催化開始,則低能量氫以稱 為歧化之過程進一牛6 乂自動催化《此機制類似於無機離子催 歧化仁由於焓與m.27.2 eF匹配更佳,所以低能量氫 催化之反應料將高於錢離子催化劑。 本發月之g $氫氫陰離子可由電子源與低能量氣(亦 即’具有約f之結合能的氫原子,其中^且p為大於 1之整數)反應來形成。低能量氫氫陰離子由即=1⑻或 (I//7)表示: (47) (48) 令]+。 低旎1氫氫陰離子不同於包含普通氫核及兩個具有約 0.8 eV結合能之電子的普通氫陰離子。後者在下文中稱為 「普通氫陰離子」或「一般氫陰離子」。低能量氫氫陰離 子包含包括九、氣或說之虱核及兩個不可區別之;在根據方 程式(49-50)之結合能下的電子。 低能量氫氫陰離子之結合能可由以下公式表示: 結合能81.7767 eV + K(m)^H Ρ ~^Κ3+ (43) (44) Κ3+ +3e~ K(m) + Sl.7426 eV and the total response is Η °Η -^Η _ 1 ρ 1 L(P + 3) + [(p + 3)2-p2].i3.6eK 〇(45) As a power source, the energy released during the catalysis is much greater than the energy lost by the supply of the catalyst. The energy released is enormous compared to conventional chemical reactions. For example, when hydrogen and oxygen are burned to form water, HAg) + \〇2{g)-^H20 (/) (46) It is known that the formation of water is △ 宽 · 286 W per hydrogen atom or 1 相比 In contrast, each of the catalyzed ("=1) ordinary hydrogen atoms released 40.8 I42257.doc • 23- 201104948 eF net enthalpy. This " = i - i 丄 ~ 丄丄 % Bu, can occur into the - step catalytic conversion: 2 3 ^ 4 4 Bu 5, etc. Once the catalysis begins, the low-energy hydrogen is called the process of disproportionation into a cow 6 乂 automatic Catalysis "This mechanism is similar to inorganic ion-protonated arsenic. Because yttrium is better matched with m.27.2 eF, the low-energy hydrogen catalyzed reaction material will be higher than the money ion catalyst. The g-hydrogen anion of this month can be obtained by electron source and A low-energy gas (that is, a hydrogen atom having a binding energy of about f, wherein p is an integer greater than 1) is formed by reacting. The low-energy hydrino hydride is represented by ie = 1 (8) or (I//7): 47) (48) Order]+. The low hydrazine 1 hydrino hydride ion is different from the ordinary hydrogen anion containing an ordinary hydrogen nucleus and two electrons having a binding energy of about 0.8 eV. The latter is hereinafter referred to as "ordinary hydride anion" or "general Hydrogen anion". The low-energy hydrogen-hydrogen anion contains nucleus, or nucleus, and two indistinguishable electrons; the electrons at the binding energy according to the equation (49-50). The binding energy of low-energy hydrino hydrides can be expressed by the following formula:

^y[s(s + \) ^JU〇e2n2 1 22 1 + ^(s +1) 2 m] 3 + aN al \ 1 + fys + l) 3 . P . _ P J (49) 其中P為大於1之整數,ί = 1/2 ’為圓周率,方為約化蒲郎 克常數,為真空磁導率,we為電子質量,a為由 142257.doc •24· 201104948^y[s(s + \) ^JU〇e2n2 1 22 1 + ^(s +1) 2 m] 3 + aN al \ 1 + fys + l) 3 . P . _ PJ (49) where P is greater than The integer of 1 , ί = 1/2 ' is the pi, the square is the reduced gram constant, the vacuum permeability, we are the electron mass, a is 142257.doc •24· 201104948

Me memp 所示之低電子質量’其中%為質子質量’ 原子半徑,々為波耳半徑,且e為基本電荷。半徑如以下 所示The low electron mass shown by Me memp 'where % is the proton mass' atomic radius, 々 is the Boer radius, and e is the base charge. The radius is as shown below

(50) 隨尸而憂之低能量氫氫陰離子开1 /p)之結合能展示於 表1中,其中p為整數。 表1·隨P而變之低能量氫氫陰離子心脅)之代表性結合 能,方程式(49) 至 U「云啡丁 η 結合能 波長 (α〇) (eV)b (nm) H'(n= =1) 1.8660 0.7542 1644 Η·(η= = 1/2) 0.9330 3.047 406.9 Η·(η= = 1/3) 0.6220 6.610 187.6 Η·(η= = 1/4) 0.4665 Π.23 110.4 Η'(η= = 1/5) 0.3732 16.70 74.23 Η'{η~ = 1/6) 0.3110 22.81 54.35 Η(η= = 1/7) 0.2666 29.34 42.25 Η(η= = 1/8) 0.2333 36.09 34.46 Η'(η = = 1/9) 0.2073 42.84 28.94 Η(η= =1/10) 0.1866 49.38 25.11 Η'(η= =1/11) 0.1696 55.50 22.34 142257.doc -25· 201104948 //•(«=1/12) 0.1555 60.98 20.33 H'(n=\/13) 0.1435 65.63 18.89 /Γ(« = 1/14) 0.1333 69.22 17.91 Η-(η=\/\5) 0.1244 71.55 17.33 Η'(η=\/16) 0.1166 72.40 17.12 //'(«=1/17) 0.1098 71.56 17.33 /Γ〇=1/18) 0.1037 68.83 18.01 //(«=1/19) 0.0982 63.98 19.38 //'(«=1/20) 0.0933 56.81 21.82 Η·(η=1/21) 0.0889 47.11 26.32 Η'(η=1/22) 0.0848 34.66 35.76 //•0=1/23) 0.0811 19.26 64.36 ·ίΓ〇=1/24) 0.0778 0.6945 1785 a方程式(50) b方程式(49) λ/Γ,本發明提供具有根據方程式(49-5〇)之結合能的低 能量氫氫陰離子(Η·),該結合能在厂2至23時大於普通氣陰 離子、’、° 5犯(約0.75 eV)且在;?=24(Η-)時小於普通氫陰離子 5 nti對於方程式(49-50)中尸=2至p=24而言,氫陰離子 結合能分別為 3、6.6、11.2、16.7、22.8、29.3、36.1、 42.8、 49.4、55.5、61 〇、65.6、69.2、71.6、72.4、71.6、 68.8、 64_〇、56.8、47 j、34.7、19.3及 0_69 eV。本文中亦 提供包含該新穎氫陰離子之例示性組合物。 142257.doc .26- 201104948 亦提供包含—或多種低能量氫氫陰離子及-或多種其他 元素之例示性化合物。此類化合物稱為「低能量氫氮化物 化合物」。 普通氫物質特徵為以下結合能:⑷氫陰離子,〇.754 eV (「普通氫陰離子」);(b)氫原子(「普通氫原子」)’ 136 ::;⑷雙原子氫分子’ 15.3 eV(「普通氫分子」);⑷氫 分子離子,16.3 eV(「並诵氦八:2 (曰通虱刀子離子」);及⑷和, 22.6 eV(「普通三氫分早雜早 「 飞刀子離子」)。本文中,關於氫之形 式,一般」與「普通」同義。 根據本發明之另—實施例,提供包含至少一種諸如以 ίγ ^ λ» a 13.6 bV ° 5能增加之氣物質的化合物:⑷具有約 13.6 eV 如在約〇·9至1.丨倍了1^~ 之範圍内之結合能的氫原子,其 中P為2至137之整數. 严数,⑻具有約結合能 m0e2h2 諸 P 為2至1 h2Ms + \) ^Mece〇 i+VHs+i)2 _ P 1 · 1倍結合能 21 ao(50) The binding energy of the low energy hydrogen hydride opening 1 / p) with the corpse is shown in Table 1, where p is an integer. Table 1. Representative binding energies of low-energy hydrino hydride nucleus with P, equation (49) to U "cloudy butyl η binding energy wavelength (α〇) (eV)b (nm) H' ( n= =1) 1.8660 0.7542 1644 Η·(η= = 1/2) 0.9330 3.047 406.9 Η·(η= = 1/3) 0.6220 6.610 187.6 Η·(η= = 1/4) 0.4665 Π.23 110.4 Η '(η= = 1/5) 0.3732 16.70 74.23 Η'{η~ = 1/6) 0.3110 22.81 54.35 Η(η= = 1/7) 0.2666 29.34 42.25 Η(η= = 1/8) 0.2333 36.09 34.46 Η '(η = = 1/9) 0.2073 42.84 28.94 Η(η= =1/10) 0.1866 49.38 25.11 Η'(η= =1/11) 0.1696 55.50 22.34 142257.doc -25· 201104948 //•(«= 1/12) 0.1555 60.98 20.33 H'(n=\/13) 0.1435 65.63 18.89 /Γ(« = 1/14) 0.1333 69.22 17.91 Η-(η=\/\5) 0.1244 71.55 17.33 Η'(η=\ /16) 0.1166 72.40 17.12 //'(«=1/17) 0.1098 71.56 17.33 /Γ〇=1/18) 0.1037 68.83 18.01 //(«=1/19) 0.0982 63.98 19.38 //'(«=1/ 20) 0.0933 56.81 21.82 Η·(η=1/21) 0.0889 47.11 26.32 Η'(η=1/22) 0.0848 34.66 35.76 //•0=1/23) 0.0811 19.26 64.36 ·ίΓ〇=1/24) 0.0778 0.6945 1785 a Equation (50) b Equation (49) λ/Γ, the present invention provides a low-energy hydrino hydride (Η·) having a binding energy according to the equation (49-5〇), which is greater than 2 to 23 in the factory. Ordinary gas anion, ', ° 5 (about 0.75 eV) and less than the ordinary hydrogen anion 5 nti at ?? 24 (Η-) for the corpse = 2 to p = 24 in the equation (49-50), hydrogen The anionic binding energies were 3, 6.6, 11.2, 16.7, 22.8, 29.3, 36.1, 42.8, 49.4, 55.5, 61 〇, 65.6, 69.2, 71.6, 72.4, 71.6, 68.8, 64_〇, 56.8, 47 j, 34.7, respectively. , 19.3 and 0_69 eV. Exemplary compositions comprising the novel hydrogen anion are also provided herein. 142257.doc .26- 201104948 Also provided are exemplary compounds comprising - or a plurality of low energy hydrino hydride ions and / or a plurality of other elements. Such compounds are referred to as "low energy hydrogen hydride compounds." Ordinary hydrogen species are characterized by the following binding energies: (4) hydride anions, 〇.754 eV ("ordinary hydrogen anions"); (b) hydrogen atoms ("ordinary hydrogen atoms")' 136 ::; (4) diatomic hydrogen molecules ' 15.3 eV ("Ordinary hydrogen molecule"); (4) Hydrogen molecular ion, 16.3 eV ("Bian 8:2 (曰通虱刀离子)); and (4) and, 22.6 eV ("Ordinary trihydrogen early morning" fly knife Ion"). In this context, the form of hydrogen is generally synonymous with "ordinary." According to another embodiment of the present invention, there is provided at least one gas species such as ί γ ^ λ» a 13.6 bV ° 5 The compound: (4) has a hydrogen atom of about 13.6 eV as a binding energy in the range of about 〇·9 to 1. 丨1^~, where P is an integer from 2 to 137. Strict number, (8) has a binding energy m0e2h2 P is 2 to 1 h2Ms + \) ^Mece〇i+VHs+i)2 _ P 1 · 1 times binding energy 21 ao

P 諸如在約0.9至 8Mea^ Ρ «,2 αΗ + · 21 1 + yls(s + l) 範圍内之結合能的氫 ,、 虱^221子⑻)’其中P為2至24之整數 諸如在約0·9至1.1倍 之範圍内之钕人钞从_ KPJ 、α D t·、二低能量氫分子離子珥(1〜),其中 22.6 r 、 72.6 T kP. 142257.doc -27- 201104948 15.3 為2至137之整數;(e)具有約P such as hydrogen in the range of about 0.9 to 8 Mea ^ Ρ «, 2 α Η + · 21 1 + yls (s + l), 虱 ^ 221 (8)) 'where P is an integer from 2 to 24, such as in The banknotes in the range of about 0.99 to 1.1 times are from _ KPJ, α D t·, and two low-energy hydrogen molecular ions 1 (1~), of which 22.6 r , 72.6 T kP. 142257.doc -27- 201104948 15.3 is an integer from 2 to 137; (e) has an approximate

eV 、諸如約0.9至1 i 15.3eV, such as about 0.9 to 1 i 15.3

eV 倍 ίι] 之範圍内之結合能的二低沾日知 UJ 低犯置乳’其中P為2至137 16·3.π 16.3 之整數;⑴具有約〔iJ、諸如約。.9至U倍 圍内之結合能的二低能量氫分子 佳2至137之整數。 根據本發明之另一實施例’提供包含至少一 之結合能增加之氫物質的化合物:(&)具有約 離子,其中P為整數,較 Ετ = -Ρ1 名 πε〇αΗ 1 + ΡThe lower bound of the binding energy in the range of eV times ίι] UJ is low in milk' where P is an integer from 2 to 137 16·3.π 16.3; (1) has about [iJ, such as about. The two low-energy hydrogen molecules with a binding energy of .9 to U times are preferably integers from 2 to 137. According to another embodiment of the present invention, there is provided a compound comprising at least one hydrogen species with increased binding energy: (&) having an ion, wherein P is an integer, compared to Ετ = -Ρ1 name πε〇αΗ 1 + Ρ

(41η3-1-21η3) pe2 pe1 4% 2«h l p , 3 名πε0 3% 、Ρ , -/7216.13392 eF-/〇.l 18755 eV(41η3-1-21η3) pe2 pe1 4% 2«h l p , 3 πε0 3% , Ρ , -/7216.13392 eF-/〇.l 18755 eV

之範圍内之總能 (51) 1.1 倍 量的二低能量氫分子離子,其中p為整數,h為約化蒲郎克 142257.doc • 28 · 201104948 常數’ 為電子質量,c為真空中光速,且μ為減少之核質 量;及(b)具有約 8 庇οα0 V2 + 1 V2-1 1+P e2 Η ^ε0α\ me Ετ = -ρ2 諸 2 ηThe total energy in the range (51) 1.1 times the amount of the two low-energy hydrogen molecular ions, where p is an integer, h is about the lang 142257.doc • 28 · 201104948 constant ' is the electron mass, c is the speed of light in the vacuum And μ is the reduced nuclear mass; and (b) has about 8 εα0 V2 + 1 V2-1 1+P e2 Η ^ε0α\ me Ετ = -ρ2 2 η

In •>/2 …2 pe pe1 r V ( 1 、 \ 3 8% uo 1+ «0 ^ P j 名πε0 v V2 J P -ρ231.351 eV-ρ30326469 eV μ 如 約 0.9 至 1.1 (52) 倍 2V2 — V2 + Er=-P2In •>/2 ...2 pe pe1 r V ( 1 , \ 3 8% uo 1+ «0 ^ P j name πε0 v V2 JP -ρ231.351 eV-ρ30326469 eV μ as about 0.9 to 1.1 (52) times 2V2 — V2 + Er=-P2

= -p231.351 eF-p30.326469 eV pe 〔吐 > a〇 、 P . 2h\ ^ε0α\ 1 + p* 之範圍内 之總能量的二低能量氫分子’其中p為整數且〜為波耳半 徑。 根據化合物包含結合能增加之帶負電氣物質的本發明之 一實施例,該化合物進一步包含一或多種陽離子,諸如質 子、普通或普通H3+。 本文中提供用於製備包含至少—種低能量氫氫陰離子之 化合物的方法。該等化合物在下文中稱為「低能量氯氯化 142257.doc •29· 201104948 物化合物」。該方法包含使原子氫與具有約y·27 #之淨反 應焓的催化劑反應(其中m為大於1之整數,較佳小於400之= -p231.351 eF-p30.326469 eV pe [spit > a〇, P. 2h\ ^ε0α\ 1 + p* The total energy of the two low-energy hydrogen molecules 'where p is an integer and ~ is Bore radius. According to one embodiment of the invention wherein the compound comprises a negatively charged substance having increased binding energy, the compound further comprises one or more cations such as protons, normal or ordinary H3+. Methods for preparing compounds comprising at least one low energy hydrino hydride anion are provided herein. These compounds are hereinafter referred to as "low-energy chlorochlorinated 142257.doc •29·201104948 compound". The method comprises reacting atomic hydrogen with a catalyst having a net reaction enthalpy of about y·27 # (where m is an integer greater than 1, preferably less than 400

13.6 eV 整數)產生結合能增加之具有約之結合能的氫原子, 其中p為整數,較佳2至137之整數。另一催化產物為能 量。結合能增加之氫原子可與電子源反應,產生結合能增 加之氫陰離子。結合能增加之氫陰離子可與一或多種陽離 子反應,產生包含至少一種結合能增加之氫陰離子之化合 物。 目標新穎氫組合物可包含: (a) 結合能滿足以下條件之至少一種中性、陽性或陰性氫 物質(下文中「結合能增加之氫物質」): (i) 結合能大於相應普通氫物質之結合能,或 (ii) 結合能大於任何氫物質之結合能,對於任何氫物 質而言相應普通氫物質由於在周圍條件(標準溫度及壓 力,STP)下普通氫物質結合能小於熱能故不穩定或未觀測 到;或為陰性;及 (b) 至少一種其他元素。本發明之化合物在下文中稱為 「結合能增加之氫化合物」。 在上下文中「其他元素」意謂除結合能增加之氫物質以 外的元素。因此,其他元素可為普通氫物質或除氫以外的 任何元素。在一組化合物中,其他元素與結合能增加之氫 物質為中性的。在另一組化合物中,其他元素與結合能增 加之氫物質帶電,使得其他元素提供形成中性化合物之平 142257.doc •30· 201104948 衡電荷。前一組化合物特徵為分子及配位鍵;後一組特徵 為離子鍵。 亦提供包含以下之新穎化合物及分子離子: (a) 具有滿足以下條件之總能量之至少一種中性、陽性或 陰性氫物質(下文中「結合能增加之氫物質」): (i)總能量大於相應普通氫物質之總能量,或 (Π)總能量大於任何氫物質之總能量,對於任何氫物 質而言相應普通氫物質由於在周圍條件下普通氫物質之總 能量小於熱能故不穩定或未觀測到;或為陰性;及 (b) 至少一種其他元素。 氫物質之總能量為自氫物質移除所有電子之能量之總和。 根據本發明之氫物質具有大於相應普通氫物質之總能量的 總能量。即使總能量增加之氫物質之某些實施例可能具有 比相應普通氫物質之第一電子結合能小的第一電子結合 能,根據本發明之總能量增加之氫物質亦稱為「結合能增 加之氫物質」。舉例而言,p=24之方程式(49-50)之氫陰離 子具有比普通氫陰離子之第一結合能小的第一結合能,而 户=24之方程式(49-50)之氫陰離子之總能量遠大於相應普通 氫陰離子之總能量。 本文中亦提供包含以下之新穎化合物及分子離子: (a)具有滿足以下條件之結合能之複數種中性、陽性或陰 性氫物質(下文中「結合能增加之氫物質」) (i) 結合能大於相應普通氫物質之結合能,或 (ii) 結合能大於任何氫物質之結合能,對於任何氫物 142257.doc -31 - 201104948 質而言相應普通氫物質由於在周圍條件下普通氫物質結合 能小於熱能故不穩定或未觀測到;或為陰性;及 (b)視情況選用之另一元素。本發明之化合物在下文中 稱為「結合能增加之氫化合物。 結合能增加之氫物質可由使一或多種低能量氫原子與電 子、低能量氫原子、含有至少一種該等結合能增加之氯物 質的化合物及除結合能增加之氫物質以外的至少一種其他 原子、分子或離子令之一或多者反應來形成。 亦提供包含以下之新穎化合物及分子離子: (a) 具有滿足以下條件之總能量之複數種中性、陽性或陰 性氫物質(下文中「結合能增加之氫物質」) (1)總能量大於普通分子氫之總能量,或 (ϋ)總能量大於任何氫物質之總能量’對於任何氫物 :而言相應普通氫物質由於在周圍條件下普通氫物質總能 里小於熱能而不穩定或未觀測到;或為陰性;及 (b) 視情況選用之另—元素。本發明之化合物在下文中 稱為「結合能增加之氫化合物」。 在:實施例中,提供包含至少一種選自以下之結合能增 加之氫物質的化合物:⑷具有根據方程式(M M)對严2至 =而言比f通氫陰離子結合能(約ev)大且對於严_ :比普通氫陰離子結合能小之結合能的氫陰離子(「結合 月"*日加之氫陰離子」或「低能量氫氫陰離子」);⑻具有 大「於普通氫原子結合能(約13 6 ev)之結合能的氫原子 結合能增加之氫原子」或「低能量氫」);⑷具有大於 142257.doc -32· 201104948 約15.3 eV之第一結合能的氫分子(「結合能增加之氫分 子」或「二低能量氫」);及(d)具有大於約16.3 eV之結合 能的分子氫離子(「結合能增加之分子氫離子」或「二低 能量氫分子離子」); II.動力反應器及系統 根據本發明之另一實施例,提供用於產生能量及較低能 量氫物質之氫催化劑反應器。如圖1中所示,氫催化劑反 應器70包含一含有能量反應混合物74之容器72、一熱交換 器80及一功率變換器,諸如蒸汽產生器82及渦輪機90。在 一實施例中,催化包含使來自來源76之原子氫與催化劑78 反應,形成較低能量氫「低能量氫」且產生動力。當包含 氫及催化劑之反應混合物反應形成較低能量氫時,熱交換 器80吸收由催化反應釋放之熱。熱交換器與蒸汽產生器82 交換熱量,蒸汽產生器82吸收來自交換器80之熱量且產生 蒸汽。能量反應器70進一步包含渦輪機90,渦輪機90接收 來自蒸汽產生器82之蒸汽且向發電機100提供機械動力, 發電機100將蒸汽能轉化為電能,電能可由負載110接收, 產生功或功耗。 在一實施例中,能量反應混合物74包含能量釋放物質 76,諸如經由供應通道62供應之燃料。反應混合物可包含 氫同位素原子源或分子氫同位素源及共振移除約《τ27·2 eF (其中所為整數,較佳小於400之整數)以形成較低能量原子 氫之催化劑7 8之來源,其中藉由使氫與催化劑接觸,進行 形成較低能態氫之反應。催化劑可呈熔融、液體、氣體或 142257.doc -33- 201104948 固體狀態。催化以諸如熱的形式釋放能量,且形成以下至 少一者:較低能量氫同位素原子、較低能量氫分子、氫陰 離子及較低能量氫化合物。因此,該動力單元亦包含較低 能量氫化學反應器。 氫源可為氫氣、水解離(包括熱解離)、水電解、來自氫 化物之氫或來自金屬-氫溶液之氫。在另一實施例中,混 合物74之分子氫解離催化劑使能量釋放物質76之分子氫解 離成原子氫。該等解離催化劑或解離器亦可吸收氫、氘或 氤原子及/或分子,且包括例如以下金屬之元素、化合 物、合金或混合物:貴金屬,諸如纪及舶;耐火金屬’諸 如鉬及鎢;過渡金屬’諸如鎳及鈦:及内過渡金屬,諸如 鈮及鍅。解離器較佳具有高表面積,諸如於Al2〇3、Si〇2 或其組合上諸如Pt、Pd、Ru、Ir、之貴金屬或Ni。 在一貫施例中,藉由r個電子自原子或離子電離至連續 能階,使得Η固電子電離能之總和為約w.27.2 (其中丨及所 各為整數)來提供催化。催化亦可由參與離子之間的^固電 子轉移來提供”個電子自一離子轉移至另一離子提供淨 反應H中供電子之離子之,個電子電離能之總和減去 受電子之離子之丨個電子電離能等於約m.27.2 其中ί及 所各為整數°在另—實施例中’催化劑包含原子Μ與氫結 合之廳,諸如⑽,且由Μ_職能與?個電子電離能之總 和來提供w.27.2 eF之焓。 在一實施例中, 應之催化物質78, 催化劑源包含經由催化劑供應通道61供 該催化物質78通常提供約f.27·2#加上 I42257.doc -34- 201104948 或減去1 eK之淨焓。催化劑包含接受來自原子氫及低能量 氫之能量的原子、離子、分子及低能量氫。在實施例中, 催化劑可包含至少一種選自分子A1H、BiH、C1H、CoH、13.6 eV integer) produces a hydrogen atom having an increased binding energy with an approximate binding energy, wherein p is an integer, preferably an integer from 2 to 137. Another catalytic product is energy. The hydrogen atom with increased binding energy can react with the electron source to produce a hydrogen anion with increased binding energy. The hydrogen anion having increased binding energy can react with one or more cations to produce a compound comprising at least one hydrogen anion having increased binding energy. The novel novel hydrogen composition may comprise: (a) at least one neutral, positive or negative hydrogen species (hereinafter referred to as "hydrogen species with increased binding energy") capable of satisfying the following conditions: (i) the binding energy is greater than the corresponding ordinary hydrogen species The binding energy, or (ii) the binding energy is greater than the binding energy of any hydrogen species. For any hydrogen species, the corresponding ordinary hydrogen species is less than the thermal energy due to the combination of common hydrogen species under ambient conditions (standard temperature and pressure, STP). Stable or unobserved; or negative; and (b) at least one other element. The compound of the present invention is hereinafter referred to as "a hydrogen compound having an increased binding energy". In the context of "other elements" means elements other than hydrogen species that can be combined with increased energy. Therefore, other elements may be ordinary hydrogen species or any element other than hydrogen. In a group of compounds, other elements and hydrogen species with increased binding energy are neutral. In another group of compounds, other elements are charged with the increased binding energy of the hydrogen species, allowing other elements to provide a neutral compound to form a 142257.doc • 30· 201104948 equilibrium charge. The former group of compounds are characterized by molecules and coordinate bonds; the latter group of features are ionic bonds. Novel compounds and molecular ions are also provided which comprise: (a) at least one neutral, positive or negative hydrogen species having a total energy (hereinafter referred to as "hydrogen species with increased binding energy"): (i) total energy Greater than the total energy of the corresponding ordinary hydrogen species, or (Π) total energy is greater than the total energy of any hydrogen species. For any hydrogen species, the corresponding ordinary hydrogen species is unstable due to the total energy of ordinary hydrogen species under ambient conditions being less than thermal energy. Not observed; or negative; and (b) at least one other element. The total energy of the hydrogen species is the sum of the energy of all electrons removed from the hydrogen species. The hydrogen species according to the invention have a total energy greater than the total energy of the corresponding common hydrogen species. Even though some embodiments of the total energy-increasing hydrogen species may have a first electron binding energy that is less than the first electron binding energy of the corresponding ordinary hydrogen species, the total energy increased hydrogen species according to the present invention is also referred to as "increase in binding energy. Hydrogen substance". For example, the hydride anion of equation (49-50) of p=24 has a first binding energy smaller than the first binding energy of the ordinary hydride anion, and the total hydride anion of equation (49-50) of the household =24 The energy is much greater than the total energy of the corresponding common hydrogen anion. Also provided herein are novel compounds and molecular ions comprising: (a) a plurality of neutral, positive or negative hydrogen species having a binding energy that satisfies the following conditions (hereinafter "hydrogen species with increased binding energy") (i) binding Can be greater than the binding energy of the corresponding ordinary hydrogen species, or (ii) the binding energy is greater than the binding energy of any hydrogen species, for any hydrogen species 142257.doc -31 - 201104948 the corresponding ordinary hydrogen species due to the ordinary hydrogen species under ambient conditions The binding energy is less than thermal energy and is unstable or unobservable; or negative; and (b) another element selected as appropriate. The compound of the present invention is hereinafter referred to as "a hydrogen compound having an increased binding energy. The hydrogen energy added by the binding energy can be a chlorine species which increases one or more low-energy hydrogen atoms with electrons, low-energy hydrogen atoms, and at least one of these binding energies. The compound is formed by reacting one or more of at least one other atom, molecule or ion other than the hydrogen species with increased binding energy. Novel compounds and molecular ions comprising the following are also provided: (a) having a total of the following conditions A plurality of neutral, positive or negative hydrogen species of energy (hereinafter referred to as "hydrogen species with increased binding energy") (1) The total energy is greater than the total energy of ordinary molecular hydrogen, or (ϋ) the total energy is greater than the total energy of any hydrogen species. 'For any hydrogen species: the corresponding ordinary hydrogen species is unstable or unobserved because it is less than the thermal energy in the total energy of the ambient hydrogen under ambient conditions; or is negative; and (b) the other element selected as appropriate. The compound of the present invention is hereinafter referred to as "a hydrogen compound having an increased binding energy". In an embodiment, a compound comprising at least one hydrogen species having an increased binding energy selected from the group consisting of: (4) having a binding energy (about ev) greater than that of the f-hydrogen anion according to the equation (MM) versus Yan 2 to = For Yan _ : a hydrogen anion that has a lower binding energy than a common hydrogen anion ("bonding month", "day plus hydrogen anion" or "low-energy hydrino hydride"); (8) has a large "combination of ordinary hydrogen atoms ( A hydrogen atom of a binding energy of about 13 6 ev) can be increased by a hydrogen atom or a "low energy hydrogen"; (4) a hydrogen molecule having a first binding energy of more than 142257.doc -32 · 201104948 and about 15.3 eV ("combination a hydrogen molecule that can be added" or "two low-energy hydrogen"; and (d) a molecular hydrogen ion having a binding energy greater than about 16.3 eV ("molecular hydrogen ion with increased binding energy" or "two low-energy hydrogen molecule ion" II. Power Reactor and System According to another embodiment of the present invention, a hydrogen catalyst reactor for generating energy and lower energy hydrogen species is provided. As shown in FIG. 1, hydrogen catalyst reactor 70 includes a vessel 72 containing an energy reaction mixture 74, a heat exchanger 80, and a power converter, such as steam generator 82 and turbine 90. In one embodiment, catalyzing comprises reacting atomic hydrogen from source 76 with catalyst 78 to form a lower energy hydrogen "low energy hydrogen" and generating power. When the reaction mixture comprising hydrogen and the catalyst reacts to form a lower energy hydrogen, the heat exchanger 80 absorbs the heat released by the catalytic reaction. The heat exchanger exchanges heat with a steam generator 82 that absorbs heat from the exchanger 80 and produces steam. The energy reactor 70 further includes a turbine 90 that receives steam from the steam generator 82 and provides mechanical power to the generator 100, which converts the steam energy into electrical energy that can be received by the load 110 to produce work or power. In an embodiment, the energy reaction mixture 74 comprises an energy release material 76, such as fuel supplied via a supply passage 62. The reaction mixture may comprise a hydrogen isotope atom source or a molecular hydrogen isotope source and a source of a catalyst 7 8 that removes about τ27·2 eF (wherein an integer, preferably less than 400 integer) to form a lower energy atomic hydrogen, wherein The reaction to form lower energy hydrogen is carried out by contacting hydrogen with the catalyst. The catalyst can be in the form of a melt, a liquid, a gas or a solid state of 142257.doc -33 - 201104948. The catalysis releases energy in a form such as heat and forms at least one of the following: a lower energy hydrogen isotope atom, a lower energy hydrogen molecule, a hydrogen anion, and a lower energy hydrogen compound. Therefore, the power unit also contains a lower energy hydrogen chemical reactor. The hydrogen source can be hydrogen, hydrolyzed (including thermal dissociation), water electrolyzed, hydrogen from a hydride or hydrogen from a metal-hydrogen solution. In another embodiment, the molecular hydrogen dissociation catalyst of mixture 74 dissociates the molecular hydrogen of energy release material 76 into atomic hydrogen. The dissociation catalysts or dissociaters may also absorb hydrogen, helium or neon atoms and/or molecules, and include, for example, elements, compounds, alloys or mixtures of the following metals: noble metals such as kiln; refractory metals such as molybdenum and tungsten; Transition metals such as nickel and titanium: and internal transition metals such as ruthenium and osmium. The dissociator preferably has a high surface area such as Al2〇3, Si〇2 or a combination thereof such as Pt, Pd, Ru, Ir, a noble metal or Ni. In a consistent embodiment, the r electrons are ionized from atoms or ions to a continuous energy level such that the sum of the enthalpy electron ionization energies is about w.27.2 (wherein and each is an integer) to provide catalysis. Catalysis can also provide "electron transfer from one ion to another ion to provide ions for electrons in the net reaction H, the sum of electron ionization energy minus the electron-receiving ion." The electron ionization energy is equal to about m.27.2, where ί and each are integers. In another embodiment, the catalyst comprises a combination of atomic ruthenium and hydrogen, such as (10), and the sum of the Μ-function and the electron ionization energy. To provide w.27.2 eF. In one embodiment, the catalytic material 78, the catalyst source is included via the catalyst supply channel 61 for the catalytic material 78 to typically provide about f.27·2# plus I42257.doc-34 - 201104948 or subtracting the net enthalpy of 1 eK. The catalyst comprises atoms, ions, molecules and low energy hydrogen which accept energy from atomic hydrogen and low energy hydrogen. In an embodiment, the catalyst may comprise at least one selected from the group consisting of molecules A1H, BiH , C1H, CoH,

GeH、InH、NaH、RUH、SbH、SeH、SiH、SnH、C2、 #2、〇2、C6>2、AT〇2 及 JV03及原子或離子Li、Be、K、Ca、GeH, InH, NaH, RUH, SbH, SeH, SiH, SnH, C2, #2, 〇2, C6>2, AT〇2 and JV03 and atoms or ions Li, Be, K, Ca,

Ti V、Cr、Mn、pe、c〇、Ni、Cu、Zn、As、Se、Kr、 Rb、Sr、Nb、Mo、pd、Sn、Te、Cs、Ce、pr、Sm、Gd、Ti V, Cr, Mn, pe, c〇, Ni, Cu, Zn, As, Se, Kr, Rb, Sr, Nb, Mo, pd, Sn, Te, Cs, Ce, pr, Sm, Gd,

Dy ' Pb ^ Pt > Kr > 2K+ > He+ > Ti2+ ^ Na+ > Rb+ ^ Sr+ ^ 、从 〇2+、M〇4+、/„3+、、々2+及开+及#〆 反H+的物質。 在動力系統之一實施例中,熱由具有熱交換介質之熱交 換盗移除。熱交換器可為水冷壁且介質可為水。熱可直接 轉移用於空間加熱及過程加熱。或者,諸如水之熱交換器 f進行相變,諸如轉化成蒸汽。此轉化可發生在蒸汽產 器中蒸〉飞可用以在諸如蒸汽渦輪機及產生器之埶機中 發電。 ” 旦據本發明用於使燃才斗再循環或再生之產生氫催化劑能 車乂低此量氫物質之反應器5的一實施例展示於圖2中, 8_ 包 鍋爐10,其含有可為氫源、催化劑源及視情況 12 ; 1=化溶劑之混合物的燃料反應混合物11 ;氫源 々飞s及瘵汽產生器13 ; -功率變換器,諸如渦輪機 14 | 'b: _ γ喊器16,一補水源17; —燃料再循環器丨8;及 及义^^里11氣體分離器19。在步驟1中,包含催化劑源 虱源之機料(諸如呈氣體、液體、固體或包含多相之非 142257.doc -35- 201104948 均勻混合物的燃料)反應形成低能量氫及較低能量氫產 物。在步驟2中,用過燃料經再加工以再次供應鍋㈣, 從而維持熱力發電。鍋爐10中產生之熱在管及蒸汽產生器 13中形成蒸汽,傳遞至渦輪機14,又藉由供給產生器動力 來發電。在步驟3中,由水冷凝器16使水冷凝。任何水流 失了由水源17補充以元成循環,從而維持熱至電之能量轉 換。在步驟4中,可移除較低能量氫產物,諸如低能量氫 氫化物化合物及二低能量氫氣體,且未反應氫可返回至燃 料再循環器1 8或氫源1 2中,以添加回用過燃料中來補充再 循環燃料。氣體產物與未反應氫可由氫-二低能量氫氣體 分離器19分離。可使用燃料再循環器18分離及移除任何產 物低能量氫氫化物化合物產物。可在鍋爐中或鍋爐外部進 行加工且將燃料返回。因此,系統可進一步包含至少一種 氣體及塊狀物輸送機以移動反應物及產物,實現用過燃料 移除、再生及再供應。在低能量氫形成中消耗之氫添加物 在燃料再加工期間自來源12添加且可包含再循環之未消耗 氫。再循環燃料維持熱電產生以驅動動力裝置發電。 反應器可以氫添加及分離及添加或替代之連續模式運 行’以阻遏最小程度之反應物降解。或者,反應燃料由產 物連續再生。在後一流程之一實施例中,反應混合物包含 可產生進一步反應形成低能量氫之原子或分子催化劑與原 子氫之反應物的物質’且由催化劑及原子氫之產生所形成 的產物物質可至少由使該等產物與氫反應之步驟再生。在 一實施例中’反應器包含一移動床反應器,該移動床反應 142257.doc -36- 201104948 器可進-步包含流化反應器部分,其中連續供應反應物且 移除副產物且使反應物再生且返回至反應器中。在一實施 例中,當使反應物再生時,收集較低能量氯產物,諸如低 能量氫氫化物化合物或二低能量氣分子。此外,在反應物 再生期間,低能量氫氫陰離子可形成其他化合物或轉化為 ' 二低能量氫分子。 • 反應11可進—步包含諸如藉由若存在溶劑則蒸發溶劑來 分離產物混合物之組份的分離器。分離器可包含例如篩子 以藉由諸如尺寸之物理性質差異來機械分離。分離器亦可 為利用混合物組份之密度差的分離器,諸如漩渦分離器。 舉例而言,可基於在諸如加壓惰性氣體之合適介質中的密 度差以及藉由離心力來分離選自碳、諸如Eu之金屬及諸如 KBr之無機產物之群中的至少兩者。組份分離亦可基於介 電常數及荷電率(chargeability)之差異。舉例而言,碳與金 屬可基於施加靜電電荷至前者且藉由電場自混合物移除來 分離。在混合物之一或多種組份具有磁性的狀況下可使 用磁體實現分離。可將混合物在單獨或與一或多種筛子組 合之一系列強磁體上攪動,以基於磁性粒子對磁體之更強 附著或吸引及兩類粒子之尺寸差異中的至少一者引起分 離。在使用筛子及外加磁場之-實施例中,K添加除重 力以外之額外力以經由筛子吸出較小磁性粒子,而混合物 之其他粒子由於其尺寸較大而保留在筛子上。 反應器可進一步包含基於不同相變或反應來分離一或多 種組份之分離器。在一實施例中,相變包含使用加熱器熔 142257.doc -37· 201104948 融’且藉由此項技術中已知之方法,諸如重力過據、使用 加壓氣體輔助之過濾、離心及藉由應用真空使液體與固體 分離。反應可包含諸如氫化物分解之分解或形成氫化物之 反應,且可分別藉由使相應金屬溶融、接著將其分離及藉 由機械分離氫化物粉末實現分離。後者(藉由機械分離)可 藉由篩選來實現。在一實施例中,相變或反應可產生所需 反應物或中間物。在某些實施例中,包括任何所需分離步 驟之再生可發生在反應器内部或外部。 藉由應用常規實驗,可應用熟習此項技術者已知之其伯 方法來進行本發明之分離。一般而言,機械分離可分成匹 組:沈降、離心分離、過遽及篩選。在一實施例中,由辯 選與使用分類器中之至少—者實現粒子分離。可在起始物 質中選擇粒子尺寸及形狀以實現所需產物分離。 動力系統可進一步包含催化劑冷凝器以由將表面溫度控 反應電池溫度低的值下之溫度控制器來維持催化劑 蒸氣壓。表面溫度維持在提供所需催化劑蒸氣壓之所需值 下。在一實施例中,催 _ 化知丨冷凝态為早兀中之管柵極(tubi ㈣。在使用熱交換器之—實施例中,可控制料介質之 流動速率在使冷凝器維持 、 下的速率下。在—實施2 之所需溫度 中工作介質為水,且冷凝器中 流動速率比水冷壁中产叙 > " 使得冷凝器處於較低之 所而/皿度下。獨立的工 質仙重新組合且轉移用於空 間加熱及相加熱或料轉化成蒸汽。 本發明之單元自人士 4 1 3本文中所揭示之催化劑、反應混合 142257.doc -38· 201104948 物方法及系統,其中特定單元用作反應器及至少一個活 化、發、擴展及/或維持反應及使反應物再生之組件。 根據本發明,#元包含至少—種催化劑或催化劑源、至少 :種原子氫源及-容器。熟習此項技術者已知該等單元及 系統之運作。本發明之電解池能量反應器(諸如共熔鹽電 :池、電漿電解反應器、障壁電極反應器、叩電漿:應 斋、加壓氣體能量反應器、氣體放電能量反應器(較佳脈 衝放電且更佳脈衝壓縮電聚放電)、微波電池能量反應器 及輝光放電電池與微波及/或^^電漿反應器之組合)包含: 氫源;催化劑或反應物之固體、炼融、液體、氣體及非均 勻來源之一,其在任何此等狀態下均由反應物之間的反應 引起低能量氫反應;反應物或至少含有氫及催化劑之容 器,其中藉由使氫與催化劑接觸或藉由使_催化劑反 應,發生形成較低能量氫之反應;及視情況存在之用於移 除較低能量氫產物之組件,形成較低能態 虱之反應由氧化反應推動。氧化反應可藉由接受來自催化 劑之電子與使由接受來自原子氫之能量而形成之高電荷陽 喊子中和中的至少一者提高形成低能量氫之反應速率。因 此,此等單元可以提供此類氧化反應之方式運作。在一實 施例中,電解或電漿池可在陽極提供氧化反應,其中由諸 如鼓泡之方法提供的氫與催化劑反應,經由參與氧化反應 形成低能量氫。 在液體燃料之一實施例中,電池在溶劑分解速率相對於 與電池動力有關之溶劑再生動力可忽略的溫度下運作。在 142257.doc -39· 201104948 :度低於由更多習知方法(諸如使用蒸汽循環之方法)可獲 得令人滿意之能量轉換效率所在之溫度的狀況下,可使用 較低>弗點卫作介質。在另—實施例中’卫作介質溫度可使 用熱泵來增加。因&,可使用在高於周圍之溫度下運作的 電池供應空間加熱及過程加熱,#中使用諸如熱泵之組件 使工作介質溫度增加。在溫度足夠高的情況下,可發生液 體至氣體之相變,且氣體可用於壓力容積(pv)功。pv功可 包含供給產生器動力來產生電。接著可冷凝介質,且經冷 凝之工作介質可返回至反應器單元中,以在動力循環中再 加熱及再循環。 在反應器之一實施例中,使包含液相及固相之非均勻催 化劑混合物流經反應器。流動可藉由泵送來實現。混合物 可為漿狀物。可在熱區中加熱混合物以引起氫催化成低能 里氫,從而釋放熱以維持熱區。可使產物流出熱區,且可 由該等產物再生反應混合物。在另一實施例中,非均勻混 合物之至少一種固體可藉由重力給料流入反應器中。溶劑 可單獨或與一或多種固體組合流入反應器中。反應混合物 可包含解離器、高表面積(HSA)物質.、R_Ni、见、NaH、 Na、NaOH及溶劑之群中之至少一者。 在實細*例中’將一或多種反應物、較佳鹵素源、鹵素 氣體、氧源或溶劑注入其他反應物之混合物中。控制注入 以使自形成低能量氫之反應過剩之能量及動力最佳化。注 入時電池溫度及注射速率可經控制以實現最佳化。可使用 熟習工藝過程之技術者已知之方法控制其他過程參數及混 142257.doc -40· 201104948 合以使進一步最佳化。 於肊里轉換而言’各類型電池可與熱能或電漿至機械 動力或電力之任何已知之變換器連接,該等變換器包括例 ,,.、、機热/飞或氣體渦輪系統、斯特林引擎(SterHng eng】ne)或熱離子或熱電變換器。其他電漿變換器包含磁鏡 ^體動力學功率變換器、電漿動力學功率變換器 '磁旋 f、光子士微波功率變換器、電荷漂移動力機或光電變換 -在一貫摊^列中,冑池包含至少一個内燃機汽缸。 III·氫氣電池及固體、液體及非均勻燃料反應器 根據本發明之-實施例,用於產生低能量氫及動力之反 應器可採取反應器電池的形式。本發明之反應器展示於圖 3中,。由催化劑之催化反應提供反應物低能量氫。催化可 以氣相或固體或液體狀態進行。 处圖3之反應器包含—反應容器抓,該反應容器抓具有 能夠含有真空或超過大氣屢之I力的腔室胸。與腔室細 連通之氫源221經由供氫通道242傳遞氳至腔室。控制器 222經定位以控制壓力及氫經由供氫通道μ〕進入容器之流 量1力感測器223監測容器中之壓力。使用真空果25 = 由真空管線257抽空腔室。 在-貫施例中,催化以氣相進行。藉由維持電池溫度在 高溫下,高溫又決定催化劑之蒸氣壓,可使催化劑為氣 體。原子及/或分子氫反應物亦維持在可處於任何壓力範 圍内之所需壓力下。在—實施例中,壓力小於大氣麗,較 佳在約10毫托(miUitorr)至約100牦之範圍内。在另一實施 ΐ & 142257.doc •41 . 201104948 例中,藉由維持諸如金屬源之催化劑源與諸如金屬氫化物 之相應氫化物的混合物在維持於所需運作溫度下之電池中 來確定壓力。 用於產生低能量氫原子之合適催化劑源25〇可置放於催 化劑儲集态295中’且可藉由加熱形成氣態催化劑。反應 容器207具有將氣態催化劑自催化劑儲集器295傳遞至反應 至200之催化劑供應通道241。或者,催化劑可置放於反應 容器内部之抗化學腐蝕敞口容器,諸如舟皿中。 氫源可為氫氣及分子氫。氫可由分子氫解離催化劑解離 成原子氫。該等解離催化劑或解離器包括例如阮尼鎳(R_ Ni)、責金屬及於載體上之貴金屬。貴金屬可為pt、pd、 Ru、Ir及Rh ’且載體可為Ti、Nb、Al2〇3、Si02及其組合 中之至少一者。其他解離器為可包含氫溢出催化劑之於碳 上之Pt或Pd、鎳纖維墊、Pd薄片、Ti海綿狀物、電鍍於71 或Νι海綿狀物或墊上之pt或Pd、TiH、鉑黑及纪黑、耐火 金屬(諸如la及鎢)、過渡金屬(諸如鎳及鈦)、内過渡金屬 (諸如鈮及锆)及熟習此項技術者已知之其他該等物質。在 一實施例中,氫在Pt或Pd上解離^ Pt或Pd可塗布在諸如鈦 或Al2〇3之載體材料上》在另一實施例中,解離器為耐火 金屬,諸如鎢或鉬’且解離物質可藉由溫度控制組件230 維持在高溫下’該溫度控制組件230可採取如圖3中以橫截 面展示之加熱旋管的形式。加熱旋管由電源225供以動 力。解離物質較佳維持在電池運作溫度下。解離器可進一 步在高於電池溫度之溫度下運作以更有效地解離,且高溫 142257.doc -42- 201104948 可防止催化劑冷凝在解離器上。氫解離器亦可由諸如280 之由電源285供以動力之熱燈絲提供。 在一實施例中,發生氫解離,使得解離氫原子與氣態催 化劑接觸,產生低能量氫原子。藉由使用由電源272供以 動力之催化劑儲集器加熱器298控制催化劑儲集器295之溫 度,將催化劑蒸氣壓維持在所需壓力下。當催化劑含於反 應器·内部之舟皿中時,藉由調整舟m電源來控制催化劑舟 孤之溫度,將催化劑蒸氣壓維持在所需值。由電源225供 以動力之加熱旋管230可將電池溫度控制在所需運作溫度 下。該電池(稱為滲透電池)可進一步包含一内部反應室200 及一外部氫儲集器290,使得可藉由氫擴散穿過分隔兩腔 室之壁291來對電池供氫。可由加熱器控制壁的溫度以控 制擴散速率。擴散速率可藉由控制氫儲集器中之氫壓力而 進一步控制。 為維持催化劑壓力在所需程度下,可密封將滲透作為氫 源之電池。或者,電池在各入口或出口處進一步包含高溫 閥,使得接觸反應氣體混合物之閥維持在所需溫度下。電 池可進一步包含一吸氣器或收集器255以選擇性地收集較 低能量氫物質及/或結合能增加之氫化合物,且可進一步 包含一用於釋放二低能量氫氣體產物之選擇閥206。 在一實施例中,藉由用加熱器230加熱,使諸如固體燃 料或非均勻催化劑燃料混合物之反應物260在容器200中反 應。另外添加之反應物(諸如至少一種放熱反應物,較佳 具有快速動力學)可經由控制閥232及連接233流入電池200 142257.doc -43- 201104948 中。所添加之反應物可為函素源、ii素、氧源或溶劑。反 應物260可包含與添加之反應物反應的物質。舉例而言, 可添加鹵素以與反應物260形成鹵化物,或可添加氧源至 反應物260中以形成氧化物。 催化劑可為以下之群中之至少一者:原子鋰、卸或鉋、 NaH分子、2Η及低能量氫原子,其中催化包含歧化反應。 It由將電池溫度維持在約5 0 0 -1 〇 〇 〇 之範圍内,可使經催 化劑為氣體。電池較佳維持在約500-7501之範圍内。電 池壓力可維持在小於大氣壓’較佳在約1 〇毫托至約1 〇 〇托 之範圍内。最佳地’催化劑壓力與說壓力中之至少一者藉 由維持催化劑金屬與相應氫化物(諸如裡與氫化鐘、卸與 氫化鉀、鈉與氫化鈉及鉋與氫化鉋)之混合物在维持於所 需運作溫度下之電池中來確定。氣相中之催化劑可包含來 自金屬或金屬經源之鐘原子。經催化劑較佳維持在由約 500-1000C之運作溫度範圍内之金屬鋰與氫化鋰之混合物 決定的壓力下’且最佳維持在使電池在約50〇_75〇°c之運 作溫度範圍内的壓力下。在其他實施例中,κ、^及^^替 代Li,其中催化劑為原子κ、原子Cs及分子NaH。 在包含催化劑儲集器或舟孤之氣體電池反應器之一實施 例中,氣體Na、NaH催化劑或諸如Li、〖及Cs蒸氣之氣態 催化劑維持在電池中相對於作為電池蒸氣源之儲集器或舟 孤中之蒸氣過熱的條件下。在一實施例中,過熱蒸氣減少 催化劑冷凝在氫解離器或下文揭示之金屬及金屬 氫化物分 子中之至少一者的解離器上。在包含u作為儲集器或舟里 142257.doc • 44 - 201104948 之催化劑的一實施例中,健 坷木益或舟皿維持在使Li汽化的 恤度下。Η。可維持在低於在儲隼 隹储集盗溫度下形成顯著莫耳分 數之LiH之壓力的壓力下。眚 u, s 實見此條件之壓力及溫度可由 :=術中已知之既定等溫線下H2壓力對uh莫耳分數之 虞曲線來確定。在-實施例中,含有解離器之電池反應 室在較高溫度下運作,使得Li不冷凝在壁或解離器上。% 可自儲集H流至電池中以增加催化劑輸送速率。諸如自催 化劑儲集器流至電池且接著流出電池為—種移除低能量氣 產物以防止反應之低能量氫產物抑制的方法。在其他實施 例中’K、Cs及Na替代Li,其中催化劑為原子K、原子Cs 及分子NaH。 自氫源向反應供氫。舉例而言,藉由自氫儲集器滲透來 提供氫。氫儲集器之壓力可在10托至1〇,〇〇〇托、較佳ι〇〇 托至1000托之範圍内且最佳為約大氣壓。電池可在約 100C至300〇°c之溫度、較佳約1〇(rCi15〇(rc之溫度及最 佳約500°c至800°C之溫度下運作。 氫源可來自所添加之氫化物分解。藉由滲透供應Η〗之電 池設計為包含置放於密封容器内之内部金屬氫化物的電 池,其中原子Η在高溫下滲出。容器可包含pd、Ni、^或 Nb。在一實施例中,將氫化物置放於密封管,諸如含有氫 化物之Nb官中且在兩端以諸如swagei〇ck2密封件密封。 在密封狀況下,氫化物可為鹼金屬或鹼土金屬氫化物。或 者’在此狀況以及内部氫化物試劑之狀況下,氫化物可為 以下之群中之至少一者:生理食鹽水氫化物、氫化鈦、氫 142257.doc -45- 201104948 化飢、氫化銳及氫化組、氫化錯及氫化铪、稀土金屬氫化 物、氫化纪及氫化銃、過渡元素氫化物、介金屬氫化物 (intermetalic hydride)及其合金。 在一實施例中,氫化物及基於各氫化物分解溫度之運作 溫度±200°C係選自以下所列項中之至少一者: 稀土金屬氫化物以及約800°C之運作溫度;氫化鑭以及 約700°C之運作溫度;氫化釓以及約750°C之運作溫度;氫 化鈥以及約750°C之運作溫度;氫化釔以及約800°C之運作 溫度;氫化銃以及約800°C之運作溫度;氫化镱以及約 850-900°C之運作溫度;氫化鈦以及約450°C之運作溫度; 氫化鈽以及約950°C之運作溫度;氫化镨以及約700°C之運 作溫度;氫化锆-氫化鈦(50%/50°/〇)以及約600°C之運作溫 度;鹼金屬/鹼金屬氫化物混合物,諸如Rb/RbH或K/KH, 以及約450°C之運作溫度;及鹼土金屬/鹼土金屬氫化物混 合物,諸如Ba/BaH2,以及約900-1000°C之運作溫度。 氣態金屬可包含雙原子共價分子。本發明之目標係提供 原子催化劑,諸如Li以及K及Cs。因此,反應器可進一步 包含金屬分子(「MM」)及金屬氫化物分子(「MH」)中之 至少一者之解離器。催化劑源、H2源及MM、MH及HH之 解離器(其中Μ為原子催化劑)較佳相匹配以在例如溫度及 反應物濃度之所需電池條件下運作。在使用Η2之氫化物源 的狀況下,在一實施例中,其分解温度在產生所需催化劑 蒸氣壓之溫度範圍内。在氫源自氫儲集器滲透至反應室的 狀況下,用於連續運作之較佳催化劑源為Sr及Li金屬,因 142257.doc •46- 201104948 為在發生滲透的溫度下其各自蒸氣壓可在0.01至100托之 所需範圍内。在滲透電池之其他實施例中,電池在允許滲 透之高溫下運作,隨後將電池溫度降至維持揮發性催化劑 之蒸氣壓在所需壓力下的溫度。 在氣體電池之一實施例中,解離器包含自來源產生催化 劑及H的組份。表面催化劑,諸如於Ti上之Pt或單獨或於 諸如Ti之基材上之Pd、銥或铑亦可用作催化劑與氫原子組 合之分子的解離器。該解離器較佳具有高表面積,諸如 Pt/Al203 或 Pd/Al2〇3 〇 Η2源亦可為氫氣。在此實施例中,可監測及控制壓力。 此在催化劑及催化劑源分別諸如Κ或Cs金屬及LiNH2的情 況下係可能的,因為該等物質在低溫下具有揮發性,允許 使用尚溫閥。UNH2亦降低Li電池之需要運作溫度且腐蝕 性較小,從而允許在電漿及長絲電池(其中長絲用作氫解 離器)之狀況下使用饋通長期運作。 具有NaH作為催化劑之氣體電池氯反應器之其他實施例 在反應器電池中包含長絲以及解離器及在儲集器中包含 Ν^Η2可流經儲集器至主要腔室[可藉由控制氣體流動 速率、Η2壓力及Na蒸氣屋來控制動力。後者⑽蒸氣壓河 藉由控制儲集器溫度來控制Q在另一實施例中,低能量氫 反應由使用外加熱器加熱引起且由解離器提供原子Η。 可藉由此項技術中已知$古、土 l u T匕知之方法(啫如機械攪拌或混合)攪 動反應混合物。搜動牵銻·5Γ &人 々夕, 勒糸統可包含一或多個壓電轉導器。各 壓電轉導器可提供超音波播勤。订# c十 曰波攪動可使反應電池振動且其進 142257.doc -47- 201104948 一步含有義元件,諸如殘鋼球麵球,使料球振動 以授動反應混合物。在另-實施例中,機械㈣包含球 磨。亦可使用此等方法、較佳藉由球磨來混合反應物。 在—實施例中,藉由機械攪動(諸如用攪動元件振動、 超音波㈣及球磨中之至少-者)形成催㈣卜諸如超立 波之音波的機械㈣或壓、缩可引起反應,反應或物心 化,引起催化劑、較佳NaH分子形成。反應混合物可包含 或可不包含溶劑。反應物可為固體,諸如固體NaH,對其 進行機械攪動而形成NaH分子。或者,反應混合物可包^ 液體。混合物可具有至少一種Na物質。Na物質可為液體 混合物之組份,或其可為溶解狀態。在一實施例中,藉由 南速授拌金屬於〉谷劑(諸如峻、烴、敗化烴、芳族或雜環 芳族溶劑)中之懸浮液使金屬鈉分散。溶劑溫度可保持恰 好在金屬熔點以上。 IV.燃料類型 本發明之一實施例係針對一種燃料,其包含至少一氫源 與維持氫催化形成低能量氫之催化劑源的呈可能各相混合 物之氣相、液相及固相中之至少一相的反應混合物。本文 中所給出之固體及液體燃料之反應物及反應亦為包含各相 混合物之非均勻燃料的反應物及反應。 本發明之一目標係提供諸如Li以及K及Cs之原子催化劑 及分子催化劑NaH。金屬形成雙原子共價分子。因此,在 固體燃料、液體燃料及非均勻燃料實施例中,反應物包含 可使用金屬催化劑Μ可逆地形成且分解或反應以提供諸如 J42257.doc •48* 201104948Dy ' Pb ^ Pt > Kr > 2K+ > He+ > Ti2+ ^ Na+ > Rb+ ^ Sr+ ^ , From 〇2+, M〇4+, /„3+, 々2+ and Kai+# In one embodiment of the power system, heat is removed by heat exchange with a heat exchange medium. The heat exchanger can be a water wall and the medium can be water. The heat can be directly transferred for space heating and Process heating. Alternatively, a heat exchanger f such as water undergoes a phase change, such as conversion to steam. This conversion can occur in steam generators where it can be used to generate electricity in a turbine such as a steam turbine and generator. An embodiment of a reactor 5 for recirculating or regenerating a fuel cell to circulate a lower amount of hydrogen species in accordance with the present invention is shown in FIG. 2, an 8-pack boiler 10 containing a hydrogen source , catalyst source and, as appropriate, 12; 1 = fuel reaction mixture 11 of a mixture of chemical solvents; hydrogen source 々 fly s and 瘵 steam generator 13; - power converter, such as turbine 14 | 'b: _ γ shouter 16, a water supply source 17; a fuel recycler 丨8; and a gas separator 19. In step 1, a material comprising a source of catalyst source, such as a gas, a liquid, a solid, or a fuel comprising a heterogeneous mixture of non-142257.doc-35-201104948, is reacted to form a low energy hydrogen and a lower energy hydrogen product. . In step 2, the used fuel is reprocessed to supply the pot (4) again, thereby maintaining thermal power generation. The heat generated in the boiler 10 forms steam in the tubes and steam generators 13, is transferred to the turbines 14, and is also powered by the supply generator. In step 3, the water is condensed by a water condenser 16. Any water flow is lost by the water source 17 to recirculate, thereby maintaining the heat-to-electricity energy conversion. In step 4, lower energy hydrogen products, such as low energy hydrogen hydride compounds and two low energy hydrogen gases, may be removed, and unreacted hydrogen may be returned to fuel recycler 18 or hydrogen source 12 for addition. Refueling is used to replenish the recycled fuel. The gaseous product and unreacted hydrogen may be separated by a hydrogen-two low energy hydrogen gas separator 19. Any product low energy hydrogen hydride compound product can be separated and removed using fuel recycler 18. It can be processed in the boiler or outside the boiler and the fuel can be returned. Accordingly, the system can further include at least one gas and bulk conveyor to move reactants and products for spent fuel removal, regeneration, and resupply. The hydrogen additive consumed in the formation of low energy hydrogen is added from source 12 during fuel reprocessing and may include recycled unconsumed hydrogen. The recirculated fuel maintains thermoelectric generation to drive the power plant to generate electricity. The reactor can be operated in a continuous mode of hydrogen addition and separation and addition or replacement to resist minimal degradation of the reactants. Alternatively, the reaction fuel is continuously regenerated from the product. In one embodiment of the latter process, the reaction mixture comprises a material which produces a reactant which further reacts to form a low energy hydrogen atom or molecular catalyst with atomic hydrogen' and the product material formed by the catalyst and atomic hydrogen is at least The step of reacting the products with hydrogen is regenerated. In one embodiment, the reactor comprises a moving bed reactor, and the moving bed reaction 142257.doc-36-201104948 can further comprise a fluidized reactor section in which the reactants are continuously supplied and the by-products are removed and The reactants are regenerated and returned to the reactor. In one embodiment, a lower energy chlorine product, such as a low energy hydrogen hydride compound or a second low energy gas molecule, is collected as the reactants are regenerated. In addition, during the regeneration of the reactants, the low energy hydrino hydride anion can form other compounds or be converted to 'two low energy hydrogen molecules. • Reaction 11 can include a separator such as a component that separates the product mixture by evaporating the solvent if a solvent is present. The separator may comprise, for example, a sieve to mechanically separate by physical differences such as size. The separator may also be a separator that utilizes the difference in density of the components of the mixture, such as a vortex separator. For example, at least two selected from the group consisting of carbon, a metal such as Eu, and a group of inorganic products such as KBr can be separated based on a difference in density in a suitable medium such as a pressurized inert gas and by centrifugal force. Component separation can also be based on differences in dielectric constant and chargeability. For example, carbon and metal can be separated based on the application of an electrostatic charge to the former and removal from the mixture by an electric field. Separation can be achieved using a magnet in the event that one or more of the components are magnetic. The mixture may be agitated on a series of strong magnets, alone or in combination with one or more screens, to cause separation based on at least one of the stronger adhesion or attraction of the magnetic particles to the magnets and the difference in size between the two types of particles. In embodiments where a screen and an applied magnetic field are used, K adds additional force in addition to gravity to draw smaller magnetic particles through the screen, while other particles of the mixture remain on the screen due to their larger size. The reactor may further comprise a separator that separates one or more components based on different phase changes or reactions. In one embodiment, the phase change comprises melting using a heater 142257.doc -37·201104948 and by methods known in the art, such as gravity, filtration using pressurized gas, centrifugation, and by means of Vacuum is applied to separate the liquid from the solid. The reaction may include a reaction such as decomposition of hydride decomposition or formation of a hydride, and separation may be achieved by separately melting the corresponding metal, then separating it, and mechanically separating the hydride powder. The latter (by mechanical separation) can be achieved by screening. In one embodiment, a phase change or reaction can produce the desired reactant or intermediate. In certain embodiments, regeneration including any desired separation steps can occur inside or outside the reactor. The separation of the present invention can be carried out by applying conventional methods known to those skilled in the art by applying routine experimentation. In general, mechanical separation can be divided into groups: sedimentation, centrifugation, percolation, and screening. In one embodiment, particle separation is achieved by at least one of discriminating and using a classifier. The particle size and shape can be selected among the starting materials to achieve the desired product separation. The power system may further comprise a catalyst condenser to maintain the catalyst vapor pressure by a temperature controller at a surface temperature controlled reaction battery temperature. The surface temperature is maintained at the desired value to provide the desired vapor pressure of the catalyst. In one embodiment, the condensed state is the tube gate of the early enthalpy (tubi (four). In the case of using a heat exchanger - the flow rate of the controllable medium is maintained and lowered by the condenser At the rate of the operation, the working medium is water at the required temperature of the implementation 2, and the flow rate in the condenser is lower than that in the water-cooled wall. """ The masses are recombined and transferred for space heating and phase heating or material conversion to steam. The unit of the present invention is directed to a catalyst, reaction mixture 142257.doc-38·201104948 method and system disclosed herein, wherein The specific unit is used as a reactor and at least one component that activates, expands, expands, and/or sustains the reaction and regenerates the reactants. According to the present invention, the #元 includes at least one catalyst or catalyst source, at least: a source of hydrogen atoms and Containers. The operation of such units and systems is known to those skilled in the art. Electrolytic cell energy reactors of the present invention (such as eutectic salt: cell, plasma electrolysis reactor, barrier electrode reactor, crucible plasma) Should be fast, pressurized gas energy reactor, gas discharge energy reactor (preferably pulse discharge and better pulse compression electropolymerization discharge), microwave battery energy reactor and glow discharge battery and microwave and / or ^ plasma reactor Combination of: comprising: a source of hydrogen; one of a solid, a smelting, a liquid, a gas, and a non-homogenous source of a catalyst or reactant, which in any of these states causes a low energy hydrogen reaction by a reaction between the reactants; Or a vessel containing at least hydrogen and a catalyst wherein a reaction to form a lower energy hydrogen occurs by contacting hydrogen with a catalyst or by reacting a catalyst; and optionally removing a lower energy hydrogen product The reaction of the component to form a lower energy state is promoted by an oxidation reaction which can be improved by accepting at least one of electrons from the catalyst and neutralization of a high charge yoke formed by accepting energy from atomic hydrogen. The reaction rate of low energy hydrogen is formed. Therefore, these units can operate in such a manner as to provide such an oxidation reaction. In one embodiment, the electrolysis or plasma pool can be in the anode An oxidation reaction is provided in which hydrogen supplied by a method such as bubbling reacts with a catalyst to form low energy hydrogen via participation in an oxidation reaction. In one embodiment of the liquid fuel, the rate of solvent decomposition in the battery is relative to solvent regeneration associated with battery power. Operating at negligible temperature. At 142257.doc -39·201104948: below the temperature at which the temperature at which satisfactory energy conversion efficiency is obtained by more conventional methods, such as the use of steam cycles, A lower > ergonomic medium can be used. In another embodiment, the temperature of the tempering medium can be increased using a heat pump. Because &, the battery supply space heating and process operating at temperatures above ambient can be used. Heating, using components such as heat pumps in # increases the temperature of the working medium. In the case of a sufficiently high temperature, a liquid to gas phase change can occur and the gas can be used for pressure volume (pv) work. The pv function can include supplying generator power to generate electricity. The medium can then be condensed and the condensed working medium can be returned to the reactor unit for reheating and recirculation in the power cycle. In one embodiment of the reactor, a non-homogeneous catalyst mixture comprising a liquid phase and a solid phase is passed through the reactor. Flow can be achieved by pumping. The mixture can be a slurry. The mixture can be heated in a hot zone to cause hydrogen to catalyze hydrogen into low energy, thereby releasing heat to maintain the hot zone. The product can be passed out of the hot zone and the reaction mixture can be regenerated from the products. In another embodiment, at least one solid of the heterogeneous mixture can be fed into the reactor by gravity feed. The solvent can be introduced into the reactor either alone or in combination with one or more solids. The reaction mixture may comprise at least one of a dissociator, a high surface area (HSA) material, a group of R_Ni, See, NaH, Na, NaOH, and a solvent. In the actual example, one or more reactants, preferably a halogen source, a halogen gas, an oxygen source or a solvent are injected into a mixture of other reactants. The injection is controlled to optimize the excess energy and power from the reaction to form low energy hydrogen. Battery temperature and injection rate can be controlled for optimization during injection. Further optimization of the process parameters and mixing can be carried out using methods known to those skilled in the art of the process. 142257.doc -40· 201104948 In the case of Yuli conversion, 'all types of batteries can be connected to any known converter of thermal energy or plasma to mechanical power or power, including, for example, ,,,,,,,,,,,,,,, The Terry engine (SterHng eng) ne) or thermionic or thermoelectric converter. Other plasma transformers include a magnetic mirror power dynamics converter, a plasma dynamics power converter 'magnetic rotation f, a photonics microwave power converter, a charge drift power machine or a photoelectric conversion-in a consistent column, 胄The pool contains at least one internal combustion engine cylinder. III. Hydrogen Battery and Solid, Liquid, and Non-Uniform Fuel Reactors In accordance with embodiments of the present invention, a reactor for producing low energy hydrogen and power may take the form of a reactor cell. The reactor of the present invention is shown in Figure 3. The reactants provide a low energy hydrogen of the reactants. The catalysis can be carried out in the gas phase or in a solid or liquid state. The reactor of Figure 3 contains a reaction vessel grip that has a chamber chest that can contain a vacuum or a force that exceeds the atmosphere. A hydrogen source 221 in fine communication with the chamber transfers the helium to the chamber via the hydrogen supply passage 242. The controller 222 is positioned to control the pressure and hydrogen flow into the container via the hydrogen supply channel μ. The force sensor 223 monitors the pressure in the container. Use vacuum fruit 25 = evacuate the chamber from vacuum line 257. In the examples, the catalysis is carried out in the gas phase. The catalyst can be made into a gas by maintaining the battery temperature at a high temperature, which in turn determines the vapor pressure of the catalyst. The atomic and/or molecular hydrogen reactants are also maintained at the desired pressure within any pressure range. In the embodiment, the pressure is less than atmospheric, preferably in the range of from about 10 mTorr to about 100 Torr. In another embodiment ΐ & 142257.doc • 41. 201104948, the determination is made by maintaining a mixture of a catalyst source such as a metal source and a corresponding hydride such as a metal hydride in a battery maintained at the desired operating temperature. pressure. A suitable catalyst source 25 for producing low energy hydrogen atoms can be placed in the catalyst storage state 295' and a gaseous catalyst can be formed by heating. The reaction vessel 207 has a catalyst supply passage 241 for transferring the gaseous catalyst from the catalyst reservoir 295 to the reaction to 200. Alternatively, the catalyst can be placed in a chemically resistant open container, such as a boat, inside the reaction vessel. The hydrogen source can be hydrogen and molecular hydrogen. Hydrogen can be dissociated into atomic hydrogen by the molecular hydrogen dissociation catalyst. The dissociation catalysts or dissociators include, for example, Raney Nickel (R_Ni), a metal, and a noble metal on a support. The noble metal may be pt, pd, Ru, Ir, and Rh' and the carrier may be at least one of Ti, Nb, Al2?3, SiO2, and combinations thereof. Other dissociators are Pt or Pd, nickel fiber mats, Pd flakes, Ti sponges, pt or Pd, TiH, platinum black, and electroplated on 71 or 海绵 sponge or mat, which may contain hydrogen overflow catalyst on carbon. Black, refractory metals (such as la and tungsten), transition metals (such as nickel and titanium), internal transition metals (such as cerium and zirconium), and other such materials known to those skilled in the art. In one embodiment, the dissociation of hydrogen on Pt or Pd may be coated on a support material such as titanium or Al2〇3. In another embodiment, the dissociator is a refractory metal such as tungsten or molybdenum. The dissociated material can be maintained at a high temperature by temperature control assembly 230. The temperature control assembly 230 can take the form of a heating coil as shown in cross-section in FIG. The heating coil is powered by a power source 225. The dissociated material is preferably maintained at the operating temperature of the battery. The dissociator can be further operated at temperatures above the battery temperature for more efficient dissociation, and the high temperature 142257.doc -42- 201104948 prevents the catalyst from condensing on the dissociator. The hydrogen dissociator can also be provided by a hot filament such as 280 powered by a power source 285. In one embodiment, hydrogen dissociation occurs such that the dissociated hydrogen atoms are in contact with the gaseous catalyst to produce low energy hydrogen atoms. The catalyst vapor pressure is maintained at the desired pressure by controlling the temperature of the catalyst reservoir 295 using a catalyst reservoir heater 298 powered by a power source 272. When the catalyst is contained in the inner vessel of the reactor, the temperature of the catalyst boat is controlled by adjusting the power supply of the boat m to maintain the catalyst vapor pressure at a desired value. A heating coil 230 powered by a power source 225 controls the battery temperature to the desired operating temperature. The battery (referred to as an osmotic battery) can further include an internal reaction chamber 200 and an external hydrogen reservoir 290 such that hydrogen can be supplied to the battery by diffusion of hydrogen through the walls 291 separating the two chambers. The temperature of the wall can be controlled by a heater to control the rate of diffusion. The rate of diffusion can be further controlled by controlling the hydrogen pressure in the hydrogen reservoir. To maintain the catalyst pressure to the desired extent, the battery that will permeate as a source of hydrogen can be sealed. Alternatively, the battery further includes a high temperature valve at each inlet or outlet to maintain the valve contacting the reactive gas mixture at the desired temperature. The battery may further include an aspirator or collector 255 to selectively collect lower energy hydrogen species and/or a combination of increased hydrogen compounds, and may further comprise a selector valve 206 for releasing the two low energy hydrogen gas products. . In one embodiment, reactant 260, such as a solid fuel or a non-homogeneous catalyst fuel mixture, is reacted in vessel 200 by heating with heater 230. Additional reactants, such as at least one exothermic reactant, preferably having fast kinetics, can flow into battery 200 142257.doc-43-201104948 via control valve 232 and connection 233. The reactant added may be a source of a pheromone, a source of ii, an oxygen source or a solvent. Reactant 260 can comprise a substance that reacts with the added reactants. For example, a halogen may be added to form a halide with reactant 260, or an oxygen source may be added to reactant 260 to form an oxide. The catalyst can be at least one of the group consisting of atomic lithium, unloading or planing, NaH molecules, 2 Å and low energy hydrogen atoms, wherein the catalysis comprises a disproportionation reaction. It maintains the battery temperature within a range of about 50,000 -1 〇 〇 , to make the catalyst a gas. The battery is preferably maintained in the range of about 500-7501. The cell pressure can be maintained in the range of less than atmospheric pressure, preferably from about 1 Torr to about 1 Torr. Optimally, at least one of the catalyst pressure and the pressure is maintained by maintaining a mixture of the catalyst metal and the corresponding hydride (such as hydride and hydrogenation clock, sodium hydride, sodium and sodium hydride, and planer and hydrogenation planer). Determine the battery at the required operating temperature. The catalyst in the gas phase may comprise a clock atom from a source of metal or metal. Preferably, the catalyst is maintained at a pressure determined by a mixture of metallic lithium and lithium hydride in an operating temperature range of about 500-1000 C and is preferably maintained at a temperature within a temperature range of about 50 〇 75 〇 ° C. Under the pressure. In other embodiments, κ, ^, and ^^ are substituted for Li, wherein the catalyst is atomic κ, atomic Cs, and molecular NaH. In one embodiment comprising a catalyst reservoir or a gas cell reactor, the gas Na, NaH catalyst or a gaseous catalyst such as Li, and Cs vapor is maintained in the battery relative to the reservoir as a battery vapor source Or under the condition that the steam in the boat is overheated. In one embodiment, the superheated vapor reduction catalyst is condensed on a dissociator of at least one of a hydrogen dissociator or a metal and metal hydride molecule disclosed below. In one embodiment of the catalyst comprising u as a reservoir or a boat 142257.doc • 44 - 201104948, Jianmuyi or boat is maintained at a level that vaporizes Li. Hey. It can be maintained at a pressure lower than the pressure of LiH which forms a significant molar fraction at the storage temperature.眚 u, s The pressure and temperature of this condition can be determined by the = curve of the H2 pressure versus the uh molar fraction at the established isotherm known in the surgery. In an embodiment, the cell reaction chamber containing the dissociator operates at a higher temperature such that Li does not condense on the wall or dissociator. % can flow from reservoir H to the cell to increase catalyst delivery rate. Flowing from the catalyst reservoir to the cell and then out of the cell is a method of removing low energy gas products to prevent inhibition of the low energy hydrogen product of the reaction. In other embodiments, 'K, Cs, and Na are substituted for Li, wherein the catalyst is atom K, atom Cs, and molecule NaH. Hydrogen is supplied to the reaction from a hydrogen source. For example, hydrogen is supplied by permeation from a hydrogen reservoir. The pressure of the hydrogen reservoir can be in the range of 10 Torr to 1 Torr, preferably in the range of Torr to 1000 Torr and most preferably at about atmospheric pressure. The battery can be operated at a temperature of about 100 C to 300 ° C, preferably about 1 Torr (rCi 15 Torr (temperature of rc and preferably about 500 ° C to 800 ° C. The hydrogen source can be derived from the added hydride) Decomposition. The battery by permeation supply is designed as a battery containing an internal metal hydride placed in a sealed container, wherein the atomic helium oozes at a high temperature. The container may comprise pd, Ni, ^ or Nb. In an embodiment The hydride is placed in a sealed tube, such as a Nb containing hydride, and sealed at both ends with a seal such as swagei 〇 ck 2. In the sealed condition, the hydride may be an alkali metal or alkaline earth metal hydride. In this case and the condition of the internal hydride reagent, the hydride may be at least one of the following groups: physiological saline hydride, titanium hydride, hydrogen 142257.doc -45-201104948 hunger, hydrogenation sharpening and hydrogenation group Hydrogenation and hydrazine hydride, rare earth metal hydrides, hydrogenation and hydrogenated hydrazine, transition element hydrides, intermetalic hydrides and alloys thereof. In one embodiment, the hydride and the decomposition temperature based on each hydride It The temperature ± 200 ° C is selected from at least one of the following items: rare earth metal hydride and operating temperature of about 800 ° C; hydrazine hydride and operating temperature of about 700 ° C; hydrazine hydride and about 750 ° C Operating temperature; hydrazine hydride and an operating temperature of about 750 ° C; hydrazine hydride and an operating temperature of about 800 ° C; hydrazine hydride and an operating temperature of about 800 ° C; hydrazine hydride and an operating temperature of about 850-900 ° C; Titanium hydride and an operating temperature of about 450 ° C; hydrazine hydride and an operating temperature of about 950 ° C; hydrazine hydride and an operating temperature of about 700 ° C; zirconium hydride - titanium hydride (50% / 50 ° / 〇) and about 600 Operating temperature of °C; an alkali metal/alkali metal hydride mixture such as Rb/RbH or K/KH, and an operating temperature of about 450 ° C; and an alkaline earth metal/alkaline earth metal hydride mixture such as Ba/BaH 2 , and Operating temperature of 900-1000 ° C. The gaseous metal may comprise diatomic covalent molecules. The object of the present invention is to provide atomic catalysts such as Li and K and Cs. Therefore, the reactor may further comprise metal molecules ("MM") and Metal hydride molecule ("MH") One of the dissociators. The catalyst source, the H2 source, and the MM, MH, and HH dissociators (wherein the ruthenium is the atomic catalyst) are preferably matched to operate under the desired battery conditions such as temperature and reactant concentration. In the case of a hydride source of Η2, in one embodiment, the decomposition temperature is within a temperature range that produces a desired vapor pressure of the catalyst, and is used for continuous operation in the case where hydrogen is infiltrated into the reaction chamber by the hydrogen reservoir. Preferred catalyst sources are Sr and Li metals, since 142257.doc • 46-201104948 is such that their respective vapor pressures can range from 0.01 to 100 Torr at the temperature at which the permeation occurs. In other embodiments of the osmotic battery, the battery operates at a high temperature that allows permeation, and then the battery temperature is reduced to a temperature that maintains the vapor pressure of the volatile catalyst at the desired pressure. In one embodiment of the gas cell, the dissociator comprises a component that produces a catalyst and H from the source. A surface catalyst such as Pt on Ti or Pd, ruthenium or osmium alone or on a substrate such as Ti can also be used as a dissociator for a molecule in which a catalyst and a hydrogen atom are combined. The dissociator preferably has a high surface area, such as a Pt/Al203 or Pd/Al2〇3 〇2 source, which may also be hydrogen. In this embodiment, the pressure can be monitored and controlled. This is possible in the case of catalysts and catalyst sources such as ruthenium or Cs metal and LiNH2, respectively, since these materials are volatile at low temperatures, allowing the use of a temperature-regulating valve. UNH2 also reduces the operating temperature of the Li battery and is less corrosive, allowing long-term operation of feedthroughs in the presence of plasma and filament batteries where filaments are used as hydrogen dissociators. Other embodiments of a gas cell chlorine reactor having NaH as a catalyst include filaments and a dissociator in the reactor cell and a reservoir in the reservoir that can flow through the reservoir to the main chamber [by control Gas flow rate, Η2 pressure and Na vapor house to control power. The latter (10) vapor pressure river controls Q by controlling the reservoir temperature. In another embodiment, the low energy hydrogen reaction is caused by heating using an external heater and the atomic enthalpy is provided by the dissociator. The reaction mixture can be agitated by methods known in the art, such as mechanical agitation or mixing. Searching for 锑 锑 Γ Γ 人 人 人 人 人 , , , , , , , , , , , , , , , , , , , Each piezoelectric transducer provides ultrasonic sound broadcasting. Order #c10 Chopper agitation can cause the reaction cell to vibrate and its progress 142257.doc -47- 201104948 One step contains a component, such as a residual spherical sphere, which vibrates the ball to impart a reaction mixture. In another embodiment, the machine (4) comprises a ball mill. These methods can also be used, preferably by ball milling to mix the reactants. In an embodiment, by mechanical agitation (such as by agitating the element vibrating, ultrasonic (four) and ball milling at least), forming a mechanical (four) or supersonic wave, the pressure or contraction may cause a reaction, reaction or The materialization causes the formation of a catalyst, preferably a NaH molecule. The reaction mixture may or may not contain a solvent. The reactants can be solids, such as solid NaH, which are mechanically agitated to form NaH molecules. Alternatively, the reaction mixture can be filled with a liquid. The mixture can have at least one Na species. The Na substance may be a component of a liquid mixture, or it may be in a dissolved state. In one embodiment, the sodium metal is dispersed by a suspension of the metal in a stalking agent such as a sulphur, a hydrocarbon, a deficient hydrocarbon, an aromatic or a heterocyclic aromatic solvent. The solvent temperature can be kept just above the melting point of the metal. IV. Fuel Types One embodiment of the present invention is directed to a fuel comprising at least one source of hydrogen and at least at least one of a gas phase, a liquid phase, and a solid phase of a mixture of possible phases that maintain a source of hydrogen catalyzed to form a low energy hydrogen catalyst. One phase of the reaction mixture. The reactants and reactions of the solid and liquid fuels given herein are also the reactants and reactions of the non-homogeneous fuel comprising the mixture of phases. One object of the present invention is to provide an atomic catalyst such as Li and K and Cs and a molecular catalyst NaH. The metal forms a diatomic covalent molecule. Thus, in solid fuel, liquid fuel, and non-homogeneous fuel embodiments, the reactants may be reversibly formed and decomposed or reacted using a metal catalyst to provide such as J42257.doc • 48* 201104948

Li或NaH之催化劑的合金、錯合物、錯合物源、混合物、 懸汗液及溶液。在另一實施例中,催化劑源與原子氫源中 之至少一者進一步包含至少一種反應以形成催化劑與原子 氫中之至 >、者的反應物。在另一實施例中,反應混合物 包含NaH催化劑或NaH催化劑源或諸如^或尺之其他催化 劑,該等催化劑可經由反應混合物之一或多種反應物或物 質反應形成或可藉由物理轉化形成。轉化可用合適溶劑進 行溶劑化。 反應混合物可進一步包含促進表面上催化反應之固體。 諸如NaH之催化劑或催化劑源可塗布在表面上。可藉由諸 如球磨之方法將諸如活性碳、Tic、wc、R_Ni之載體與 NaH混合來實現塗布。反應混合物可包含非均勻催化劑或 非均勻催化劑源。在一實施例中,藉由微濕法、較佳藉由 使用諸如醚之非質子性溶劑,將諸如NaH之催化劑塗布於 諸如活性碳、TiC、WC或聚合物之載體上。載體亦可包含 無機化合物,諸如驗鹵化物,較佳仏^^與HNaF2中之至少 一者,其中NaH用作催化劑且使用氟化溶劑。 在液體燃料之一實施例中,反應混合物包含催化劑源、 催化劑、氫源及催化劑溶劑中之至少一者。在其他實施例 中,本發明之固體燃料及液體燃料進—步包含兩者之組合 且亦進一步包含氣相。使用諸如催化劑及原子氫及其來源 之呈夕相之反應物來催化稱為非均勻反應混合物,且燃料 稱為非均勻燃料。因此,燃料包含至少為轉變成低能量氫 (由方程式(3 5)給出之狀態)之氫源與引起轉變之催化劑源 142257.doc • 49- 201104948 的反應混合物,反應物為液相、固相及氣相中之至少一 者。使用來自反應物之不同相之催化劑來催化在此項技術 中般稱為非均勻催化,其為本發明之一實施例。非均勻 催化劑提供發生化學反應之表面且構成本發明之實施例。 本文中所給出之固體及液體燃料之反應物及反應亦為非均 勻燃料之反應物及反應。 對於本發明之任何燃料而言,可藉由諸如機械混合之方 法或藉由球磨將諸如NaH之催化劑或催化劑源與反應混合 物之其他組份、諸如載體(諸如HSA物質)混合。在所有狀 況下,可添加額外氫以維持形成低能量氫之反應。氫氣可 在任何所需壓力下,較佳在〇」至2〇〇 atrn之範圍内。替代 性氫源包含以下之群中之至少一者:NH4X(X為陰離子, 較佳_離子)、NaBH4、NaAlHU、硼烷及金屬氫化物,諸 如驗金屬氫化物、鹼土金屬氫化物(較佳MgH2)及稀土金屬 氫化物(較佳LaH2及GdH2)。 A.載體 在某些實施例中’本發明之固體、液體及非均勻燃料包 含載體。該載體包含具體針對其功能之性質。舉例而言, 在载體充當電子受體或管道的狀況下,載體較佳具有導電 性。另外’在載體使反應物分散之狀況下,載體較佳具有 高表面積。在前一狀況下,諸如HS A載體之載體可包含導 電聚合物’諸如活性碳、石墨烯及可為大分子之雜環多環 芳烴。雖然碳較佳可包含活性碳(AC),但亦可包含其他形 式’諸如中孔碳、玻璃碳、焦炭、石墨碳、具有重量%為 142257.doc -50- 201104948 0.1至5 wt%之解離器金屬(諸如pt或pd)之碳、具有較佳一 至十碳層且更佳三層之過渡金屬粉末及金屬或合金塗布之 碳’較佳奈米粉末,諸如較佳Ni、c〇及Μη中之至少一者 之過渡金屬塗布的碳。金屬可插入碳。在插入金屬為\&且 催化劑為NaH之狀況下’較佳Na插入飽和。載體較佳具有 高表面積。可用作載體之有機導電聚合物之常見類別為以 下之群中之至少一者:聚(乙炔)、聚(吡咯)、聚(噻吩)、聚 (苯胺)、聚(苐)、聚(3-烷基噻吩)、聚四硫富瓦烯、聚萘、 聚(對苯硫醚)及聚(對伸苯基伸乙烯基)。此等線性主鍵聚 合物通常在此項技術中已知為聚乙炔、聚苯胺等「黑色 (black)」或「黑色素(melanin)」。載體可為混合共聚物, 諸如聚乙炔、聚吡咯及聚苯胺之一。導電聚合物載體較佳 為1乙快、聚本胺及聚°比σ各通常衍生物中之至少一者0其 他載體包含除碳以外之其他元素’諸如導電聚合物聚硫雜 氮((S,N)X)。 在另一實施例中,載體為半導體。載體可為第Iv行元 素,諸如碳、矽、鍺及α_灰錫。除諸如矽及鍺之元素物質 外,半導體載體包含諸如砷化鎵及磷化銦之化合物物質或 諸如矽錯或砷化鋁之合金。在一實施例中,諸如石夕及鍺晶 體之物質的導電性可藉由在晶體生長時添加少量(例如丨_1〇 百萬分率)摻雜劑、諸如硼或磷來增強。摻雜半導體可磨 成粉末,用作載體。 在某些實施例中,HSA載體為金屬,諸如過渡金屬、貴 金屬、介金屬、稀土金屬、婀系金屬、鑭系金屬(較佳 142257.doc -51 - 201104948Alloys, complexes, complex sources, mixtures, suspensions and solutions of Li or NaH catalysts. In another embodiment, at least one of the catalyst source and the source of atomic hydrogen further comprises at least one reaction to form a reactant in the catalyst and atomic hydrogen to >. In another embodiment, the reaction mixture comprises a NaH catalyst or a NaH catalyst source or other catalyst such as a ruthenium, which may be formed by reaction of one or more reactants or species of the reaction mixture or may be formed by physical transformation. The conversion can be solvated with a suitable solvent. The reaction mixture may further comprise a solid that promotes a catalytic reaction on the surface. A catalyst such as NaH or a catalyst source can be coated on the surface. Coating can be achieved by mixing a carrier such as activated carbon, Tic, wc, R_Ni with NaH by, for example, ball milling. The reaction mixture may comprise a heterogeneous catalyst or a source of non-homogeneous catalyst. In one embodiment, a catalyst such as NaH is coated onto a support such as activated carbon, TiC, WC or a polymer by a micro wet method, preferably by using an aprotic solvent such as ether. The support may also comprise an inorganic compound such as a halide, preferably at least one of H? and HNaF? wherein NaH is used as a catalyst and a fluorinated solvent is used. In one embodiment of the liquid fuel, the reaction mixture comprises at least one of a catalyst source, a catalyst, a hydrogen source, and a catalyst solvent. In other embodiments, the solid fuel and liquid fuel of the present invention further comprise a combination of the two and further comprise a gas phase. The reaction is referred to as a heterogeneous reaction mixture using a reactant such as a catalyst and atomic hydrogen and its source of the eclipse phase, and the fuel is referred to as a non-homogeneous fuel. Therefore, the fuel contains at least a reaction mixture of a hydrogen source which is converted into a low-energy hydrogen (state given by the equation (5)) and a catalyst source 142257.doc • 49-201104948 which causes the conversion, and the reactant is a liquid phase and a solid. At least one of a phase and a gas phase. Catalysts from different phases of the reactants are used to catalyze what is commonly referred to in the art as non-homogeneous catalysis, which is an embodiment of the invention. The heterogeneous catalyst provides a surface upon which a chemical reaction takes place and constitutes an embodiment of the invention. The reactants and reactions of the solid and liquid fuels given herein are also the reactants and reactions of the non-homogeneous fuel. For any of the fuels of the present invention, a catalyst such as NaH or a catalyst source may be mixed with other components of the reaction mixture, such as a carrier (such as an HSA material), by methods such as mechanical mixing or by ball milling. In all cases, additional hydrogen may be added to sustain the reaction to form low energy hydrogen. Hydrogen can be at any desired pressure, preferably in the range of 〇" to 2 〇〇 atrn. The alternative hydrogen source comprises at least one of the group consisting of NH4X (X is an anion, preferably ionic), NaBH4, NaAlHU, borane, and metal hydrides, such as metal hydrides, alkaline earth metal hydrides (preferably MgH2) and rare earth metal hydride (preferably LaH2 and GdH2). A. Carriers In certain embodiments, the solid, liquid, and non-homogeneous fuels of the present invention comprise a carrier. The vector contains properties specific to its function. For example, in the case where the carrier serves as an electron acceptor or a conduit, the carrier preferably has electrical conductivity. Further, the carrier preferably has a high surface area in the case where the carrier disperses the reactants. In the former case, a carrier such as an HS A carrier may contain a conductive polymer such as activated carbon, graphene, and a heterocyclic polycyclic aromatic hydrocarbon which may be a macromolecule. Although carbon preferably comprises activated carbon (AC), it may also comprise other forms such as mesoporous carbon, vitreous carbon, coke, graphitic carbon, and dissociation with a weight percentage of 142257.doc -50 - 201104948 0.1 to 5 wt%. Carbon of a metal such as pt or pd, a transition metal powder having preferably one to ten carbon layers and more preferably three layers, and a metal or alloy coated carbon 'preferably nano powder, such as preferably Ni, c and Μ At least one of the transition metal coated carbon. Metal can be inserted into carbon. In the case where the intercalation metal is \& and the catalyst is NaH, it is preferable that the Na insertion is saturated. The carrier preferably has a high surface area. A common class of organic conductive polymers that can be used as a carrier is at least one of the following groups: poly(acetylene), poly(pyrrole), poly(thiophene), poly(aniline), poly(苐), poly(3) -alkylthiophene), polytetrathiafulvalene, polynaphthalene, poly(p-phenylene sulfide) and poly(p-phenylenevinyl). Such linear primary bond polymers are generally known in the art as "black" or "melanin" such as polyacetylene or polyaniline. The carrier can be a mixed copolymer such as one of polyacetylene, polypyrrole and polyaniline. The conductive polymer carrier is preferably at least one of a fast derivative, a polyamine, and a specific ratio of each of the specific derivatives of σ. The other carrier contains an element other than carbon, such as a conductive polymer polythiazide (S). , N) X). In another embodiment, the carrier is a semiconductor. The carrier may be an Iv row element such as carbon, ruthenium, osmium and alpha ash tin. The semiconductor carrier contains a compound material such as gallium arsenide and indium phosphide or an alloy such as erbium or aluminum arsenide, in addition to elemental materials such as bismuth and antimony. In one embodiment, the conductivity of a substance such as a stone and a germanium crystal may be enhanced by adding a small amount (e.g., 丨 〇 百万 parts per million) of a dopant such as boron or phosphorus during crystal growth. The doped semiconductor can be ground into a powder and used as a carrier. In certain embodiments, the HSA support is a metal such as a transition metal, a noble metal, a meta-metal, a rare earth metal, a lanthanide metal, a lanthanide metal (preferably 142257.doc -51 - 201104948)

La、Pr、Nd 及 Sm之一)、A卜 Ga、In、们、Sn、pb、類金 屬、Si、Ge、As、Sb、Te、Y、Zr、Nb、Mo、Tc、Rn、One of La, Pr, Nd, and Sm), A, Ga, In, N, Sn, pb, metalloid, Si, Ge, As, Sb, Te, Y, Zr, Nb, Mo, Tc, Rn,

Rh、Pd、Ag、Cd、Hf、Ta、W、Re、〇s、Ir、pt、Au :Rh, Pd, Ag, Cd, Hf, Ta, W, Re, 〇s, Ir, pt, Au:

Hg、驗金屬、驗土金屬及包含此群之至少兩種金屬或元素 的合金,諸如鑭系合金,較佳LaNis及Y-Ni。載體可為貴 金屬,諸如Pt、Pd、Au、Ir及Rh中之至少一者,或負載型 貴金屬,諸如於鈦上之Pt或Pd(Pt/Ti或Pd/Ti)。 在其他實施例中’ HSA物質包含以下至少一者:立方氮 化硼、六方氮化硼 '纖鋅礦型氮化硼粉末、雜金剛石 (heterodiamond)、氮化硼奈米管、氮化矽、氮化鋁氮化 鈦(TiN)、氮化鋁鈦(TiAIN)、氮化鎢、塗有碳之金屬或合 金(較佳奈米粉末,諸如具有較佳一至十碳層且更佳三層 之Co、Ni、Fe、Μη及其他過渡金屬粉末中之至少一者)、 金屬或合金塗布之碳(較佳奈米粉末,諸如過渡金屬、較 佳Ni、Co及Μη中之至少一者塗布之碳)、碳化物(較佳粉 末)、氧化鈹(BeO)粉末、稀土氧化物粉末(諸如La2〇3、 ZQO3 ' A!2〇3、鋁酸鈉)及碳(諸如芙、石墨烯或奈米管, 較佳單壁)。 碳化物可包含一或多種鍵型 崤如碳化鈣(CaC2)之鹽 類、諸如碳化矽(Sic)及碳化硼(BaC^'bC3)之共價化合物及 諸如碳化鎢之填隙式化合物。碳化物可為諸如Au2c2、 ZnC2及CdQ之炔化物或諸如Be/、碳化鋁(AUC3)之曱基 金屬化合物及A3MC類型之碳化物,其中μ要為稀土金屬 或過渡金屬’諸如^丫^物^卜錢為金屬或 142257.doc •52· 201104948 半金屬主族元素,諸如Ab Ge、In、丁卜“及扑。具有q2_ 離子之碳化物可包含以下至少一者:碳化物岣ς,其中陽 離子M1包含驗金屬或造幣金屬之一;碳化物,其中陽 離子ΜΠ包含鹼土金屬;及較佳碳化物,其中陽離 子ΜΠΙ包含Al、La、pr或Tb。碳化物可包含除C〗-以外的離 子,諸如 YC2、Tbc2、YbC2、UC2' Ce2c3、Pr2C3ATb2c3 之群之離子。碳化物可包含倍半碳化物,諸如Mg2c3、 ScsC4及LUC3。碳化物可包含三元碳化物,諸如含有鑭系 金屬及過渡金屬之碳化物,其可進—步包含c2單元,諸如 L«3M(C2)2 其中 Μ 為 Fe、Co、Ni、RU、Rh、〇s 及 Ir)、Hg, metal test, soil test metal and alloys comprising at least two metals or elements of the group, such as lanthanide alloys, preferably LaNis and Y-Ni. The support may be a noble metal such as at least one of Pt, Pd, Au, Ir and Rh, or a supported noble metal such as Pt or Pd (Pt/Ti or Pd/Ti) on titanium. In other embodiments, the 'HSA material comprises at least one of the following: cubic boron nitride, hexagonal boron nitride' wurtzite boron nitride powder, heterodiamond, boron nitride nanotube, tantalum nitride, Titanium nitride titanium nitride (TiN), titanium aluminum nitride (TiAIN), tungsten nitride, carbon coated metal or alloy (preferably nano powder, such as Co having a preferred one to ten carbon layer and more preferably three layers) , at least one of Ni, Fe, Μη, and other transition metal powders, metal or alloy coated carbon (preferably nano powder, such as transition metal, preferably at least one of Ni, Co, and 涂布N coated carbon) , carbide (preferably powder), beryllium oxide (BeO) powder, rare earth oxide powder (such as La2〇3, ZQO3 'A!2〇3, sodium aluminate) and carbon (such as Fu, graphene or nanotube) , preferably single wall). The carbide may comprise one or more bond types such as salts of calcium carbide (CaC2), covalent compounds such as strontium carbide (Sic) and boron carbide (BaC^'bC3), and interstitial compounds such as tungsten carbide. The carbide may be an alkyne such as Au2c2, ZnC2 and CdQ or a ruthenium-based metal compound such as Be/, aluminum carbide (AUC3) and a carbide of the A3MC type, wherein μ is a rare earth metal or a transition metal such as a compound ^卜钱为金属或142257.doc •52· 201104948 Semi-metallic main elements, such as Ab Ge, In, Ding Bu and flutter. Carbides with q2_ ions may comprise at least one of the following: carbide 岣ς, The cation M1 comprises one of a metal or coin metal; a carbide wherein the cation ruthenium comprises an alkaline earth metal; and a preferred carbide, wherein the cation ruthenium comprises Al, La, pr or Tb. The carbide may comprise ions other than C-- An ion such as YC2, Tbc2, YbC2, UC2' Ce2c3, Pr2C3ATb2c3. The carbide may comprise sesquicarbones such as Mg2c3, ScsC4 and LUC3. The carbide may comprise ternary carbides, such as containing lanthanide metals and transitions a carbide of a metal which further comprises a c2 unit such as L«3M(C2)2 wherein Μ is Fe, Co, Ni, RU, Rh, 〇s and Ir),

Dy12Mn5C15、Ln3.67FeC6、施(C2)2(Ln=Gd 及 Tb)及Dy12Mn5C15, Ln3.67FeC6, Shi (C2)2 (Ln=Gd and Tb) and

ScCrC2。碳化物可進一步具有「中間」過渡金屬碳化物類 別,諸如碳化鐵(FesC或FeCyFe)。碳化物可為至少一種來 自以下之群之碳化物:鑭系(MC2&M2C3),諸如碳化鑭 (LaC2或LaA);碳化釔;婀系碳化物;過渡金屬碳化物, 諸如碳化銃、碳化鈦(TiC)、碳化釩、碳化鉻、碳化錳及 碳化鈷、碳化鈮、碳化鉬、碳化钽、碳化鍅及碳化铪。其 他合適碳化物包含以下至少一者:Ln2FeC4、Sc3c〇C4、ScCrC2. The carbide may further have an "intermediate" transition metal carbide type such as iron carbide (FesC or FeCyFe). The carbide may be at least one carbide from the group: lanthanide (MC2 & M2C3), such as lanthanum carbide (LaC2 or LaA); lanthanum carbide; lanthanide carbide; transition metal carbide, such as lanthanum carbide, titanium carbide (TiC), vanadium carbide, chromium carbide, manganese carbide and cobalt carbide, tantalum carbide, molybdenum carbide, tantalum carbide, tantalum carbide and tantalum carbide. Other suitable carbides include at least one of the following: Ln2FeC4, Sc3c〇C4,

Ln3MC4(M=Fe、Co、Ni、RU、Rh、〇s、Ir)、Ln3Mn2C6、 Ew.uNA、ScCrC2、Th2NiC2 ' Y2ReC2、Ln12M5C15 (M=Mn、Re)、YCoC、Y2ReC2及此項技術中已知之其他碳 化物。 在一貫施例中’載體為導電性碳化物,諸如Tic或wc及Ln3MC4 (M=Fe, Co, Ni, RU, Rh, 〇s, Ir), Ln3Mn2C6, Ew.uNA, ScCrC2, Th2NiC2 'Y2ReC2, Ln12M5C15 (M=Mn, Re), YCoC, Y2ReC2 and in this technology Know other carbides. In a consistent application, the carrier is a conductive carbide such as Tic or wc and

HfC、Mo2C ' TaC、YC2、ZrC、A14C3及 B4C。載體可為金 142257.doc -53- 201104948 屬硼化物,包括諸如MB2硼化物。載體或HSA物質可為可 導電之硼化物,較佳二維網狀硼化物,諸如MB2,其中Μ 為諸如以下至少一者之金屬:Cr、Ti、Mg、Zr及 Gd(CrB2、TiB2、MgB2、ZrB2、GdB2) 0 在碳-HSA物質之實施例,Na不插入碳載體中或藉由與 碳反應而形成炔化物。在一實施例十,催化劑或催化劑 源、較佳NaH併入諸如芙、碳奈米管及沸石之HS A物質内 部。HSA物質可進一步包含石墨、石墨烯、類金剛石碳 (DLC)、 IU匕類金岡,J石石炭(HDLC)、金岡J石粉末、石墨石炭、 玻璃碳及具有其他金屬(諸如Co、Ni、Mn、Fe ' Y、Pd及 Pt中之至少一者)之碳或包含其他元素之摻雜劑(諸如氟化 碳,較佳氟化石墨、氟化金剛石或氟化四碳(C4F))。HS A 物質可經氟化物鈍化,諸如氟化物塗布之金屬或碳,或包 含II化物,諸如金屬氟化物,較佳驗金屬或稀土金屬氟化 物。 具有巨大表面積之合適載體為活性碳。活性碳可藉由物 理或化學活化來活化或再活化。前一活化可包含碳化或氧 化,且後一活化可包含用化學物質浸潰。 反應混合物可進一步包含諸如聚合物載體之載體。聚合 物載體可選自以下:聚(四氟乙烯),諸如TEFLON™ ;聚 乙烯二茂鐵;聚苯乙烯;聚丙烯;聚乙烯;聚異戊二烯; 聚(胺基磷氮烯);包含醚單元之聚合物,諸如聚乙二醇或 聚氧化乙烯及聚丙二醇或聚氧化丙烯,較佳芳基醚;聚醚 多元醇,諸如聚(四亞曱基醚)二醇(PTMEG,聚四氫呋 142257.doc -54- 201104948 喃、「Terathane」、「polyTHF」);聚乙烯曱酸;及來自環 氧化物反應之聚合物,諸如聚氧化乙烯及聚氧化丙烯。在 一實施例中,HS A包含氟。載體可包含以下之群中之至少 一者:氟化有機分子、氟化烴、氟化烷氧基化合物及氟化 醚。例示性氟化HSA為TEFLON™、TEFLON™-PFA、聚氟 乙烯、PVF、聚(偏二氟乙烯)、聚(偏二氟乙烯共六氟丙烯) 及全氟烷氧基聚合物。 B.固體燃料 固體燃料包含形成低能量氫之催化劑或催化劑源(諸如 至少一種催化劑,諸如選自LiH、Li、NaH、Na、KH、 K、RbH、Rb及CsH之催化劑)、原子氫源及至少一種以下 各物:HSA載體、吸氣劑、分散劑及執行一或多種以下功 能之其他固體化學反應物:(i)藉由進行反應,諸如在反應 混合物之一或多個組份之間進行反應,或藉由反應混合物 之至少一種組份進行物理或化學變化,反應物形成催化劑 或原子氫;及(ii)反應物引發、擴展及維持形成低能量氫 之催化反應。電池壓力較佳可在約1托至100大氣壓之範圍 内。反應溫度較佳在約l〇〇°C至900°C之範圍内。本發明中 給出之固體燃料之許多實例(包括包含溶劑及不包含溶劑 之液體燃料反應混合物)並不意謂詳盡的。基於本發明, 熟習此項技術者教示其他反應混合物。 氫源可包含氫或氳化物及解離器,諸如Pt/Ti、氫化物化 Pt/Ti、Pd、Pt 或 Ru/A1203、Ni、Ti 或 Nb 粉末。HSA 載體、 吸氣劑及分散劑中之至少一者可包含以下之群中之至少一 142257.doc -55- 201104948 者:金屬粉末(諸如Ni、Ti或Nb粉末)、R-Ni、Zr02、 Α12〇3、NaX(X=F、Cl、Br、I)、Na20、NaOH及 Na2C03。 在一實施例中,金屬催化由諸如Na物質源及H源形成NaH 分子。金屬可為過渡金屬、貴金屬、介金屬、稀土金屬、 鑭系金屬及婀系金屬以及諸如鋁及錫之其他金屬。 C.低能量氫反應活化劑 低能量氫反應可藉由一或多個其他化學反應活化或引發 且擴展。此等反應可具有若干類別,諸如:放熱反應, 其為低能量氫反應提供活化能;(ii)偶合反應,其提供催 化劑源或原子氫源中之至少一者以維持低能量氫反應; (iii)自由基反應,在一實施例中其在低能量氫反應期間用 作來自催化劑之電子的受體;(iv)氧化還原反應,在一實 施例中其在低能量氫反應期間用作來自催化劑之電子的受 體;(v)交換反應,諸如陰離子交換,包括鹵離子 '硫離 子、氫離子、砷離子、氧離子、磷離子及氮離子交換,在 一實施例中其促進催化劑在接受來自原子氫之能量時發生 電離作用以形成低能量氫;及(vi)吸氣劑、載體或基質辅 助之低能量氫反應,其可提供用於低能量氫反應之至少一 種化學環境,用以傳遞電子以促進11催化劑功能,經歷可 逆相或其他物理變化或其電子態變化,且結合較低能量氫 產物以增加低能量氫反應之程度或速率中之至少一者。在 實施例中,反應混合物包含載體,較佳導電性載體,以 起動活化反應。 在-實施例中,使用諸如沾之催化劑,藉由 142257.doc α 201104948 加速速率限制步驟、在催化劑藉由接受來自原子氫之非輕 t共振能量轉移而電離時自催化劑移除電子形成低能量氣 來以南速率形成低能量氫。#由使用㈣或嶋物質,諸 如活性碳(AC)、Pt/C、PH/r X - λ,γοHfC, Mo2C 'TaC, YC2, ZrC, A14C3 and B4C. The carrier may be gold 142257.doc -53- 201104948 is a boride including, for example, MB2 boride. The support or HSA species may be an electrically conductive boride, preferably a two dimensional reticulated boride such as MB2, wherein Μ is a metal such as at least one of: Cr, Ti, Mg, Zr and Gd (CrB2, TiB2, MgB2) ZrB2, GdB2) 0 In the embodiment of the carbon-HSA substance, Na is not inserted into the carbon support or forms an acetylide by reacting with carbon. In a tenth embodiment, the catalyst or catalyst source, preferably NaH, is incorporated into the interior of the HS A species such as oxime, carbon nanotubes and zeolite. The HSA substance may further comprise graphite, graphene, diamond-like carbon (DLC), IU strontium, G-carbon (HDLC), jingang J-stone powder, graphite carbon, glassy carbon, and other metals (such as Co, Ni, Mn). a carbon of at least one of Fe 'Y, Pd, and Pt or a dopant containing other elements (such as a carbon fluoride, preferably fluorinated graphite, fluorinated diamond, or fluorinated tetracarbon (C4F)). The HS A material may be passivated by fluoride, such as a fluoride coated metal or carbon, or a II compound such as a metal fluoride, preferably a metal or a rare earth metal fluoride. A suitable carrier having a large surface area is activated carbon. Activated carbon can be activated or reactivated by physical or chemical activation. The previous activation may comprise carbonization or oxidation, and the latter activation may comprise impregnation with a chemical. The reaction mixture may further comprise a carrier such as a polymeric carrier. The polymeric carrier may be selected from the group consisting of poly(tetrafluoroethylene) such as TEFLONTM; polyethylene ferrocene; polystyrene; polypropylene; polyethylene; polyisoprene; poly(aminophosphazene); a polymer comprising an ether unit, such as polyethylene glycol or polyethylene oxide and polypropylene glycol or polypropylene oxide, preferably an aryl ether; a polyether polyol such as poly(tetradecyl ether) glycol (PTMEG, poly Tetrahydrofury 142257.doc -54- 201104948 methane, "Terathane", "polyTHF"); polyvinyl phthalic acid; and polymers derived from epoxide reactions, such as polyethylene oxide and polypropylene oxide. In one embodiment, HS A comprises fluorine. The carrier may comprise at least one of the group consisting of fluorinated organic molecules, fluorinated hydrocarbons, fluorinated alkoxylates, and fluorinated ethers. Exemplary fluorinated HSAs are TEFLONTM, TEFLONTM-PFA, polyvinyl fluoride, PVF, poly(vinylidene fluoride), poly(vinylidene fluoride hexafluoropropylene), and perfluoroalkoxy polymers. B. Solid fuel solid fuel comprises a catalyst or catalyst source forming low energy hydrogen (such as at least one catalyst such as a catalyst selected from the group consisting of LiH, Li, NaH, Na, KH, K, RbH, Rb and CsH), an atomic hydrogen source and At least one of the following: an HSA carrier, a getter, a dispersant, and other solid chemical reactants that perform one or more of the following functions: (i) by performing a reaction, such as between one or more components of the reaction mixture. The reaction is carried out, or physical or chemical changes are made by at least one component of the reaction mixture, the reactants form a catalyst or atomic hydrogen; and (ii) the reactant initiates, expands and maintains a catalytic reaction that forms low energy hydrogen. The battery pressure is preferably in the range of from about 1 Torr to 100 atm. The reaction temperature is preferably in the range of about 10 ° C to 900 ° C. Many examples of solid fuels given in the present invention, including liquid fuel reaction mixtures comprising a solvent and no solvent, are not intended to be exhaustive. Other reaction mixtures are taught by those skilled in the art based on the present invention. The hydrogen source may comprise hydrogen or a halide and a dissociator such as Pt/Ti, hydrided Pt/Ti, Pd, Pt or Ru/A 1203, Ni, Ti or Nb powder. At least one of the HSA carrier, the getter, and the dispersing agent may comprise at least one of the following groups: 142257.doc -55-201104948: metal powder (such as Ni, Ti or Nb powder), R-Ni, Zr02, Α12〇3, NaX (X=F, Cl, Br, I), Na20, NaOH and Na2C03. In one embodiment, the metal catalyzes the formation of NaH molecules from sources such as Na and H sources. The metals may be transition metals, noble metals, intermetallics, rare earth metals, lanthanide metals and lanthanide metals, and other metals such as aluminum and tin. C. Low Energy Hydrogen Reaction Activator The low energy hydrogen reaction can be activated or initiated and extended by one or more other chemical reactions. Such reactions can have several classes, such as: an exothermic reaction that provides activation energy for a low energy hydrogen reaction; (ii) a coupling reaction that provides at least one of a catalyst source or an atomic hydrogen source to maintain a low energy hydrogen reaction; Iii) a free radical reaction, in one embodiment it acts as a acceptor for electrons from the catalyst during a low energy hydrogen reaction; (iv) a redox reaction, in one embodiment it is used as a source during a low energy hydrogen reaction a receptor for electrons of the catalyst; (v) an exchange reaction, such as anion exchange, including a halide ion, a sulfur ion, a hydrogen ion, an arsenic ion, an oxygen ion, a phosphorus ion, and a nitrogen ion exchange, which in one embodiment promotes the catalyst in acceptance Ionization from the energy of atomic hydrogen to form low energy hydrogen; and (vi) getter, carrier or matrix assisted low energy hydrogen reaction, which provides at least one chemical environment for low energy hydrogen reactions, Transfer electrons to promote 11 catalyst functions, undergo reversible or other physical changes or changes in their electronic states, and combine lower energy hydrogen products to increase low energy hydrogen reactions At least one of degree or rate. In an embodiment, the reaction mixture comprises a support, preferably an electrically conductive support, to initiate the activation reaction. In an embodiment, using a catalyst such as a dip, the electrons are removed from the catalyst to form a low energy by the 142257.doc α 201104948 acceleration rate limiting step, when the catalyst is ionized by accepting a non-light t resonance energy transfer from atomic hydrogen. The gas comes to form a low-energy hydrogen at a south rate. #由使用(四) or 嶋 substances, such as activated carbon (AC), Pt/C, PH/r X - λ, γο

Pd/C、TiC或WC,以分別分散諸如 及尤原子及分子之催化劑,Ζζ·及尺之典型金屬形式可 轉化為原子形式且歸之離子形式可轉化為分子形式。考 慮到在與反應混合物之其他物質反應時的表面改質,載體 較佳具有高表面積及導電性。弓丨起原子氫轉變形成低能量 氫之反應需要諸如h、[或开之催化劑及原子氫,其中 用作協同反應中之催化劑及原子氫源。原子氫至催化 劑之整數倍27.2 eF之非輻射能量轉移的反應步驟產生電離 催化劑及自由電子,使反應由於電荷積聚而快速停止。諸 如AC之載體亦可充當導電性電子受體,且添加包含氧化 劑自由基或其來源之最終電子受體反應物至反應混合物 中’以最終清除自形成低能量氫之催化劑反應釋放的電 子°此外’可添加還原劑至反應混合物中以促進氧化反 應。協同電子受體反應較佳為放熱反應以加熱反應物且提 高速率。反應活化能及擴展可由快速、放熱、氧化或自由 基反應’諸如02或〇^4與Λ/g或J/之反應提供,其中諸如 CFX&F及〇2及〇之自由基用以最終經由諸如AC之載體接受 來自催化劑之電子《其他單獨或組合氣化劑或自由基源可 選自以下之群:〇2 ' 〇3、、见p3、M2S208(M為鹼金 屬)、S、CS2及S02、Mnl2、EuBr2、AgCl及電子受體反應 部分中給出之其他氧化劑或自由基源。 142257.doc •57· 201104948 氧化劑較佳接受至少兩個電子。相應陰離子可為<、 s (四硫乙二酸根)、5〇32'及sof。可接受來自催化期 間一-人電離之催化劑,諸如Nan及u(方程式(25-27)及(37- 39))的兩個電子。電子受體添加至反應混合物或反應器適 用於本發明之所有電池實施例,諸如固體燃料及非均勻催 化劑實施例以及電解池及電漿電池,諸如輝光放電、RF、 微波及障壁電極電漿電池及以連續或脈衝模式運作之電漿 電解池。電子導電型、較佳不起反應之載體(諸如AC)亦可 添加至各個此等電池實施例之反應物中。微波電漿電池之 一實施例包含氫解離器,諸如電漿腔室内部之金屬表面, 以支撐氫原子。 在實施例中,物質混合物、化合物或反應混合物之物 質’諸如催化劑源、能量反應源(諸如金屬及氧源、鹵素 源及自由基源中之至少一者)及載體可組合使用。化合物 或反應混合物之物質的反應元素亦可組合使用。舉例而 言’氟源或氯源可為NxFj^NxCly之混合物,或齒素可混 合於諸如化合物NxFyClr中。組合可由熟習此項技術者藉由 常規實驗來確定。 a.放熱反應 在一實施例中,反應混合物包含催化劑源或催化劑(諸 如NaH、K及Li中之至少一者)及氫源或氫及至少一種進行 反應之物質。反應較佳完全放熱且較佳具有快速動力學 以便其為低能量氫催化劑反應提供活化能。反應可為氧化 反應。合適氧化反應為包含氧之物質(諸如溶劑,較佳_ 142257.doc -58 - 201104948 溶劑)與金屬(諸如A卜Ti、Be、Si、p、稀土金屬、鹼金屬 及鹼土金屬中之至少一者)的反應。放熱反應更佳形成鹼 金屬或驗土金屬鹵化物、較佳MgF2,或A卜Si、P及稀土 金屬之崮化物。合適之函化物反應為包含鹵素之物質(諸 如溶劑,較佳碳氟化合物溶劑)與金屬及金屬氫化物中之 至少一者(諸如A1、稀土金屬、鹼金屬及鹼土金屬中之至 少一者)的反應。金屬或金屬氫化物可為催化劑或催化劑 源,諸如NaH、K或Li。反應混合物可至少包含NaH及分別 具有產物NaCl及NaF之NaAlCU或NaAlF4。反應混合物可 至少包含NaH、具有產物NaF之含氟溶劑。 一般而言,為低能量氫反應提供活化能之放熱反應的產 物可為金屬氧化物或金屬函化物,較佳金屬氟化物。合適 產物為 Al2〇3、M2〇3(M=稀 土金屬)、Ti02、Ti2〇3、Si02、 PF3 或 PF5、A1F3、MgF2、MF3(M=稀 土金屬)、NaF、Pd/C, TiC or WC can be converted into an atomic form by a typical metal form of a catalyst, such as a catalyst and a molecule, and the ionic form can be converted into a molecular form. The carrier preferably has a high surface area and electrical conductivity in view of surface modification upon reaction with other materials of the reaction mixture. The reaction of the atomic hydrogen to form a low-energy hydrogen requires a catalyst such as h, [or an open catalyst, and an atomic hydrogen, which serves as a catalyst in a synergistic reaction and an atomic hydrogen source. The reaction step of atomic hydrogen to an integral multiple of the catalyst of 27.2 eF for non-radiative energy transfer produces an ionization catalyst and free electrons that cause the reaction to stop rapidly due to charge buildup. A carrier such as AC can also act as a conductive electron acceptor and add a final electron acceptor reactant comprising an oxidant radical or its source to the electrons in the reaction mixture to ultimately remove the catalyst released from the formation of low energy hydrogen. 'A reducing agent can be added to the reaction mixture to promote the oxidation reaction. The synergistic electron acceptor reaction is preferably an exothermic reaction to heat the reactants and increase the rate. The activation energy and expansion of the reaction can be provided by a reaction of a fast, exothermic, oxidative or free radical reaction such as 02 or 〇4 with Λ/g or J/, wherein radicals such as CFX&F and 〇2 and hydrazine are ultimately used via The carrier such as AC accepts electrons from the catalyst. "Other separate or combined gasifying agents or free radical sources may be selected from the group consisting of: 〇 2 ' 〇 3, see p3, M2S 208 (M is an alkali metal), S, CS 2 and S02, Mnl2, EuBr2, AgCl and other oxidant or free radical sources given in the electron acceptor reaction section. 142257.doc •57· 201104948 The oxidant preferably accepts at least two electrons. The corresponding anion can be <, s (tetrathiorutate), 5 〇 32' and sof. Catalysts derived from one-human ionization during the catalyst, such as Nan and u (equations (25-27) and (37-39)), can be accepted. Addition of an electron acceptor to a reaction mixture or reactor is suitable for all battery embodiments of the invention, such as solid fuel and heterogeneous catalyst embodiments, as well as electrolytic cells and plasma batteries, such as glow discharge, RF, microwave, and barrier electrode plasma batteries And a plasma electrolytic cell operating in continuous or pulsed mode. Electronically conductive, preferably non-reactive carriers such as AC may also be added to the reactants of each of these battery embodiments. An embodiment of a microwave plasma battery includes a hydrogen dissociator, such as a metal surface inside a plasma chamber, to support hydrogen atoms. In the examples, the substance mixture, the compound or the substance of the reaction mixture such as a catalyst source, an energy reaction source such as at least one of a metal and an oxygen source, a halogen source, and a radical source, and a carrier may be used in combination. The reaction elements of the compound or the substance of the reaction mixture may also be used in combination. For example, the fluorine source or chlorine source may be a mixture of NxFj^NxCly, or the dentate may be mixed in, for example, the compound NxFyClr. Combinations can be determined by routine experimentation by those skilled in the art. a. Exothermic Reaction In one embodiment, the reaction mixture comprises a catalyst source or catalyst (such as at least one of NaH, K, and Li) and a hydrogen source or hydrogen and at least one species that reacts. The reaction is preferably completely exothermic and preferably has a fast kinetics to provide activation energy for the low energy hydrogen catalyst reaction. The reaction can be an oxidation reaction. Suitable oxidation reactions are those comprising oxygen (such as solvents, preferably 142 257 257 - doc - 58 - 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 The reaction). The exothermic reaction is more preferred to form an alkali metal or soil metal halide, preferably MgF2, or a Si, P and a rare earth metal halide. Suitable reactants are at least one of a halogen-containing material (such as a solvent, preferably a fluorocarbon solvent) and a metal and metal hydride (such as at least one of A1, a rare earth metal, an alkali metal, and an alkaline earth metal). Reaction. The metal or metal hydride can be a catalyst or a catalyst source such as NaH, K or Li. The reaction mixture may comprise at least NaH and NaAlCU or NaAlF4 having the products NaCl and NaF, respectively. The reaction mixture may contain at least NaH, a fluorine-containing solvent having the product NaF. In general, the product of the exothermic reaction which provides activation energy for the low energy hydrogen reaction may be a metal oxide or a metal complex, preferably a metal fluoride. Suitable products are Al2〇3, M2〇3 (M=sparse metal), Ti02, Ti2〇3, SiO2, PF3 or PF5, A1F3, MgF2, MF3 (M=sparse metal), NaF,

NaHF2、KF、KHF2、LiF及LiHF2。在Ti進行放熱反應之一 貝施例中’催化劑為具有27.2 eV之第二電離能的ή2+(方程 式(5)中m=l)。反應混合物可包含以下至少兩者:NaI1、 Na、NaNH2、NaOH、鐵氟龍(Teflon)、氟化碳及Ti源(諸如 Pt/Ti或Pd/Ti)。在A1進行放熱反應之一實施例中,催化劑 為在表2中給出之A1H。反應混合物可包含以下至少兩者: NaH、A1、碳粉末、碳氟化合物(較佳溶劑,諸如六氟苯或 全氟庚烧)、Na、NaOH、Li、LiH、K、KH及 R-Ni。較佳 地’提供活化能之放熱反應之產物再生以形成用於形成低 能量氫及釋放相應動力之另一循環的反應物。金屬氟化物 142257.doc •59· 201104948 產物較佳藉由電解而再生成金屬及氟氣。電解質可包含共 晶混合物。金屬可經氫化物化且碳產物及任何及煙產 物可經氟化以分別形成初始金屬氫化物及碳氟化合物溶 劑。 在活化低能量氫轉變反應之放熱反應的一實施例中,稀 土金屬(Μ)、Al、Ti及Si之群中之至少一者氧化成相應氧 化物’分別諸如M2〇3、AI2O3、Ti2〇3及Si02。氧化劑可為 醚溶劑,諸如1,4-苯并二噁烷(BDO),且可進一步包含碳 氟化合物,諸如六氟苯(HFB)或全氟庚烷,以加速氧化反 應。在一例示性反應中’混合物包含NaH、活性碳、以與 Ti中之至少一者及BDO與HFB中之至少一者。在8丨作為還 原劑之狀況下’產物Si〇2可藉由在高溫下H2還原或藉由與 碳反應形成Si及CO及C〇2而再生成Si。形成低能量氳之反 應混合物之某一實施例包含催化劑或催化劑源(諸如Na、 NaH、K、KH、Li及LiH中之至少一者)、較佳具有快速動 力學之活化Η之催化反應以形成低能量氫的放熱反應物源 或放熱反應物及載體。放熱反應物可包含氧源及與氧反應 形成氧化物之物貝。對於X及y為整數而言,氧源較佳為 h2o、〇2、h2o2、Μπ〇2、氧化物、碳氧化物(較佳或 C〇2)、氮氧化*NxOy(諸如Ν2〇及ν〇2)、硫氧化物3外(較 佳諸如M2SxOy之氧化劑(Μ為鹼金屬),其視情況可與諸如 銀離子之氧化催化劑一起使用)、clx〇y(諸如Ch〇及較佳來 自NaCl.〇2之Cl〇2)、濃酸及其混合物(諸如耶〇2、hn〇3、 H2S〇4、H2S〇3、HC丨及HF,較佳酸式硝鏽離子(吨+))、 142257.doc •60- 201104948NaHF2, KF, KHF2, LiF and LiHF2. In one of the exothermic reactions of Ti, the catalyst is a ruthenium 2+ having a second ionization energy of 27.2 eV (m = 1 in the equation (5)). The reaction mixture may comprise at least two of: NaI1, Na, NaNH2, NaOH, Teflon, carbon fluoride, and Ti sources (such as Pt/Ti or Pd/Ti). In one embodiment where A1 is subjected to an exothermic reaction, the catalyst is A1H given in Table 2. The reaction mixture may comprise at least two of the following: NaH, A1, carbon powder, fluorocarbon (preferably solvent such as hexafluorobenzene or perfluoroheptane), Na, NaOH, Li, LiH, K, KH and R- Ni. Preferably, the product of the exothermic reaction providing activation energy is regenerated to form a reactant for another cycle of forming low energy hydrogen and releasing corresponding power. Metal Fluoride 142257.doc •59· 201104948 The product preferably regenerates metal and fluorine by electrolysis. The electrolyte may comprise a eutectic mixture. The metal can be hydrided and the carbon product and any of the tobacco products can be fluorinated to form the initial metal hydride and fluorocarbon solvent, respectively. In an embodiment of the exothermic reaction for activating a low energy hydrogen shift reaction, at least one of the group of rare earth metals (Μ), Al, Ti, and Si is oxidized to a corresponding oxide 'such as M2〇3, AI2O3, Ti2〇, respectively. 3 and Si02. The oxidizing agent may be an ether solvent such as 1,4-benzodioxane (BDO), and may further contain a fluorocarbon such as hexafluorobenzene (HFB) or perfluoroheptane to accelerate the oxidation reaction. In an exemplary reaction, the mixture comprises at least one of NaH, activated carbon, at least one of Ti, and BDO and HFB. In the case of 8 丨 as a reducing agent, the product Si 〇 2 can regenerate Si by reduction of H 2 at a high temperature or by formation of Si and CO and C 〇 2 by reaction with carbon. An embodiment of the reaction mixture forming a low energy enthalpy comprises a catalyst or a catalyst source (such as at least one of Na, NaH, K, KH, Li, and LiH), preferably a catalytic reaction with fast kinetic activation enthalpy An exothermic reactant source or exothermic reactant and carrier that form low energy hydrogen. The exothermic reactant may comprise an oxygen source and a shell that reacts with oxygen to form an oxide. For the integers of X and y, the oxygen source is preferably h2o, 〇2, h2o2, Μπ〇2, oxide, carbon oxide (preferably or C〇2), oxynitride*NxOy (such as Ν2〇 and ν). 〇2), sulphur oxide 3 (preferably an oxidant such as M2SxOy (an alkali metal), which may optionally be used together with an oxidation catalyst such as silver ions), clx〇y (such as Ch〇 and preferably from NaCl) 〇2 of Cl 〇 2), concentrated acid and mixtures thereof (such as yoke 2, hn 〇 3, H 2 S 〇 4, H 2 S 〇 3, HC 丨 and HF, preferably acid nitrite (ton +)), 142257.doc •60- 201104948

NaOCl、Ix〇y(較佳 I2〇5)、px0y、Sx〇y、無機化合物(諸如 亞硝酸鹽、硝酸鹽、氣酸鹽、硫酸鹽、磷酸鹽、金屬氧化 物(諸如氧化鈷)及催化劑之氧化物或氫氧化物(諸如Na〇H) 及陽離子為催化劑源(諸如Na ' K及U)之過氯酸鹽之一)之 氧陰離子、有機化合物(諸如趟,較佳二曱氧基乙烧 _ 噁烷及1,4-苯并二噁烷(BDO)之一)之含氧官能基,且反應 物質可包含稀土金屬(Μ)、A卜Ti及Si之群之至少一者, 且相應氧化物分別為Μα;、八丨2〇3、丁匕仏及Si〇2。反應物 質可包含以下之群至少一者之氧化物產物的金屬或元素: Ah〇3氧化铭、La2〇3氧化鑭、Mg〇氧化鎂、Ti2〇3氧化鈦、 DY203氧化鏑、Er2〇3氧化铒、;gU2〇3氧化銪、u〇H氫氧化 鋰、H〇2〇3氧化鈥、LUO氧化鋰、以〇3氧化鏑、灿2〇5氧 化鈮、Nd203氧化鈦、Si02氧化矽、Pr2〇3氧化镨、Sc2〇3氧 化銃、srsi〇3偏矽酸锶、8叫〇3氧化釤、”2〇3氧化铽、NaOCl, Ix〇y (preferably I2〇5), px0y, Sx〇y, inorganic compounds (such as nitrites, nitrates, gasates, sulfates, phosphates, metal oxides (such as cobalt oxide) and catalysts An oxide or hydroxide (such as Na〇H) and an oxyanion, an organic compound (such as ruthenium, preferably dioxanyloxy) of a catalyst source (such as one of the perchlorates of Na'K and U). An oxygen-containing functional group of ethyl bromide and one of 1,4-benzodioxane (BDO), and the reactive material may comprise at least one of a group of rare earth metals (Μ), A, Ti, and Si. And the corresponding oxides are Μα; 丨 丨 2 〇 3, 匕仏 匕仏 and Si 〇 2, respectively. The reaction material may comprise a metal or an element of an oxide product of at least one of the following groups: Ah〇3 oxide, La2〇3 yttrium oxide, Mg lanthanum oxide, Ti2〇3 titanium oxide, DY203 yttrium oxide, Er2〇3 oxidation.铒, gU2〇3 yttrium oxide, u〇H lithium hydroxide, H〇2〇3 yttrium oxide, LUO lithium oxide, yttrium oxide lanthanum, lanthanum cerium oxide, Nd203 titanium oxide, SiO2 yttrium oxide, Pr2 〇3 yttrium oxide, Sc2〇3 yttrium oxide, srsi〇3 bismuth citrate, 8 〇3 yttrium oxide, “2〇3 yttrium oxide,

Tm2〇3氧化铥、ΙΑ氧化釔及^山5氧化鈕、B2〇3氧化硼及 氧化錄。載體可包含碳,較佳活性碳。金屬或元素可為以Tm2〇3 yttrium oxide, yttrium oxide yttrium and ^5 oxidized button, B2 〇3 boron oxide and oxidation record. The support may comprise carbon, preferably activated carbon. Metal or element can be

Dy、Er、Eu、Li、Ho、 下至少一者:Al、La、Mg、ή、Dy, Er, Eu, Li, Ho, at least one of the following: Al, La, Mg, ή,

Lu、Nb、Nd、Si、Pr、Sc、Lu, Nb, Nd, Si, Pr, Sc,

Sr、Sm、Tb、Tm、Y、Ta、 B、Zr、S、P、C及其氫化物。 在另一實施例中’氧源可為以下至少一者:氧化物,諸 如M2〇,其中Μ為驗金屬,較佳U2〇、Na2(^K2〇;過氧 化物,諸如M2〇2,其中M為驗金屬,較佳Li2〇2、Na2〇2及 κ2〇2;及超氧化物,諸如M〇2,其中_鹼金屬,較佳 Li2〇2、Na202及K2〇2。離子過氧化物可進一步包含以、^ 142257.doc -61 - 201104948 或B a之過氧化物。 在另一實施例中,氧源與較佳具有快速動力學之活化Η 形成低能量氫之催化反應的放熱反應物源或放熱反應物中 之至少一者包含以下之群中之一或多者:ΜΝ〇3、ΜΝΟ、 μνο2、Μ3Ν、Μ2ΝΗ、ΜΝΗ2、MX、ΝΗ3、ΜΒΗ4、 ΜΑ1Η4、Μ3Α1Η6、ΜΟΗ、M2S、MHS、MFeSi、M2C〇3、 mhco3 ' m2s〇4 ' mhs〇4 ' Μ3ΡΟ4 ' μ2ηρο4 ' μη2ρο4 ' Μ2Μ0Ο4、MNb〇3、Μ2Β4〇7(四删酸链)、ΜΒ〇2、M2WO4、 MA1C14、MGaCl4、M2Cr04、M2Cr207、M2Ti03、MZr03、 MAIO2、MC0O2、MGa〇2、M2Ge〇3、MM112O4、M4Si〇4、 M2Si03、MTa03、MCuC14、MPdCl4、MV03、MI〇3、 MFe02、MI04、MC1〇4、MScOn、MTiOn、MVOn、 MCrOn、MCr2On、MMn2〇n、MFeOn、MCoOn、MNiOn、 MNi2On、MCuOn及 MZnOn(其中 M為 Li、Na或 K且 n=l、2、 3或4)、氧陰離子、強酸氧陰離子、氧化劑、分子氧化劑 (諸如 V2〇3、I2O5、Mn02、Re2〇7、Cr〇3、Ru〇2、AgO、 PdO、Pd02、PtO、Pt02、I204、I205、I209、S〇2、S03、 C O 2、N 2 O、N O、N 〇 2、N 2 O 3、N 2 O 4、N 2 〇 5、C12 〇、 C102、CI2O3、Cl2〇6 ' CI2O7、P〇2、P2O3 及 P2O5) ' NH4X(其中X為硝酸根或熟習此項技術者已知之其他合適 陰離子,諸如包含F_、cr、Br_、Γ、N〇3_、NO/、S〇42·、 HS04-、Co02、ICV、I04、Ti03_、Cr(V、Fe02-、P043· 、HP042·、Η2Ρ〇4·、ν〇3·、C104-及 Cr2〇72·及反應物之其他 陰離子之群之一)。反應混合物可另外包含還原劑。在一 142257.doc -62- 201104948 貫施例中,N2〇5由反應物混合物之反應、諸如hn〇3與 P2O5 根據 2P2〇5 + 12 HN03 至 4H3P04+6N205 反應形成。 在氧或包含氧之化合物參與放熱反應的一實施例中,〇2 可用作催化劑或催化劑源。氧分子鍵能為5.丨65 eV,且氧 原子之第一、第二及第三電離能分別為13 618〇6 、 35.1 1730 eF及 54.9355 反應(924+〇2+、沪及 2〇 —2〇+分別提供約五h 2倍、4倍及1倍之淨焓,且包含藉由 接受來自Η之此等能量以引起低能量氫形成的形成低能量 氫之催化劑反應。 另外,活化低能量氫反應之放熱反應源可為金屬合金形 成反應,較佳藉由熔融Α1而引發之Pd與Α1之間的金屬合金 形成反應。放熱反應較佳產生高能粒子以活化低能量氫形 成反應。反應物可為熱原質或煙火組合物。在另一實施例 中,可藉由在諸如在約1000·5000χ:之範圍内、較佳在約 1500-2500°C之範圍内的極高溫度下運作反應物來提供活 化能。反應容器可包含高溫不鏽鋼合金、耐火金屬或合 金、氧化鋁或碳。高反應物溫度可藉由加熱反應器或藉由 放熱反應來實現。 放熱反應物可包含齒素、較佳氟或氯及與氟或氯反應以 分別形成氟化物或氯化物之物質。合適氟源為碳氧化合物 (諸如CF4、六氟苯及十六氟庚烷)、氟化氙(諸如又#2、Sr, Sm, Tb, Tm, Y, Ta, B, Zr, S, P, C and their hydrides. In another embodiment, the 'oxygen source' may be at least one of: an oxide such as M2, wherein Μ is a metal, preferably U2〇, Na2(^K2〇; peroxide, such as M2〇2, wherein M is a metal, preferably Li2〇2, Na2〇2 and κ2〇2; and superoxide such as M〇2, wherein the alkali metal, preferably Li2〇2, Na202 and K2〇2. Further comprising a peroxide of 142257.doc -61 - 201104948 or B a. In another embodiment, the exothermic reaction of the oxygen source with a catalytic reaction which preferably forms a low energy hydrogen with fast kinetic activation enthalpy At least one of the source or exothermic reactants comprises one or more of the following groups: ΜΝ〇3, ΜΝΟ, μνο2, Μ3Ν, Μ2ΝΗ, ΜΝΗ2, MX, ΝΗ3, ΜΒΗ4, ΜΑ1Η4, Μ3Α1Η6, ΜΟΗ, M2S, MHS, MFeSi, M2C〇3, mhco3 ' m2s〇4 ' mhs〇4 ' Μ3ΡΟ4 ' μ2ηρο4 ' μη2ρο4 ' Μ2Μ0Ο4, MNb〇3, Μ2Β4〇7 (four-deletion chain), ΜΒ〇2, M2WO4, MA1C14, MGaCl4, M2Cr04, M2Cr207, M2Ti03, MZr03, MAIO2, MC0O2, MGa〇2, M2Ge〇3, MM112O4, M4Si〇4, M2S I03, MTa03, MCuC14, MPdCl4, MV03, MI〇3, MFe02, MI04, MC1〇4, MScOn, MTiOn, MVOn, MCrOn, MCr2On, MMn2〇n, MFeOn, MCoOn, MNiOn, MNi2On, MCuOn, and MZnOn (where M Is Li, Na or K and n = 1, 2, 3 or 4), oxyanion, strong acid oxyanion, oxidant, molecular oxidant (such as V2〇3, I2O5, Mn02, Re2〇7, Cr〇3, Ru〇2 , AgO, PdO, Pd02, PtO, Pt02, I204, I205, I209, S〇2, S03, CO 2, N 2 O, NO, N 〇 2, N 2 O 3, N 2 O 4, N 2 〇 5 , C12 〇, C102, CI2O3, Cl2〇6 'CI2O7, P〇2, P2O3 and P2O5) 'NH4X (where X is nitrate or other suitable anion known to those skilled in the art, such as containing F_, cr, Br_, Γ, N〇3_, NO/, S〇42·, HS04-, Co02, ICV, I04, Ti03_, Cr (V, Fe02-, P043·, HP042·, Η2Ρ〇4·, ν〇3·, C104- And one of the groups of Cr2〇72· and other anions of the reactants). The reaction mixture may additionally comprise a reducing agent. In a 142257.doc-62-201104948 embodiment, N2〇5 is formed by the reaction of a reactant mixture, such as hn〇3 and P2O5, according to 2P2〇5 + 12 HN03 to 4H3P04+6N205. In an embodiment where oxygen or a compound comprising oxygen participates in an exothermic reaction, ruthenium 2 can be used as a catalyst or catalyst source. The oxygen molecular bond energy is 5.丨65 eV, and the first, second and third ionization energies of the oxygen atom are 13 618〇6, 35.1 1730 eF and 54.9355 respectively (924+〇2+, Shanghai and 2〇— 2〇+ provides a net enthalpy of about 2, 2, and 1 times, respectively, and contains a low-energy hydrogen-forming catalyst reaction by accepting such energy from hydrazine to cause low-energy hydrogen formation. The exothermic reaction source of the energy hydrogen reaction may be a metal alloy forming reaction, preferably a metal alloy formed by melting the ruthenium 1 between Pd and Α 1. The exothermic reaction preferably produces high energy particles to activate the low energy hydrogen to form a reaction. The material may be a pyrogen or pyrotechnic composition. In another embodiment, it may be at an extremely high temperature, such as in the range of about 1000·5000 Å: preferably about 1500-2500 °C. The reactants are operated to provide activation energy. The reaction vessel may comprise a high temperature stainless steel alloy, a refractory metal or alloy, alumina or carbon. The high reactant temperature may be achieved by heating the reactor or by an exothermic reaction. The exothermic reactant may comprise teeth , preferably fluorine or chlorine And a substance which reacts with fluorine or chlorine to form a fluoride or a chloride, respectively. Suitable fluorine sources are carbon oxides (such as CF4, hexafluorobenzene and hexadecane heptane), and cesium fluoride (such as #22).

XeF4 及 XeF6)、BxXy(較佳 Bf3、BA、π!〗或版3)、 SFX(諸如氟矽烷)、氟化氮NxFy(較佳NF3)、nf3〇 ' 、XeF4 and XeF6), BxXy (better Bf3, BA, π! or version 3), SFX (such as fluorodecane), nitrogen fluoride NxFy (preferably NF3), nf3〇 ',

SxXy(較佳SC12或SxXy (better SC12 or

BiFx(較佳 BiF5)、NxCly(較佳 Nci3) 142257.doc .63- 201104948BiFx (better BiF5), NxCly (better Nci3) 142257.doc .63- 201104948

SxFy,X為鹵素;X及y為整數,諸如SF4、SF6或S2F10)、氟 化磷、M2SiF6(其中Μ為鹼金屬,諸如及尺2幻F6)、 M57F6(其中 Μ 為鹼 土金屬,諸如 、 脱PF6(其中Μ為鹼金屬)、Μ/^2(其中Μ為鹼金屬,諸如 NaHF2 反 KHF2)、K2TaF7、KBF4、K2MnF6 反 K2ZrF6(矣中熟 望可使用其他類似化合物’诸如具有另一驗金屬或驗土金 屬取代、諸如Li、Na或K之一作為鹼金屬的化合物)。合適 之氣源為氣氣、SbCls及碳氣化合物,諸如CC14及氣仿。 反應物質可包含形成相應氟化物或氣化物之鹼金屬或鹼土 金屬或氫化物 '稀土金屬(Μ)、A卜Si、Ti及P之群中至少 一者。反應物鹼金屬較佳對應於催化劑之鹼金屬,鹼土金 屬氫化物為MgH2 ’稀土金屬為La,且Ai為奈米粉末。載 體可包含碳、較佳活性碳、中孔碳及用於。離子電池中之 碳。反應物可呈任何莫耳比率。反應物質與氟或氯較佳呈 約如氟化物或氣化物之元素之化學計量比,催化劑過量, 較佳呈與氟或氣反應之元素幾乎相同之莫耳比率,且载體 過量。 放熱反應物可包含鹵素氣體(較佳氣或漠)或鹵素氣體 (諸如HF、Ha、HBr、HI,較佳CF4或cci4)及與函素反 形成鹵化物之物質。齒素源亦可為氧源,諸如CAXr, 中X為齒素,且X、yAr為整數且為此項技術中已知。反 物質可包含形成相應函化物之鹼金屬或鹼土金屬或氫 :、稀土金屬、A1、si及p之群中至少一者。反應物驗 屬較佳對應於催化劑之驗㈣,驗土金屬氫化物 142257.doc -64- 201104948SxFy, X is halogen; X and y are integers, such as SF4, SF6 or S2F10), phosphorus fluoride, M2SiF6 (wherein strontium is an alkali metal, such as ft 2 F6), M57F6 (where Μ is an alkaline earth metal, such as, De-PF6 (wherein strontium is an alkali metal), Μ/^2 (where Μ is an alkali metal such as NaHF2 anti-KHF2), K2TaF7, KBF4, K2MnF6 anti-K2ZrF6 (a similar compound can be used in the sputum), such as having another test Metal or soil-replacement metal substitution, such as one of Li, Na or K as an alkali metal compound. Suitable gas sources are gas, SbCls and carbon gas compounds such as CC14 and gas. The reaction substance may comprise the corresponding fluoride. Or at least one of an alkali metal or alkaline earth metal of a vapor or a group of hydrides 'rare earth metal (Μ), A, Si, Ti, and P. The alkali metal of the reactant preferably corresponds to an alkali metal of the catalyst, an alkaline earth metal hydride It is MgH2 'the rare earth metal is La, and Ai is a nano powder. The carrier may contain carbon, preferably activated carbon, mesoporous carbon and carbon used in the ion battery. The reactant may be in any molar ratio. Fluorine or chlorine is preferably about such as fluoride or gasification The stoichiometric ratio of the elements, the excess of the catalyst, preferably the molar ratio of the element which reacts with fluorine or gas, and the excess of the support. The exothermic reactant may comprise a halogen gas (preferably gas or desert) or a halogen gas ( Such as HF, Ha, HBr, HI, preferably CF4 or cci4) and substances which form halides with the elements. The acne source may also be an oxygen source, such as CAXr, where X is dentate and X, yAr are integers And is known in the art. The antimatter may comprise at least one of an alkali metal or an alkaline earth metal or hydrogen: a rare earth metal, a group of A1, si and p which form a corresponding compound. The reactants preferably correspond to the catalyst. Test (4), soil test metal hydride 142257.doc -64- 201104948

MgH2 ’稀土金屬為La,且…為奈米粉末。載體可包含 礙,較佳活性碳。反應物可呈任何莫耳比率。反應物質與 鹵素軏佳呈約相等化學計量&,催化 素反應之元素幾乎相同之莫耳比率,且载體過量。在4 施例中,反應物包含:催化劑源或催化劑,諸如Na、The MgH 2 ' rare earth metal is La, and ... is a nano powder. The carrier may contain, preferably, activated carbon. The reactants can be in any molar ratio. The reaction material is preferably about the same stoichiometric amount as the halogen, and the element of the catalytic reaction is almost the same molar ratio, and the carrier is in excess. In four embodiments, the reactants comprise: a catalyst source or a catalyst, such as Na,

NaH N K ' ΚΗ ' Li λ τ itj » u · ^ *_ 产 UH及&,鹵素氣體,較佳氯氣或溴 氣’ Mg、MgH2、稀土金屬(較佳La、㈤或、A1中之至 少一者;及載體,較佳碳;諸如活性碳。 b.自由基反應 在貫施例中,放熱反應為自由基反應,較佳函或氧自 由基反應。鹵自由基源可為鹵素(較佳hicid或碳氟化合 勿(較佳CF4) F自&基源為s2f10。包含齒素氣體之反應混 Q物可進一步包含自由基引發劑。反應器可包含紫外光源 以形成自由基、較佳鹵素自由基且更佳氯或氟自由基。自 由基引發劑為此項技術中通常已知之自由基引發劑,諸如 過氧化物、偶氮化合物及金屬離子源,諸如金屬鹽,較佳 鹵化鈷,諸如作為c〇2+源之c〇cl2或作為Fe2+源之FeS〇4。 後者較佳與諸如H2〇2或〇2之氧物質反應。自由基可為中性 的。 氧源可包含原子氧源。氧可為單線態氧。在一實施例 中,單線態氧由NaOCl與出〇2之反應形成。在一實施例 中,氧源包含〇2且可進一步包含自由基源或自由基引發劑 以擴展自由基反應,較佳〇原子之自由基反應。自由基源 或氧源可為臭氧或臭氧化物中之至少一者。在一實施例 142257.doc •65- 201104948 中,反應器包含臭氧源,諸如在氧中放電,以向反應混合 物提供臭氧。 自由基源或氧源可進一步包含以下至少一者:過氧化合 物、過氧化物、H2〇2、含有偶氮基之化合物、n20、 Naocn、芬頓試劑(Fenton's reagent)或類似試劑、OH自由 基或其來源源、過既酸根離子或其來源(諸如驗金屬或驗 土金屬過氙酸鹽、較佳過氙酸鈉(Na4Xe〇6)或過氙酸鉀 (K:4Xe〇6)、四氧化氙(xe〇4)及過氙酸(H4Xe〇6))及金屬離子 來源(諸如金屬鹽)。金屬鹽可為以下至少一者:FeS〇4、 A1C13、TiCl3及較佳鹵化鈷,諸如作為c〇2+源之CoCl2。 在一實施例中,諸如C1之自由基由諸如NaH+MgH2+諸如 活性碳(AC)之載體+諸如Cl2之鹵素氣體的反應混合物中諸 如Ch之鹵素形成。自由基可由ci2與諸如CH4之烴的混合 物在諸如超過200°C之高溫下反應形成。鹵素可相對於烴 莫耳過量。碳氯化合物產物及C1自由基可與還原劑反應以 提供用於形成低能量氫之活化能及途徑。可使用合成氣體 (合成氣)及費歇爾-托羅普希反應(Fischer-Tropsch reaction) 或藉由將碳直接氫還原成甲烷使碳產物再生。反應浥合物 可包含在諸如超過200°C之高溫下的〇2與Cl2之混合物。混 合物可反應形成ClxOy(x及y為整數),諸如CIO、C120及 C102。反應混合物可包含可反應形成HC1之在諸如超過 200°C之高溫下的私及Cl2。反應混合物可包含可反應形成 H20之在諸如超過50°C之略微高溫下的H2及02及複合劑(諸 如Pt/Ti、Pt/C或Pd/C)。複合劑可在諸如在超過1大氣壓範 142257.doc -66 - 201104948 圍内、較佳在約2至100大氣壓之範圍内的高壓下運作。反 應混合物可為非化學計量以利於自由基及單線態氧形成。 系統可進一步包含紫外光或電漿源以形成自由基,諸如 RF、微波或輝光放電、較佳高壓脈衝、電漿源。反應物可 進一步包含催化劑以形成諸如C1、〇及Η之原子自由基、 單線態氧及臭氧中之至少一者。催化劑可為貴金屬,諸如 Pt。在形成C1自由基之一實施例中,Pt催化劑維持在超過 氯化翻分解溫度(諸如分別具有5 8 1 °C、4 3 51及3 2 7。〇之分 解溫度的PtCl2、PtCl3及Ptcu)之溫度下。在一實施例中, 藉由將金屬鹵化物溶解於Pt、pd或其鹵化物不可溶之合適 浴劑中且移除溶液,可自包含金屬鹵化物之產物混合物回 收Pt。可包含碳及Pt或Pd鹵化物之固體可經加熱以藉由相 應鹵化物分解而形成碳上pt或Pd。 在一實施例中,AO、N〇2或N◦氣體為添加之反應混合 物。AO及N〇2可用作NO自由基源。在另一實施例中,N〇 自由基在電池中較佳藉由NH3氧化而產生。反應可為nH3 與〇2在鉑或鉑·鍺上在高溫下反應β N〇、n〇2&N2〇可由已 知之工業方法,诸如藉由哈柏法(Haber process)、接著奧 斯特瓦爾德法(Ostwald process)產生。在一實施例中,例 示性步驟順序為: ^紐3涵特ΪΓ爾德¥册為〇,而2。 (53) 特又言之’哈柏法可用以在高溫及高壓下使用諸如含有 某種氧化物之α鐵的催化劑由&及產生NH3。奥斯特瓦 142257.doc •67- 201104948NaH NK ' ΚΗ ' Li λ τ itj » u · ^ *_ Producing UH and &, halogen gas, preferably chlorine or bromine gas 'Mg, MgH2, rare earth metal (preferably La, (5) or A1 And a carrier, preferably carbon; such as activated carbon. b. Free radical reaction In the examples, the exothermic reaction is a free radical reaction, a preferred function or an oxygen radical reaction. The halogen radical source may be a halogen (preferably Hicid or fluorocarbon (preferably CF4) F from & base source is s2f10. The reaction mixture containing dentate gas may further comprise a free radical initiator. The reactor may comprise an ultraviolet light source to form a radical, preferably Halogen radicals and more preferably chlorine or fluorine radicals. Free radical initiators are free radical initiators generally known in the art, such as peroxides, azo compounds and metal ion sources, such as metal salts, preferably cobalt halides. For example, c〇cl2 as a source of c〇2+ or FeS〇4 as a source of Fe2+. The latter preferably reacts with an oxygen species such as H2〇2 or 〇2. The radical may be neutral. The source of oxygen may contain atoms. Oxygen source. Oxygen may be singlet oxygen. In one embodiment, singlet oxygen is N The reaction of aOCl with the oxime 2 is formed. In one embodiment, the oxygen source comprises ruthenium 2 and may further comprise a source of free radicals or a free radical initiator to extend the free radical reaction, preferably a free radical reaction of the ruthenium atom. Or the source of oxygen may be at least one of ozone or ozonide. In an embodiment 142257.doc • 65-201104948, the reactor contains an ozone source, such as a discharge in oxygen to provide ozone to the reaction mixture. Or the oxygen source may further comprise at least one of: a peroxy compound, a peroxide, H 2 〇 2, an azo group-containing compound, n20, Naocn, Fenton's reagent or the like, OH radical or Source, over acid ion or its source (such as metal or soil test metal perrhenate, preferably sodium perrhenate (Na4Xe〇6) or potassium perrhenate (K:4Xe〇6), osmium tetroxide (xe〇4) and perrhenic acid (H4Xe〇6)) and a source of metal ions (such as a metal salt). The metal salt may be at least one of: FeS〇4, A1C13, TiCl3, and preferably cobalt halide, such as c 〇2+ source of CoCl2. In an embodiment, The radical of C1 is formed by a halogen such as Ch in a reaction mixture such as a carrier of NaH+MgH2+ such as activated carbon (AC) + a halogen gas such as Cl2. The radical may be a mixture of ci2 and a hydrocarbon such as CH4 at, for example, over 200 °C. The reaction is formed at a high temperature. The halogen may be excessive relative to the hydrocarbon mole. The chlorocarbon product and the C1 radical may be reacted with a reducing agent to provide an activation energy and a pathway for forming low-energy hydrogen. Syngas (syngas) may be used. And the Fischer-Tropsch reaction or the regeneration of the carbon product by direct hydrogen reduction of carbon to methane. The reaction composition may comprise a mixture of ruthenium 2 and Cl 2 at a high temperature such as over 200 °C. The mixture can react to form ClxOy (x and y are integers) such as CIO, C120 and C102. The reaction mixture may comprise private and Cl2 which are reactive to form HCl at elevated temperatures such as over 200 °C. The reaction mixture may comprise H2 and 02 and a complexing agent (such as Pt/Ti, Pt/C or Pd/C) which are reactive to form H20 at a slightly elevated temperature such as above 50 °C. The compounding agent can be operated at a high pressure such as in the range of 142257.doc -66 - 201104948, preferably in the range of about 2 to 100 atmospheres. The reaction mixture can be non-stoichiometric to facilitate free radical and singlet oxygen formation. The system may further comprise an ultraviolet or plasma source to form free radicals, such as RF, microwave or glow discharge, preferably high voltage pulses, plasma sources. The reactant may further comprise a catalyst to form at least one of atomic radicals such as C1, lanthanum and cerium, singlet oxygen and ozone. The catalyst can be a precious metal such as Pt. In an embodiment in which a C1 radical is formed, the Pt catalyst is maintained at a temperature exceeding the chlorination cleavage temperature (such as PtCl2, PtCl3, and Ptcu having a decomposition temperature of 5,81 ° C, 4 3 51, and 3 2 7 , respectively). At the temperature. In one embodiment, Pt can be recovered from a product mixture comprising a metal halide by dissolving the metal halide in a suitable bath in which Pt, pd or its halide is insoluble and removing the solution. The solid which may comprise carbon and Pt or Pd halide may be heated to form pt or Pd on the carbon by decomposition of the corresponding halide. In one embodiment, the AO, N〇2 or N◦ gas is the added reaction mixture. AO and N〇2 can be used as a source of NO radicals. In another embodiment, the N 自由基 radical is preferably produced in the battery by oxidation of NH 3 . The reaction can be a reaction of nH3 with 〇2 on platinum or platinum rhodium at elevated temperatures. β N〇, n〇2 & N2 〇 can be determined by known industrial methods, such as by Haber process, followed by Ostwald The Austrian process is produced. In one embodiment, the exemplary sequence of steps is: ^ Newton 3 ΪΓ ΪΓ ΪΓ ¥ ¥ ¥ 册 〇 〇 〇 〇 〇 〇 〇 〇 〇 (53) In particular, the 'Haber method can be used to use & and produce NH3 under high temperature and high pressure using a catalyst such as alpha iron containing an oxide. Osterwa 142257.doc •67- 201104948

爾法可用以在諸如劫^ sV、4a Υώ I 你洧刘熟鉑或鉑-鍺催化劑之催化劑下將氨 氧化成NO、>102及N2〇。可佶用卜々据-★ ▲ J使用上文揭不之方法使鹼金屬 硝酸鹽再生。 系統及反應混合物可引發及維㈣燒反應以提供單線離 氧與自由基中之至少-者。燃燒反應物可為非化學計量: 利於與其他減量氫反應物反應之自由基及單_氧的形 成H施财,抑龍炸反應以利於長期料反應, 或,合適反應物及莫耳比率引料炸反應以實現所需低能 量氫反應速率。在-實施例t,電池包含至少—個内燃機 汽缸。 C.電子受體反應 在一實施例中,反應混合物進一步包含電子受體。當形 成低能量氫之催化反應期間能量自原子氫轉移至催:劑 時,電子受體可充當自該催化劑電離之電子的接收劑。電 子受體可為以下至少一者:導電聚合物或金屬載體、氧化 劑(諸如第V!族元素、分子及化合物)、自由基、形成穩定 自由基之物質及具有高電子親和力之物質,諸如鹵原子、 〇2、C、CFl ' CF2、„3或以4、Si、s、PxSy、CS2、SxNy 及進一步包含0及H之此等化合物、Au、At、Alx〇y(x&y 為整數)、較佳A丨OK在一實施例中,其為在尺_沁下八1(〇11)3 與 A1 反應之中間物)、cl〇、Cl2、F2、A1〇2、in、CrC2、 C2H、CuCl2、CuBr2、MnX3(X=鹵素)、Μ〇χ3(χ=鹵素)、 NlX3(X=齒素)、RuF4、RuF5 或 RuF6、ScX4(X=自素)、W〇3 及如热習此項技術者已知之具有高電子親和力之其他原子 142257.doc -68- 201104948 及分子。在一實施例中,當催化劑藉由接受來自原子氫之 非輻射共振能量轉移而電離時載體充當催化劑之電子受 體。載體較佳為至少一種導電物質且形成穩定自由基。合 適之该等載體為導電聚合物。載體可在宏觀結構上形成陰 離子,諸如形成C6離子之u離子電池組之碳。在另一實施 例中,載體為半導體,較佳經棒雜以提高導電性。反應混 合物進一步包含自由基或其來源,諸如〇、OH、〇2、〇3、 Ηζ〇2、F、C1及NO,其可用作催化期間由載體形成之自由 基的清除劑。在一實施例中,諸如N0之自由基可與諸如 驗金屬之催化劑或催化劑源形成錯合物。在另一實施例 中,載體具有不成對電子。載體可為順磁性的,諸如稀土 元素或化合物’諸如Ει*2〇3。在一實施例中,諸如Li、 NaH、K、Rb或Cs之催化劑或催化劑源浸潰於諸如载體之 電子受體中且添加反應混合物之其他組份。載體較佳為插 入有NaH或Na之AC。 d·氧化還原反應 在一實施例中,低能量氬反應由氧化還原反應活化。在 一例示性實施例中,反應混合物包含以下之群中之至少兩 種物質:催化劑、氫源、氧化劑、還原劑及載體。反應混 合物亦可包含路易斯酸(Lewis acid),諸如第13族三鹵化 物’較佳A1C13、BF3、BCI3及BBr3中之至少一者。在某些 貫施例中’各反應混合物包含至少一種選自以下種類之組 份(i)-(iii)的物質: ⑴選自Li、H κ、尺i/、心丑、Rb、RbH、Cs及CsH之 142257.doc •69- 201104948 催化劑; (ii) 選自氫氣、氫氣源或氫化物之氫源; (iii) 及選自以下之氧化劑:金屬化合物,諸如鹵化物、 璃化物、棚化物、氧化物、氫氧化物、夕化物、氮化物、 砷化物、硒化物、碲化物、銻化物、碳化物、硫化物、氫 化物、碳酸鹽、碳酸氩鹽、硫酸鹽、硫酸氫鹽、磷酸鹽、 鱗酸氫鹽、填酸二氫鹽、硝酸鹽、亞硝酸鹽、過猛酸鹽、 氯酸鹽、過氯酸鹽、亞氯酸鹽、過亞氣酸鹽、次氣酸鹽、 溴酸鹽、過溴酸鹽、亞溴酸鹽、過亞溴酸鹽、埃酸鹽、過 埃酸鹽、亞埃酸鹽、過亞破酸鹽、鉻酸鹽、重鉻酸鹽、碲 酸鹽、硒酸鹽、砷酸鹽、矽酸鹽、硼酸鹽、氧化鈷、氧化 碲及其他氧陰離子(諸如鹵素、P、B、Si、N、As、S、 Te、Sb、C、S、P、Μη、Cr、Co及Te之氧陰離子)之金屬 化合物’其中該金屬較佳包含過渡金屬、Sn、Ga、&、驗 金屬或鹼土金屬;氧化劑進一步包含:鉛化合物,諸如_ 化船;鍺化合物,諸如齒化物、氧化物或硫化物,諸如The method can be used to oxidize ammonia to NO, >102 and N2〇 under a catalyst such as a sV, 4a Υώ I, a ruthenium platinum or a platinum-ruthenium catalyst. You can use the dip-- ▲ J to regenerate the alkali metal nitrate using the method disclosed above. The system and reaction mixture can initiate and maintain a (four) firing reaction to provide at least one of a single line of oxygen and free radicals. The combustion reactants may be non-stoichiometric: facilitating the formation of free radicals and mono-oxygens that react with other reduced hydrogen reactants, and the use of a single-oxygen reaction to facilitate long-term reaction, or suitable reactants and molar ratios. The reaction is blown up to achieve the desired low energy hydrogen reaction rate. In an embodiment t, the battery contains at least one internal combustion engine cylinder. C. Electron Acceptor Reaction In one embodiment, the reaction mixture further comprises an electron acceptor. When energy is transferred from atomic hydrogen to a catalyst during the catalytic reaction to form low energy hydrogen, the electron acceptor can act as a acceptor for electrons ionized from the catalyst. The electron acceptor may be at least one of a conductive polymer or a metal carrier, an oxidizing agent (such as a Group V! element, a molecule and a compound), a radical, a substance forming a stable radical, and a substance having a high electron affinity such as a halogen. Atom, 〇2, C, CFl 'CF2, „3 or such compounds with 4, Si, s, PxSy, CS2, SxNy and further comprising 0 and H, Au, At, Alx〇y (x&y is an integer ), preferably A 丨 OK, in one embodiment, it is an intermediate between the 八 沁 八 8 1 (〇 11) 3 and A1), cl〇, Cl2, F2, A1〇2, in, CrC2 C2H, CuCl2, CuBr2, MnX3 (X = halogen), Μ〇χ3 (χ = halogen), NlX3 (X = dentate), RuF4, RuF5 or RuF6, ScX4 (X = self-prime), W〇3 and heat Other atoms known by the skilled artisan having high electron affinity are 142257.doc -68-201104948 and molecules. In one embodiment, the support acts as a catalyst when the catalyst is ionized by accepting non-radiative resonance energy transfer from atomic hydrogen. The electron acceptor. The carrier is preferably at least one electrically conductive substance and forms a stable free radical. Suitable such carriers are An electropolymer. The support can form an anion on a macrostructure, such as a carbon of a u ion battery that forms a C6 ion. In another embodiment, the support is a semiconductor, preferably a rod to improve conductivity. The reaction mixture further comprises Free radicals or sources thereof, such as hydrazine, OH, hydrazine 2, hydrazine 3, hydrazine 2, F, C1, and NO, which are useful as scavengers for catalyzing free radicals formed by the support during the process. In one embodiment, such as The free radical of N0 may form a complex with a catalyst such as a metalloid or a catalyst source. In another embodiment, the support has an unpaired electron. The support may be paramagnetic, such as a rare earth element or a compound such as Ει*2〇 3. In one embodiment, a catalyst or catalyst source such as Li, NaH, K, Rb or Cs is impregnated into an electron acceptor such as a support and the other components of the reaction mixture are added. The support is preferably inserted with NaH. Or AC of Na. d. Redox Reaction In one embodiment, the low energy argon reaction is activated by a redox reaction. In an exemplary embodiment, the reaction mixture comprises at least two of the following groups: a chemical, a hydrogen source, an oxidizing agent, a reducing agent and a carrier. The reaction mixture may also comprise a Lewis acid, such as a Group 13 trihalide, preferably at least one of A1C13, BF3, BCI3 and BBr3. In some embodiments, each reaction mixture comprises at least one component selected from the group consisting of components (i) to (iii): (1) selected from the group consisting of Li, H κ, 尺 i/, ugly, Rb, RbH, Cs, and CsH 142257.doc •69- 201104948 catalyst; (ii) hydrogen source selected from hydrogen, hydrogen source or hydride; (iii) and an oxidant selected from the group consisting of metal compounds such as halides, glazes, sheds, Oxide, hydroxide, cerium, nitride, arsenide, selenide, telluride, telluride, carbide, sulfide, hydride, carbonate, argon carbonate, sulfate, hydrogen sulfate, phosphate , hydrogen sulphate, dihydrogen salt, nitrate, nitrite, perchlorate, chlorate, perchlorate, chlorite, peroxyacid salt, hypogaslate, bromine Acid salt, perbromate, bromate, perbromate, acid salt, peroxy acid salt, Ionite, persalt, chromate, dichromate, citrate, selenate, arsenate, citrate, borate, cobalt oxide, cerium oxide and other oxygen anions (such as a metal compound of halogen, P, B, Si, N, As, S, Te, Sb, C, S, P, Μη, Cr, Co and Te oxyanion) wherein the metal preferably comprises a transition metal, Sn, Ga, &, metal or alkaline earth metal; the oxidizing agent further comprises: a lead compound such as a chemical boat; a hydrazine compound such as a dentate, an oxide or a sulfide, such as

GeF2、GeCl2、GeBr2、Gel2、GeO、GeP、GeS、Gel4 及GeF2, GeCl2, GeBr2, Gel2, GeO, GeP, GeS, Gel4 and

GeCl4 ;碳氟化合物,諸如c•尸4或C1CF3 ;碳氣化合物,諸 如 cci4 ; 〇2 ;婦〇3 ; mc/o4 ; mo2 ;奶;N2〇 ; NO ; N〇2 ;獨-氮化合物,諸如;含硫化合物,諸如 SF6、、5Ό2、so3、s2o5ci2、F5SOF、m2s2o8、Sxxy(諸 如 S2C12、SC12、S2Br24 S2F2)、CS2、SOxXy(諸如 SOCl2、 S〇F2、S02F2或SOBr2) ; XxX,y,諸如C1F5 ; XxX,y〇z,諸如 C102F、cio2F2、C10F3 ' C103F及 C102F3 ;硼·氮化合物, 142257.doc ·70· 201104948 諸如 B3N3H6 ; Se ; Te ; Bi ; As ; Sb ; Bi ; TeXx,較佳 TeF4、TeF6 ; TeOx ’ 較佳 Te02或 Te03 ; SeXx,較佳 SeF6 ; SeOx ’較佳Se〇2或Se〇3 ;碲氧化物、鹵化物或其他碲化合 物,諸如 Te02、Te03、Te(OH)6、TeBr2、TeCl2、TeBr4 ' TeCl4、TeF4、Tel4、TeF6、CoTe 或 NiTe ;硒氧化物、鹵化 物、硫化物或其他砸化合物,諸如Se02、Se03、Se2Br2、GeCl4; fluorocarbons such as c• corpse 4 or C1CF3; carbon gas compounds such as cci4; 〇2; 〇3; mc/o4; mo2; milk; N2〇; NO; N〇2; For example; sulfur-containing compounds such as SF6, 5Ό2, so3, s2o5ci2, F5SOF, m2s2o8, Sxxy (such as S2C12, SC12, S2Br24 S2F2), CS2, SOxXy (such as SOCl2, S〇F2, S02F2 or SOBr2); XxX,y , such as C1F5; XxX, y〇z, such as C102F, cio2F2, C10F3 'C103F and C102F3; boron·nitrogen compound, 142257.doc ·70·201104948 such as B3N3H6; Se; Te; Bi; As; Sb; Bi; TeXx, Preferred TeF4, TeF6; TeOx' is preferably Te02 or Te03; SeXx, preferably SeF6; SeOx' is preferably Se〇2 or Se〇3; niobium oxide, halide or other antimony compound such as Te02, Te03, Te ( OH) 6, TeBr2, TeCl2, TeBr4 'TeCl4, TeF4, Tel4, TeF6, CoTe or NiTe; selenium oxides, halides, sulfides or other antimony compounds such as Se02, Se03, Se2Br2

Se2Cl2、SeBr4、SeCl4、SeF4、SeF6、SeOBr2、SeOCl2、 SeOF2、Se02F2、SeS2、Se2S6、Se4S4或 Se6S2 ; P ; P2〇5 ; P2S5 ; PxXy ’ 諸如 PF3、PC13、PBr3、PI3、PF5、PC15、 PBr4F 或 PC14F ; POxXy,諸如 POBr3、POI3、P0C13 或 POF3 ; PSxXy(M為鹼金屬’ x、y及z為整數,x及x,為鹵素) 諸如PSBr3、PSF3、PSC13 ;磷-氮化合物,諸如p3N5、 (C12PN)3、(C12PN)4或(Br2PN)x ;石申氧化物、鹵化物、硫化 物、硒化物或碲化物或其他砷化合物,諸如AlAs、 AS2I4、As2Se、AS4S4、AsBr3、ASCI3、ASF3、ASI3、Se2Cl2, SeBr4, SeCl4, SeF4, SeF6, SeOBr2, SeOCl2, SeOF2, Se02F2, SeS2, Se2S6, Se4S4 or Se6S2; P; P2〇5; P2S5; PxXy ' such as PF3, PC13, PBr3, PI3, PF5, PC15, PBr4F Or PC14F; POxXy, such as POBr3, POI3, P0C13 or POF3; PSxXy (M is an alkali metal 'x, y and z are integers, x and x are halogens) such as PSBr3, PSF3, PSC13; phosphorus-nitrogen compounds such as p3N5 , (C12PN)3, (C12PN)4 or (Br2PN)x; Shishen oxides, halides, sulfides, selenides or tellurides or other arsenic compounds, such as AlAs, AS2I4, As2Se, AS4S4, AsBr3, ASCI3, ASF3, ASI3,

As2〇3、As2Se3、AS2S3、As2Te3、ASCI5、ASF5、AS2O5、As2〇3, As2Se3, AS2S3, As2Te3, ASCI5, ASF5, AS2O5,

As2Se5或AS2S5 ;錄氧化物、齒化物、硫化物、硫酸鹽、栖 化物、砷化物或其他銻化合物,諸如SbAs、SbBr3、 SbCl3、SbF3、Sbl3、Sb203、SbOCM、Sb2Se3、Sb2(S04)3、 Sb2S3、Sb2Te3、Sb204、SbCl5、SbF5、SbCl2F3、Sb205 或 Sb2S5 ;秘氧化物、鹵化物、硫化物、砸化物或其他叙化 合物,諸如 BiAs04、BiBr3、BiCl3、BiF3、BiF5、 Bi(OH)3、Bil3、Bi203、BiOBr ' BiOCl、BiOI、Bi2Se3、 Bi2S3、Bi2Te3 或Bi204 ; SiCl4、SiBr4 ;金屬氧化物、氫氧 142257.doc 201104948 化物或鹵化物,諸如過渡金屬鹵化物,諸如CrCl3、 Z11F2、ZnBr2、Z11I2、MnCh、MnBr2、Mnl2、CoBr2、 CoI2、CoCl2、NiCl2、NiBr2、NiF2、FeF2、FeCl2、 FeBr2、FeCl3、TiF3、CuBr、CuBr2、VF3及 CuCl2 ;金屬鹵 化物,諸如 SnF2、SnCl2、SnBr2、Snl2、SnF4、S11CI4、 SnBr4、S11I4、InF、InCl、InBr、Ini、AgCl、Agl、AIF3、 AlBr3、A1I3、YF3、CdCl2、CdBr2、Cdl2、InCl3、ZrCl4、 NbF5、TaCl5、MoC13、MoC15、NbCl5、AsC13、TiBr4、 SeCl2、SeCl4、InF3、InCl3、PbF4、Tel4、WC16、OsCl3、 GaCl3、PtCl3、ReCl3、RhCl3、RuC13 ;金屬氧化物或氫氧 化物’諸如 Y203、FeO、Fe203 或 NbO、NiO、Ni203、 SnO、Sn02、Ag20、AgO、Ga20、As203、Se02、Te02、 In(〇H)3、Sn(OH)2、In(OH)3、Ga(OH)3 及 Bi(OH)3 ; C02 ; As2Se3 ; SF6 ; S ; SbF3 ; CF4 ; NF3 ;過錳酸鹽,諸如 KMn04及 NaMn04 ; P205 ;硝酸鹽,諸如 LiN03、NaN03 及 KN〇3 ;及鹵化硼’諸如BBr3及BI3 ;第13族鹵化物,較佳 鹵化銦,諸如InBr2、InCl2及Inl3 ;鹵化銀,較佳AgCl或 Agl ’鹵化錯,函化鑛;自化錯;較佳過渡金屬氧化物、 硫化物或鹵化物(Sc、Ti、V、Cr、Mn、Fe、Co、Ni、Cu 或Zn與F、Cl、Br或I);第二或第三過渡系列鹵化物(較佳 YF3)、氧化物、硫化物(較佳Y2S3)或氫氧化物(較佳γ、 Zr、Nb、Mo、Tc、Ag、Cd、Hf、T汪、W、Os 之氫氧化 物)’在齒化物之狀況下諸如NbX3、NbX5或TaX5 ;金屬硫 化物’諸如 Li2S、ZnS、FeS、NiS、MnS、Cu2S、CuS 及 142257.doc -72- 201104948As2Se5 or AS2S5; recording oxides, dentates, sulfides, sulfates, compounds, arsenides or other antimony compounds such as SbAs, SbBr3, SbCl3, SbF3, Sbl3, Sb203, SbOCM, Sb2Se3, Sb2(S04)3, Sb2S3, Sb2Te3, Sb204, SbCl5, SbF5, SbCl2F3, Sb205 or Sb2S5; secret oxides, halides, sulfides, tellurides or other compounds, such as BiAs04, BiBr3, BiCl3, BiF3, BiF5, Bi(OH)3, Bil3, Bi203, BiOBr 'BiOCl, BiOI, Bi2Se3, Bi2S3, Bi2Te3 or Bi204; SiCl4, SiBr4; metal oxide, hydroxide 142257.doc 201104948 compound or halide, such as transition metal halides, such as CrCl3, Z11F2, ZnBr2 Z11I2, MnCh, MnBr2, Mnl2, CoBr2, CoI2, CoCl2, NiCl2, NiBr2, NiF2, FeF2, FeCl2, FeBr2, FeCl3, TiF3, CuBr, CuBr2, VF3 and CuCl2; metal halides such as SnF2, SnCl2, SnBr2, Snl2 , SnF4, S11CI4, SnBr4, S11I4, InF, InCl, InBr, Ini, AgCl, Agl, AIF3, AlBr3, A1I3, YF3, CdCl2, CdBr2, Cdl2, InCl3, ZrCl4, NbF5, TaCl5, MoC13, MoC15, NbCl5, AsC13 , Ti Br4, SeCl2, SeCl4, InF3, InCl3, PbF4, Tel4, WC16, OsCl3, GaCl3, PtCl3, ReCl3, RhCl3, RuC13; metal oxides or hydroxides such as Y203, FeO, Fe203 or NbO, NiO, Ni203, SnO , Sn02, Ag20, AgO, Ga20, As203, Se02, Te02, In(〇H)3, Sn(OH)2, In(OH)3, Ga(OH)3 and Bi(OH)3; C02; As2Se3; SF6; S; SbF3; CF4; NF3; permanganate such as KMn04 and NaMn04; P205; nitrates such as LiN03, NaN03 and KN〇3; and boron halides such as BBr3 and BI3; Group 13 halides Preferred indium halides, such as InBr2, InCl2 and Inl3; silver halide, preferably AgCl or Agl 'halogenation, functionalized ore; self-deformation; preferred transition metal oxides, sulfides or halides (Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu or Zn with F, Cl, Br or I); second or third transition series halide (preferably YF3), oxide, sulfide (preferably Y2S3) or hydrogen Oxides (preferably hydroxides of γ, Zr, Nb, Mo, Tc, Ag, Cd, Hf, T, W, Os) 'in the case of dentate such as NbX3, NbX5 or TaX5; metal sulfides' Such as Li2S, Z nS, FeS, NiS, MnS, Cu2S, CuS and 142257.doc -72- 201104948

SnS ;驗土金屬鹵化物,諸如BaBr2、BaCl〗、Bal2、 SrBr2、Srl2、CaBr2、Cal2、MgBr2 或 Mgl2 ;稀土金屬鹵化 物,諸如EuBr3、LaF3、LaBr3、CeBr3、GdF3、GdBr3,較 佳呈 II 態,諸如 Cel2、EuF2、EuC12、EuBr2、E11I2、Dyl2、 Ndl2、Sml2、Ybl2及Tml2之彼等II態鹵化物;金屬硼化 物,諸如棚化銪;MB〗棚化物,諸如CrB2、TiB2、MgB2、 ZrB2及GdB2 ;鹼金屬鹵化物,諸如LiC卜RbCl或Csl ;及 金屬填化物,諸如Ca3P2 ;貴金屬鹵化物、氧化物、硫化 物,諸如 PtCl2、PtBr2、Ptl2、PtCl4、PdCl2、PbBr2 及 Pbl2;稀土金屬硫化物,諸如CeS,其他合適稀土金屬硫 化物為La及Gd之硫化物;金屬及陰離子,諸如Na2Te04、 Na2Te03、Co(CN)2、CoSb、CoAs、Co2P、CoO、CoSe、 CoTe、NiSb、NiAs、NiSe、Ni2Si、MgSe ;稀土金屬碲化 物,諸如EuTe ;稀土金屬硒化物,諸如EuSe ;稀土金屬氮 化物,諸如EuN ;金屬氮化物,諸如AIN、GdN及Mg3N2 ; 含有至少兩個來自氧及不同鹵原子之群之原子的化合物, 諸如 f2o、ci2o、C102、Cl2〇6、C1207、C1F、C1F3、 C10F3 ' C1F5、C102F、CIO2F3 ' C103F、BrF3、BrF5、 I205、IBr、ICM、IC13、IF、IF3、IF5、IF7 ;及金屬第二或 第三過渡系列鹵化物,諸如〇sF6、PtF6或IrF6 ;鹼金屬化 合物,諸如ii化物、氧化物或硫化物;及可在還原後形成 金屬,諸如驗金屬、驗土金屬、過渡金屬、稀土金屬、第 13族金屬(較佳In)及第14族金屬(較佳Sn)之化合物;金屬 氫化物,諸如稀土金屬氫化物、驗土金屬氫化物或驗金屬 142257.doc -73- 201104948 氫化物,其中當氧化劑為氫化物、較佳金屬氫化物時催化 劑或催化劑源可為諸如鹼金屬之金屬。合適氧化劑為金屬 鹵化物、硫化物、氧化物、氫氧化物、硝化物及鱗化物, 諸如驗土金屬鹵化物(諸如BaBr2、BaCl2、Bal2、CaBr】、 MgBr2或Mgl2)、稀土金屬鹵化物(諸如EuBr2、EuBr3、 EuF3、LaF3、GdF3、GdBr3、LaF3、LaBr3、CeBi*3)、第二 或第三系列過渡金屬鹵化物(諸如YF3)、金屬硼化物(諸如 CrB2或TiB2)、鹼金屬鹵化物(諸如LiCl、RbCl或Csl)、金 屬硫化物(諸如 Li2S、ZnS、Y2S3、FeS、MnS、Cu2S、CuS 及Sb2S5)、金屬磷化物(諸如Ca3P2)、過渡金屬鹵化物(諸如 CrCl3、ZnF2、ZnBr2、Znl2、MnCl2、MnBr2、Mnl2、 CoBr2 ' C0I2 ' C0CI2 ' Ν1ΒΓ2 ' NiF2 ' FeF2 ' FeCl2 ' FeBr2、TiF3、CuBr、VF3 及 CuCl2)、金屬鹵化物(諸如 SnBr2、Snl2、InF、InCl、InBr、Ini、AgCl、Agl、A1I3、 YF3、CdCl2、CdBr2、Cdl2、InCl3、ZrCl4、NbF5、TaCl5、 MoC13、MoC15、NbCl5、AsC13、TiBr4、SeCl2、SeCl4、 InF3、PbF4及Tel4)、金屬氧化物或氫氧化物(諸如Y203、 FeO、NbO、In(OH)3、AS2O3、Se〇2、Te〇2、BI3、C〇2、 As2Se3)、金屬氮化物(諸如Mg3N2或AIN)、金屬磷化物(諸 如 Ca3P2、SF6、S、SbF3、CF4、NF3、KMn〇4、NaMn〇4、 P205、LiN03,、NaN03、KNO3)及金屬棚化物(諸如 BBr3)。 合適氧化劑包括以下所列項中之至少一者:BaBr2、 BaCl2、EuBr2、EuF3、YF3、CrB2、TiB2、LiCl、RbCl、 Csl、Li2S、ZnS、Y2S3、Ca3P2、M11I2、C0I2、NiBr2、 142257.doc -74 201104948SnS; soil test metal halides such as BaBr2, BaCl, Bal2, SrBr2, Srl2, CaBr2, Cal2, MgBr2 or Mgl2; rare earth metal halides such as EuBr3, LaF3, LaBr3, CeBr3, GdF3, GdBr3, preferably II State, such as Cel2, EuF2, EuC12, EuBr2, E11I2, Dyl2, Ndl2, Sml2, Ybl2, and Tml2, which are II state halides; metal borides, such as sheds; MB sheds, such as CrB2, TiB2, MgB2 , ZrB2 and GdB2; alkali metal halides such as LiCb RbCl or Csl; and metal fillers such as Ca3P2; noble metal halides, oxides, sulfides such as PtCl2, PtBr2, Ptl2, PtCl4, PdCl2, PbBr2 and Pbl2; Rare earth metal sulfides, such as CeS, other suitable rare earth metal sulfides are sulfides of La and Gd; metals and anions such as Na2Te04, Na2Te03, Co(CN)2, CoSb, CoAs, Co2P, CoO, CoSe, CoTe, NiSb , NiAs, NiSe, Ni2Si, MgSe; rare earth metal telluride such as EuTe; rare earth metal selenide such as EuSe; rare earth metal nitride such as EuN; metal nitrides such as AIN, GdN and Mg3N2; containing at least two from oxygen And compounds of atoms of different halogen atoms, such as f2o, ci2o, C102, Cl2〇6, C1207, C1F, C1F3, C10F3 'C1F5, C102F, CIO2F3 'C103F, BrF3, BrF5, I205, IBr, ICM, IC13, IF, IF3, IF5, IF7; and a second or third transition metal halide of the metal, such as 〇sF6, PtF6 or IrF6; an alkali metal compound such as a ii compound, an oxide or a sulfide; and a metal which can be formed after reduction, Compounds such as metal, earth metal, transition metal, rare earth metal, Group 13 metal (preferably In) and Group 14 metal (preferably Sn); metal hydrides, such as rare earth metal hydrides, soil test metal hydrogenation Metal or metal 142257.doc -73- 201104948 hydride wherein the catalyst or catalyst source may be a metal such as an alkali metal when the oxidant is a hydride, preferably a metal hydride. Suitable oxidizing agents are metal halides, sulfides, oxides, hydroxides, nitrites and scalys, such as soiled metal halides (such as BaBr2, BaCl2, Bal2, CaBr), MgBr2 or Mgl2), rare earth metal halides ( Such as EuBr2, EuBr3, EuF3, LaF3, GdF3, GdBr3, LaF3, LaBr3, CeBi*3), second or third series of transition metal halides (such as YF3), metal borides (such as CrB2 or TiB2), alkali metal halogenation (such as LiCl, RbCl or Csl), metal sulfides (such as Li2S, ZnS, Y2S3, FeS, MnS, Cu2S, CuS and Sb2S5), metal phosphides (such as Ca3P2), transition metal halides (such as CrCl3, ZnF2) ZnBr2, Znl2, MnCl2, MnBr2, Mnl2, CoBr2 'C0I2 'C0CI2 ' Ν1ΒΓ2 'NiF2 'FeF2 'FeCl2 'FeBr2, FeF2, TiF3, CuBr, VF3 and CuCl2), metal halides (such as SnBr2, Snl2, InF, InCl, InBr, Ini, AgCl, Agl, A1I3, YF3, CdCl2, CdBr2, Cdl2, InCl3, ZrCl4, NbF5, TaCl5, MoC13, MoC15, NbCl5, AsC13, TiBr4, SeCl2, SeCl4, InF3, PbF4 and Tel4), metal oxide or hydrogen Oxide (such as Y203 FeO, NbO, In(OH)3, AS2O3, Se〇2, Te〇2, BI3, C〇2, As2Se3), metal nitrides (such as Mg3N2 or AIN), metal phosphides (such as Ca3P2, SF6, S, SbF3, CF4, NF3, KMn〇4, NaMn〇4, P205, LiN03, NaN03, KNO3) and metal sheds (such as BBr3). Suitable oxidizing agents include at least one of the following: BaBr2, BaCl2, EuBr2, EuF3, YF3, CrB2, TiB2, LiCl, RbCl, Csl, Li2S, ZnS, Y2S3, Ca3P2, M11I2, C0I2, NiBr2, 142257.doc -74 201104948

ZnBr2、FeBi:2、Snl2、Ιηα、Aga、γ2〇3、Te〇2、C〇2、 SF6、s、CF4、NaMn04、P2〇5、UN〇3。合適氧化劑包括 以下所列項中之至少一者:EuBr2、BaBr2、CrB2、Mnl2及 AgC卜合適硫化物氧化劑包含Lij、ZnS&Ah中之至少 一者。在某些實施例中’氧化物氧化劑為γ2〇3。 在其他貫施例中’各反應混合物包含至少一種選自上述 以下種類之組份(i)-(iii)之物質且進一步包含(iv)至少一種 ,選自以下之還原劑:金屬’諸如鹼金屬、鹼土金屬、過渡 金屬、第二及第三系列過渡金屬及稀土金屬及鋁。還原劑 較佳為來自以下之群之還原劑:A '处、你此、沿、 La、B、Zr及Ti粉末及h2。 在其他實施例中,各反應混合物包含至少一種選自上述 以下種類之組份(i)-(iv)之物質且進一步包含(v)載體,諸如 選自AC、1% Pt/碳或Pd/碳(Pt/C、Pd/C)及碳化物(較佳TiC 或WC)之導電性載體。 雖然反應物可呈任何莫耳比率,但其較佳呈約相等之莫 耳比率。 包含⑴催化劑或催化劑源、(ii)氫源、(iii)氧化劑、(iv) 還原劑及(v)載體之合適反應系統包含NaH或KH作為催化 劑或催化劑源及Η來源,BaBr;j、BaC〖2、MgBr:、Mgl2、ZnBr2, FeBi: 2, Snl2, Ιηα, Aga, γ2〇3, Te〇2, C〇2, SF6, s, CF4, NaMn04, P2〇5, UN〇3. Suitable oxidizing agents include at least one of the following: EuBr2, BaBr2, CrB2, Mnl2, and AgC. Suitable sulfide oxidizing agents comprise at least one of Lij, ZnS & Ah. In certain embodiments the 'oxide oxidant is gamma 2 〇3. In other embodiments, each reaction mixture comprises at least one component selected from the group consisting of the following categories (i) to (iii) and further comprises (iv) at least one selected from the group consisting of a metal such as a base. Metals, alkaline earth metals, transition metals, second and third series of transition metals and rare earth metals and aluminum. The reducing agent is preferably a reducing agent from the group consisting of A', your, along, La, B, Zr and Ti powders and h2. In other embodiments, each reaction mixture comprises at least one material selected from the group consisting of components (i)-(iv) of the above categories and further comprises (v) a carrier such as selected from the group consisting of AC, 1% Pt/carbon or Pd/ Conductive carrier of carbon (Pt/C, Pd/C) and carbide (preferably TiC or WC). While the reactants may be in any molar ratio, they preferably have about the same molar ratio. A suitable reaction system comprising (1) a catalyst or catalyst source, (ii) a hydrogen source, (iii) an oxidizing agent, (iv) a reducing agent and (v) a carrier comprises NaH or KH as a catalyst or catalyst source and a ruthenium source, BaBr;j, BaC 〖2, MgBr:, Mgl2

CaBr2、EuBr2、EuF3、YF3、CrB2、TiB2、LiCl、RbCl、 Csl、Li2S、ZnS、Y2S3、Ca3P2、Mnl2、CoI2 ' NiBr2、CaBr2, EuBr2, EuF3, YF3, CrB2, TiB2, LiCl, RbCl, Csl, Li2S, ZnS, Y2S3, Ca3P2, Mnl2, CoI2' NiBr2

ZnBr2、FeBr2 ' Snl2、InCl、AgCl、Y2O3、Te02、C〇2、 SF6、S、CF4、NaMn〇4、P2〇5、LiN03之一作為氧化劑, 142257.doc -75- 201104948One of ZnBr2, FeBr2 'Sn2, InCl, AgCl, Y2O3, Te02, C〇2, SF6, S, CF4, NaMn〇4, P2〇5, LiN03 as oxidant, 142257.doc -75- 201104948

Mg或MgH2作為還原劑(其中Mg%亦可用作Η來源),及 AC、TiC或WC作為載體。在鹵化錫為氧化劑之狀況下,Mg or MgH2 is used as a reducing agent (where Mg% can also be used as a source of cerium), and AC, TiC or WC is used as a carrier. In the case where the tin halide is an oxidizing agent,

Sn產物可用作催化機制中還原劑與導電性載體中之至少— 者。 在包含⑴催化劑或催化劑源、氫源' (iii)氧化劑及 (iv)載體之另一合適反應系統中,包含NaH或KH作為催化 劑或催化劑源及Η來源,EuBr2、BaBr〗、CrB2、Mnl2及 AgCl之一作為氧化劑,及ac、TiC或WC作為載體。雖然 反應物可呈任何莫耳比率,但其較佳呈約相等之莫耳比、 率 〇 催化劑、氫源、氧化劑、還原劑及載體可呈任何所需莫 耳比率。在具有反應物,包含KH或NaH之催化劑、包含 CrB2、AgCh及來自驗土金屬、過渡金屬或稀土金屬鹵化 物之群之金屬鹵化物、較佳溴化物或碘化物(諸如EuBr2、 BaBo及MnlO中之至少一者之氧化劑、包含M^lMgH2之 還原劑及包含AC、TiC或WC之載體的一實施例中,莫耳 比率大致相同。稀土金屬鹵化物可由相應鹵素與金屬或鹵 化氫(諸如HBr)直接反應而形成。二鹵化物可藉由%還原 由三_化物來形成。 其他氧化劑為具有高偶極矩或形成具有高偶極矩之中間 物的物質。在催化反應期間,具有高偶極矩之物質較佳易 於接文來自催化劑之電子。該等物質可具有高電子親和 力❶在一實施例中,電子受體具有半填滿或約半填滿電子 殼層,諸如分別具有半填滿sp3、3(1及4f殼層之Sn、Mn及 142257.doc • 76 · 201104948The Sn product can be used as at least one of a reducing agent and a conductive support in a catalytic mechanism. In another suitable reaction system comprising (1) a catalyst or catalyst source, a hydrogen source '(iii) an oxidant and (iv) a carrier, NaH or KH is included as a catalyst or catalyst source and a ruthenium source, EuBr2, BaBr, CrB2, Mnl2 and One of AgCl is used as an oxidizing agent, and ac, TiC or WC is used as a carrier. While the reactants may be in any molar ratio, they preferably present about the same molar ratio, 〇 catalyst, hydrogen source, oxidizing agent, reducing agent, and carrier in any desired molar ratio. a metal halide, preferably a bromide or an iodide (such as EuBr2, BaBo, and MnlO) having a reactant, a catalyst comprising KH or NaH, comprising CrB2, AgCh, and a group from a soil metal, a transition metal or a rare earth metal halide. In one embodiment of at least one of the oxidizing agent, the reducing agent comprising M^l MgH2, and the support comprising AC, TiC or WC, the molar ratio is substantially the same. The rare earth metal halide can be derived from the corresponding halogen with a metal or a hydrogen halide (such as HBr) is formed by direct reaction. The dihalide can be formed by tri-reduction by % reduction. Other oxidants are substances having a high dipole moment or forming an intermediate having a high dipole moment. The material of the dipole moment is preferably readily accessible from the electrons of the catalyst. The materials may have a high electron affinity. In one embodiment, the electron acceptor has a semi-filled or approximately half-filled electron shell, such as having a half Filled with sp3, 3 (Sn, Mn and 142257.doc • 76 · 201104948

Gd或Eu化合物。€一類型代表性氧化劑為對應於以下之 金屬:LaF3、LaBr3、GdF3、Gdci3、a%、EuB〇、Gd or Eu compound. A representative type of oxidant is a metal corresponding to: LaF3, LaBr3, GdF3, Gdci3, a%, EuB〇,

Eul2、EuCl2、EuF2、EuBr3、Eul3、EuCi^EuF3 在一實 施例中,氧化劑包含較佳具有高氧化態之非金屬(諸如p、 S、Si及C中之至少一者)之化合物,且一 負電性之原子,諸如F、c丨或〇中之至少_者。在^1 = 例中’氧化劑包含具有低氧化態(諸如π態)之金屬(諸如% 與Fe中之至少一者)之化合物且進一步包含具有低負電性 之原子’諸如BbIU中之至少一者。帶一個負電荷之離子 (諸如制4—、C叫或術;)優於帶兩個負電荷之離子(諸如叫 或岣)。在一實施例中,氧化劑包含諸如金屬鹵化物之化 «物’該金屬i化物對應於具有低炼點之金屬以便其可作 為反應產物溶融且自t池移除。低炫點金屬之合適氧化劑 為In、Ga、Ag&Sn之函化物。雖然反應物可呈任何莫耳比 率,但其較佳呈約相等之莫耳比率。 在只細例中,反應混合物包含:⑴催化劑或催化劑 源’其包含來自第ί族元素之金屬或氫化物;⑻氫源,諸 如氫氣或氫氣來源或氫化物;㈣氧化劑,其包含含有至 乂種來自第13族、第14族、第15族、第16族及第17族、 較佳選自F、c卜Br'mmsi p s、Eul2, EuCl2, EuF2, EuBr3, Eul3, EuCi^EuF3 In one embodiment, the oxidizing agent comprises a compound which preferably has a high oxidation state of a non-metal such as at least one of p, S, Si and C, and A negatively charged atom, such as at least one of F, c, or 〇. In the case of ^1 = 'the oxidant comprises a compound having a low oxidation state (such as π state) of a metal (such as at least one of % and Fe) and further comprising an atom having a low electronegativity such as at least one of BbIU . An ion with a negative charge (such as a 4-, C- or technique) is preferred over an ion with two negative charges (such as a nick or a 岣). In one embodiment, the oxidant comprises a metal halide such as a metal halide that corresponds to a metal having a low refining point so that it can be dissolved as a reaction product and removed from the t-cell. A suitable oxidizing agent for the low-point metal is a complex of In, Ga, Ag & Sn. While the reactants may be in any molar ratio, they preferably have about the same molar ratio. In a mere example, the reaction mixture comprises: (1) a catalyst or catalyst source 'which contains a metal or hydride from a λ element; (8) a hydrogen source such as a hydrogen or hydrogen source or hydride; and (iv) an oxidant comprising Species from Group 13, Group 14, Group 15, Group 16, and 17, preferably selected from F, c, Br'mmsi ps,

Se及Te之群之元素的原子或離子或化合物»還原劑, 其包含元素或氫化物’較佳一或多種選自Mg、MgH2、An atom or ion or a compound»reducing agent of an element of the group of Se and Te, which contains an element or a hydride, preferably one or more selected from the group consisting of Mg and MgH2.

Sl B、Zr及稀土金屬(諸如之元素或氫化物;及 (v)載體’其較佳具有導電性且較佳不與反應混合物之其他 142257.doc •77- 201104948 物質反應形成另—化合物。合適載體較佳包含碳,諸如 AC、石墨烯、用金屬浸潰之碳(諸如Pt/c或Pd/c)及碳化物 (較佳TiC或WC)。 在一貝施例中’反應混合物包含:⑴催化劑或催化劑 源,其包含來自第〗族元素之金屬或氫化物;(H)氫源,諸 如氫氣或氫氣來源或氫化物;(Hi)氧化劑,其包含齒化 物、氧化物或硫化物化合物,較佳金屬齒化物、氧化物或 硫化物,更佳來自第!八族、第ΠΑ族、第刊族、第4d族、 第5d族、第6(!族、第7(1族、第8(1族、第^族、第i〇d族、 第11 d族、第12d族及鑭系元素之元素的鹵化物,且最佳過 渡金屬鹵化物或鑭系鹵化物;(iv)還原劑,其包含元素或 氮化物’較佳一或多種選自Mg、MgH2、A卜Si、B、Zr及 稀土金屬(諸如La)之元素或氫化物;及(v)載體,其較佳具 有導電性且較佳不與反應混合物之其他物質反應形成另一 化合物。合適載體較佳包含碳,諸如AC、用金屬浸潰之 碳(諸如Pt/C或Pd/C)及碳化物,較佳TiC或WC。 e.交換反應、熱可逆反應及再生 在一實施例中’氧化劑與還原劑、催化劑源及催化劑中 之至少一者可進行可逆反應。在一實施例中,氧化劑為鹵 化物,較佳金屬齒化物,更佳過渡金屬、錫、銦、鹼金 屬、驗土金屬及稀土金屬齒化物中之至少—者,最佳稀土 金屬鹵化物。可逆反應較佳為齒化物交換反應。反應能量 較佳為低的,使得在周圍溫度與3〇〇(rc之間、較佳周圍溫 度與1000 c之間的溫度下鹵化物可在氧化劑與還原劑 '催 I42257.doc •78- 201104948 化劑源及催化劑中之至少一者之間可逆交換。反應平衡可 移位以驅動低能量氫反應。可藉由温度變化或反應濃度或 比率變化而移位。反應可藉由添加氫來維持。在一代表性 反應中,交換為 niM〇xXx + n2Mca^ed^nlMox + n2Mcat/redXy. (54) 其中n!、〜、乂及丫為整數,χ為鹵素,且Μ〇χ為氧化劑之金 屬’ Mred/eat為還原劑、催化劑源及催化劑中之至少一者的 金屬。在一實施例中’ 一或多種反應物為氫化物且除鹵化 物父換外’反應進一步包含可逆氫化物交換。除其他反應 條件(諸如溫度及反應物濃度)外,可逆反應亦可藉由控制 氫壓力來控制。一例示性反應為 n'MoxXx + n2Mcat/redH^±niMoxH+n2Mcat/redXy。 (55) 在 κ施例中’氧化劑(諸如驗金屬函化物、驗土金屬 _化物或稀土金屬鹵化物,較佳RbCl、BaBr2、Baci2、 EuX2或GdX3,其中χ為鹵素或硫,最佳EuBr2)與催化劑或 催化劑源(較佳NaH或KH)及視情況存在之還原劑(較佳Mg 或MgH2)反應,形成Μ()χ4Μ()χΗ2及催化劑之鹵化物或硫化 物,諸如NaX或ΚΧ。可藉由選擇性地移除催化劑或催化劑 源及視情況存在之還原劑,使稀土金屬鹵化物再生。在一 實施例中,MoxH2可熱分解且藉由諸如抽吸之方法移除氫 氣。鹵化物交換(方程式(54_55))形成催化劑之金屬。金屬 可以熔融液體或蒸發或昇華氣體形式移除,留下金屬鹵化 物,諸如鹼土金屬或稀土金屬鹵化物。液體可例如由諸如 離心之方法或由加壓惰性氣體流移除。若適當,催化劑或 142257.doc -79- 201104948 催化劑源可再氫化以使初始反應物再生,該等初始反應物 與稀土金屬齒化物及載體重新組合至最初混合物中。在 Mg或Mg%用作還原劑之狀況下,可藉由添加出形成氫化 物,使氫化物炫融及移除液體,首先將移除。在X=F之 貫她例中’藉由與稀土金屬(諸如guH2)進行ρ交換,可 將MgF2產物轉化為Mg%,其中連續移除熔融MgH2。反應 可在向壓%下進行以利於MgH2之形成及選擇性移除。還 原劑可經再氫化且添加至其他再生反應物中以形成初始反 應混合物。在另一實施例中,交換反應在氧化劑之金屬硫 化物或氧化物與還原劑、催化劑源及催化劑中之至少一者 之間進行。各類型之一例示性系統為166 g KH+1 gSl B, Zr, and rare earth metals (such as elements or hydrides; and (v) carriers' are preferably electrically conductive and preferably do not react with other 142257.doc • 77-201104948 materials of the reaction mixture to form additional compounds. Suitable supports preferably comprise carbon, such as AC, graphene, carbon impregnated with a metal such as Pt/c or Pd/c, and carbides (preferably TiC or WC). In a shell embodiment, the 'reaction mixture contains (1) a catalyst or catalyst source comprising a metal or hydride from a Group ** element; (H) a hydrogen source such as a hydrogen or hydrogen source or hydride; (Hi) an oxidant comprising a dentate, oxide or sulfide a compound, preferably a metal dentate, an oxide or a sulfide, more preferably from the group of the eighth, the third, the third, the fourth, the fifth, the sixth, the sixth, the seventh, the seventh a halide of an element of Group 8 (Group 1, Group 4, Group Id, Group 11 d, Group 12d and a lanthanide element, and an optimum transition metal halide or lanthanide halide; (iv) a reducing agent comprising an element or a nitride, preferably one or more selected from the group consisting of Mg, MgH2, A, Si, B, Zr, and a rare earth An element or hydride of the genus (such as La); and (v) a carrier which preferably has electrical conductivity and preferably does not react with other materials of the reaction mixture to form another compound. Suitable carriers preferably comprise carbon, such as AC, Metal impregnated carbon (such as Pt/C or Pd/C) and carbide, preferably TiC or WC. e. Exchange reaction, thermoreversible reaction and regeneration In one embodiment, 'oxidant and reducing agent, catalyst source and catalyst At least one of them may be subjected to a reversible reaction. In one embodiment, the oxidizing agent is a halide, preferably a metal dentate, more preferably at least one of a transition metal, tin, indium, an alkali metal, a soil test metal, and a rare earth metal tooth. - the best rare earth metal halide. The reversible reaction is preferably a tooth exchange reaction. The reaction energy is preferably low so that the ambient temperature is between 3 〇〇 (rc, preferably between ambient temperature and 1000 c). The halide at a temperature can be reversibly exchanged between the oxidant and the reducing agent, at least one of the source of the catalyst and the catalyst. The equilibrium of the reaction can be shifted to drive the low energy hydrogen reaction. Temperature change Or the reaction concentration or ratio changes and shift. The reaction can be maintained by adding hydrogen. In a representative reaction, the exchange is niM〇xXx + n2Mca^ed^nlMox + n2Mcat/redXy. (54) where n!,~ , 乂 and 丫 are integers, χ is a halogen, and Μ〇χ is an oxidant metal ' Mred / eat is a metal of at least one of a reducing agent, a catalyst source, and a catalyst. In one embodiment, one or more reactants In addition to the hydride and the removal of the halide, the reaction further comprises a reversible hydride exchange. In addition to other reaction conditions (such as temperature and reactant concentration), the reversible reaction can also be controlled by controlling the hydrogen pressure. An exemplary reaction is n'MoxXx + n2Mcat/redH^±niMoxH+n2Mcat/redXy. (55) In the κ application, 'oxidant (such as metal complex, soil metallization or rare earth metal halide, preferably RbCl, BaBr2, Baci2, EuX2 or GdX3, where hydrazine is halogen or sulphur, optimal EuBr2 Reaction with a catalyst or catalyst source (preferably NaH or KH) and optionally a reducing agent (preferably Mg or MgH2) to form a ruthenium or ruthenium or a catalyst halide such as NaX or ruthenium . The rare earth metal halide can be regenerated by selectively removing the catalyst or catalyst source and optionally a reducing agent. In one embodiment, MoxH2 is thermally decomposable and hydrogen is removed by a method such as suction. The halide exchange (Equation (54-55)) forms the metal of the catalyst. The metal can be removed as a molten liquid or as a vaporized or sublimed gas leaving a metal halide such as an alkaline earth metal or a rare earth metal halide. The liquid can be removed, for example, by a method such as centrifugation or by a pressurized inert gas stream. If appropriate, the catalyst or 142257.doc -79 - 201104948 catalyst source can be rehydrogenated to regenerate the initial reactants, which are recombined with the rare earth metal dentate and support into the initial mixture. In the case where Mg or Mg% is used as the reducing agent, the hydride can be fused and the liquid removed by adding a hydride formation, which is first removed. In the case of X = F, by the ρ exchange with a rare earth metal such as guH2, the MgF2 product can be converted to Mg%, wherein the molten MgH2 is continuously removed. The reaction can be carried out at a pressure of % to facilitate the formation and selective removal of MgH2. The reducing agent can be rehydrogenated and added to other regeneration reactants to form an initial reaction mixture. In another embodiment, the exchange reaction is carried out between at least one of a metal sulphide or oxide of the oxidant and a reducing agent, a catalyst source, and a catalyst. One exemplary system of each type is 166 g KH+1 g

Mg+2.74 g Y2S3 + 4 g AC及 1 g NaH+1 g Mg+2.26 g Y2〇3 + 4 g AC。 催化劑 '催化劑源或還原劑之選擇性移除可為連續的, 其中催化劑、催化劑源或還原劑可至少部分再循壤於反應 器内。反應器可進一步包含一蒸館器或回流組件以移除催 化劑(諸如圖4之蒸館器34)、催化劑源或還原劑且使其返回 至電池中。視情況其可經氫化或進一步反應且可回收此產 物。反應溫度可在兩個極端之間循環,以藉由平衡移位使 反應物連續再循環。在一實施例中,系統熱交換器具有使 電池温度在高值與低值之間快速變化以使平衡來回移位、 從而擴展低能量氫反應之能力。 再生反應可包含與添加物質(諸如氫)之催化反應。在一 實施例中’催化劑及Η之來源為KH且氧化劑為EuBr2。熱 142257.doc •80- 201104948 驅動之再生反應可為 2KBr+Eu至 EuBr2 + 2K (56) 或 2KBr+EuH2至 EuBr2 + 2KH。 (57) 或者,H2可用作分別諸如KH及EuBr2之催化劑或催化劑 源及氧化劑的再生催化劑: 3KBr+l/2H2+EuH2至 EuBr3 + 3KH。 (58) 此外,EuBr2藉由H2還原EuBr3而形成。一可能途徑為 EuBr3 +1/2H2至 EuBr2+HBr 0 (59) HBr可再循環: HBr+KH至 KBr+H2 (60) 其中總反應式為: 2KBr+EuH2至 EuBr2 + 2KH。 (61) 熱驅動之再生反應速率可藉由使用熟習此項技術者已知 之具有較低能量之不同途徑來增加: 2KBr+H2+Eu至 EuBr2 + 2KH (62) 3KBr+3/2H2+Eu至 EuBr3 + 3KH或 (63)Mg + 2.74 g Y2S3 + 4 g AC and 1 g NaH + 1 g Mg + 2.26 g Y2 〇 3 + 4 g AC. The selective removal of the catalyst 'catalyst source or reducing agent can be continuous, wherein the catalyst, catalyst source or reducing agent can be at least partially recirculated into the reactor. The reactor may further comprise a vaporizer or reflux assembly to remove the catalyst (such as the vaporizer 34 of Figure 4), the catalyst source or the reductant and return it to the battery. It may be hydrogenated or further reacted as appropriate and the product may be recovered. The reaction temperature can be cycled between the two extremes to continuously recycle the reactants by equilibrium shifting. In one embodiment, the system heat exchanger has the ability to rapidly vary the battery temperature between high and low values to shift the balance back and forth, thereby expanding the low energy hydrogen reaction. The regeneration reaction may comprise a catalytic reaction with an added substance such as hydrogen. In one embodiment, the source of the catalyst and rhodium is KH and the oxidant is EuBr2. Heat 142257.doc •80- 201104948 The regenerative reaction driven can be 2KBr+Eu to EuBr2 + 2K (56) or 2KBr+EuH2 to EuBr2 + 2KH. (57) Alternatively, H2 may be used as a regenerated catalyst for a catalyst or catalyst source such as KH and EuBr2, respectively, and an oxidant: 3KBr+l/2H2+EuH2 to EuBr3 + 3KH. (58) Further, EuBr2 is formed by reducing EuBr3 by H2. One possible route is EuBr3 + 1/2H2 to EuBr2+HBr 0 (59) HBr can be recycled: HBr + KH to KBr + H2 (60) wherein the total reaction formula is: 2KBr + EuH2 to EuBr2 + 2KH. (61) The rate of regenerative reaction of the heat drive can be increased by using different pathways known to those skilled in the art having lower energy: 2KBr+H2+Eu to EuBr2 + 2KH (62) 3KBr+3/2H2+Eu to EuBr3 + 3KH or (63)

EuBr3+1/2H2至 EuBr2+HBr。 (64) 方程式(62)給出之反應為可能的,因為在H2存在下金屬 與相應氫化物之間存在平衡,諸如EuBr3 + 1/2H2 to EuBr2+HBr. (64) The reaction given by equation (62) is possible because there is a balance between the metal and the corresponding hydride in the presence of H2, such as

Eu+H2 #EuH2。 (65) 反應途徑可包含熟習此項技術者已知之具有較低能量之 中間步驟,諸如 2KBr+Mg+H2至 MgBr2 + 2KH及 (66) 142257.doc -81 - 201104948 (67) 體形式移除Eu+H2 #EuH2. (65) The reaction pathway may comprise intermediate steps known to those skilled in the art having lower energy, such as 2KBr+Mg+H2 to MgBr2 + 2KH and (66) 142257.doc -81 - 201104948 (67)

MgBr2+Eu+H2至 EuBr2+MgH2。 KH或K金屬可以熔融液體或蒸發或昇華氣 留下金屬齒化物,諸如鹼土金屬或稀土金屬南化物。液體 可由諸如離心之方法或由加壓惰性氣體流移除。在其他實 施例中,另一催化劑或催化劑源(諸如NaH、UH、RbH、MgBr2+Eu+H2 to EuBr2+MgH2. The KH or K metal may melt the liquid or evaporate or sublimate the gas leaving a metal dentate such as an alkaline earth metal or a rare earth metal hydride. The liquid can be removed by methods such as centrifugation or by a pressurized inert gas stream. In other embodiments, another catalyst or catalyst source (such as NaH, UH, RbH,

CsH、Na、Li、Rb ' Cs)可取代纽或〖,且氧化劑可包含 另-金屬齒化物,諸如另一稀土金屬齒化物或鹼土金屬南 化物,較佳BaCl2或BaBr2。 在其他實施财,熱可逆反應包含其他交換反應,較佳 在各自包含至少一種金屬原子之兩種物質之間的交換反 應。交換可在催化劑之金屬(諸如鹼金屬)與交換搭配物(諸 如乳化劑)之金屬之間進行。交換亦可在氧化劑與還原劑 之間進行。交換物質可為陰離子,諸如由離子、氫離子、 氧離子、石危離子、氮離子、卿子、碳離子、石夕離子、坤 離子、㈣子、«子、磷離子、_根、硫氫根、碳酸 根、硫酸根、硫酸氫根、磷酸根、磷酸氫根、磷酸二氫 根、過氣酸根、鉻酸根、重鉻酸根、鈷酸根及熟習此項技 術者已知之其他氧陰难子及陰離子。至少一種交換搭配物 可包含鹼金屬、鹼土金屬、過渡金屬、第二系列過渡金 屬、第二系列過渡金屬、貴金屬、稀土金屬、A1、Ga、 In、Sn、As、Se及Te。合適之交換陰離子為鹵離子、氧離 子、硫離子、氮離子、磷離子及硼離子。用於交換之合適 金屬為鹼金屬(較佳!^3或"、鹼土金屬(較佳Mg4Ba)及稀 土金屬(較佳Eu或Dy),各呈金屬或氫化物形式。下文中給 142257.doc -82- 201104948 出例示性催化劑反應物及例示性交換反應。此等反應並不 意謂為詳盡的且熟習此項技術者將知曉其他實例。 • 4 g AC3-3 + 1 g Mg+1.66 g KH+2.5 g Dyl2 > Ein : 135.0 kJ,dE : 6.1 kJ,TSC :無,Tmax : 403°C,理論能量為 1.89 kJ,增益為3.22倍,CsH, Na, Li, Rb 'Cs) may be substituted for ruthenium or ruthenium, and the oxidant may comprise another metal dentate such as another rare earth metal dentate or alkaline earth metal hydride, preferably BaCl2 or BaBr2. In other implementations, the thermoreversible reaction involves other exchange reactions, preferably an exchange reaction between two materials each containing at least one metal atom. The exchange can take place between the metal of the catalyst, such as an alkali metal, and the metal of the exchange partner, such as an emulsifier. Exchange can also be carried out between the oxidant and the reducing agent. The exchange substance may be an anion such as an ion, a hydrogen ion, an oxygen ion, a rock dangerous ion, a nitrogen ion, a scorpion ion, a carbon ion, a scorpion ion, a kun ion, a (four) sub, a «sub, a phosphorus ion, a _ root, a sulfur hydride. Roots, carbonates, sulfates, hydrogen sulfate, phosphates, hydrogen phosphates, dihydrogen phosphates, peroxyacids, chromates, dichromates, cobaltates, and other oxygen-tolerant scorpions known to those skilled in the art. And anions. The at least one exchange partner may comprise an alkali metal, an alkaline earth metal, a transition metal, a second series of transition metals, a second series of transition metals, a noble metal, a rare earth metal, A1, Ga, In, Sn, As, Se, and Te. Suitable exchange anions are halides, oxygen ions, sulfur ions, nitrogen ions, phosphorus ions and boron ions. Suitable metals for exchange are alkali metals (preferably!^3 or ", alkaline earth metals (preferably Mg4Ba) and rare earth metals (preferably Eu or Dy), each in the form of a metal or hydride. Hereinafter 142257. Doc-82-201104948 Exemplified exemplary catalyst reactants and exemplary exchange reactions. These reactions are not intended to be exhaustive and other examples will be known to those skilled in the art. • 4 g AC3-3 + 1 g Mg+1.66 g KH+2.5 g Dyl2 > Ein : 135.0 kJ,dE : 6.1 kJ, TSC : none, Tmax : 403 ° C, theoretical energy 1.89 kJ, gain 3.22 times,

DyBr2+2K 32KBr+Dy。 (68) -4 g AC3-3 + 1 g Mg+1 g NaH+2.09 g EuF3,Ein : 185.1 kJ,dE : 8.0 kJ,TSC :無,Tmax : 463°C,理論能量為 1.69 kJ,增益為4.73倍,DyBr2+2K 32KBr+Dy. (68) -4 g AC3-3 + 1 g Mg+1 g NaH+2.09 g EuF3, Ein : 185.1 kJ,dE : 8.0 kJ, TSC : none, Tmax : 463°C, theoretical energy 1.69 kJ, gain 4.73 times,

EuF3 + 1.5Mg ^1.5MgF2+ Eu (69)EuF3 + 1.5Mg ^1.5MgF2+ Eu (69)

EuF3 + 3NaH #3NaF+ Eu H2 ° (70) KH 8.3 gm+Mg 5.0 gm+CAII-300 20.0 gm+CrB2 3.7 gm,Ein : 3 17 kJ,dE : 19 kJ,無 TSC,Tmax為約 340°C, 理論能量為吸熱0.05 kJ,增益無限,EuF3 + 3NaH #3NaF+ Eu H2 ° (70) KH 8.3 gm+Mg 5.0 gm+CAII-300 20.0 gm+CrB2 3.7 gm, Ein: 3 17 kJ, dE: 19 kJ, no TSC, Tmax is about 340 ° C, The theoretical energy is 0.05 kJ, and the gain is unlimited.

CrB2+Mg 艺MgB2。 (71) 用掉 0.70 g TiB2、1.66 g KH、1 g Mg 粉末及4 g CA-III 300活性碳粉末(AC3-4)。能量增益為5.1 kJ,但未觀測到 電池溫度突增。最大電池溫度為431°C,理論能量為〇。CrB2+Mg Art MgB2. (71) 0.70 g of TiB2, 1.66 g of KH, 1 g of Mg powder and 4 g of CA-III 300 activated carbon powder (AC3-4) were used. The energy gain was 5.1 kJ, but no sudden increase in battery temperature was observed. The maximum battery temperature is 431 ° C and the theoretical energy is 〇.

TiB2+Mg 0MgB2。 (72) 用掉 0·42 g LiCn、1.66 g KH、1 g Mg 粉末及4 g AC3-4。能量增益為5.4 kJ,但未觀測到電池溫度突增》最大電 池溫度為412°C,理論能量為〇,增益無限。TiB2+Mg 0MgB2. (72) 0.42 g of LiCn, 1.66 g of KH, 1 g of Mg powder and 4 g of AC3-4 were used. The energy gain was 5.4 kJ, but no sudden increase in battery temperature was observed. The maximum battery temperature was 412 °C, the theoretical energy was 〇, and the gain was infinite.

LiCl+KH aKCl+LiH。 (73) 1.21 g RbCl、1.66 g KH、1 g Mg 粉末及 4 g AC3-4,能 142257.doc -83· 201104948 量增益為6.0 kJ,但未觀測到電池溫度突增。最大電池溫 度為442°C,理論能量為〇。LiCl+KH aKCl+LiH. (73) 1.21 g RbCl, 1.66 g KH, 1 g Mg powder and 4 g AC3-4, energy 142257.doc -83·201104948 The gain was 6.0 kJ, but no sudden increase in battery temperature was observed. The maximum battery temperature is 442 ° C and the theoretical energy is 〇.

RbCl+KH #KCl+RbH。 (74) 4 g AC3-5 + 1 g Mg+1.66 g KH+0.87 g LiBr ; Ein · ♦ ·« 146.0 kJ ; dE : 6.24 kJ ; TSC :未觀測到;Tmax : 439°C, 理論上吸熱,RbCl+KH #KCl+RbH. (74) 4 g AC3-5 + 1 g Mg+1.66 g KH+0.87 g LiBr ; Ein · ♦ · « 146.0 kJ ; dE : 6.24 kJ ; TSC : not observed; Tmax : 439 ° C, theoretically endothermic,

LiBr+KH ^KBr+LiH (75)。 KH 8.3 gm+Mg 5.0 gm+CAII-300 20.0 gm+YF3 7.3 gm ; Ein : 320 kJ ; dE : 17 kJ ;無 TSC,Tmax為約 340°C ; 能量增益約為4.5 X(X為約0.74 kJ * 5=3.7 kJ) ’ YF3+1.5Mg+2KH g 1.5MgF2+YH2 + 2K。 (76)LiBr+KH ^KBr+LiH (75). KH 8.3 gm+Mg 5.0 gm+CAII-300 20.0 gm+YF3 7.3 gm ; Ein : 320 kJ ; dE : 17 kJ ; without TSC, Tmax is about 340 ° C; energy gain is about 4.5 X (X is about 0.74 kJ) * 5=3.7 kJ) ' YF3+1.5Mg+2KH g 1.5MgF2+YH2 + 2K. (76)

NaH 5.0 gm+Mg 5.0 gm+CAII-300 20.0 gm+BaBr2 14.85 gm(乾燥);Ein : 328 kJ ; dE : 16 kJ ;無 TSC,Tmax 為約 320°C ;能量增益為 160X(X為約 0.02 kJ*5=0.1 kJ),NaH 5.0 gm+Mg 5.0 gm+CAII-300 20.0 gm+BaBr2 14.85 gm (dry); Ein: 328 kJ; dE: 16 kJ; no TSC, Tmax is about 320 ° C; energy gain is 160X (X is about 0.02) kJ*5=0.1 kJ),

BaBr2 + 2NaH 32NaBr+BaH2。 (77) -KH 8.3 gm+Mg 5.0 gm+CAII-300 20.0 gm+BaCl2 10-4 gm ; Ein : 331 kJ ; dE : 18 kJ,無 TSC,Tmax為約 320°C 。 能量增益為約6.9X(X為約0.52x5=2.6 kJ)BaBr2 + 2NaH 32NaBr + BaH2. (77) -KH 8.3 gm+Mg 5.0 gm+CAII-300 20.0 gm+BaCl2 10-4 gm ; Ein : 331 kJ ; dE : 18 kJ, no TSC, Tmax is about 320 ° C. The energy gain is about 6.9X (X is about 0.52x5=2.6 kJ)

BaCl2+2KH 32KCl+BaH2。 (78)BaCl2+2KH 32KCl+BaH2. (78)

NaH 5.0 gm+Mg 5.0 gm+CAII-300 20-0 gm+Mgl2 13.9 gm ; Ein : 315 kJ ; dE : 16 kJ,無 TSC,Tmax為約 340°C。 能量增益為約1.8X(X為約1.75x5=8.75 kJ)NaH 5.0 gm+Mg 5.0 gm+CAII-300 20-0 gm+Mgl2 13.9 gm; Ein: 315 kJ; dE: 16 kJ, no TSC, Tmax is about 340 °C. The energy gain is about 1.8X (X is about 1.75x5=8.75 kJ)

MgI2+2NaH 32NaI+MgH2 » (79) -4 g AC3-2+1 g Mg+1 g NaH+0.97 g ZnS ; Ein : 132.1 142257.doc -84 - 201104948 kJ ; dE : 7.5 kJ ; TSC :無;Tmax : 370°C,理論能量為 1.4 kJ,增益為5.33倍,MgI2+2NaH 32NaI+MgH2 » (79) -4 g AC3-2+1 g Mg+1 g NaH+0.97 g ZnS ; Ein : 132.1 142257.doc -84 - 201104948 kJ ; dE : 7.5 kJ ; TSC : none; Tmax: 370 ° C, theoretical energy is 1.4 kJ, gain is 5.33 times,

ZnS+2NaH ^2NaHS+Zn (80)ZnS+2NaH ^2NaHS+Zn (80)

ZnS+Mg #MgS+Zn ° (81) _ 2.74 g Y2S3、1.66 g KH、1 g Mg 粉末及 4 g CA-III 300 活性碳粉末(在300°C下乾燥),能量增益為5.2 kJ,但未觀 測到電池溫度突增。最大電池溫度為444°C,理論能量為 0.41 kJ,增益為 12.64倍, Y2S3 + 3KH ^3KHS + 2Y (82) Y2S3 + 6KH+3Mg ^3K2S + 2Y+3MgH2 (83) Y2S3 + 3Mg 33MgS + 2Y ° (84) 4 g AC3-5 + 1 g Mg+1.66 g KH+1.82 g Ca3P2 ; Bin : 133.0 kJ ; dE : 5.8 kJ ; TSC :無;Tmax : 407°C,理論上 吸熱,增益無限。 • 20 g AC3-5 + 5 g Mg+8.3 g KH+9.1 g Ca3P2,Ein : 282.1 kJ,dE : 18.1 kJ,TSC :無,Tmax : 32(TC,理論上吸 熱,增益無限。ZnS+Mg #MgS+Zn ° (81) _ 2.74 g Y2S3, 1.66 g KH, 1 g Mg powder and 4 g CA-III 300 activated carbon powder (dried at 300 ° C) with an energy gain of 5.2 kJ, However, no sudden increase in battery temperature was observed. The maximum battery temperature is 444 ° C, the theoretical energy is 0.41 kJ, and the gain is 12.64 times. Y2S3 + 3KH ^3KHS + 2Y (82) Y2S3 + 6KH+3Mg ^3K2S + 2Y+3MgH2 (83) Y2S3 + 3Mg 33MgS + 2Y ° (84) 4 g AC3-5 + 1 g Mg+1.66 g KH+1.82 g Ca3P2 ; Bin : 133.0 kJ ; dE : 5.8 kJ ; TSC : none; Tmax : 407 ° C, theoretically endothermic, gain infinite. • 20 g AC3-5 + 5 g Mg+8.3 g KH+9.1 g Ca3P2, Ein: 282.1 kJ, dE: 18.1 kJ, TSC: none, Tmax: 32 (TC, theoretically endothermic, gain infinite.

Ca3P2+3Mg 艺Mg3P2+ 3Ca。 (85) 在一實施例中,熱再生反應系統包含: (i) 至少一種選自NaH及KH之催化劑或催化劑源; (ii) 至少一種選自NaH、KH及MgH2之氫源; (iii) 至少一種選自以下之氧化劑:鹼土金屬鹵化物, 諸如 BaBr2、BaCL、Bal2、CaBr2、MgBr2 或 Mgl2 ;稀土 金屬鹵化物’諸如 EuBr2、EuBr3、EuF3、Dyl2、LaF3 或 142257.doc ·85· 201104948Ca3P2+3Mg Art Mg3P2+ 3Ca. (85) In one embodiment, the thermal regeneration reaction system comprises: (i) at least one catalyst or catalyst source selected from the group consisting of NaH and KH; (ii) at least one hydrogen source selected from the group consisting of NaH, KH, and MgH2; At least one oxidizing agent selected from the group consisting of alkaline earth metal halides such as BaBr2, BaCL, Bal2, CaBr2, MgBr2 or Mgl2; rare earth metal halides such as EuBr2, EuBr3, EuF3, Dyl2, LaF3 or 142257.doc · 85· 201104948

GdF3 ;第二或第三系列過渡金屬鹵化物,諸如Yp3 ;金 屬硼化物,諸如CrB2或TiB2 ;鹼金屬鹵化物’諸如 LiCl、RbCl或Csl ;金屬硫化物’諸如Li2S、ZnS或 Y2S3 ;金屬氧化物,諸如Y2O3 ;及金屬磷化物,諸如 Ca3P2 ; (iv) 至少一種選自Mg及MgH2之還原劑;及 (v) 選自AC ' TiC及WC之載體。 f.吸氣劑、載體或基質輔助之低能量氫反應 在另一實施例中,交換反應為吸熱反應。在此類實施例 中’金屬化合物可用作低能量氫反應之有利載體或基質或 產物之吸氣劑中之至少一者以提高低能量氫反應速率。下 文中給出例示性催化劑反應物及例示性載體、基質或吸氣 劑。此等反應並不意謂為詳盡的且熟習此項技術者將知曉 其他實例。 4 g AC3-5 + 1 g Mg+1.66 g KH+2.23 g Mg3As2 > Ein : .139.0 kJ,dE : 6.5 kJ,TSC :無,Tmax : 393°C,理論上 吸熱,增益無限。 20 g AC3-5 + 5 g Mg+8.3 g KH+11.2 g Mg3As2,Ein : 298·6 kJ,dE : 21·8 kJ,TSC :無,Tmax : 315°C,理論上 吸熱,增益無限。 1 ·大容量電池中1.01 g Mg3N2、! 66 g KH、i邑Mg粉 末及4 g AC3-4,能量增益為5 2 kJ,但未觀測到電池溫度 突增。最大電池溫度為4〇rc,理論能量為〇,增益無限。 Γ’大容量電池中0‘41 g A1N、1.66 g KH、1 g Mg粉末 142257.doc • 86 - 201104948 及4 g AC3-5,能量增益為4.9 kJ ’但未觀測到電池溫度突 增°最大電池溫度為4〇7。(:,理論上吸熱。 在一實施例中’熱再生反應系統包含至少兩種選自(i)_ (v)之組份: ⑴至少一種選自NaH、KH及Mg%之催化劑或催化劑 源; (ii) 至少一種選自NaH及KH之氫源; (iii) 至少一種選自諸如Mg3AS2之金屬砷化物及諸如 MgsN2或A1N之金屬氮化物的氧化劑、基質、第二載體或 吸氣劑; (iv) 至少一種選自之還原劑;及 (v) 至少一種選自AC、TiC或WC之載體。 D.液體燃料:有機及熔融溶劑系統 其他實施例包含熔融固體,諸如含於腔室2〇〇中之熔鹽 或液體溶劑。藉由在高於液體溶劑沸點之溫度下運作該電 池,可使溶劑汽化。諸如催化劑之反應物可溶解或懸浮於 溶劑中,或形成催化劑及H之反應物可懸浮或溶解於溶劑 中。汽化溶劑可作為具有催化劑之氣體,以增加形成低能 畺氫之氫催化劑反應的速率。炫融固體或汽化溶劑可藉由 用加熱器230施熱來維持。反應混合物可進一步包含固體 載體,諸如HSA物質》由於熔融固體、液體或氣體溶劑與 催化劑及氫(諸如Κ或Li加上η或NaH)相互作用,所以反應 可發生在表面上。在使用非均勻催化劑之一實施例中混 合物之溶劑可增加催化劑反應速率。 142257.doc -87- 201104948 在包含氫氣之實施例中,h2可鼓泡穿過溶液。在另一實 施例中,將電池加壓以增加經溶解h2之濃度。在另一實施 例中,較佳以高速且在約有機溶劑沸點及約無機溶劑熔點 之溫度下攪拌反應物。 有機溶劑反應混合物可較佳在約26°C至400°C之溫度範 圍内、更佳在約1 〇〇°C至300°C之範圍内加熱。無機溶劑混 合物可加熱至高於溶劑為液體時所處之溫度且低於引起 NaH分子全部分解之溫度的溫度。 a.有機溶劑 有機溶劑可包含一或多個藉由添加官能基而可改質成其 他溶劑的部分。該等部分可包含以下至少一者:烴,諸如 烷烴、環烷烴、烯烴、環烯烴、炔烴、芳烴、雜環烴及其 組合;醚;鹵化烴(氟化烴、氯化烴、溴化烴、填化烴), 較佳氟化烴;胺;硫醚;腈;磷醯胺(例如, OP(N(CH3)2)3);及胺基構氮烯。該等基團可包含以下至少 一者:烷基、環烷基、烷氧羰基、氰基、胺曱醯基、含有 C、Ο、N、S之雜環、磺酸基、胺磺醯基、烷氧基磺醯 基、膦酸基、經基、鹵素、烧氧基、炫硫基、酿氧基、芳 基、稀基、脂族基團、酿基、缓基、胺基、氛基炫氧基、 重氮、羧基烷基羧醯胺基、烯硫基、氰基烷氧羰基、胺甲 醯基烷氧羰基、烷氧基羰基胺基、氰基烷基胺基、烷氧羰 基烧基胺基、項酸基烧基胺基、烧基胺續酿基烧基胺基、 氧離子基、羥基烷基、羧基烷基羰氧基、氰基烷基、羧基 烷硫基、芳基胺基、雜芳基胺基、烷氧羰基、烷基羰氧 142257.doc -88- 201104948 基、氰基烧氧基、院氧幾基院氧基、胺甲酿基烧氧基、胺 曱酿基烧基幾氧基、續酸基烧氧基、硝基、院氧基芳基、 鹵芳基、胺基芳基、烷基胺基芳基、甲苯基、烯基芳基、 烯丙基芳基、烯氧基芳基、烯丙氧基芳基、氰基芳基、胺 曱醯基芳基、羧基芳基、烷氧基羰基芳基、烷基羰氧基芳 基、磺酸基芳基、烷氧基磺酸基芳基、胺磺醯基芳基及硝 基芳基。基團較佳包含以下至少一者:烷基、環烷基、烷 氧基、氰基、含有C、0、N、S之雜環、磺酸基、膦酸 基、素、烧氧基、烧硫基、芳基、稀基、脂族基團、酿 基、烧基胺基、稀硫基、芳基胺基、雜芳基胺基、鹵芳 基、胺基芳基、焼基胺基芳基、稀基芳基、稀丙基芳基、 烯氧基芳基、烯丙氧基芳基及氰基芳基。 在包含液體溶劑之一實施例中,催化劑NaH為至少一種 反應混合物組份且由反應混合物形成。反應混合物可進一 步包含以下之群中之至少一者:NaH、Na、NH3、 NaNH2、Na2NH、Na3N、H20、NaOH、NaX(X為陰離子, 較佳鹵離子)、NaBH4、NaAlH4、Ni、鉑黑、鈀黑、R-Ni、摻雜Na物質(諸如Na、NaOH及NaH中之至少一者)之 R-Ni、HSA載體 '吸氣劑、分散劑、氫源(諸如H2)及氫解 離器。在其他實施例中,Li、K、Rb或Cs替代Na。在一實 施例中,溶劑具有齒素官能基,較佳氟。合適反應混合物 包含六氟苯與八氟萘中之至少一者,將其添加至諸如NaH 之催化劑中且與諸如活性碳、氟聚合物或R-Ni之載體混 合。在一實施例中,反應混合物包含一或多種來自以下之 142257.doc -89- 201104948 群之物質:Na、NaH、溶劑、較佳氟化溶劑及HS A物質。 用於再生之合適氟化溶劑為CF4。對於氟化溶劑及NaH催 化劑而言合適之載體或HSA物質為NaF。在一實施例中, 反應混合物至少包含NaH、CF4及NaF。其他基於氟之載體 或吸氣劑包含:M257F6,其中Μ為鹼金屬,諸如iVMz下6及 尤,其中Μ為鹼土金屬,諸如、 G<aF3、PF5 ; ,其中Μ為鹼金屬;,其中Μ為鹼 金爆,議如 NaHF2& KHFi ., K2TaFi 、 KBFa 、 K2MyiF6Sl ΑΖγ^Ρ6,其中期望可使用其他類似化合物,諸如具有另一 驗金屬或驗土金屬取代、諸如Li、Na或Κ之一作為驗金屬 的化合物。 b.無機溶劑 在另一實施例中,反應混合物包含至少一種無機溶劑。 溶劑可另外包含熔融無機化合物,諸如熔鹽。無機溶劑可 為熔融NaOH。在一實施例中,反應混合物包含催化劑、 氫源及催化劑之無機溶劑。催化劑可為NaH分子、Li及K 中之至少一者。溶劑可為溶融或溶化鹽或共炫物中之至少 一者,諸如鹼金屬ii化物及鹼土金屬鹵化物之群之熔鹽中 的至少一者。NaH催化劑反應混合物之無機溶劑可包含諸 如NaCl與KC1之鹼金屬鹵化物之混合物的低熔點共熔物。 溶劑可為低熔點鹽,較佳Na鹽,諸如NaI(660°C )、 NaAlCl4(160°C )、NaAlF4及與NaMX4屬同一類別之具有比 NaX更穩定之金屬齒化物的化合物(其中Μ為金屬且X為鹵 素)中之至少一者。反應混合物可進一步包含諸如R-Ni之 142257.doc -90- 201104948 載體。GdF3; second or third series of transition metal halides such as Yp3; metal borides such as CrB2 or TiB2; alkali metal halides such as LiCl, RbCl or Csl; metal sulfides such as Li2S, ZnS or Y2S3; metal oxidation And a metal phosphide such as Ca3P2; (iv) at least one reducing agent selected from the group consisting of Mg and MgH2; and (v) a carrier selected from the group consisting of AC 'TiC and WC. f. Getter, Carrier or Matrix Assisted Low Energy Hydrogen Reaction In another embodiment, the exchange reaction is an endothermic reaction. In such embodiments the 'metal compound can be used as an advantageous carrier for a low energy hydrogen reaction or as a matrix or a getter for the product to increase the rate of low energy hydrogen reaction. Exemplary catalyst reactants and exemplary carriers, matrices or getters are provided below. Such reactions are not intended to be exhaustive and those skilled in the art will be aware of other examples. 4 g AC3-5 + 1 g Mg+1.66 g KH+2.23 g Mg3As2 > Ein : .139.0 kJ,dE : 6.5 kJ, TSC : none, Tmax : 393 ° C, theoretically endothermic, gain infinite. 20 g AC3-5 + 5 g Mg+8.3 g KH+11.2 g Mg3As2, Ein: 298·6 kJ, dE: 21·8 kJ, TSC: none, Tmax: 315 °C, theoretically endothermic, gain infinite. 1 · 1.01 g Mg3N2 in a large capacity battery! 66 g KH, i邑Mg powder and 4 g AC3-4, the energy gain was 5 2 kJ, but no sudden increase in battery temperature was observed. The maximum battery temperature is 4〇rc, the theoretical energy is 〇, and the gain is infinite. Γ' Large capacity battery 0'41 g A1N, 1.66 g KH, 1 g Mg powder 142257.doc • 86 - 201104948 and 4 g AC3-5, energy gain is 4.9 kJ 'but no battery temperature spike is observed. The battery temperature is 4〇7. (: Theoretically endothermic. In one embodiment, the 'thermal regeneration reaction system comprises at least two components selected from (i) - (v): (1) at least one catalyst or catalyst source selected from the group consisting of NaH, KH and Mg% (ii) at least one hydrogen source selected from the group consisting of NaH and KH; (iii) at least one oxidant selected from a metal arsenide such as Mg3AS2 and a metal nitride such as MgsN2 or A1N, a matrix, a second carrier or a getter; (iv) at least one selected from the group consisting of reducing agents; and (v) at least one carrier selected from the group consisting of AC, TiC or WC. D. Liquid fuel: organic and molten solvent systems. Other embodiments comprise molten solids, such as contained in chamber 2 a molten salt or a liquid solvent in a crucible. The solvent can be vaporized by operating the battery at a temperature higher than the boiling point of the liquid solvent. The reactant such as a catalyst can be dissolved or suspended in a solvent, or a catalyst and H can be formed. The material may be suspended or dissolved in a solvent. The vaporizing solvent may act as a gas having a catalyst to increase the rate of reaction of the hydrogen catalyst forming the low energy hydrogen hydride. The smelting solid or vaporizing solvent may be maintained by heating with a heater 230. The composition may further comprise a solid support, such as an HSA material. The reaction may occur on the surface due to the interaction of the molten solid, liquid or gaseous solvent with the catalyst and hydrogen (such as ruthenium or Li plus η or NaH). The solvent of the mixture in one of the embodiments of the catalyst can increase the rate of catalyst reaction. 142257.doc -87- 201104948 In an embodiment comprising hydrogen, h2 can be bubbled through the solution. In another embodiment, the battery is pressurized Increasing the concentration of dissolved h2. In another embodiment, the reactant is preferably stirred at a high speed and at a temperature of about the boiling point of the organic solvent and about the melting point of the inorganic solvent. The organic solvent reaction mixture may preferably be at about 26 ° C to 400. Heating in a temperature range of ° C, more preferably in the range of about 1 〇〇 ° C to 300 ° C. The inorganic solvent mixture can be heated to a temperature higher than the temperature at which the solvent is liquid and lower than the temperature at which all NaH molecules are decomposed. a. Organic Solvent The organic solvent may comprise one or more moieties which may be modified to other solvents by the addition of functional groups. The moieties may comprise at least one of the following: hydrocarbons Such as alkanes, cycloalkanes, alkenes, cyclic alkenes, alkynes, aromatic hydrocarbons, heterocyclic hydrocarbons and combinations thereof; ethers; halogenated hydrocarbons (fluorinated hydrocarbons, chlorinated hydrocarbons, brominated hydrocarbons, filled hydrocarbons), preferably fluorinated hydrocarbons An amine; a thioether; a nitrile; a phosphoniumamine (for example, OP(N(CH3)2)3); and an aminoziridine. These groups may comprise at least one of the following: an alkyl group, a cycloalkyl group, Alkoxycarbonyl, cyano, amine fluorenyl, heterocyclic ring containing C, hydrazine, N, S, sulfonic acid group, sulfonyl group, alkoxy sulfonyl group, phosphonic acid group, trans group, halogen, burning Oxygen, thiol, ethoxy, aryl, dilute, aliphatic, aryl, sulfhydryl, amine, aryloxy, diazo, carboxyalkyl carbamide, olefin , cyanoalkoxycarbonyl, amine, mercaptoalkoxycarbonyl, alkoxycarbonylamino, cyanoalkylamino, alkoxycarbonylalkylamino, carboxylic acid alkyl, decyl amine Alkylamino, oxyalkyl, hydroxyalkyl, carboxyalkylcarbonyloxy, cyanoalkyl, carboxyalkylthio, arylamino, heteroarylamine, alkoxycarbonyl, alkylcarbonyl Oxygen 142257.doc -88- 201104948 base, Alkoxy groups, alkoxy groups, alkoxy groups, amines, alkoxy groups, alkoxy groups, nitro groups, oxyaryl groups, haloaryl groups Aminoaryl, alkylaminoaryl, tolyl, alkenylaryl, allylaryl, alkenyloxy, allyloxyaryl, cyanoaryl, aminyl A carboxy group, a carboxyaryl group, an alkoxycarbonyl aryl group, an alkylcarbonyloxyaryl group, a sulfonic acid aryl group, an alkoxy sulfoaryl group, an amine sulfonyl aryl group, and a nitroaryl group. The group preferably comprises at least one of the group consisting of an alkyl group, a cycloalkyl group, an alkoxy group, a cyano group, a heterocyclic ring containing C, 0, N, S, a sulfonic acid group, a phosphonic acid group, a vegetarian group, an alkoxy group, Sulfur-based, aryl, dilute, aliphatic, aryl, alkyl, dilute, aryl, heteroaryl, haloaryl, alkaryl, decylamine Alkyl aryl, diaryl aryl, dipropyl aryl, alkenyloxy, allyloxyaryl and cyanoaryl. In one embodiment comprising a liquid solvent, the catalyst NaH is at least one component of the reaction mixture and is formed from the reaction mixture. The reaction mixture may further comprise at least one of the group consisting of NaH, Na, NH3, NaNH2, Na2NH, Na3N, H20, NaOH, NaX (X is an anion, preferably a halide), NaBH4, NaAlH4, Ni, Platinum Black , Palladium black, R-Ni, doped Na substances (such as at least one of Na, NaOH and NaH) of R-Ni, HSA carrier ' getter, dispersant, hydrogen source (such as H2) and hydrogen dissociator . In other embodiments, Li, K, Rb, or Cs replaces Na. In one embodiment, the solvent has a dentate functional group, preferably fluorine. A suitable reaction mixture comprises at least one of hexafluorobenzene and octafluoronaphthalene which is added to a catalyst such as NaH and mixed with a carrier such as activated carbon, fluoropolymer or R-Ni. In one embodiment, the reaction mixture comprises one or more of the following materials from the group 142257.doc-89-201104948: Na, NaH, a solvent, a preferred fluorinated solvent, and an HS A material. A suitable fluorinated solvent for regeneration is CF4. Suitable carriers or HSA materials for fluorinated solvents and NaH catalysts are NaF. In one embodiment, the reaction mixture comprises at least NaH, CF4, and NaF. Other fluorine-based carriers or getters include: M257F6, wherein hydrazine is an alkali metal, such as iVMz under 6 and especially, wherein hydrazine is an alkaline earth metal, such as G<aF3, PF5; wherein hydrazine is an alkali metal; For alkali gold explosion, it is proposed to be NaHF2 & KHFi., K2TaFi, KBFa, K2MyiF6Sl ΑΖγ^Ρ6, wherein it is desirable to use other similar compounds, such as one with another metal or soil metal substitution, such as Li, Na or yttrium. A metal compound. b. Inorganic Solvent In another embodiment, the reaction mixture comprises at least one inorganic solvent. The solvent may additionally contain a molten inorganic compound such as a molten salt. The inorganic solvent may be molten NaOH. In one embodiment, the reaction mixture comprises a catalyst, a source of hydrogen, and an inorganic solvent of the catalyst. The catalyst may be at least one of NaH molecules, Li and K. The solvent may be at least one of a molten or dissolved salt or a co-float, such as at least one of an alkali metal ii compound and a molten salt of a group of alkaline earth metal halides. The inorganic solvent of the NaH catalyst reaction mixture may comprise a low melting point eutectic such as a mixture of an alkali metal halide of NaCl and KCl. The solvent may be a low melting salt, preferably a Na salt such as NaI (660 ° C), NaAlCl 4 (160 ° C), NaAlF 4 and a compound of the same class as NaMX 4 having a more stable metal dentate than NaX (wherein At least one of a metal and X is a halogen. The reaction mixture may further comprise a carrier such as R-Ni 142257.doc-90-201104948.

Li催化劑反應混合物之無機溶劑可包含諸如LiCl與KCl 之驗金屬化物之混合物的低炫點共炫物。溶鹽溶劑可包 含對NaH穩定之基於氟之溶劑。LaF3熔點為1493°C且NaF 熔點為996°C。視情況具有其他氟化物之合適比率的球磨 混合物包含對NaH穩定且較佳在600°C-700°C之範圍内熔融 的氟化物-鹽溶劑。在炼鹽實施例中,反應混合物包含 NaH+ 鹽混合物,諸如 NaF-KF-LiF(11.5_42.0-46.5) MP = 454°C ,或 NaH+ 鹽混合物,諸如 LiF-KF(52%-48%) MP = 492〇C ° V.再生系統及反應 根據本發明用於使燃料再循環或再生之系統的示意圖展 示於圖4中。在一實施例中,低能量氫反應之副產物包含 金屬鹵化物MX,較佳NaX或KX。此外燃料再循環器18(圖 4)包含一將諸如NaX之無機化合物與載體分離之分離器 2 1。在一實施例中,分離器或其組件包含一基於物質密度 差進行分離之移位或旋風分離器22。另一分離器或其組件 包含一磁力分離器23,其中諸如鎳或鐵之磁性粒子由磁體 抽出,而諸如MX之非磁性物質流過分離器。在另一實施 例中,分離器或其組件包含一含有溶解或懸浮至少一種組 份程度超過溶解或懸浮另一組份之程度以允許分離之組份 溶劑洗滌液25的差異產物溶解或懸浮系統24,且可進一步 包含一化合物回收系統26,諸如溶劑蒸發器27及化合物收 集器28。或者,回收系統包含一沈澱器29及一化合物乾燥 142257.doc -91 - 201104948 器及收集器30。在一實施例中,來自圖2中所示之渦輪機 14及水冷凝器16的廢熱用以加熱蒸發器27與乾燥器3〇中之 至少一者(圖4)。用於再循環器1 8(圖4)之任何其他階段之 熱可包含此廢熱。 燃料再循環器18(圖4)進一步包含一電解器31,其將回 收之MX電解成金屬及齒素氣體或其他鹵化產物或鹵化 物。在一實施例中’電解較佳在動力反應器36内自熔體, 諸如共熔體發生。電解氣體及金屬產物分別單獨收集在易 揮發氣體收集器32及金屬收集器33中,在金屬混合物之狀 況下該金屬收集器33可進一步包含金屬蒸餾器或分離器 3 4。若初始反應物為氫化物,則藉由氫化反應器3 5將金屬 虱化”玄虱化反應器3 5包含一能夠使壓力小於、超過及等 於大氣壓之電池36、一供金屬及氫化物用之入口及出口 37、一供氫氣用之入口 38及其閥39、一氫氣供應4〇、一出 氣口 41及其閥42、一泵43、一加熱器44及壓力與溫度計量 表45。在一實施例中,氫供應4〇包含一具有氫氣及氧氣分 離器之水性電解器。經分離金屬產物在鹵化反應器46中至 少部分鹵化,該鹵化反應器46包含一能夠使壓力小於超 過及等於大氣壓之電池47…供碳用之人口及供自化產物 用之出口 48、一供氟氣用之入口 49及其閥5〇、一鹵素氣體 供應、一出氣口 52及其閥53、一泵54、一加熱器55及壓 力與溫度計量表56。反應、器較佳亦含有催化劑及其他反應 物以引起金屬57變成具有所需氧化態及化學計量之鹵化物 作為產物。金屬或金屬氫化物、金屬鹵化物、載體及其他 142257.doc -92- 201104948 初始反應物中之至少兩者在混合器58中混合後再循環至鍋 爐1 〇 ’以進行另一動力產生循環。 在例不性低能量氫及再生反應中,反應混合物包含 催化劑、Mg、Mnl2及載體(活性碳、wc或Tic)。在一實施 例中,放熱反應來源為金屬氫化物被MnL氧化之反應,諸 如 2KH ^ΜηΙ2 2ΚΙλ-Μπ + Η2 (86)The inorganic solvent of the Li catalyst reaction mixture may comprise a low-rise co-brightness such as a mixture of metallographic compounds of LiCl and KCl. The dissolved salt solvent may contain a fluorine-based solvent which is stable to NaH. LaF3 has a melting point of 1493 ° C and a NaF melting point of 996 ° C. The ball mill mixture having a suitable ratio of other fluorides as the case comprises a fluoride-salt solvent which is stable to NaH and preferably melts in the range of from 600 °C to 700 °C. In the salt refinery embodiment, the reaction mixture comprises a NaH+ salt mixture such as NaF-KF-LiF (11.5_42.0-46.5) MP = 454 °C, or a NaH+ salt mixture such as LiF-KF (52%-48%) MP = 492 〇 C ° V. Regeneration System and Reaction A schematic of a system for recycling or regenerating fuel in accordance with the present invention is shown in FIG. In one embodiment, the by-product of the low energy hydrogen reaction comprises a metal halide MX, preferably NaX or KX. Further, the fuel recycler 18 (Fig. 4) comprises a separator 21 for separating an inorganic compound such as NaX from a carrier. In one embodiment, the separator or component thereof includes a displacement or cyclone separator 22 that is separated based on the difference in material density. The other separator or component thereof includes a magnetic separator 23 in which magnetic particles such as nickel or iron are extracted by a magnet, and a non-magnetic substance such as MX flows through the separator. In another embodiment, the separator or component thereof comprises a differential product dissolution or suspension system comprising dissolved or suspended at least one component to the extent that the other component is dissolved or suspended to allow separation of the component solvent wash 25 24, and may further comprise a compound recovery system 26, such as solvent evaporator 27 and compound collector 28. Alternatively, the recovery system comprises a precipitator 29 and a compound drying 142257.doc-91 - 201104948 and collector 30. In one embodiment, the waste heat from the turbine 14 and water condenser 16 shown in Figure 2 is used to heat at least one of the evaporator 27 and the dryer 3 (Figure 4). The heat for any other stage of the recycler 18 (Fig. 4) may contain this waste heat. The fuel recycler 18 (Fig. 4) further includes an electrolyzer 31 that electrolyzes the recovered MX into metal and dentate gases or other halogenated products or halides. In one embodiment, electrolysis preferably occurs in the power reactor 36 from a melt, such as a co-melt. The electrolysis gas and the metal product are separately collected in the volatile gas collector 32 and the metal collector 33, and in the case of the metal mixture, the metal collector 33 may further comprise a metal distiller or separator 34. If the initial reactant is a hydride, the metal is deuterated by a hydrogenation reactor 35. The quenching reactor 35 contains a battery 36, a metal and a hydride capable of making the pressure less than, above and equal to atmospheric pressure. The inlet and outlet 37, an inlet 38 for hydrogen supply and its valve 39, a hydrogen supply 4, an outlet 41 and its valve 42, a pump 43, a heater 44, and a pressure and temperature meter 45. In one embodiment, the hydrogen supply 4A comprises an aqueous electrolyzer having a hydrogen and oxygen separator. The separated metal product is at least partially halogenated in a halogenation reactor 46, the halogenation reactor 46 comprising a pressure capable of making the pressure less than or equal to Atmospheric pressure battery 47...the population for carbon supply and the outlet for supplying the product 48, the inlet 49 for supplying fluorine gas and its valve 5〇, a halogen gas supply, an air outlet 52 and its valve 53, a pump 54. A heater 55 and a pressure and temperature meter 56. The reactor preferably also contains a catalyst and other reactants to cause the metal 57 to become a product having the desired oxidation state and stoichiometric amount of halide. Metal or metal hydride , metal halide, carrier, and others 142257.doc -92 - 201104948 At least two of the initial reactants are mixed in mixer 58 and recycled to boiler 1 '' for another power generation cycle. In the energy hydrogen and regeneration reaction, the reaction mixture comprises a catalyst, Mg, Mnl2 and a support (activated carbon, wc or Tic). In one embodiment, the exothermic reaction source is a reaction in which a metal hydride is oxidized by MnL, such as 2KH^ΜηΙ2 2ΚΙλ. -Μπ + Η2 (86)

Mg + MnI2-^MgI2+Mn 〇 一、 (87) KI及Mglz可自炫鹽電解成L、κ及。炼融電解可使用唐 斯電解池(Downs cell)或經修改之唐斯電解池來執行。Mn 可使用機械分離器及視情況選用之篩子來分離。未反應之 Mg或Mg%可藉由熔融且藉由分離固相與液相來分離。供 電解用之碘化物可來自用諸如脫氧水之合適溶劑沖洗反應 產物。溶液可經過濾以移除諸如Ac之載體及視情況存在 之過渡金屬。可將固體離心,且較佳使用來自動力系統之 廢熱來乾燥。或者,可藉由熔融、接著分離液相與固相來 刀離鹵化物。在另一實施例中,較輕之Ac 一開始可由諸 如旋渦分離之方法與其他反應產物分離。艮與Mg不可混 溶’且可用較佳來自Ηβ電解之氫氣將諸如κ之經分離金 屬氫化。金屬碘化物可由與經分離金屬或與未與AC分離 之金屬進行已知之反應而形成。在一實施例中,]^11與m 反應,形成Mnh及Η2,Η2再循環且與I2反應,形成m。在 其他實施例中,其他金屬、較佳過渡金屬替代。另一 還原劑(諸如A1)可替代Mg。另一鹵化物、較佳氣化物可替 142257.doc -93· 201104948 代碘化物。LiH、ΚΗ、RbH或CsH可替代NaH。 在例示性低能量氫及再生反應中,反應混合物包含NaH 催化劑、Mg、AgCl及載體活性碳。在一實施例中,放熱 反應來源為金屬氫化物被AgCl氧化之反應,諸如 KH + AgCl ~^KCl + Ag + \/2H2 (8 8)Mg + MnI2-^MgI2+Mn 〇 I. (87) KI and Mglz can be electrolyzed into L, κ and from the salt. Smelting electrolysis can be performed using a Downs cell or a modified Downs cell. Mn can be separated using a mechanical separator and optionally a sieve. Unreacted Mg or Mg% can be separated by melting and by separating the solid phase from the liquid phase. The iodide for electrolysis may be derived from rinsing the reaction product with a suitable solvent such as deoxygenated water. The solution can be filtered to remove a carrier such as Ac and, if appropriate, a transition metal. The solid can be centrifuged and preferably dried using waste heat from a power system. Alternatively, the halide can be cleaved by melting, followed by separation of the liquid phase from the solid phase. In another embodiment, the lighter Ac can be separated from other reaction products by a process such as vortex separation. The ruthenium is immiscible with Mg' and the separated metal such as κ can be hydrogenated with hydrogen preferably derived from Ηβ electrolysis. The metal iodide can be formed by a known reaction with a separated metal or with a metal that is not separated from AC. In one embodiment, ^11 reacts with m to form Mnh and Η2, and Η2 is recycled and reacts with I2 to form m. In other embodiments, other metals, preferably transition metals, are substituted. Another reducing agent such as A1 can be substituted for Mg. Another halide, preferably a vapor, can be substituted for 142257.doc -93·201104948. LiH, hydrazine, RbH or CsH can replace NaH. In an exemplary low energy hydrogen and regeneration reaction, the reaction mixture comprises a NaH catalyst, Mg, AgCl, and a carrier activated carbon. In one embodiment, the exothermic reaction is derived from the oxidation of a metal hydride by AgCl, such as KH + AgCl ~ ^ KCl + Ag + \/2H2 (8 8)

Mg + 2Aga->Mga2+2Ag 〇 (89) KC1及MgCl2可自熔鹽電解成Cl2、Κ及Mg。熔融電解可使 用唐斯電解池或經修改之唐斯電解池來執行。Ag可使用機 械分離器及視情況選用之_子來分離。未反應之Mg或 MgH2可藉由熔融且藉由分離固相與液相來分離。供電解 用之氯化物可由用諸如脫氧水之合適溶劑沖洗反應產物而 獲得。溶液可經過濾以移除諸如AC之載體及視情況存在 之金屬Ag。可將固體離心,且較佳使用來自動力系統之廢 熱來乾燥。或者,可藉由熔融、接著分離液相與固相來分 離鹵化物。在另一實施例中,較輕之AC最初可藉由諸如 旋渦分離之方法與其他反應產物分離。K與Mg不可混溶, 且可用較佳來自H20電解之氫氣將諸如K之經分離金屬氫 化。金屬氯化物可藉由與經分離金屬或與未與AC分離之 金屬進行已知之反應而形成。在一實施例中,Ag與Cl2反 應,形成AgCl,且H2再循環且與12反應,形成HI。在其他 實施例中,其他金屬、較佳過渡金屬或In替代Ag。另一還 原劑(諸如A1)可替代Mg。另一鹵化物、較佳氣化物可替代 碘化物。LiH、KH、RbH或CsH可替代NaH。 在一實施例中,反應混合物由低能量氫反應產物再生。 142257.doc • 94· 201104948 在例示性低能量氫及再生反應中,固體燃料反應混合物包 含KH或NaH催化劑、Mg或MgH2及驗土金屬鹵化物(諸如 BaBi*2)及載體(活性碳、WC或較佳TiC)。在一實施例中, 放熱反應來源為金屬氫化物或金屬被BaBr2氧化之反應, 諸如 2KH + Mg -f BdBr2 —> 2KBr η- Bq + A4gH2 ( 9 0 ) 2ΝαΗ 七 Mg + BaBr2 2NaBr + Βα + MgH2 〇 (91)Mg + 2Aga->Mga2+2Ag 〇 (89) KC1 and MgCl2 can be electrolyzed into Cl2, bismuth and Mg from a molten salt. Melt electrolysis can be performed using a Towns cell or a modified Towns cell. Ag can be separated using a mechanical separator and, depending on the situation. Unreacted Mg or MgH2 can be separated by melting and by separating the solid phase from the liquid phase. The chloride for electrolysis can be obtained by rinsing the reaction product with a suitable solvent such as deoxygenated water. The solution can be filtered to remove a carrier such as AC and metal Ag as the case may be. The solid can be centrifuged and preferably dried using waste heat from a power system. Alternatively, the halide can be separated by melting, followed by separation of the liquid phase from the solid phase. In another embodiment, the lighter AC may initially be separated from other reaction products by methods such as vortex separation. K is immiscible with Mg, and the separated metal such as K can be hydrogenated with hydrogen preferably from H20 electrolysis. The metal chloride can be formed by a known reaction with a separated metal or with a metal not separated from AC. In one embodiment, Ag reacts with Cl2 to form AgCl, and H2 is recycled and reacts with 12 to form HI. In other embodiments, other metals, preferably transition metals or In replaces Ag. Another reducing agent (such as A1) can replace Mg. Another halide, preferably a vapor, can be substituted for the iodide. LiH, KH, RbH or CsH can replace NaH. In one embodiment, the reaction mixture is regenerated from a low energy hydrogen reaction product. 142257.doc • 94· 201104948 In an exemplary low-energy hydrogen and regeneration reaction, the solid fuel reaction mixture contains KH or NaH catalyst, Mg or MgH2 and soil metal halide (such as BaBi*2) and carrier (activated carbon, WC) Or preferably TiC). In one embodiment, the exothermic reaction source is a metal hydride or a reaction in which the metal is oxidized by BaBr2, such as 2KH + Mg -f BdBr 2 -> 2KBr η- Bq + A4gH2 ( 9 0 ) 2ΝαΗ 七Mg + BaBr2 2NaBr + Βα + MgH2 〇(91)

Ba、鎂、MgH2、NaBr及KBr之熔點分別為727°C、 650 C ' 327 C、747°C及734°C。因此’藉由在視情況添加 Hz下維持Mgl·^、優先熔融MgH2且將液體與反應產物混合 物分離’可將MgH2與鋇及任何Ba-Mg介金屬分離。其視情 況可熱分解成Mg。接著可將剩餘反應產物添加至電解熔 體中。固體載體及Ba沈澱形成較佳可分離層。或者,以可 藉由熔融而以液體形式分離。接著可將NaBr或KBr電解, 形成鹼金屬及Brp後者(Br*2)與Ba反應,形成BaBr2。或 者’ Ba為陽極,且在陽極室中直接形成BaBr2。鹼金屬在 電解之後可經氫化或在電解期間藉由在陰極室中h2鼓泡而 在此室中形成。接著,MgH2或Mg、NaH或KH、BaBr2及 載體重調為反應混合物。在其他實施例中,另一驗土金屬 鹵化物替代BaBi"2 ’較佳為BaCl2。在另一實施例中,在不 進行電解下可發生再生反應,此係因為反應物與產物之間 的能量差小。由方程式(90-91)給出之反應可藉由改變反應 條件、諸如溫度或氫壓力而逆轉。或者,可選擇性地移除 諸如K或Na之熔融或揮發性物質,以驅動反應倒退,以再 142257.doc •95- 201104948 生可進一步反應且添加回電池中形成初始反應混合物的反 應物或物質。在另一實施例中,揮發性物質可不斷回流以 維持催化劑或催化劑源(諸如NaH、KH、Na或K)與初始氧 化劑(諸如驗土金屬齒化物或稀土金屬鹵化物)之間的可逆 反應。在一實施例中,使用蒸餾器(諸如圖4中所示之蒸鶴 器34)實現回流。在另一實施例中,可改變諸如溫度或氫 壓力之反應條件以逆轉反應。在此狀況下,反應最初向形 成低能量氫及反應混合物產物之正向進行。接著除較低能 量氫以外之產物轉化為初始反應物。此可藉由改變反應條 件且可能添加或移除至少部分與最初使用或形成之產物或 反應物相同之產物或反應物或其他產物或反應物來執行。 因此,正反應與再生反應交替循環進行。可添加氫以替代 在形成低能量氫中消耗之氫。在另一實施例中,維持諸如 高溫之反應條件’其中可逆反應經最佳化,使得正反應與 逆反應均以貫現所需、較佳最大低能量氫形成速率之方式 發生。 在例示性低能量氫及再生反應中,固體燃料反應混合物 包含NaH催化劑、Mg、FeBi:2及載體活性碳。在一實施例 中,放熱反應來源為金屬氫化物被FeBr2氧化之反應,諸 如 2NaH + FeBr2 -^· INaBr + Fe + H2 ( 9 2 )The melting points of Ba, Mg, MgH2, NaBr and KBr are 727 ° C, 650 C '327 C, 747 ° C and 734 ° C, respectively. Thus, MgH2 can be separated from the ruthenium and any Ba-Mg intermetallic by maintaining Mgl on the addition of Hz, preferentially melting MgH2 and separating the liquid from the reaction product mixture. It can be thermally decomposed into Mg as appropriate. The remaining reaction product can then be added to the electrolytic melt. The solid support and Ba precipitate form a preferred separable layer. Alternatively, it can be separated as a liquid by melting. Next, NaBr or KBr can be electrolyzed to form an alkali metal and Brp (Br*2) is reacted with Ba to form BaBr2. Or ' Ba is an anode, and BaBr 2 is formed directly in the anode chamber. The alkali metal can be formed in the chamber by hydrogenation after electrolysis or by bubbling h2 in the cathode chamber during electrolysis. Next, MgH2 or Mg, NaH or KH, BaBr2 and the carrier are re-adjusted to the reaction mixture. In other embodiments, another soil metal halide replaces BaBi"2' preferably BaCl2. In another embodiment, the regeneration reaction may occur without electrolysis because the energy difference between the reactants and the product is small. The reaction given by the equation (90-91) can be reversed by changing the reaction conditions such as temperature or hydrogen pressure. Alternatively, a molten or volatile material such as K or Na may be selectively removed to drive the reaction back up to further react and add back to the reactants of the initial reaction mixture formed in the cell or substance. In another embodiment, the volatile material can be continuously refluxed to maintain a reversible reaction between the catalyst or catalyst source (such as NaH, KH, Na or K) and the initial oxidant (such as a soil metallization or rare earth metal halide). . In one embodiment, reflux is achieved using a distiller such as the steamer 34 shown in Figure 4. In another embodiment, reaction conditions such as temperature or hydrogen pressure can be varied to reverse the reaction. In this case, the reaction proceeds initially to the formation of low energy hydrogen and the reaction mixture product. The product other than the lower energy hydrogen is then converted to the initial reactant. This can be accomplished by varying the reaction conditions and possibly adding or removing at least a portion of the product or reactant or other product or reactant that is identical to the product or reactant initially used or formed. Therefore, the positive reaction and the regeneration reaction are alternately cycled. Hydrogen can be added to replace the hydrogen consumed in forming low energy hydrogen. In another embodiment, the reaction conditions such as high temperature are maintained' wherein the reversible reaction is optimized such that both the positive and negative reactions occur in a manner that achieves a desired, preferably maximum, low energy hydrogen formation rate. In an exemplary low energy hydrogen and regeneration reaction, the solid fuel reaction mixture comprises a NaH catalyst, Mg, FeBi:2, and a supported carbon. In one embodiment, the exothermic reaction is derived from the oxidation of a metal hydride by FeBr2, such as 2NaH + FeBr2 -^· INaBr + Fe + H2 ( 9 2 )

Mg + FeBr, ^ MgBr. + Fe 〇 (93)Mg + FeBr, ^ MgBr. + Fe 〇 (93)

NaBr及MgBr2可自熔鹽電解成以2、Na&Mg。熔融電解可 使用唐斯電解池或經修改之唐斯電解池來執行。Fe具有鐵 142257.doc •96- 201104948 磁性且可使用機械分離器及視情況選用之篩子磁性分離。 在另一實施例中,鐵磁性Ni可替代Fe。未反應之Mg或 MgH2可藉由熔融且藉由分離固相與液相來分離。供電解 用之漠化物可由用諸如脫氧水之合適溶劑沖洗反應產物而 獲得。溶液可經過濾以移除諸如AC之載體及視情況存在 之過渡金屬。可將固體離心,且較佳使用來自動力系統之 廢熱來乾燥。或者,可藉由熔融、接著分離液相與固相來 分離鹵化物。在另一實施例中,較輕之AC最初可由諸如 旋渦分離之方法與其他反應產物分離。Na與Mg不可混 溶,且可用較佳來自H20電解之氫氣將諸如Na之經分離金 屬氫化。金屬溴化物可由與經分離金屬或與未與AC分離 之金屬進行已知之反應而形成。在一實施例中,Fe與HBr 反應,形成FeBr2及H2,H2再循環且與Br2反應,形成 HBr。在其他實施例中,其他金屬、較佳過渡金屬替代 Fe。另一還原劑(諸如A1)可替代Mg。另一鹵化物、較佳氯 化物可替代溴化物。LiH、KH、RbH或CsH可替代NaH。 在例示性低能量氫及再生反應中,固體燃料反應混合物 包含KH或NaH催化劑、Mg或MgH2 ' SnBr2及載體(活性 碳、WC或TiC)。在一實施例中,放熱反應來源為金屬氫 化物或金屬被SnBr2氧化之反應,諸如 2KH H- SnBr2 —> 2KBr + Sn + H2 (94) 2NaH + SnBr2 —INaBr ^Sn + H2 (95) Mg + SnBr2 —> MgBr2 +Sn 〇 (96) 錫、鎂、MgH2、NaBr及KBr之熔點分別為119°C、650°C、 142257.doc -97- 201104948 327°C、747°C及734°C。如在合金相圖中所給出,對於約5 wt% Mg而言,錫-鎂合金將在超過諸如400°C之溫度下炫 融。在一實施例中’藉由使金屬及合金熔融且分離液相與 固相,將金屬錫及鎂及合金與載體及鹵化物分離。合金可 與H2在形成MgH2固體及金屬錫之溫度下反應。可分離固 相與液相,得到MgH2及錫。MgH2可熱分解成Mg及H2。或 者,在選擇性地將任何未反應之Mg及任何Sn-Mg合金轉化 為固體MgH2及液體錫之溫度下’可原位添加h2至反應產 物中。可選擇性地移除錫。接著可加熱MgH2且以液體形 式將其移除。接著齒化物可由諸如以下之方法自載體移 除:(1)熔融且分離各相;(2)基於密度差進行旋渦分離, 其中諸如WC之緻密載體為較佳;或(3)基於尺寸差異篩 選。或者化物可溶於合適溶劑中’且由諸如過渡之方 法分離液相與固相。可蒸發液體且接著函化物可自熔體電 解為不可混溶且各自分離之金屬Na或κ與可能。在另一 貫施例中,藉由使用由鹵化鈉電解再生之金屬^^&還原鹵化 物、較佳與低能量氫反應器中形成相同之齒化物,形成 K此外,自電解熔體收集諸如Βι*2之鹵素氣體,且與經分 離Sn反應,形成SnBr2,以仏^再循環與或及 起進行低能量氫反應之另一循環,其中氫化物 藉由用氫氣氫化而形成。在一實施例+,形成HBr且HBr '、Sn反應,形成SnBr2。HBr可由Bi"2與Η2反應形成,或在 ,解期間藉由在陽極η2鼓泡而形成,後者具有降低電解能 量之優點。在其他實施例中’另一金屬替代Sn,較佳為過 142257.doc •98· 201104948 渡金屬’且另一鹵化物可替代Br,諸如I。 在另一實施例中,在初始步驟,所有反應產物均與HBr 水溶液反應,且濃縮溶液以使SnBi*2自MgBr2及KBr溶液沈 澱。可使用其他合適溶劑及分離方法來分離該等鹽。接著 MgBi*2及KBr電解成Mg及κ。或者,首先使用機械法或藉 由溶劑選擇法移除Mg或Mg%,使得僅KBr需要電解。在 一實施例中’ Sn以熔體形式自固體MgH2移除’固體MgH2 可在低能量氫反應期間或之後藉由添加Η2而形成。接著將 MgH2或Mg、KBr及載體添加至電解熔體中。載體由於粒 徑大而沈降至沈積區。MgH2及KBr形成熔體之一部分且基 於密度來分離。Mg與K不可混溶,且κ亦形成獨立相,使 得Mg與K單獨收集。陽極可為Sn,使得κ、 電解產物。陽極可為液體錫,或液體錫可喷射在陽極上以 與溴反應且形成SnBr2。在此狀況下,用於再生之能量間 隙為化合物間隙對與兩電極上元素產物對應之較高元素間 隙。在另一實施例中,反應物包含KH、載體及Snl2或 SnBi*2。Sn可以液體形式移除,且諸如〖乂及載體之剩餘產 物可添加至電解熔體中,其中載體基於密度而分離。在此 狀況下’諸如WC之緻密載體為較佳。 反應物可包含氧化合物以形成氧化物產物,諸如催化劑 或催化劑源之氧化物(諸如NaH、Li或κ之氧化物)及還原劑 之氧化物(諸如Mg ' MgH2、Al、Ti、B、Zr或La之氧化 物)。在一實施例中’藉由使氧化物與酸、諸如氫鹵酸、 較佳鹽酸反應,形成相應齒化物,諸如氣化物,使反應物 142257.doc •99- 201104948 再生。在-實施例中’氧化碳物質(諸如碳酸鹽、碳酸氫 鹽)、羧酸物質(諸如乙二酸或乙二酸鹽)可經金屬或金屬氫 化物還原。較佳地’ Li、K、Na、LiH、KH、NaH、A卜 Mg及MgH2中之至少_者與包含碳及氡之物質反應,且形 成相應金屬氧化物或氫氧化物及碳。各相應金屬可由電解 再生。電解可使用諸如共炫混合物中之溶鹽來執行。可使 用i素氣體電解產物(諸如氣氣)形成相應酸,諸如hci, 作為再生循環之-部分。可藉由使自素氣體與氫氣反應且 視情況將函化氫氣體溶解於水中,形成氫自酸Ηχ。氮氣 較佳由水電解形成。氧可為低能量氫反應混合物之反應 物’或可反應形成低能量氫反應混合物之氧的來源。使氧 化物低能ϊ氫反應產物與酸反應之步驟可包含用酸沖洗產 物以形成包含金屬鹽之溶液。在—實施例中,低能量氣反 應混合物及相應產物混合物包含載體,諸如碳,較佳活性 碳。藉由將金屬氧化物溶解於酸的水溶液中,可使金屬氧 化物與載體分離。因此,可用酸沖洗產物,且可進一步過 濾,以分離反應混合物之組份。可藉由使用熱、較佳來自 動力系統之廢熱蒸發,將水移除,且諸如金屬氯化物之鹽 可添加至電解混合⑯中’形成金屬及邊素氣體。在一實施 财’任何甲院或烴產物可重新形成氫及視情況存在之碳 或二氧化碳。或者,將甲烷與氣體產物混合物分離且作為 商業產品出售。在另—實施例中,甲烧可由此項技術中已 知之方法、諸如費歇爾-托羅普希反應形成其他烴類產 品。藉由添加干擾氣體,諸如惰性氣體,且藉由維持不利 142257.doc -100· 201104948 條件,諸如降低之氫壓力或溫度,可抑制甲烷之形成。 在另一實施例中,金屬氧化物直接由共熔混合物電解。 諸如MgO之氧化物可與水反應,形成氫氧化物’諸如 Mg(OH)2。在一實施例中,氫氧化物被還原。還原劑可為 鹼金屬或氫化物,諸如Na或NaH。產物氫氧化物可如熔鹽 直接電解。低能量氫反應產物、諸如鹼金屬氫氧化物亦可 用作商業產品且獲得相應齒化物。接著齒化物可經電解為 鹵素氣體及金屬。鹵素氣體可用作商用工業煤氣。可用較 佳水電解之氫氣將金屬氫化,且提供給反應器,作為低能 量氫反應混合物之一部分。 可使用熟習此項技術者已知之方法及系統,自包含相應 化合物、較佳NaOH或Na2〇之產物再生還原劑,諸如鹼金 屬 方法包含在諸如共熔混合物之混合物中電解。在另 一實施例中,還原產物可包含至少某些氧化物,諸如還原 金屬氧化物(例如,MgO)。氫氧化物或氧化物可溶於諸如 鹽酸之弱酸中,形成相應鹽,諸如NaCl或MgCL。用酸處 理亦了為無水反應。氣體可在低壓下流動。可用產物還原 劑(諸如驗金屬或鹼土金屬)處理鹽,形成初始還原劑。在 一實施例中’第二還原劑為鹼土金屬,較佳Ca,其中NaC1 或MgCL還原成金屬Na或Mg。回收CaCh副產物且亦使其 再循環。在替代性實施例中,在高溫下用&還原氧化物。 在例示性低能量氫及再生反應中,反應混合物包含NaH 催化劑' MgH2、〇2及載體活性碳。在一實施例中,放熱 反應來源為金屬氫化物被〇2氧化之反應,諸如 142257.doc -101 - 201104948NaBr and MgBr2 can be electrolyzed from molten salt to 2, Na & Mg. Melt electrolysis can be performed using a Downs cell or a modified Towns cell. Fe has iron 142257.doc •96- 201104948 Magnetic and can be magnetically separated using a mechanical separator and optionally a sieve. In another embodiment, ferromagnetic Ni can be substituted for Fe. Unreacted Mg or MgH2 can be separated by melting and by separating the solid phase from the liquid phase. The desertification for electrolysis can be obtained by rinsing the reaction product with a suitable solvent such as deoxygenated water. The solution can be filtered to remove a carrier such as AC and, if appropriate, a transition metal. The solid can be centrifuged and preferably dried using waste heat from a power system. Alternatively, the halide can be separated by melting, followed by separation of the liquid phase from the solid phase. In another embodiment, the lighter AC may initially be separated from other reaction products by methods such as vortex separation. Na and Mg are immiscible, and the separated metal such as Na can be hydrogenated with hydrogen preferably from H20 electrolysis. The metal bromide can be formed by a known reaction with a separated metal or with a metal that is not separated from AC. In one embodiment, Fe reacts with HBr to form FeBr2 and H2, and H2 is recycled and reacted with Br2 to form HBr. In other embodiments, other metals, preferably transition metals, replace Fe. Another reducing agent such as A1 can be substituted for Mg. Another halide, preferably a chloride, can be substituted for the bromide. LiH, KH, RbH or CsH can replace NaH. In an exemplary low energy hydrogen and regeneration reaction, the solid fuel reaction mixture comprises a KH or NaH catalyst, Mg or MgH2 'SnBr2 and a support (activated carbon, WC or TiC). In one embodiment, the exothermic reaction is derived from a metal hydride or a reaction in which the metal is oxidized by SnBr2, such as 2KH H-SnBr2 -> 2KBr + Sn + H2 (94) 2NaH + SnBr2 - INaBr ^Sn + H2 (95) Mg + SnBr2 —> MgBr2 +Sn 〇(96) The melting points of tin, magnesium, MgH2, NaBr and KBr are 119 ° C, 650 ° C, 142257.doc -97 - 201104948 327 ° C, 747 ° C and 734 ° C. As given in the alloy phase diagram, for about 5 wt% Mg, the tin-magnesium alloy will smear at temperatures in excess of, for example, 400 °C. In one embodiment, metal tin and magnesium and alloys are separated from the support and halide by melting the metal and alloy and separating the liquid phase from the solid phase. The alloy can be reacted with H2 at a temperature at which MgH2 solids and tin metal are formed. The solid phase and the liquid phase can be separated to obtain MgH2 and tin. MgH2 can be thermally decomposed into Mg and H2. Alternatively, h2 can be added in situ to the reaction product at a temperature that selectively converts any unreacted Mg and any Sn-Mg alloy to solid MgH2 and liquid tin. The tin can be selectively removed. The MgH2 can then be heated and removed in liquid form. The toothing can then be removed from the carrier by methods such as: (1) melting and separating the phases; (2) vortex separation based on density differences, wherein a dense carrier such as WC is preferred; or (3) screening based on size differences . Alternatively, the compound can be dissolved in a suitable solvent' and the liquid phase and solid phase separated by methods such as transition. The liquid can be evaporated and the binder can be electrolyzed from the melt to an immiscible and separately separated metal Na or κ. In another embodiment, by using a metal regenerated by sodium halide electrolysis to reduce the halide, preferably in the same manner as in a low energy hydrogen reactor, K is formed, in addition to collecting from the electrolytic melt, such as A halogen gas of Βι*2, and reacted with the separated Sn to form SnBr2, which is recycled and/or another cycle in which a low-energy hydrogen is reacted, wherein the hydride is formed by hydrogenation with hydrogen. In an embodiment +, HBr is formed and HBr', Sn react to form SnBr2. HBr can be formed by the reaction of Bi"2 with Η2, or by bubbling at the anode η2 during the solution, which has the advantage of reducing the energy of the electrolysis. In other embodiments, another metal replaces Sn, preferably over 142257.doc • 98·201104948, and another halide may be substituted for Br, such as I. In another embodiment, in the initial step, all of the reaction products are reacted with an aqueous solution of HBr, and the solution is concentrated to precipitate SnBi*2 from the MgBr2 and KBr solutions. Other suitable solvents and separation methods can be used to separate the salts. Next, MgBi*2 and KBr are electrolyzed into Mg and κ. Alternatively, Mg or Mg% is first removed using mechanical methods or by solvent selection such that only KBr requires electrolysis. In one embodiment, 'Sn is removed from solid MgH2 in melt form. Solid MgH2 can be formed by the addition of Η2 during or after the low energy hydrogen reaction. Next, MgH2 or Mg, KBr and a carrier are added to the electrolytic melt. The carrier settles to the deposition zone due to the large particle size. MgH2 and KBr form part of the melt and are separated based on density. Mg and K are immiscible, and κ also forms a separate phase, so that Mg and K are collected separately. The anode can be Sn, such that κ, electrolysis products. The anode can be liquid tin, or liquid tin can be sprayed onto the anode to react with bromine and form SnBr2. In this case, the energy gap for regeneration is the higher elemental gap of the compound gap pair corresponding to the elemental product on the two electrodes. In another embodiment, the reactant comprises KH, a support, and Snl2 or SnBi*2. Sn can be removed in liquid form, and the remainder of the product such as hydrazine and carrier can be added to the electrolytic melt, wherein the carrier is separated based on density. In this case, a dense carrier such as WC is preferred. The reactants may comprise an oxygen compound to form an oxide product, such as an oxide of a catalyst or catalyst source (such as an oxide of NaH, Li or κ) and an oxide of a reducing agent (such as Mg 'MgH2, Al, Ti, B, Zr). Or La oxide). In one embodiment, the reactant 142257.doc •99-201104948 is regenerated by reacting an oxide with an acid such as a hydrohalic acid, preferably hydrochloric acid, to form a corresponding dentate, such as a vapor. In the examples - the oxidized carbon material (such as carbonate, bicarbonate), the carboxylic acid species (such as oxalic acid or oxalate) can be reduced by metal or metal hydride. Preferably, at least one of 'Li, K, Na, LiH, KH, NaH, Ab Mg and MgH2 reacts with a substance comprising carbon and ruthenium and forms a corresponding metal oxide or hydroxide and carbon. Each respective metal can be regenerated by electrolysis. Electrolysis can be carried out using, for example, a dissolved salt in a conjugate mixture. An electron gas product such as gas can be used to form a corresponding acid, such as hci, as part of the regeneration cycle. Hydrogen can be formed from the acid by reacting the neutrophil gas with hydrogen and, if appropriate, dissolving the functional hydrogen gas in water. Nitrogen is preferably formed by electrolysis of water. Oxygen can be a source of a low energy hydrogen reaction mixture or a source of oxygen that can react to form a low energy hydrogen reaction mixture. The step of reacting the low energy hydrogen hydride reaction product with the acid may comprise rinsing the product with an acid to form a solution comprising the metal salt. In the embodiment, the low energy gas reaction mixture and the corresponding product mixture comprise a carrier such as carbon, preferably activated carbon. The metal oxide can be separated from the carrier by dissolving the metal oxide in an aqueous acid solution. Thus, the product can be rinsed with an acid and further filtered to separate the components of the reaction mixture. The water can be removed by the use of heat, preferably waste heat evaporation from the power system, and a salt such as a metal chloride can be added to the electrolytic mixture 16 to form metal and edge gas. In one implementation, any hospital or hydrocarbon product can re-form hydrogen and carbon or carbon dioxide as appropriate. Alternatively, the methane is separated from the gaseous product mixture and sold as a commercial product. In another embodiment, the methylation can be formed into other hydrocarbon products by methods known in the art, such as the Fischer-Tropsch reaction. The formation of methane can be suppressed by the addition of interfering gases, such as inert gases, and by maintaining unfavorable conditions of 142257.doc -100·201104948, such as reduced hydrogen pressure or temperature. In another embodiment, the metal oxide is electrolyzed directly from the eutectic mixture. An oxide such as MgO can react with water to form a hydroxide such as Mg(OH)2. In one embodiment, the hydroxide is reduced. The reducing agent can be an alkali metal or hydride such as Na or NaH. The product hydroxide can be directly electrolyzed as a molten salt. Low energy hydrogen reaction products, such as alkali metal hydroxides, can also be used as commercial products and the corresponding dentates are obtained. The toothing can then be electrolyzed into a halogen gas and a metal. Halogen gas can be used as a commercial industrial gas. The metal can be hydrogenated by hydrogen electrolysis with better water and supplied to the reactor as part of a low energy hydrogen reaction mixture. The reducing agent can be regenerated from a product comprising the corresponding compound, preferably NaOH or Na2, using methods and systems known to those skilled in the art, such as the alkali metal method comprising electrolysis in a mixture such as a eutectic mixture. In another embodiment, the reduced product may comprise at least some oxides, such as a reduced metal oxide (e.g., MgO). The hydroxide or oxide is soluble in a weak acid such as hydrochloric acid to form a corresponding salt such as NaCl or MgCL. Treatment with an acid also has an anhydrous reaction. The gas can flow at low pressure. The salt can be treated with a product reducing agent such as a metal or alkaline earth metal to form an initial reducing agent. In one embodiment, the second reducing agent is an alkaline earth metal, preferably Ca, wherein NaC1 or MgCL is reduced to the metal Na or Mg. The CaCh by-product is recovered and also recycled. In an alternative embodiment, the oxide is reduced with & at elevated temperatures. In an exemplary low energy hydrogen and regeneration reaction, the reaction mixture comprises a NaH catalyst 'MgH2, 〇2 and a carrier activated carbon. In one embodiment, the exothermic reaction is derived from the oxidation of a metal hydride by ruthenium 2, such as 142257.doc -101 - 201104948

MgH2+02-^Mg(0H)2 (97)MgH2+02-^Mg(0H)2 (97)

MgH2 +\.502+C^ MgCO, + H2 (98) (99) (100) (101)MgH2 +\.502+C^ MgCO, + H2 (98) (99) (100) (101)

NaH + 3 / 202+C^ NaHC03 ΊΝαΗ + 〇2 ~>1NuOH 〇 任何MgO產物可藉由與水反應而轉變為氫氧化物 Mg0 + H20-^Mg(0H\ 〇 鈉或鎂之碳酸鹽、碳酸氫鹽及包含碳及氧之其他物質可 用Na或NaH還原:NaH + 3 / 202+C^ NaHC03 ΊΝαΗ + 〇2 ~>1NuOH 〇 Any MgO product can be converted to hydroxide Mg0 + H20-^Mg by reaction with water (0H\ sodium or magnesium carbonate, Bicarbonate and other substances containing carbon and oxygen can be reduced with Na or NaH:

NaH + Na2C03 3NaOH + C + l/H2 (102)NaH + Na2C03 3NaOH + C + l/H2 (102)

NaH + inMgCO^NaOH + VSC + XnMg 〇 (103) 使用Na或NaH可將Mg(OH)2還原成Mg : INa + MgijDH'^^^lNaOH + Mg。 (104) 接著NaOH可直接自熔體電解成金屬Na及NaH及02。可使 用卡斯納法(Castner process)。用於驗性溶液之合適陰極 及陽極為鎳。陽極亦可為碳、貴金屬(諸如Pt)、載體(諸如 塗有諸如Pt之貴金屬之Ti)或尺寸穩定型陽極。在另一實施 例中,藉由與HC1反應,NaOH轉化為NaCl,其中NaCl電 解氣體Cl2可與來自水電解之H2反應,形成HC1。熔融NaCl 電解可使用唐斯電解池或經修改之唐斯電解池來執行。或 者,HC1可由氯鹼電解產生。用於此電解之NaCl水溶液可 由用鹽酸水溶液沖洗反應產物而獲得。可過濾溶液,以移 除諸如AC之載體,可將載體離心且較佳使用來自動力系 統之廢熱乾燥。 在一實施例中,反應步驟包含:(1)用鹽酸水溶液沖洗 142257.doc -102- 201104948 產物’由諸如氫氧化物、氧化物及碳酸鹽之物質形成金屬 氯化物;(2)藉由使用水煤氣變換反應及費歇爾-托羅普希 反應進行Η?還原’將任何釋出之c〇2轉化為水及c,其中C 作為載體而在步驟1〇再循環且水可用於步驟1、4或5 ; (3) 過濾'及乾燥諸如AC之載體,其中乾燥可包括離心之步 驟;⑷將水電解為&及〇2,以供應步驟8至1〇 ; (5)由NaCl 水溶液之電解’視情況形成出及HC1,以供應步驟1及9 ; (6)分離且乾燥金屬氯化物;(7)將金屬氣化物之熔體電解 為金屬及氣;(8)藉由Ch與H2反應,形成HC1,以供應步驟 1 ; (9)藉由與氫反應,將任何金屬氫化,形成相應起始反 應物;及(10)在添加來自步驟4之〇2下或使用自大氣分離 之〇2形成初始反應混合物。 在另一實施例中,氧化鎂與氫氧化鎂中之至少一者自熔 體電解成Mg及〇2。、熔體可為NaOH熔體,其中亦可電解 Na。在一實施例中,諸如碳酸鹽及碳酸氫鹽之碳氧化物可 分解成CO與C〇2中之至少一者,其可添加至反應混合物中 作為氧來源。或者,諸如C〇2及CO之碳氧化物物質可由氫 還原成碳及水。C〇2及CO可由水煤氣變換反應及費歇爾_ 托羅普希反應還原。 在例示性低能量氫及再生反應中,反應混合物包含NaH 催化劑、MgH2、CF4及載體活性碳。在一實施例中,放熱 反應來源為金屬氫化物被CF4氧化之反應,諸如 (105) (106) 2MgH2 +CF,-^C + 2MgF2 + 2H2 2MgH2 + CFa CH4 + 2MgF1 142257.doc -103- 201104948 ANaH + CF^C + 4NaF + 2H2 (107) 4NaH + CF44CH4+4NaF 〇 (108)NaH + inMgCO^NaOH + VSC + XnMg 〇 (103) Mg(OH)2 can be reduced to Mg: INa + MgijDH'^^^l NaOH + Mg using Na or NaH. (104) NaOH can then be directly electrolyzed from the melt to metal Na and NaH and 02. The Castner process can be used. Suitable cathodes and anodes for use in the assay solution are nickel. The anode may also be carbon, a noble metal such as Pt, a support such as Ti coated with a noble metal such as Pt, or a dimensionally stable anode. In another embodiment, NaOH is converted to NaCl by reaction with HCl, wherein the NaCl electrolyte gas Cl2 can react with H2 from water electrolysis to form HC1. Molten NaCl electrolysis can be performed using a Downs cell or a modified Downs cell. Alternatively, HC1 can be produced by chloralkali electrolysis. The aqueous NaCl solution used for this electrolysis can be obtained by rinsing the reaction product with an aqueous solution of hydrochloric acid. The solution can be filtered to remove a carrier such as AC, and the carrier can be centrifuged and preferably dried using waste heat from a power system. In one embodiment, the reaction step comprises: (1) rinsing with aqueous hydrochloric acid 142257.doc -102- 201104948 product 'forming metal chlorides from substances such as hydroxides, oxides and carbonates; (2) by using The water gas shift reaction and the Fischer-Tropsch reaction are carried out to convert any released c〇2 into water and c, wherein C is recycled as a carrier in step 1 and water can be used in step 1. 4 or 5; (3) Filtering 'and drying a carrier such as AC, wherein drying may include a step of centrifuging; (4) electrolyzing water to & and 〇2 to supply steps 8 to 1; (5) by aqueous NaCl solution Electrolysis 'as appropriate to form HC1 to supply steps 1 and 9; (6) separate and dry metal chloride; (7) electrolyze the metal vapor melt into metal and gas; (8) by Ch and H2 Reacting to form HC1 to supply step 1; (9) hydrogenating any metal to form a corresponding starting reactant by reaction with hydrogen; and (10) separating from step 2 or using separation from the atmosphere 〇 2 forms the initial reaction mixture. In another embodiment, at least one of magnesium oxide and magnesium hydroxide is electrolyzed into Mg and 〇2 from the melt. The melt may be a NaOH melt, wherein Na may also be electrolyzed. In one embodiment, carbon oxides such as carbonates and bicarbonates can be decomposed into at least one of CO and C〇2, which can be added to the reaction mixture as a source of oxygen. Alternatively, carbon oxide species such as C〇2 and CO may be reduced to hydrogen and water by hydrogen. C〇2 and CO can be reduced by a water gas shift reaction and a Fischer-Tropsch reaction. In an exemplary low energy hydrogen and regeneration reaction, the reaction mixture comprises a NaH catalyst, MgH2, CF4, and a carrier activated carbon. In one embodiment, the exothermic reaction is derived from the oxidation of a metal hydride by CF4, such as (105) (106) 2MgH2 + CF, -^C + 2MgF2 + 2H2 2MgH2 + CFa CH4 + 2MgF1 142257.doc -103- 201104948 ANaH + CF^C + 4NaF + 2H2 (107) 4NaH + CF44CH4+4NaF 〇(108)

NaF及MgF2可由可另外包含HF之熔鹽電解成F2、Na及 Mg。Na與Mg不可混溶,且可用較佳來自H20電解之氫氣 將經分離金屬氫化。氟氣可與碳及任何CH4反應產物反 應,使CF4再生。或者及較佳,電解池之陽極包含碳,且 維持電流及電解條件,使得CF4為陽極電解產物。 在例示性低能量氫及再生反應中,反應混合物包含NaH 催化劑、MgH2、P205(P401G)及載體活性碳。在一實施例 中,放熱反應來源為金屬氳化物被P2〇5氧化之反應,諸如 5MgH2 + ~^ 5MgO + 2P + 5H2 (109) 5NaH + P205 —5Na〇H + 2P 〇 (110) 藉由在〇2中燃燒,可使磷轉化為P205 2_P + 2·5〇2 ~^ 乃〇5。 (111) 藉由與水反應,可使MgO產物轉化為氫氧化物NaF and MgF2 can be electrolyzed into F2, Na and Mg from a molten salt which may additionally contain HF. Na is immiscible with Mg, and the separated metal can be hydrogenated with hydrogen preferably from H20 electrolysis. Fluorine gas can react with carbon and any CH4 reaction product to regenerate CF4. Alternatively and preferably, the anode of the electrolytic cell contains carbon and maintains current and electrolysis conditions such that CF4 is the anodic electrolysis product. In an exemplary low energy hydrogen and regeneration reaction, the reaction mixture comprises a NaH catalyst, MgH2, P205 (P401G), and a carrier activated carbon. In one embodiment, the exothermic reaction source is a reaction in which the metal halide is oxidized by P2〇5, such as 5MgH2 + ~^5MgO + 2P + 5H2 (109) 5NaH + P205 - 5Na〇H + 2P 〇 (110) by Combustion in 〇2 can convert phosphorus into P205 2_P + 2·5〇2 ~^ 〇5. (111) Converting MgO products to hydroxides by reaction with water

MgO+Hp — Mgi^OHX。 (H2) 使用Na或NaH可將Mg(OH)2還原成Mg : 2Na + Mg(OH、2—2NaOH + Mg 〇 (113) 接著NaOH可直接自熔體電解成金屬Na及NaH及02,或藉 由與HC1反應,可轉化為NaC卜其tNaCl電解氣體Cl2可與 來自水電解之H2反應,形成HC1。在實施例中,藉由與較 佳來自水電解之H2反應,可將諸如Na及Mg之金屬轉化為 相應氫化物。 在例示性低能量氫及再生反應中,固體燃料反應混合物 142257.doc -104- 201104948 包含NaH催化劑' MgH2、NaN〇3及載體活性碳。在一實施 例中,放熱反應來源為金屬氫化物被NaNCh氧化之反應, 諸如 (114) (115) (116)MgO+Hp — Mgi^OHX. (H2) Reduction of Mg(OH)2 to Mg using Na or NaH: 2Na + Mg (OH, 2-2 NaOH + Mg 〇 (113) followed by NaOH directly from the melt to metal Na and NaH and 02, or By reacting with HC1, it can be converted into NaC, and its tNaCl electrolysis gas Cl2 can react with H2 from water electrolysis to form HC1. In the embodiment, such as Na can be reacted by H2, preferably from water electrolysis. The metal of Mg is converted to the corresponding hydride. In an exemplary low energy hydrogen and regeneration reaction, the solid fuel reaction mixture 142257.doc -104 - 201104948 comprises a NaH catalyst 'MgH2, NaN〇3 and a carrier activated carbon. In an embodiment The exothermic reaction source is the reaction of metal hydride oxidation by NaNCh, such as (114) (115) (116)

NoNOj + NciH + C —^ iVfljCOj +1 / 2.N2 +1 / 2//2 NaNO,\ 12H2 + 2NaH — WaOH 七 \ IΊΝi TV〇/V03 + 3Mg//2 3Mg(9 + TVoi/· +1 / 2iV2 + 5 / 2//2 〇 鈉或鎂之碳酸鹽、碳酸氫鹽及包含碳及氧之其他物質可用 Na或NaH還原:NoNOj + NciH + C —^ iVfljCOj +1 / 2.N2 +1 / 2//2 NaNO,\ 12H2 + 2NaH — WaOH VII\ IΊΝi TV〇/V03 + 3Mg//2 3Mg(9 + TVoi/· +1 / 2iV2 + 5 / 2//2 Sodium or magnesium carbonate, bicarbonate and other substances containing carbon and oxygen can be reduced with Na or NaH:

NaH + Na2C03 ^ 3NaOH + C + \/H2 NaH + VmgCC^ 一 NaOH + \I7>C + \I?>Mg 〇 碳酸鹽亦可由水性介質分解成氫氧化物及C〇2 NafiOj + Η20 4 ΊΝαΟΗ + CC^ 〇 使用水煤氣變換反應及費歇爾-托羅普希反應 原,可使釋出之co2反應形成水及C (117) (118) (119) 藉由H2還 co2+h2-^co+h2o CO + H0C + HP 〇 藉由與水反應,可使Mg〇產物轉化為氫氧化物 MgO + //2〇 — Mg((9//)2 〇 使用Na或NaH可將Mg(OH)2還原成Mg : 2A^ + A/g(〇//)2—2MiO/f + A/g 〇 (120)(121) (122) (123) 可使用熟習此項技術者已知之方法使鹼金屬硝酸鹽再生。 在一實施例中,可由已知之工業方法、諸如由哈柏法、接 者奥斯特瓦爾德法產生Ν Ο2。在 貫施例中,例示性步驟 順序為: 142257.doc -105· 201104948 NHy N02 (124) Η. 哈柏法 ^奥斯特瓦爾德法 特定言之,哈柏法可用以在高溫及高壓下使用諸如含有某 種氧化物之α鐵的催化劑由N2及H2產生NH3。奥斯特瓦爾 德法可用以在諸如熱鉑或鉑-铑催化劑之催化劑下將氨氧 化成no2。熱量可為來自動力系統之廢熱。no2可溶於水 中,形成硝酸,硝酸與NaOH、Na2C03或NaHC03反應,形 成硝酸鈉。接著剩餘NaOH可直接自熔體電解成金屬Na及 NaH及A,或藉由與HC1反應,可轉化為NaCl,其中NaCl 電解氣體Cl2可與來自水電解之H2反應,形成HC1。在實施 例中,藉由與較佳來自水電解之反應,可將諸如Na及 Mg之金屬轉化為相應氫化物。在其他實施例中,Li及K替 代Na。 在例示性低能量氫及再生反應中,反應混合物包含NaH 催化劑、MgH2、SF6及載體活性碳。在一實施例中,放熱 反應來源為金屬氫化物被SF6氧化之反應,諸如 4MgH2 + SF6 ^mgF2 + AH, + MgS (125) INaH + SF^eNaF + A+NaHS。 (126)NaH + Na2C03 ^ 3NaOH + C + \/H2 NaH + VmgCC^ NaOH + \I7>C + \I?>Mg 〇 carbonate can also be decomposed into hydroxide by aqueous medium and C〇2 NafiOj + Η20 4 ΊΝαΟΗ + CC^ 〇 Using the water gas shift reaction and the Fischer-Tropsch reaction, the released co2 reacts to form water and C (117) (118) (119) by H2 also co2+h2-^co +h2o CO + H0C + HP 〇 By reacting with water, the Mg 〇 product can be converted into hydroxide MgO + //2〇—Mg ((9//) 2 MM (OH) can be obtained using Na or NaH 2 Reduction to Mg: 2A^ + A/g(〇//) 2-2MiO/f + A/g 〇(120)(121) (122) (123) The base can be made using methods known to those skilled in the art. Metal nitrate regeneration. In one embodiment, Ν2 can be produced by known industrial methods, such as by the Haber method, the Continuum method. In the examples, the exemplary sequence of steps is: 142257.doc -105· 201104948 NHy N02 (124) Η. Harper's method ^ Ostwald law In particular, the Haber method can be used to use N2 and other catalysts such as alpha iron containing an oxide at high temperatures and pressures. H2 produces NH3. Osterval Germany can be used to oxidize ammonia to no2 under a catalyst such as hot platinum or platinum-ruthenium catalyst. The heat can be waste heat from the power system. No2 is soluble in water to form nitric acid, and nitric acid reacts with NaOH, Na2CO3 or NaHC03 to form Sodium nitrate. The remaining NaOH can be directly electrolyzed from the melt into metal Na and NaH and A, or converted to NaCl by reaction with HC1, wherein the NaCl electrolysis gas Cl2 can react with H2 from water electrolysis to form HC1. In embodiments, metals such as Na and Mg can be converted to the corresponding hydride by reaction with water electrolysis preferably. In other embodiments, Li and K replace Na. In exemplary low energy hydrogen and regeneration reactions The reaction mixture comprises a NaH catalyst, MgH2, SF6 and a supported activated carbon. In one embodiment, the exothermic reaction is derived from the oxidation of a metal hydride by SF6, such as 4MgH2 + SF6 ^mgF2 + AH, + MgS (125) INaH + SF^eNaF + A+NaHS. (126)

NaF及MgF2及硫化物可由可另外包含HF之熔鹽電解成Na 及Mg。氟電解氣體可與硫化物反應,形成可由動力移除 之SF6氣體。可由此項技術中已知之方法、諸如低溫蒸 餾、薄膜分離或層析,使用諸如分子篩之介質,使SF6與 F2分離。NaHS在3 50°C下熔融且可為熔融電解混合物之一 部分。任何MgS產物均可與Na反應,形成NaHS,其中反 142257.doc -106- 201104948 應可在電解期間原位發生。s及金屬可為電解期間所形成 之產物。或者,金屬可為少數,以便形成更穩定之氟化 物’或可添加f2,形成氟化物。 3MgH2 + SF6 3MgF2 + 3H2 + S (12 7 ) 6M?// + 5F6 —> 6_/VaF + 3"2 + <S。 (128)NaF and MgF2 and sulfide may be electrolyzed into Na and Mg by a molten salt which may additionally contain HF. The fluorine electrolysis gas can react with the sulfide to form SF6 gas that can be removed by power. SF6 can be separated from F2 by methods known in the art, such as cryogenic distillation, membrane separation or chromatography, using a medium such as a molecular sieve. NaHS melts at 3 50 ° C and can be part of the molten electrolysis mixture. Any MgS product can react with Na to form NaHS, where anti-142257.doc -106-201104948 should be able to occur in situ during electrolysis. s and the metal may be the products formed during electrolysis. Alternatively, the metal may be a minority to form a more stable fluoride ' or may add f2 to form a fluoride. 3MgH2 + SF6 3MgF2 + 3H2 + S (12 7 ) 6M?// + 5F6 -> 6_/VaF + 3"2 + <S. (128)

NaF及MgF2可由可另外包含hf之熔鹽電解成F2、Na及 Mg。Na與Mg不可混溶’且可用較佳由h2〇電解補充之氫 氣將經分離金屬氫化。氟氣可與硫反應,使sf6再生。 在例示性低能量氫及再生反應中,反應混合物包含NaH 催化劑、MgH2、NF3及載體活性碳。在一實施例中’放熱 反應來源為金屬氫化物被NF3氧化之反應,諸如 3MgH2+2NF3 3MgF2 + 3H2 + N2 (129) 6MgH2+2NF, -> 3MgF2 + Mg3N2 + 6H2 (130) 3NaH + NF3 3A^F + l/2A^+1.5/f2 〇 (131)NaF and MgF2 can be electrolyzed into F2, Na and Mg by a molten salt which may additionally contain hf. Na is immiscible with Mg' and the separated metal can be hydrogenated with hydrogen preferably replenished by h2 〇 electrolysis. Fluorine gas can react with sulfur to regenerate sf6. In an exemplary low energy hydrogen and regeneration reaction, the reaction mixture comprises a NaH catalyst, MgH2, NF3, and a carrier activated carbon. In one embodiment, the 'exothermic reaction source is a reaction in which the metal hydride is oxidized by NF3, such as 3MgH2+2NF3 3MgF2 + 3H2 + N2 (129) 6MgH2+2NF, -> 3MgF2 + Mg3N2 + 6H2 (130) 3NaH + NF3 3A ^F + l/2A^+1.5/f2 〇(131)

NaF及MgF2可由可另外包含抑之熔鹽電解成F2、心及 Mg。ΜΑ#2至MgF2之轉化可發生在熔體中。心與]^不可 混溶,且可用較佳來自Ηβ電解之氫氣將經分離金屬氫 化。氟氣可與NH3較佳在銅包裝反應器中反應,形成 NF3。氨可由哈柏法產生。或者,nf3可由NH4F在無水HF 中電解而形成。 在例示性低能量氫及再生反應中,固體燃料反應混合物 包含NaH催化劑、MgH2、Na』2。8及載體活性碳。在一實 方《•例中,放熱反應來源為金屬氫化物被Na2S2〇8氧化之反 應,諸如 142257.doc •107- 201104948 SMgH2 + Na2S2Os 2MgS + 2NaOH + 6MgO + 6H2 (132) TMgH2 + Na2S20& +C^> 2MgS + Na2C03 + 5MgO + 1H2 (133) 10NaH + Na2S20% 2Na2S + SNaOH + H2 (134) 9NaH ♦ΝαΡΑ+ί: 4 2NaiS + NafiO^NaOH + 21 〇 (13 5) 可藉由與水反應,使任何MgO產物轉化為氫氧化物 MgO + H20 -> Mg{pH、2。 (13 6) 鈉或鎂之碳酸鹽、碳酸氫鹽及包含碳及氧之其他物質可用 Na或NaH還原:NaF and MgF2 can be electrolyzed into F2, heart and Mg by additionally containing a molten salt. The conversion of ΜΑ#2 to MgF2 can occur in the melt. The heart is immiscible, and the separated metal can be hydrogenated with hydrogen preferably from Ηβ electrolysis. The fluorine gas can be reacted with NH3 preferably in a copper packaging reactor to form NF3. Ammonia can be produced by the Haber method. Alternatively, nf3 can be formed by electrolysis of NH4F in anhydrous HF. In an exemplary low energy hydrogen and regeneration reaction, the solid fuel reaction mixture comprises a NaH catalyst, MgH2, Na"2.8, and a carrier activated carbon. In a practical example, the exothermic reaction is derived from the oxidation of a metal hydride by Na2S2〇8, such as 142257.doc •107- 201104948 SMgH2 + Na2S2Os 2MgS + 2NaOH + 6MgO + 6H2 (132) TMgH2 + Na2S20& 2^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ The reaction converts any MgO product to hydroxide MgO + H20 - > Mg {pH, 2. (13 6) Sodium or magnesium carbonates, bicarbonates and other substances containing carbon and oxygen may be reduced by Na or NaH:

NaH + Na2C03 3NaOH + C + M H2 (137)NaH + Na2C03 3NaOH + C + M H2 (137)

NaHVUmgCC^—NaOH + inC + mMg 〇 (13 8)NaHVUmgCC^—NaOH + inC + mMg 〇 (13 8)

MgS可在氧中燃燒,水解,與Na交換,形成硫酸鈉,且電 解成 2MgS +10/f2O + 2MzO// 4 Mi25208 + 2Mg(0//)2 + 9//2 〇 ( 1 3 9 )MgS can be burned in oxygen, hydrolyzed, exchanged with Na to form sodium sulfate, and electrolyzed into 2MgS +10/f2O + 2MzO// 4 Mi25208 + 2Mg(0//)2 + 9//2 〇 (1 3 9 )

Na2S可在氧中燃燒,水解成硫酸鈉,且電解形成^21?208 2iVa2>S + 10//2O-^Mi2lS2O8 + 2M2〇// + 9//2 〇 (140) 使用Na或NaH可將Mg(OH)2還原成Mg : 2他+雄(<9//)2 o 27VaC>//+均。 (141) 接著NaOH可直接自熔體電解成金屬Na及NaH及Q,或藉 由與HC1反應,可轉化為NaCl,其中NaCl電解氣體Cl2可與 來自水電解之H2反應,形成HC1。 在例示性低能量氫及再生反應中,固體燃料反應混合物 包含NaH催化劑、MgH2、S及載體活性碳。在一實施例 中,放熱反應來源為金屬氫化物被S氧化之反應,諸如 MgH2+S^MgS + H2 (142) I42257.doc -108- 201104948 2,ΝύΗ + S —^ NcijS + Η2 ° (143) 藉由與水反應,可使硫化鎮轉化為氫氧化物Na2S can be burned in oxygen, hydrolyzed to sodium sulfate, and electrolyzed to form ^21?208 2iVa2>S + 10//2O-^Mi2lS2O8 + 2M2〇// + 9//2 〇(140) using Na or NaH Mg(OH)2 is reduced to Mg: 2 he + male (<9//) 2 o 27VaC>//+. (141) Next, NaOH can be directly electrolyzed from the melt into metal Na and NaH and Q, or by reacting with HC1 to convert to NaCl, wherein the NaCl electrolysis gas Cl2 can react with H2 from water electrolysis to form HC1. In an exemplary low energy hydrogen and regeneration reaction, the solid fuel reaction mixture comprises a NaH catalyst, MgH2, S, and a carrier activated carbon. In one embodiment, the exothermic reaction source is a reaction in which the metal hydride is oxidized by S, such as MgH2+S^MgS + H2 (142) I42257.doc -108- 201104948 2, ΝύΗ + S -^ NcijS + Η2 ° (143 Converting the sulfide town to hydroxide by reacting with water

MgS + lHp — MgipHX+Hj 〇 (144) H2S可在高溫下分解或用以將S02轉化為S。藉由燃燒及水 解,可使硫化納轉化為氫氧化物 (145)MgS + lHp — MgipHX+Hj 〇 (144) H2S can be decomposed at high temperatures or used to convert S02 to S. Sodium sulfide can be converted to hydroxide by combustion and hydrolysis (145)

Nc^S + \·5〇2 ~^ Ν〇2〇 + S〇2 Να20 + Η20^2Να0Η 使用Na或NaH可將Mg(OH)2還原成Mg : 2Na + Mg{pHl2^>2NaOH + Mg。 (146) 接著NaOH可直接自熔體電解成金屬Na及NaH及02,或藉 由與HC1反應,可轉化為NaCl,其中NaCl電解氣體Cl2可與 來自水電解之H2反應,形成HC1。S02可在高溫下使用H2 來還原 SOj + 2.HjS —Λ·^1Η·χΟ。 (14 7) 在實施例中,藉由與較佳來自水電解之Η2反應,可將諸如 Na及Mg之金屬轉化為相應氫化物。在其他實施例中,S及 金屬可藉由自熔體電解而再生。 在例示性低能量氫及再生反應中,反應混合物包含NaH 催化劑、MgH2、N20及載體活性碳。在一實施例中,放熱 反應來源為金屬氫化物被N20氧化之反應,諸如 4MgH2 + N20 —> MgO + Mg3N2 + 4H2 ( 14 8 )Nc^S + \·5〇2 ~^ Ν〇2〇+ S〇2 Να20 + Η20^2Να0Η Use Mg or NaH to reduce Mg(OH)2 to Mg: 2Na + Mg{pHl2^>2NaOH + Mg . (146) Next, NaOH can be directly electrolyzed from the melt into metal Na and NaH and 02, or by reacting with HC1 to convert to NaCl, wherein the NaCl electrolysis gas Cl2 can react with H2 from water electrolysis to form HC1. S02 can use H2 to restore SOj + 2.HjS —Λ·^1Η·χΟ at high temperatures. (14 7) In the examples, metals such as Na and Mg can be converted to the corresponding hydride by reaction with hydrazine 2 which is preferably electrolyzed from water. In other embodiments, S and metal can be regenerated by electrolysis from the melt. In an exemplary low energy hydrogen and regeneration reaction, the reaction mixture comprises a NaH catalyst, MgH2, N20, and a carrier activated carbon. In one embodiment, the exothermic reaction source is a reaction in which the metal hydride is oxidized by N20, such as 4MgH2 + N20 - > MgO + Mg3N2 + 4H2 (14 8 )

NaH + T^O + C — NaHCO^N^VlHp (149) 藉由與水反應,可使MgO產物轉化為氫氧化物NaH + T^O + C — NaHCO^N^VlHp (149) The MgO product can be converted to hydroxide by reaction with water.

Mg0 + H20-^Mg(0H\ 〇 (150) 142257.doc -109- 201104948 氮化鎂亦可水解成氫氧化鎂:Mg0 + H20-^Mg(0H\ 〇 (150) 142257.doc -109- 201104948 Magnesium nitride can also be hydrolyzed to magnesium hydroxide:

MgA+eHp — mgifiHX+T^+N” (151) 鈉之碳酸鹽、碳酸氫鹽及包含碳及氧之其他物質可用Na或 NaH還原: 他// + 他2(:03->37VaOi/ + C + l/i/2。 (152) 使用Na或NaH可將Mg(OH)2還原成Mg : 2Na +Mg{OH、2~^2NaOH + Mg 〇 ( 1 5 3 ) 接著NaOH可直接自熔體電解成金屬Na及NaH及02,或藉 由與HC1反應,可轉化為NaC卜其中NaCl電解氣體Cl2可與 來自水電解之H2反應,形成HC1。氧化由哈柏法產生之氨 (方程式(124))且控制溫度以利於N20產生,使N20與穩定 狀態反應產物混合物之其他氣體分離。 在例示性低能量氫及再生反應中,反應混合物包含NaH 催化劑、MgH2、Cl2及載體,諸如活性碳、WC或TiC。反 應器可進一步包含高能光、較佳紫外光來源以使Cl2解 離,引發低能量氫反應。在一實施例中,放熱反應來源為 金屬氫化物被Cl2氧化之反應,諸如 2NaH + Cl2 ->2NaCl + H2 (154)MgA+eHp — mgifiHX+T^+N” (151) Sodium carbonate, bicarbonate and other substances containing carbon and oxygen can be reduced with Na or NaH: he /// he 2 (:03->37VaOi/ + C + l/i/2 (152) Use Na or NaH to reduce Mg(OH)2 to Mg: 2Na +Mg{OH, 2~^2NaOH + Mg 〇( 1 5 3 ) Then NaOH can be directly Melt electrolysis into metal Na and NaH and 02, or by reaction with HC1, can be converted into NaC. The NaCl electrolysis gas Cl2 can react with H2 from water electrolysis to form HC1. Oxidation of ammonia produced by the Haber method (equation (124)) and controlling the temperature to facilitate N20 production, separating N20 from other gases in the steady state reaction product mixture. In an exemplary low energy hydrogen and regeneration reaction, the reaction mixture comprises a NaH catalyst, MgH2, Cl2, and a carrier, such as an activity. Carbon, WC or TiC. The reactor may further comprise a source of high energy light, preferably ultraviolet light, to dissociate Cl2, initiating a low energy hydrogen reaction. In one embodiment, the source of the exothermic reaction is a reaction in which the metal hydride is oxidized by Cl2, such as 2NaH + Cl2 ->2NaCl + H2 (154)

MgH2+Cl2MgCl2 +H2 〇 (155)MgH2+Cl2MgCl2 +H2 〇 (155)

NaCl及MgCl2可自熔鹽電解成Cl2、Na及Mg。熔融NaCl電 解可使用唐斯電解池或經修改之唐斯電解池來執行。用於 此電解之NaCl可由用水溶液沖洗反應產物而獲得。可過濾 溶液,以移除諸如AC之載體,可將載體離心且較佳使用 來自動力系統之廢熱乾燥。Na與Mg不可混溶,且可用較 142257.doc -110- 201104948 佳來自Ηβ電解之氫氣將經分離金屬氫化。一例示性結果 如下: 4 g WC+l g MgH2+l g NaH+0.01 m〇i ci2,用紫外燈引 發以使 Cl2 解離為 Cl,Ein : 162.9 kJ,dE : 16.0 kJ,TSC : 23-42°C,Tmax : 85°C,理論能量為 7_l〇 kJ,增益為 2 25 倍。 可藉由電解,使包含催化劑或催化劑源(諸如NaH、κ或 Li或其氫化物)、還原劑(諸如鹼金屬或氫化物,較佳' MgHs或A1)及氧化劑(諸如NF3)之反應物再生。金屬氟化物 產物較佳藉由電解而再生成金屬及氟氣。電解質可包含共 炫混合物。混合物可進一步包含HF。NF3可由NHJ在無水 HF中電解而再生。在另一實施例中,NH3與Fa在諸如銅包 裝反應器之反應器中反應。F2可藉由電解使用尺寸穩定型 陽極或碳陽極使用利於Fa產生之條件來產生。藉由使8與 F2反應,可使SF6再生。可在低能量氫反應中形成之任何 金屬氮化物可藉由至少一種以下方法再生:熱分解、^還 原、氧化成氧化物或氫氧化物及反應生成函化物、接著電 解及在金屬鹵化物熔融電解期間與鹵素氣體反應。NC13可 由氨與氯氣反應或由銨鹽(諸如NH4C1)與氯氣反應而形 成。氣氣可由氣化物鹽(諸如來自產物反應混合物之氣化 物鹽)電解產生。NH3可使用哈柏法來形成,其中氫可來自 較佳水之電解。在一實施例中,藉由使NH;與銨鹽(諸如 ΝΗβΙ)中之至少一者與氯氣反應,在反應器中原位形成 NC!3 〇在一實施例中,可藉由使與由金屬氟化物電解 142257.doc 201104948 形成之F2反應,使BiF5再生。 在氧或齒素之來源視情況用作放熱活化反應之反應物的 一實施例中,氧化物或齒化物產物較佳由電解再生。電解NaCl and MgCl2 can be electrolyzed into molten salt to form Cl2, Na and Mg. The molten NaCl electrolysis can be performed using a Downs electrolytic cell or a modified Downs electrolytic cell. The NaCl used for this electrolysis can be obtained by rinsing the reaction product with an aqueous solution. The solution can be filtered to remove a carrier such as AC, and the carrier can be centrifuged and preferably dried using waste heat from a power system. Na and Mg are immiscible, and the separated metal can be hydrogenated using hydrogen from Ηβ electrolysis. An illustrative result is as follows: 4 g WC+lg MgH2+lg NaH+0.01 m〇i ci2, initiated by UV lamp to dissociate Cl2 into Cl, Ein: 162.9 kJ, dE: 16.0 kJ, TSC: 23-42 °C , Tmax : 85 ° C, the theoretical energy is 7_l 〇 kJ, the gain is 2 25 times. Reactants comprising a catalyst or catalyst source (such as NaH, κ or Li or its hydride), a reducing agent (such as an alkali metal or hydride, preferably 'MgHs or A1) and an oxidizing agent (such as NF3) can be electrolyzed by electrolysis regeneration. The metal fluoride product is preferably regenerated into metal and fluorine by electrolysis. The electrolyte can comprise a co-hyun mixture. The mixture may further comprise HF. NF3 can be regenerated by electrolysis of NHJ in anhydrous HF. In another embodiment, NH3 is reacted with Fa in a reactor such as a copper-packaged reactor. F2 can be produced by electrolysis using a dimensionally stable anode or a carbon anode using conditions conducive to Fa production. SF6 can be regenerated by reacting 8 with F2. Any metal nitride that can be formed in a low-energy hydrogen reaction can be regenerated by at least one of the following methods: thermal decomposition, reduction, oxidation to an oxide or hydroxide, and reaction to a chemical, followed by electrolysis and melting in a metal halide. Reacts with halogen gas during electrolysis. NC13 can be formed by reacting ammonia with chlorine or by reacting an ammonium salt such as NH4C1 with chlorine. The gas can be produced electrolytically from a vaporized salt such as a gasification salt from the product reaction mixture. NH3 can be formed using the Haber process, in which hydrogen can be derived from electrolysis of preferred water. In one embodiment, NC is formed in situ in the reactor by reacting at least one of NH; with an ammonium salt (such as ΝΗβΙ) with chlorine gas. In one embodiment, Fluoride Electrolysis 142257.doc 201104948 The F2 reaction formed to regenerate BiF5. In one embodiment where the source of oxygen or dentate is used as a reactant for the exothermic activation reaction, the oxide or dentate product is preferably regenerated by electrolysis. electrolysis

質可包含共熔混合物,諸如Al2〇3與Na3AlF6 ; MgF2、NaF 與 HF ; Na3AlF6 ; NaF、SiF4與 HF ;及 A1F3、NaF與 HF 之混 合物。SiF4電解成Si及F2可來自鹼金屬氟化物共熔混合 物。因為Mg與Na具有低可混溶性,所以可在熔體相將其 分離。因為A1與Na具有低可混溶性,所以可在熔體相將其 分離。在另一實施例中,電解產物可由蒸餾來分離。在另 一實施例中,藉由與C及Cl2反應,形成CO及TiCl4,TiCl4 進一步與Mg反應,形成Ti及MgCh,可使Ti2〇3再生。可藉 由電解使Mg及Ch再生。在MgO為產物之狀況下,可藉由 皮金法(Pidgeon process)使Mg再生。在一實施例中,使The mass may comprise a eutectic mixture such as Al2〇3 and Na3AlF6; MgF2, NaF and HF; Na3AlF6; NaF, SiF4 and HF; and A1F3, a mixture of NaF and HF. The SiF4 electrolysis into Si and F2 can be derived from an alkali metal fluoride eutectic mixture. Since Mg and Na have low miscibility, they can be separated in the melt phase. Since A1 and Na have low miscibility, they can be separated in the melt phase. In another embodiment, the electrolysis product can be separated by distillation. In another embodiment, CO and TiCl4 are formed by reaction with C and Cl2, and TiCl4 is further reacted with Mg to form Ti and MgCh, and Ti2〇3 can be regenerated. Mg and Ch can be regenerated by electrolysis. In the case where MgO is a product, Mg can be regenerated by the Pidgeon process. In an embodiment,

MgO與Si反應,形成Si〇2及Mg氣體,使Mg氣體冷凝。產 物Si〇2可藉由在高溫下進行&還原或藉由與碳反應形成以 及CO及C〇2而再生成Si。在另一實施例中,藉由使用諸如 在熔融氯化鈣中電解固體氧化物之方法電解,使Si再生。 在一實施例中,藉由電解氧化使諸如鹼金屬氣酸鹽或過氯 酸鹽之氣酸鹽或過氯酸鹽再纟。鹽水可電解氧化成氣酸鹽 及過氣酸鹽。 為使反應物再生,可在與反應物或產物混合物分離後, 藉由稀酸移除可形成之金屬載體上的任何氧化物塗層。在 另-實施例中’藉由氧化物與碳反應產生碳化物,同時釋 放出一氧化碳或二氧化碳。 142257.doc •112· 201104948 在反應混合物包含溶劑之狀況下,藉由使用蒸發來移除 /谷劑或藉由在保留固體下過濾或離心,可使溶劑與待再生 之其他反應物或產物分離。在存在諸如鹼金屬之其他揮發 性組份的狀況下,可藉由加熱至適當高溫使得該等組份蒸 發,來選擇性地移除該等組份。舉例而言,藉由蒸餾來收 集諸如金屬Na之金屬且剩下諸如碳之載體。Na可再氫化 成NaH且在添加溶劑下返回至碳,以再生反應混合物。亦 可單獨再生經分離固體,諸如R_Ni。藉由暴露於❹丨至^⑽ atm之範圍内之壓力下的氫氣中,可將經分離R_Ni氫化。 在形成低能量氫之催化劑反應期間溶劑分解的狀況下, 可使溶劑再生。舉例而言,DMF之分解產物可為二甲胺、 一氧化碳、甲酸、曱酸鈉及曱醛。在一實施例中,藉由二 曱胺與一氧化碳在曱醇中催化反應或曱酸甲酯與二甲胺反 應’來產生二甲基曱醯胺。亦可藉由使二曱胺與甲酸反應 來製備二甲基曱醯胺。 在一實施例中’例示性醚溶劑可由反應混合物之產物再 生。較佳地,反應混合物及條件經選擇,使得相對於形成 低能氫之速率,崎反應速率最小化,以便任何喊降解相 對於由低能量氫反應產生之能量而言為微不足道的。因 此’可視需要在移除醚降解產物下將醚添加回去。或者, 醚及反應條件可經選擇’使得可分離醚反應產物且使醚再 生。 一實施例包含以下至少一者:HSA為氟化物,HSA為金 屬及溶劑經氟化。金屬氟化物可為反應產物。金屬及氟氣 142257.doc -113- 201104948 可由電解產生。電解質可包含氟化物,諸如NaF、MgF2、 A1F3或LaF3,且可另外包含降低氟化物炼點之至少一種其 他物貝(諸如HF)及其他鹽,諸如美國專利第…號中 揭示之物質。過量HF可溶解冰。電極可為碳,諸如石 墨’且亦可形成碳氟化合物作為所需降解產物。在一實施 例中’經碳塗布之金屬或合金、較佳奈米粉末(諸如碳塗 布,Co、Ni、Fe、其他過渡金屬粉末或合金)及金屬塗布 之碳、較佳奈米粉末(諸如經過渡金屬或合金塗布之碳, 較佳沁、Co ' Fe*Mn中之至少一者塗布之碳)中之至少一 者包含磁性粒子。藉由使用磁體,可使磁性粒子與混合物 (諸如諸如NaF之氟化物與碳之混合物)分離。所收集之粒 子可再循環,作為形成低能量氫之反應混合物之一部分。 在一貫施例中,藉由分離產物,接著電解,自包含尸 之產物再生催化劑或催化劑源(諸如NaH)及氟化溶劑。分 離之方法可為用具有低沸點之極性溶劑沖洗混合物, 接著進行一或多次過濾及蒸發,產生固體。電解可為 熔鹽電解。熔鹽可為混合物’諸如共熔混合物。混合物較 佳包含如此項技術中已知之及开可自電解收集金屬 鈉及氟氣。Na可與Η反應,形成NaH。氟氣可與烴反應, 形成可用作溶劑之氟化烴。可使1^1?氟化產物返回至電解混 合物中。或者,烴及碳產物(分別諸如苯及石墨碳)可經氟 化且返回至反應混合物中。可藉由此項技術中已知之方法 將碳裂化成具有較低熔點之較小氟化碎片,以用作溶劑。 溶劑可包含混合物。氟化程度可用作控制氫催化反應速率 142257.doc -114- 201104948 之方法。在一實施例中,藉由使用碳電極電解熔融氟化物 鹽、較佳鹼金屬氟化物或藉由使二氧化碳與氟氣反應,來 產生CF4。任何Cjp4及烴類產物亦可氟化成cp4及碳氟化合 物。 δ適經氟化HSA物質及將碳氟化以形成該等HSA物質之 方法可為此項技術中已知之物質及方法,諸如美國專利第 3,929,920號、美目專μ第3,925,492號、美_專利第 3’925,263號及美國專利第4 886,92丨號中揭示之物質及方 法。其他方法包含··如美國專利第4,139,474號中揭示之製 備聚- I化二碳;如美國專利第4,447,663號中揭示之使碳 連續說化之方法;如美國專利第4,423,261號中揭示的產生 主要匕3由公式(c:2F)n表示之聚一氟化二碳之石墨氟化物 的方法;如美國專利第3,925,263號中揭示之製備聚一氣化 碳之方法;如美國專利第3,872,Q32E中揭示之製備石墨氣 化物之方法;如美國專利第4,243,615號中揭示之製備聚一 ,化二碳之方法;如美國專利第4,438,〇86號中揭示的藉由 碳與氟氣之間的接觸反應來製備石墨氟化物之方法;如美 國專利第3,929,918號中揭示之氟化石墨之合成;如美國專 利第3’925’492號中揭示之製備聚一貌化碳之方法;、及如 二Γ:等人’ J. C· S.軸⑽,1268 (1974)揭示之提供石墨_ =學物質之新合成方法的機制,其中文獻中揭示之物質 考慮到虱氧之腐蝕,可採用蒙乃爾合金 (Monel)金屬、鎳、 ^ 質自衽北曰〜作為反應益之一種材料。碳物 買匕括非晶石厌(諸如石隹里 '"、、石油焦 '石油瀝青煤焦及木MgO reacts with Si to form Si〇2 and Mg gas, and the Mg gas is condensed. The product Si〇2 can regenerate Si by performing & reduction at high temperature or by reacting with carbon to form CO and C〇2. In another embodiment, Si is regenerated by electrolysis using a method such as electrolysis of solid oxides in molten calcium chloride. In one embodiment, the gas or perchlorate such as an alkali metal sulphate or perchlorate is reentangled by electrolytic oxidation. The brine can be electrolytically oxidized to a gas salt and a peroxyacid salt. To regenerate the reactants, any oxide coating on the metal support that can be formed can be removed by dilute acid after separation from the reactant or product mixture. In another embodiment, the carbide is reacted with carbon to produce a carbide while releasing carbon monoxide or carbon dioxide. 142257.doc •112· 201104948 The solvent can be removed from the other reactants or products to be regenerated by removing or using the solvent by evaporation or by filtering or centrifuging under the retained solids, if the reaction mixture contains a solvent. . In the presence of other volatile components such as alkali metals, the components can be selectively removed by heating to a suitable elevated temperature to evaporate the components. For example, a metal such as metal Na is collected by distillation and a carrier such as carbon remains. Na can be re-hydrogenated to NaH and returned to carbon with the addition of solvent to regenerate the reaction mixture. The isolated solid, such as R_Ni, can also be regenerated separately. The separated R_Ni can be hydrogenated by exposure to hydrogen in a pressure ranging from ❹丨 to ^(10) atm. The solvent can be regenerated in the case where the solvent is decomposed during the reaction of the catalyst forming low energy hydrogen. For example, the decomposition products of DMF may be dimethylamine, carbon monoxide, formic acid, sodium citrate, and furfural. In one embodiment, dimethyl decylamine is produced by catalytic reaction of diamine with carbon monoxide in decyl alcohol or by reaction of methyl decanoate with dimethylamine. Dimethylguanamine can also be prepared by reacting diamine with formic acid. In one embodiment, an exemplary ether solvent can be regenerated from the product of the reaction mixture. Preferably, the reaction mixture and conditions are selected such that the rate of sacrificial reaction is minimized relative to the rate at which low energy hydrogen is formed, so that any shouting degradation is negligible relative to the energy produced by the reaction of low energy hydrogen. Therefore, the ether can be added back as needed to remove the ether degradation product. Alternatively, the ether and reaction conditions can be selected such that the ether reaction product can be separated and the ether regenerated. An embodiment comprises at least one of the following: HSA is a fluoride, HSA is a metal and the solvent is fluorinated. The metal fluoride can be the reaction product. Metal and fluorine gas 142257.doc -113- 201104948 can be produced by electrolysis. The electrolyte may comprise a fluoride such as NaF, MgF2, AlF3 or LaF3, and may additionally comprise at least one other species (such as HF) and other salts which reduce the fluoride refining point, such as those disclosed in U.S. Patent No.... Excess HF can dissolve ice. The electrode can be carbon, such as graphite' and can also form fluorocarbons as desired degradation products. In one embodiment 'carbon coated metal or alloy, preferably nano powder (such as carbon coating, Co, Ni, Fe, other transition metal powder or alloy) and metal coated carbon, preferably nano powder (such as transition At least one of the metal or alloy coated carbon, preferably at least one of Co' Fe*Mn coated carbon, comprises magnetic particles. The magnetic particles can be separated from the mixture (such as a mixture of fluoride and carbon such as NaF) by using a magnet. The collected particles can be recycled as part of a reaction mixture that forms low energy hydrogen. In a consistent embodiment, the catalyst or catalyst source (such as NaH) and the fluorinated solvent are regenerated from the product containing the cadaver by separating the product, followed by electrolysis. The separation may be by rinsing the mixture with a polar solvent having a low boiling point followed by one or more filtrations and evaporation to produce a solid. Electrolysis can be molten salt electrolysis. The molten salt can be a mixture such as a eutectic mixture. Preferably, the mixture comprises metal and sodium fluoride and fluorine gas as is known in the art. Na can react with hydrazine to form NaH. The fluorine gas can react with the hydrocarbon to form a fluorinated hydrocarbon that can be used as a solvent. The 1 ^ 1 fluorinated product can be returned to the electrolytic mixture. Alternatively, hydrocarbons and carbon products (such as benzene and graphitic carbon, respectively) can be fluorinated and returned to the reaction mixture. The carbon can be cracked into smaller fluorinated fragments having a lower melting point by a method known in the art to be used as a solvent. The solvent may comprise a mixture. The degree of fluorination can be used as a method of controlling the rate of hydrogen catalyzed reaction 142257.doc-114-201104948. In one embodiment, CF4 is produced by electrolytically melting a fluoride salt, preferably an alkali metal fluoride, or by reacting carbon dioxide with fluorine gas using a carbon electrode. Any Cjp4 and hydrocarbon products can also be fluorinated to cp4 and fluorocarbons. δ suitable for fluorinated HSA materials and methods for fluorinating carbon to form such HSA materials can be those known in the art, such as U.S. Patent No. 3,929,920, U.S. Patent No. 3,925,492, and U.S. Patent. The materials and methods disclosed in U.S. Patent No. 4, 886, 926, and U.S. Patent No. 4,886,. Other methods include the preparation of a poly-dicarbon as disclosed in U.S. Patent No. 4,139,474; the disclosure of the disclosure of the disclosure of the disclosure of U.S. Patent No. 4,447,663; A method of producing a polyfluorinated dicarbon graphite fluoride represented by the formula (c: 2F) n; a method of preparing a poly-carbonized carbon as disclosed in U.S. Patent No. 3,925,263; A method of preparing a graphite gasification as disclosed in U.S. Patent No. 4,243,615, the disclosure of which is incorporated herein by reference to U.S. Patent No. 4, 243, 615. a method of preparing a graphite fluoride by a contact reaction; a synthesis of fluorinated graphite as disclosed in U.S. Patent No. 3,929,918; a method of preparing a polymorphic carbon as disclosed in U.S. Patent No. 3,925,492; Such as Erqi: et al. 'J. C. S. Axis (10), 1268 (1974) reveals a mechanism for providing new methods for the synthesis of graphite _ = substances, in which the substances disclosed in the literature take into account the corrosion of helium oxygen, Monel (Monel) metal, nickel, ^ quality from the north of the 曰 ~ as a material for the benefit of the benefits. Carbon purchases include amorphous stone (such as Ishigaki '", petroleum coke 'petroleum coal char and wood

i S 142257.doc •115· 201104948 炭),及結晶碳(諸如天然石墨、石墨稀及人造石幻,芙及 奈米管,較料壁奈米管。Na較衫插人碳㈣巾或形成 块化物1等碳物質可以各種形式使用。雖然—般 物質較佳具有不超過50微米之平均粒徑,但更大平^粒二 亦為合適的。除粉狀碳物質外,其他形式亦為合適的。碳 物質可呈塊、球形、條形及纖維之形式。反應可在選自流 化床型反應H、旋㈣型反應器及盤式塔型反應器之反鹿 益中進行。 · 在另-實施例中’使用添加劑使氟化碳再生。亦可藉由 無機反應物(諸如COR)在電池外部或原位使碳氟化。^應 混合物可進一步包含無機氟化反應物來源,諸如c〇: C〇F、CoF2ACgF3之-’該無機氟化反應物來源可添加至 反應器中且再生,或其可在電池運作期間由形成低能量氫 之反應混合物及可能另一試劑(諸如氟氣)在視情況存在之 氟化催化金屬(諸如Pt或Pd)下形成。添加劑可為可形成 NHJ之ΝΑ。碳與烴中之至少一者可與NH4f反應而氟化。 在一貫施例中,反應混合物進一步包含HNaF2,HNaF2可 與碳反應而使碳氟化。碳氟化合物可原位或在低能量氫反 應器外部形成。碳氟化合物可用作溶劑或HS A物質。 在溶劑、載體或吸氣劑中之至少一者包含氟的一實施例 中’在使溶劑或載體為氟化有機物的狀況下,產物可能包 含石反’以及催化劑金屬之氟化物’諸如NaHF2及NaF。此 係除可放出或收集之較低能量氫產物(諸如分子低能量氫 氣體)外可獲得之產物。使用F2,可將碳蝕刻為Cf4氣體, 142257.doc •116- 201104948 4氣體可用作發電反應之另一循環中的反應物。NaF與 ==F2之剩餘產物可電解成Na及FrNa可與氫反應,形成 且p2可用以蝕刻礙產物。NaH、剩餘NaF及CF4可組 _、進行形成低能量氫之發電反應之另一循環。在其他實 施例中’ Li、κ、Rb或Cs可替代Na。 VI.其他液體及非均勻燃料實施例 在本發明中,「液體溶劑實施例」包含任何反應混合物 及包含液體溶劑之相應燃料(諸如液體燃料及非均勻燃 料)。 在包含液體溶劑之另一實施例中,由金屬、離子或分子 形式之Na與至少一種其他化合物或元素之間的反應提供原 子鈉與分子NaH之一。Na或NaH之來源可為以下至少一 者.金屬Na ;包含Na之無機化合物,諸如NaOH ;及其他 合適Na化合物,諸如NaNH2、Na2C03及Na20、NaX(X為鹵 素)及NaH(s)。其他元素可為Η、置換劑或還原劑。反應混 合物可包含以下至少一者:(1)溶劑;(2)鈉來源,諸如i S 142257.doc •115· 201104948 charcoal), and crystalline carbon (such as natural graphite, graphite thin and artificial stone magic, Fu and nano tube, compared to the wall tube. Na is more than a shirt inserted carbon (four) towel or formed The carbonaceous material such as the bulk compound 1 can be used in various forms. Although the general material preferably has an average particle diameter of not more than 50 μm, a larger flat grain is also suitable. In addition to the powdery carbon material, other forms are also suitable. The carbon material may be in the form of a block, a sphere, a strip, and a fiber. The reaction may be carried out in an anti-rebir selected from a fluidized bed type reaction H, a rotary (four) type reactor, and a tray column type reactor. In another embodiment, 'the additive is used to regenerate the fluorinated carbon. The carbon may also be fluorinated externally or in situ by an inorganic reactant such as COR. The mixture may further comprise an inorganic fluorinated reactant source, such as C〇: C〇F, CoF2ACgF3-'The source of the inorganic fluorinated reactant may be added to the reactor and regenerated, or it may be formed by a low-energy hydrogen reaction mixture and possibly another reagent (such as fluorine) during operation of the battery Gas) Formed under a metal such as Pt or Pd. The additive may be a NHJ capable of forming. At least one of carbon and hydrocarbon may be fluorinated by reaction with NH4f. In a consistent embodiment, the reaction mixture further comprises HNaF2, and HNaF2 may Carbon is fluorinated by carbon reaction. The fluorocarbon can be formed in situ or outside the low energy hydrogen reactor. The fluorocarbon can be used as a solvent or HS A material. At least one of the solvent, carrier or getter comprises In one embodiment of fluorine, in the case where the solvent or carrier is a fluorinated organic compound, the product may comprise a stone anti- and a fluoride of the catalyst metal such as NaHF2 and NaF. This is in addition to lower energy hydrogen which may be evolved or collected. A product obtainable outside the product (such as molecular low-energy hydrogen gas). Using F2, carbon can be etched into Cf4 gas, 142257.doc • 116- 201104948 4 gas can be used as a reactant in another cycle of the power generation reaction. NaF The remaining product with == F2 can be electrolyzed to Na and FrNa can react with hydrogen to form and p2 can be used to etch the product. NaH, residual NaF and CF4 can be combined to perform another cycle of power generation reaction to form low energy hydrogen. In other embodiments, 'Li, κ, Rb or Cs may be substituted for Na. VI. Other Liquid and Non-Uniform Fuel Examples In the present invention, the "liquid solvent embodiment" includes any reaction mixture and a corresponding fuel containing a liquid solvent (such as Liquid fuel and non-homogeneous fuel. In another embodiment comprising a liquid solvent, the reaction between Na in the form of a metal, ion or molecule and at least one other compound or element provides one of atomic sodium and molecular NaH. The source of NaH may be at least one of the following: metal Na; an inorganic compound containing Na such as NaOH; and other suitable Na compounds such as NaNH2, Na2C03 and Na20, NaX (X is a halogen), and NaH(s). Other elements may be hydrazine, a displacer or a reducing agent. The reaction mixture may comprise at least one of: (1) a solvent; (2) a sodium source, such as

Na(m)、NaH、NaNH2、Na2C03、Na20、NaOH、掺雜 NaOH之R-Ni、NaX(X為鹵素)及摻雜NaX之R-Ni ; (3)氫 源’諸如氫氣及解離器及氫化物;(4)置換劑,諸如驗金屬 或驗土金屬,較佳Li ;及(5)還原劑,諸如以下至少一者: 金屬(諸如驗金屬、驗土金屬、鑭系金屬、過渡金屬(諸如 Ti)、鋁、B)、金屬合金(諸如 AlHg、NaPb、NaAl、LiAl) 及單獨或與還原劑組合之金屬來源(諸如鹼土金屬鹵化 物、過渡金屬鹵化物、鑭系齒化物及幽化紹)。驗金屬還 142257.doc -117- 201104948 原劑較佳為Na。其他合適還原劑包含金屬氫化物,諸如Na(m), NaH, NaNH2, Na2C03, Na20, NaOH, R-Ni doped with NaOH, NaX (X is halogen) and R-Ni doped with NaX; (3) Hydrogen source 'such as hydrogen and dissociator and a hydride; (4) a displacer, such as a metal or soil test metal, preferably Li; and (5) a reducing agent, such as at least one of the following: a metal (such as a metal test, a soil test metal, a lanthanide metal, a transition metal) Metal sources such as Al, such as alkaline earth metal halides, transition metal halides, lanthanide and singularities Huashun). The metal is also 142257.doc -117- 201104948 The agent is preferably Na. Other suitable reducing agents include metal hydrides such as

LiBH4、NaBH4、LiAlH4 或 NaAlH4。還原劑較佳與 NaOH反 應,形成NaH分子及Na產物,諸如Na、NaH(s)及Na20。 NaH來源可為包含NaOH及反應物(諸如形成NaH催化劑之 還原劑,諸如鹼金屬或鹼土金屬或R-Ni之A1介金屬)之R_ Ni。其他例示性試劑為鹼金屬或鹼土金屬及氧化劑,諸如 A1X3、MgX2、LaX3、CeX3及TiXn,其中X為齒素,較佳為 Br或I。另外,反應混合物可包含含有吸氣劑或分散劑之 另一化合物’諸如可摻雜至諸如R_Ni之解離器中的 Na2C03、Na2S04及Na3P〇4中之至少一者。反應混合物可 進一步包含載體’其中該載體可摻雜有混合物之至少一種 反應物。載體較佳可具有利於由反應混合物產生NaH催化 劑之大表面積。載體可包含以下之群中之至少一者:R_ Ni、Al、Sn、Abo〆諸如γ、0或α氧化鋁 '鋁酸鈉(β氧化鋁 存在諸如Na+之其他離子且具有理想化組成 Λ^α20·ΐυ/2〇3))、鋼系氧化物(諸如m2〇3(較佳M=La、 Sm、Dy、Pr、Tb、Gd及 Er))、Si、二氧化矽、矽酸鹽、沸 石、鑭系金屬、過渡金屬、金屬合金(諸如鹼金屬及驗土 金屬與Na之合金)、稀土金屬、Si〇2_Al2〇34Si〇2負載之犯 及其他負載金屬(諸如氧化鋁負载之鉑、鈀或釕中之至少 一者)。載體可具有高表面積且包含高表面積(HSA)物質, 諸如R-Ni、沸石、矽酸鹽、鋁酸鹽、氧化鋁、氧化鋁奈米 粒子、多孔 ai2o3、pt/Ai2o3 ' Ru/Al2〇3 或 Pd/Al2〇3、碳、 Pt/c或Pd/C、無機化合物(諸如Na2C〇3、二氧化矽及沸石 142257.doc -118- 201104948 材料,較佳γ沸石粉末)及碳(諸如芙或奈米管)。在一實施 例中,諸如Al2〇3之載體(及解離器之Al2〇3載體(若存在))與 諸如鑭系元素之還原劑反應,形成表面改質載體。在一實 施例中’表面A1與鑭系元素交換,形成經鑭系元素取代之 載體。此載體可摻雜有NaH分子來源,諸如NaOH,且與 諸如鑭系元素之還原劑反應。隨後經鑭系元素取代之載體 與鑭系元素反應不會使其顯著改變,且表面上摻雜之 NaOH可藉由與還原劑鑭系元素反應而還原成NaH催化 劑。在本文中給出之其他實施例中,Li、K、Rb或Cs可替 代Na。 在反應混合物包含NaH催化劑源的包含液體溶劑之一實 施例中’ NaH來源可為Na合金及氫源。合金可包含至少一 種此項技術中已知之合金,諸如金屬鈉與一或多種其他驗 金屬或鹼土金屬、過渡金屬、A卜Sn、Bi、Ag、In、Pb、 Hg、Si、Zr、B、Pt、Pd或其他金屬之合金,且H來源可為 H2或氫化物。 諸如NaH分子來源、鈉來源、NaH來源、氫源、置換劑 及還原劑之試劑呈任何所需莫耳比率。各呈大於〇且小於 100°/。之莫耳比率。莫耳比率較佳相似。 在一液體溶劑實施例中,反應混合物包含含有溶劑、]Sfa 或Na來源、NaH或NaH來源、金屬氫化物或金屬氫化物來 源、形成金屬氫化物之反應物或反應物來源、氫解離器及 氫源之群中之至少一種物質。反應混合物可進一步包含載 體。形成金屬氫化物之反應物可包含鑭系元素’較佳La或 142257.doc -119- 201104948LiBH4, NaBH4, LiAlH4 or NaAlH4. The reducing agent is preferably reacted with NaOH to form NaH molecules and Na products such as Na, NaH(s) and Na20. The NaH source may be R_Ni comprising NaOH and a reactant such as a reducing agent forming a NaH catalyst, such as an alkali metal or alkaline earth metal or an A1 intermetallic metal of R-Ni. Other exemplary agents are alkali or alkaline earth metals and oxidizing agents such as A1X3, MgX2, LaX3, CeX3 and TiXn, wherein X is a dentate, preferably Br or I. Alternatively, the reaction mixture may comprise another compound comprising a getter or dispersant such as at least one of Na2C03, Na2S04 and Na3P〇4 which may be doped into a dissociator such as R_Ni. The reaction mixture may further comprise a carrier' wherein the carrier may be doped with at least one reactant of the mixture. The support preferably has a large surface area which facilitates the production of a NaH catalyst from the reaction mixture. The carrier may comprise at least one of the group consisting of: R_Ni, Al, Sn, Abo, such as gamma, 0 or alpha alumina 'sodium aluminate (beta alumina exists in other ions such as Na+ and has an idealized composition Λ^ 2020·ΐυ/2〇3)), steel oxides (such as m2〇3 (preferably M=La, Sm, Dy, Pr, Tb, Gd, and Er)), Si, cerium oxide, cerium, Zeolites, lanthanide metals, transition metals, metal alloys (such as alkali metals and alloys of earth-measuring metals and Na), rare earth metals, Si〇2_Al2〇34Si〇2 load and other supporting metals (such as alumina-supported platinum, At least one of palladium or rhodium.) The support may have a high surface area and comprise a high surface area (HSA) material such as R-Ni, zeolite, citrate, aluminate, alumina, alumina nanoparticles, porous ai2o3, pt/Ai2o3 'Ru/Al2〇3 Or Pd/Al2〇3, carbon, Pt/c or Pd/C, inorganic compounds (such as Na2C〇3, cerium oxide and zeolite 142257.doc-118-201104948 materials, preferably gamma zeolite powder) and carbon (such as Fu Or nano tube). In one embodiment, a support such as Al2〇3 (and the Al2〇3 support of the dissociator (if present)) is reacted with a reducing agent such as a lanthanide to form a surface modifying support. In one embodiment, surface A1 is exchanged with lanthanides to form a carrier substituted with a lanthanide. This support may be doped with a source of NaH molecules, such as NaOH, and reacted with a reducing agent such as a lanthanide. Subsequent substitution of the lanthanide-substituted support with the lanthanide does not cause a significant change, and the surface-doped NaOH can be reduced to the NaH catalyst by reaction with the reducing agent lanthanide. In other embodiments given herein, Li, K, Rb or Cs may be substituted for Na. In one embodiment of the liquid containing solvent comprising a source of NaH catalyst in the reaction mixture, the NaH source may be a Na alloy and a hydrogen source. The alloy may comprise at least one alloy known in the art, such as sodium metal and one or more other metal or alkaline earth metals, transition metals, A, Sn, Bi, Ag, In, Pb, Hg, Si, Zr, B, An alloy of Pt, Pd or other metals, and the source of H may be H2 or a hydride. Reagents such as NaH molecular source, sodium source, NaH source, hydrogen source, displacer and reducing agent are in any desired molar ratio. Each is greater than 〇 and less than 100°/. Mo ratio. The molar ratios are preferably similar. In a liquid solvent embodiment, the reaction mixture comprises a solvent, a source of Sfa or Na, a source of NaH or NaH, a source of metal hydride or metal hydride, a reactant or reactant source that forms a metal hydride, a hydrogen dissociator and At least one substance in the group of hydrogen sources. The reaction mixture may further comprise a carrier. The reactant forming the metal hydride may comprise a lanthanide 'better La or 142257.doc -119-201104948

Gd。在一實施例中,La可與NaH可逆地反應,形成Gd. In one embodiment, La can reversibly react with NaH to form

LaHn(n=l、2、3)。在—實施例中,氫化物交換反應形成LaHn (n = 1, 2, 3). In the embodiment, the hydride exchange reaction is formed

NaH催化劑》可逆通用反應可由以下給出The reversible general reaction of NaH catalyst can be given by

NaH+Μ 艺 Na +MH。 Μα、 (i jo) 由方程式(156)給出之反應適用於表2中給出之其他型 催化劑。反應可在氫形成下進行,氫可解離形成原子氫, 原子虱與Na反應,形成NaH催化劑。解離器較佳為 Pt/Al203 粉末、Pd/Al2〇3 粉末或 Ru/Ai2〇3 粉末、pt/Ti 及 R_NaH+Μ Art Na +MH. Μα, (i jo) The reaction given by equation (156) applies to the other types of catalysts given in Table 2. The reaction can be carried out under the formation of hydrogen, the hydrogen can be dissociated to form atomic hydrogen, and the atomic ruthenium reacts with Na to form a NaH catalyst. The dissociator is preferably Pt/Al203 powder, Pd/Al2〇3 powder or Ru/Ai2〇3 powder, pt/Ti and R_

Ni中之至少一者。諸如八丨2〇3之解離器載體較佳至少包含 表面La取代A1或包含pt/M2〇3粉末、Pd/M2〇3粉末或At least one of Ni. Preferably, the dissociator carrier such as gossip 2〇3 comprises at least a surface La substituted A1 or a pt/M2〇3 powder, a Pd/M2〇3 powder or

Ru/M2〇3粉末,其中μ為鑭系元素。解離器可與其餘反應 混合物分離,其中原子Η通過分離器。 一合適液體溶劑實施例包含溶劑、NaH、La及Pd/Al203 粉末之反應混合物,其中在一實施例中藉由移除溶劑、添 加Η:、藉由篩選來分離NaH與氫化鑛、加熱氫化鐧以形成 La且混合La與NaH,可使該反應混合物再生。或者,再生 包含藉由將Na炫融且移除液體使na與氫化鑭分離、加熱 氫化鑭以形成La、將Na氫化成NaH、混合La與NaH且添加 溶劑之步驟。可藉由球磨混合La與NaH。 在一液體溶劑實施例中,諸如R_Ni之高表面積物質摻雜 有NaX(X=F、ci、Br、I)。使經摻雜之R-Ni與將置換鹵素 以形成Na與NaH中之至少一者的試劑反應。在一實施例 中反應物為至少一種驗金屬或驗土金屬,較佳k、Rb、 Cs中之至少—者。在另一實施例中,反應物為鹼金屬或鹼 142257.doc • 120- 201104948 土金屬氫化物,較佳ΚΗ、RbH、CsH、MgH2及CaH2中之 至少一者。反應物可為驗金屬與驗土金屬氫化物兩者。可 逆通用反應可由以下給出Ru/M2〇3 powder, where μ is a lanthanide. The dissociator can be separated from the remaining reaction mixture, wherein the atomic helium passes through the separator. A suitable liquid solvent embodiment comprises a reaction mixture of a solvent, NaH, La and Pd/Al203 powder, wherein in one embodiment the NaH is separated from the hydrogenation or by heating, by adding a solvent, adding hydrazine: by screening. To form La and mix La with NaH, the reaction mixture can be regenerated. Alternatively, the regeneration comprises the steps of separating Na from the hydrazine hydride by removing the liquid by removing Na and removing the liquid, heating the hydrazine to form La, hydrogenating Na to NaH, mixing La with NaH, and adding a solvent. La and NaH can be mixed by ball milling. In a liquid solvent embodiment, a high surface area material such as R_Ni is doped with NaX (X = F, ci, Br, I). The doped R-Ni is reacted with a reagent that will replace the halogen to form at least one of Na and NaH. In one embodiment the reactant is at least one metal or soil metal, preferably at least one of k, Rb, Cs. In another embodiment, the reactant is an alkali metal or base 142257.doc • 120-201104948 a soil metal hydride, preferably at least one of rhodium, RbH, CsH, MgH2, and CaH2. The reactants can be both metal and soil metal hydrides. The reversible general reaction can be given by

NaX+MH ^NaH+MX ° (157) D.其他ΜΗ型催化劑及反應 一般而言,表2中所示藉由M-Η鍵斷裂加上Η固電子自原 子Μ各自電離至連續能階使得鍵能與ί個電子電離能之總和 為約/Τ7·27.2 eF(其中m為整數)提供產生低能量氫的ΜΗ型氫 催化劑。第一行中所示各MH催化劑且第2行中所示相應ΜΗ鍵能 。第 一行中 所示之 MH物質 之原子 Μ 電離, 以提供 m ‘ 27.2 eK之淨反應焓外加第二行之鍵能。第八行中所示 催化劑給,其中m在第九行中所示。所示參與電離之電子 之電離電位(亦稱為電離能或結合能)。舉例而言,之 鍵能1.9245 eF在第二行中給出。原子或離子之第η個電子 之電離電位稱為且由CRC所示。亦即舉例而言, Να+ 5.\390?> eV Na+ +e^ ^ iVa++47.2864 eV^>Na2++e~ 〇 一 電離電 位/P7 = 5.13908 eF及第二電離電位/Ρ2=47·2864 eF分別在第 二及第三行中給出。鍵斷裂及二次電離之淨反應焓 為如第八行中所示之54.35 eF且如第九行中所示,方程式 (3 6)中m=2。另外,如例示性方程式(23)所示,Η可與表2 中所示之各ΜΗ分子反應,形成相對於單獨ΜΗ之催化劑反 應產物,量子數Ρ增加1之低能量氫(方程式(35))。 142257.doc -121 - 201104948 表2.能夠提供約吣27·2#之淨反應焓的MH型氫催化劑NaX+MH ^NaH+MX ° (157) D. Other ruthenium-type catalysts and reactions In general, the M-Η bond cleavage plus the enthalpy electrons from the atom Μ to the continuous energy level is shown in Table 2 The bond energy and the sum of the electron ionization energies are about / Τ 7 · 27.2 eF (where m is an integer) to provide a ruthenium-type hydrogen catalyst that produces low-energy hydrogen. Each of the MH catalysts shown in the first row and the corresponding enthalpy bond energy shown in the second row. The atom Μ of the MH species shown in the first row is ionized to provide a net reaction of m ‘ 27.2 eK plus the bond energy of the second row. The catalyst is shown in the eighth row, where m is shown in the ninth row. The ionization potential (also known as ionization or binding energy) of the electrons involved in ionization is shown. For example, the key 1.9245 eF is given in the second line. The ionization potential of the nth electron of an atom or ion is called and is indicated by CRC. For example, Να+ 5.\390?> eV Na+ +e^ ^ iVa++47.2864 eV^>Na2++e~ 电1 ionization potential/P7 = 5.13908 eF and second ionization potential/Ρ2 =47·2864 eF is given in the second and third lines respectively. The net reaction 键 of bond rupture and secondary ionization is 54.35 eF as shown in the eighth row and as shown in the ninth row, m=2 in equation (36). In addition, as shown in the exemplary equation (23), ruthenium can react with each of the ruthenium molecules shown in Table 2 to form a low-energy hydrogen with a quantum number 1 increased by 1 relative to the catalyst reaction product of ruthenium alone (Equation (35) ). 142257.doc -121 - 201104948 Table 2. MH-type hydrogen catalysts capable of providing a net reaction enthalpy of about 吣27·2#

AlHBiHclHCOHGeHTnHNaHRUsbHseHsiHsnH 催化劑 M-Η鍵能IP! IP2 IPs IP4 IP5焓 2.98 5.985768 18.82855 27.79 1 2.936 7.2855 16.703 26.92 1 4.4703 12.96763 23.8136 39.61 80.86 3 2.538 7.88101 17.084 27.50 1 2.728 7.89943 15.93461 26.56 1 2.520 5.78636 18.8703 27.18 1 1.925 5.139076 47.2864 54.35 2 2.311 7.36050 16.76 26.43 1 2.484 8.60839 16.63 27.72 1 3.239 9.75239 21.19 30.8204 42.9450 107.95 4 3.040 8.15168 16.34584 27.54 1 2.736 7.34392 14.6322 30.50260 55.21 2 VIII.氫氣放電電源及電漿電池及反應器 本發明之氫氣放電電源及電漿電池及反應器展示於圖5 中。圖5之氫氣放電電源及電漿電池及反應器包括一氣體 放電電池3 07,該氣體放電電池3 07包含一具有腔室3 00之 填充氫氣之輝光放電真空容器3 1 5。氫源322經由控制閥 325經由供氧通道342供應氫至腔室300。催化劑容納於電 池腔室300中。電壓及電流源330引起電流在陰極305與陽 極320之間傳遞。電流可為可換向的。 在一實施例中,陰極305之材料可為催化劑源,諸如 Fe、Dy、Be或Pd。在氫氣放電電源及電漿電池及反應器 之另一實施例中,容器壁313導電且用作替代電極305之陰 極,且陽極320可為空心的,諸如不鏽鋼空心陽極。放電 可使催化劑源汽化成催化劑。分子氫可由放電解離,形成 氫原子,用於產生低能量氫及能量。可由腔室中之氫解離 器提供額外解離。 催化以氣相發生之氫氣放電電源及電漿電池及反應器的 142257.doc • 122· 201104948 另-實施例利用可控制之氣態催化劑。藉由對分子氯氣體 放電,提供用於轉化成低能量氣之氣體氯原子。氣體放電 電池307具有將氣態催化劑35〇自催化劑健集器傳遞至 反應至300之催化劑供應通道34〗。催化劑儲集器3%由具 有電源372之催化劑儲集||加熱器392加熱以提供氣態摧化 劑至反應室300。藉由經由電源372調整加熱器392,控制 催化劑儲集器395之溫度,來控制催化劑蒸氣塵。反應器 進一步包含選擇性通風閥301。位於氣體放電電池内部之 抗化學腐蝕敞口容器(諸如不鏽鋼、鎢或陶莞舟孤)可含有 催化劑。T用使用相.聯電源之舟皿加熱器加熱催化劑舟皿 中之催化冑’以提供氣態催化劑至反應室。或者,輝光氣 體放電電池在局溫下運作,使得舟皿中之催化劑昇華、沸 騰或揮發成氣相。藉由以電源調整加熱器,控制舟皿或放 電電池之溫度,來控制催化劑蒸氣壓。為防止催化劑在電 池中冷凝,維|寺溫度於超過催化劑源、催化劑儲集器395 或催化劑舟皿之溫度。 在Λ把例中,催化以氣相發生,鋰為催化劑,且藉由 維持電池溫度在約潘⑽代之範圍内,使原子鐘(諸如金 屬鋰)或鋰化合物(諸如LiNH2)之來源變為氣態。電池最佳 維持在約5〇()-75(rc之範圍内。原子氫及/或分子氫反應物 可維持在小於大氣壓、較佳在約1〇毫托至約1〇〇托之範圍 的i力下。壓力最佳藉由維持電池中金屬裡與氫化链之 和D物在所需運作溫度下來確定。運作溫度範圍較佳在約 3〇〇 1〇〇〇 C之範圍内,且壓力最佳為電池在約则·⑽。〇之 U2257.doc -123- 201104948 運作溫度範圍内所實現之壓力。由電源385供以動力之加 熱旋管(諸如圖5之380)可將電池控制在所需運作溫度下。 该電池可進一步包含一内部反應室3〇〇及—外部氫儲集器 390,使得可藉由使氫擴散穿過分隔兩腔室之壁Η]來對電 池供氫。壁溫可由加熱器控制以控制擴散速率。擴散速率 可藉由控制氫儲集器中之氫壓力而進一步控制。 在具有包含 Li、LiNH2、Li2NH、Li3N、LiN〇3、LiX、 NH4X(X為幽離子)、Μ%、LiBH4、LiAiH4及K之群中之物 質的反應混合物之系統之另—實施例中,藉由添加一或多 種試劑及藉由電漿再生而再生至少一種反應物。電漿可為 諸如NH3AH2^氣體之—。轉可維持在原處(在反應電池 中)或在與反應電池相連通之外部電池中。在其他實施例 中,K、Cs及Na替代Li,其中催化劑為原子κ、原子〇及 分子NaH。 為維持催化劑壓力在所需程度下,可密封將滲透作為氫 源之電池。或者’電池在各入口或出口處進一步包含高溫 閥’使得接觸反應氣體混合物之閥維持在所需溫度下。 糟由使電池絕熱且藉由以加熱器38〇施加補充加熱器功 率’可將電裝電池溫度獨立地控制在寬範圍内。因此,可 獨立於電漿電源來控制催化劑蒸氣壓。 放電電壓可在約100至10,_伏特(v〇h)之範圍内。電流 可在所而電壓下任何所需範圍内。此外,冑聚可在任何所 需頻率範圍、補償電壓、峰值電壓、峰值功率及波形下脈 衝0 142257.doc •124· 201104948 在另實施例中,電漿可存在於諸如催化劑或作為催化 劑源之物質反應物的溶劑的液體介質中。 IX.燃料電池及電池組 在圖6中所示之燃料電池及電池組400之實施例中,包含 固體燃料或非均句催化劑之低能量氫反應物包含用於進行 相應電池半反應之反應物。在運作期間,催化劑與原子氫 反應,且能量轉移引㈣化劑電離。此反應可發生在陽極 至402中,使得陽極41〇最終接受電離電子流。^、尺及 W/f中之至少—者可用作形成低能量氫之催化劑。原子氯 至催化劑之整數倍27·2 之非輻射能量轉移的反應步驟產 生電離催化劑及自由電+。諸如Ac之載體可用作導電性 電子受體’與陽極電接觸。最終電子受體反應物包含諸如 自由基或其來源之氧化劑及帶正電平衡離子之來源,該等 反應物作為陰極電池反應混合物之組份,最終清除自形成 低月b量氫之催化劑反應釋放的電子。氧化劑或陰極電池反 應混合物位於具有陰極4〇5之陰極室4〇1中。氧化劑較佳為 氧或氧來源、函素(較佳h或Cy或函素來源⑺#、sF6及 NF3中之至少-者。在運作期間,諸如催化劑離子之平衡 離子可遷移至陽極室’較佳經由鹽橋420遷移至陰極室。 每-電池反應可由額外反應物補A,或產物可經由通至反 應物來源或用於儲存產物之儲集器430及431的通道460及 461移除。 在某二貝施例中,除僅形成低能量氫中所消耗之氫需要 置換外’使反應物再生且維持形成較低能量氫之反應的本 142257.doc •125· 201104948 文二所揭不之動力、化學作用、電池組及燃料電池系統可 閉合,其中消耗之氫燃料可自水電解獲得。 X.化學反應器 本發明亦針對用於產生本發明之結合能增加之氫化合 物諸如一低能量氫分子及低能量氫氫化物化合物的其他 反應器。其他催化產物為電力及視情況存在之電漿及光, 視電池類型而定。此類反應器在下文中稱為「氫反應器」 或「氫電池」。氫反應器包含用於產生低能量氫之電池。 用於產生低能量氫之電池可採取化學反應器或氣體燃料電 池(諸如氣體放電電池、電漿炬電池或微波電池)的形式。 用於產生低能量氫之電池之例示性實施例可採取液體燃料 電池、固體燃料電池及非均勻燃料電池的形式。此等電池 各自包含:(i)原子氫源;(ii)至少一種選自用於產生低能 量氫之固體催化劑、熔融催化劑、液體催化劑、氣態催化 劑或其混合物的催化劑;及(iii)使氫與催化劑反應以產生 低月b里風之谷器。如本文所用及如本發明所涵蓋,除非另 外說明’否則術語「氫」不僅包括氕(1好),而且包括氛 (2丑)及氣(3开)。在使用氘作為低能量氫反應之反應物的狀 況下’期望相對痕量之非均勻燃料及固體燃料之氣或氧產 物。 在合成包含較低能量氫(諸如低能量氫氫化物)之化合物 之化學反應器的一實施例中,使用具有呈正氧化態之Fe、 可藉由鐵平衡離子置換而與//·( 1 -/?)反應之鐵鹽(較佳碳化 鐵、氧化鐵或揮發性鐵鹽(諸如Feh或FeD)合成鐵低能量 142257.doc -126- 201104948 風氫化物膜。催化劑可為Κ、NaH或Li。Η可來自h2及諸如 R-Ni或Pt/AhO3之解離器。在另一實施例中,鐵低能量氫 氫化物由鐵來源(諸如在反應器運作溫度下分解之鐵鹵化 物)、催化劑(諸如NaH、Li或K)及氫源(諸如氫氣)及解離器 (諸如R-Ni)形成。猛低能量氫氫化物可由猛來源(諸如在反 應器運作溫度下分解之有機金屬,諸如2,4_戊二酸錳 (II))、催化劑(諸如NaH、Li或K)及氫源(諸如氫氣)及解離 器(諸如R-Ni)形成。在一實施例中,反應器維持在約25。〇 至800 C之溫度範圍内,較佳在約4〇〇。〇至5〇〇°c之範圍 内。 因為鹼金屬在氣相中為共價雙原子分子,所以在一實施 例中’形成結合能增加之氫化合物的催化劑由來源與至少 一種其他元素反應而形成。藉由將金屬艮或以分散於諸如 KX或LiX之鹼金屬鹵化物中.,可產生諸如κ或Li之催化 劑,以形成KHX、LiHX(其中X為齒素)。亦可藉由經汽化 I或Liz與原子Η反應,分別形成KH及K或LiH及Li,產生 催化劑K或Li。結合能增加之氫化合物可為μηχ,其中μ 為鹼金屬’ Η為低能量氫氫化物,且χ為帶一個負電荷之 離子’ X較佳為鹵素及//(7(¾之一。在一實施例中,形成 KHI或KHC1之反應混合物(其中η為低能量氫氫化物)包含 分別經KX(X=C1、I)覆蓋之Κ金屬及解離器(較佳鎳金屬, 諸如鎳網及R-Ni)。藉由在添加氫下維持反應混合物在高 溫下,較佳在400-700°C之範圍内來進行反應。氫壓力較 佳維持在約5 PSI之計示壓力下。因此,Μχ置放於κ上, -127- 142257.doc 201104948 使得κ原子經由鹵化物晶格遷移且函化物用以分散κ且充 當Κ2之解離器,其在界面處與來自解離器(諸如鎳網或R-Ni)之Η反應,形成ΚΗΧ。 用於合成低能量氫氫化物之合適反應混合物包含催化 劑、氫源、氧化劑、還原劑及載體之群中之至少兩種物 質’其中氧化劑為硫、磷及氧中之至少一者之來源,諸如 狀6、5*、5Ό2、S03、S205C12、F5SOF、M2lS208、SxXy(諸 如 S2C12、SC12、S2Br2、S2F2)、cs2、Sb2S5、SOxXy(諸如 SOCl2、SOF2、S02F2、SOBr2)、P、P205 ' p2s5、pxxy(諸 如 PF3、PC13、PBr3、PI3、PF5、PC15、PBr4F 或 PC14F)、 P〇xXy(諸如 POBr3、P〇I3、POCl34POF3)、pSxXy(諸如 PSBr3、PSF3、PSC13)、填-氮化合物(諸如 p3n5、(ci2PN)3 或(Cl2PN)4、(Br2PN)x(M為驗金屬,x及y為整數,x為鹵 素))、〇2、N20及Te02。氧化劑可進一步包含_素、較佳 氟之來源,諸如CF4、NF3或CrF2。混合物亦可包含吸氣劑 作為磷或硫之來源’諸如MgS及MHS(M為鹼金屬)。合適 吸氣劑為產生普通Η之高磁場位移之NMR峰及位於普通H 峰之高磁場之低能量氫氫化物峰的原子或化合物。合適吸 氣劑包含元素S、P、〇、Se及Te或包含含有s、p、〇、Se 及Te之化合物。用於低能量氫氫陰離子之合適吸氣劑的一 般性質在於其形成呈元素形式、呈摻雜元素形式或與捕獲 及穩定低能量氫氫陰離子之其他元素的鏈、籠或環。較佳 可在固體或溶液NMR中觀測到Η·(1/ρ)。在另一實施例中, NaH或HC1用作催化劑。合適反應混合物包含Μχ及 142257.doc -128- 201104948 M'HS04,其中Μ及分別為鹼金屬,較佳Na及Κ,且X為 鹵素,較佳C1。 包含以下至少一者之反應混合物為用於產生動力以及產 生較低能量氫化合物之合適系統:(1) NaH催化劑、 MgH2、SF6及活性碳(AC) ; (2) NaH催化劑、MgH2、S及活 • 性碳(AC) ; (3) NaH催化劑、MgH2、K2S208、Ag及 AC ; (4) KH 催化劑、MgH2、K2S208 及 AC ; (5) ΜΗ 催化劑 (M=Li、Na、Κ)、Α1 或 MgH2、02、K2S208及 AC ; (6) KH 催化劑、A1、CF4及 AC ; (7) NaH催 4匕劑、A1、NF3及 AC ; (8) KH 催化劑、MgH2、N2◦及 AC ; (9) NaH 催化劑、 MgH2、02及活性碳(AC) ; (10) NaH催化劑、MgH2、CF4及 AC ; (11) ΜΗ催化劑、MgH2(M=Li、Na 或 K)、P2O5(P4O10) 及 AC ; (12) MH催化劑、MgH2、MN03(M=Li、Na或 K)及 AC ; (13) NaH或KH催化劑、Mg、Ca或Sr、過渡金屬鹵化 物(較佳FeCl2、FeBr2、NiBr2、Mnl2)或稀土金屬鹵化物(諸 如EuBr2)及AC ;及(14) NaH催化劑、A1、CS2及AC。在上 文給出之例示性反應混合物之其他實施例中,催化劑陽離 子包含Li、Na、K、Rb或Cs之一且反應混合物之其他物質 ; 係選自反應1至14之物質。反應物可呈任何所需比率。 . 低能量氫反應產物為質子NMR峰分別向普通分子氫或氫 化氫之質子NMR峰之高磁場移位的氫分子與氫陰離子中之 至少一者。在一實施例中,氫產物結合除氫以外之元素, 其中質子NMR峰向具有與該產物相同分子式之普通分子、 物質或化合物之質子NMR峰的高磁場移位,或普通分子、 142257.doc -129- 201104948 物質或化合物在室溫下不穩定。 在一實施例中,動力及結合能增加之氫化合物由包含兩 種或兩種以上下列物質之反應混合物產生:LiN03、 NaN03、KN〇3、LiH、NaH、KH、Li ' Na、K、H2、載體 (諸如碳_,例如活性碳)、金屬或金屬氫化物還原劑(較佳 MgH2) 〇反應物可呈任何莫耳比率。反應混合物較佳包含 9.3莫耳% MH、8.6莫耳% MgH2、74莫耳% AC及7.86莫耳 % MN〇3(M為Li、Na或K),其中各物質之莫耳%可在針對 各物質所示之莫耳%加上或減去因子10的範圍内變化。在 用NMR溶劑、較佳氘化DFM萃取產物混合物後,使用液體 NMR,可分別在約1.22 ppm及-3.85 ppm下觀測到具有較佳 1/4態之產物分子低能量氫及低能量氫氫陰離子。產物 M2C03可用作低能量氫氫陰離子之吸氣劑,以形成諸如 mhmhco3之化合物。 在另一實施例中,動力及結合能增加之氫化合物由包含 兩種或兩種以上下列物質之反應混合物產生:LiH、 NaH、KH、Li、Na、K、H2、金屬或金屬氫化物還原劑 (較佳MgH2或A1粉末,較佳奈米粉末)、載體(諸如碳,較 佳活性碳)及氟來源(諸如氟氣或碳氟化合物,較佳CF4或 六氟苯(HFB))。反應物可呈任何莫耳比率。反應混合物較 佳包含9.8莫耳% MH、9.1莫耳% MgH2或9莫耳% A1奈米粉 末、79莫耳% AC及2.4莫耳% CF4或HFB(M為Li、Na或 K),其中各物質之莫耳%可在針對各物質所示之莫耳%加 上或減去因子10的範圍内變化。在用NMR溶劑、較佳氘化 142257.doc -130- 201104948 DFM或CDC13萃取產物混合物後,使用液體NMR,可分別 在約1.22 ppm及-3.86 ppm下觀測到具有較佳1/4態之產物 分子低能量氫及低能量氫氫陰離子。 在另一實施例中,動力及結合能增加之氫化合物由包含 兩種或兩種以上下列物質之反應混合物產生:LiH、 NaH ' KH、Li、Na ' K ' ;Η2、金屬或金屬氫化物還原劑 (較佳MgH2或Α1粉末)、載體(諸如碳,較佳活性碳)及氟來 源(較佳SF6)。反應物可呈任何莫耳比率。反應混合物較佳 包含10莫耳% ΜΗ、9·1莫耳% MgH2或9莫耳% A1粉末、 78.8莫耳% AC及24莫耳。/〇 SF6(M為Li、Na或K),其中各物 質之莫耳%可在針對各物質所給出之莫耳%加上或減去因 子1 〇的範圍内變化。合適反應混合物包含呈此等莫耳比率 之NaH、]\^112或]^^、AC及SF6。在用NMR溶劑、較佳氘 化DFM或CDCI3萃取產物混合物後,使用液體NMR,可分 別在約1.22 ppm及-3.86 ppm下觀測到具有較佳1/4態之產 物分子低能量氫及低能量氫氫陰離子。 在另.只知例中’動力及結合能增加之氫化合物由包含 兩種或兩種以上下列物質之反應混合物產生:LiH、 NaH、KH、Li、Na、K、% '金屬或金屬氫化物還原劑 (車父佳MgH2或A1粉末)、載體(諸如碳,較佳活性碳)及硫、 磷及氧中之至少一者之來源(較佳S4P粉末、SF6、d、 P2〇5及MN〇3(M為鹼金屬))。反應物可呈任何莫耳比率。 反應混合物較佳包含8·!莫耳% MH、7 5莫耳% MgH2*Ai 粉末、65莫耳% Ac^195莫耳0/〇 s(]y^Li、^或κ),其中 142257.doc •131- 201104948 各物質之莫耳%可在針對各物質所給出之莫耳%加上或減 去因子1 〇的範圍内變化。合適反應混合物包含呈此等莫耳 比率之NaH、MgH2或Mg、AC及S粉末。在用NMR溶劑、 較佳氘化DFM或CDC13萃取產物混合物後,使用液體 NMR,可分別在約1.22 ppm及-3.86 ppm下觀測到具有較佳 1 /4態之產物分子低能量氫及低能量氫氫陰離子。 在另一實施例中,動力及結合能增加之氫化合物由包含 NaHS之反應混合物產生。低能量氫氫陰離子可自NaHS分 離。在一實施例中,固態反應發生在NaHS内,形成H_ (1/4),Η·(1/4)可與質子來源(諸如溶劑,較佳H20)進一步 反應,形成H2(l/4)。 在一實施例中,低能量氫氫化物可經純化。純化方法可 包含使用合適溶劑萃取及再結晶中之至少一者。該方法可 進一步包含層析及熟習此項技術者已知之用於分離無機化 合物之其他技術。 在一液體燃料實施例中,溶劑具有i官能基,較佳氟。 合適反應混合物包含六氟苯與八氟萘中之至少一者,其添 加至諸如NaH之催化劑中且與諸如活性碳、氟聚合物或R-Ni之載體混合。反應混合物可包含可用於熟習此項技術者 已知之應用的高能物質。歸因於高能平衡之合適應用為推 進劑及活塞式引擎燃料。在一實施例中,所需產物為收集 之芙及奈米管中之至少一者。 在一實施例中,分子低能量氫H2(l/p)、較佳H2(l/4)為經 進一步還原形成相應氫陰離子之產物,該等氫陰離子可用 142257.doc -132- 201104948 於諸如氫化物電池組及表面塗層之應用。分子低能量氫鍵 可由碰撞法斷裂。H2(l/P)可經由與電漿或電子束中離子或 電子高能碰撞而解離。接著解離之低能量氫原子可反應形 成所需氫陰離子。 XI·實驗 A.水流分批熱量測定 使用約130.3 體積(1.5"内直徑(ID)、45,,長及〇2,壁 厚)或1988 _3體積(3.75',内直徑(11))、11,,長及〇 375,,壁厚) 之圓筒形不鏽鋼反應器及包含含有各電池之真空室及收集 電池中釋出能量9 9+%達到誤差< ±丨%之外部水冷卻蛇形管 的水流熱量計,獲得下文各條目右侧列出之催化劑反應混 合物之能量及動力平衡。藉由對隨時間之總輸出功率巧求 積分來測定能量回收。功率如以下所示AlHBiHclHCOHGeHTnHNaHRUsbHseHsiHsnH Catalyst M-Η bond energy IP! IP2 IPs IP4 IP5焓2.98 5.985768 18.82855 27.79 1 2.936 7.2855 16.703 26.92 1 4.4703 12.96763 23.8136 39.61 80.86 3 2.538 7.88101 17.084 27.50 1 2.728 7.89943 15.93461 26.56 1 2.520 5.78636 18.8703 27.18 1 1.925 5.139076 47.2864 54.35 2 2.311 7.36050 16.76 26.43 1 2.484 8.60839 16.63 27.72 1 3.239 9.75239 21.19 30.8204 42.9450 107.95 4 3.040 8.15168 16.34584 27.54 1 2.736 7.34392 14.6322 30.50260 55.21 2 VIII. Hydrogen discharge power supply and plasma battery and reactor Hydrogen discharge power supply and plasma battery of the invention The reactor is shown in Figure 5. The hydrogen discharge power source and plasma battery and reactor of Fig. 5 comprise a gas discharge battery 307 comprising a glow discharge vacuum vessel 3 15 having a chamber 300 filled with hydrogen. Hydrogen source 322 supplies hydrogen to chamber 300 via oxygen supply passage 342 via control valve 325. The catalyst is contained in the battery chamber 300. Voltage and current source 330 causes current to pass between cathode 305 and anode 320. The current can be commutative. In one embodiment, the material of the cathode 305 can be a catalyst source such as Fe, Dy, Be or Pd. In another embodiment of a hydrogen discharge power source and a plasma battery and reactor, the vessel wall 313 is electrically conductive and serves as a cathode for the replacement electrode 305, and the anode 320 can be hollow, such as a stainless steel hollow anode. Discharge can vaporize the catalyst source into a catalyst. Molecular hydrogen can be dissociated by a discharge to form a hydrogen atom for generating low energy hydrogen and energy. Additional dissociation can be provided by the hydrogen dissociator in the chamber. Catalytic hydrogen discharge power source and plasma battery and reactor in the gas phase 142257.doc • 122· 201104948 Another embodiment utilizes a controllable gaseous catalyst. A gas chlorine atom for conversion to a low energy gas is provided by discharging molecular chlorine gas. The gas discharge battery 307 has a catalyst supply passage 34 for transferring the gaseous catalyst 35 from the catalyst builder to the reaction to 300. The catalyst reservoir 3% is heated by a catalyst reservoir || heater 392 having a power source 372 to provide a gaseous catalyst to the reaction chamber 300. The catalyst vapor dust is controlled by adjusting the temperature of the catalyst reservoir 395 by adjusting the heater 392 via the power source 372. The reactor further includes a selective venting valve 301. A chemically resistant open container (such as stainless steel, tungsten, or earthenware) located inside a gas discharge battery may contain a catalyst. The catalyst 胄 in the catalyst boat is heated by a boat heater using a phase-coupled power source to provide a gaseous catalyst to the reaction chamber. Alternatively, the glow gas discharge cell operates at ambient temperature, causing the catalyst in the boat to sublimate, boil or volatilize into a gas phase. The catalyst vapor pressure is controlled by adjusting the temperature of the boat or the discharge battery by adjusting the heater with a power source. To prevent condensation of the catalyst in the battery, the temperature is above the temperature of the catalyst source, catalyst reservoir 395 or catalyst boat. In the example, the catalysis occurs in the gas phase, lithium is the catalyst, and the source of the atomic clock (such as metallic lithium) or lithium compound (such as LiNH2) is changed to a gaseous state by maintaining the battery temperature in the range of about 100 (1). . The battery is preferably maintained in the range of about 5 〇 ()-75 (rc). The atomic hydrogen and/or molecular hydrogen reactant can be maintained at less than atmospheric pressure, preferably in the range of from about 1 Torr to about 1 Torr. Under pressure, the pressure is optimally determined by maintaining the sum of the metal and the hydrogenation chain in the battery at the desired operating temperature. The operating temperature range is preferably in the range of about 3〇〇1〇〇〇C, and the pressure is The best battery is the pressure achieved in the operating temperature range of U2257.doc -123- 201104948. The heating coil powered by the power supply 385 (such as 380 in Figure 5) can control the battery in At the desired operating temperature, the battery may further comprise an internal reaction chamber 3 and an external hydrogen reservoir 390 such that hydrogen can be supplied to the battery by diffusing hydrogen through the wall separating the two chambers. The wall temperature can be controlled by a heater to control the diffusion rate. The diffusion rate can be further controlled by controlling the hydrogen pressure in the hydrogen reservoir. It has Li, LiNH2, Li2NH, Li3N, LiN〇3, LiX, NH4X (X is Reaction mixing of substances in the group of ionic ions, Μ%, LiBH4, LiAiH4 and K In another embodiment of the system, at least one reactant is regenerated by the addition of one or more reagents and by plasma regeneration. The plasma can be a gas such as NH3AH2^. The transfer can be maintained in situ (in the reaction cell) Or in an external battery in communication with the reaction cell. In other embodiments, K, Cs, and Na are substituted for Li, wherein the catalyst is atomic κ, atomic ruthenium, and molecular NaH. To maintain catalyst pressure at a desired level, The battery that will infiltrate as a source of hydrogen may be sealed. Or 'the battery further includes a high temperature valve at each inlet or outlet' such that the valve contacting the reactive gas mixture is maintained at the desired temperature. The battery is insulated by the heater 38 〇 Applying supplementary heater power' can independently control the temperature of the battery pack to a wide range. Therefore, the vapor pressure of the catalyst can be controlled independently of the plasma power source. The discharge voltage can be about 100 to 10 volts (v 〇 h Within the range of the current, the current can be within any desired range of the voltage. In addition, the convergence can be in any desired frequency range, compensation voltage, peak voltage, peak power and waveform. Pulse 0 142257.doc • 124· 201104948 In another embodiment, the plasma may be present in a liquid medium such as a catalyst or a solvent for the reactants of the material as a catalyst source. IX. Fuel cells and batteries are shown in FIG. In an embodiment of the fuel cell and battery pack 400, the low energy hydrogen reactant comprising a solid fuel or a non-homogeneous catalyst comprises a reactant for performing a partial reaction of the corresponding battery. During operation, the catalyst reacts with atomic hydrogen and energy The transfer (4) is ionized. This reaction can occur in the anode to 402 such that the anode 41 is finally subjected to ionized electron flow. At least one of the ruler, the ruler and the W/f can be used as a catalyst for forming low energy hydrogen. The reaction step of non-radiative energy transfer of atomic chlorine to an integral multiple of 27.2 of the catalyst produces an ionization catalyst and free electricity +. A carrier such as Ac can be used as a conductive electron acceptor' in electrical contact with the anode. The final electron acceptor reactant comprises an oxidant such as a free radical or its source and a source of positively charged counterions which act as a component of the cathode cell reaction mixture and are ultimately removed from the catalyst for the release of low monthly b amount of hydrogen. Electronics. The oxidant or cathode battery reaction mixture is located in the cathode chamber 4〇1 having the cathode 4〇5. The oxidizing agent is preferably an oxygen or oxygen source, a funin (preferably h or Cy or a source of at least (7) #, sF6 and NF3. During operation, a counter ion such as a catalyst ion can migrate to the anode chamber. It is preferred to migrate to the cathode chamber via salt bridge 420. The per-cell reaction may be supplemented by additional reactants, or the product may be removed via channels 460 and 461 to the reactant source or reservoirs 430 and 431 for storing the product. In a second embodiment, except that only the hydrogen consumed in the formation of low-energy hydrogen needs to be replaced, the reaction of regenerating the reactants and maintaining the formation of lower-energy hydrogen is 142257.doc •125· 201104948 The power, the chemical action, the battery pack, and the fuel cell system can be closed, wherein the hydrogen fuel consumed can be obtained from water electrolysis. X. Chemical Reactor The present invention is also directed to a hydrogen compound for increasing the binding energy of the present invention, such as a low Other reactors for energy hydrogen molecules and low energy hydrogen hydride compounds. Other catalytic products are electricity and, where appropriate, plasma and light, depending on the type of battery. Such reactors are hereinafter referred to as "hydrogen." Hydrogen battery. The hydrogen reactor contains a battery for generating low-energy hydrogen. The battery for generating low-energy hydrogen can be a chemical reactor or a gas fuel cell (such as a gas discharge battery, a plasma torch battery or Form of Microwave Battery. An exemplary embodiment of a battery for producing low energy hydrogen may take the form of a liquid fuel cell, a solid fuel cell, and a non-uniform fuel cell. Each of these cells comprises: (i) an atomic hydrogen source; Ii) at least one catalyst selected from the group consisting of solid catalysts for producing low energy hydrogen, molten catalysts, liquid catalysts, gaseous catalysts or mixtures thereof; and (iii) a reactor for reacting hydrogen with a catalyst to produce a low monthly b wind. As used herein and as encompassed by the present invention, unless otherwise stated, the term "hydrogen" includes not only 氕 (1 good) but also ambience (2 ugly) and gas (3 open). The use of hydrazine as a reaction for low energy hydrogen reaction Under the condition of the object 'requires a relatively trace amount of non-homogeneous fuel and gas or oxygen product of the solid fuel. Contains lower energy hydrogen in the synthesis (such as low energy hydrogen hydrogenation) In one embodiment of the chemical reactor of the compound of the present invention, an iron salt having a positive oxidation state, which can be reacted with an iron balance ion and reacting with //·( 1 -/?) (preferably iron carbide, Iron oxide or volatile iron salts (such as Feh or FeD) synthetic iron low energy 142257.doc -126- 201104948 wind hydride membrane. The catalyst can be ruthenium, NaH or Li. Η can be from h2 and such as R-Ni or Pt/ Dissociator of AhO3. In another embodiment, the iron low energy hydro hydride is derived from an iron source (such as an iron halide decomposed at the operating temperature of the reactor), a catalyst (such as NaH, Li or K), and a hydrogen source (such as Hydrogen) and a dissociator (such as R-Ni). The violent low-energy hydrogen hydride can be sourced from a source such as an organometallic that decomposes at the operating temperature of the reactor, such as manganese (II) succinate (II), a catalyst. (such as NaH, Li or K) and a hydrogen source (such as hydrogen) and a dissociator (such as R-Ni) are formed. In one embodiment, the reactor is maintained at about 25. 〇 In the temperature range of 800 C, preferably about 4 〇〇. 〇 to 5〇〇°c. Since the alkali metal is a covalent diatomic molecule in the gas phase, in one embodiment, a catalyst which forms a hydrogen compound having an increased binding energy is formed by reacting a source with at least one other element. A catalyst such as κ or Li can be produced by hydrazine or dispersing in an alkali metal halide such as KX or LiX to form KHX, LiHX (where X is dentate). It is also possible to form KH and K or LiH and Li, respectively, by reacting vaporized I or Liz with atomic ruthenium to produce catalyst K or Li. The hydrogen compound having an increased binding energy may be μηχ, wherein μ is an alkali metal 'Η is a low-energy hydrogen hydride, and χ is a negatively charged ion 'X is preferably halogen and / / (7 (3⁄4). In one embodiment, the reaction mixture forming KHI or KHC1 (where n is a low energy hydrogen hydride) comprises a base metal and a dissociator covered by KX (X=C1, I), respectively (preferably nickel metal, such as nickel mesh and R-Ni) The reaction is carried out by maintaining the reaction mixture at a high temperature, preferably in the range of from 400 to 700 ° C, under the addition of hydrogen. The hydrogen pressure is preferably maintained at a gauge pressure of about 5 PSI. Place the 于 on κ, -127-142257.doc 201104948 to allow the κ atoms to migrate via the halide lattice and the functional to disperse κ and act as a Κ2 dissociator at the interface with from the dissociater (such as nickel mesh or R-Ni) reacts to form hydrazine. A suitable reaction mixture for synthesizing low-energy hydrogen hydride comprises at least two of a catalyst, a hydrogen source, an oxidant, a reducing agent and a carrier, wherein the oxidizing agent is sulfur or phosphorus. Source of at least one of oxygen, such as shape 6, 5* 5Ό2, S03, S205C12, F5SOF, M2lS208, SxXy (such as S2C12, SC12, S2Br2, S2F2), cs2, Sb2S5, SOxXy (such as SOCl2, SOF2, S02F2, SOBr2), P, P205 'p2s5, pxxy (such as PF3, PC13) , PBr3, PI3, PF5, PC15, PBr4F or PC14F), P〇xXy (such as POBr3, P〇I3, POCl34POF3), pSxXy (such as PSBr3, PSF3, PSC13), nitrogen-filled compounds (such as p3n5, (ci2PN)3 Or (Cl2PN)4, (Br2PN)x (M is a metal, x and y are integers, x is a halogen)), 〇2, N20 and Te02. The oxidizing agent may further comprise a source of _, preferably fluorine, such as CF4 , NF3 or CrF2. The mixture may also contain a getter as a source of phosphorus or sulfur 'such as MgS and MHS (M is an alkali metal). Suitable getters are NMR peaks that produce high magnetic field shifts of common bismuth and are located at ordinary H peaks. An atom or compound of a low-energy hydrogen hydride peak of a high magnetic field. Suitable getters include the elements S, P, 〇, Se, and Te or include compounds containing s, p, 〇, Se, and Te. A general property of a suitable getter for anions is that they form in elemental form, in the form of doped elements. Chains, cages or rings that capture and stabilize other elements of the low energy hydrino hydride anion. Preferably, Η·(1/ρ) is observed in solid or solution NMR. In another embodiment, NaH or HC1 is used as Catalyst. Suitable reaction mixtures comprise ruthenium and 142257.doc-128-201104948 M'HS04, wherein the ruthenium and the respective are alkali metals, preferably Na and oxime, and X is a halogen, preferably C1. A reaction mixture comprising at least one of the following is a suitable system for generating power and producing lower energy hydrogen compounds: (1) NaH catalyst, MgH2, SF6 and activated carbon (AC); (2) NaH catalyst, MgH2, S and • Living carbon (AC); (3) NaH catalyst, MgH2, K2S208, Ag and AC; (4) KH catalyst, MgH2, K2S208 and AC; (5) ΜΗ Catalyst (M=Li, Na, Κ), Α1 Or MgH2, 02, K2S208 and AC; (6) KH catalyst, A1, CF4 and AC; (7) NaH catalyst, A1, NF3 and AC; (8) KH catalyst, MgH2, N2◦ and AC; 9) NaH catalyst, MgH2, 02 and activated carbon (AC); (10) NaH catalyst, MgH2, CF4 and AC; (11) Ruthenium catalyst, MgH2 (M=Li, Na or K), P2O5 (P4O10) and AC (12) MH catalyst, MgH2, MN03 (M=Li, Na or K) and AC; (13) NaH or KH catalyst, Mg, Ca or Sr, transition metal halide (preferably FeCl2, FeBr2, NiBr2, Mnl2) Or rare earth metal halides (such as EuBr2) and AC; and (14) NaH catalysts, A1, CS2 and AC. In other embodiments of the exemplary reaction mixture set forth above, the catalyst cation comprises one of Li, Na, K, Rb or Cs and other materials of the reaction mixture; is selected from the group consisting of reactions 1 to 14. The reactants can be in any desired ratio. The low-energy hydrogen reaction product is at least one of a hydrogen molecule and a hydride ion displaced by a proton NMR peak to a high magnetic field of a proton NMR peak of ordinary molecular hydrogen or hydrogen hydrogen, respectively. In one embodiment, the hydrogen product incorporates elements other than hydrogen, wherein the proton NMR peak shifts to a high magnetic field of a proton NMR peak of a common molecule, substance or compound having the same molecular formula as the product, or a common molecule, 142257.doc -129- 201104948 A substance or compound is unstable at room temperature. In one embodiment, the hydrogen compound with increased kinetic and binding energy is produced from a reaction mixture comprising two or more of the following: LiN03, NaN03, KN〇3, LiH, NaH, KH, Li'Na, K, H2 The carrier (such as carbon _, such as activated carbon), metal or metal hydride reducing agent (preferably MgH2) ruthenium reactant may be in any molar ratio. The reaction mixture preferably comprises 9.3 mol% MH, 8.6 mol% MgH2, 74 mol% AC and 7.86 mol% MN〇3 (M is Li, Na or K), wherein the molar % of each substance can be targeted The molar % shown by each substance is added or subtracted from the range of factor 10. After extracting the product mixture with NMR solvent, preferably deuterated DFM, liquid NMR was used to observe low molecular energy hydrogen and low energy hydrogen hydrogen with better 1/4 state product at about 1.22 ppm and -3.85 ppm, respectively. Anion. The product M2C03 can be used as a getter for low energy hydrino hydride to form a compound such as mhmhco3. In another embodiment, the hydrogen compound with increased kinetic and binding energy is produced from a reaction mixture comprising two or more of the following: LiH, NaH, KH, Li, Na, K, H2, metal or metal hydride reduction Agent (preferably MgH2 or A1 powder, preferably nano powder), carrier (such as carbon, preferably activated carbon) and fluorine source (such as fluorine gas or fluorocarbon, preferably CF4 or hexafluorobenzene (HFB)). The reactants can be in any molar ratio. The reaction mixture preferably comprises 9.8 mol% MH, 9.1 mol% MgH2 or 9 mol% A1 nano powder, 79 mol% AC and 2.4 mol% CF4 or HFB (M is Li, Na or K), wherein The mole % of each substance may vary within a range of plus or minus a factor of 10 for each of the indicated molars. After extracting the product mixture with an NMR solvent, preferably deuterated 142257.doc-130-201104948 DFM or CDC13, a product having a better 1/4 state can be observed at about 1.22 ppm and -3.66 ppm using liquid NMR, respectively. Molecular low energy hydrogen and low energy hydrogen hydride anion. In another embodiment, the hydrogen compound with increased kinetic and binding energy is produced from a reaction mixture comprising two or more of the following: LiH, NaH 'KH, Li, Na 'K '; Η2, metal or metal hydride A reducing agent (preferably MgH2 or Α1 powder), a carrier (such as carbon, preferably activated carbon) and a fluorine source (preferably SF6). The reactants can be in any molar ratio. The reaction mixture preferably comprises 10 mole % 9, 9.1 mole % MgH2 or 9 mole % A1 powder, 78.8 mole % AC and 24 moles. /〇 SF6 (M is Li, Na or K), wherein the molar % of each substance can be varied within the range of plus or minus the factor 1 给出 given for each substance. Suitable reaction mixtures comprise NaH, i.e., or ^^, AC and SF6 in such molar ratios. After extracting the product mixture with NMR solvent, preferably deuterated DFM or CDCI3, low molecular energy hydrogen and low energy of the product having a better 1/4 state can be observed at about 1.22 ppm and -3.66 ppm, respectively, using liquid NMR. Hydrogen hydride anion. In another example, the hydrogen compound with increased kinetic and binding energy is produced from a reaction mixture comprising two or more of the following: LiH, NaH, KH, Li, Na, K, % 'metal or metal hydride a source of at least one of a reducing agent (Pufu good MgH2 or A1 powder), a carrier (such as carbon, preferably activated carbon), and sulfur, phosphorus, and oxygen (preferably S4P powder, SF6, d, P2〇5, and MN) 〇3 (M is an alkali metal)). The reactants can be in any molar ratio. The reaction mixture preferably comprises 8···················· Doc •131- 201104948 The mole % of each substance can be varied within the range of the mole % given for each substance plus or minus the factor 1 〇. Suitable reaction mixtures comprise NaH, MgH2 or Mg, AC and S powders in such molar ratios. After extracting the product mixture with NMR solvent, preferably deuterated DFM or CDC13, liquid NMR was used to observe low molecular energy hydrogen and low energy of the product with a preferred 1/4 state at about 1.22 ppm and -3.66 ppm, respectively. Hydrogen hydride anion. In another embodiment, the hydrogen compound with increased kinetic and binding energy is produced from a reaction mixture comprising NaHS. Low energy hydrino hydride ions can be separated from NaHS. In one embodiment, the solid state reaction occurs in NaHS, forming H_(1/4), and Η·(1/4) can be further reacted with a proton source (such as a solvent, preferably H20) to form H2(l/4). . In one embodiment, the low energy hydro hydride can be purified. The purification method may comprise at least one of extraction and recrystallization using a suitable solvent. The method may further comprise chromatography and other techniques known to those skilled in the art for separating inorganic compounds. In a liquid fuel embodiment, the solvent has an i-functional group, preferably fluorine. A suitable reaction mixture comprises at least one of hexafluorobenzene and octafluoronaphthalene which is added to a catalyst such as NaH and mixed with a carrier such as activated carbon, fluoropolymer or R-Ni. The reaction mixture can comprise energetic materials that can be used in applications known to those skilled in the art. Suitable applications due to high energy balance are propellant and piston engine fuels. In one embodiment, the desired product is at least one of a collection and a nanotube. In one embodiment, the molecular low energy hydrogen H2 (1/p), preferably H2 (1/4), is the product of further reduction to form the corresponding hydride anion, which may be used in 142257.doc-132-201104948, for example Application of hydride battery packs and surface coatings. Low molecular energy hydrogen bonds can be broken by collision methods. H2(l/P) can be dissociated by collision with high energy of ions or electrons in the plasma or electron beam. The dissociated low energy hydrogen atoms can then react to form the desired hydride anion. XI·Experiment A. Water flow batch calorimetry uses approximately 130.3 volumes (1.5" inner diameter (ID), 45, length and 〇2, wall thickness) or 1988 _3 volume (3.75', inner diameter (11)), 11, the length of the 〇375, the wall thickness of the cylindrical stainless steel reactor and the external water-cooled snake containing the energy contained in each of the vacuum chambers and the collection battery containing 9 9+% of the error < ±丨% The water flow calorimeter of the tube obtains the energy and dynamic balance of the catalyst reaction mixture listed on the right side of each item below. Energy recovery is determined by integrating the total output power over time. The power is as shown below

PT=mCpAT (158) 其中所為質量流率,心為水比熱,且為入口與出口之間 的絕對溫度變化。#由施加精確功率至外加熱器來引發反 應。詳言之,提供100-200 W功率(130·3 ^3電池)或8〇〇· 1000 W(1988 cm電池)給加熱器。在此加熱期期間,試劑 達到低能量氫反應臨限溫度,其中通常由電池溫度急劇升 高來確認反應開始^ —旦電池溫度達到約4〇〇_5〇〇。匸,則 設定輸入功率為零。5〇分鐘後,程式指示功率為零。為增 加熱傳遞至冷卻劑之速率,用1〇〇〇托氧對腔室再次加壓,曰 且最大水溫變化u 口減去人口)為約12。^。如由觀測到_ 式熱敏電阻中完全平衡所確認,使該總成經24小時之時^ 142257.doc -133 - 201104948 完全達到平衡。 在各測試中,藉由對相應功率求積分來計算能量輸入及 能量輸出。使用方程式(158),藉由水體積流動速率乘以 19°C 下水密度(0.998 kg/Ι)、水比熱(4.181 kJ/kg °C)、校正 之溫差及時間間隔,計算出冷卻流每次增加之熱能。將整 個實驗中的值求和,以獲得總能量輸出。來自電池之總能 量五Τ'必須等於能量輸入五與任何淨能量五《ei。因此,淨能 量如以下所示 五⑽=五?Ί" (159) 自此能量平衡,藉由以下確定相對於最大理論五m的任 何過剩熱五ejcPT = mCpAT (158) where is the mass flow rate, the heart is the specific heat of the water, and is the absolute temperature change between the inlet and the outlet. #Initiate the reaction by applying precise power to the external heater. In detail, 100-200 W power (130·3 ^3 battery) or 8 〇〇 1000 W (1988 cm battery) is supplied to the heater. During this heating period, the reagent reaches a low energy hydrogen reaction threshold temperature, where the battery temperature is typically raised sharply to confirm the start of the reaction and the battery temperature reaches about 4 〇〇 5 〇〇.匸, set the input power to zero. After 5 minutes, the program indicates that the power is zero. To increase the rate at which heat is transferred to the coolant, the chamber is again pressurized with 1 Torr of oxygen, and the maximum water temperature change u is subtracted from the population) to about 12. ^. As confirmed by the complete balance in the observed _ thermistor, the assembly was fully balanced by 24 hours at 142257.doc -133 - 201104948. In each test, the energy input and energy output are calculated by integrating the corresponding power. Using equation (158), calculate the cooling flow each time by multiplying the water volumetric flow rate by the water density at 19 °C (0.998 kg/Ι), the specific heat of the water (4.181 kJ/kg °C), the corrected temperature difference, and the time interval. Increased heat energy. The values in the entire experiment are summed to obtain the total energy output. The total energy from the battery is five Τ 'must equal to the energy input five and any net energy five ei. Therefore, the net energy is as follows: five (10) = five? Ί " (159) From this energy balance, by determining any excess heat five ejc relative to the maximum theoretical five m

Eex 二 Erret_ Emt 〇 (160) 校準測試結果顯示電阻性輸入與輸出冷卻劑超過98%之 熱偶聯,且零過剩熱對照顯示在應用檢校下熱量計精確至 小於1%誤差内。結果如下給出,其卡Tmax為最大電池溫 度,Ein為輸入能量,且dE為所量測之超過輸入能量之輸 出能量。所有能量均為放熱的。給出之正值表示能量大 小。 金屬_化物、氧化物及硫化物 20 g AC3-5 + 5 g Mg+8.3 g KH+11.2 g Mg3As2 » 298.6 kJ,dE:21.8 kJ,TSC :無,Tmax : 315t,理論上吸熱, 增益無限。 20 g AC3-5 + 5 g Mg+8.3 g KH+9.1 g Ca3P2 * Ein : 282.1 kJ,dE : 18.1 kJ,TSC :無,Tmax : 320°C,吸熱,增益 142257.doc •134· 201104948 無限。 羅溫驗證(Rowan Validation)KH 7.47 gm+Mg 4.5 gm+TiC 18.0 gm+EuBr2 14.04 gm,Ein : 321.1 kJ,dE : 40.5 kJ,Tmax 為約 340°C ,能量增益為約 6.5X(1_37 kJx4.5=6.16 kJ)。 KH 8.3 gm+Mg 5.0 gm+CAII-300 20.0 gm+TiB2 3.5 gm,Ein : 299 kJ,dE : 10 kJ,無 TSC且 Tmax為約 320°C。 能量增益為約X(X為約0 kJ ; 1"電池:過剩能量為約5.1 kJ)。 KH 8.3 gm+Mg 5.0 gm+CAII-300 20.0 gm+RbCl 6.05 gm,Ein : 3 11 kJ,dE : 1 8 kJ,無 TSC且 Tmax為約 340°C, 能量增益為約X(X為約〇 kJ ; 1M電池:過剩能量為約6.0 kJ)。 KH 8.3 gm+Mg 5.0 gm+CAII-300 20.0 gm+Li2S 2.3 gm,Ein: 323 kJ,dE: 12 kJ,無 TSC 且 Tmax 為約 340 °C。 能量增益為約X(X為約〇 kJ ; Γ'電池:過剩能量為約5.0 kJ)。 KH 8.3 gm+Mg 5.0 gm+CAII-300 20.0 gm+Mg3N2 5.05 gm,Ein : 323 kJ,dE : 11 kJ,無 TSC且 Tmax為約 330〇C 0 能量增益為約X(X為約0 kJ ; 1"電池:過剩能量為約5.2 kJ)。 4 g AC3-5 + 1 g Mg+1.66 g KH+3.55 g PtBr2,Ein : 95.0 kJ,dE : 15.7 kJ,TSC : 108-327°C,Tmax : 346°C,理論 能量為6.66 kJ,增益為2.36倍。 142257.doc -135- 201104948 4 g AC3-5 + 1 g Mg+1 g NaH+3.55 g PtBr2 5 Ein · 94.0 kJ,dE : 14.3 kJ,TSC : 100-256°C,Tmax : 326°C,理論 能量為6.03 kJ,增益為2.37倍。 4 g WC+1 g MgH2+l g NaH+0.01 mol Cl2,用紫外燈引 發,使Cl2解離為 Cl,Ein : 162.9 kJ,dE : 16.0 kJ,TSC : 23-42°C,Tmax : 85°C,理論能量為 7.10 kJ,增益為 2.25 倍。 4 g AC3-5 + 1 g Mg+1.66 g KH+2.66 g PdBr2,Ein : 113.0 kJ,dE : 11.7 kJ,TSC : 133-276〇C ,Tmax : 3 70°C,理論能量為6.43 kJ,增益為1.82倍。 4 g AC3-5 + 1 g Mg+1 g NaH+2.66 g PdBr2,Ein : 116.0 kJ,dE : 9.4 kJ,TSC : 110-217°C,Tmax : 36It:,理論 能量為5.81 kJ,增益為1.63倍。 4 g AC3-5 + 1 g Mg+1.66 g KH+3.60 g Pdl2,Ein : 142.0 kJ > dE : 7.8 kJ,TSC : 177-342°C,Tmax : 403°C,理論 能量為5.53 kJ,增益為1.41倍。 1"大容量電池中 0.41 g A1N+1.66 g KH+1 g Mg粉末+4 g AC3-5,能量增益為4.9 kJ,但未觀測到電池溫度突增。 最大電池溫度為407°C,理論上吸熱。 KH 8.3 gm+Mg 5.0 gm+CAII-300 20.0 gm+CrB2 3.7 gm,Ein : 317 kJ,dE : 19 kJ,無 TSC且 Tmax為約 340°C, 理論能量為吸熱0.05 kJ,增益無限。 KH 8‘3 gm+新 Mg 5.0 gm+CAII-300 20.0 gm+AgCl 9.36 gm,Ein : 99 kJ,dE : 43 kJ,在約 250°C 下小 TSC且 Tmax 142257.doc -136- 201104948 為約340°C。能量增益為約2.3X(X=18.88kJ)。 _ KH 8.3 gm+Mg 5.0 gm+新 TiC(G06U055) 20.0 gm+AgCl 7.2 gm,Ein : 315 kJ,dE : 25 kJ,在約 250°C 下小 TSC且 Tmax為約 340°C。能量增益為約 1.72X(X=14.52 kJ)。 KH 8.3 gm+Mg 5.0 gm+CAII-300 20.0 gm+Y203 1 1_3 gm(在 TiC下增益為約 4X),Ein : 353 kJ,dE : 23 kJ,無 TSC且Tmax為約350°C。能量增益為約4X(X為約1 · 1 8 kJ*5 = 5.9 kJ) ° KH 4.15 gm+Mg 2.5 gm+CAII-300 10.0 gm+EuBr3 9.8 gm,Ein : 323 kJ,dE : 27 kJ,無 TSC且 Tmax為約 350°C。 能量增益為約2.26 X(X= 1 1.93 kJ)。 4 g AC3-5 + 1 g Mg+1 g NaH+2.23 g Mg3As2,133·0 kJ,dE : 5.8 kJ,TSC :無,Tmax : 371°C,理論上吸熱, 增益無限。 4 g AC3-5+1 g Mg+1_66 g KH+2.23 g Mg3As2,Ein : 139.0 kJ,dE : 6.5 kJ,TSC :無,Tmax : 393°C,理論上 吸熱,增益無限。 4 g AC3-5 + 1 g Mg+1.66 g KH+1.82 g Ca3P2,Ein : 133.0 kJ,dE : 5.8 kJ,TSC :無,Tmax : 407°C,理論上 吸熱,增益無限。 4 g AC3-5 + 1 g Mg+1 g NaH+3.97 g WC16 ; Ein : 99.0 kJ ; dE : 21.84 kJ ; TSC : 100-342。。; Tmax : 375〇C,理 論能量為16.7 kJ,增益為1.3倍。 Γ·大容量電池中用掉2.60 g Csl、1.66 g KH、1 g Mg粉 142257.doc -137- 201104948 末及4 g AC3-4。能量增益為4.9 kJ,但未觀測到電池溫度 突增。最大電池溫度為406°C,理論能量為0,增益無限。 用掉 0.42 g LiCl、1.66 g KH、1 g Mg 粉末及4 g AC3-4。能量增益為5.4 kJ,但未觀測到電池溫度突增。最大電 池溫度為412°C,理論能量為〇,增益無限。 4 g AC3-4+1 g Mg+1 g NaH+1.21 g RbCl,Ein : 136.0 kJ,dE : 5.2 kJ,TSC :無,Tmax : 372〇C,理論能量為 0 kJ,增益無限。 KH 8.3 gm+Mg 5.0 gm+CAII-300 20.0 gm+CaBr2 10.0 gm,Ein : 323 kJ,dE : 27 kJ,無 TSC且 Tmax為約 340°C。 能量增益為約3.0 X(X為約1.71 kJ * 5 = 8.55 kJ)。 KH 8.3 gm+Mg 5.0 gm+CAII-300 20.0 gm+YF3 7.3 gm,Ein : 320 kJ,dE : 17 kJ,無 TSC且 Tmax為約 340°C。 能量增益為約4.5 X(X為約0·74 kJ * 5 = 3.7 kJ)。 -KH 8.3 gm+Mg 5.0 gm+TiC 20.0 gm+經乾燥 SnBr2 14.0 gm,Ein : 299 kJ,dE : 36 kJ,在約 130°C 下小 TSC且 Tmax 為約350°C。能量增益為約1.23X(X為約5.85 kJx5=29.25 kJ)。 KH 8.3 gm+Mg 5.0 gm+TiC 20.0 gm+EuBr2 15.6 gm 5 Ein : 291 kJ,dE : 45 kJ,在約 50°C 下小 TSC且 Tmax為約 320°C。能量增益為約32X(X為約0.28 kJx5 = l_4 kJ)且增益 為約 6·5Χ(1.37 kJx5=6.85 kJ)。 KH 8.3 gm+Mg 5.0 gm+CAII-300 20.0 gm+經乾燥 ZnBr2 11.25 gm,Ein : 288 kJ,dE : 45 kJ,在約 200°C 下 142257.doc -138- 201104948 小TSC且Tmax為約350°C。能量增益為約2.1X(X為約4.19 kJx5=20.9 kJ) °Eex Di Erret_ Emt 〇 (160) The calibration test results show that the resistive input is more than 98% thermally coupled to the output coolant, and the zero excess heat comparison shows that the calorimeter is accurate to less than 1% within the application calibration. The results are given below, with the card Tmax being the maximum battery temperature, Ein being the input energy, and dE being the measured output energy exceeding the input energy. All energy is exothermic. A positive value is given to indicate the energy level. Metals, oxides and sulfides 20 g AC3-5 + 5 g Mg+8.3 g KH+11.2 g Mg3As2 » 298.6 kJ, dE: 21.8 kJ, TSC: none, Tmax: 315t, theoretically endothermic, gain infinite. 20 g AC3-5 + 5 g Mg+8.3 g KH+9.1 g Ca3P2 * Ein : 282.1 kJ,dE : 18.1 kJ, TSC : none, Tmax : 320 ° C, endothermic, gain 142257.doc •134· 201104948 Unlimited. Rowan Validation KH 7.47 gm+Mg 4.5 gm+TiC 18.0 gm+EuBr2 14.04 gm, Ein: 321.1 kJ, dE: 40.5 kJ, Tmax is about 340 ° C, energy gain is about 6.5X (1_37 kJx4. 5=6.16 kJ). KH 8.3 gm+Mg 5.0 gm+CAII-300 20.0 gm+TiB2 3.5 gm, Ein: 299 kJ, dE: 10 kJ, no TSC and Tmax of about 320 °C. The energy gain is about X (X is about 0 kJ; 1 "Battery: excess energy is about 5.1 kJ). KH 8.3 gm+Mg 5.0 gm+CAII-300 20.0 gm+RbCl 6.05 gm, Ein: 3 11 kJ, dE: 1 8 kJ, no TSC and Tmax is about 340 ° C, energy gain is about X (X is about 〇 kJ; 1M battery: excess energy is about 6.0 kJ). KH 8.3 gm+Mg 5.0 gm+CAII-300 20.0 gm+Li2S 2.3 gm, Ein: 323 kJ, dE: 12 kJ, no TSC and Tmax of about 340 °C. The energy gain is about X (X is about 〇 kJ ; Γ 'Battery: excess energy is about 5.0 kJ). KH 8.3 gm+Mg 5.0 gm+CAII-300 20.0 gm+Mg3N2 5.05 gm, Ein: 323 kJ, dE: 11 kJ, no TSC and Tmax is about 330 〇C 0 The energy gain is about X (X is about 0 kJ; 1"Battery: Excess energy is about 5.2 kJ). 4 g AC3-5 + 1 g Mg+1.66 g KH+3.55 g PtBr2, Ein : 95.0 kJ, dE : 15.7 kJ, TSC : 108-327 ° C, Tmax : 346 ° C, theoretical energy 6.66 kJ, gain 2.36 times. 142257.doc -135- 201104948 4 g AC3-5 + 1 g Mg+1 g NaH+3.55 g PtBr2 5 Ein · 94.0 kJ,dE : 14.3 kJ, TSC : 100-256°C, Tmax : 326°C, theory The energy is 6.03 kJ and the gain is 2.37 times. 4 g WC+1 g MgH2+lg NaH+0.01 mol Cl2, initiated by UV lamp, dissociating Cl2 into Cl, Ein: 162.9 kJ, dE: 16.0 kJ, TSC: 23-42 °C, Tmax: 85 °C, The theoretical energy is 7.10 kJ and the gain is 2.25 times. 4 g AC3-5 + 1 g Mg+1.66 g KH+2.66 g PdBr2, Ein : 113.0 kJ, dE : 11.7 kJ, TSC : 133-276〇C , Tmax : 3 70°C, theoretical energy 6.43 kJ, gain It is 1.82 times. 4 g AC3-5 + 1 g Mg+1 g NaH+2.66 g PdBr2, Ein : 116.0 kJ, dE : 9.4 kJ, TSC : 110-217°C, Tmax : 36It:, theoretical energy is 5.81 kJ, gain is 1.63 Times. 4 g AC3-5 + 1 g Mg+1.66 g KH+3.60 g Pdl2, Ein : 142.0 kJ > dE : 7.8 kJ, TSC : 177-342°C, Tmax : 403°C, theoretical energy 5.53 kJ, gain It is 1.41 times. 1" Large capacity battery 0.41 g A1N+1.66 g KH+1 g Mg powder + 4 g AC3-5, energy gain 4.9 kJ, but no sudden increase in battery temperature was observed. The maximum battery temperature is 407 ° C, theoretically endothermic. KH 8.3 gm+Mg 5.0 gm+CAII-300 20.0 gm+CrB2 3.7 gm, Ein: 317 kJ, dE: 19 kJ, no TSC and Tmax is about 340 °C, the theoretical energy is 0.05 kJ, and the gain is infinite. KH 8'3 gm+new Mg 5.0 gm+CAII-300 20.0 gm+AgCl 9.36 gm, Ein: 99 kJ, dE: 43 kJ, small TSC at about 250 ° C and Tmax 142257.doc -136- 201104948 is about 340 °C. The energy gain is about 2.3X (X = 18.88kJ). _ KH 8.3 gm + Mg 5.0 gm + new TiC (G06U055) 20.0 gm + AgCl 7.2 gm, Ein: 315 kJ, dE: 25 kJ, small TSC at about 250 ° C and Tmax of about 340 ° C. The energy gain is about 1.72X (X = 14.52 kJ). KH 8.3 gm+Mg 5.0 gm+CAII-300 20.0 gm+Y203 1 1_3 gm (gain is about 4X at TiC), Ein: 353 kJ, dE: 23 kJ, no TSC and Tmax of about 350 °C. The energy gain is about 4X (X is about 1 · 1 8 kJ*5 = 5.9 kJ) ° KH 4.15 gm + Mg 2.5 gm + CAII-300 10.0 gm + EuBr3 9.8 gm, Ein : 323 kJ, dE : 27 kJ, no TSC and Tmax is about 350 °C. The energy gain is about 2.26 X (X = 1 1.93 kJ). 4 g AC3-5 + 1 g Mg+1 g NaH+2.23 g Mg3As2,133·0 kJ,dE : 5.8 kJ, TSC : none, Tmax : 371 ° C, theoretically endothermic, gain infinite. 4 g AC3-5+1 g Mg+1_66 g KH+2.23 g Mg3As2, Ein : 139.0 kJ, dE : 6.5 kJ, TSC : none, Tmax : 393 ° C, theoretically endothermic, gain infinite. 4 g AC3-5 + 1 g Mg+1.66 g KH+1.82 g Ca3P2, Ein : 133.0 kJ, dE : 5.8 kJ, TSC : none, Tmax : 407 ° C, theoretically endothermic, gain infinite. 4 g AC3-5 + 1 g Mg+1 g NaH+3.97 g WC16 ; Ein : 99.0 kJ ; dE : 21.84 kJ ; TSC : 100-342. . Tmax : 375〇C, theoretical energy is 16.7 kJ, and gain is 1.3 times. 2.6· Large capacity battery used 2.60 g Csl, 1.66 g KH, 1 g Mg powder 142257.doc -137- 201104948 and 4 g AC3-4. The energy gain was 4.9 kJ, but no sudden increase in battery temperature was observed. The maximum battery temperature is 406 ° C, the theoretical energy is 0, and the gain is infinite. 0.42 g of LiCl, 1.66 g of KH, 1 g of Mg powder and 4 g of AC3-4 were used. The energy gain was 5.4 kJ, but no sudden increase in battery temperature was observed. The maximum battery temperature is 412 ° C, the theoretical energy is 〇, and the gain is infinite. 4 g AC3-4+1 g Mg+1 g NaH+1.21 g RbCl, Ein: 136.0 kJ, dE: 5.2 kJ, TSC: none, Tmax: 372〇C, theoretical energy is 0 kJ, gain is infinite. KH 8.3 gm+Mg 5.0 gm+CAII-300 20.0 gm+CaBr2 10.0 gm, Ein: 323 kJ, dE: 27 kJ, no TSC and Tmax of about 340 °C. The energy gain is about 3.0 X (X is about 1.71 kJ * 5 = 8.55 kJ). KH 8.3 gm+Mg 5.0 gm+CAII-300 20.0 gm+YF3 7.3 gm, Ein: 320 kJ, dE: 17 kJ, no TSC and Tmax of about 340 °C. The energy gain is about 4.5 X (X is about 0·74 kJ * 5 = 3.7 kJ). -KH 8.3 gm + Mg 5.0 gm + TiC 20.0 gm + dried SnBr2 14.0 gm, Ein: 299 kJ, dE: 36 kJ, small TSC at about 130 ° C and Tmax of about 350 ° C. The energy gain is about 1.23X (X is about 5.85 kJx5 = 29.25 kJ). KH 8.3 gm+Mg 5.0 gm+TiC 20.0 gm+EuBr2 15.6 gm 5 Ein: 291 kJ, dE: 45 kJ, small TSC at about 50 ° C and Tmax of about 320 ° C. The energy gain is about 32X (X is about 0.28 kJx5 = l_4 kJ) and the gain is about 6.5 Χ (1.37 kJx5 = 6.85 kJ). KH 8.3 gm+Mg 5.0 gm+CAII-300 20.0 gm+ dried ZnBr2 11.25 gm, Ein: 288 kJ, dE: 45 kJ, at about 200 ° C 142257.doc -138- 201104948 small TSC with a Tmax of about 350° C. The energy gain is about 2.1X (X is about 4.19 kJx5 = 20.9 kJ) °

NaH 5.0 gm+Mg 5.0 gm+CAII-300 20.0 gm+SF6,Ein : 77_7 kJ,dE : 105 kJ,Tmax 為約 400°C。能量增益為約 1.43X(對於0.03莫耳SF6而言X為約73 kJ)。NaH 5.0 gm+Mg 5.0 gm+CAII-300 20.0 gm+SF6, Ein: 77_7 kJ, dE: 105 kJ, Tmax is about 400 °C. The energy gain is about 1.43X (X is about 73 kJ for 0.03 mole SF6).

NaH 5.0 gm+Mg 5.0 gm+CAII-300 20.0 gm+SF6,Ein : 217 kJ,dE : 84 kJ,Tmax為約400°C。能量增益為約 1.15X(對於0.03莫耳SF6而言X為約73 kJ)。 • KH 8.3 gm+Mg 5.0 gm+CAII-300 20.0 gm+AgCl 7.2 gm,Ein : 3 57 kJ,dE : 25 kJ,在約 25 0°C 下小 TSC且 Tmax 為約340°C。能量增益為約1.72X(X為約14.52 kJ)。. KH 8.3 gm+Mg 5.0 gm+CAII-300 20.0 gm+AgCl 7.2 gm,Ein : 487 kJ,dE : 34 kJ,在約 250°C 下小 TSC且 Tmax 為約340°C。能量增益為約2.34X(X為約14.52 kJ)。 20 g AC3-4 + 8.3 g Ca+5 g NaH+15.5 g Mnl2 5 Ein · 181.5 kJ,dE : 61.3 kJ,TSC : 159-233°C ,Tmax : 2 83°(:,理論能量為29.51^,增益為2.08倍。 4 g AC3-4+1.66 g Ca+1.66 g KH+3.09 g Mnl2,Ein : 113.0 kJ,dE : 15.8 kJ,TSC : 228-384〇C ,Tmax : 395°C,理論能量為6.68 kJ,增益為2.37倍。 4 g AC3-4+1 g Mg+1.66 g KH+0.46 g L12S » Ein · 144.0 kJ,dE : 5.0 kJ,TSC :無,Tmax : 419°C,理論上吸熱。 _ 1M大容量電池中 1.01 g Mg3N2、1.66 g KH、1 g Mg粉 末及4 g AC3-4,能量增益為5.2 kJ,但未觀測到電池溫度 142257.doc -139- 201104948 突增。最大電池溫度為401 °C,理論能量為0。 _ 1.21 g RbCl、1.66 g ΚΗ、1 g Mg 粉末及 4 g AC3-4,能 量增益為6.0 kJ,但未觀測到電池溫度突增。最大電池溫 度為442°C,理論能量為〇。 用掉 2_24 g Zn3N2、1.66 g KH ' 1 g Mg 粉末及 4 g AC3-4。能量增益為5.5 kJ,但未觀測到電池溫度突增。最大電 池溫度為410°C,理論能量為4.41 kJ,增益為1.25倍。 4 g AC3-4+1 g Mg+1 g NaH+1.77 g PdCl2 « Ein : 89.0 kJ,dE : 10.5 kJ,TSC : 83-204°C,Tmax : 306°C,理論 能量為6.14 kJ,增益為1.7倍。 1M大容量電池中 0.74 g CrB2、1.66 g ΚΗ、1 g Mg粉末 及4 8€八-111 3 00活化碳粉末(八〇3-4),能量增益為4.3 1^, 但未觀測到電池溫度突增。最大電池溫度為404°C,理論 能量為0。 用掉 0.70 g TiB2、1_66 g KH、1 g Mg 粉末及 4 g CA-III 300活化碳粉末(AC3-4)。能量增益為5.1 kJ,但未觀測到 電池溫度突增。最大電池溫度為43 1 °C,理論能量為〇。NaH 5.0 gm+Mg 5.0 gm+CAII-300 20.0 gm+SF6, Ein: 217 kJ, dE: 84 kJ, Tmax is about 400 °C. The energy gain is about 1.15X (X is about 73 kJ for 0.03 mole SF6). • KH 8.3 gm+Mg 5.0 gm+CAII-300 20.0 gm+AgCl 7.2 gm, Ein: 3 57 kJ, dE: 25 kJ, small TSC at about 25 °C and Tmax of about 340 °C. The energy gain is about 1.72X (X is about 14.52 kJ). KH 8.3 gm+Mg 5.0 gm+CAII-300 20.0 gm+AgCl 7.2 gm, Ein: 487 kJ, dE: 34 kJ, small TSC at about 250 ° C and Tmax about 340 ° C. The energy gain is about 2.34X (X is about 14.52 kJ). 20 g AC3-4 + 8.3 g Ca+5 g NaH+15.5 g Mnl2 5 Ein · 181.5 kJ,dE : 61.3 kJ, TSC : 159-233°C , Tmax : 2 83° (:, theoretical energy is 29.51^, The gain is 2.08 times. 4 g AC3-4+1.66 g Ca+1.66 g KH+3.09 g Mnl2, Ein: 113.0 kJ, dE: 15.8 kJ, TSC: 228-384〇C, Tmax: 395°C, theoretical energy is 6.68 kJ, gain is 2.37 times. 4 g AC3-4+1 g Mg+1.66 g KH+0.46 g L12S » Ein · 144.0 kJ,dE : 5.0 kJ, TSC : none, Tmax : 419 ° C, theoretically endothermic. _ 1M large capacity battery 1.01 g Mg3N2, 1.66 g KH, 1 g Mg powder and 4 g AC3-4, energy gain is 5.2 kJ, but no battery temperature 142257.doc -139- 201104948 sudden increase. Maximum battery temperature The theoretical energy is 401 ° C, _ 1.21 g RbCl, 1.66 g ΚΗ, 1 g Mg powder and 4 g AC3-4, the energy gain is 6.0 kJ, but no sudden increase in battery temperature is observed. The maximum battery temperature is 442. °C, the theoretical energy is 〇. 2_24 g Zn3N2, 1.66 g KH '1 g Mg powder and 4 g AC3-4 were used. The energy gain was 5.5 kJ, but no sudden increase in battery temperature was observed. The maximum battery temperature was 410°. C, the theoretical energy is 4. 41 kJ, gain is 1.25 times. 4 g AC3-4+1 g Mg+1 g NaH+1.77 g PdCl2 « Ein : 89.0 kJ,dE : 10.5 kJ, TSC : 83-204°C, Tmax : 306°C, The theoretical energy is 6.14 kJ and the gain is 1.7 times. 0.74 g CrB2, 1.66 g ΚΗ, 1 g Mg powder and 4 8 € eight-111 3 00 activated carbon powder (eight 3-4) in 1M large-capacity battery, energy The gain was 4.3 1^, but no sudden increase in battery temperature was observed. The maximum battery temperature was 404 ° C and the theoretical energy was 0. Activation with 0.70 g TiB2, 1_66 g KH, 1 g Mg powder and 4 g CA-III 300 Carbon powder (AC3-4). The energy gain was 5.1 kJ, but no sudden increase in battery temperature was observed. The maximum battery temperature was 43 1 °C and the theoretical energy was 〇.

NaH 5.0 gm+Mg 5.0 gm+C AII-3 00 20.0 gm+BaBr2 14.85 gm(經乾燥),Ein : 328 kJ,dE : 16 kJ,無 TSC 且 Tmax 為約 320°C 。能量增益 160X(X 為約 0.02 kJ*5 = 0.1 kJ)。NaH 5.0 gm+Mg 5.0 gm+C AII-3 00 20.0 gm+BaBr2 14.85 gm (dried), Ein: 328 kJ, dE: 16 kJ, no TSC and Tmax of about 320 °C. The energy gain is 160X (X is about 0.02 kJ*5 = 0.1 kJ).

NaH 1.0 gm+Mg 1.0 gm+CAII-300 4.0 gm+BaBr2 2.97 gm (經乾燥),Ein: 140 kJ,dE: 3 kJ,無 TSC 且 Tmax 為約 360°C。能量增益為約150X(X為約0.02 kJ)。 142257.doc -140- 201104948NaH 1.0 gm+Mg 1.0 gm+CAII-300 4.0 gm+BaBr2 2.97 gm (dried), Ein: 140 kJ, dE: 3 kJ, no TSC and Tmax of about 360 °C. The energy gain is about 150X (X is about 0.02 kJ). 142257.doc -140- 201104948

NaH 5.0 gm+Mg 5.0 gm+CAII-300 20.0 gm+MgI2 13.9 gm,Ein : 3 1 5 kJ,dE : 16 kJ,無 TSC且 Tmax為約 340°C。 能量增益為約1.8X(X為約1.75x5 = 8.75 kJ)。 KH 8.3 gm+Mg 5.0 gm+CAII-300 20.0 gm+MgBr2 9.2 gm,Ein : 334 kJ,dE : 24 kJ,無 TSC且 Tmax為約 340。(:。 能量增益為約2.1X(X為約2.23x5 =11·5 kJ)。 20 g AC3-3 + 8.3 g KH+7.2 g AgCn,Ein : 286,6 kJ, dE : 29.5 kJ > TSC : 327-391〇C,Tmax : 394°C,理論能量 為13.57 kJ,增益為2.17倍。 4 g AC3-3 + 1 g MgH2 + 1.66 g KH+1.44 g AgCl > Ein : 151.0 kJ,dE : 4.8 kJ,TSC :無,Tmax : 397°C,理論能 量為2.53 kJ,增益為1.89倍。 • 4 g AC3-3 + 1 g Mg+1 g NaH+1.48 g Ca3N2,Ein : 140.0 kJ,dE : 4.9 kJ,TSC :無,Tmax : 392°C,理論能量為 2.01 kJ,增益為2.21倍。 4 g AC3-3 + 1 g Mg+1 g NaH+1.86 g InCl2 ' Ein : 125.0 kJ,dE : 7.9 kJ,TSC : 163-259°C,Tmax : 374°C,理論 能量為4.22 kJ,增益為1.87倍。 -4 g AC3-3 + 1 g Mg+1.66 g KH+1.86 g InCl2 > Ein : 105.0 kJ,dE : 7.5 kJ,TSC : 186-302°C,Tmax : 370°C, 理論能量為4.7 kJ,增益為1.59倍。 4 g AC3-3 + 1 g Mg+1.66 g KH+2.5 g Dyl2 > Ein : 135.0 kJ,dE : 6.1 kJ,TSC :無,Tmax : 403°C,理論能量為 1.89 kJ,增益為3.22倍。 142257.doc -141 - 201104948 • 1M大容量電池中3.92 g EuBr3、1.66 g ΚΗ、1 g Mg粉末 及4笆0八-111 300活化碳粉末(八〇3-3),能量增益為10.5 kJ,但未觀測到電池溫度突增。最大電池溫度為429°C, 理論能量為3.4 kJ,增益為3倍。 4.56 g Asl3、1.66 g KH、1 g Mg 粉末及 4 g CA-III 300 活性碳粉末(AC3-3),能量增益為13.5 kJ,且電池溫度突 增166°C(237-403°C)。最大電池溫度為425°C,理論能量為 8.65 kJ,增益為1.56倍。 4 g AC3-3 + 1 g Mg+1 g NaH+2.09 g EuF3,Ein : 185.1 kJ,dE : 8.0 kJ > TSC :無,Tmax : 463°C,理論能量為 1.69 kJ,增益為4.73倍。 4 g AC3-3 + 1 g Mg+1.66 g KH+1.27 g AgF ; Ein : 127.0 kJ ; dE : 6.04 kJ ; TSC : 84-190°C ; Tmax : 369°C,理論 能量為3·58 kJ,增益為1.69倍。 4 g AC3-3 + 1 g Mg+1 g NaH+3.92 g EuBr3 ; Ein · 162.5 kJ ; dE : 7.54 kJ ; TSC :未觀測到;Tmax : 471°C,理論 能量為3.41 kJ,增益為2.21倍。 1"大容量電池中 2.09 g EuF3、1.66 g ΚΗ、1 g Mg粉末 及4 g CA-III 300活性碳粉末(AC3-3),能量增益為5.5 kJ, 但未觀測到電池溫度突增。最大電池溫度為4 17°C,理論 能量為1.71 kJ,增益為3.25倍。 3.29 g ΥΒγ3、1.66 g KH、1 g Mg 粉末及 4 g CA-III 300 活性碳粉末(AC3-3),能量增益為7.0 kJ,但未觀測到電池 溫度突增。最大電池溫度為441 °C,理論能量為4.16 kJ, 142257.doc •142- 201104948 增益為1.68倍。NaH 5.0 gm+Mg 5.0 gm+CAII-300 20.0 gm+MgI2 13.9 gm, Ein: 3 1 5 kJ, dE: 16 kJ, no TSC and Tmax of about 340 °C. The energy gain is about 1.8X (X is about 1.75x5 = 8.75 kJ). KH 8.3 gm+Mg 5.0 gm+CAII-300 20.0 gm+MgBr2 9.2 gm, Ein: 334 kJ, dE: 24 kJ, no TSC and Tmax of about 340. (: The energy gain is about 2.1X (X is about 2.23x5 = 11·5 kJ). 20 g AC3-3 + 8.3 g KH+7.2 g AgCn, Ein : 286,6 kJ, dE : 29.5 kJ > TSC : 327-391〇C, Tmax : 394°C, theoretical energy is 13.57 kJ, gain is 2.17 times. 4 g AC3-3 + 1 g MgH2 + 1.66 g KH+1.44 g AgCl > Ein : 151.0 kJ,dE : 4.8 kJ, TSC: none, Tmax: 397 ° C, theoretical energy is 2.53 kJ, gain is 1.89 times • 4 g AC3-3 + 1 g Mg+1 g NaH+1.48 g Ca3N2, Ein : 140.0 kJ,dE : 4.9 kJ, TSC : none, Tmax : 392 ° C, theoretical energy 2.01 kJ, gain 2.21 times 4 g AC3-3 + 1 g Mg+1 g NaH+1.86 g InCl2 ' Ein : 125.0 kJ,dE : 7.9 kJ, TSC: 163-259 ° C, Tmax : 374 ° C, theoretical energy 4.22 kJ, gain 1.87 times -4 g AC3-3 + 1 g Mg+1.66 g KH+1.86 g InCl2 > Ein : 105.0 kJ,dE : 7.5 kJ, TSC : 186-302 ° C, Tmax : 370 ° C, theoretical energy 4.7 kJ, gain 1.59 times 4 g AC3-3 + 1 g Mg+1.66 g KH+2.5 g Dyl2 &gt Ein : 135.0 kJ, dE : 6.1 kJ, TSC : none, Tmax : 403 ° C, theoretical energy 1.89 kJ, gain 3.22 times. 142257.do C -141 - 201104948 • 3.92 g EuBr3, 1.66 g ΚΗ, 1 g Mg powder and 4笆0-8-111 300 activated carbon powder (Bagua 3-3) in a 1M large-capacity battery with an energy gain of 10.5 kJ, but No sudden increase in battery temperature was observed. The maximum battery temperature was 429 ° C, the theoretical energy was 3.4 kJ, and the gain was 3 times. 4.56 g Asl3, 1.66 g KH, 1 g Mg powder and 4 g CA-III 300 activated carbon powder (AC3-3), the energy gain is 13.5 kJ, and the battery temperature suddenly increases by 166 ° C (237-403 ° C). The maximum battery temperature is 425 ° C, the theoretical energy is 8.65 kJ, and the gain is 1.56 times. 4 g AC3-3 + 1 g Mg+1 g NaH+2.09 g EuF3, Ein : 185.1 kJ, dE : 8.0 kJ > TSC : none, Tmax : 463 ° C, theoretical energy 1.69 kJ, gain 4.73 times. 4 g AC3-3 + 1 g Mg+1.66 g KH+1.27 g AgF ; Ein : 127.0 kJ ; dE : 6.04 kJ ; TSC : 84-190 ° C ; Tmax : 369 ° C, theoretical energy 3.58 kJ, The gain is 1.69 times. 4 g AC3-3 + 1 g Mg+1 g NaH+3.92 g EuBr3 ; Ein · 162.5 kJ ; dE : 7.54 kJ ; TSC : not observed; Tmax : 471 ° C, theoretical energy 3.41 kJ, gain 2.21 times . 1" Large capacity battery 2.09 g EuF3, 1.66 g ΚΗ, 1 g Mg powder and 4 g CA-III 300 activated carbon powder (AC3-3), energy gain of 5.5 kJ, but no sudden increase in battery temperature was observed. The maximum battery temperature is 4 17 ° C, the theoretical energy is 1.71 kJ, and the gain is 3.25 times. 3.29 g ΥΒγ3, 1.66 g KH, 1 g Mg powder and 4 g CA-III 300 activated carbon powder (AC3-3), the energy gain was 7.0 kJ, but no sudden increase in battery temperature was observed. The maximum battery temperature is 441 °C, the theoretical energy is 4.16 kJ, and the 142257.doc •142-201104948 gain is 1.68 times.

NaH 5.0 gm+Mg 5.0 gm+CAII-300 20.0 gm + BaI2 19.5 gm,Ein : 3 34 kJ,dE : 13 kJ,無 TSC且 Tmax為約 350。。。 能量增益為約2.95X(X為約0.88 kJx5 =4.4 kJ)。 KH 8.3 gm+Mg 5.0 gm+CAII-300 20.0 gm+BaCl2 10.4 gm,Ein : 331 kJ,dE : 1 8 kJ,無 TSC且 Tmax為約 320°C。 能量增益為約6.9X(X為約0.52x5=2.6 kJ)。 KH 8.3 gm+Mg 5.0 gm+TiC 20.0 gm+LaF3 9.8 gm, Ein : 338 kJ,dE : 7 kJ,無 TSC且 Tmax為約 320°C。能量 增益為約1_9X(X為約3.65 kJ)。NaH 5.0 gm+Mg 5.0 gm+CAII-300 20.0 gm + BaI2 19.5 gm, Ein: 3 34 kJ, dE: 13 kJ, no TSC and Tmax of about 350. . . The energy gain is about 2.95X (X is about 0.88 kJx5 = 4.4 kJ). KH 8.3 gm+Mg 5.0 gm+CAII-300 20.0 gm+BaCl2 10.4 gm, Ein: 331 kJ, dE: 1 8 kJ, no TSC and Tmax of about 320 °C. The energy gain is about 6.9X (X is about 0.52x5 = 2.6 kJ). KH 8.3 gm+Mg 5.0 gm+TiC 20.0 gm+LaF3 9.8 gm, Ein: 338 kJ, dE: 7 kJ, no TSC and Tmax of about 320 °C. The energy gain is about 1_9X (X is about 3.65 kJ).

NaH 5.0 gm+Mg 5.0 gm+CAII-300 20.0 gm+BaBr2 14.85 gm(經乾燥),Ein : 280 kJ,dE : 10 kJ,無 TSC 且 Tmax為約320°C。能量增益為約100X(X為約0.01=0.02x5 kJ)。 KH 8.3 gm+Mg 5.0 gm+CAII-300 20.0 gm+BaBr2 14.85 gm(經乾燥),Ein : 267 kJ,dE : 8 kJ,無 TSC且 Tmax為約 360°C。能量增益為約2.5 X(X為約3.2 kJ)。NaH 5.0 gm+Mg 5.0 gm+CAII-300 20.0 gm+BaBr2 14.85 gm (dried), Ein: 280 kJ, dE: 10 kJ, no TSC and Tmax of about 320 °C. The energy gain is about 100X (X is about 0.01 = 0.02 x 5 kJ). KH 8.3 gm+Mg 5.0 gm+CAII-300 20.0 gm+BaBr2 14.85 gm (dried), Ein: 267 kJ, dE: 8 kJ, no TSC and Tmax of about 360 °C. The energy gain is about 2.5 X (X is about 3.2 kJ).

NaH 5·0 gm+Mg 5·0 gm+TiC 20.0 gm+ZnS 4.85 gm, Ein : 319 kJ,dE : 12 kJ,無 TSC且 Tmax為約 340°C。能量 增益為約1.5X(X為約8.0 kJ)。 KH 8.3 gm+Mg 5.0 gm+TiC 20.0 gm+AgCl 7.2 gm(在 070109上乾燥),£比:219]^,〇1£:261^,在約 250°(:下 小TSC且Tmax為約340°C。能量增益為約1 ·8Χ(Χ為約14.52 kJ)。 142257.doc -143 - 201104948 ΚΗ 8.3 gm+Mg 5.0 gm+TiC 20.0 gm+Y2〇3 11-3 gm, Ein : 339 kJ,dE : 24 kJ,在約 300°C 下小 TSC且 Tmax為約 350°C。能量增益為約4·0Χ(在NaH下X為約5.9 kJ)。 -4 g AC3-3 + 1 g Mg+1 g NaH+1.95 g YC13,Ein : 137.0 kJ,dE : 7.1 kJ,TSC :無,Tmax : 384°C,理論能量為 3.3 kJ,增益為2.15倍。 Γ·大容量電池中4.70 g YI3、1.66 g ΚΗ、1 g Mg粉末及 4 g CA-III 300活性碳粉末(AC3-1),能量增益為6.9 kJ,但 未觀測到電池溫度突增。最大電池溫度為426°C,理論能 量為3.37 kJ,增益為2.04倍。 1.51 g Sn02、1.66 g KH、1 g Mg 粉末及 4 g CA-III 300 活性碳粉末(AC3-1),能量增益為9.4 kJ,但未觀測到電池 溫度突增。最大電池溫度為460°C,理論能量為7.06 kJ, 增益為1.33倍。 4.56 g Asl3、1.66 g KH、1 g Mg 粉末及 4 g CA-III 300 活性碳粉末(AC3-1),能量增益為11 ·5 kJ,且電池溫度突 增M4°C (221-365°C )。最大電池溫度為463°C,理論能量為 8·65 kJ,增益為1.33倍。 3.09 g Mnl2、1.66 g KH、1 g Mg 粉末及 4 g STiC-l(TiC 來自Sigma Aldrich),能量增益為9.6 kJ,且電池溫度突增 137°C (38-175°C )。最大電池溫度為396°C,理論能量為 3.73 kJ,增益為2.57倍。 3.99 g SeBr4、1.66 g KH、1 g Mg 粉末及 4 g CA-III 300活性碳粉末(AC3-1),能量增益為20.9 kJ,且電池溫度 142257.doc -144- 201104948 突增224°C(47-271°C)。最大電池溫度為383°C,理論能量 為16.93 kJ,增益為1.23倍。 20 g AC3-3 + 5 g Mg+8.3 g KH+11.65 g Agl > Ein : 238.6 kJ,dE : 31.7 kJ,TSC : 230-3 16。。,Tmax : 317°(:,理論能量為12.31^,增益為2.57倍。 4 g AC3-3 + 1 g Mg+1.66 g KH+0.91 g CoS,Ein : 145.1 kJ,dE : 8.7 kJ,TSC :無,Tmax : 420°C,理論能量為 2.63 kJ,增益為3.3倍。 _ 4 g AC3-3 + 1 g Mg+1.66 g KH+1.84 g MgBr2 ; Ein : 134.1 kJ ; dE : 5.75 kJ ; TSC :未觀測到;Tmax : 400〇C, 理論能量為2.23 kJ,增益為2.58倍。 5.02 g Sbl3、1.66 g KH、1 g Mg 粉末及 4 g CA-III 300 活性碳粉末(AC3-1),能量增益為12.2 kJ,且電池溫度突 增154°C (141-295°C )。最大電池溫度為379°C,理論能量為 9.71 kJ,增益為1.26倍。 KH 8.3 gm+Mg 5.0 gm+TiC 20.0 gm+AgCl 7.2 gm > Ein : 304 kJ,dE : 30 kJ,在約 275°C 下小 TSC且 Tmax為約 340°C。能量增益為約2·1Χ(Χ為約14.52 kJ)。 KH 1.66 gm+Mg 1.0 gm+TiC 5.0 gm+BaBr2 2.97 gm 5 負載 BaBr2-KH-Mg-TiC,Ein : 130 kJ,dE : 2 kJ,無 TSC 且Tmax為約3 60°C,理論能量為0.64 kJ,增益為3倍。 KH 8.3 gm+Mg 5.0 gm+TiC 20.0 gm+CuS 4.8 gm > Ein : 318 kJ,dE : 30 kJ,在約 250°C 下小 TSC且 Tmax為約 360°C。能量增益為約2.1X(X為約14.4kJ)。 142257.doc -145- 201104948 ΚΗ 8.3 gm+Mg 5.0 gm+TiC 20.0 gm+MnS 4.35 gm, Ein : 3 26 kJ,dE : 14 kJ,無 TSC且 Tmax為約 35 0°C。能量 增益為約2·2Χ(Χ為約6.3 kJ)。 ΚΗ 8.3 gm+Mg 5.0 gm+TiC 20.0 gm+GdF3 10.7 gm, Ein : 339 kJ,dE : 7 kJ,無 TSC且 Tmax為約 360°C。能量 增益為約2·54Χ(Χ為約2.75 kJ)。 20 g AC3-2 + 5 g Mg+8.3 g KH+7.2 g AgCl » Ein : 327.1 kJ,dE : 40.4 kJ,TSC : 288-318X:,Tmax : 326。。,理論 能量為14.52 kJ,增益為2.78倍。 20 g AC3-2 + 5 g Mg+8.3 g KH+7.2 g CuBr,Ein : 205.1 kJ,dE : 22.5 kJ,TSC : 216-268〇C,Tmax : 280。。,理論 能量為13.46 kJ,增益為1.67倍。 4 g AC3-2+1 g Mg+1 g NaH+l_46 g YF3,Ein : 157.0 kJ,dE : 4.3 kJ,TSC :無,Tmax : 405°C,理論能量為 0.77 kJ,增益為5.65倍。 4 g AC3-2+1 g Mg+1.66 g KH+1.46 g YF3 > Ein : 137.0 kJ,dE : 5.6 kJ,TSC :無,Tmax : 398°C,理論能量為 0.74 kJ,增益為7.54倍。 在2"大容量電池中11.3 g Υ2〇3、5 g NaH、5 g Mg粉末 及20 g CA-III 300活性碳粉末(AC3-2),能量增益為24.5 kJ,但未觀測到電池溫度突增。最大電池溫度為386°C, 理論能量為5.9 kJ,增益為4.2倍。 4 g AC3-2+1 g Mg+1 g NaH+3.91 g Bal2,Ein : 135.0 kJ,dE : 5.3 kJ,TSC :無,Tmax : 378°C,理論能量為 142257.doc -146- 201104948 0.1 kJ,增益為51倍。 4 g AC3-2+1 g Mg+1.66 g KH+3.91 g Bal2 > Ein : 123.1 kJ,dE : 3.3 kJ,TSC :無,Tmax : 390°C,理論能量為 0.88 kJ,增益為3.8倍。 4 g AC3-2 + 1 g Mg+1.66 g KH+2.08 g BaCl2,Ein : 141.0 kJ,dE : 5·5 kJ,TSC :無,Tmax : 403°C,理論能 量為0.52 kJ,增益為10.5倍。 • 4 g AC3-2+1 g Mg+1.66 g KH+3.42 g Srl2 ; Ein : 128.2 kJ ; dE : 4.35 kJ ; TSC :未觀測到;Tmax : 383°C,理論 能量為1.62 kJ,增益為3.3倍。 用掉 4_04 g Sb2S5、1.66 g KH、1 g Mg 粉末及 4 g CA-III 3 00活化碳粉末(AC3-2)。能量增益為18.0 kJ,且電池溫度 突增251°C(224-475°C)。最大電池溫度為481°C,理論能量 為12.7 kJ,增益為1.4倍。 4 g AC3-2+1 g Mg+1 g NaH+0.97 g ZnS,Ein : 132.1 kJ,dE : 7.5 kJ,TSC :無,Tmax : 370°C,理論能量為 1.4 kJ,增益為5.33倍。 4 g AC3-2+1 g Mg+1 g NaH+3 12 g EuBr2,Ein : 13 5.0 kJ,dE : 5.0 kJ,TSC : 114-182°C,Tmax : 371°C,理論 上吸熱+0.35 kJ,增益無限。 4 g AC3-2+1 g Mg+1.66 g KH+3.12 g EuBr2,Ein : 122.0 kJ,dE : 9.4 kJ,TSC : 73-135〇C,Tmax : 385〇C, 理論能量為0.28 kJ,增益為34倍。 4 g CA3-2+1 g Mg+1.66 g KH+3.67g PbBr〗;Ein : 142257.doc -147- 201104948 126.0 kJ ; dE : 6.98 kJ ; TSC : 270-408〇C ; Tmax : 421°C,理論能量為5.17 kJ,增益為1.35倍。 -4 g CA3-2 + 1 g Mg+1 g NaH+1.27 g AgF ; Ein : 125.0 kJ ; dE : 7.21 kJ ; TSC : 74-175°C ; Tmax : 372°C,理論 能量為3.58 kJ,增益為2倍。 1.80 g GdBr3(0.01 mol GdBr3 為 3.97 g,但無足夠的 GdBr3)、1.66 g KH、1 g Mg粉末及4 g CA-III 300活性碳粉 末(AC3-1),能量增益為2.8 kJ,但未觀測到電池溫度突 增。最大電池溫度為431 °C,理論能量為1.84 kJ,增益為 1.52倍 ° 0.97 g ZnS、1.66 g KH、1 g Mg 粉末及 4 g CA-III 300 活性碳粉末(AC3-1),能量增益為4.0 kJ,但未觀測到電池 溫度突增。最大電池溫度為444°C,理論能量為1.61 kJ, 增益為2.49倍。 3_92 g BI3(在PP小瓶中)' 1_66 g KH、1 g Mg粉末及4 g CA-III 300活性碳粉末(AC3-1),能量增益為13.2 kJ,且電 池溫度上升變化為87°C (152-239°C )。最大電池溫度為 465°C,理論能量為9.7 kJ,增益為1.36倍。 -4 g AC3-2+1 g Mg+1 g NaH+3.2 g HfCl4 5 Ein : 131.0 kJ,dE : 10.5 kJ,TSC : 277-439〇C,Tmax : 440〇C,理論 能量為8.1 kJ,增益為1.29倍。 4 g AC3-2 + 1 g Mg+1.66 g KH+3.2 g HfCl4 > Ein : 125.0 kJ,dE : 11.5 kJ,TSC : 254-35 7〇C,Tmax : 405°C,理論 能量為9.06 kJ,增益為1.27倍。 142257.doc -148 - 201104948 _ 4 g CA3-2 + 1 g Mg+1.66 g KH+2.97 g BaBr2 ; Ein : 132.1 kJ ; dE : 4.65 kJ ; TSC :未觀測到;Tmax : 361°C, 理論能量為0.64 kJ,增益為7.24倍。 -4 g CA3-2+1 g Mg+1.66 g KH+2.35 g Agl ; Ein : 142.9 kJ ; dE : 7.32 kJ ; TSC :未觀測到;Tmax : 420°C,理論 能量為2.46 kJ,增益為2.98倍。 用掉 4.12 g PI3、1·66 g KH、1 g Mg 粉末及4 g CA-III 300活性碳粉末(AC3-1)。能量增益為13.8 kJ,且電池溫度 突增189°C(184-373°C)。最大電池溫度為438°C,理論能量 為11.1 kJ,增益為1.24倍。 1.57 g SnF2、1.66 g KH、1 g Mg 粉末及 4 g CA-III 300 活性碳粉末(AC3-1),能量增益為7.9 kJ,且電池溫度上升 變化為72°C (149-221°C )。最大電池溫度為407°C,理論能 量為5.28 kJ,增益為1.5倍。 1.96 g LaF3、1.66 g KH、1 g Mg 粉末及 4 g CA-III 300 活性碳粉末(AC3-1),能量增益為4.2 kJ,但未觀測到電池 溫度突增。最大電池溫度為442°C,理論能量為0.68 kJ, 增益為6.16倍。 4 g CAIII-300+1 g Mg+1 g NaH+2.78 g Mgl2 » Ein : 129.0 kJ,dE : 6.6 kJ,TSC :無,Tmax : 371°C,理論能 量為1.75 kJ,增益為3.8倍。 4 g CAIII-300+1 g Mg+1.66 g KH+2.48 g SrBr2,Ein : 137.0 kJ,dE : 6.1 kJ,TSC :無,Tmax : 402°C,理論能 量為1.35 kJ,增益為4.54倍。 142257.doc -149- 201104948 4 g CA3-2+1 g Mg+1.66 g KH+2.0 g CaBr2 ; Ein : 147.0 kJ ; dE : 6.33 kJ ; TSC :未觀測到;Tmax : 445°C, 理論能量為1.71 kJ,增益為3.7倍。 4 g CA3-2+1 g Mg+1 g NaH+2.97 g BaBr2 » Ein · 140.1 kJ ; dE : 8.01 kJ ; TSC :未觀測到;Tmax : 405°C,理論 能量為0.02 kJ,增益為483倍。 用掉 0.90 g CrF2、1.66 g KH、1 g Mg 粉末及 4 g CA-III 300活性碳粉末(AC3-1)。能量增益為4.7 kJ,但未觀測到 電池溫度突增。最大電池溫度為415°C,理論能量為3.46 kJ,增益為1.36倍。 KH 8.3 gm+Mg 5.0 gm+TiC 20.0 gm + InCl 7.5 gm 5 Ein 275 kJ,dE : 26 kJ,無 TSC且 Tmax為約 340°C。能量增益 為約 2.2 X(X為約 11.45 kJ)。 KH 8.3 gm+Mg 5.0 gm+TiC 20.0 gm + Inl 12·1 gm,Ein 320 kJ,dE : 12 kJ,無 TSC且 Tmax為約 340°C。能量增益 為約 1.25 X(X為約 9,6 kJ)。 KH 8.3 gm+Mg 5.0 gm+TiC 20.0 gm+InBr 9.75 gm 5 Ein 323 kJ,dE : 17 kJ,無 TSC且 Tmax為約 340°C。能量 增益為約1.7X(X為約10 kJ)。 KH 8.3 gm+Mg 5.0 gm+TiC 20.0 gm+MnI2 15.45 gm 5 Peter Jansson博士 之驗證實驗,Ein 292 kJ,dE : 45 kJ, 在約30°C下小TSC且Tmax為約340°C。能量增益為約 2.43X(X為約 18.5 kJ)。 KH 8.3 gm+Mg 5.0 gm+TiC 20.0 gm+FeBr2 10.8 gm(來 142257.doc -150- 201104948 自 STREM Chemicals之FeBr2),Peter Jansson博士之驗證實 驗,Ein : 308 kJ,dE : 46 kJ,TSC在約 220°C 下且 Tmax為 約330°C。能量增益為約1.84X(X為約25 kJ)。 KH 8.3 gm+Mg 5.0 gm+TiC 20.0 gm+CoI2 15.65 gm 5 Ein : 243 kJ,dE : 55 kJ,在約 170°C 下小 TSC且 Tmax為約 330°C,理論能量為26.35 kJ,增益為2.08倍。 • KH 8·3 gm+Mg 5.0 gm+TiC 20.0 gm+NiBr2 11.0 gm, Ein : 270 kJ,dE : 45 kJ,在約 220°C 下 TSC 且 Tmax 為約 3 40°C,理論能量為23 U,增益為1.95倍。 KH 8.3 gm+Mg 5.0 gm+TiC 20,0 gm+FeBr2 10.8 gm(來 自 STREM Chemicals之FeBr2),Ein : 291 kJ,dE : 38 kJ, 約200°C TSC且Tmax為約330°C,理論能量為25 kJ,增益 為1.52倍。 KH 8.3 gm+Mg 5.0 gm+CAII-300 20.0 gm+ZnBr2 11.25 gm,Ein 302 kJ,dE : 42 kJ,在約 200°C 下小 TSC且 Tmax 為約375°C。能量增益為約2X(X為約20.9 kJ)。 • KH 8.30 gm+Mg 5.0 gm+TiC 20.0 gm+GdBr3 19.85 gm ’ Ein : 308 kJ,dE : 26 kJ,在約 250°C 下 TSC且 Tmax為 約340°C。能量增益為約1·3Χ(Χ為約20.3 kJ)。 KH 8.3 gm+Mg 5.0 gm+CAII-300 20.0 gm+MnS 4.35 gm ’ Ein : 3 49 kJ ’ dE : 24 kJ,在約 260°C 下 TSC且 Tmax為 約350°C。能量增益為約3.6 X(X為約6.6 kJ)。 4 g CAIII-300+1 g Mg+1 g NaH+3.79 g LaBr3 » Ein : 143.0 kJ ’ dE : 4.8 kJ,TSC :無,Tmax : 392°C ’ 理論能 142257.doc -151 - 201104948 量為2.46 kJ,增益為1.96倍。 4 g CAIII-300+1 g Mg+1.66 g KH+3.80 g CeBr3 > Ein : 145.0 kJ,dE : 7.6 kJ,TSC :無,Tmax : 413°C,理論能 量為3.84 kJ,增益為1.97倍。 4 g CAIII-300+1 g Mg+1.66 g KH+1.44 g AgCl ; Ein : 136.2 kJ ; dE : 7.14 kJ ; TSC :未觀測到;Tmax : 420°C, 理論能量為2.90 kJ,增益為2.46倍。 4 g CAIII-300+1 g Mg+1.66 g KH+1.60 g Cu2S,Ein : 137.0 kJ,dE : 5.5 kJ,TSC :無,Tmax : 405°C,理論能 量為2.67 kJ,增益為2.06倍。 2.54 g Tel4(0.01 mol Tel4 為 6.35 g,但無足夠的 Tel4)、 1.66 g KH、1 g Mg粉末及4 g CA-III 300活性碳粉末(AC3-1),能量增益為8.3 kJ,且電池溫度突增113°(:(202-315°C )。最大電池溫度為395°C,理論能量為5.61 kJ,增 益為1.48倍。 2.51 g BBr3、1.66 g KH、1 g Mg 粉末及 4 g CA-III 300 活性碳粉末(AC3-1),能量增益為12.4 kJ。電池溫度上升 變化為52°C(77-129°C),且電池溫度突增88°C(245-333°C )。最大電池溫度為438°C,理論能量為9.28 kJ,增 益為1·34倍。 4 g CAIII-300+1 g Mg+1.0 g NaH+3.59 g TaCl5 > Ein : 102.0 kJ,dE : 16.9 kJ,TSC : 80-293。。,Tmax : 366。。, 理論能量為11.89 kJ,增益為1.42倍。NaH 5·0 gm+Mg 5·0 gm+TiC 20.0 gm+ZnS 4.85 gm, Ein: 319 kJ, dE: 12 kJ, no TSC and Tmax of about 340 °C. The energy gain is about 1.5X (X is about 8.0 kJ). KH 8.3 gm+Mg 5.0 gm+TiC 20.0 gm+AgCl 7.2 gm (dried on 070109), £ ratio: 219]^, 〇1£:261^, at about 250° (: small TSC and Tmax is about 340) °C. The energy gain is about 1 · 8 Χ (Χ is about 14.52 kJ). 142257.doc -143 - 201104948 ΚΗ 8.3 gm+Mg 5.0 gm+TiC 20.0 gm+Y2〇3 11-3 gm, Ein: 339 kJ, dE : 24 kJ, small TSC at about 300 ° C and Tmax of about 350 ° C. The energy gain is about 4·0 Χ (X is about 5.9 kJ at NaH) -4 g AC3-3 + 1 g Mg+ 1 g NaH+1.95 g YC13, Ein : 137.0 kJ, dE : 7.1 kJ, TSC : none, Tmax : 384 ° C, theoretical energy is 3.3 kJ, gain is 2.15 times. Γ · Large capacity battery 4.70 g YI3, 1.66 g ΚΗ, 1 g Mg powder and 4 g CA-III 300 activated carbon powder (AC3-1), the energy gain was 6.9 kJ, but no sudden increase in battery temperature was observed. The maximum battery temperature was 426 ° C, and the theoretical energy was 3.37 kJ, gain is 2.04 times. 1.51 g Sn02, 1.66 g KH, 1 g Mg powder and 4 g CA-III 300 activated carbon powder (AC3-1), the energy gain is 9.4 kJ, but no battery temperature is observed. Increase. The maximum battery temperature is 460 ° C, the theoretical energy is 7.06 kJ, gain 1.33 times 4.56 g Asl3, 1.66 g KH, 1 g Mg powder and 4 g CA-III 300 activated carbon powder (AC3-1), energy gain is 11 · 5 kJ, and battery temperature suddenly increases by M4 ° C (221 -365 ° C). The maximum battery temperature is 463 ° C, the theoretical energy is 8.65 kJ, and the gain is 1.33 times. 3.09 g Mnl2, 1.66 g KH, 1 g Mg powder and 4 g STiC-l (TiC from Sigma Aldrich ), the energy gain is 9.6 kJ, and the battery temperature suddenly increases by 137 ° C (38-175 ° C). The maximum battery temperature is 396 ° C, the theoretical energy is 3.73 kJ, and the gain is 2.57 times 3.99 g SeBr4, 1.66 g KH , 1 g of Mg powder and 4 g of CA-III 300 activated carbon powder (AC3-1), energy gain of 20.9 kJ, and battery temperature 142257.doc -144- 201104948 sudden increase of 224 ° C (47-271 ° C) . The maximum battery temperature is 383 ° C, the theoretical energy is 16.93 kJ, and the gain is 1.23 times. 20 g AC3-3 + 5 g Mg+8.3 g KH+11.65 g Agl > Ein : 238.6 kJ, dE : 31.7 kJ, TSC: 230-3 16. . , Tmax : 317° (:, theoretical energy is 12.31^, gain is 2.57 times. 4 g AC3-3 + 1 g Mg+1.66 g KH+0.91 g CoS, Ein : 145.1 kJ, dE : 8.7 kJ, TSC : none , Tmax : 420 ° C, theoretical energy is 2.63 kJ, gain is 3.3 times. _ 4 g AC3-3 + 1 g Mg + 1.66 g KH + 1.84 g MgBr2 ; Ein : 134.1 kJ ; dE : 5.75 kJ ; TSC : not Observed; Tmax: 400 〇 C, theoretical energy 2.23 kJ, gain 2.58 times 5.02 g Sbl3, 1.66 g KH, 1 g Mg powder and 4 g CA-III 300 activated carbon powder (AC3-1), energy The gain is 12.2 kJ, and the battery temperature suddenly increases by 154 ° C (141-295 ° C). The maximum battery temperature is 379 ° C, the theoretical energy is 9.71 kJ, and the gain is 1.26 times. KH 8.3 gm + Mg 5.0 gm + TiC 20.0 Gm + AgCl 7.2 gm > Ein : 304 kJ, dE : 30 kJ, small TSC at about 275 ° C and Tmax of about 340 ° C. The energy gain is about 2 · 1 Χ (Χ is about 14.52 kJ). KH 1.66 Gm+Mg 1.0 gm+TiC 5.0 gm+BaBr2 2.97 gm 5 Load BaBr2-KH-Mg-TiC, Ein: 130 kJ, dE: 2 kJ, no TSC and Tmax of about 3 60 ° C, theoretical energy 0.64 kJ, The gain is 3 times. KH 8.3 gm+Mg 5.0 gm+TiC 20.0 gm+CuS 4.8 gm > Ein : 318 kJ,dE : 30 kJ, small TSC at about 250 ° C and Tmax is about 360 ° C. The energy gain is about 2.1X (X is about 14.4kJ). 142257.doc -145- 201104948 ΚΗ 8.3 gm+ Mg 5.0 gm + TiC 20.0 gm + MnS 4.35 gm, Ein : 3 26 kJ, dE : 14 kJ, no TSC and Tmax of about 35 ° C. The energy gain is about 2·2 Χ (Χ is about 6.3 kJ). 8.3 gm+Mg 5.0 gm+TiC 20.0 gm+GdF3 10.7 gm, Ein: 339 kJ, dE: 7 kJ, no TSC and Tmax of about 360 °C. The energy gain is about 2.54 Χ (Χ is about 2.75 kJ). 20 g AC3-2 + 5 g Mg+8.3 g KH+7.2 g AgCl » Ein : 327.1 kJ, dE : 40.4 kJ, TSC : 288-318X:, Tmax : 326. . The theoretical energy is 14.52 kJ and the gain is 2.78 times. 20 g AC3-2 + 5 g Mg+8.3 g KH+7.2 g CuBr, Ein: 205.1 kJ, dE: 22.5 kJ, TSC: 216-268〇C, Tmax: 280. . The theoretical energy is 13.46 kJ and the gain is 1.67 times. 4 g AC3-2+1 g Mg+1 g NaH+l_46 g YF3, Ein: 157.0 kJ, dE: 4.3 kJ, TSC: none, Tmax: 405 ° C, theoretical energy 0.77 kJ, gain 5.56 times. 4 g AC3-2+1 g Mg+1.66 g KH+1.46 g YF3 > Ein : 137.0 kJ,dE : 5.6 kJ, TSC : none, Tmax : 398 ° C, theoretical energy 0.74 kJ, gain 7.54 times. 11.3 g Υ2〇3, 5 g NaH, 5 g Mg powder and 20 g CA-III 300 activated carbon powder (AC3-2) in a 2"large capacity battery with an energy gain of 24.5 kJ, but no battery temperature was observed Sudden increase. The maximum battery temperature is 386 ° C, the theoretical energy is 5.9 kJ, and the gain is 4.2 times. 4 g AC3-2+1 g Mg+1 g NaH+3.91 g Bal2,Ein : 135.0 kJ,dE : 5.3 kJ, TSC : none, Tmax : 378 ° C, theoretical energy 142257.doc -146- 201104948 0.1 kJ The gain is 51 times. 4 g AC3-2+1 g Mg+1.66 g KH+3.91 g Bal2 > Ein : 123.1 kJ,dE : 3.3 kJ, TSC : none, Tmax : 390 ° C, theoretical energy 0.88 kJ, gain 3.8 times. 4 g AC3-2 + 1 g Mg+1.66 g KH+2.08 g BaCl2, Ein : 141.0 kJ, dE : 5·5 kJ, TSC : none, Tmax : 403 ° C, theoretical energy 0.52 kJ, gain 10.5 times . • 4 g AC3-2+1 g Mg+1.66 g KH+3.42 g Srl2 ; Ein : 128.2 kJ ; dE : 4.35 kJ ; TSC : not observed; Tmax : 383 ° C, theoretical energy 1.62 kJ, gain 3.3 Times. 4_04 g Sb2S5, 1.66 g KH, 1 g Mg powder and 4 g CA-III 3 00 activated carbon powder (AC3-2) were used. The energy gain was 18.0 kJ and the battery temperature increased sharply by 251 ° C (224-475 ° C). The maximum battery temperature is 481 ° C, the theoretical energy is 12.7 kJ, and the gain is 1.4 times. 4 g AC3-2+1 g Mg+1 g NaH+0.97 g ZnS, Ein: 132.1 kJ, dE: 7.5 kJ, TSC: none, Tmax: 370 ° C, theoretical energy 1.4 kJ, gain 5.33 times. 4 g AC3-2+1 g Mg+1 g NaH+3 12 g EuBr2, Ein : 13 5.0 kJ,dE : 5.0 kJ, TSC : 114-182 ° C, Tmax : 371 ° C, theoretically endothermic +0.35 kJ , the gain is unlimited. 4 g AC3-2+1 g Mg+1.66 g KH+3.12 g EuBr2, Ein: 122.0 kJ, dE: 9.4 kJ, TSC: 73-135〇C, Tmax: 385〇C, theoretical energy 0.28 kJ, gain is 34 times. 4 g CA3-2+1 g Mg+1.66 g KH+3.67g PbBr〗; Ein: 142257.doc -147- 201104948 126.0 kJ ; dE : 6.98 kJ ; TSC : 270-408〇C ; Tmax : 421°C, The theoretical energy is 5.17 kJ and the gain is 1.35 times. -4 g CA3-2 + 1 g Mg+1 g NaH+1.27 g AgF ; Ein : 125.0 kJ ; dE : 7.21 kJ ; TSC : 74-175 ° C ; Tmax : 372 ° C, theoretical energy 3.58 kJ, gain It is 2 times. 1.80 g GdBr3 (0.01 mol GdBr3 is 3.97 g, but not enough GdBr3), 1.66 g KH, 1 g Mg powder and 4 g CA-III 300 activated carbon powder (AC3-1), the energy gain is 2.8 kJ, but No sudden increase in battery temperature was observed. The maximum battery temperature is 431 °C, the theoretical energy is 1.84 kJ, the gain is 1.52 times, 0.97 g ZnS, 1.66 g KH, 1 g Mg powder and 4 g CA-III 300 activated carbon powder (AC3-1), energy gain. It was 4.0 kJ, but no sudden increase in battery temperature was observed. The maximum battery temperature is 444 ° C, the theoretical energy is 1.61 kJ, and the gain is 2.49 times. 3_92 g BI3 (in PP vials) ' 1_66 g KH, 1 g Mg powder and 4 g CA-III 300 activated carbon powder (AC3-1), energy gain of 13.2 kJ, and battery temperature rise to 87 °C (152-239 ° C). The maximum battery temperature is 465 ° C, the theoretical energy is 9.7 kJ, and the gain is 1.36 times. -4 g AC3-2+1 g Mg+1 g NaH+3.2 g HfCl4 5 Ein : 131.0 kJ,dE : 10.5 kJ, TSC : 277-439〇C, Tmax : 440〇C, theoretical energy 8.1 kJ, gain It is 1.29 times. 4 g AC3-2 + 1 g Mg+1.66 g KH+3.2 g HfCl4 > Ein : 125.0 kJ,dE : 11.5 kJ, TSC : 254-35 7〇C, Tmax : 405°C, theoretical energy is 9.06 kJ, The gain is 1.27 times. 142257.doc -148 - 201104948 _ 4 g CA3-2 + 1 g Mg+1.66 g KH+2.97 g BaBr2 ; Ein : 132.1 kJ ; dE : 4.65 kJ ; TSC : not observed; Tmax : 361 ° C, theoretical energy It is 0.64 kJ and the gain is 7.24 times. -4 g CA3-2+1 g Mg+1.66 g KH+2.35 g Agl ; Ein : 142.9 kJ ; dE : 7.32 kJ ; TSC : not observed; Tmax : 420 ° C, theoretical energy 2.46 kJ, gain 2.98 Times. 4.12 g of PI3, 1.66 g of KH, 1 g of Mg powder and 4 g of CA-III 300 activated carbon powder (AC3-1) were used. The energy gain was 13.8 kJ and the battery temperature increased by 189 ° C (184-373 ° C). The maximum battery temperature is 438 ° C, the theoretical energy is 11.1 kJ, and the gain is 1.24 times. 1.57 g SnF2, 1.66 g KH, 1 g Mg powder and 4 g CA-III 300 activated carbon powder (AC3-1), the energy gain is 7.9 kJ, and the battery temperature rises to 72 ° C (149-221 ° C ). The maximum battery temperature is 407 ° C, the theoretical energy is 5.28 kJ, and the gain is 1.5 times. 1.96 g of LaF3, 1.66 g of KH, 1 g of Mg powder and 4 g of CA-III 300 activated carbon powder (AC3-1), the energy gain was 4.2 kJ, but no sudden increase in battery temperature was observed. The maximum battery temperature is 442 ° C, the theoretical energy is 0.68 kJ, and the gain is 6.16 times. 4 g CAIII-300+1 g Mg+1 g NaH+2.78 g Mgl2 » Ein : 129.0 kJ,dE : 6.6 kJ, TSC : none, Tmax : 371 ° C, theoretical energy 1.75 kJ, gain 3.8 times. 4 g CAIII-300+1 g Mg+1.66 g KH+2.48 g SrBr2, Ein: 137.0 kJ, dE: 6.1 kJ, TSC: none, Tmax: 402 ° C, theoretical energy 1.35 kJ, gain 4.54 times. 142257.doc -149- 201104948 4 g CA3-2+1 g Mg+1.66 g KH+2.0 g CaBr2 ; Ein : 147.0 kJ ; dE : 6.33 kJ ; TSC : not observed; Tmax : 445 ° C, theoretical energy 1.71 kJ, the gain is 3.7 times. 4 g CA3-2+1 g Mg+1 g NaH+2.97 g BaBr2 » Ein · 140.1 kJ ; dE : 8.01 kJ ; TSC : not observed; Tmax : 405 ° C, theoretical energy 0.02 kJ, gain 483 times . 0.90 g of CrF2, 1.66 g of KH, 1 g of Mg powder and 4 g of CA-III 300 activated carbon powder (AC3-1) were used. The energy gain was 4.7 kJ, but no sudden increase in battery temperature was observed. The maximum battery temperature is 415 ° C, the theoretical energy is 3.46 kJ, and the gain is 1.36 times. KH 8.3 gm+Mg 5.0 gm+TiC 20.0 gm + InCl 7.5 gm 5 Ein 275 kJ, dE: 26 kJ, no TSC and Tmax of about 340 °C. The energy gain is about 2.2 X (X is about 11.45 kJ). KH 8.3 gm+Mg 5.0 gm+TiC 20.0 gm + Inl 12·1 gm, Ein 320 kJ, dE: 12 kJ, no TSC and Tmax of about 340 °C. The energy gain is about 1.25 X (X is about 9,6 kJ). KH 8.3 gm+Mg 5.0 gm+TiC 20.0 gm+InBr 9.75 gm 5 Ein 323 kJ, dE: 17 kJ, no TSC and Tmax of about 340 °C. The energy gain is about 1.7X (X is about 10 kJ). KH 8.3 gm+Mg 5.0 gm+TiC 20.0 gm+MnI2 15.45 gm 5 Validation experiment by Dr. Peter Jansson, Ein 292 kJ, dE: 45 kJ, small TSC at about 30 ° C and Tmax about 340 ° C. The energy gain is about 2.43X (X is about 18.5 kJ). KH 8.3 gm+Mg 5.0 gm+TiC 20.0 gm+FeBr2 10.8 gm (to 142257.doc -150-201104948 from STREM Chemicals FeBr2), Dr. Peter Jansson's validation experiment, Ein: 308 kJ, dE: 46 kJ, TSC at At about 220 ° C and a Tmax of about 330 ° C. The energy gain is about 1.84X (X is about 25 kJ). KH 8.3 gm+Mg 5.0 gm+TiC 20.0 gm+CoI2 15.65 gm 5 Ein : 243 kJ,dE : 55 kJ, small TSC at about 170 ° C and Tmax is about 330 ° C, theoretical energy is 26.35 kJ, gain is 2.08 times. • KH 8·3 gm+Mg 5.0 gm+TiC 20.0 gm+NiBr2 11.0 gm, Ein: 270 kJ, dE: 45 kJ, TSC at about 220 ° C and Tmax of about 3 40 ° C, theoretical energy 23 U The gain is 1.95 times. KH 8.3 gm+Mg 5.0 gm+TiC 20,0 gm+FeBr2 10.8 gm (FeBr2 from STREM Chemicals), Ein: 291 kJ, dE: 38 kJ, about 200 ° C TSC and Tmax about 330 ° C, theoretical energy It is 25 kJ and the gain is 1.52 times. KH 8.3 gm + Mg 5.0 gm + CAII-300 20.0 gm + ZnBr2 11.25 gm, Ein 302 kJ, dE: 42 kJ, small TSC at about 200 ° C and Tmax of about 375 ° C. The energy gain is about 2X (X is about 20.9 kJ). • KH 8.30 gm + Mg 5.0 gm + TiC 20.0 gm + GdBr3 19.85 gm ' Ein : 308 kJ, dE : 26 kJ, TSC at about 250 ° C and Tmax about 340 ° C. The energy gain is about 1.3 Χ (Χ is about 20.3 kJ). KH 8.3 gm + Mg 5.0 gm + CAII-300 20.0 gm + MnS 4.35 gm ' Ein : 3 49 kJ ' dE : 24 kJ, TSC at about 260 ° C and Tmax of about 350 ° C. The energy gain is about 3.6 X (X is about 6.6 kJ). 4 g CAIII-300+1 g Mg+1 g NaH+3.79 g LaBr3 » Ein : 143.0 kJ ' dE : 4.8 kJ, TSC : none, Tmax : 392 ° C ' Theoretical energy 142257.doc -151 - 201104948 The quantity is 2.46 kJ, the gain is 1.96 times. 4 g CAIII-300+1 g Mg+1.66 g KH+3.80 g CeBr3 > Ein : 145.0 kJ, dE : 7.6 kJ, TSC : none, Tmax : 413 ° C, theoretical energy 3.84 kJ, gain 1.97 times. 4 g CAIII-300+1 g Mg+1.66 g KH+1.44 g AgCl ; Ein : 136.2 kJ ; dE : 7.14 kJ ; TSC : not observed; Tmax : 420 ° C, theoretical energy 2.90 kJ, gain 2.46 times . 4 g CAIII-300+1 g Mg+1.66 g KH+1.60 g Cu2S, Ein: 137.0 kJ, dE: 5.5 kJ, TSC: none, Tmax: 405 ° C, theoretical energy 2.67 kJ, gain 2.06 times. 2.54 g Tel4 (0.015 g Tel4 is 6.35 g, but not enough Tel4), 1.66 g KH, 1 g Mg powder and 4 g CA-III 300 activated carbon powder (AC3-1) with an energy gain of 8.3 kJ, and The battery temperature suddenly increases by 113° (: (202-315 ° C). The maximum battery temperature is 395 ° C, the theoretical energy is 5.61 kJ, and the gain is 1.48 times. 2.51 g BBr3, 1.66 g KH, 1 g Mg powder and 4 g CA-III 300 activated carbon powder (AC3-1) with an energy gain of 12.4 kJ. The battery temperature rises to 52 ° C (77-129 ° C), and the battery temperature suddenly increases by 88 ° C (245-333 ° C) The maximum battery temperature is 438 ° C, the theoretical energy is 9.28 kJ, and the gain is 1.34 times. 4 g CAIII-300+1 g Mg+1.0 g NaH+3.59 g TaCl5 > Ein : 102.0 kJ,dE : 16.9 kJ, TSC: 80-293..., Tmax: 366. The theoretical energy is 11.89 kJ and the gain is 1.42 times.

2.72 g CdBr2、1.66 g KH、1 g Mg 粉末及 4 g CA-III 142257.doc -152- 201104948 300活性碳粉末(在300°C下乾燥),能量增益為6.6 kJ,且電 池溫度突增56°C (253-309°C )。最大電池溫度為414°C,理 論能量為4.31 kJ,增益為1.53倍。 2.73 g MoC15、1.66 g KH、1 g Mg 粉末及 4 g CA-III 300活性碳粉末(在300°C下乾燥),能量增益為20.1 kJ,且 電池溫度突增240°C(67-307°C)。最大電池溫度為511°C, 理論能量為15.04 kJ,增益為1.34倍。 2.75 g InBr2、1·66 g KH、1 g Mg 粉末及 4 g CA-III 300 活性碳粉末(在3 00°C下乾燥),能量增益為7.3 kJ,但未觀 測到電池溫度突增。最大電池溫度為481°C,理論能量為 4.46 kJ,增益為1.64倍。 1.88 g NbF5、1.66 g KH、1 g Mg 粉末及 4 g CA-III 300 活性碳粉末(在3 00°C下乾燥),能量增益為15.5 kJ,但未觀 測到電池溫度突增。最大電池溫度為448°C,理論能量為 11.36 kJ,增益為 1.36倍 ° 2.33 g ZrCl4、1.66 g KH、1 g Mg 粉末及 4 g CA-III 300 活性碳粉末(在300°C下乾燥),能量增益為12.9 kJ,且電池 溫度突增156°C(3 1 1-467°C)。最大電池溫度為472°C,理論 能量為8.82 kJ,增益為1.46倍。 3·66 g Cdl2、1.66 g KH、1 g Mg 粉末及 4 g CA-III 300 活性碳粉末(在300°C下乾燥),能量增益為6.7 kJ,且電池 溫度上升變化為74°C (125-199°C )。最大電池溫度為 417°C,理論能量為4.12 kJ,增益為1.62倍。 4 g CAIII-300+1 g Mg+1.66 g KH+2.64 g GdCl3 ; Ein : 142257.doc -153 - 201104948 127.0 kJ ; dE : 4·82 kJ ; TSC :未觀測到;Tmax : 395°C, 理論能量為3.54 kJ,增益為1.36倍。 KH 8.3 gm+Mg 5.0 gm+CAII-300 20.0 gm+InCl 7.5 gm,Ein : 305 kJ,dE : 32 kJ,在約 150°C 下小 TSC且 Tmax 為約350°C。能量增益為約2.8X(X為約11.5 kJ)。 _ KH 8.3 gm+Mg 5.0 gm +WC 20.0 gm+Col2 15.65 gm, Ein : 306 kJ,dE : 41 kJ,在約 200°C 下小 TSC且 Tmax為約 350°C。能量增益為約1·55Χ(Χ為約26·4 kJ)。2.72 g CdBr2, 1.66 g KH, 1 g Mg powder and 4 g CA-III 142257.doc -152- 201104948 300 activated carbon powder (dried at 300 ° C) with an energy gain of 6.6 kJ and a sudden increase in battery temperature 56 ° C (253-309 ° C). The maximum battery temperature is 414 ° C, the theoretical energy is 4.31 kJ, and the gain is 1.53 times. 2.73 g MoC15, 1.66 g KH, 1 g Mg powder and 4 g CA-III 300 activated carbon powder (dried at 300 ° C), the energy gain is 20.1 kJ, and the battery temperature suddenly increases by 240 ° C (67-307) °C). The maximum battery temperature is 511 ° C, the theoretical energy is 15.04 kJ, and the gain is 1.34 times. 2.75 g of InBr2, 1.66 g KH, 1 g of Mg powder and 4 g of CA-III 300 activated carbon powder (dried at 300 ° C), the energy gain was 7.3 kJ, but no sudden increase in battery temperature was observed. The maximum battery temperature is 481 ° C, the theoretical energy is 4.46 kJ, and the gain is 1.64 times. 1.88 g of NbF5, 1.66 g of KH, 1 g of Mg powder and 4 g of CA-III 300 activated carbon powder (dried at 300 ° C) with an energy gain of 15.5 kJ, but no sudden increase in battery temperature was observed. The maximum battery temperature is 448 ° C, the theoretical energy is 11.36 kJ, the gain is 1.36 times. 2.33 g ZrCl4, 1.66 g KH, 1 g Mg powder and 4 g CA-III 300 activated carbon powder (dried at 300 ° C) The energy gain is 12.9 kJ and the battery temperature suddenly increases by 156 ° C (3 1 1-467 ° C). The maximum battery temperature is 472 ° C, the theoretical energy is 8.82 kJ, and the gain is 1.46 times. 3·66 g Cdl2, 1.66 g KH, 1 g Mg powder and 4 g CA-III 300 activated carbon powder (dried at 300 ° C), the energy gain is 6.7 kJ, and the battery temperature rises to 74 ° C ( 125-199 ° C). The maximum battery temperature is 417 ° C, the theoretical energy is 4.12 kJ, and the gain is 1.62 times. 4 g CAIII-300+1 g Mg+1.66 g KH+2.64 g GdCl3 ; Ein : 142257.doc -153 - 201104948 127.0 kJ ; dE : 4·82 kJ ; TSC : not observed; Tmax : 395 ° C, theory The energy is 3.54 kJ and the gain is 1.36 times. KH 8.3 gm+Mg 5.0 gm+CAII-300 20.0 gm+InCl 7.5 gm, Ein: 305 kJ, dE: 32 kJ, small TSC at about 150 ° C and Tmax of about 350 ° C. The energy gain is about 2.8X (X is about 11.5 kJ). _ KH 8.3 gm + Mg 5.0 gm + WC 20.0 gm + Col 2 15.65 gm, Ein : 306 kJ, dE : 41 kJ, small TSC at about 200 ° C and Tmax of about 350 ° C. The energy gain is about 1.55 Χ (Χ is about 26·4 kJ).

NaH 5.0 gm+Mg 5.0 gm +WC 20.0 gm+GdBr3 19.85 gm,Ein 309 kJ,dE : 28 kJ,在約 250。(:下小 TSC且 Tmax 為約340°C。能量增益為約1.8X(X為約15.6kJ)。 KH 4.98 gm+Mg 3.0 gm+CAII-300 12.0 gm+InBr 5.85 gm,3X 系統,Ein : 297 kJ,dE : 13 kJ,在約 200°C 下小 TSC且Tmax為約330°C。能量增益為約1.3X(X為約10 kJ)。 4 g CAIII-300+1 g Mg+1 g NaH+2.26 g Y203,Ein : 133.1 kJ,dE : 5.2 kJ,TSC :無,Tmax : 384°C,理論能 量為1.18 kJ,增益為4.44倍。 4.11 g ZrBr4、1·66 g KH、1 g Mg 粉末及 4 g CA-III 300 活性碳粉末(在300°C下乾燥),能量增益為11.2 kJ,且電池 溫度突增154°C (280-434°C )。最大電池溫度為444°C,理論 能量為9.31 kJ,增益為1.2倍。 5.99 g Zrl4、1.66 g KH、1 g Mg 粉末及 4 g CA-III 300 活性碳粉末(在300°C下乾燥),能量增益為11.3 kJ,且電池 溫度突增200°(:(214-414°(:)。最大電池溫度為454°(:,理論 142257.doc -154- 201104948 能量為9.4 kJ,增益為1.2倍。 _ 2.70 g NbCl5、1.66 g KH、1 g Mg 粉末及 4 g CA-III 3 00活性碳粉末(在3 00°C下乾燥),能量增益為16.4 kJ,且 電池溫度突增213°C(137-350°C)。最大電池溫度為395°C, 理論能量為13.4〇 kJ,增益為1.22倍。 2.02 g MoC13、1.66 g KH、1 g Mg 粉末及 4 g CA-III 300活性碳粉末(在300°C下乾燥),能量增益為12.1 kJ,但 未觀測到電池溫度突增。最大電池溫度為536°C,理論能 量為8.48 kJ,增益為1.43倍。 3.13 g Nil2、1.66 g KH、1 g Mg 粉末及 4 g CA-III 300 活性碳粉末(在300°C下乾燥),能量增益為8.0 kJ,且電池 溫度突增33°C (335-368。(:)。最大電池溫度為438。(:,理論 能量為5.89 kJ,增益為1.36倍。NaH 5.0 gm+Mg 5.0 gm + WC 20.0 gm + GdBr3 19.85 gm, Ein 309 kJ, dE: 28 kJ, at about 250. (: Lower small TSC and Tmax is about 340 ° C. Energy gain is about 1.8X (X is about 15.6kJ). KH 4.98 gm + Mg 3.0 gm + CAII-300 12.0 gm + InBr 5.85 gm, 3X system, Ein: 297 kJ, dE: 13 kJ, small TSC at about 200 ° C and Tmax is about 330 ° C. The energy gain is about 1.3X (X is about 10 kJ). 4 g CAIII-300+1 g Mg+1 g NaH+2.26 g Y203,Ein : 133.1 kJ,dE : 5.2 kJ, TSC : none, Tmax : 384 ° C, theoretical energy 1.18 kJ, gain 4.44 times 4.11 g ZrBr4, 1.66 g KH, 1 g Mg Powder and 4 g CA-III 300 activated carbon powder (dried at 300 ° C) with an energy gain of 11.2 kJ and a sudden increase in battery temperature of 154 ° C (280-434 ° C). Maximum battery temperature is 444 ° C The theoretical energy is 9.31 kJ and the gain is 1.2 times. 5.99 g Zrl4, 1.66 g KH, 1 g Mg powder and 4 g CA-III 300 activated carbon powder (dried at 300 ° C), the energy gain is 11.3 kJ, And the battery temperature suddenly increased by 200 ° (: (214-414 ° (:). The maximum battery temperature is 454 ° (:, theory 142257.doc -154 - 201104948 energy is 9.4 kJ, the gain is 1.2 times. _ 2.70 g NbCl5, 1.66 g KH, 1 g Mg powder and 4 g CA-III 303 activated carbon The powder (dried at 300 ° C), the energy gain is 16.4 kJ, and the battery temperature suddenly increases by 213 ° C (137-350 ° C). The maximum battery temperature is 395 ° C, the theoretical energy is 13.4 〇 kJ, the gain is 1.22 times 2.02 g MoC13, 1.66 g KH, 1 g Mg powder and 4 g CA-III 300 activated carbon powder (dried at 300 ° C), the energy gain was 12.1 kJ, but no sudden increase in battery temperature was observed. The maximum battery temperature is 536 ° C, the theoretical energy is 8.48 kJ, and the gain is 1.43 times 3.13 g Nil2, 1.66 g KH, 1 g Mg powder and 4 g CA-III 300 activated carbon powder (dried at 300 ° C) The energy gain is 8.0 kJ, and the battery temperature suddenly increases by 33 ° C (335-368. (:). The maximum battery temperature is 438. (:, the theoretical energy is 5.89 kJ, and the gain is 1.36 times.

3.87 g As2Se3、1.66 g KH、1 g Mg 粉末及 4 g CA-III 300活性碳粉末(在30(rc下乾燥),能量增益為12 3 kJ,且 電池溫度突增241。(:(195-436。(:)。最大電池溫度為446<>(:, 理論能量為8.4 kJ ’增益為丨.46倍。 2·74 g Y2S3、1.66 g KH、1 g Mg 粉末及 4 g CA-III 300 活性碳粉末(在3 00°C下乾燥),能量增益為5.2 kJ,但未觀 測到電池溫度突增。最大電池溫度為444°C,理論能量為 0.41 kJ,增益為 12.64倍。 4 g CAIII-300+1 g Mg+1.66 g KH+3.79 g LaBr3 > Ein : 147.1 kJ ’ dE : 7.1 kJ,TSC :無,Tmax : 443°C,理論能 量為3.39 kJ,增益為2倍。 142257.doc -155- 201104948 4 g CAIII-300 + 1 g Mg+1.66 g KH+2.15 g MnBr2 ; Ein : 124.0 kJ ; dE : 5.55 kJ ; TSC : 360-405〇C ; Tmax : 411°C,理論能量為3.63 kJ,增益為1.53倍。 2.60 g Bi(OH)3、1.66 g KH、1 g Mg 粉末及 4 g CA-III 300活性碳粉末(在300°C下乾燥),能量增益為14.8 kJ,且 電池溫度突增173°C(202-375°C)。最大電池溫度為452°C, 理論能量為12.23 kJ,增益為1.2倍。 KH 8.3 gm+Mg 5.0 gm+TiC 20.0 gm+SnI2 18.5 gm Strem,Ein : 244 kJ,dE : 53 kJ,在約 150°C 下 TSC 且 Tmax為約3 30°C,理論能量為28.1 kJ,增益為1.9倍。 KH 8.3 gm+Mg 5.0 gm+TiC 20·0 gm+FeBr2 10.8 gm, Ein : 335 kJ,dE : 43 kJ,在約 250〇C 下 TSC 且 Tmax 為約 3 75°C,理論能量為22 kJ,增益為1.95倍。 KH 8.3 gm+Mg 5.0 gm+WC 20.0 gm+FeBr2 10.8 gm 5 Ein : 335 kJ,dE : 32 kJ,在約 230°C 下 TSC 且 Tmax為約 3 60°C,理論能量為22 kJ,增益為1.45倍。 KH 8.3 gm+Mg 5.0 gm+TiC 20.0 gm+MnI2 15.45 gm > Strem,Ein : 269 kJ,dE : 49 kJ,在約 50°C 下小 TSC 且 Tmax為約350°C。能量增益為約3·4Χ(Χ為約14.8 kJ)。 4 g CAIII-300+1.66 g Ca+1 g NaH+3.09 g Mnl2 ; Ein : 112.0 kJ ; dE : 9.98 kJ ; TSC : 178-374〇C ; Tmax : 383°C,理論能量為5.90 kJ,增益為1.69倍。 0.96 g CuS、1.66 g KH、1 g Mg 粉末及 4 g CA-III 300 活性碳粉末(在300°C下乾燥),能量增益為5.5 kJ,但未觀 142257.doc -156- 201104948 測到電池溫度突增。最大電池溫度為409i°C,理論能量為 2.93 kJ,增益為1.88倍。 0.87 g MnS、1.66 g KH、1 g Mg 粉末及 4 g CA-III 300 活性碳粉末(在3 00°C下乾燥),能量增益為4.7 kJ,但未觀 測到電池溫度突增。最大電池溫度為412°C,理論能量為 1.32 kJ,增益為3,57倍。 KH 8.3 gm+Mg 5.0 gm+TiC 20.0 gm+MnI2 15.45 gm 5 Ein : 269 kJ,dE : 49 kJ,在約 50°C 下小 TSC且 Tmax為約 350°(:,理論能量為18.65 1^,增益為2.6倍。3.87 g As2Se3, 1.66 g KH, 1 g Mg powder and 4 g CA-III 300 activated carbon powder (dried at 30 (r), the energy gain is 12 3 kJ, and the battery temperature suddenly increases by 241. (: (195) -436. (:). The maximum battery temperature is 446<>(:, the theoretical energy is 8.4 kJ 'the gain is 丨.46 times. 2.74 g Y2S3, 1.66 g KH, 1 g Mg powder and 4 g CA- III 300 activated carbon powder (dried at 300 ° C) with an energy gain of 5.2 kJ, but no sudden increase in battery temperature was observed. The maximum battery temperature was 444 ° C, the theoretical energy was 0.41 kJ, and the gain was 12.64 times. 4 g CAIII-300+1 g Mg+1.66 g KH+3.79 g LaBr3 > Ein : 147.1 kJ ' dE : 7.1 kJ, TSC : none, Tmax : 443 ° C, theoretical energy 3.39 kJ, gain 2 times. 142257.doc -155- 201104948 4 g CAIII-300 + 1 g Mg+1.66 g KH+2.15 g MnBr2 ; Ein : 124.0 kJ ; dE : 5.55 kJ ; TSC : 360-405〇C ; Tmax : 411°C, theory Energy is 3.63 kJ and gain is 1.53 times 2.60 g Bi(OH)3, 1.66 g KH, 1 g Mg powder and 4 g CA-III 300 activated carbon powder (dried at 300 ° C) with an energy gain of 14.8 kJ, and electricity The cell temperature suddenly increased by 173 ° C (202-375 ° C). The maximum battery temperature was 452 ° C, the theoretical energy was 12.23 kJ, and the gain was 1.2 times. KH 8.3 gm + Mg 5.0 gm + TiC 20.0 gm + SnI2 18.5 gm Strem , Ein : 244 kJ, dE : 53 kJ, TSC at about 150 ° C and Tmax is about 3 30 ° C, theoretical energy is 28.1 kJ, gain is 1.9 times. KH 8.3 gm + Mg 5.0 gm + TiC 20·0 Gm+FeBr2 10.8 gm, Ein: 335 kJ, dE: 43 kJ, TSC at about 250〇C and Tmax is about 3 75°C, theoretical energy is 22 kJ, gain is 1.95 times KH 8.3 gm+Mg 5.0 gm +WC 20.0 gm + FeBr2 10.8 gm 5 Ein : 335 kJ, dE : 32 kJ, TSC at about 230 ° C and Tmax of about 3 60 ° C, theoretical energy of 22 kJ, gain of 1.45 times. KH 8.3 gm + Mg 5.0 gm + TiC 20.0 gm + MnI2 15.45 gm > Strem, Ein: 269 kJ, dE: 49 kJ, small TSC at about 50 ° C and Tmax of about 350 ° C. The energy gain is about 3.4 Χ (Χ is about 14.8 kJ). 4 g CAIII-300+1.66 g Ca+1 g NaH+3.09 g Mnl2 ; Ein : 112.0 kJ ; dE : 9.98 kJ ; TSC : 178-374〇C ; Tmax : 383 ° C , theoretical energy 5.90 kJ , gain 1.69 times. 0.96 g CuS, 1.66 g KH, 1 g Mg powder and 4 g CA-III 300 activated carbon powder (dried at 300 ° C) with an energy gain of 5.5 kJ, but not observed 142257.doc -156- 201104948 The battery temperature has suddenly increased. The maximum battery temperature is 409i ° C, the theoretical energy is 2.93 kJ, and the gain is 1.88 times. 0.87 g MnS, 1.66 g KH, 1 g Mg powder and 4 g CA-III 300 activated carbon powder (dried at 300 ° C), the energy gain was 4.7 kJ, but no sudden increase in battery temperature was observed. The maximum battery temperature is 412 ° C, the theoretical energy is 1.32 kJ, and the gain is 3,57 times. KH 8.3 gm+Mg 5.0 gm+TiC 20.0 gm+MnI2 15.45 gm 5 Ein : 269 kJ, dE : 49 kJ, small TSC at about 50 ° C and Tmax of about 350 ° (:, theoretical energy is 18.65 1 ^, The gain is 2.6 times.

NaH 5.0 gm+Mg 5.0 gm+TiC 20.0 gm+NiBr2 11.0 gm 5 Ein : 245 kJ,dE : 43 kJ,在約 200°C 下 TSC 且 Tmax 為約 310°C,理論能量為26 kJ,增益為1.6倍。 KH 8.3 gm+Mg 5.0 gm+CAII-300 20.0 gm+MnCl2 6.3 gm,Ein : 333 kJ,dE : 34 kJ,在約 250°C 下 TSC 且 Tmax 為 約340°C,理論能量為17.6 kJ,增益為2倍。 2.42 g Ini、1·66 g KH、1 g Mg 粉末及 4 g CA-III 300 活 性碳粉末(在300°C下乾燥),能量增益為4.4 kJ,但未觀測 到電池溫度突增。最大電池溫度為438°C,理論能量為 1·92 kJ,增益為2.3倍° 1.72 g InF3、1.66 g KH、1 g Mg 粉末及 4 g CA-III 300 活性碳粉末(在300°C下乾燥),能量增益為9.2 kJ,但未觀 測到電池溫度突增。最大電池溫度為446°C,理論能量為5 kJ,增益為1.85倍。 4 g CAIII-300+1 g Mg+1 g NaH+1.98 g As2〇3 5 Ein : 142257.doc -157- 201104948 110.5 kJ,dE : 17.1 kJ,TSC : 325-452。。,Tmax : 471°C,理論能量為11.48 kJ,增益為1.49倍。 4 g CAIII-300+1 g Mg+1 g NaH+4_66 g Bi2〇3,Ein : 152.0 kJ,dE : 17.7 kJ,TSC : 185-403°C ,Tmax : 481°C,理論能量為13.8 kJ,增益為1.28倍。 4 g CAIII-300+1 g Mg+1 g NaH+2.02 g MoC13 ; Ein : 118.0 kJ ; dE : 11.10 kJ ; TSC : 342-496〇C ; Tmax : 496°C,理論能量為7.76,增益為1.43倍。 2.83 g PbF4、1.66 g KH、1 g Mg 粉末及 4 g CA-III 300 活性碳粉末(在3 00°C下乾燥),能量增益為13.9 kJ,且電池 溫度突增245°(:(217-462°〇。最大電池溫度為464°(:,理論 能量為13.38 kJ,增益為1.32倍。 2.78 g PbCl2、1.66 g KH、1 g Mg 粉末及 4 g CA-III 3 00活性碳粉末(在3 00°C下乾燥),能量增益為6.8 kJ,但未 觀測到電池溫度突增。最大電池溫度為488°C,理論能量 為5.22 kJ,增益為1.3倍。 • 4 g CAIII-300+1.66 g KH+2.19 g NiBr2 5 Ein : 136.0 kJ,dE : 7.5 kJ,TSC : 275-350〇C,Tmax : 385〇C,理論 能量為4.6 kJ ’增益為1.6倍。 4 g CAIII-300+1 g Mg+1 g NaH+2_74 g MoC15,Ein : 96.0 kJ,dE : 19.0 kJ,TSC : 86-334〇C,Tmax : 373〇C, 理論能量為14.06 kJ,增益為1.35倍。 4 g CAIII-300 + 1.66 g Ca+1 g NaH+2.19 g NiBr2 ; Ein : 127.1 kJ ; dE : 10.69 kJ ; TSC : 300-420〇C ; Tmax : 142257.doc -158- 201104948 1〇.69。(:,理論能量為7.67U,增益為⑶倍。 5.90 g Bil3、1.66 g KH、丄 g 吨粉末及 4 g CA-III 300 /舌!生碳粉末(在3〇〇°c下乾燥),能量增益為10.9 kJ,且電池 概度上升變化為7〇。〇(2丨7_287<^)。最大電池溫度為 458 C,理論能量為8 87 kJ,增益為丨23倍。 1·79 g SbF3、1.66 g KH、1 g Mg 粉末及 4 g CA-III 300 活性碳粉末(在30〇°c下乾燥),能量增益為丨丨7 kj,且電池 溫度突增169。(:(138-307。(:)。最大電池溫度為454°C,理論 能量為9·21 kJ,增益為127倍。 4 g CAIII-300+1.66 g Ca+1 g NaH+3.09 g Mnl2 ' Ein : Π1.0 kJ,dE : 12.6 kJ,TSC : 178-340〇C,Tmax : 373°C ’理論能量為5.9 kJ,增益為2.13倍。 4 g CAIII-300+1.66 g Ca+1 g NaH+1.34 g CuCl2 ; Ein : 135.2 kJ ; dE : 12.26 kJ ; TSC : 250-390〇C « Tmax : 437°C,理論能量為8.55 kJ,增益為1.43倍。 1.50 g InCU、1.66 g KH、1 g Mg 粉末及 4 g CA-III 300 活性碳粉末(在3 00°C下乾燥),能量增益為5.1 kJ,但未觀 測到電池溫度突增。最大電池溫度為410°C,理論能量為 2.29 kJ,增益為2.22倍。 2.21 g InCl3、1.66 g KH、1 g Mg 粉末及 4 g CA-III 300 活性碳粉末(在300°C下乾燥),能量增益為10.9 kJ且電池溫 度突增191。(:(235-426。〇。最大電池溫度為43TC,理論能 量為7.11 kJ,增益為1.5倍。 1·95 g InBr、1.66 g KH、1 g Mg粉末及4 g CA-III 300 142257.doc • 159· 201104948 活性碳粉末(在300°C下乾燥),能量增益為6.0 kJ,但未觀 測到電池溫度突增。最大電池溫度為435°C,理論能量為2 kJ,增益為3倍。 3.55 g InBr3、1.66 g KH、1 g Mg 粉末及 4 g CA-III 300 活性碳粉末(在300°C下乾燥),能量增益為9·1 kJ,且電池 溫度突增152°(:(156-308。(:)。最大電池溫度為386。(:,理論 能量為6.92 kJ,增益為1.3倍。 4 g CAIII-300+1.66 g KH+3.79 g Snl2,Ein : 169.1 kJ,dE : 6.0 kJ,TSC : 200-289°C,Tmax : 431〇C,理論 能量為4.03 kJ,增益為1.49倍。 KH 8.3 gm+Mg 5.0 gm+WC 20.0 gm+MnBr2 10.75 gm * Ein : 309 kJ,dE : 35 kJ,無 TSC且 Tmax為約 335°C。能量 增益為約1.9X(X為約18.1 kJ)。 KH 8.3 gm+Mg 5.0 gm+CAII-300 20.0 gm+MnBr2 10.75 gm,Ein : 280 kJ,dE : 41 kJ,在約 280°C 下 TSC且 Tmax為 約3 50°C。能量增益為約2.2 X(X為約18.1 kJ)。 KH 1_66 gm+Mg 1.0 gm+TiC 4.0 gm+TiF〗 1·〇5 gm,具 有 CAII-300之 5X 電池 #1086,Ein : 143 kJ,dE : 6 kJ,無 TSC且Tmax為約280°C,理論能量為2.5 kJ,增益為2.4 倍》 • KH 8.3 gm+Mg 5.0 gm+CAII-300 20.0 gm+FeF2 4.7 gm,Ein : 280 kJ,dE : 40 kJ,在約 260°C 下 TSC且 Tmax為 約340°C,理論能量為20.65 kJ,增益為1.93倍。 KH 8.3 gm+Mg 5.0 gm+CAII-300 20.0 gm+CuF2 5.1 142257.doc -160 - 201104948 gm,Ein : 203 kJ,dE : 57 kJ,在約 125°C 下 TSC且 Tmax為 約280°C,理論能量為29 kJ,增益為1.96倍。 KH 83.0 gm+Mg 50.0 gm+WC 200.0 gm+Snl2 185 gm, URS,Ein : 1310 kJ,dE : 428 kJ,在約 140°C 下 TSC 且 丁1^乂為約350°(:,理論能量為2001^,增益為2.14倍。 061009KAWFC1#1102 > NaH 1.0 gm+Mg 1.0 gm+WC 4.0 gm+GdBr3 3‘97 gm,Ein : 148 kJ,dE : 7 kJ,在約 300°C下小TSC且Tmax為約420°C。能量增益為約3.5 X(X 為約2 kJ)。 KH 8.3 gm+Mg 5.0 gm+CAII-300 20.0 gm+FeO 3.6 gm ’ Ein : 3 55 kJ,dE : 24 kJ,在約 260°C 下小 TSC且 Tmax 為約360°C。能量增益為約1.45 X(X為約16.6 kJ)。 KH 83.0 gm+Mg 50.0 gm+WC 200.0 gm+SnI2 185 gm } 羅溫,Ein : 1379 kJ,dE : 416 kJ,在約 140°C 下 TSC 且 Tmax為約3 50°C,理論能量為200 kJ,增益為2倍。 KH 8.3 gm+Mg 5.0 gm+CAII-300 20.0 gm+CoI2 15.65 gm ’ Ein : 3 61 kJ,dE : 69 kJ ’ 在約 200°C 下 TSC且 Tmax為 約410°(:,理論能量為26.3 5 1^,增益為2.6倍。 KH 8.3 gm+5.0 gm+CAII 300 20.0 gm+FeS 4.4 gm, Ein : 3 12 kJ,dE : 22 kJ,無 TSC且 Tmax為約 350°C。能量 增益為約1.7 X(X為約12.3 kJ)。 KH 8.3 gm+WC 40·0 gm+Snl2 18.5 gm,Ein : 315 kJ, dE : 27 kJ,在約140°C下小TSC且Tmax為約340°C。能量 增益為約1.35 X(X為約20 kJ)。 142257.doc • 161 - 201104948NaH 5.0 gm+Mg 5.0 gm+TiC 20.0 gm+NiBr2 11.0 gm 5 Ein : 245 kJ, dE : 43 kJ, TSC at about 200 ° C and Tmax is about 310 ° C, theoretical energy is 26 kJ, gain is 1.6 Times. KH 8.3 gm+Mg 5.0 gm+CAII-300 20.0 gm+MnCl2 6.3 gm, Ein: 333 kJ, dE: 34 kJ, TSC at about 250 ° C and Tmax is about 340 ° C, theoretical energy is 17.6 kJ, gain It is 2 times. 2.42 g Ini, 1.66 g KH, 1 g Mg powder and 4 g CA-III 300 activated carbon powder (dried at 300 ° C), the energy gain was 4.4 kJ, but no sudden increase in battery temperature was observed. The maximum battery temperature is 438 ° C, the theoretical energy is 1.92 kJ, the gain is 2.3 times. 1.72 g InF3, 1.66 g KH, 1 g Mg powder and 4 g CA-III 300 activated carbon powder (at 300 ° C) Dry), the energy gain was 9.2 kJ, but no sudden increase in battery temperature was observed. The maximum battery temperature is 446 ° C, the theoretical energy is 5 kJ, and the gain is 1.85 times. 4 g CAIII-300+1 g Mg+1 g NaH+1.98 g As2〇3 5 Ein : 142257.doc -157- 201104948 110.5 kJ,dE : 17.1 kJ, TSC: 325-452. . , Tmax : 471 ° C, theoretical energy is 11.48 kJ, and the gain is 1.49 times. 4 g CAIII-300+1 g Mg+1 g NaH+4_66 g Bi2〇3, Ein: 152.0 kJ, dE: 17.7 kJ, TSC: 185-403°C, Tmax: 481°C, theoretical energy is 13.8 kJ, The gain is 1.28 times. 4 g CAIII-300+1 g Mg+1 g NaH+2.02 g MoC13 ; Ein : 118.0 kJ ; dE : 11.10 kJ ; TSC : 342-496〇C ; Tmax : 496°C, theoretical energy 7.76, gain 1.43 Times. 2.83 g PbF4, 1.66 g KH, 1 g Mg powder and 4 g CA-III 300 activated carbon powder (dried at 300 ° C) with an energy gain of 13.9 kJ and a sudden increase in battery temperature of 245° (: (217) -462°〇. The maximum battery temperature is 464° (:, theoretical energy is 13.38 kJ, gain is 1.32 times. 2.78 g PbCl2, 1.66 g KH, 1 g Mg powder and 4 g CA-III 3 00 activated carbon powder ( Drying at 300 ° C), the energy gain was 6.8 kJ, but no sudden increase in battery temperature was observed. The maximum battery temperature was 488 ° C, the theoretical energy was 5.22 kJ, and the gain was 1.3 times. • 4 g CAIII-300+ 1.66 g KH+2.19 g NiBr2 5 Ein : 136.0 kJ,dE : 7.5 kJ, TSC : 275-350〇C, Tmax : 385〇C, theoretical energy 4.6 kJ '1.6 times gain. 4 g CAIII-300+1 g Mg+1 g NaH+2_74 g MoC15, Ein : 96.0 kJ, dE : 19.0 kJ, TSC : 86-334〇C, Tmax : 373〇C, theoretical energy is 14.06 kJ, gain is 1.35 times. 4 g CAIII- 300 + 1.66 g Ca+1 g NaH+2.19 g NiBr2 ; Ein : 127.1 kJ ; dE : 10.69 kJ ; TSC : 300-420〇C ; Tmax : 142257.doc -158- 201104948 1〇.69. (:, theory The energy is 7.67U and the gain is 5.90 g Bil3, 1.66 g KH, 丄g ton of powder and 4 g CA-III 300 / tongue! Raw carbon powder (dried at 3 ° C), energy gain of 10.9 kJ, and battery rise The change is 7〇.〇(2丨7_287<^). The maximum battery temperature is 458 C, the theoretical energy is 8 87 kJ, and the gain is 丨23 times. 1.79 g SbF3, 1.66 g KH, 1 g Mg powder and 4 g CA-III 300 Activated carbon powder (dried at 30 ° C) with an energy gain of 丨丨7 kj and a sudden increase in battery temperature of 169. (: (138-307. (:). Maximum battery temperature is 454 °C, the theoretical energy is 9.21 kJ, and the gain is 127 times. 4 g CAIII-300+1.66 g Ca+1 g NaH+3.09 g Mnl2 ' Ein : Π1.0 kJ,dE : 12.6 kJ,TSC : 178- 340 〇 C, Tmax : 373 ° C 'Theoretical energy is 5.9 kJ and the gain is 2.13 times. 4 g CAIII-300+1.66 g Ca+1 g NaH+1.34 g CuCl2 ; Ein : 135.2 kJ ; dE : 12.26 kJ ; TSC : 250-390〇C « Tmax : 437°C, theoretical energy is 8.55 kJ, gain is 1.43 times. 1.50 g of InCU, 1.66 g of KH, 1 g of Mg powder and 4 g of CA-III 300 activated carbon powder (dried at 300 ° C) with an energy gain of 5.1 kJ, but no sudden increase in battery temperature was observed. The maximum battery temperature is 410 ° C, the theoretical energy is 2.29 kJ, and the gain is 2.22 times. 2.21 g of InCl3, 1.66 g of KH, 1 g of Mg powder and 4 g of CA-III 300 activated carbon powder (dried at 300 ° C) with an energy gain of 10.9 kJ and a sudden increase in battery temperature of 191. (:(235-426.〇. The maximum battery temperature is 43TC, the theoretical energy is 7.11 kJ, and the gain is 1.5 times. 1.95 g InBr, 1.66 g KH, 1 g Mg powder and 4 g CA-III 300 142257.doc • 159· 201104948 Activated carbon powder (dried at 300 ° C) with an energy gain of 6.0 kJ, but no sudden increase in battery temperature. Maximum battery temperature is 435 ° C, theoretical energy is 2 kJ, gain is 3 times 3.55 g InBr3, 1.66 g KH, 1 g Mg powder and 4 g CA-III 300 activated carbon powder (dried at 300 ° C) with an energy gain of 9·1 kJ and a sudden increase in battery temperature of 152° (: (156-308. (:). The maximum battery temperature is 386. (:, the theoretical energy is 6.92 kJ, the gain is 1.3 times. 4 g CAIII-300+1.66 g KH+3.79 g Snl2, Ein: 169.1 kJ, dE: 6.0 kJ, TSC: 200-289°C, Tmax: 431〇C, theoretical energy is 4.03 kJ, gain is 1.49 times KH 8.3 gm+Mg 5.0 gm+WC 20.0 gm+MnBr2 10.75 gm * Ein : 309 kJ,dE : 35 kJ, no TSC and Tmax is about 335 ° C. The energy gain is about 1.9X (X is about 18.1 kJ). KH 8.3 gm + Mg 5.0 gm + CAII-300 20.0 gm + MnBr2 10.75 gm, Ein : 280 kJ , dE : 41 kJ, at TSC at 280 ° C and Tmax is about 3 50 ° C. The energy gain is about 2.2 X (X is about 18.1 kJ). KH 1_66 gm + Mg 1.0 gm + TiC 4.0 gm + TiF 1 · 〇 5 gm with CAII -300 5X Battery #1086, Ein: 143 kJ, dE: 6 kJ, no TSC and Tmax is about 280 ° C, theoretical energy is 2.5 kJ, gain is 2.4 times. • KH 8.3 gm + Mg 5.0 gm + CAII- 300 20.0 gm+FeF2 4.7 gm, Ein: 280 kJ, dE: 40 kJ, TSC at about 260 ° C and Tmax is about 340 ° C, theoretical energy is 20.65 kJ, gain is 1.93 times. KH 8.3 gm + Mg 5.0 Gm+CAII-300 20.0 gm+CuF2 5.1 142257.doc -160 - 201104948 gm,Ein : 203 kJ,dE : 57 kJ, TSC at about 125 ° C and Tmax is about 280 ° C, theoretical energy is 29 kJ, The gain is 1.96 times. KH 83.0 gm+Mg 50.0 gm+WC 200.0 gm+Snl2 185 gm, URS, Ein: 1310 kJ, dE: 428 kJ, TSC at about 140 °C and Ding 1^乂 is about 350° (:, theoretical energy is 2001^, the gain is 2.14 times. 061009KAWFC1#1102 > NaH 1.0 gm+Mg 1.0 gm+WC 4.0 gm+GdBr3 3'97 gm, Ein: 148 kJ, dE: 7 kJ, small TSC at about 300 ° C and The Tmax is about 420 ° C. The energy gain is about 3.5 X (X is about 2 kJ). KH 8.3 gm + Mg 5.0 gm + CAII-300 20.0 gm + FeO 3.6 gm ' Ein : 3 55 kJ, dE : 24 kJ, A small TSC at about 260 ° C and a Tmax of about 360 ° C. The energy gain is about 1.45 X (X is about 16.6 kJ). KH 83.0 gm + Mg 50.0 gm + WC 200.0 gm + SnI2 185 gm } Rovin, Ein : 1379 kJ,dE : 416 kJ, TSC at about 140 ° C and Tmax is about 3 50 ° C, theoretical energy is 200 kJ, gain is 2 times. KH 8.3 gm+Mg 5.0 gm+CAII-300 20.0 gm+ CoI2 15.65 gm ' Ein : 3 61 kJ, dE : 69 kJ ' TSC at about 200 ° C and Tmax is about 410 ° (:, theoretical energy is 26.3 5 1 ^, gain is 2.6 times. KH 8.3 gm + 5.0 gm +CAII 300 20.0 gm+FeS 4.4 gm, Ein: 3 12 kJ, dE: 22 kJ, no TSC and Tmax of about 350 °C. The amount gain is about 1.7 X (X is about 12.3 kJ). KH 8.3 gm+WC 40·0 gm+Snl2 18.5 gm, Ein: 315 kJ, dE: 27 kJ, small TSC at about 140 ° C and Tmax is about 340 ° C. The energy gain is about 1.35 X (X is about 20 kJ). 142257.doc • 161 - 201104948

NaH 5.0 gm+Mg 5.0 gm + WC 20.0 gm+MnI2 15.45 gm 5 Ein : 108 kJ,dE : 30 kJ,在約 70°C 下 TSC 且 Tmax 為約 170°C,理論能量為14.8 kJ,增益為2倍。NaH 5.0 gm+Mg 5.0 gm + WC 20.0 gm+MnI2 15.45 gm 5 Ein : 108 kJ,dE : 30 kJ, TSC at about 70 ° C and Tmax is about 170 ° C, theoretical energy is 14.8 kJ, gain is 2 Times.

NaH 5.0 gm+Mg 5.0 gm+WC 20.0 gm+NiBr2 11.0 gm > Ein : 248 kJ,dE : 34 kJ,在約 170°C 下 TSC 且 Tmax 為約 300°C。能量增益為約1·7Χ(Χ為約20 kJ),理論能量為 26.25 kJ,增益為1.3倍。 KH 8.3 gm+Mg 5.0 gm+WC 20.0 gm+NiBr2 11.0 gm 5 Ein : 291 kJ,dE : 30 kJ,在約 250°C 下小 TSC且 Tmax為約 340°C。能量增益為約1·5Χ(Χ為約20 kJ),理論能量為 26.25 kJ,增益為 1.14倍 °NaH 5.0 gm+Mg 5.0 gm+WC 20.0 gm+NiBr2 11.0 gm > Ein: 248 kJ, dE: 34 kJ, TSC at about 170 ° C and Tmax of about 300 °C. The energy gain is about 1·7 Χ (Χ is about 20 kJ), the theoretical energy is 26.25 kJ, and the gain is 1.3 times. KH 8.3 gm+Mg 5.0 gm+WC 20.0 gm+NiBr2 11.0 gm 5 Ein: 291 kJ, dE: 30 kJ, small TSC at about 250 ° C and Tmax of about 340 ° C. The energy gain is about 1.5 Χ (Χ is about 20 kJ), the theoretical energy is 26.25 kJ, and the gain is 1.14 times.

NaH 5.0 gm+Mg 5.0 gm+WC 20.0 gm+NiBr2 11.0 gm 5 重複電池 #1105,Ein : 242 kJ,dE : 33 kJ,在約 70°C 下 TSC且Tmax為約280°C。能量增益為約1 ·65Χ(Χ為約20 kJ)。 -NaH 5.0 gm+Mg 5.0 gm+CAII-300 20.0 gm+InCl3 11.1 gm,Ein : 189 kJ,dE : 48 kJ,在約 80°C 下小 TSC且 Tmax 為約260°C。能量增益為約1.5X(X為約31 kJ)。 KH 8.3 gm+Mg 5.0 gm+CAII-300 20.0 gm+MnI2 15.45 gm,Ein : 248 kJ,dE : 46 kJ,在約 200t 下小 TSC且 Tmax 為約325°C。能量增益為約3X(X為約14.8 kJ)。 2.96 g FeBr3、1.66 g KH、1 g Mg 粉末及 4 g CA-III 300活性碳粉末(在300°C下乾燥),能量增益為12.5 kJ,且 電池溫度突增77°C(72-149°C)。最大電池溫度為418°C,理 142257.doc -162- 201104948 論能量為8.35 kj,增益為1.5倍。 0.72 g FeO、1.66 g KH、1 g Mg 粉末及 4 g CA-III 300 活性碳粉末(在300°C下乾燥),能量增益為6.7 kJ,但未觀 測到電池溫度突增。最大電池溫°度為448°C,理論能量為 3.3 kJ,增益為2倍。 1.26 g MnCl2、1.66 g KH、1 g Mg 粉末及 4 g CA-III 3 00活性碳粉末(在300°(:下乾燥),能量增益為8.61^,但未 觀測到電池溫度突增。最大電池溫度為437°C,理論能量 為3.52 kJ,增益為2.45倍。 1·13 g FeF3、1.66 g KH、1 g Mg 粉末及 4 g CA-III 300 活性碳粉末(在300°C下乾燥),能量增益為12.6 kJ,但未觀 測到電池溫度突增。最大電池溫度為618°C,理論能量為 6.44 kJ,能量增益為1.96倍。 » 4 g CAIII-300+1 g Mg+1 g NaH+3.97 g GdBr3 > Ein : 143.1 kJ,dE : 5.4 kJ,TSC :無,Tmax : 403°C,理論能 量為1.99 kJ,增益為2.73倍。 4 g CAIII-300+1 g Mg+1 g NaH+1.57 g SnF2 ; Ein : 139.0 kJ ; dE : 7.24 kJ ; TSC :未觀測到;Tmax : 413°C, 理論能量為5.28 kJ,增益為1.37倍。 4 g CAIII-300+1 g Mg+1 g NaH+4.04 g Sb2S5,Ein : 125.0 kJ,dE : 19.3 kJ,TSC : 421-651C,Tmax : 651。。, 理論能量為12.37 kJ,增益為1.56倍。 1.36 g ZnCl2、1.66 g KH、1 g Mg 粉末及 4 g CA-III 3 00活性碳粉末(在300°C下乾燥),能量增益為6·6 kJ,但未 142257.doc -163 - 201104948 觀測到電池溫度突增。最大電池溫度為402°C,理論能量 為4.34 kJ,增益為1.52倍。 1.03 g ZnF2、1.66 g KH、1 g Mg 粉末及 4 g CA-III 300 活性碳粉末(在300°C下乾燥),能量增益為6.5 kJ,但未觀 測到電池溫度突增。最大電池溫度為427°C,理論能量為 3.76 kJ,增益為1.73倍。 4 g CAIII-300+1 g Mg+1 g NaH+2.22 g InCl3,實驗 dE: -12.6 kJ,考慮之反應:InCl3(c)+3NaH(c)+1.5Mg(c)= 3NaCl(c)+In(c)+1.5MgH2(c) Q=_640.45 千焦/反應,理論化 學反應能量:-6.4 kJ,過剩熱:-6.2 kJ,2.OX過剩熱。 1.08 g VF3、1.66 g KH、1 g Mg 粉末及 4 g CA-III 300 活性碳粉末(在300°C下乾燥),能量增益為9.5 kJ,但未觀 測到電池溫度突增。最大電池溫度為447°C,理論能量為 4.9 kJ,增益為1.94倍。 8.3 g KH+5.0 g Mg+20.0 g AC(II-300) + 5.4 g VF3, Ein : 286 kJ,dE : 58 kJ,理論能量為 24.5 kJ,增益為 2.3 倍。 4 g CAIII-300+1 g Mg+1 g NaH+1.72 g InF3 J Ein : 134.0 kJ,dE : 8.1 kJ,TSC :無,Tmax : 391°C,理論能 量為5 kJ,增益為1.62倍。 -4 g CAIII-300+1 g Mg+1.66 g KH+1.02 g CuF2,實驗 dE : -9.4 kJ,考慮之反應:CuF2(c)+Mg(c)=MgF2(c) + Cu(c) Q=-581.5千焦/反應,理論化學反應能量:-5.82 kJ,過剩 熱:-3.59 kJ,1.6X過剩熱。 142257.doc -164- 201104948 -4 g CAIII-300+1 g Mg+1 g NaH+2.83 g PbF4,實驗 dE : -17.6 kJ,考慮之反應:PbF4(c)+2Mg(c)+4NaH(c)= 2MgH2(c) + 4NaF(c)+Pb(c) Q = -1290.0千焦/反應,理論化學 反應能量:-12.9 kJ,過剩熱:-4.7 kJ,1.4X過剩熱。 KH 1.66 gm+Mg 1.0 gm+TiC 4.0 gm +SnI4 6.26 gm 5 Ein : 97 kJ,dE : 17 kJ,TSC 在約 150°C 下且 Tmax 為約 3 70°C,理論能量為10.1 kJ,增益為1.7倍。 4 g CAIII-300+1 g Mg+1.66 g KH+3.7 g TiBr4,實驗 dE : -16.1 kJ,考慮之反應:TiBr4(c)+4KH(c)+2Mg(c) + C(s)=4KBr(c) + TiC(c) + 2MgH2(c) Q=-1062.3 千焦/反應,理 論化學反應能量:-10.7 kJ,過剩熱:-5.4 kJ,1.5X過剩 熱。 bi3 4 g CAIII-300+1 g Mg+1 g NaH+2.4 g BI3 > Ein : 128.1 kJ,dE : 7.9 kJ,TSC : 180-263°C,Tmax : 365°C,理論 能量為5.55 kJ,增益為1.4倍。NaH 5.0 gm+Mg 5.0 gm+WC 20.0 gm+NiBr2 11.0 gm 5 Repetitive battery #1105, Ein: 242 kJ, dE: 33 kJ, TSC at about 70 ° C and Tmax of about 280 ° C. The energy gain is about 1 · 65 Χ (Χ is about 20 kJ). - NaH 5.0 gm + Mg 5.0 gm + CAII-300 20.0 gm + InCl3 11.1 gm, Ein: 189 kJ, dE: 48 kJ, small TSC at about 80 ° C and Tmax of about 260 ° C. The energy gain is about 1.5X (X is about 31 kJ). KH 8.3 gm+Mg 5.0 gm+CAII-300 20.0 gm+MnI2 15.45 gm, Ein: 248 kJ, dE: 46 kJ, small TSC at about 200 t and Tmax about 325 °C. The energy gain is about 3X (X is about 14.8 kJ). 2.96 g FeBr3, 1.66 g KH, 1 g Mg powder and 4 g CA-III 300 activated carbon powder (dried at 300 ° C) with an energy gain of 12.5 kJ and a sudden increase in battery temperature of 77 ° C (72-149) °C). The maximum battery temperature is 418 ° C, 142 257. doc -162 - 201104948 on the energy of 8.35 kj, the gain is 1.5 times. 0.72 g FeO, 1.66 g KH, 1 g Mg powder and 4 g CA-III 300 activated carbon powder (dried at 300 ° C), the energy gain was 6.7 kJ, but no sudden increase in battery temperature was observed. The maximum battery temperature is 448 ° C, the theoretical energy is 3.3 kJ, and the gain is 2 times. 1.26 g MnCl2, 1.66 g KH, 1 g Mg powder and 4 g CA-III 3 00 activated carbon powder (at 300 ° (: dry), the energy gain was 8.61^, but no sudden increase in battery temperature was observed. Max. The battery temperature is 437 ° C, the theoretical energy is 3.52 kJ, and the gain is 2.45 times. 1·13 g FeF3, 1.66 g KH, 1 g Mg powder and 4 g CA-III 300 activated carbon powder (dried at 300 ° C) The energy gain is 12.6 kJ, but no sudden increase in battery temperature is observed. The maximum battery temperature is 618 ° C, the theoretical energy is 6.44 kJ, and the energy gain is 1.96 times. » 4 g CAIII-300+1 g Mg+1 g NaH+3.97 g GdBr3 > Ein : 143.1 kJ,dE : 5.4 kJ, TSC : none, Tmax : 403 ° C, theoretical energy 1.99 kJ, gain 2.73 times 4 g CAIII-300+1 g Mg+1 g NaH+1.57 g SnF2 ; Ein : 139.0 kJ ; dE : 7.24 kJ ; TSC : not observed; Tmax : 413 ° C , theoretical energy 5.28 kJ , gain 1.37 times 4 g CAIII-300+1 g Mg+1 g NaH+4.04 g Sb2S5, Ein : 125.0 kJ, dE : 19.3 kJ, TSC : 421-651C, Tmax : 651., Theoretical energy is 12.37 kJ, gain is 1.56 times 1.36 g ZnCl2, 1.66 g KH, 1 g Mg powder And 4 g of CA-III 3 00 activated carbon powder (dried at 300 ° C), the energy gain is 6.6 kJ, but no sudden rise in battery temperature was observed at 142257.doc -163 - 201104948. The maximum battery temperature is 402. °C, theoretical energy is 4.34 kJ, gain is 1.52 times. 1.03 g ZnF2, 1.66 g KH, 1 g Mg powder and 4 g CA-III 300 activated carbon powder (dried at 300 ° C), energy gain 6.5 kJ, but no sudden increase in battery temperature was observed. The maximum battery temperature was 427 ° C, the theoretical energy was 3.76 kJ, and the gain was 1.73 times. 4 g CAIII-300+1 g Mg+1 g NaH+2.22 g InCl3, experimental dE : -12.6 kJ, consider the reaction: InCl3(c)+3NaH(c)+1.5Mg(c)= 3NaCl(c)+In(c)+1.5MgH2(c) Q=_640.45 kJ/reaction, Theoretical chemical reaction energy: -6.4 kJ, excess heat: -6.2 kJ, 2.OX excess heat. 1.08 g of VF3, 1.66 g of KH, 1 g of Mg powder and 4 g of CA-III 300 activated carbon powder (dried at 300 ° C) with an energy gain of 9.5 kJ, but no sudden increase in battery temperature was observed. The maximum battery temperature is 447 ° C, the theoretical energy is 4.9 kJ, and the gain is 1.94 times. 8.3 g KH+5.0 g Mg+20.0 g AC(II-300) + 5.4 g VF3, Ein: 286 kJ, dE: 58 kJ, theoretical energy 24.5 kJ, gain 2.3 times. 4 g CAIII-300+1 g Mg+1 g NaH+1.72 g InF3 J Ein : 134.0 kJ,dE : 8.1 kJ, TSC : none, Tmax : 391 ° C, theoretical energy 5 kJ, gain 1.62 times. -4 g CAIII-300+1 g Mg+1.66 g KH+1.02 g CuF2, experimental dE: -9.4 kJ, consider the reaction: CuF2(c)+Mg(c)=MgF2(c) + Cu(c) Q =-581.5 kJ / reaction, theoretical chemical reaction energy: -5.82 kJ, excess heat: -3.59 kJ, 1.6X excess heat. 142257.doc -164- 201104948 -4 g CAIII-300+1 g Mg+1 g NaH+2.83 g PbF4, experimental dE: -17.6 kJ, consider the reaction: PbF4(c)+2Mg(c)+4NaH(c ) = 2MgH2(c) + 4NaF(c)+Pb(c) Q = -1290.0 kJ/reaction, theoretical chemical reaction energy: -12.9 kJ, excess heat: -4.7 kJ, 1.4X excess heat. KH 1.66 gm+Mg 1.0 gm+TiC 4.0 gm +SnI4 6.26 gm 5 Ein : 97 kJ,dE : 17 kJ, TSC at about 150 ° C and Tmax is about 3 70 ° C, the theoretical energy is 10.1 kJ, the gain is 1.7 times. 4 g CAIII-300+1 g Mg+1.66 g KH+3.7 g TiBr4, experimental dE: -16.1 kJ, consider the reaction: TiBr4(c)+4KH(c)+2Mg(c) + C(s)=4KBr (c) + TiC(c) + 2MgH2(c) Q=-1062.3 kJ/reaction, theoretical chemical reaction energy: -10.7 kJ, excess heat: -5.4 kJ, 1.5X excess heat. Bi3 4 g CAIII-300+1 g Mg+1 g NaH+2.4 g BI3 > Ein : 128.1 kJ,dE : 7.9 kJ, TSC : 180-263°C, Tmax : 365°C, theoretical energy 5.55 kJ, The gain is 1.4 times.

MnBr2 4 g CAIII-300+1 g Mg+1.66 g KH+2.15 g MnBr2,實驗 dE : -7.0 kJ,考慮之反應:MnBr2(c)+2KH(c)+Mg(c)= 2KBr(c)+Mn(c)+MgH2(c) Q=-362.6千焦/反應,理論化學反 應能量:-3.63 kJ,過剩熱:-3.4 kJ,1.9X過剩熱。 KH 8.3 gm+Mg 5.0 gm+WC 20.0 gm+MnBr2 10.75 gm 5 Ein : 309 kJ,dE : 35 kJ,無 TSC且 Tmax為約 335°C。能量 增益為約1·9Χ(Χ為約18.1 kJ)。 142257.doc -165- 201104948 ΚΗ 8.3 gm+Mg 5.0 gm+CAII-300 20.0 gm+MnBr2 10.75 gm,Ein : 280 kJ,dE : 41 kJ,在約 28 0°C 下 TSC且 Tmax為 約350°C。能量增益為約2.2 X(X為約18.1 kJ)。MnBr2 4 g CAIII-300+1 g Mg+1.66 g KH+2.15 g MnBr2, experimental dE: -7.0 kJ, consider the reaction: MnBr2(c)+2KH(c)+Mg(c)= 2KBr(c)+ Mn(c)+MgH2(c) Q=-362.6 kJ/reaction, theoretical chemical reaction energy: -3.63 kJ, excess heat: -3.4 kJ, 1.9X excess heat. KH 8.3 gm+Mg 5.0 gm+WC 20.0 gm+MnBr2 10.75 gm 5 Ein: 309 kJ, dE: 35 kJ, no TSC and Tmax of about 335 °C. The energy gain is about 1.9 Χ (Χ is about 18.1 kJ). 142257.doc -165- 201104948 ΚΗ 8.3 gm+Mg 5.0 gm+CAII-300 20.0 gm+MnBr2 10.75 gm, Ein: 280 kJ, dE: 41 kJ, TSC at about 28 0 °C and Tmax about 350 °C . The energy gain is about 2.2 X (X is about 18.1 kJ).

FeF2 • 4 g CAIII-300 + 1 g Mg+1.66 g KH+0.94 g FeF2,實驗 dE : -9.8 kJ,考慮之反應:FeF2(c)+Mg(c)=MgF2(c)+Fe(c), Q=-412.9千焦/反應,理論化學反應能量:-4.13 kJ,過剩 熱:-5.67 kJ,2.4X過剩熱。 KH 8.3 gm+Mg 5.0 gm+CAII-300 20.0 gm+FeF2 4.7 gm,Ein : 280 kJ,dE : 40 kJ,在約 260°C 下 TSC且 Tmax為 約340°C,理論能量為20.65 kJ,增益為1.94倍。FeF2 • 4 g CAIII-300 + 1 g Mg+1.66 g KH+0.94 g FeF2, experimental dE: -9.8 kJ, consider the reaction: FeF2(c)+Mg(c)=MgF2(c)+Fe(c) , Q = -412.9 kJ / reaction, theoretical chemical reaction energy: -4.13 kJ, excess heat: -5.77 kJ, 2.4X excess heat. KH 8.3 gm+Mg 5.0 gm+CAII-300 20.0 gm+FeF2 4.7 gm, Ein: 280 kJ, dE: 40 kJ, TSC at about 260 ° C and Tmax is about 340 ° C, theoretical energy is 20.65 kJ, gain It is 1.94 times.

TiF3 KH 1.66 gm + Mg 1.0 gm+TiC 4·0 gm+TiF3 1.05 gm(具有 CAII-300 之 5X 電池 #1086),Ein : 143 kJ,dE : 6 kJ,無 TSC且Tmax為約280°C,理論能量為2.5,增益為2.4倍。 KH 8.3 gm+Mg 5.0 gm+CAII-300 20.0 gm+TiF3 5.25 gm,Ein : 268 kJ,dE : 7 kJ,無 TSC且 Tmax為約 280°C。 無能量增益(X為约21.7 kJ)。TiF3 KH 1.66 gm + Mg 1.0 gm + TiC 4·0 gm + TiF3 1.05 gm (5X battery #1086 with CAII-300), Ein: 143 kJ, dE: 6 kJ, no TSC and Tmax of about 280 ° C, The theoretical energy is 2.5 and the gain is 2.4 times. KH 8.3 gm+Mg 5.0 gm+CAII-300 20.0 gm+TiF3 5.25 gm, Ein: 268 kJ, dE: 7 kJ, no TSC and Tmax of about 280 °C. No energy gain (X is about 21.7 kJ).

CuF2 KH 8.3 gm+Mg 5.0 gm+CAII-300 20.0 gm+CuF2 5.1 gm,Ein : 203 kJ,dE : 57 kJ,在約 125°C 下 TSC且 Tmax為 約280°C,理論能量為29.1 kJ,增益為2倍。CuF2 KH 8.3 gm+Mg 5.0 gm+CAII-300 20.0 gm+CuF2 5.1 gm, Ein: 203 kJ, dE: 57 kJ, TSC at about 125 ° C and Tmax is about 280 ° C, theoretical energy is 29.1 kJ, The gain is 2 times.

Mnl2Mnl2

NaH 4.0 gm+Mg 4.0 gm +CAII-300 16.0 gm+MnI2 12.36 142257.doc -166- 201104948 gm(4X按比例增力σ ),Ein : 253 kJ,dE : 30 kJ,無 TSC且 Tmax為約3 00°C,理論能量為11.8kJ,增益為2.5倍。 3.09 g Mnl2、1.66 g KH、1 g Mg 粉末及 4 g CA-III 300 活性碳粉末(在300°C下乾燥)之熱量測,能量增益為8.8 kJ,且電池溫度突增92°C (172-264°C )。最大電池溫度為 410°C,理論能量為2.96 kJ,增益為3倍。 4 g CAIII-300+1 g Mg+1 g NaH+3.09 g Mnl2,Ein : 126.1 kJ,dE : 8.0 kJ,TSC : 157-241〇C > Tmax : 385〇C 1 理論能量為2.96 kJ,增益為2.69倍》NaH 4.0 gm+Mg 4.0 gm +CAII-300 16.0 gm+MnI2 12.36 142257.doc -166- 201104948 gm (4X proportional force σ ), Ein : 253 kJ, dE : 30 kJ, no TSC and Tmax is about 3 At 00 ° C, the theoretical energy is 11.8 kJ and the gain is 2.5 times. 3.09 g Mnl2, 1.66 g KH, 1 g Mg powder and 4 g CA-III 300 activated carbon powder (dried at 300 ° C), the energy gain is 8.8 kJ, and the battery temperature suddenly increases by 92 ° C (172-264 ° C). The maximum battery temperature is 410 ° C, the theoretical energy is 2.96 kJ, and the gain is 3 times. 4 g CAIII-300+1 g Mg+1 g NaH+3.09 g Mnl2, Ein : 126.1 kJ,dE : 8.0 kJ, TSC : 157-241〇C > Tmax : 385〇C 1 Theoretical energy is 2.96 kJ, gain 2.69 times

ZnBr2 2.25 g ZnBr2、1.66 g KH、1 g Mg 粉末及 4 g CA-III 300活性碳粉末(在300°C下乾燥),能量增益為10.3 kJ,且 電池溫度突增82°C (253-335°C )。最大電池溫度為456°C, 理論能量為3.56 kJ,增益為2.9倍。ZnBr2 2.25 g ZnBr2, 1.66 g KH, 1 g Mg powder and 4 g CA-III 300 activated carbon powder (dried at 300 ° C), the energy gain is 10.3 kJ, and the battery temperature suddenly increases by 82 ° C (253- 335 ° C). The maximum battery temperature is 456 ° C, the theoretical energy is 3.56 kJ, and the gain is 2.9 times.

NaH 5.0 gm+Mg 5.0 gm +CAII-300 20.0 gm+ZnBr2 11.25 gm,Ein : 291 kJ,dE : 26 kJ,無 TSC且 Tmax為約 3 3 0°C,理論能量為17·8 kJ,增益為1.46倍。NaH 5.0 gm+Mg 5.0 gm +CAII-300 20.0 gm+ZnBr2 11.25 gm, Ein: 291 kJ, dE: 26 kJ, no TSC and Tmax is about 3 30 ° C, theoretical energy is 17·8 kJ, the gain is 1.46 times.

CoCl2 1.3 g CoCl2、1.66 g KH、1 g Mg 粉末及 4 g CA-III 300 活性碳粉末(在3 00°C下乾燥),能量增益為l〇_4 kJ,且電池 溫度上升變化為l〇5°C (316-421°C )。最大電池溫度為 45 0°C,理論能量為5.2 kJ,增益為2倍。 1.3 g CoCl2、1.66 g KH、1 g Mg 粉末及 4 g CA-III 300 活性碳粉末(在300°C下乾燥),能量增益為9.6 kJ,且電池 142257.doc -167- 201104948 溫度突增181°C(295-476°C)。最大電池溫度為478°C,理論 能量為5.2 kJ,增益為1.89倍。CoCl2 1.3 g CoCl2, 1.66 g KH, 1 g Mg powder and 4 g CA-III 300 activated carbon powder (dried at 300 ° C), the energy gain is l〇_4 kJ, and the battery temperature rises to l 〇 5 ° C (316-421 ° C). The maximum battery temperature is 45 0 ° C, the theoretical energy is 5.2 kJ, and the gain is 2 times. 1.3 g CoCl2, 1.66 g KH, 1 g Mg powder and 4 g CA-III 300 activated carbon powder (dried at 300 ° C) with an energy gain of 9.6 kJ and a sudden increase in temperature of the battery 142257.doc -167- 201104948 181 ° C (295-476 ° C). The maximum battery temperature is 478 ° C, the theoretical energy is 5.2 kJ, and the gain is 1.89 times.

SnBr2 2.8 g SnBr2、1·66 g KH、1 g Mg粉末及4 g CA-III 300 活性碳粉末(在300°C下乾燥),能量增益為14.2 kJ,且溫度 突增148°C(148-296°C)。最大電池溫度為376。(:,理論能量 為3.75 kJ,增益為3.78倍。 4 g CAIII-300+1 g Mg+1 g NaH+2.79 g SnBr2 > Ein : 116.0 kJ,dE : 7.7 kJ,TSC : 135-236°C,Tmax : 370°C, 理論能量為3.75 kJ,增益為2倍。 KH 8.3 gm+Mg粉末 5.0 gm+CAII 300 20.0 gm+SnBr2 11.4 gm,Ein : 211 kJ,dE : 41 kJ,在約 170°C 下 TSC且 丁11^乂為約300°(:;理論能量為15_5]<::1,增益為2.6倍。 KH 8.3 gm+Mg 5.0 gm +TiC 20.0 gm+SnBr2 4.0 gm » Ein 229 kJ,dE : 46 kJ,在約 150°C 下 TSC 且 Tmax 為約 310°C且增益為約2.4X(X為約19 kJ),理論能量為18.8 kJ, 增益為2.4倍。 KH 1.66 gm+Mg 1.0 gm+WC 4.0 gm+SnBr2 2.8 gm j Ein : 101 kJ,dE : 10 kJ,在約 150°C 下 TSC且 Tmax為約 350°(:,理論能量為3.751^,增益為2.66倍。 _ 4 g CAIII-300+1.66 g KH+2.79 g SnBr2,Ein : 132.0 kJ,dE : 9.6 kJ,TSC : 168-263,Tmax : 381°C,理論能 量為4.29 kJ,增益為2.25倍。 -1 g Mg+1.66 g KH+2.79 g SnBr2 ; Ein : 123.0 kJ ; 142257.doc • 168 - 201104948 dE : 7.82 kJ ; TSC : 125-220°C ; Tmax : 386°C,理論能量 為5.85 kJ,增益為1.33倍。SnBr2 2.8 g SnBr2, 1.66 g KH, 1 g Mg powder and 4 g CA-III 300 activated carbon powder (dried at 300 ° C) with an energy gain of 14.2 kJ and a sudden temperature increase of 148 ° C (148 -296 ° C). The maximum battery temperature is 376. (:, theoretical energy is 3.75 kJ, gain is 3.78 times. 4 g CAIII-300+1 g Mg+1 g NaH+2.79 g SnBr2 > Ein : 116.0 kJ, dE : 7.7 kJ, TSC : 135-236 ° C , Tmax : 370 ° C, theoretical energy is 3.75 kJ, gain is 2 times. KH 8.3 gm + Mg powder 5.0 gm + CAII 300 20.0 gm + SnBr2 11.4 gm, Ein: 211 kJ, dE: 41 kJ, at about 170 ° The TSC under C is about 300° (:; theoretical energy is 15_5) <::1, and the gain is 2.6 times. KH 8.3 gm+Mg 5.0 gm +TiC 20.0 gm+SnBr2 4.0 gm » Ein 229 kJ , dE : 46 kJ, TSC at about 150 ° C with a Tmax of about 310 ° C and a gain of about 2.4X (X is about 19 kJ), a theoretical energy of 18.8 kJ, and a gain of 2.4 times. KH 1.66 gm + Mg 1.0 gm+WC 4.0 gm+SnBr2 2.8 gm j Ein : 101 kJ,dE : 10 kJ, TSC at about 150 ° C and Tmax is about 350° (:, theoretical energy is 3.751^, gain is 2.66 times. _ 4 g CAIII-300+1.66 g KH+2.79 g SnBr2, Ein: 132.0 kJ, dE: 9.6 kJ, TSC: 168-263, Tmax: 381 ° C, theoretical energy 4.29 kJ, gain 2.25 times -1 g Mg +1.66 g KH+2.79 g SnBr2 ; Ein : 123.0 kJ ; 142257.doc • 168 - 20110494 8 dE : 7.82 kJ ; TSC : 125-220 ° C ; Tmax : 386 ° C, theoretical energy 5.85 kJ, gain 1.33 times.

Snl2 ΚΗ 6·64 gm+Mg 粉末 4.0 gm+TiC 18.0 gm+SnI2 14.8 gm,Ein : 232 kJ,dE : 47 kJ,在約 150°C 下 TSC且 Tmax為 約280°C。能量增益為約3·6Χ(Χ為約12.8 kJ),理論能量為 12.6 kJ,增益為3.7倍。 3.7 g Snl2、1.66 g KH、1 g Mg 粉末及 4 g CA-III 300 活 性碳粉末(在3 00°C下乾燥),能量增益為11.9 kJ,但未觀測 到溫度突增。最大電池溫度為455°C,理論能量為3.2 kJ, 增益為3.7倍。 KH 1.6 gm+Mg粉末 1 ·0 gm+TiC 4.0 gm+Snl2 3.7 gm, Ein : 162 kJ,dE : 13 kJ ;在 100°C 下 TSC 且 Tmax 為約 490°C ;理論能量為3.2 kJ,增益為4倍。 KH 8.3 gm+Mg 粉末 5.0 gm+CAII 300 20.0 gm+SnI2 18.5 gm,Ein : 221 kJ,dE : 47 kJ,在約 170°C 下 TSC且 Tmax為約3 00°C,理論能量為15.9 kJ,增益為3倍。 4 g CAIII-300+1 g Mg+1 g NaH+3.73 g Snl2 ; Ein : 121.9 kJ ; dE : 7.56 kJ ; TSC :未觀測到;Tmax : 391°C, 理論能量為3.2 kJ,增益為2.36倍。 _ 1.66 g KH+3.79 g Snl2,Ein : 114.0 k;J,dE : 8.8 kJ, TSC : 161-25 9°C,Tmax : 359°C,理論能量為 4 kJ,增益 為2.17倍。Snl2 ΚΗ 6·64 gm+Mg powder 4.0 gm+TiC 18.0 gm+SnI2 14.8 gm, Ein: 232 kJ, dE: 47 kJ, TSC at about 150 ° C and Tmax of about 280 ° C. The energy gain is about 3·6 Χ (Χ is about 12.8 kJ), the theoretical energy is 12.6 kJ, and the gain is 3.7 times. 3.7 g of Snl2, 1.66 g of KH, 1 g of Mg powder and 4 g of CA-III 300 activated carbon powder (dried at 300 ° C), the energy gain was 11.9 kJ, but no sudden increase in temperature was observed. The maximum battery temperature is 455 ° C, the theoretical energy is 3.2 kJ, and the gain is 3.7 times. KH 1.6 gm + Mg powder 1 · 0 gm + TiC 4.0 gm + Snl2 3.7 gm, Ein : 162 kJ, dE : 13 kJ ; TSC at 100 ° C and Tmax is about 490 ° C; theoretical energy is 3.2 kJ, gain It is 4 times. KH 8.3 gm+Mg powder 5.0 gm+CAII 300 20.0 gm+SnI2 18.5 gm, Ein: 221 kJ, dE: 47 kJ, TSC at about 170 ° C and Tmax is about 300 ° C, theoretical energy is 15.9 kJ, The gain is 3 times. 4 g CAIII-300+1 g Mg+1 g NaH+3.73 g Snl2 ; Ein : 121.9 kJ ; dE : 7.56 kJ ; TSC : not observed; Tmax : 391 ° C, theoretical energy 3.2 kJ, gain 2.36 times . _ 1.66 g KH+3.79 g Snl2, Ein: 114.0 k; J, dE: 8.8 kJ, TSC: 161-25 9°C, Tmax: 359°C, theoretical energy 4 kJ, gain 2.17 times.

SnCl2 142257.doc -169- 201104948SnCl2 142257.doc -169- 201104948

NaH 5.0 gm+Mg 5.0 gm +CAII-300 20.0 gm+SnCh 9.6 gm,Ein : 1 81 kJ,dE : 30 kJ,在約 140°C 下 TSC且 Tmax為 約280°C,理論能量為19 kJ,增益為1.57倍。NaH 5.0 gm+Mg 5.0 gm +CAII-300 20.0 gm+SnCh 9.6 gm, Ein: 1 81 kJ, dE: 30 kJ, TSC at about 140 ° C and Tmax of about 280 ° C, theoretical energy 19 kJ, The gain is 1.57 times.

NiBr2 4 g CAIII-300+1 g Mg+1 g NaH+2.19 g NiBr2 ; Ein : 126.0 kJ ; dE : 12.01 kJ ; TSC : 290-370〇C ; Tmax : 417°C,理論能量為4 kJ,增益為3倍。NiBr2 4 g CAIII-300+1 g Mg+1 g NaH+2.19 g NiBr2 ; Ein : 126.0 kJ ; dE : 12.01 kJ ; TSC : 290-370〇C ; Tmax : 417 ° C , theoretical energy 4 kJ , gain It is 3 times.

NaH 1_0 gm+MgH2粉末 1.0 gm+TiC 4.0 gm,混合物 +NiBr2 2_2 gm,Ein : 121 kJ,dE : 11 kJ,溫度在 260°C 下 突升且Tmax為約390°C,理論能量為4 kJ,增益為2.75 倍。 4 g CAIII-300+1 g Al+1 g NaH+2.19 g NiBr2 ; Ein : 122.0 kJ ; dE : 7·78 kJ ; TSC :未觀測到;Tmax : 392°C, 理論能量為4 kJ,增益為1.95倍。 4 g CAIII-300+1 g Mg+0.33 g LiH+2.19 g NiBr2 ; Ein : 128.0 kJ ; dE : 10.72 kJ ; TSC : 270-436〇C ; Tmax : 440°〇,理論能量為41<;〗,增益為2.68倍。 4 g CAIII-300+1 g Mg+1.66 g KH+2.19 g NiBr2 Ein : 126.0 kJ ; dE : 10.45 kJ ; TSC : 285-423〇C ; Tmax : 423°(:,理論能量為4 1^,增益為2.6倍。 4 g CAIII-300+1 g MgH2+l g NaH+2.19 g NiBr2 ; Ein . 13 8· 1 kJ,dE · 8· 12 kJ ; TSC :未觀測到;Tmax : 425°C,理論能量為4 kJ,增益為2倍。NaH 1_0 gm+MgH2 powder 1.0 gm+TiC 4.0 gm, mixture +NiBr2 2_2 gm, Ein: 121 kJ, dE: 11 kJ, temperature rises at 260 ° C and Tmax is about 390 ° C, theoretical energy is 4 kJ The gain is 2.75 times. 4 g CAIII-300+1 g Al+1 g NaH+2.19 g NiBr2 ; Ein : 122.0 kJ ; dE : 7·78 kJ ; TSC : not observed; Tmax : 392 ° C, theoretical energy 4 kJ, gain 1.95 times. 4 g CAIII-300+1 g Mg+0.33 g LiH+2.19 g NiBr2 ; Ein : 128.0 kJ ; dE : 10.72 kJ ; TSC : 270-436〇C ; Tmax : 440°〇, theoretical energy 41·; The gain is 2.68 times. 4 g CAIII-300+1 g Mg+1.66 g KH+2.19 g NiBr2 Ein : 126.0 kJ ; dE : 10.45 kJ ; TSC : 285-423〇C ; Tmax : 423° (:, theoretical energy is 4 1^, gain 2.6 times. 4 g CAIII-300+1 g MgH2+lg NaH+2.19 g NiBr2 ; Ein . 13 8· 1 kJ, dE · 8· 12 kJ ; TSC : not observed; Tmax : 425 ° C, theoretical energy It is 4 kJ and the gain is 2 times.

NaH 5.0 gm+Mg 粉末 5.0 gm+活性碳 CAII 300 20.0 142257.doc -170- 201104948 gm,混合物 + NiBr2 11 .〇 gm(理論能量為 23.6 kJ),Ein : 224 kJ,dE : 53 kJ,溫度在160°C下突升且Tmax為約 280°(:,理論能量為20 1^,增益為2.65倍。NaH 5.0 gm+Mg powder 5.0 gm+activated carbon CAII 300 20.0 142257.doc -170- 201104948 gm, mixture + NiBr2 11 .〇gm (theoretical energy is 23.6 kJ), Ein: 224 kJ, dE: 53 kJ, temperature is 160 The temperature rises at °C and the Tmax is about 280° (:, the theoretical energy is 20 1^, and the gain is 2.65 times.

NaH 1.0 gm+Mg 1.0 gm+WC 4.0 gm +NiBr2 2.2 gm > Ein : 197 kJ,dE : 11 kJ,在約 200°C 下小 TSC且 Tmax為約 500°C ;理論能量為4 kJ,增益為2.75倍。NaH 1.0 gm+Mg 1.0 gm+WC 4.0 gm +NiBr2 2.2 gm > Ein : 197 kJ,dE : 11 kJ, small TSC at about 200 ° C and Tmax is about 500 ° C; theoretical energy is 4 kJ, gain It is 2.75 times.

NaH 50.0 gm+Mg 50.0 gm+CAII-300 200.0 gm+NiBr2 109.5 gm,Ein : 1990 kJ,dE : 577 kJ,在約 140〇C 下 TSC 且丁11^\為約980°(:,理論能量為1991^,增益為2.9倍。 無 Mg 之對照:4 g CAIII-300 + 1 g NaH+2.19 g NiBr2 ; Ein : 134.0 kJ ; dE : 5.37 kJ ; TSC :未觀測到;Tmax : 3 75 °C,理論能量為3.98 kJ,增益為1.3 5倍。 對照:1 g Mg+1 g NaH+2.19 g NiBr2 ; Ein : 129.0 kJ ; dE : 5.13 kJ ; TSC : 195-3 10°C ; Tmax : 416°C,理論能量 為 5.25 kJ。 -對照:1 g NaH+2.19 g NiBr2 ; Ein : 138.2 kJ ; dE : -0.18 kJ ; TSC :未觀測到;Tmax : 377°C,理論能量為 3.98 kJ。NaH 50.0 gm+Mg 50.0 gm+CAII-300 200.0 gm+NiBr2 109.5 gm, Ein: 1990 kJ,dE: 577 kJ, TSC at about 140 °C and D = 11^\ is about 980° (:, theoretical energy is 1991^, the gain was 2.9 times. No Mg control: 4 g CAIII-300 + 1 g NaH+2.19 g NiBr2; Ein: 134.0 kJ; dE: 5.37 kJ; TSC: not observed; Tmax: 3 75 °C, The theoretical energy is 3.98 kJ and the gain is 1.3 5 times. Control: 1 g Mg+1 g NaH+2.19 g NiBr2 ; Ein : 129.0 kJ ; dE : 5.13 kJ ; TSC : 195-3 10 ° C ; Tmax : 416 ° C The theoretical energy is 5.25 kJ. -Control: 1 g NaH + 2.19 g NiBr2 ; Ein : 138.2 kJ ; dE : -0.18 kJ ; TSC : not observed; Tmax : 377 ° C, theoretical energy 3.98 kJ.

CuCl2 4 g CAIII-300+1 g Mg+1 g NaH+1.34 g CuCl2,Ein : 119.0 kJ,dE : 10.5 kJ,TSC : 250-381。。,Tmax : 393°(:,理論能量為4.91^,增益為2.15倍。 -4 g CAIII-300+1 g Al+1 g NaH+1.34 g CuCl2,Ein : 126.0 kJ,dE : 7.4 kJ,TSC : 229-354°C,Tmax : 418°C, 142257.doc -171 - 201104948 理論能量為4.9 kJ,增益為1.5倍。 4 g CAIII-300+1 g MgH2+l g NaH+1.34 g CuCl2 5 Ein : 144.0 kJ,dE : 8_3 kJ,TSC : 229-3 14。。,Tmax : 409°C,理論能量為4.9 kJ,增益為1.69倍。CuCl2 4 g CAIII-300+1 g Mg+1 g NaH+1.34 g CuCl2, Ein: 119.0 kJ, dE: 10.5 kJ, TSC: 250-381. . , Tmax : 393° (:, theoretical energy is 4.91^, gain is 2.15 times. -4 g CAIII-300+1 g Al+1 g NaH+1.34 g CuCl2, Ein: 126.0 kJ, dE: 7.4 kJ, TSC: 229-354 ° C, Tmax : 418 ° C, 142257.doc -171 - 201104948 The theoretical energy is 4.9 kJ and the gain is 1.5 times. 4 g CAIII-300+1 g MgH2+lg NaH+1.34 g CuCl2 5 Ein : 144.0 kJ,dE : 8_3 kJ, TSC : 229-3 14 ., Tmax : 409 ° C, theoretical energy is 4.9 kJ, gain is 1.69 times.

NaH 5.0 gm+Mg 粉末 5.0 gm+活性碳 CAII 300 20.0 gm,混合物 + CuCl2 10.75 gm(理論能量為 45 kJ),Ein : 268 kJ,dE : 80 kJ,溫度在210°C下突升且Tmax為約 360°C,理論能量為39 kJ,增益為2倍。 1吋大容量電池中1.4 g CuCl2、1.66 g KH、1 g Mg粉末 及4 g CA-III 300活性碳粉末(在300°C下乾燥),能量增益 為14.6 kJ,且溫度突增190°C (1 88-378°C )。最大電池溫度 為43 7°C,理論能量為4.9 kJ,增益為3倍。 KH 8.3 gm+Mg粉末 5.0 gm+CAII-300 20.0 gm+CuCl2 6.7 gm,Ein : 255 kJ,dE : 55 kJ,在約 200°C 下 TSC 且 丁!1^乂為約320°(:,理論能量為24.51^,增益為2.24倍。NaH 5.0 gm+Mg powder 5.0 gm+activated carbon CAII 300 20.0 gm, mixture + CuCl2 10.75 gm (theoretical energy is 45 kJ), Ein: 268 kJ, dE: 80 kJ, temperature rises at 210 ° C and Tmax is about At 360 ° C, the theoretical energy is 39 kJ and the gain is 2 times. 1 吋 large capacity battery 1.4 g CuCl2, 1.66 g KH, 1 g Mg powder and 4 g CA-III 300 activated carbon powder (dried at 300 ° C), energy gain of 14.6 kJ, and temperature sudden increase of 190 ° C (1 88-378 ° C). The maximum battery temperature is 43 7 ° C, the theoretical energy is 4.9 kJ, and the gain is 3 times. KH 8.3 gm+Mg powder 5.0 gm+CAII-300 20.0 gm+CuCl2 6.7 gm, Ein: 255 kJ, dE: 55 kJ, TSC at about 200 ° C and D = 1 ^ 乂 is about 320 ° (:, theory The energy is 24.51^ and the gain is 2.24 times.

CuCl 4 g CAIII-300+1 g Mg+1 g NaH+1 g CuCl ; Ein : 128.1 kJ ; dE : 4.94 kJ ; TSC :未觀測到;Tmax : 395°C,理論 能量為2.18 kJ,增益為2.26倍。CuCl 4 g CAIII-300+1 g Mg+1 g NaH+1 g CuCl ; Ein : 128.1 kJ ; dE : 4.94 kJ ; TSC : not observed; Tmax : 395 ° C, theoretical energy 2.18 kJ, gain 2.26 Times.

CoI2 4 g CAIII-300+1 g Mg+1 g NaH+3.13 g CoI2,Ein : 141.1 kJ,dE : 9.7 kJ,TSC :無,Tmax : 411°C,考慮之 反應:2NaH(c)+Col2(c)+Mg(c) = 2NaI(c) + Co(c) + MgH2(c) Q=_449.8千焦/反應,理論化學反應能量:-4.50 kJ,過剩 142257.doc • 172 - 201104948 熱:-5.18 kJ,增益為1.9倍。 _ 3.13 g CoI2、1.66 g KH、1 g Mg 粉末及 4 g CA-III 300 活性碳粉末(在3 00°C下乾燥),能量增益為10.7 kJ,且電池 溫度突増1171(248-3651^最大電池溫度為438。(:,理論 能:1:為5.271<^,增益為2.03倍。CoI2 4 g CAIII-300+1 g Mg+1 g NaH+3.13 g CoI2, Ein : 141.1 kJ,dE : 9.7 kJ, TSC : none, Tmax : 411 ° C, consider the reaction: 2NaH(c)+Col2( c)+Mg(c) = 2NaI(c) + Co(c) + MgH2(c) Q=_449.8 kJ/reaction, theoretical chemical reaction energy: -4.50 kJ, excess 142257.doc • 172 - 201104948 heat : -5.18 kJ, the gain is 1.9 times. _ 3.13 g CoI2, 1.66 g KH, 1 g Mg powder and 4 g CA-III 300 activated carbon powder (dried at 300 ° C) with an energy gain of 10.7 kJ and a battery temperature of 1171 (248-3651) ^ The maximum battery temperature is 438. (:, theoretical energy: 1: 5.271 < ^, the gain is 2.03 times.

Zn工2 4 g CAIII-300+1 g Mg+1 g NaH+3.19 g Znl2 > Ein : 157.1 kJ,dE : 5.8 kJ,TSC :無,Tmax : 330°C,考慮之 反應:2NaH(c)+Znl2(c)+Mg(c) = 2NaI(c)+Zn(c)+MgH2(c) Q=-330.47千焦/反應,理論化學反應能量:-3.30 kJ,過剩 熱:-2.50 kJ,增益為1.75倍。 _ 3.19 g Znl2、1.66 g KH、1 g Mg 粉末及 4 g CA-III 300 活性碳粉末(在300°C下乾燥),能量增益為5.9 kJ,且電池 溫度上升變化為79°C(180-259°C)。最大電池溫度為 423°C,理論能量為4.29 kJ,增益為1.38倍。Zn work 2 4 g CAIII-300+1 g Mg+1 g NaH+3.19 g Znl2 > Ein : 157.1 kJ,dE : 5.8 kJ, TSC : none, Tmax : 330 ° C, consider the reaction: 2NaH(c) +Znl2(c)+Mg(c) = 2NaI(c)+Zn(c)+MgH2(c) Q=-330.47 kJ/reaction, theoretical chemical reaction energy: -3.30 kJ, excess heat: -2.50 kJ, The gain is 1.75 times. _ 3.19 g Znl2, 1.66 g KH, 1 g Mg powder and 4 g CA-III 300 activated carbon powder (dried at 300 ° C), the energy gain is 5.9 kJ, and the battery temperature rises to 79 ° C (180 -259 ° C). The maximum battery temperature is 423 ° C, the theoretical energy is 4.29 kJ, and the gain is 1.38 times.

NiF2 4 g CAIII-300+1 g Mg+1 g NaH+0.97 g NiF2 * Ein : 135.0 kJ,dE : 7.9 kJ,TSC : 253-335°C,Tmax : 385°C, 考慮之反應:2NaH(c)+NiF2(c)+Mg(c)=2NaF(c) + Ni(c)+MgH2(c) Q=-464.4千焦/反應,理論化學反應能量: -4.64 kJ,過剩熱:-3.24 kJ,增益為1.7倍。 0.97 g NiF2、1.66 g KH、1 g Mg 粉末及 4 g CA-III 300 活性碳粉末(在300°C下乾燥),能量增益為8.7 kJ,且電池 溫度上升變化為63°C (256-319°C )。最大電池溫度為 142257.doc -173 - 201104948 410°(:,理論能量為5.251^,增益為1.66倍。NiF2 4 g CAIII-300+1 g Mg+1 g NaH+0.97 g NiF2 * Ein : 135.0 kJ,dE : 7.9 kJ, TSC : 253-335 ° C, Tmax : 385 ° C, Consider the reaction: 2NaH(c )+NiF2(c)+Mg(c)=2NaF(c) + Ni(c)+MgH2(c) Q=-464.4 kJ/reaction, theoretical chemical reaction energy: -4.64 kJ, excess heat: -3.24 kJ The gain is 1.7 times. 0.97 g NiF2, 1.66 g KH, 1 g Mg powder and 4 g CA-III 300 activated carbon powder (dried at 300 ° C), the energy gain is 8.7 kJ, and the battery temperature rises to 63 ° C (256- 319 ° C). The maximum battery temperature is 142257.doc -173 - 201104948 410° (:, the theoretical energy is 5.251^, and the gain is 1.66 times.

CoBr2 4 g CAIII-300 + 1 g Mg+1 g NaH+2.19 g CoBr2,Ein : 140.0 kJ,dE : 7.6 kJ,TSC :無,Tmax : 461°C,考慮之 反應:2NaH(c) + CoBr2(c)+Mg(c) = 2NaBr(c) + Co(c)+MgH2(c) q=_464千焦/反應,理論化學反應能量:-4.64 kJ,過剩 熱:-2.9 kJ,增益為1.64倍。 2.19 g CoBr2、1.66 g KH、1 g Mg 粉末及 4 g CA-III 300活性碳粉末(在300°C下乾燥),能量增益為10.4 kJ,且 電池溫度突增ll〇°C(306-416°C)。最大電池溫度為450°C, 理論能量為5.27 kJ,增益為1.97倍。 2.19 g CoBr2、1.66 g KH、1 g Mg 粉末及 4 g CA-III 3 00活性碳粉末(在3 00°C下乾燥),能量增益為10.2 kJ,但 未觀測到電池溫度突增。最大電池溫度為446°C,理論能 量為5.27 kJ,增益為1.94倍。CoBr2 4 g CAIII-300 + 1 g Mg+1 g NaH+2.19 g CoBr2, Ein : 140.0 kJ, dE : 7.6 kJ, TSC : none, Tmax : 461 ° C, considering the reaction: 2NaH(c) + CoBr2( c)+Mg(c) = 2NaBr(c) + Co(c)+MgH2(c) q=_464 kJ/reaction, theoretical chemical reaction energy: -4.64 kJ, excess heat: -2.9 kJ, gain 1.64 times . 2.19 g CoBr2, 1.66 g KH, 1 g Mg powder and 4 g CA-III 300 activated carbon powder (dried at 300 ° C), the energy gain is 10.4 kJ, and the battery temperature suddenly increases ll 〇 ° C (306- 416 ° C). The maximum battery temperature is 450 ° C, the theoretical energy is 5.27 kJ, and the gain is 1.97 times. 2.19 g CoBr2, 1.66 g KH, 1 g Mg powder and 4 g CA-III 3 00 activated carbon powder (dried at 300 ° C), the energy gain was 10.2 kJ, but no sudden increase in battery temperature was observed. The maximum battery temperature is 446 ° C, the theoretical energy is 5.27 kJ, and the gain is 1.94 times.

FeCl2 4 g CAIII-300+1 g Mg+1 g NaH+1.27 g FeCl2,Ein : 155_0 kJ,dE : 10.5 kJ,TSC :無,Tmax : 450°C,理論能 量為3.68 kJ,增益為2.85倍。 4 g CAIII-300+1 g Al+1 g NaH+1.27 g FeCl2 > Ein : 141.7 kJ,dE : 7·0 kJ,TSC ··無,Tmax : 440°C,理論能 量為3.68 kJ,增益為1.9倍。 1付大容量電池中1.3 gFeCb、1·66 g KH、1 g Mg粉末 及4 g CA-III 300活性碳粉末(在3 00°C二F乾燥),能量增益 142257.doc -174· 201104948 為11.5 kJ,且溫度突增142°C (287-429°C )。最大電池溫度 為448°(:,理論能量為4.11^,增益為2.8倍。 _ NaH 5.0 gm+Mg 粉末 5.0 gm+活性碳 CAII 300 20.0 gm,混合物 + FeCl〗 6.35 gm,Ein : 296 kJ,dE : 37 kJ, 溫度在220°C下突升且Tmax為約330°C,理論能量為18.4 kJ,增益為2倍。FeCl2 4 g CAIII-300+1 g Mg+1 g NaH+1.27 g FeCl2, Ein: 155_0 kJ, dE: 10.5 kJ, TSC: none, Tmax: 450 ° C, theoretical energy 3.86 kJ, gain 2.85 times. 4 g CAIII-300+1 g Al+1 g NaH+1.27 g FeCl2 > Ein : 141.7 kJ, dE : 7·0 kJ, TSC ·· none, Tmax : 440 ° C, theoretical energy 3.68 kJ, gain is 1.9 times. 1.3 gFeCb, 1.66 g KH, 1 g Mg powder and 4 g CA-III 300 activated carbon powder in 1 large-capacity battery (dry at 300 °C), energy gain 142257.doc -174· 201104948 It is 11.5 kJ and the temperature suddenly increases by 142 ° C (287-429 ° C). The maximum battery temperature is 448° (:, the theoretical energy is 4.11^, and the gain is 2.8 times. _ NaH 5.0 gm+Mg powder 5.0 gm + activated carbon CAII 300 20.0 gm, mixture + FeCl 6.35 gm, Ein: 296 kJ, dE: At 37 kJ, the temperature rises at 220 ° C and the Tmax is about 330 ° C. The theoretical energy is 18.4 kJ and the gain is 2 times.

FeCl3 2·7 g FeCl3、1.66 g KH、1 g Mg 粉末及 4 g CA-III 300 活性碳粉末(在3 OOt:下乾燥),能量增益為21.3 kJ,且電池 溫度突增205°C(147-352°C)。最大電池溫度為445°C,理論 能量為10.8 kJ,增益為1.97倍。FeCl3 2·7 g FeCl3, 1.66 g KH, 1 g Mg powder and 4 g CA-III 300 activated carbon powder (dried at 300 ton:), the energy gain is 21.3 kJ, and the battery temperature suddenly increases by 205 °C ( 147-352 ° C). The maximum battery temperature is 445 ° C, the theoretical energy is 10.8 kJ, and the gain is 1.97 times.

NaH 1 ·0 gm+Mg 粉末 1 ·0 gm+TiC 4.0 gm+FeCl3 1.6 gm,Ein : 88 kJ,dE : 14 kJ ; TSC在 80°C 下且 Tmax為約 3 5 0°C,理論能量為6.65 kJ,增益為2,1倍。 KH 8.3 gm+MgH2 粉末 5.0 gm+CAII 300 20.0 gm +FeCl3 8.1 gm,Ein : 253 kJ,dE : 52 kJ/ ;無 TSC 且 Tmax 為約 3 00°C,理論能量為33 kJ,增益為1.56倍。 KH 8.3 gm+Mg 5.0 gm +CAII-300 20.0 gm+FeCl2 6.5 gm,Ein : 299 kJ,dE : 44 kJ,無 TSC且 Tmax為約 350°C, 理論能量為18.9 kJ,增益為2.3倍。NaH 1 ·0 gm+Mg powder 1 ·0 gm+TiC 4.0 gm+FeCl3 1.6 gm, Ein : 88 kJ, dE : 14 kJ ; TSC at 80 ° C and Tmax is about 350 ° C, the theoretical energy is 6.65 kJ, the gain is 2,1 times. KH 8.3 gm+MgH2 powder 5.0 gm+CAII 300 20.0 gm +FeCl3 8.1 gm, Ein: 253 kJ, dE: 52 kJ/; no TSC and Tmax is about 300 ° C, theoretical energy is 33 kJ, gain is 1.56 times . KH 8.3 gm+Mg 5.0 gm +CAII-300 20.0 gm+FeCl2 6.5 gm, Ein: 299 kJ, dE: 44 kJ, no TSC and Tmax of about 350 ° C, theoretical energy of 18.9 kJ, gain of 2.3 times.

FeBr2 4 g CAIII-300+1 g Mg+1.66 g KH+2.16 g FeBr2 ; Ein : 144.0 kJ ; dE : 9.90 kJ ; TSC :未觀測到;Tmax : 455°C, 理論能量為3.6 kJ,增益為2.75倍。 -175- 142257.doc 201104948 -4 g CAIII-300 + 1 g MgH2+l g NaH+2.16 g FeBr2 ; Ein. 142.0 kj,dE · 8·81 kJ,TSC :未觀測到;Tmax : 428°(:,理論能量為3.6 1^,增益為2.44倍。 -4 g CAIII-300+1 g MgH2 + 0.33 g LiH+2.16 g FeBr2 ; Ein : 164.0 kJ ; dE : 8·68 kJ ; TSC :未觀測到;Tmax : 450°C,理論能量為3.6 kJ,增益為2·4倍。 • 4 g CAIII-300+1 g MgH2+1.66 g KH+2.16 g FeBr2 ; Ein · 159.8 kJ,dE . 9.07 kJ,TSC :未觀測到;Tmax : 459°C,理論能量為3.6 kJ,增益為2.5倍。 4 g CAIII-300+1 g Mg+1 g NaH+2.96 g FeBr2,實驗 dE : -6.7 kJ,考慮之反應:2NaH(c)+FeBr2(c) + Mg(c)= 2NaBr(c)+Fe(c)+MgH2(C) Q=-435.1 千焦/反應,理論化學反 應能量:-4.35 kJ,過剩熱:-2.35 kJ,1.54X過剩熱。FeBr2 4 g CAIII-300+1 g Mg+1.66 g KH+2.16 g FeBr2 ; Ein : 144.0 kJ ; dE : 9.90 kJ ; TSC : not observed; Tmax : 455 ° C, theoretical energy 3.6 kJ, gain 2.75 Times. -175- 142257.doc 201104948 -4 g CAIII-300 + 1 g MgH2+lg NaH+2.16 g FeBr2 ; Ein. 142.0 kj,dE · 8·81 kJ, TSC : not observed; Tmax : 428° (:, The theoretical energy is 3.6 1^ and the gain is 2.44 times. -4 g CAIII-300+1 g MgH2 + 0.33 g LiH+2.16 g FeBr2 ; Ein : 164.0 kJ ; dE : 8·68 kJ ; TSC : not observed; Tmax : 450 ° C, theoretical energy is 3.6 kJ, gain is 2.4 times. • 4 g CAIII-300+1 g MgH2+1.66 g KH+2.16 g FeBr2 ; Ein · 159.8 kJ,dE . 9.07 kJ, TSC : not Observed; Tmax: 459 ° C, theoretical energy 3.6 kJ, gain 2.5 times. 4 g CAIII-300+1 g Mg+1 g NaH+2.96 g FeBr2, experimental dE: -6.7 kJ, consider the reaction: 2NaH (c)+FeBr2(c) + Mg(c)= 2NaBr(c)+Fe(c)+MgH2(C) Q=-435.1 kJ/reaction, theoretical chemical reaction energy: -4.55 kJ, excess heat:- 2.35 kJ, 1.54X excess heat.

NiCl2 4 g CAIII-300+1 g Mg+1 g NaH+1.30 g NiCl2 5 Ein : 112.0 kJ,dE : 9.7 kJ,TSC : 230-368〇C,Tmax : 376〇C, 理論能量為4 kJ,增益為2.4倍。 •卜寸大容量電池中1.3 g NiCl2、0.33 g LiH、1 g Mg粉 末及4 g CA-III 300活性碳粉末(在3〇〇。匚下乾燥),能量增 益為9.2 kJ ’且溫度上升變化為100充(2〇5-3〇5°C )。最大電 池溫度為43 2°C ’理論能量為4 kJ,增益為2.3倍。 1忖大容量電池中1.3 gNiCl2、0.33 gLiH、1 g A1粉末 及4 g CA-III 300活性碳粉末(在3〇〇。〇下乾燥),能量增益 為8.0 kJ,且溫度上升變化為85°c(2〇6_29rc)。最大電池 142257.doc -176- 201104948 溫度為447°C,理論.能量為4 kJ,增益為2倍。NiCl2 4 g CAIII-300+1 g Mg+1 g NaH+1.30 g NiCl2 5 Ein : 112.0 kJ,dE : 9.7 kJ, TSC : 230-368〇C, Tmax : 376〇C, theoretical energy 4 kJ, gain It is 2.4 times. • 1.2 g NiCl2, 0.33 g LiH, 1 g Mg powder and 4 g CA-III 300 activated carbon powder (in 3 〇〇 under the armpit) with an energy gain of 9.2 kJ 'and a temperature rise The change is 100 charge (2〇5-3〇5°C). The maximum battery temperature is 43 2 ° C 'theoretical energy is 4 kJ and the gain is 2.3 times. 1 忖 large capacity battery 1.3 gNiCl2, 0.33 gLiH, 1 g A1 powder and 4 g CA-III 300 activated carbon powder (dry at 3 〇〇. under the armpit), the energy gain is 8.0 kJ, and the temperature rise changes to 85 °c (2〇6_29rc). Maximum battery 142257.doc -176- 201104948 The temperature is 447 ° C, the theory. The energy is 4 kJ and the gain is 2 times.

CuBr 4 g CAIII-300+1 g Mg+1 g NaH+1.44 g CuBr ; Ein : 125.0 kJ ; dE : 4.67 kJ ; TSC .:未觀測到;Tmax : 382°C, 理論能量為2 kJ,增益為2.33倍。 4 g CAIII-300+1 g Mg+1.66 g KH+1.44 g CuBr,實驗 dE : -7.6 kJ,考慮之反應:CuBr(c)+KH(c) + 0_5Mg(c)= KBr(c) + Cu(c)+0.5MgH2(c) Q=-269.2 千焦/反應,理論化學 反應能量:-2.70 kJ,過剩熱:-4.90 kJ,2.8X過剩熱。 CuBr2 4 g CAIII-300+1 g Mg+1 g NaH+2.23 g CuBr2 ; Ein : 118.1 kJ ; dE : 8.04 kJ ; TSC : 108-180。。; Tmax : 3 69°C,理論能量為4.68 kJ,增益為1.7倍。CuBr 4 g CAIII-300+1 g Mg+1 g NaH+1.44 g CuBr ; Ein : 125.0 kJ ; dE : 4.67 kJ ; TSC .: not observed; Tmax : 382 ° C, theoretical energy 2 kJ, gain 2.33 times. 4 g CAIII-300+1 g Mg+1.66 g KH+1.44 g CuBr, experimental dE: -7.6 kJ, considering the reaction: CuBr(c)+KH(c) + 0_5Mg(c)= KBr(c) + Cu (c) +0.5MgH2(c) Q=-269.2 kJ/reaction, theoretical chemical reaction energy: -2.70 kJ, excess heat: -4.90 kJ, 2.8X excess heat. CuBr2 4 g CAIII-300+1 g Mg+1 g NaH+2.23 g CuBr2 ; Ein : 118.1 kJ ; dE : 8.04 kJ ; TSC : 108-180. . ; Tmax : 3 69 ° C, the theoretical energy is 4.68 kJ, and the gain is 1.7 times.

SnF4 2.0 g SnF4、1.66 g KH、1 g Mg 粉末及 4 g CA-III 300 活性碳粉末(在3 00°C下乾燥),能量增益為18.4 kJ,但未觀 測到溫度突增。最大電池溫度為576°C,理論能量為9.3 kJ,增益為1.98倍。 aii3 -4.1 g A1I3、1.66 g KH、1 g Mg 粉末及 4 g CA-III 300 活 性碳粉末(在3 00°C下乾燥),能量增益為10」kJ,但未觀測 到溫度突增。最大電池溫度為412°C,理論能量為6.68 kJ,增益為1.51倍。 KH 8.3 gm+Mg 5.0 gm+CAII-300 20.0 gm+AH3 20.5 142257.doc -177- 201104948 gm,Ein : 318 kJ,dE : 48 kJ,理論能量為 33.4 kJ,增益 為1.4倍。SnF4 2.0 g SnF4, 1.66 g KH, 1 g Mg powder and 4 g CA-III 300 activated carbon powder (dried at 300 ° C), the energy gain was 18.4 kJ, but no sudden increase in temperature was observed. The maximum battery temperature is 576 ° C, the theoretical energy is 9.3 kJ, and the gain is 1.98 times. Aii3 -4.1 g A1I3, 1.66 g KH, 1 g Mg powder and 4 g CA-III 300 activated carbon powder (dried at 300 ° C), the energy gain was 10"kJ, but no sudden increase in temperature was observed. The maximum battery temperature is 412 ° C, the theoretical energy is 6.68 kJ, and the gain is 1.51 times. KH 8.3 gm+Mg 5.0 gm+CAII-300 20.0 gm+AH3 20.5 142257.doc -177- 201104948 gm, Ein: 318 kJ, dE: 48 kJ, theoretical energy 33.4 kJ, gain 1.4 times.

SiCl4 1.7 g SiCl4、1.66 g KH ' 1 g Mg 粉末及 4 g CA-ΠΙ 300 活性碳粉末(在300°C下乾燥),能量增益為12 6 kJ ’且溫度 突增68°C(366-434°C)。最大電池溫度為473。〇,理論能量 為7·32 kJ,增益為1_72倍。 4 g CAIII-300+1 g Mg+1 g NaH+0.01 mol SiCl4(l_15 cc) ; Ein : 114.0 kJ ; dE : 14.19 kJ ; TSC : 260-410°C ; Tmax : 423°C ’理論能量為7 32 kJ,增益為丨94倍。SiCl4 1.7 g SiCl4, 1.66 g KH '1 g Mg powder and 4 g CA-ΠΙ 300 activated carbon powder (dried at 300 ° C), energy gain of 12 6 kJ ' and temperature sudden increase of 68 ° C (366- 434 ° C). The maximum battery temperature is 473. 〇, the theoretical energy is 7.32 kJ and the gain is 1_72 times. 4 g CAIII-300+1 g Mg+1 g NaH+0.01 mol SiCl4(l_15 cc) ; Ein : 114.0 kJ ; dE : 14.19 kJ ; TSC : 260-410 ° C ; Tmax : 423 ° C 'Theoretical energy is 7 32 kJ, the gain is 丨94 times.

AlBr3 2.7 g AlBr3、1.66 g KH、1 g Mg 粉末及 4 g CA-III 300 活性碳粉末(在300°C下乾燥),能量增益為7.5 kJ,但未觀 測到溫度突增。最大電池溫度為4irc,理論能量為4.46 kJ,增益為1.68倍。AlBr3 2.7 g AlBr3, 1.66 g KH, 1 g Mg powder and 4 g CA-III 300 activated carbon powder (dried at 300 ° C), the energy gain was 7.5 kJ, but no sudden increase in temperature was observed. The maximum battery temperature is 4irc, the theoretical energy is 4.46 kJ, and the gain is 1.68 times.

FeCl3 2.7 g FeCl3、1.60 g KH、1 g Mg 粉末及 4 g CA-III 300 活性碳粉末(在3 00°C下乾燥),能量增益為213 kJ,且電池 溫度突增205 (:(147-3 52。(:),最大電池溫度為445。〇,理論 能量為10.8 kJ’增益為1.97倍。FeCl3 2.7 g FeCl3, 1.60 g KH, 1 g Mg powder and 4 g CA-III 300 activated carbon powder (dried at 300 ° C) with an energy gain of 213 kJ and a sudden increase in battery temperature 205 (: (147 -3 52. (:), the maximum battery temperature is 445. 〇, the theoretical energy is 10.8 kJ' the gain is 1.97 times.

SeBr4 4 g CAIII-300+1 g Mg+1 g NaH+3.99 g SeBr4 ; Ein : 112.0 kJ,dE : 23.40 kJ ; TSC : 132-448。。; Tmax : 44 8C ’理論能量為15.7 kJ,增益為i5倍。 142257.doc •178, 201104948SeBr4 4 g CAIII-300+1 g Mg+1 g NaH+3.99 g SeBr4; Ein: 112.0 kJ, dE: 23.40 kJ; TSC: 132-448. . ; Tmax : 44 8C 'Theoretical energy is 15.7 kJ, and the gain is i5 times. 142257.doc •178, 201104948

SnBr4 4 g CAIII-300+1 g Mg+1 g NaH+4.38 g SnBr4 ; Ein : 98.0 kJ ; dE : 12.44 kJ ; TSC : 120-270〇C ; Tmax : 3 59°C,理論能量為8.4 kJ,增益為1.48倍。 KH 8.3 gm+Mg 粉末 5.0 gm+CAII 300 20.0 gm +SnBr4 22.0 gm,Ein : 163 kJ,dE : 78 kJ ;在 6(TC 下 TSC且 Tmax 為約290°C,理論能量為42 kJ,增益為1.86倍。SnBr4 4 g CAIII-300+1 g Mg+1 g NaH+4.38 g SnBr4 ; Ein : 98.0 kJ ; dE : 12.44 kJ ; TSC : 120-270〇C ; Tmax : 3 59 ° C, theoretical energy 8.4 kJ, The gain is 1.48 times. KH 8.3 gm+Mg powder 5.0 gm+CAII 300 20.0 gm +SnBr4 22.0 gm, Ein: 163 kJ, dE: 78 kJ; at 6 (TC TSC with a Tmax of about 290 ° C, the theoretical energy is 42 kJ, the gain is 1.86 times.

SiBr4 3.5 g SiBr4、1.66 g KH ' 1 g Mg 粉末及 4 g CA-III 300 活性碳粉末(在300°C下乾燥),能量增益為1 K9 kJ,且溫度 突增99°C (304-403°C )。最大電池溫度為449°C,理論能量 為7.62 kJ,增益為1.56倍。SiBr4 3.5 g SiBr4, 1.66 g KH '1 g Mg powder and 4 g CA-III 300 activated carbon powder (dried at 300 ° C), energy gain of 1 K9 kJ, and temperature sudden increase of 99 ° C (304- 403 ° C). The maximum battery temperature is 449 ° C, the theoretical energy is 7.62 kJ, and the gain is 1.56 times.

TeBr4 4 g CAIII-300+1 g Mg+1 g NaH+4.47 g TeBr4,Ein : 99.0 kJ,dE : 18.4 kJ,TSC : 186-411 °C,Tmax : 418°C, 理論能量為11.3 kJ,增益為1.63倍。 _ 4 g CAIII-300+1 g Al+1 g NaH+4.47 g TeBr4,Ein : 101.0 kJ,dE : 14.7 kJ,TSC : 144-305T:,Tmax : 3 74°C,理論能量為11.4 kJ,增益為1.29倍。 1吋大容量電池中 4.5 g TeBr4、1.66 g KH、1 g MgH2粉 末及4 g CA-III 300活性碳粉末(在300°C下乾燥),能量增 益為19.1 kJ,且溫度突增218°C (172-390°C )。最大電池溫 度為410°C,理論能量為12.65 kJ,增益為1.5倍。 1吋大容量電池中4.5 g TeBr4、1.66 g KH、1 g Mg粉末 142257.doc -179- 201104948 及4 g CA-III 300活性碳粉末(在300°C下乾燥),能量增益 為23.5 kJ,且溫度突增247°C(184-431°C)。最大電池溫度 為436°C,理論能量為12.4 kJ,增益為1.89倍。 KH 6.64 gm+Mg 粉末 4.0 gm+活性碳 CAII 300 16 gm+TeBr4 18 gm(理論 kJ)(80% 5X按比例增加),Ein : 213 kJ ’ dE : 77 kJ’溫度在140C下突升且Tmax為約320°C, 理論能量為48.4 kJ,增益為1.59倍。TeBr4 4 g CAIII-300+1 g Mg+1 g NaH+4.47 g TeBr4,Ein : 99.0 kJ,dE : 18.4 kJ,TSC : 186-411 °C, Tmax : 418°C, theoretical energy 11.3 kJ, gain It is 1.63 times. _ 4 g CAIII-300+1 g Al+1 g NaH+4.47 g TeBr4,Ein : 101.0 kJ,dE : 14.7 kJ, TSC : 144-305T:,Tmax : 3 74°C, theoretical energy 11.4 kJ, gain It is 1.29 times. 4.5 g TeBr4, 1.66 g KH, 1 g MgH2 powder and 4 g CA-III 300 activated carbon powder (dried at 300 ° C) in a large-capacity battery with an energy gain of 19.1 kJ and a sudden increase in temperature of 218° C (172-390 ° C). The maximum battery temperature is 410 ° C, the theoretical energy is 12.65 kJ, and the gain is 1.5 times. 1 吋 large capacity battery 4.5 g TeBr4, 1.66 g KH, 1 g Mg powder 142257.doc -179- 201104948 and 4 g CA-III 300 activated carbon powder (dried at 300 ° C), energy gain 23.5 kJ And the temperature suddenly increased by 247 ° C (184-431 ° C). The maximum battery temperature is 436 ° C, the theoretical energy is 12.4 kJ, and the gain is 1.89 times. KH 6.64 gm+Mg powder 4.0 gm+activated carbon CAII 300 16 gm+TeBr4 18 gm (theoretical kJ) (80% 5X proportional increase), Ein: 213 kJ 'dE : 77 kJ' temperature rises at 140C and Tmax is At about 320 ° C, the theoretical energy is 48.4 kJ and the gain is 1.59 times.

TeCl4 4 g CAIII-300+1 g Mg+1 g NaH+2.7 g TeCl4 ; Ein : 99.0 kJ ; dE : 16.76 kJ ; TSC : 114-300〇C ; Tmax : 385°C,理論能量為13 kJ,增益為1.29倍。 • 1 叫·大容量電池中 2.7 g TeCl4、0.33 g LiH、1 g 粉末及4 g CA-III 300活性碳粉末(在300°C下乾燥),能量 增益為20.4 kJ,且溫度突增140°C (138-278X:)。最大電池 溫度為399°C,理論能量為12.1 kJ,增益為1.69倍。 • 1吋大容量電池中 2.7 g TeCl4、0.33 g LiH、1 g Mg 粉 末及4 g CA-III 3 00活性碳粉末(在3〇〇它下乾燥),能量增 益為17.2 kJ,且溫度突增240°C (137-377°C )。最大電池溫 度為398eC,理論能量為12.8 kJ,增益為1,34倍。 1 吋大容量電池中2.7 gTeCl4、1.66 gKH、1 gMgH2S 末及4 g CA-III 300活性碳粉末(在300。(:下乾燥)。能量增 益為15.6 kJ,且溫度突增216。(:(139-355。〇。最大電池溫 度為358 °C ’理論能量為12.1 kJ,增益為1.29倍。 1吋大容量電池中2.7 g TeCl4、1.66 g KH、1 g A1粉末 142257.doc 180- 201104948 及4 g CA-III 300活性碳粉末(在300°c下乾燥),能量增益 為19_4 kJ,且溫度突增202°C(89-291°C)。最大電池溫度為 543°C,理論能量為10.9 kJ,增益為1,78倍。 1吋大容量電池中2.7 g TeCl4、0.33 g LiH、1 g A1粉末 及4 g CA-III 300活性碳粉末(在300°C下乾燥),能量增益 為19·0 kJ,且溫度突增288°C (155-443°C )。最大電池溫度 為4431:,理論能量為10.9 kJ,增益為1.74倍。 1吋大容量電池中2.7 g TeCl4、1.66 g KH、1 g Mg粉末 及4 g CA-III 300活性碳粉末(在30(TC下乾燥),能量增益 為17.7 kJ,且溫度突增208°C (84-292°C )。最大電池溫度為 3 96°(:,理論能量為131^,增益為1.36倍。 1吋大容量電池中2.7 g TeCl4、1.66 g KH、1 g A1粉末 及4 g CA-III 300活性碳粉末(在300°C下乾燥),能量增益 為18_7 kJ,且溫度突增224°C (112-336°C )。最大電池溫度 為398°C,理論能量為12 kJ,增益為1.56倍。TeCl4 4 g CAIII-300+1 g Mg+1 g NaH+2.7 g TeCl4 ; Ein : 99.0 kJ ; dE : 16.76 kJ ; TSC : 114-300〇C ; Tmax : 385 ° C, theoretical energy 13 kJ, gain It is 1.29 times. • 1 called • 2.7 g TeCl4, 0.33 g LiH, 1 g powder and 4 g CA-III 300 activated carbon powder (dried at 300 ° C) in a large capacity battery with an energy gain of 20.4 kJ and a sudden temperature increase of 140 °C (138-278X:). The maximum battery temperature is 399 ° C, the theoretical energy is 12.1 kJ, and the gain is 1.69 times. • 1 吋 large capacity battery with 2.7 g TeCl4, 0.33 g LiH, 1 g Mg powder and 4 g CA-III 3 00 activated carbon powder (dried under 3 )) with an energy gain of 17.2 kJ and temperature Increase 240 ° C (137-377 ° C). The maximum battery temperature is 398eC, the theoretical energy is 12.8 kJ, and the gain is 1,34 times. 1 吋 large capacity battery with 2.7 gTeCl4, 1.66 gKH, 1 gMgH2S end and 4 g CA-III 300 activated carbon powder (at 300. (under dry). Energy gain is 15.6 kJ, and temperature increases by 216. (: (139-355. 〇. Maximum battery temperature is 358 °C 'Theoretical energy is 12.1 kJ, the gain is 1.29 times. 1 吋 large capacity battery 2.7 g TeCl4, 1.66 g KH, 1 g A1 powder 142257.doc 180- 201104948 And 4 g CA-III 300 activated carbon powder (dried at 300 ° C), the energy gain is 19_4 kJ, and the temperature suddenly increases by 202 ° C (89-291 ° C). The maximum battery temperature is 543 ° C, the theory The energy is 10.9 kJ and the gain is 1,78 times. 1 吋 large capacity battery with 2.7 g TeCl4, 0.33 g LiH, 1 g A1 powder and 4 g CA-III 300 activated carbon powder (dried at 300 ° C), The energy gain is 19·0 kJ, and the temperature suddenly increases by 288°C (155-443°C). The maximum battery temperature is 4431:, the theoretical energy is 10.9 kJ, and the gain is 1.74 times. 1吋 2.7 g TeCl4 in large-capacity battery 1,6 g of KH, 1 g of Mg powder and 4 g of CA-III 300 activated carbon powder (dried at 30 (TC), the energy gain was 17.7 kJ, and the temperature suddenly increased by 208 ° C (84-292 ° C). The large battery temperature is 3 96 ° (:, the theoretical energy is 131 ^, the gain is 1.36 times. 1 吋 large capacity battery 2.7 g TeCl4, 1.66 g KH, 1 g A1 powder and 4 g CA-III 300 activated carbon powder (Dry at 300 ° C), the energy gain is 18_7 kJ, and the temperature suddenly increases by 224 ° C (112-336 ° C). The maximum battery temperature is 398 ° C, the theoretical energy is 12 kJ, and the gain is 1.56 times.

SeCl4 4 g CAIII-300+1 g Mg+1 g NaH+2.21 g SeCl4 ; Ein : 93.0 kJ ; dE : 22.14 kJ ; TSC : 141-435〇C ; Tmax : 435°C,理論能量為15 kJ,增益為1.48倍。 4 g CAIII-300+1 g Mg+1.66 g KH+2.20 g SeCl4,實驗 dE : -25.2 kJ,考慮之反應:SeCl4(c)+4KH(c)+3Mg(c)= 4KCl(c)+MgSe(c)+2MgH2(c) Q=-1750.4千焦/反應,理論化 學反應能量:-17.5 kJ,過剩熱:-7_7 kJ,1·44Χ過剩熱。 cf4 142257.doc -181 - 201104948SeCl4 4 g CAIII-300+1 g Mg+1 g NaH+2.21 g SeCl4 ; Ein : 93.0 kJ ; dE : 22.14 kJ ; TSC : 141-435 〇 C ; Tmax : 435 ° C , theoretical energy 15 kJ , gain It is 1.48 times. 4 g CAIII-300+1 g Mg+1.66 g KH+2.20 g SeCl4, experimental dE: -25.2 kJ, consider the reaction: SeCl4(c)+4KH(c)+3Mg(c)= 4KCl(c)+MgSe (c) +2MgH2(c) Q=-1750.4 kJ/reaction, theoretical chemical reaction energy: -17.5 kJ, excess heat: -7_7 kJ, 1.44 Χ excess heat. Cf4 142257.doc -181 - 201104948

NaH 50 gm +A1 50 gm+活十生碳 CAII300 200 gm+CF4 0.3 mol ; 45 PSIG儲集電池體積:2221.8CC,Ein : 2190 kJ, dE : 482 kJ,溫度在20(TC下突升且Tmax為約760。(:,理論 能量為345 kJ,增益為1.4倍。 •抽空後 NaH 50.0 gm+Mg粉末 50 gm+活性碳 CAII-300 200 gm+CF4 75-9.9 PSIG。儲集器體積為1800 CC且對於此 壓降而言’ n=0.356 mol,且理論能量為約392 kJ,Ein : 1810 kJ ’ dE : 765 kJ,溫度在170°C下突升且Tmax為約 1000°C 且增益為 765/392= 1.95X。NaH 50 gm +A1 50 gm + live carbon carbon CAII300 200 gm+CF4 0.3 mol ; 45 PSIG reservoir battery volume: 2221.8CC, Ein: 2190 kJ, dE: 482 kJ, temperature at 20 (TC rises and Tmax is Approximately 760. (:, theoretical energy is 345 kJ, gain is 1.4 times. • After evacuation, NaH 50.0 gm + Mg powder 50 gm + activated carbon CAII-300 200 gm + CF4 75-9.9 PSIG. The reservoir volume is 1800 CC and For this pressure drop, 'n=0.356 mol, and the theoretical energy is about 392 kJ, Ein: 1810 kJ 'dE: 765 kJ, the temperature rises at 170 ° C and the Tmax is about 1000 ° C and the gain is 765 / 392 = 1.95X.

NaH 1.0 gm +(Mg粉末 1.0 gm+活性碳 CAII 300 4 gm)球 磨 +CF4 0.0123 mol,且理論能量為約 13.6 kJ,Ein : 143 kJ,dE : 25 kJ,溫度在250°C下突升且Tmax為約500°C且 能量增益為約1.8X。NaH 1.0 gm + (Mg powder 1.0 gm + activated carbon CAII 300 4 gm) ball mill + CF4 0.0123 mol, and the theoretical energy is about 13.6 kJ, Ein: 143 kJ, dE: 25 kJ, the temperature rises at 250 ° C and Tmax It is about 500 ° C and the energy gain is about 1.8X.

NaH 1_0 gm +(Mg粉末 1.0 gm+活性碳 CAII-300 4 gm)球 磨+CF4約0·01 mo卜理論能量為約10.2 kJ,Ein : 121 kJ, dE : 18 kJ,溫度在260°C下突升且Tmax為約500°C且能量 增益為約1.7X。 _ NaH 1 _0 gm +(Mg粉末 1 ·〇 gm+活性碳 CAII-300 4 gm)球 磨 +CF4 0.006 mol,且理論能量為約 7.2 kJ,Ein : 133 kJ, dE : 15 kJ,溫度在300°C下突升且Tmax為約440°C且能量 增益為約2.OX。 • 4 g CAIII-300+1 g MgH2+3.55 g Rb+0.0082 mol CF4+0.0063 mol H2 ; Ein · 76.0 kJ ; dE : 20.72 kJ ; TSC : 30-200°C ; Tmax : 348°C,理論能量為 10 kJ,增益為 2 •182· 142257.doc 201104948 倍。 sf6NaH 1_0 gm + (Mg powder 1.0 gm + activated carbon CAII-300 4 gm) ball mill + CF4 about 0. 01 mo. The theoretical energy is about 10.2 kJ, Ein: 121 kJ, dE: 18 kJ, the temperature is 260 ° C L and Tmax is about 500 ° C and the energy gain is about 1.7X. _ NaH 1 _0 gm + (Mg powder 1 · 〇gm + activated carbon CAII-300 4 gm) ball mill + CF4 0.006 mol, and the theoretical energy is about 7.2 kJ, Ein: 133 kJ, dE: 15 kJ, temperature at 300 ° C The bottom is raised and the Tmax is about 440 ° C and the energy gain is about 2. OX. • 4 g CAIII-300+1 g MgH2+3.55 g Rb+0.0082 mol CF4+0.0063 mol H2 ; Ein · 76.0 kJ ; dE : 20.72 kJ ; TSC : 30-200 ° C ; Tmax : 348 ° C, theoretical energy 10 kJ, the gain is 2 •182· 142257.doc 201104948 times. Sf6

NaH 50 gm+MgH2 50 gm+活性碳 CAII300 200 gm+SF6 0.29 mol ; 43 PSIG儲集電池體積:2221.8CC,Ein : 1760 kJ,dE : 920 kJ,溫度在約140°C下突升且Tmax為約 1100°C,理論能量為638 kJ,增益為1.44倍。 • 4 g CAIII-300+1 g MgH2+l g NaH+0.0094 mol SF6 ; Ein : 96.7 kJ ; dE : 33.14 kJ ; TSC : 110-455〇C ; Tmax : 455°C,理論能量為20.65 kJ,過剩12.5 kJ,增益為1.6 倍。NaH 50 gm+MgH2 50 gm+activated carbon CAII300 200 gm+SF6 0.29 mol ; 43 PSIG reservoir battery volume: 2221.8CC, Ein: 1760 kJ, dE: 920 kJ, temperature rises at about 140 °C and Tmax is about At 1100 ° C, the theoretical energy is 638 kJ and the gain is 1.44 times. • 4 g CAIII-300+1 g MgH2+lg NaH+0.0094 mol SF6 ; Ein : 96.7 kJ ; dE : 33.14 kJ ; TSC : 110-455〇C ; Tmax : 455°C, theoretical energy 20.65 kJ, excess 12.5 kJ, the gain is 1.6 times.

NaH 1.0 gm+Al粉末 1.0 gm+活性碳 CAII 300 4 gm球磨 + SF6 0.01 mo卜且理論能量為約 20 kJ,Ein : 95 kJ,dE : 30 kJ,溫度上升變化在約1〇〇。〇下且Tmax為約400°C,理 論能量為20.4 kJ,過剩9.6 kJ,增益為1.47倍。NaH 1.0 gm + Al powder 1.0 gm + activated carbon CAII 300 4 gm ball mill + SF6 0.01 mo and the theoretical energy is about 20 kJ, Ein: 95 kJ, dE: 30 kJ, the temperature rise changes about 1 〇〇. Under the armpit and the Tmax is about 400 ° C, the theoretical energy is 20.4 kJ, the excess is 9.6 kJ, and the gain is 1.47 times.

NaH 1.0 gm+MgH2粉末 1.0 gm+活性碳 CAII 300 4 gm球 磨 +SF6 0.01 mol,且理論能量為約 22 kJ,Ein : 85 kJ, dE : 28 kJ ’溫度上升變化在約110°C下且Tmax為約 410°C,理論能量為22 kJ,過剩6 kJ,增益為1.27倍。NaH 1.0 gm+MgH2 powder 1.0 gm+activated carbon CAII 300 4 gm ball mill + SF6 0.01 mol, and the theoretical energy is about 22 kJ, Ein: 85 kJ, dE: 28 kJ 'temperature rise change at about 110 ° C and Tmax is At about 410 ° C, the theoretical energy is 22 kJ, the excess is 6 kJ, and the gain is 1.27 times.

NaH 1_〇 gm+Al 奈米粉末 1.0 gm+活性碳 CAII 300 4 gm 球磨+SF6 0.005 mol,Ein : 107 kJ,dE : 21 kJ,溫度上升 變化在約160°C下且Tmax為約380°C,理論能量為10·2 kJ ’增益為2倍。 • NaH 1.0 gm+Mg粉末 1.0 gm+活性碳 CAII 300 4 gm球磨 + SF6 0·005 mol,Ein : 104 kJ,dE : 18 kJ,溫度上升變化 142257.doc •183· 201104948 在約150°C下且Tmax為約370°C,理論能量為12_5 kJ,過 剩5.5 kJ,增益為1.44倍。NaH 1_〇gm+Al nano powder 1.0 gm+activated carbon CAII 300 4 gm ball mill + SF6 0.005 mol, Ein: 107 kJ, dE: 21 kJ, temperature rise change at about 160 ° C and Tmax is about 380 ° C The theoretical energy is 10·2 kJ 'the gain is 2 times. • NaH 1.0 gm+Mg powder 1.0 gm+ activated carbon CAII 300 4 gm ball mill + SF6 0·005 mol, Ein: 104 kJ, dE: 18 kJ, temperature rise change 142257.doc •183· 201104948 at about 150°C The Tmax is about 370 ° C, the theoretical energy is 12_5 kJ, the excess is 5.5 kJ, and the gain is 1.44 times.

NaH 1.0 gm+MgH2 粉末 1.0 gm+活性碳 CAII 300 4 gm 球 磨 +SF6 0.0025 mol,且理論能量為約 5.5 kJ ’ Ein : 100 kJ,dE : 10 kJ,溫度在約160°C下上升變化且Tmax為約 3 35°C,理論能量為5.5 kJ,增益為1.8倍。 4 g CAIII-300 + 0.5 g B + l g NaH+0.0047 mol SF6 ; Ein : 112.0 kJ ; dE : 15.14 kJ ; TSC : 210-350。。; Tmax : 409°C,理論能量為10.12 kJ,過剩5 kJ,增益為1.49倍。 -4 g CAIII-300+1 g MgH2+1.66 g KH+0.00929 mol SF6(在填充SF6後,電池溫度上升至29°C ) ; Ein : 66.0 kJ ; dE : 26.11 kJ ; TSC : 37-375〇C ; Tmax : 375〇C,理論能量 為20·4 kJ,增益為1.28倍。 4 g CAIII-300+1 g Mg+0.33 g LiH+0.00929 mol SF6(在 填充SF6後,電池溫度上升至26°C ) ; Ein : 128.0 kJ ; dE : 32.45 kJ ; TSC : 275-540°C ; Tmax : 550°C,理論能量為 23.2 kJ,增益為1.4倍。 _ 4 g CAIII-300+1 g S + l g NaH+0.0106 mol SF6(線上), Ein : 86.0 kJ,dE : 18.1 kJ,TSC : 51-313〇C,Tmax : 354°C,理論能量為11.2 kJ,增益為1.6。NaH 1.0 gm+MgH2 powder 1.0 gm+activated carbon CAII 300 4 gm ball mill + SF6 0.0025 mol, and the theoretical energy is about 5.5 kJ ' Ein : 100 kJ, dE : 10 kJ, the temperature rises at about 160 ° C and the Tmax is At about 3 35 ° C, the theoretical energy is 5.5 kJ and the gain is 1.8 times. 4 g CAIII-300 + 0.5 g B + l g NaH + 0.0047 mol SF6 ; Ein : 112.0 kJ ; dE : 15.14 kJ ; TSC : 210-350. . ; Tmax : 409 ° C, theoretical energy is 10.12 kJ, excess 5 kJ, gain 1.49 times. -4 g CAIII-300+1 g MgH2+1.66 g KH+0.00929 mol SF6 (battery temperature rises to 29 °C after filling SF6); Ein: 66.0 kJ; dE: 26.11 kJ; TSC: 37-375〇C Tmax : 375〇C, theoretical energy is 20·4 kJ, and gain is 1.28 times. 4 g CAIII-300+1 g Mg+0.33 g LiH+0.00929 mol SF6 (the battery temperature rises to 26 ° C after filling SF6 ) Ein : 128.0 kJ ; dE : 32.45 kJ ; TSC : 275-540 ° C ; Tmax: 550 ° C, theoretical energy is 23.2 kJ, and the gain is 1.4 times. _ 4 g CAIII-300+1 g S + lg NaH+0.0106 mol SF6 (on line), Ein : 86.0 kJ, dE : 18.1 kJ, TSC : 51-313〇C, Tmax : 354°C, theoretical energy 11.2 kJ The gain is 1.6.

NaH 5.0 gm+MgH2 5·0 gm+活性碳CAII 300 20.0 gm球 磨+SF6 40 PSIG(0.026 mol線上)(理論能量為約57 kj)2,,電 池,Ein : 224 kJ,dE : 86 kJ ’ 溫度在 i50°c 下突升且Tmax 為約3 50°C,理論能量為57 kJ,增益為i.5倍。 142257.doc -184 - 201104948NaH 5.0 gm+MgH2 5·0 gm+ activated carbon CAII 300 20.0 gm ball mill + SF6 40 PSIG (0.026 mol line) (theoretical energy is about 57 kj) 2, battery, Ein: 224 kJ, dE: 86 kJ 'temperature at It rises sharply at i50°c and has a Tmax of about 3 50 ° C, a theoretical energy of 57 kJ, and a gain of i. 5 times. 142257.doc -184 - 201104948

Te02 4 g CAIII-300+1 g MgH2+l g NaH+1.6 g Te02 ; Ein : 325.1 kJ ; dE : 18.46 kJ ; TSC : 210-440〇C ; Tmax : 440°C,理論能量為9.67 kJ,過剩8.8 kJ,增益為1.9倍。 4 g CAIII-300 + 2 g MgH2 + 2 g NaH+3.2 g Te02,Ein : 103.0 kJ,dE : 31.6 kJ,TSC : 185-491。。,Tmax : 498°C,理論能量為17.28 kJ,增益為1.83倍。 1吋大容量電池中1.6 g Te〇2、0.33 g LiH、1 g A1粉末 及4 g CA-III 300活性碳粉末(在300°C下乾燥),能量增益 為18.1 kJ,但未觀測到溫度突增。最大電池溫度為 63 7°C,理論能量為8.66 kJ,增益為2.1倍。 1 叫·大容量電池中 1.6 g Te〇2、1.66 g KH、1 g MgH2粉 末及4 g CA-III 300活性碳粉末(在300°C下乾燥),能量增 益為22.0 kJ,且溫度突增233°C (316-549°C )。最大電池溫 度為554°C,理論能量為8.64 kJ,增益為2.55倍。 1口寸大容量電池中1.6 g Te02、1.66 g KH、1 g Mg粉末 及4 g CA-III 300活性碳粉末(在300°C下乾燥),能量增益 為20.3 kJ,且溫度突增274°C (268-542°C )。最大電池溫度 為549°C,理論能量為10.9 kJ,增益為1·86倍。 _ NaH 5_0 gm+MgH2粉末 5·0 gm+活性碳 CAII 300 20 gm 球磨+Te〇2 8.0 gm,Ein : 253 kJ,dE : 77 kJ,溫度在 200°C下突升且Tmax為約400°C,理論能量為48.35 kJ,增 益為1.6倍。 _ NaH 1.0 gm+MgH2 粉末 1.0 gm+活性碳 CAII 300 4.0 gm 142257.doc -185 - 201104948 球磨+Te02 1 ·6 gm ’ Ein : 110 kJ ’ dE : 16 kJ ’ 溫度在 190°C下突升且Tmax為約400°C,理論能量為9.67 kJ,增 益為1.65倍。 • KH 1.66 gm+MgH2粉末 1.0 gm+活性碳 CAII 300 4.0 gm 球磨+Te〇2 1.6 gm,Ein : 119 kJ ’ dE : 19 kJ,溫度在 340°C下突升且Tmax為約570°C,理論能量為9·67 kJ,增 益為2倍。 4 g CAIII-300+1 g NaH+1.6 g Te02,Ein : 116.0 kJ , dE : 11.0 kJ > TSC : 207-352〇C > Tmax : 381〇C,理論能量 為6.6 kJ,增益為1.67倍。 KH 1.66 gm+MgH2粉末 1.0 gm+TiC 4.0 gm +Te02 1.6 gm,Ein : 133 kJ,dE : 15 kJ,溫度在 280°C 下突升且 Tmax為約460 °C,理論能量為8.64 kJ,增益為1.745倍。 _ 4 g CAIII-300+1 g Mg+1 g NaH+1.60 g Te02,實驗 dE : -17.0 kJ,考慮之反應:Te02(c)+3Mg(c)+2NaH(c)= 2MgO(c)+Na2Te(C)+MgH2(c) Q=-1192.7千焦/,反應,理論化 學反應能量:-11.9 kJ,過剩熱:-5·1 kJ,1.43X過剩熱。 P2〇5 1吋大容量電池中1.66 g KH、2 g P2〇5及1 g MgH2及4 g 0八-111 300活性碳粉末(在300。(:下乾燥),能量增益為21.2 kJ,且溫度突增242°C (299-541°C )。最大電池溫度為 549°C,理論能量為10.8 kJ,過剩10.35 kJ,增益為1.96倍 032609GC4 : 031909RCWF4/1.66 g KH+2 g P2〇5+l g MgH2+4 g CA III-300 ’ 在 DMF-d7 中(按原樣),強 _3·86 142257.doc •186- 201104948 ppm 峰。 4 g CAIII-300+1 g MgH2+1.66 g KH+2 g P205,Ein : 138.0 kJ,dE : 21.6 kJ,TSC : 320-616〇C ,Tmax : 616°C,理論能量為11·5 kJ,過剩10.1 kJ,增益為1·9倍。 ΚΗ 8.3 gm+MgH2 粉末 5·0 gm+活性碳 CAII 300 20 gm 球 磨+P205 10.0 gm,Ein : 272 kJ,dE : 98 kJ,在 250°C 下突 升且Tmax為約450°C,理論能量為54 kJ,增益為1.81倍。 ΚΗ 1.66 gm+MgH2粉末 1.0 gm+活性碳 CAII 300 4 gm球 磨+P205 2.0 gm,Ein : 130 kJ,dE : 21 kJ,在 300°C 下突 升且Tmax為約550°C,理論能量為10.8 kJ,增益為1.94 倍。 _ ΚΗ 1.66 gm+MgH2粉末 1.0 gm+TiC 4·0 gm+P2〇5 2.0 gm,Ein : 129 kJ,dE : 21 kJ,溫度在 270°C 下突升且 Tmax為約600°C,理論能量為10.8 kJ,增益為1.95倍。 NaMn04 4 g CAIII-300+1 g Si+1 g NaH+3.5 g NaMn〇4 ; Ein : 123.0 kJ ; dE : 26.25 kJ ; TSC : 45-330〇C ; Tmax : 465°C,理論能量為17.6 kJ,過剩8.7 kJ,增益為1.5倍。 4 g CAIII-300+1 g Al+1 g NaH+3.5 g NaMn〇4 ; Ein : 120.0 kJ ; dE : 32.41 kJ ; TSC : 44-373〇C ; Tmax : 433°(:,理論能量為20.51^,過剩7.71<:>1,增益為1.58倍。 _ 4 g CAIII-300 + 1 g Mg+1 g NaH+3.5 g NaMn〇4 ; Ein : 66.0 kJ ; dE : 32.27 kJ ; TSC : 74-430〇C ; Tmax : 430〇C, 理論能量為17.4 kJ,過剩14.9 kJ,增益為1.85倍。 142257.doc -187- 201104948 4 g CAIII-300+1 g Mg+l g NaH+3.5 g NaMn04,Ein : 72.0 kJ,dE : 34.1 kJ,TSC : 49-362〇C,Tmax : 364〇C, 理論能量為17.4 kJ,過剩16.7 kJ,增益為2倍。 KH 8.3 gm+Mg粉末 5.0 gm+活性碳 CAII 300 20 gm球磨 +NaMn〇4 17.5 gm,Ein : 130 kJ,dE : 160 kJ,溫度在 7〇°C下突升且Tmax為約350°C,理論能量為87 kJ,增益為 1.84 倍。 KH 8.3 gm+Al 粉末 5.0 gm+活性碳 CAII 300 20 gm 球磨 +NaMn04 17.5 gm,Ein : 134 kJ,dE : 171 kJ,溫度在 50°C下突升且Tmax為約350°C,理論能量為102.5 kJ,增 益為1.66倍。Te02 4 g CAIII-300+1 g MgH2+lg NaH+1.6 g Te02 ; Ein : 325.1 kJ ; dE : 18.46 kJ ; TSC : 210-440〇C ; Tmax : 440°C, theoretical energy 9.67 kJ, excess 8.8 kJ, the gain is 1.9 times. 4 g CAIII-300 + 2 g MgH2 + 2 g NaH + 3.2 g Te02, Ein: 103.0 kJ, dE: 31.6 kJ, TSC: 185-491. . , Tmax : 498 ° C, theoretical energy is 17.28 kJ, gain is 1.83 times. 1 吋 large capacity battery 1.6 g Te 〇 2, 0.33 g LiH, 1 g A1 powder and 4 g CA-III 300 activated carbon powder (dried at 300 ° C), energy gain of 18.1 kJ, but not observed The temperature suddenly increased. The maximum battery temperature is 63 7 ° C, the theoretical energy is 8.66 kJ, and the gain is 2.1 times. 1 called large-capacity battery 1.6 g Te〇2, 1.66 g KH, 1 g MgH2 powder and 4 g CA-III 300 activated carbon powder (dried at 300 ° C), the energy gain is 22.0 kJ, and the temperature is sudden Increase 233 ° C (316-549 ° C). The maximum battery temperature is 554 ° C, the theoretical energy is 8.64 kJ, and the gain is 2.55 times. 1.6 g Te02, 1.66 g KH, 1 g Mg powder and 4 g CA-III 300 activated carbon powder (dried at 300 ° C) in a 1-port high-capacity battery with an energy gain of 20.3 kJ and a sudden increase in temperature 274 °C (268-542 ° C). The maximum battery temperature is 549 ° C, the theoretical energy is 10.9 kJ, and the gain is 1.86 times. _ NaH 5_0 gm+MgH2 powder 5·0 gm+ activated carbon CAII 300 20 gm ball mill + Te〇2 8.0 gm, Ein: 253 kJ, dE: 77 kJ, temperature rises at 200 ° C and Tmax is about 400 ° C The theoretical energy is 48.35 kJ and the gain is 1.6 times. _ NaH 1.0 gm+MgH2 powder 1.0 gm+activated carbon CAII 300 4.0 gm 142257.doc -185 - 201104948 ball mill + Te02 1 ·6 gm ' Ein : 110 kJ ' dE : 16 kJ ' The temperature rises at 190 ° C and Tmax At about 400 ° C, the theoretical energy is 9.67 kJ and the gain is 1.65 times. • KH 1.66 gm+MgH2 powder 1.0 gm+ activated carbon CAII 300 4.0 gm ball mill + Te〇2 1.6 gm, Ein: 119 kJ 'dE : 19 kJ, temperature rises at 340 ° C and Tmax is about 570 ° C, theory The energy is 9.67 kJ and the gain is 2 times. 4 g CAIII-300+1 g NaH+1.6 g Te02, Ein : 116.0 kJ , dE : 11.0 kJ > TSC : 207-352〇C > Tmax : 381〇C, theoretical energy 6.6 kJ, gain 1.67 times . KH 1.66 gm+MgH2 powder 1.0 gm+TiC 4.0 gm +Te02 1.6 gm, Ein: 133 kJ, dE: 15 kJ, temperature rises at 280 °C and Tmax is about 460 °C, theoretical energy is 8.64 kJ, gain It is 1.745 times. _ 4 g CAIII-300+1 g Mg+1 g NaH+1.60 g Te02, experimental dE: -17.0 kJ, consider the reaction: Te02(c)+3Mg(c)+2NaH(c)= 2MgO(c)+ Na2Te(C)+MgH2(c) Q=-1192.7 kJ/, reaction, theoretical chemical reaction energy: -11.9 kJ, excess heat: -5·1 kJ, 1.43X excess heat. P6〇5 1吋 large capacity battery 1.66 g KH, 2 g P2〇5 and 1 g MgH2 and 4 g 0 eight-111 300 activated carbon powder (at 300. (: dry), energy gain of 21.2 kJ, The temperature suddenly increases by 242 ° C (299-541 ° C). The maximum battery temperature is 549 ° C, the theoretical energy is 10.8 kJ, the excess is 10.35 kJ, the gain is 1.96 times 032609GC4 : 031909RCWF4/1.66 g KH+2 g P2〇5 +lg MgH2+4 g CA III-300 ' In DMF-d7 (as is), strong _3·86 142257.doc •186- 201104948 ppm peak. 4 g CAIII-300+1 g MgH2+1.66 g KH+ 2 g P205, Ein: 138.0 kJ, dE: 21.6 kJ, TSC: 320-616〇C, Tmax: 616°C, theoretical energy is 11.5 kJ, excess 10.1 kJ, gain is 1.9 times. ΚΗ 8.3 gm +MgH2 powder 5·0 gm+activated carbon CAII 300 20 gm ball mill + P205 10.0 gm, Ein: 272 kJ, dE: 98 kJ, with a sudden rise at 250 ° C and a Tmax of about 450 ° C, the theoretical energy is 54 kJ, The gain is 1.81 times. ΚΗ 1.66 gm+MgH2 powder 1.0 gm+ activated carbon CAII 300 4 gm ball mill + P205 2.0 gm, Ein: 130 kJ, dE: 21 kJ, rises at 300 ° C and Tmax is about 550 ° C, The theoretical energy is 10.8 kJ and the gain is 1.94 times. _ ΚΗ 1.66 gm+MgH2 powder 1.0 gm+TiC 4·0 gm+P2〇5 2.0 gm, Ein: 129 kJ, dE: 21 kJ, temperature rises at 270 °C and Tmax is about 600 ° C, theoretical energy The value is 10.8 kJ and the gain is 1.95 times. NaMn04 4 g CAIII-300+1 g Si+1 g NaH+3.5 g NaMn〇4 ; Ein : 123.0 kJ ; dE : 26.25 kJ ; TSC : 45-330〇C ; Tmax : At 465 ° C, the theoretical energy is 17.6 kJ, with an excess of 8.7 kJ and a gain of 1.5. 4 g CAIII-300+1 g Al+1 g NaH+3.5 g NaMn〇4 ; Ein : 120.0 kJ ; dE : 32.41 kJ ; TSC : 44-373〇C ; Tmax : 433° (:, theoretical energy is 20.51^, excess 7.71<:>1, gain is 1.58 times. _ 4 g CAIII-300 + 1 g Mg+1 g NaH+3.5 g NaMn〇4 ; Ein : 66.0 kJ ; dE : 32.27 kJ ; TSC : 74-430〇C ; Tmax : 430〇C, theoretical energy 17.4 kJ The excess is 14.9 kJ and the gain is 1.85 times. 142257.doc -187- 201104948 4 g CAIII-300+1 g Mg+lg NaH+3.5 g NaMn04,Ein : 72.0 kJ,dE : 34.1 kJ,TSC : 49-362〇C,Tmax : 364〇C, theoretical energy It is 17.4 kJ, with a surplus of 16.7 kJ and a gain of 2 times. KH 8.3 gm+Mg powder 5.0 gm+activated carbon CAII 300 20 gm ball mill+NaMn〇4 17.5 gm, Ein: 130 kJ, dE: 160 kJ, temperature rises at 7 °C and Tmax is about 350 °C, theory The energy is 87 kJ and the gain is 1.84 times. KH 8.3 gm+Al powder 5.0 gm+activated carbon CAII 300 20 gm ball mill + NaMn04 17.5 gm, Ein: 134 kJ, dE: 171 kJ, the temperature rises at 50 ° C and the Tmax is about 350 ° C, the theoretical energy is 102.5 kJ, the gain is 1.66 times.

NaH 1.0 gm+Mg粉末 1·0 gm+活性碳 CAII 300 4.0 gm球 磨 +NaMn04 3·5 gm(理論能量為約 17_4 kJ),Ein : 54 kJ, dE : 32 kJ,溫度在60°C下突升且Tmax為約45 0°C,理論能 量為17.4 kJ,增益為1.8倍。 KH 1.66 gm+Mg粉末 1.0 gm + TiC 4.0 gm+NaMn〇4 3·5 gm,Ein : 65 kJ,dE : 30 kJ,溫度在 70°C 下突升且 Tmax 為約410°C,理論能量為17.4 kJ,增益為1.7倍。 硝酸鹽 _ 1吋電池中2 g NaH、3 g NaN03及1 g Ti粉末與4 g活性 碳粉末之混合物(在300°C下乾燥),能量增益為33.2 kJ,且 溫度突增418°C(1 10-528°C)。最大電池溫度為530°C,理論 能量為24.8 kJ,過剩8.4 kJ,增益為1.3倍。 1叫·電池中3 g NaH、3 g NaN03及1 g A1奈米粉末與4 g 142257.doc -188- 201104948 活性碳粉末之混合物(在3〇〇°c下乾燥),能量增益為42 3 kJ,且溫度突增384〇C(150_534t:)。最大電池溫度為 540 C,理論能量為33.3 kJ,過剩9 kJ,增益為1.27倍。 _ 1吋電池中2.1 gNaH、3 gNaN〇3&1 §]^§112與4§活性 碳粉末之混合物(在3 00。(:下乾燥),能量增益為43.4 kJ,且 溫度突增382。(:(67-449。(:)。最大電池溫度為451。(:,理論 倉bf為28.6kJ’過剩I4_8kj,增益為ι·52倍。 1吋大容量電池中 0.33 g LiH、1.7 g UN03及 1 g MgH2 與4 g活性碳粉末之混合物(在3〇(rc下乾燥),能量增益為 40.1 kJ,且溫度突增337。(:(92_429。〇。最大電池溫度為 431 C ’理論能量為21.6 kJ,過剩18.5 kJ,增益為1·86 倍。 1吋電池中 0.33 g LiH、1.7 g LiN03及 1 g Ti與 4 g活性 碳粉末之混合物(在300°C下乾燥),能量增益為36 5 kJ,且 溫度突增319C(83-402°C)。最大電池溫度為45〇。〇,理論 能量為1 8.4 kJ,過剩18 kJ,增益為2倍。 4 g CAIII-300+1 g MgH2+l g NaH+2.42 g LiN03 ;NaH 1.0 gm+Mg powder 1·0 gm+activated carbon CAII 300 4.0 gm ball mill + NaMn04 3·5 gm (theoretical energy is about 17_4 kJ), Ein: 54 kJ, dE : 32 kJ, the temperature rises at 60 ° C And Tmax is about 45 0 ° C, the theoretical energy is 17.4 kJ, and the gain is 1.8 times. KH 1.66 gm+Mg powder 1.0 gm + TiC 4.0 gm+NaMn〇4 3·5 gm, Ein: 65 kJ, dE: 30 kJ, the temperature rises at 70 ° C and the Tmax is about 410 ° C, the theoretical energy is 17.4 kJ, the gain is 1.7 times. a mixture of 2 g NaH, 3 g NaN03 and 1 g Ti powder and 4 g activated carbon powder in a nitrate _ 1 吋 battery (dried at 300 ° C) with an energy gain of 33.2 kJ and a sudden temperature increase of 418 ° C (1 10-528 ° C). The maximum battery temperature is 530 ° C, the theoretical energy is 24.8 kJ, the excess is 8.4 kJ, and the gain is 1.3 times. 1) Battery 3 g NaH, 3 g NaN03 and 1 g A1 nano powder and 4 g 142257.doc -188- 201104948 A mixture of activated carbon powder (dried at 3 ° C) with an energy gain of 42 3 kJ, and the temperature suddenly increased by 384 〇 C (150_534t:). The maximum battery temperature is 540 C, the theoretical energy is 33.3 kJ, the excess is 9 kJ, and the gain is 1.27 times. _ 1吋 Battery 2.1 gNaH, 3 gNaN〇3&1 §]^§112 and 4§ mixture of activated carbon powder (at 300 00. (: dry), energy gain of 43.4 kJ, and temperature burst 382 (:(67-449.(:). The maximum battery temperature is 451. (:, theoretical bin bf is 28.6kJ' excess I4_8kj, gain is ι·52 times. 1吋 large capacity battery 0.33 g LiH, 1.7 g Mixture of UN03 and 1 g MgH2 with 4 g of activated carbon powder (dry at 3 〇 (dry under rc) with an energy gain of 40.1 kJ and a sudden increase in temperature of 337. (: (92_429. 〇. Maximum battery temperature is 431 C ' The theoretical energy is 21.6 kJ, the excess is 18.5 kJ, and the gain is 1.86 times. In a 1-cell battery, 0.33 g LiH, 1.7 g LiN03, and a mixture of 1 g Ti and 4 g activated carbon powder (dried at 300 ° C), The energy gain is 36 5 kJ, and the temperature suddenly increases by 319 C (83-402 ° C). The maximum battery temperature is 45 〇. 理论, the theoretical energy is 1 8.4 kJ, the excess is 18 kJ, and the gain is 2 times. 4 g CAIII-300 +1 g MgH2+lg NaH+2.42 g LiN03 ;

Ein : 75.0 kJ ; dE : 39.01 kJ ; TSC : 5 7-492。。; Tmax : 492 C ’理論能量為28.5 kJ ’過剩ίο: kJ,增益為丨37 倍。 4 g CAIII-300+1 g Al+1 g NaH+2.42 g LiN03 ; Ein : 81.2 kJ ; dE : 41.89 kJ ; TSC : 73-528〇C ; Tmax : 528〇C 5 理奋能置為3 4 · 6 k J ’過剩7 · 3 k J,増益為l 21倍。Ein : 75.0 kJ ; dE : 39.01 kJ ; TSC : 5 7-492. . ; Tmax : 492 C 'Theoretical energy is 28.5 kJ ‘excess ίο: kJ, the gain is 丨37 times. 4 g CAIII-300+1 g Al+1 g NaH+2.42 g LiN03 ; Ein : 81.2 kJ ; dE : 41.89 kJ ; TSC : 73-528〇C ; Tmax : 528〇C 5 Lifen can be set to 3 4 · 6 k J 'excess 7 · 3 k J, the benefit is 21 times.

Cl〇4 142257.doc 189- 201104948 4 g CAIII-300+1 g MgH2+2 g NaCl〇4+l g NaH ; Ein : 86.0 kJ ; dE : 38.88 kJ ; TSC : 130-55 1〇C ; Tmax : 551°C,理論能量為30.7 kJ,過剩8.2 kJ,增益為1.27倍。 4 g CAIII-300+1 g Al+1 g NaH+4.29 g NaC104 ; Ein : 88.0 kJ ; dE : 58.24 kJ ; TSC : 119-615〇C ; Tmax : 615°C,理論能量為47.1 kJ,過剩11.14 kJ,增益為1.23 倍。 4 g CAIII-300+1 g MgH2+l g NaH+4.29 g NaC104 ; Ein : 98.0 kJ ; dE : 56.26 kJ ; TSC : 113-571 〇C ; Tmax : 571°C,理論能量為36.2 kJ,過剩20.1 kJ,增益為1.55 倍。 K2S2O8 4 g CAIII-300+1 g MgH2+1.66 g KH+2‘7 g K2S208, Ein : 121.0 kJ,dE : 27.4 kJ,TSC : 178-462。。,Tmax : 468°C,理論能量為19.6 kJ,過剩7.8 kJ,增益為1.40倍。 S02 4 g CAIII-300+1 g MgH2+l g NaH+0.0146 mol S〇2, Ein : 58.0 kJ,dE : 20.7 kJ,TSC : 42-287〇C,Tmax : 309°(:,理論能量為15 1^,過剩5.7 1^,增益為1.3 8倍。Cl〇4 142257.doc 189- 201104948 4 g CAIII-300+1 g MgH2+2 g NaCl〇4+lg NaH ; Ein : 86.0 kJ ; dE : 38.88 kJ ; TSC : 130-55 1〇C ; Tmax : 551 °C, the theoretical energy is 30.7 kJ, the excess is 8.2 kJ, and the gain is 1.27 times. 4 g CAIII-300+1 g Al+1 g NaH+4.29 g NaC104 ; Ein : 88.0 kJ ; dE : 58.24 kJ ; TSC : 119-615〇C ; Tmax : 615°C, theoretical energy 47.1 kJ, excess 11.14 kJ, the gain is 1.23 times. 4 g CAIII-300+1 g MgH2+lg NaH+4.29 g NaC104 ; Ein : 98.0 kJ ; dE : 56.26 kJ ; TSC : 113-571 〇 C ; Tmax : 571 ° C , theoretical energy 36.2 kJ , excess 20.1 kJ The gain is 1.55 times. K2S2O8 4 g CAIII-300+1 g MgH2+1.66 g KH+2 '7 g K2S208, Ein: 121.0 kJ, dE: 27.4 kJ, TSC: 178-462. . , Tmax : 468 ° C, the theoretical energy is 19.6 kJ, the excess is 7.8 kJ, and the gain is 1.40 times. S02 4 g CAIII-300+1 g MgH2+lg NaH+0.0146 mol S〇2, Ein : 58.0 kJ, dE : 20.7 kJ, TSC : 42-287〇C, Tmax : 309° (:, theoretical energy is 15 1 ^, the excess is 5.7 1^, and the gain is 1.3 8 times.

S 4 g CAIII-300+1 g MgH2+l g NaH+3.2 g S,Ein : 67.0 kJ,dE : 22.7 kJ,TSC : 49-356〇C,Tmax : 366〇C,理論 能量為17.9 kJ,過剩4.8 kJ,增益為1.27倍。 _ 1吋大容量電池中1.3 g S粉、1.66 g KH、1 g Si粉末及 142257.doc -190- 201104948 4 g CA-III 300活性碳粉末(在30(TC下乾燥),能量增益為 13.7 kJ,且溫度突增129°C (66-195°C )。最大電池溫度為 415°C,理論能量為7.5 kJ,過剩1.82倍。 1吋大容量電池中3.2 g S粉末、0.33 g LiH、1 g A1粉末 及4 g CA-IV 300活性碳粉末(在3〇〇°C下乾燥),能量增益 為27.1 kJ ’且溫度突增301°C (163-464°C )。最大電池溫产 為484°C ’理論能量為20.9 kJ,過剩6.2 kJ,增益為1 3 倍。 1吋大容量電池中3.2 g S粉、0.33 g LiH,1 g Si粉末及 4 g CA-IV 300活性碳粉末(在3〇〇。〇下乾燥),能量増益為 1 7.7 kJ ’且溫度突增233 C (2 12-445°C )。最大電池溫度為 4 5 1 °C ’理論能量為13.7 k J,過剩4 k J,增益為1 3户。 4 g CAIII-300+1 g Si+1.66 g KH+1.3 g S > Ein : 81 〇 kJ ’ dE : 10.8 kJ ’ TSC : 52-196°C,Tmax : 326°C,理論 能量為7.4 kJ,增益為1.45倍。 5 n F4 4 g CAIII-300+1 g Mg+1 g NaH+1.95 g SnF4 ; Bin: 130.2 kJ ; dE : 13.89 kJ ; TSC : 375-520〇C ; Tmax : 525°C,理論能量為9.3 kJ,增益為1.5倍。 4 g CAIII-300+1 g Mg+1 g NaH+1.95 g SnF4 ; Bin : 130.2 kJ ; dE : 13.89 kJ ; TSC : 375-520〇C ; Tmax : 525°C,理論能量為9·3 kJ,增益為1 5倍。S 4 g CAIII-300+1 g MgH2+lg NaH+3.2 g S,Ein : 67.0 kJ,dE : 22.7 kJ, TSC : 49-356〇C, Tmax : 366〇C, theoretical energy is 17.9 kJ, excess 4.8 kJ, the gain is 1.27 times. _ 1吋 Large capacity battery 1.3 g S powder, 1.66 g KH, 1 g Si powder and 142257.doc -190- 201104948 4 g CA-III 300 activated carbon powder (dry at 30 (TC), energy gain is 13.7 kJ, and the temperature suddenly increases by 129 ° C (66-195 ° C). The maximum battery temperature is 415 ° C, the theoretical energy is 7.5 kJ, and the excess is 1.82 times. 1 吋 large capacity battery 3.2 g S powder, 0.33 g LiH , 1 g of A1 powder and 4 g of CA-IV 300 activated carbon powder (dried at 3 ° C), energy gain of 27.1 kJ ' and temperature sudden increase of 301 ° C (163-464 ° C). The temperature is 484 ° C 'theoretical energy is 20.9 kJ, the excess is 6.2 kJ, the gain is 13 times. 1 吋 large capacity battery 3.2 g S powder, 0.33 g LiH, 1 g Si powder and 4 g CA-IV 300 activity Carbon powder (dry at 3 〇〇. under the armpit), energy benefit is 1 7.7 kJ 'and temperature 233 C (2 12-445 ° C). Maximum battery temperature is 4 5 1 °C 'Theoretical energy is 13.7 k J, excess 4 k J, gain is 1 3. 4 g CAIII-300+1 g Si+1.66 g KH+1.3 g S > Ein : 81 〇kJ ' dE : 10.8 kJ ' TSC : 52-196° C, Tmax : 326 ° C, theoretical energy is 7.4 kJ, gain 1.45 times. 5 n F4 4 g CAIII-300+1 g Mg+1 g NaH+1.95 g SnF4 ; Bin: 130.2 kJ ; dE : 13.89 kJ ; TSC : 375-520〇C ; Tmax : 525°C, theoretical energy 9.3 kJ, the gain is 1.5 times. 4 g CAIII-300+1 g Mg+1 g NaH+1.95 g SnF4 ; Bin : 130.2 kJ ; dE : 13.89 kJ ; TSC : 375-520〇C ; Tmax : 525°C The theoretical energy is 9·3 kJ and the gain is 15 times.

Se02 4 g CAIII-300+2 g MgH2+2 g NaH+2.2 g Se02 , Ein : 142257.doc -191 - 201104948 82.0 kJ,dE : 29.5 kJ,TSC : 99-388°C,Tmax : 393°C, 理論能量為20.5 kJ,增益為1.4倍。 cs2 PP小瓶中 NaH 1.0 gm +(A1粉末 1.0 gm+活性碳 CAII 300 4 gm)球磨+CS2 1.2 ml,Ein : 72 kJ,dE : 18 kJ,溫度在 約80°C下突升且Tmax為約320°C,理論能量為11.4 kJ,增 益為1.58倍。 PP小瓶中 NaH 1.0 gm+MgH2粉末 1.0 gm+活性碳 CAII 300 4 gm球磨+CS2 1.2 ml,Ein : 82 kJ,dE : 18 kJ,溫度 在約80°C下突升且Tmax為約330°C,理論能量為12.6 kJ, 增益為1.4倍。 C〇2 4 g CAIII-300+1 g MgH2+l g NaH+0.00953 mol C〇2(在 填充C02後,電池溫度上升至45°C) ; Ein : 188.4 kJ ; dE : \ 10.37 kJ ; TSC : 80-120^ ; Tmax : 508〇C,理論能量為 6.3 kJ,增益為1.65倍。 pf5 4 g CAIII-300+1 g Al+1 g NaH+0.010 mol PF5 ; Ein : 127.0 kJ ; dE : 15.65 kJ ; TSC : 210-371〇C ; Tmax : 3 71°〇,理論能量為1〇1^,過剩6.451^,增益為1.57倍。 4 g CAIII-300+1 g Al + 1 g NaH+0.01 mol. PF5,Ein : 101.0 kJ,dE : 15.7 kJ,TSC : 178-370。。,Tmax : 3 91°(:,理論能量為1〇1^,增益為1.57倍。 nf3 142257.doc -192- 201104948Se02 4 g CAIII-300+2 g MgH2+2 g NaH+2.2 g Se02 , Ein : 142257.doc -191 - 201104948 82.0 kJ,dE : 29.5 kJ, TSC : 99-388 ° C, Tmax : 393 ° C, The theoretical energy is 20.5 kJ and the gain is 1.4 times. Cs2 PP vial NaH 1.0 gm + (A1 powder 1.0 gm + activated carbon CAII 300 4 gm) ball mill + CS2 1.2 ml, Ein: 72 kJ, dE: 18 kJ, temperature rises at about 80 ° C and Tmax is about 320 °C, the theoretical energy is 11.4 kJ, and the gain is 1.58 times. NaH 1.0 gm+MgH2 powder in PP vial 1.0 gm+ activated carbon CAII 300 4 gm ball mill + CS2 1.2 ml, Ein: 82 kJ, dE: 18 kJ, the temperature rises at about 80 ° C and the Tmax is about 330 ° C. The theoretical energy is 12.6 kJ and the gain is 1.4 times. C〇2 4 g CAIII-300+1 g MgH2+lg NaH+0.00953 mol C〇2 (battery temperature rises to 45 °C after filling C02) Ein : 188.4 kJ ; dE : \ 10.37 kJ ; TSC : 80 -120^ ; Tmax : 508〇C, theoretical energy is 6.3 kJ, gain is 1.65 times. Pf5 4 g CAIII-300+1 g Al+1 g NaH+0.010 mol PF5 ; Ein : 127.0 kJ ; dE : 15.65 kJ ; TSC : 210-371〇C ; Tmax : 3 71°〇, theoretical energy is 1〇1 ^, the excess is 6.451^, and the gain is 1.57 times. 4 g CAIII-300+1 g Al + 1 g NaH+0.01 mol. PF5, Ein: 101.0 kJ, dE: 15.7 kJ, TSC: 178-370. . , Tmax : 3 91° (:, theoretical energy is 1〇1^, gain is 1.57 times. nf3 142257.doc -192- 201104948

NaH 1.0 gm +(Mg 粉末 1.0 gm+活性碳 CAII-300 4 gm)球 磨 +NF3 0.011 mol,且理論能量為約 kJ,Ein : 136 kJ, dE : 28 kJ,溫度在70°C下突升且Tmax為約470°C,理論能 量為19.6 kJ,增益為1.4倍。 PC15 4 g CAIII-300+1 g MgH2+2.08 g PC15+1 g NaH ; Ein : 90.0 kJ ; dE : 20.29 kJ ; TSC : 180-379〇C ; Tmax : 391 °C,理論能量為13.92 kJ,增益為1.45倍。 P2S5 4 g CAIII-300+1 g MgH2+l g NaH+2.22 g P2S5 ; Ein : 105.0 kJ ; dE : 13.79 kJ ; TSC : 150-363〇C ; Tmax : 3 98°C,理論能量為10.5 kJ,過剩3.3 kJ,增益為1.3倍。NaH 1.0 gm + (Mg powder 1.0 gm + activated carbon CAII-300 4 gm) ball mill + NF3 0.011 mol, and the theoretical energy is about kJ, Ein: 136 kJ, dE: 28 kJ, temperature rises at 70 ° C and Tmax At about 470 ° C, the theoretical energy is 19.6 kJ and the gain is 1.4 times. PC15 4 g CAIII-300+1 g MgH2+2.08 g PC15+1 g NaH ; Ein : 90.0 kJ ; dE : 20.29 kJ ; TSC : 180-379〇C ; Tmax : 391 °C, theoretical energy 13.92 kJ, gain It is 1.45 times. P2S5 4 g CAIII-300+1 g MgH2+lg NaH+2.22 g P2S5 ; Ein : 105.0 kJ ; dE : 13.79 kJ ; TSC : 150-363〇C ; Tmax : 3 98°C, theoretical energy 10.5 kJ, excess 3.3 kJ, the gain is 1.3 times.

NaH 1.0 gm+Al粉末 1.0 gm+活性碳 CAII 300 4 gm球磨 +P2S5 2.22 gm,Ein : 110 kJ,dE : 14 kJ,溫度在約 170°C 下突升且Tmax為約425°C,理論能量為10.1 kJ,增益為 1.39 倍。 氧化物 4 g AC+1 g MgH2+1.66 g KH+1.35 g K02 > Ein : 86.0 kJ,dE : 21.0 kJ,TSC : 157-408〇C,Tmax : 416°C,理論 能量為15.4 kJ,增益為1.36倍。 Μη04 4 g CAIII-300+1 g Mg+1 g NaH+3.5 g Mn02 ; Ein : 108.0 kJ ; dE : 22.11 kJ ; TSC : 170-498〇C ; Tmax : 498°C,理論能量為18.4 kJ,過剩3.7 kJ,增益為1.2倍。 142257.doc -193 - 201104948 n2o 4 g Pt/C+l g Mg+l g NaH+0.0198 mol N20,Ein : .72.0 kJ ’ dE : 22.2 kJ,TSC : 73-3461,Tmax : 361°C,理論 能量為16.2 kJ,增益為1.37倍。NaH 1.0 gm+Al powder 1.0 gm+activated carbon CAII 300 4 gm ball mill + P2S5 2.22 gm, Ein: 110 kJ, dE: 14 kJ, the temperature rises at about 170 ° C and the Tmax is about 425 ° C, the theoretical energy is 10.1 kJ, the gain is 1.39 times. Oxide 4 g AC+1 g MgH2+1.66 g KH+1.35 g K02 > Ein : 86.0 kJ, dE : 21.0 kJ, TSC : 157-408 〇C, Tmax : 416 ° C, theoretical energy 15.4 kJ, gain It is 1.36 times. Μη04 4 g CAIII-300+1 g Mg+1 g NaH+3.5 g Mn02 ; Ein : 108.0 kJ ; dE : 22.11 kJ ; TSC : 170-498 〇 C ; Tmax : 498 ° C , theoretical energy 18.4 kJ , excess 3.7 kJ, the gain is 1.2 times. 142257.doc -193 - 201104948 n2o 4 g Pt/C+lg Mg+lg NaH+0.0198 mol N20,Ein : .72.0 kJ ' dE : 22.2 kJ, TSC : 73-3461,Tmax : 361°C, theoretical energy 16.2 kJ, the gain is 1.37 times.

HFBHFB

NaH 1.0 gm +(鋁奈米粉末l gm+活性碳(AC)5 gm)球磨 +HFB 1 nU’ Ein : 108 kJ,dE 3 5 kJ,溫度在90°C 下突增 450〇C。NaH 1.0 gm + (aluminum nano powder l gm + activated carbon (AC) 5 gm) ball mill +HFB 1 nU' Ein : 108 kJ, dE 3 5 kJ, the temperature suddenly increased by 450 ° C at 90 ° C.

NaH 1.0 gm +(La 5 gm+活性碳5 gm)球磨+六氣笨1 ml,Ein : 109 kJ,dE : 38 kJ,溫度在 90°C 下突增 400°C。 (4 g活性碳(AC)+ 1 g MgH2)球磨+1 ml HFB+1 g NaH, Ein : 150.0 kJ,dE : 45.1 kJ,TSC :約 50-240,Tmax為約 250°C 0 摻合物(4 g AC+1 g MgH2)+ 1 ml HFB+1 g NaH,Ein : 150.0 kJ,dE : 35·0 kJ,TSC : 54-255〇C、45-241。。' 48-199°C ; Tmax : 258〇C、247°C、206°C (三串聯電池)。 1吋電池中1.66 g KH、1 ml十六氟庚烷(HDFH)及4 g活 性碳粉末與1 g MgH2之混合物,dE : 34.3 kJ,且突增 419°C (145-564X: ),Tmax為約 575。(:。NaH 1.0 gm + (La 5 gm + activated carbon 5 gm) ball mill + six gas stupid 1 ml, Ein: 109 kJ, dE: 38 kJ, the temperature suddenly increased by 400 ° C at 90 ° C. (4 g activated carbon (AC) + 1 g MgH2) ball mill +1 ml HFB+1 g NaH, Ein : 150.0 kJ, dE : 45.1 kJ, TSC: about 50-240, Tmax about 250 ° C 0 Blend (4 g AC+1 g MgH2) + 1 ml HFB+1 g NaH, Ein: 150.0 kJ, dE: 35·0 kJ, TSC: 54-255〇C, 45-241. . '48-199 ° C; Tmax : 258 ° C, 247 ° C, 206 ° C (three series battery). 1吋1.6 g of KH, 1 ml of hexadecafluoroheptane (HDFH) and a mixture of 4 g of activated carbon powder and 1 g of MgH2, dE: 34.3 kJ, and a sudden increase of 419 ° C (145-564X: ), The Tmax is about 575. (:.

B.溶液NMR 用於形成低能量氫之代表性反應混合物包含:(i)至少— 種催化劑,諸如選自h·//、尺开及ΑΓα//之一;(ii)至少一種氧 化劑,諸如選自 、M«/2、、五wBr2、S、 CF4 ' 、具有 Jg 之M2S2(98 及 P2JP5之一;(iii)至 142257.doc -194- 201104948 少一種還原劑,諸如選自Mg粉末或Mgi/2、A粉末或鋁奈 米粉末〇4/ NP)、分及Ca之一;及(iv)至少一種載體,諸如 選自AC及TiC之一。將反應混合物之50 mg反應產物添加 至用玻璃TEFLON™閥密封之小瓶中1.5 ml氘化Ν,Ν-二曱基 甲醯胺-d7(Z)Ca/V(CT)3)2 , DMF-d7(99.5°/〇 CambridgeB. Solution NMR A representative reaction mixture for forming low energy hydrogen comprises: (i) at least one catalyst, such as one selected from the group consisting of h·//, open and ΑΓα//; (ii) at least one oxidizing agent, such as Selected from, M«/2,, five wBr2, S, CF4', M2S2 with Jg (one of 98 and P2JP5; (iii) to 142257.doc -194-201104948 less reducing agent, such as selected from Mg powder or Mgi/2, A powder or aluminum nano powder 〇 4 / NP), one of the points and Ca; and (iv) at least one carrier, such as one selected from the group consisting of AC and TiC. 50 mg of the reaction mixture was added to a vial sealed with a glass TEFLONTM valve, 1.5 ml of hydrazine, hydrazine-dimercaptocaramine-d7(Z)Ca/V(CT)3)2, DMF- D7 (99.5°/〇Cambridge

Isotope Laboratories, Inc.))中,檟;動,且使之在手套箱中 在氬氛圍下經12小時之時段溶解。藉由不透氣之連接將缺 乏任何固體之溶液轉移至NMR管(5 mm 0D,23 cm長, Wilmad)中,接著火焰密封管。用氘鎖定之500 MHz Bruker NMR頻譜儀記錄NMR譜。化學位移參考在相對於 四甲基矽烷(TMS)8.03 ppm下諸如DMF-d7之溶劑頻率。 預測在相對於TMS約-3.86 ppm下觀測到低能量氫氫陰離 子Η_( 1/4),且預測在相對於TMS 1.25 ppm下觀測到分子低 能量氫H2( 1/4)。在表4中以位移給出特定反應混合物之此 等峰出現位置及強度。 表4. DMF-d7溶劑萃取包含以下反應物之非均勻低能量氫 催化劑系統之產物後的1H溶液NMR : (i)催化劑,諸如 LiH、KH 或 NaH ; (ii)還原劑,諸如 Al、A1 NP、Mg 或 MgH2 ;及(iii)氧化劑,諸如 CF4、Ν20、NF3、K2S2O8、 FeS〇4、〇2、LiN03、P2O5、SF6、S、CS2、NiBr2、Te〇2、 NaMn04、SnF4及Snl4,與(iv)諸如AC或Pt/C之載體混合。 142257.doc -195- 201104948 反應物 1.66 g ΚΗ、1 g A1、4 g AC 及 0·01 mol CF4 1 g NaH、1 g A卜 4 g AC及 0.01 mol CF4 1 g NaH ' 1 g MgH2 ' 4 g AC及 0.01 mol CF4 1 g NaH、1 g MgH2、4 g AC及 0.004 mol CF4 1 g NaH、1 g Mg、4 g AC 及 52 mmol CF4 1 g NaH、1 g A1、4 g AC及 52 mmol CF4 1 g NaH ' 1 g MgH2 ' 4 gIsotope Laboratories, Inc.)), sputum; and allowed to dissolve in a glove box under argon for a period of 12 hours. The solution lacking any solids was transferred to an NMR tube (5 mm 0D, 23 cm long, Wilmad) by means of a gas-tight connection, followed by flame sealing of the tube. NMR spectra were recorded on a 500 MHz Bruker NMR spectrometer with a lock. The chemical shift is referenced at a solvent frequency such as DMF-d7 relative to tetramethyl decane (TMS) 8.03 ppm. Low-energy hydrogen-hydrogen anion Η_(1/4) was predicted to be observed at approximately -3.66 ppm relative to TMS, and molecular low-energy hydrogen H2 (1/4) was predicted to be observed at 1.25 ppm relative to TMS. The position and intensity of these peaks for a particular reaction mixture are given by displacement in Table 4. Table 4. 1H solution NMR after DMF-d7 solvent extraction of the product of the non-uniform low energy hydrogen catalyst system containing the following reactants: (i) a catalyst such as LiH, KH or NaH; (ii) a reducing agent such as Al, A1 NP, Mg or MgH2; and (iii) oxidizing agents such as CF4, Ν20, NF3, K2S2O8, FeS〇4, 〇2, LiN03, P2O5, SF6, S, CS2, NiBr2, Te〇2, NaMn04, SnF4 and Snl4, Mixed with (iv) a carrier such as AC or Pt/C. 142257.doc -195- 201104948 Reactant 1.66 g ΚΗ, 1 g A1, 4 g AC and 0·01 mol CF4 1 g NaH, 1 g A Bu 4 g AC and 0.01 mol CF4 1 g NaH ' 1 g MgH2 ' 4 g AC and 0.01 mol CF4 1 g NaH, 1 g MgH2, 4 g AC and 0.004 mol CF4 1 g NaH, 1 g Mg, 4 g AC and 52 mmol CF4 1 g NaH, 1 g A1, 4 g AC and 52 mmol CF4 1 g NaH ' 1 g MgH2 ' 4 g

Pt/C及 0.01 mol CF4Pt/C and 0.01 mol CF4

1 g NaH ' 1 g A1 ' 4 g Pt/C 及 0.002 mol CF4 0.5 g NaH ' 0.5 g Mg ' 2 g AC及 52 mmol CF4 0.5 g NaH、0.5 g A1、2 g AC及 0.002 mol CF4 H2(l/4)峰位 Η·(1/4)峰位 及強度 及強度 1.22 ppm強-3.85 ppm強 1.23 ppm強 1.22 ppm強 1.22 ppm強 1.2 1 ppm 中等 1.2 1 ppm 強 1.27 ppm 中等-3.86 ppm 中等 1.21 ppm 強 1.22 ppm強 1.21 ppm 強 142257.doc -196- 201104948 1.66 g ΚΗ、1 g MgH2、4 g AC、0.01 mol N20 1 g NaH、1 g A卜 4 g AC、 0.002 mol N20 1 g NaH、1 g A卜 4 g AC、 0.004 mol N2O 1 g NaH、1 g MgH2、4 g AC ' 0.002 mol N20 1 g NaH、1 g MgH2、4 g AC、0.004 mol N20 1 g NaH、1 g MgH2、4 g AC及 0.01 mol N20 1 g NaH ' 1 g MgH2 ' 4 g AC及 0.018 mol N20 0.33 g LiH、1 g A1、4 g A1 及 0.004 mol N2O 1 g NaH ' 1 g MgH2 ' 4 g Pd/C(l%)及 0.01 mol N20 1 g NaH、4 g AC及 0.004 mol N2〇 1 g NaH、1 g MgH2、5 g Er2〇3、4 g Ac及 0·01 mol N20 1.22 ppm極強-3.85 ppm 中等 1.21 ppm 強 1.21 ppm 強 1.21 ppm 強 1.22 ppm 中等 1.24 ppm強 1.24 ppm強 -3.84 ppm強 1.22 ppm 中等-3.85 ppm強 1.24 ppm極強 1.2 1 ppm 極強 1 ·23 .ppm強 142257.doc -197 201104948 1 g NaH、1 g A1、5 g Er2〇3、4 g Ac及 0.01 mol N20 1 g NaH、1 g Mg、4 g Ac及 0.004 mol N20 0.5 g NaH、0.5 g MgH2、4 g AC及 0.004 mol N2O 0.33 g LiH、1 g A卜 4 g AC、0.21 g K2S208及 0.01 mol 〇2 0.33 g LiH、1 g A卜 4 g AC 及 0.01 mol 〇2 0·33 g LiH、1 g MgH2、4 g AC、0.21 g K2S208及 0.01 mol 〇2 1 g NaH ' 1 g MgH2 ' 4 g AC、0.15 g FeS04及 0.01 mol 〇2 1.66 g KH、.1 g Mg、4 g AC及 0.004 mol 〇2 1 g NaH、1 g Si、4 g AC及 0.01 mol 〇2 1.24 ppm強 1.23 ppm強 1.22 ppm強 1.26 ppm 中等-3.85 ppm極強 1.27 ppm 中等-3.85 ppm強 1.27 ppm 中等-3.85 ppm極強 1.24 ppm強 1.21 ppm 強 1 ·21 ppm 強 142257.doc •198 201104948 1 g NaH、10 g Pt/Ti、1 g MgH2、4 g AC、0.01 mol NH3及 0.01 mol 02 1.22 ppm極強 0.5 g NaH ' 0.5 g A1 ' 4 g AC及 0.002 mol NF3 1.22 ppm 中等-3.85 ppm強 0.5 NaH、0.5 g MgH2、4 g AC及 0.004 mol NF3 1.21 ppm 極強 1 g NaH、1 g A卜 4 g AC及 0.002 mol NF3 1·21 ppm 強 0.5 g NaH、0·5 g MgH2、4 g AC及 0.004 mol NF3 -3.85 ppm 中等 0_5 NaH、0.5 g MgH2、4 g AC及 0.002 mol NF3 1.22 ppm強 1.66 g KH > 2.5 g LiN03 ' 4 g AC及 1 g MgH2 1.22 ppm強 -3·85 ppm強 1 g NaH、3 g NaN03、4 g AC及 1 g MgH2 -3.84 ppm 中等 1 g NaH、2·5 g LiN03、4 g AC及 1 g MgH2 -3.84 ppm 中等 1.66 g KH、2.5 g LiN03及 1 g MgH2 1.22 ppm極強 1.66 g KH、2 g P205、4 g AC及 1 g MgH2 1.28 ppm極強 -3 · 86 ppm 強 142257.doc -199· 201104948 0.33 g LiH、2 g P205、4 g AC及 1 g MgH2 1 g NaH、2 g P205、4 g AC 及 1 g MgH2 1 g NaH、2 g P205、4 g AC 及 1 g A1 1.66 g KH、1 g MgCl2、4 g AC、4.5 g K02及 0.1 g CoCl2 1 g NaH、1 g MgH2、4 g AC及 0.0094 mol SF6 1 g NaH、0.5 g B、4 g AC 及 0.0047 mol SF6 1 g NaH、1 g Mg、4 g AC 及 0·0 1 mol SF6 1 g NaH、1 g A卜 4 g AC及 0.005 mol SF6 1.66 g KH、1 g Si、4 g AC 及 0.0092 mol SFe 1.66 g KH ' 1 g A1 ' 4 g AC 及 0.0092 mol SF6 1.66 g KH ' 1 g MgH2、4 g AC及 0.0092 mol SF6 -3.85 ppm中等 -3.85 ppm中等 1.20 ppm強 -3.85 ppm 中等 1.23 ppm極強-3.85 ppm 中等 -3.84 ppm極強 -3.85 ppm強 -3 _ 86 ppm 強 1.20 ppm強 -3.86 ppm弱 -3.86 ppm極強 -3.86 ppm極強 -3.86 ppm極強 142257.doc -200- 201104948 0.33 g LiH、1 g MgH2、4 g AC及 0.009 mol SF6 0.33 g LiH、1 g Mg、4 g AC及 0.009 mol SF61 g NaH ' 1 g A1 ' 4 g Pt/C and 0.002 mol CF4 0.5 g NaH ' 0.5 g Mg ' 2 g AC and 52 mmol CF4 0.5 g NaH, 0.5 g A1, 2 g AC and 0.002 mol CF4 H2 (l /4) Peak position Η·(1/4) Peak position and intensity and intensity 1.22 ppm Strong -3.85 ppm Strong 1.23 ppm Strong 1.22 ppm Strong 1.22 ppm Strong 1.2 1 ppm Medium 1.2 1 ppm Strong 1.27 ppm Medium - 3.86 ppm Medium 1.21. Ppm Strong 1.22 ppm Strong 1.21 ppm Strong 142257.doc -196- 201104948 1.66 g ΚΗ, 1 g MgH2, 4 g AC, 0.01 mol N20 1 g NaH, 1 g A Bu 4 g AC, 0.002 mol N20 1 g NaH, 1 g A Bu 4 g AC, 0.004 mol N2O 1 g NaH, 1 g MgH2, 4 g AC ' 0.002 mol N20 1 g NaH, 1 g MgH2, 4 g AC, 0.004 mol N20 1 g NaH, 1 g MgH2, 4 g AC and 0.01 mol N20 1 g NaH ' 1 g MgH2 ' 4 g AC and 0.018 mol N20 0.33 g LiH, 1 g A1, 4 g A1 and 0.004 mol N2O 1 g NaH ' 1 g MgH2 ' 4 g Pd/C(l %) and 0.01 mol N20 1 g NaH, 4 g AC and 0.004 mol N2〇1 g NaH, 1 g MgH2, 5 g Er2〇3, 4 g Ac and 0·01 mol N20 1.22 ppm extremely strong -3.85 ppm medium 1.21. Ppm strong 1.21 ppm strong 1.21 ppm strong 1.22 ppm medium 1.24 ppm strong 1.24 ppm strong -3.84 ppm strong 1.22 ppm medium -3.85 ppm strong 1.24 ppm extremely strong 1.2 1 ppm extremely strong 1 ·23 .ppm strong 142257.doc -197 201104948 1 g NaH, 1 g A1, 5 g Er2〇3, 4 g Ac and 0.01 mol N20 1 g NaH, 1 g Mg, 4 g Ac and 0.004 mol N20 0.5 g NaH, 0.5 g MgH2, 4 g AC and 0.004 mol N2O 0.33 g LiH, 1 g A Bu 4 g AC, 0.21 g K2S208 and 0.01 mol 〇2 0.33 g LiH, 1 g A Bu 4 g AC and 0.01 mol 〇2 0·33 g LiH, 1 g MgH2, 4 g AC, 0.21 g K2S208 and 0.01 mol 〇2 1 g NaH ' 1 g MgH2 ' 4 g AC, 0.15 g FeS04 and 0.01 mol 〇2 1.66 g KH, .1 g Mg, 4 g AC and 0.004 mol 〇2 1 g NaH, 1 g Si, 4 g AC and 0.01 mol 〇2 1.24 ppm strong 1.23 ppm strong 1.22 ppm strong 1.26 Ppm Medium -3.85 ppm Very Strong 1.27 ppm Medium -3.85 ppm Strong 1.27 ppm Medium -3.85 ppm Very Strong 1.24 ppm Strong 1.21 ppm Strong 1 ·21 ppm Strong 142257.doc •198 201104948 1 g NaH, 10 g Pt/Ti, 1 g MgH2, 4 g AC, 0.01 mol NH3 and 0.01 mol 02 1.22 ppm very strong 0.5 g NaH ' 0.5 g A1 ' 4 g AC and 0.002 mol NF3 1.22 ppm medium -3.85 ppm strong 0.5 NaH, 0.5 g MgH2, 4 g AC And 0.004 mol NF3 1.21 ppm extremely strong 1 g NaH, 1 g A Bu 4 g AC and 0.002 mol NF3 1·21 ppm Strong 0.5 g NaH, 0·5 g MgH2, 4 g AC and 0.004 mol NF3 -3.85 ppm Medium 0_5 NaH, 0.5 g MgH2, 4 g AC and 0.002 mol NF3 1.22 ppm strong 1.66 g KH > 2.5 g LiN03 ' 4 g AC and 1 g MgH2 1.22 ppm strong -3·85 ppm strong 1 g NaH, 3 g NaN03, 4 g AC and 1 g MgH2 -3.84 ppm medium 1 g NaH, 2·5 g LiN03, 4 g AC and 1 g MgH2 -3.84 ppm medium 1.66 g KH, 2.5 g LiN03 and 1 g MgH2 1.22 ppm very strong 1.66 g KH, 2 g P205, 4 g AC and 1 g MgH2 1.28 ppm extremely strong -3 · 86 ppm strong 142257.doc -199· 201104948 0.33 g LiH, 2 g P205, 4 g AC and 1 g MgH2 1 g NaH, 2 g P205, 4 g AC and 1 g MgH2 1 g NaH, 2 g P205, 4 g AC and 1 g A1 1.66 g KH, 1 g MgCl2, 4 g AC, 4.5 g K02 and 0.1 g CoCl2 1 g NaH, 1 g MgH2, 4 g AC and 0.0094 mol SF6 1 g NaH , 0.5 g B, 4 g AC and 0.0047 mol SF6 1 g NaH, 1 g Mg, 4 g AC and 0·0 1 mol SF6 1 g NaH, 1 g A Bu 4 g AC and 0.005 mol SF6 1.66 g KH, 1 g Si, 4 g AC and 0.0092 mol SFe 1.66 g KH ' 1 g A1 ' 4 g AC and 0.0092 mol SF6 1.66 g KH ' 1 g MgH2, 4 g AC and 0.0092 mol SF6 -3.85 ppm medium -3.85 ppm medium 1.20 ppm strong -3.85 ppm medium 1.23 ppm extremely strong -3.85 ppm medium -3.84 ppm extremely strong -3.85 ppm strong -3 _ 86 ppm Strong 1.20 ppm Strong - 3.86 ppm Weak - 3.86 ppm Strong - 3.86 ppm Very Strong - 3.86 ppm Extreme 142257.doc -200- 201104948 0.33 g LiH, 1 g MgH2, 4 g AC and 0.009 mol SF6 0.33 g LiH, 1 g Mg, 4 g AC and 0.009 mol SF6

0_33 g LiH、1 g La、4 g AC 及 0.0094 mol SFe 1_66 g KH、1 g MgH2、4 g AC及 0.0093 mol SF6 1 g NaH、5 g La、4 g AC及 0.0047 mol SF6 1 g NaH、1 g MgH2、4 g0_33 g LiH, 1 g La, 4 g AC and 0.0094 mol SFe 1_66 g KH, 1 g MgH2, 4 g AC and 0.0093 mol SF6 1 g NaH, 5 g La, 4 g AC and 0.0047 mol SF6 1 g NaH, 1 g MgH2, 4 g

AC及 3.2 g S 1 g NaH、1 g MgH2、4 g AC及3.2 g S(外部)AC and 3.2 g S 1 g NaH, 1 g MgH2, 4 g AC and 3.2 g S (external)

0.33 g LiH、1 g Si、4 g AC 及 1.3 g S0.33 g LiH, 1 g Si, 4 g AC and 1.3 g S

0.33 g LiH、1 g A卜 4 g AC 及 1.3 g S0.33 g LiH, 1 g A Bu 4 g AC and 1.3 g S

1.66 g KH、1 g A卜 4 g AC 及 1.3 g S1.66 g KH, 1 g A Bu 4 g AC and 1.3 g S

1.66 g KH、1 g A卜 4 g AC 及 1.3 g S -3.82 ppm極強 -3.84 ppm中等 -3.75 ppm 寬峰· 1·21 ppm強 -3.86 ppm弱 1.21 ppm 中等-3.86 ppm弱 -2.83 ppm極強 -2·83 ppm強 及寬峰 -3.81 ppm 極強 -3.81 ppm 極強 -3.47 ppm極強 -3.86 ppm極強 ΐ S' 1' 142257.doc -201 - 201104948 1.66 g ΚΗ、1 g Si、4 g AC 及 1.3 g S -3.55 ppm極強 1.66 g KH、1 g Si ' 4 g AC 及 1.3 g S -3.85 ppm強 1.66 g KH、1 g MgH2、4 g AC及 2.7 g K2S2O8 1.24 ppm強 -3.85 ppm極強 1 g NaH、1 g A卜 4 g AC及 1.2 ml CS2 -3.85 ppm極強 1 g NaH、1 g MgH2、4 g AC及 1.2 ml CS2 -3.85 ppm極強 1 g NaH、1 g MgH2、4 g AC及 0.0146 mol S02 1.21 ppm 中等-3.86 ppm 中等 1 g NaH ' 1 g MgH2 ' 4 g AC及 2.2 g NiBr2 1.23 ppm強 1 g NaH、1 g Mg、4 g AC 及 2.2 g NiBr2 1.25 ppm 中等 1 g NaH、4 g AC及 2.2 g NiBr2 1.24 ppm極強 1.66 g KH、4 g AC及 2.2 g NiBr2 1.22 ppm極強 1 g NaH、1.66 g Ca、4 g AC及 2.2 g NiBr2 1.24 ppm極強 142257.doc • 202- 201104948 1 g NaH、3.67 g Sr、4 g AC及 3.1 g Mnl2 83 g KH ' 50 g Mg ' 200 g1.66 g KH, 1 g A Bu 4 g AC and 1.3 g S -3.82 ppm extremely strong -3.84 ppm medium - 3.75 ppm broad peak · 1.21 ppm strong - 3.86 ppm weak 1.21 ppm medium - 3.86 ppm weak - 2.83 ppm Strong -2·83 ppm strong and broad peak -3.81 ppm Extremely strong -3.81 ppm Extremely strong -3.77 ppm Strong -3.66 ppm extremely strong ΐ S' 1' 142257.doc -201 - 201104948 1.66 g ΚΗ, 1 g Si, 4 g AC and 1.3 g S -3.55 ppm extremely strong 1.66 g KH, 1 g Si ' 4 g AC and 1.3 g S -3.85 ppm strong 1.66 g KH, 1 g MgH2, 4 g AC and 2.7 g K2S2O8 1.24 ppm strong - 3.85 ppm extremely strong 1 g NaH, 1 g A Bu 4 g AC and 1.2 ml CS2 -3.85 ppm extremely strong 1 g NaH, 1 g MgH2, 4 g AC and 1.2 ml CS2 -3.85 ppm extremely strong 1 g NaH, 1 g MgH2, 4 g AC and 0.0146 mol S02 1.21 ppm medium - 3.86 ppm medium 1 g NaH ' 1 g MgH2 ' 4 g AC and 2.2 g NiBr2 1.23 ppm strong 1 g NaH, 1 g Mg, 4 g AC and 2.2 g NiBr2 1.25 Ppm Medium 1 g NaH, 4 g AC and 2.2 g NiBr2 1.24 ppm Very Strong 1.66 g KH, 4 g AC and 2.2 g NiBr2 1.22 ppm Very Strong 1 g NaH, 1.66 g Ca, 4 g AC and 2.2 g NiBr2 1.24 ppm Strong 142257.doc • 202- 201104948 1 g NaH, 3.67 g Sr 4 g AC and 3.1 g Mnl2 83 g KH ' 50 g Mg ' 200 g

TiC及 154.5 g Mnl2 1 g NaH、1.66 g Ca、4 g AC及 3_1 g Mnl2 1 g NaH、4 g AC及 1.6 g Te02 2 g NaH、2 g MgH2、4 g AC及 3.2 g Te02 1.66 g KH、1 g MgH2、4 g AC及 1.6 g Te02 0.33 g LiH、1 g MgH2、4 g AC及 1_6 g Te02TiC and 154.5 g Mnl2 1 g NaH, 1.66 g Ca, 4 g AC and 3_1 g Mnl2 1 g NaH, 4 g AC and 1.6 g Te02 2 g NaH, 2 g MgH2, 4 g AC and 3.2 g Te02 1.66 g KH, 1 g MgH2, 4 g AC and 1.6 g Te02 0.33 g LiH, 1 g MgH2, 4 g AC and 1_6 g Te02

1 g NaH、1 g Mg、4 g AC 及 3.5 g NaMn〇4 8.3 g KH、5 g Mg、20 g AC及 17.5 g NaMn04 1.66 g KH ' 1 g Mg ' 4 g AC及 2.0 g SnF4 1.66 g KH、1 g Mg、4 g AC及 6.3 g S11I4 1.24 ppm極強 1.24 ppm強 1.23 ppm極強 1.21 ppm強 -3.85 ppm強 1.2 1 ppm 中等 1.2 1 ppm 強 1.22 ppm 中等 1.2 1 ppm 中等 1.2 1 ppm 強 1.23 ppm 中等 1.21 ppm 中等 142257.doc -203 201104948 1.66 g ΚΗ、4 g AC及 3.79 g 1.24 ppm極強 Snl2 1 g NaH ' 1 g Mg ' 4 g AC 及 1.57 g SnF2 1.22 ppm強 83 g KH ' 50 g Mg ' 200 g WC及 185 g Snl2 1.23 ppm 中等 1 g NaH ' 1.66 g Ca > 4 g AC及 1.34 g CuCl2 1 _22 ppm極強 1 g NaH ' 1 g Mg ' 4 g AC 及 0.96 g CuS 1·21 ppm 強 8.3 g KH+5 g Mg+20 g CA 11-300 + 14.85 g BaBr2 1.22 ppm強 5 g NaH+5 g Mg+20 g CA 11-300+14.85 g BaBr2 1.22 ppm 中等 20 g AC 3-3 + 8.3 g KH+7.2 g AgCl 1.22 ppm 中等 3.09 g Mnl2+1.66 g KH+1 g Mg+4 g S TiC-1 【圖式簡單說明】 1.25 ppm 中等 圖1為根據本發明之能量反應器及動力裝置的示意圖; 抑圖2為根據本發明用於使燃料再循環或再生之能量反應 器及動力裝置之示意圖; 圖3為根據本發明之動力反應器的示意圖; 圖4為根據本發明用於使婵料 η π π災徹了寸丹循j展或再生之系統的不 142257.doc -204· 201104948 意圖; 圖5為根據本發明之放電電源及電漿電池及反應器的示 意圖;及 圖6為根據本發明之電池組及燃料電池的示意圖。 【主要元件符號說明】 5 產生氫催化劑能量及較低能量氫物質之反 應器 10 鍋爐 11 燃料反應混合物 12 氫源 13 蒸汽管及蒸汽發生器 14 渦輪機 16 水冷凝器 17 補水來源 18 燃料再循環器 19 氫-二低能量氫氣體分離器 21 分離器 22 移位或旋風分離器 23 磁力分離器 24 差異產物溶解或懸浮系統 25 組份溶劑洗滌液 26 化合物回收系統 27 溶劑蒸發器/蒸發器 28 化合物收集器 142257.doc -205 - 沈澱器 化合物乾燥器及收集器 電解器 易揮發氣體收集器 金屬收集器 金屬蒸餾器或分離器 氫化反應器 動力反應器/電池 供金屬及氫化物用之入口及出口 供氫氣用之入口 閥 氫氣供應 出氣口 閥 泵 加熱器 壓力與溫度計量表 鹵化反應器 電池 供碳用之入口及供函化產物用之出口 供氟氣用之入口 閥 鹵素氣體供應 出氣口 •206- 201104948 53 闊 54 泵 55 加熱器 56 壓力與溫度計量表 57 金屬 58 混合器 61 催化劑供應通道 62 供應通道 70 氫催化劑反應器/能量反應器 72 容器 74 能量反應混合物 76 來源/能量釋放物質 78 催化劑/催化物質 80 熱交換器/交換器 82 蒸汽產生器 90 滿輪機 100 發電機 110 負載 200 腔室/反應室/内部反應室/容器/電池 206 選擇閥 207 反應容器 221 氫源 222 控制器 223 壓力感測器 142257.doc -207- 201104948 225 電源 230 溫度控制組件/加熱器/加熱旋管 232 控制閥 233 連接 241 催化劑供應通道 242 供氫通道 250 催化劑源 255 收氣器或收集器 256 真空泵 257 真空管線 260 反應物 272 電源 280 熱燈絲 285 電源 290 外部氫儲集器 291 分隔兩腔室之壁 。 295 催化劑儲集器 298 催化劑儲集器加熱器 300 腔室/電池腔室/反應室/内部反應室 301 選擇性通風閥’ 305 陰極/電極 307 氣體放電電池 313 分隔兩腔室之壁 315 填充氫氣之輝光放電真空容器 142257.doc -208- 201104948 320 陽極 322 氫源 325 控制閥 330 電壓及電流源 341 催化劑供應通道 342 供氧通道 350 氣態催化劑 372 電源 380 加熱旋管/加熱器 385 電源 390 外部氫儲集器 392 催化劑儲集器加熱器 395 催化劑儲集器 400 燃料電池及電池組 401 陰極室 402 陽極室 405 陰極 410 陽極 420 鹽橋 430 反應物源或用於儲存產物之儲集器 431 反應物源或用於儲存產物之儲集器 460 通道 461 通道 142257.doc -209-1 g NaH, 1 g Mg, 4 g AC and 3.5 g NaMn〇4 8.3 g KH, 5 g Mg, 20 g AC and 17.5 g NaMn04 1.66 g KH ' 1 g Mg ' 4 g AC and 2.0 g SnF4 1.66 g KH , 1 g Mg, 4 g AC and 6.3 g S11I4 1.24 ppm extremely strong 1.24 ppm strong 1.23 ppm extremely strong 1.21 ppm strong -3.85 ppm strong 1.2 1 ppm medium 1.2 1 ppm strong 1.22 ppm medium 1.2 1 ppm medium 1.2 1 ppm strong 1.23 Ppm medium 1.21 ppm medium 142257.doc -203 201104948 1.66 g ΚΗ, 4 g AC and 3.79 g 1.24 ppm very strong Snl2 1 g NaH ' 1 g Mg ' 4 g AC and 1.57 g SnF2 1.22 ppm strong 83 g KH ' 50 g Mg ' 200 g WC and 185 g Snl2 1.23 ppm medium 1 g NaH ' 1.66 g Ca > 4 g AC and 1.34 g CuCl2 1 _22 ppm extremely strong 1 g NaH ' 1 g Mg ' 4 g AC and 0.96 g CuS 1· 21 ppm Strong 8.3 g KH+5 g Mg+20 g CA 11-300 + 14.85 g BaBr2 1.22 ppm strong 5 g NaH+5 g Mg+20 g CA 11-300+14.85 g BaBr2 1.22 ppm Medium 20 g AC 3- 3 + 8.3 g KH+7.2 g AgCl 1.22 ppm medium 3.09 g Mnl2+1.66 g KH+1 g Mg+4 g S TiC-1 [Simplified description] 1.25 ppm Medium Figure 1 is an energy reactor according to the present invention and Schematic diagram of the power unit; Schematic diagram of an energy reactor and a power plant for recycling or regenerating fuel according to the present invention; FIG. 3 is a schematic view of a power reactor according to the present invention; FIG. 4 is a diagram for damaging 婵 π π according to the present invention. FIG. 5 is a schematic diagram of a discharge power source and a plasma battery and a reactor according to the present invention; and FIG. 6 is a battery pack according to the present invention. FIG. 5 is a schematic diagram of a discharge power source and a plasma battery and a reactor according to the present invention; And a schematic of the fuel cell. [Main component symbol description] 5 Reactor 10 generating hydrogen catalyst energy and lower energy hydrogen material Boiler 11 Fuel reaction mixture 12 Hydrogen source 13 Steam pipe and steam generator 14 Turbine 16 Water condenser 17 Water supply source 18 Fuel recycler 19 Hydrogen-di low energy hydrogen gas separator 21 Separator 22 Displacement or cyclone separator 23 Magnetic separator 24 Differential product dissolution or suspension system 25 Component solvent wash solution 26 Compound recovery system 27 Solvent evaporator / evaporator 28 Compound Collector 142257.doc -205 - Precipitator compound dryer and collector electrolyzer Volatile gas collector Metal collector Metal still or separator Hydrogenation reactor Power reactor / battery for metal and hydride inlet and outlet Inlet valve for hydrogen supply, gas supply, outlet valve, pump heater, pressure and temperature meter, halogenation reactor, battery for carbon inlet, and outlet for product, fluoride, gas, inlet valve, halogen gas supply, outlet, 206 - 201104948 53 Wide 54 Pump 55 Heater 56 Pressure and thermometer Gauge 57 Metal 58 Mixer 61 Catalyst Supply Channel 62 Supply Channel 70 Hydrogen Catalyst Reactor / Energy Reactor 72 Vessel 74 Energy Reaction Mixture 76 Source / Energy Release Material 78 Catalyst / Catalytic Material 80 Heat Exchanger / Exchanger 82 Steam Generation 90 Full turbine 100 Generator 110 Load 200 Chamber / Reaction chamber / Internal reaction chamber / container / battery 206 Select valve 207 Reaction vessel 221 Hydrogen source 222 Controller 223 Pressure sensor 142257.doc -207- 201104948 225 Power supply 230 Temperature control unit / heater / heating coil 232 control valve 233 connection 241 catalyst supply channel 242 hydrogen supply channel 250 catalyst source 255 ventor or collector 256 vacuum pump 257 vacuum line 260 reactant 272 power supply 280 hot filament 285 power supply 290 external Hydrogen reservoir 291 separates the walls of the two chambers. 295 Catalyst Reservoir 298 Catalyst Reservoir Heater 300 Chamber/Battery Chamber/Reaction Chamber/Internal Reaction Chamber 301 Selective Ventilation Valve '305 Cathode/Electrode 307 Gas Discharge Battery 313 Separate the walls of the two chambers 315 Fill the hydrogen Glow Discharge Vacuum Vessel 142257.doc -208- 201104948 320 Anode 322 Hydrogen Source 325 Control Valve 330 Voltage and Current Source 341 Catalyst Supply Channel 342 Oxygen Supply Channel 350 Gaseous Catalyst 372 Power Supply 380 Heating Rotor/Heater 385 Power Supply 390 External Hydrogen Reservoir 392 Catalyst Reservoir Heater 395 Catalyst Reservoir 400 Fuel Cell and Battery Pack 401 Cathode Chamber 402 Anode Chamber 405 Cathode 410 Anode 420 Salt Bridge 430 Reactant Source or Reservoir 431 for Storage Product Reactant Source or reservoir for storing products 460 Channel 461 Channel 142257.doc -209-

Claims (1)

201104948 七、申請專利範圍: 1 · 一種動力源,其包含: 反應電池,用於催化原子氫形成總能量比未經催化之 虱物質總能量更低且更穩定之氫物質及包含該等氫物質 之目標組合物; 反應容器; 真空泵; 原子氫源,來自與該反應容器相連通之來源; 氫催化劑源,與該反應容器相通; 該原子氫源與該氫催化劑源中之至少一者的來源包含 含有一或多種形成該原子氫與該氫催化劑中之至少一者 之元素及至少-種其他元素的至少一種反應㈣反應混 口物,藉此S亥原子氫與該氫催化劑中之至少一者由該來 源形成, 至>一種其他反應物,藉由執行活化及擴展催化中之 至少一種功能來引起該催化;及 用於該合器之加熱器,其起始該反應容器中形成該原 子氫與該氫催化劑中之至少—者,且起始該反應以引起 催化,藉此在該氫原子催化期間原子氫之該催化每莫耳 氫釋放超過約300 kJ之量的能量。 2_如凊求項1之動力源,其中引起該催化反應之該反應包 含選自以下之反應: ⑴放熱反應,其為該催化反應提供活化能; (ii)偶合反應,其提供催化劑源或原子氫源中之至少一 142257.doc 201104948 者以維持該催化反應; (iii) 自由基反應,其用作該催化反應期間來自該催化 劑之電子的受體; (iv) 氧化還原反應,其用作該催化反應期間來自該催 化劑之電子的受體; (v) 交換反應’其在該催化劑接受來自原子氫之能量時 促進該催化劑發生電離作用以形成該氫物質;及 (vi) 吸氣劑、載體或基質輔助之催化反應。 3 ·如請求項1之動力源,其中該反應混合物包含起動該催 化反應之導電性載體。 4. 如請求項1之動力源,其中該反應混合物包含固體、液 體或非均勻催化反應混合物。 5. 如請求項2之動力源,其中包含氧化還原反應以引起該 催化反應之該反應混合物包含: ⑴至少一種選自 Li、、A:、尺丑、、Rb、RbH、 Cs及CsH之催化劑; (ii) 氫氣、氫氣源或氫化物; (iii) 至少一種選自以下之氧化劑: 金屬化合物,包含函化物、磷化物、硼化物、氧化 物、氮氧化物、♦化物、氮化物、绅化物、砸化物、碑 化物、銻化物、碳化物、硫化物、氫化物、碳酸鹽、碳 酸氫鹽、硫酸鹽、硫酸氫鹽、磷酸鹽、磷酸氫鹽、磷酸 二氫鹽、硝酸鹽、亞硝酸鹽、過錳酸鹽、氣酸鹽、過氯 酸鹽、亞氯酸鹽、過亞氯酸鹽、次氯.酸鹽 '溴酸鹽、過 142257.doc 201104948 漠酸鹽、亞溴酸鹽、過亞溴酸鹽、蛾酸鹽、過碘酸鹽、 亞蛾駿鹽、過亞碘酸鹽、鉻酸鹽、重鉻酸鹽、碲酸鹽、 石西酸鹽、砷酸鹽、矽酸鹽、硼酸鹽、氧化鈷、氧化碲, 及鹵素、P、B、Si、N、As、S、Te、Sb、C、S、P、 Μη、Cr、Co及Te之氧陰離子; 過渡金屬、Sn、Ga、In、鉛、鍺、鹼金屬及鹼土金屬 化合物; GeF2、GeCl2、GeBr2、Gel2、GeO、GeP、GeS、Gel4 及GeCl4 ;碳氟化合物,cf4、C1CF3 ;碳氯化合物, CC14 ; 〇2 ; mno3 ; MCIOa ; M〇2 ; nf3 ; n2o ; NO ; N〇2 ;硼-氮化合物,諸如b3n3H6 ;含硫化合物,諸如 SF6、S、5Ό2、so3、S205ci2、F5SOF、m2s2o8、SxXy(諸 如 S2C12、sci2、S2Br2* S2F2)、CS2、SOxXy(SOCl2、 SOF2、S02F2、SOBr2) ; XxX'y,C1F5 ; XxX'yOz, cio2f、cio2f2、C10F3、C103F、C102F3 ;硼-氮化合 物,B3N3H6 ; Se ; Te ; Bi ; As ; Sb ; Bi ; TeXx,TeF4、 TeF6 ; TeOx,Te02、Te03 ; SeXx,SeF6 ; SeOx,Se02 或 Se03 ;碲氧化物、鹵化物、碲化合物,Te02、Te03、 Te(OH)6、TeBr2、TeCl2、TeBr4、TeCl4、TeF4、Tel4、 TeF6、CoTe或NiTe ;硒化合物、硒氧化物、硒鹵化物、 硒硫化物,Se02、Se03、Se2Br2、Se2Cl2、SeBr4、 SeC“、SeF4、SeFe、SeOBr2、SeOCl2、SeOF2、 Se〇2F2、SeS2、Se2S6、Se4S4 或 Se6S2 ; P ; P205 ; P2S5 ; PxXy,PF3、PC13、PBr3、PI3、PF5、PC15、PBr4F、 142257.doc 201104948 PC14F ; POxXy ’ POBr3、p〇l3、p〇ci3 或 p〇f3 ; PSxXy(从 為鹼金屬,x、y及z為整數,x及χι為鹵素),psBr3、 PSF3、PSC13 ;罐·氮化合物,p3N5、(C12PN)3、 (C12PN)4、(Br2PN)x ;砷化合物、砷氧化物、砷鹵化物、 砷硫化物、砷硒化物、砷碲化物,AlAs、As山、 As2Se、As4S4、AsBr3、AsC13、AsF3、Asl3、As203、 As2Se3、As2S3、As2Te3、AsC15、AsF5、As205、 Asjes、AsJ5 ;銻化合物、銻氧化物、銻鹵化物、銻硫 化物、硫酸銻、銻砸化物、録珅化物,SbAs、SbBr3、 SbCl3、SbF3、Sbl3、Sb203、SbOCl、Sb2Se3、 Sb2(S04)3、Sb2S3、Sb2Te3、Sb204、SbCl5、SbF5、 SbCl2F3、Sb2〇5、Sb2S5 ;叙:化合物、祕氧化物、叙鹵化 物、鉍硫化物、鉍硒化物,BiAs04、BiBr3、BiCl3、 BiF3、BiF5、Bi(0H)3、Bil3、Bi203、BiOBr、BiOCl、 BiOI、Bi2Se3、Bi2S3、Bi2Te3、Bi204 ; SiCl4、SiBr4 ;過 渡金屬鹵化物,CrCl3、ZnF2、ZnBr2、Znl2、MnCl2、 MnBr2、Mnl2、CoBr2、C0I2、C0CI2、NiCl2、NiBr2、 NiF2 ' FeF2、FeCh ' FeBr2、FeCh、TiF3、CuBr、 CuBr2、VF3、CuCl2 ;金屬鹵化物,SnF2、SnCl2、 SnBr]、S11I2 ' S11F4、S11CI4、SnBr4、S11I4 ' InF、InCl、 InBr、Ini、AgCl、Agl、A1F3、AlBr3、A1I3、YF3、 CdCl2、CdBr2、Cdl2、InCl3、ZrCl4、NbF5、TaCl5、 MoC13、MoC15、NbCl5、AsC13、TiBr4、SeCl2、SeCl4、 InF3、InCl3、PbF4、Tel4、WC16、〇sCl3、GaCl3、 142257.doc -4- 201104948 PtCl3、ReCl3、RhCl3、RuC13 ;金屬氧化物、金屬氫氧 化物,Y2〇3、FeO、Fe2〇3 或 NbO、NiO、Ni203、SnO、 Sn02、Ag20、AgO、Ga20、As2〇3、Se02、Te〇2、 In(OH)3、Sn(OH)2、In(OH)3、Ga(〇H)3、Bi(OH)3 ; C〇2 ; As2Se3 ; SF6 ; S ; SbF3 ; CF4 ; NF3 ;金屬過猛酸 鹽,KMn〇4、NaMn〇4 ; P2O5 ;金屬石肖酸鹽,LiN03、 NaN03、ΚΝ03 ;鹵 >ί匕硼,BBr3、BI3 ;第 13 族鹵化物, 鹵化銦,InBr2、InCl2、Inl3 ;鹵化銀,AgCl、Agl ;齒 化錯;鹵化鍚;鹵化錯;過渡金屬氧化物、過渡金屬硫 化物或過渡金屬鹵化物(Sc、Ti、V、Cr、Mn、Fe、Co、 Ni、Cu或Zn與F ' Cl、Br或I);第二或第三過渡系列鹵 化物YF3、第二或第三過渡系列氡化物、第二或第三過 渡糸列硫化物 Y2S3、Y、Zr、Nb、Mo、Tc、Ag、Cd、 Hf、Ta、W、Os 之鹵化物’諸如 NbX3、NbX5 或 TaX5 ; Li2S、ZnS、FeS、NiS、MnS、Cu2S、CuS、SnS ;驗土 金屬鹵化物,BaBr2、BaCl2、Bal2、SrBr2、Srl2、 CaBr〗、Cal2、MgBr2 或 Mgl2;稀土金屬鹵化物,EuBr3、 LaF3、LaBr3、CeBr3、GdF3、GdBr3 ;金屬呈 Π態之稀土 金屬鹵化物,Cel2、E11F2、E11CI2、EuBr,、Ε11Ι2、Dyl〗、 Ndl2、Sml2、Ybl2及Tml2 ;金屬硼化物,硼化銪;MB2 硼化物,CrB2、TiB2、MgB2、ZrB2、GdB2 ;鹼金屬鹵化 物’ LiCl、RbCl或Csl ;金屬磷化物,如Ca3P2 ;貴金屬 鹵化物、貴金屬氧化物、貴金屬硫化物,PtCl2、PtBr2 ' Ptl2、PtCl4、PdCl2、PbBr2、Pbl2 ;稀 土金屬硫化物 142257.doc 201104948 CeS ; La鹵化物;Gd鹵化物;金屬及陰離子,Na2Te04、 Na2Te03、Co(CN)2、CoSb、CoAs、Co2P、CoO、 CoSe、CoTe、NiSb、NiAs、NiSe、Ni2Si、MgSe ;稀土 金屬碲化物,EuTe ;稀土金屬砸化物,EuSe ;稀土金屬 氮化物,EuN ;金屬氮化物,AIN、GdN、Mg3N2 ;含有 至少兩個選自氧原子及不同鹵原子之原子的化合物, f2o、ci2o、cio2、Cl2〇6、Cl2〇7、C1F、C1F3、ciof3、 C1F5、C102F、C102F3、C103F、BrF3、BrF5、I205、 IBr、IC卜 IC13、IF、IF3、IF5、IF7 ;金屬第二或第三過 渡系列鹵化物,〇sF6、PtF6或IrF6 ;可在還原後形成金屬 之化合物,金屬氫化物、稀土金屬氫化物、鹼土金屬氫 化物或驗金屬氫化物; (iv) 至少一種選自以下之還原劑:金屬,鹼金屬、鹼 土金屬、過渡金屬、第二及第三系列過渡金屬及稀土金 屬,3/、Mg、、57、La、B、Zr及 Ti粉末;及H2 ;及 (v) 至少一種選自 AC、1% Pt/碳或 Pd/碳(pt/c、Pd/C)、 碳化物TiC及WC之導電性載體。 6.如請求項2之動力源,其中包含氧化還原反應以引起該 催化反應之該反應混合物包含: (i) 至少一種催化劑或催化劑源,其包含來自第〗族元素 之金屬或氫化物; (ii) 至少一種氫源,其包含氫氣或氫氣源或氫化物; (111)至少一種氧化劑,其包含含有至少一種來自第13 私、第14族、第15力矢、第16族及第17族且選自F、 142257.doc -6 - 201104948 Br、I、B、C、N、〇、AJ、Si、p、s、以及^之元素的 原子或離子或化合物; (iv)至少一種還原劑,其包含選自Mg、MgH2、A1、 Si、B、Zr及稀土金屬之元素或氫化物;及 (V)至少一種導電性載體,其選自碳、AC、石墨烯、 次凟有金屬之^Pt/C或Pd/C、碳化物TiC及wc。 7·如請求項2之動力源、,其巾包含氧化還原反應以引起該 催化反應之之該反應混合物包含: (I) 至少一種催化劑或催化劑源,其包含來自第〗族元素 之金屬或氫化物; (II) 至 > 一種氫源,其包含氫氣或氫氣源或氫化物; (III) 至V種氧化劑,其包含選自第IA族、第IIA族、 第3d私、第4d族、第5(1族、第6揭、第7樣、第8d族、 第族 '第1()d族iUd族、第i2d族及㈣元素之元 素的画化物、氧化物或硫化物; (IV) 至V種還原劑,其包含選自Mg、MgH2、A1、 Si、B、ZrA稀土金屬之元素或氯化物;及 广至少一種導電性載體,其選自碳、AC、石墨烯、 諸如Pt/C或Pd/C之浸潰有金屬之碳、碳化物丁1(:及^。 > π求2之動力源’其中引起該催化反應之該交換反 應包s该氧化劑、該還原劑及該催化劑中之至少兩者之 門的陰離子父換,其中該陰離子係選自齒離子、氣離 子氧離子、硫離子、氮離子、硼離子、碳離子、矽離 砷離子硒離子、碲離子、磷離子、硝酸根、硫氫 142257.doc 201104948 根、碳酸根、硫酸根、硫酸氫根、磷酸根、磷酸氫根、 填酸二氫根、過氣酸根、鉻酸根、重鉻酸根、鈷酸根及 氧陰離子。 9. 10. 11. 如請求項8之動力源,其中引起該催化之該交換反應為 熱可逆的以使該等初始交換反應物再生。 如請求項9孓動力源,其中該等熱再生反應物包含 (0至少一種選自NaH及KH之催化劑或催化劑源; (ii) 選自NaH、KH及MgH2之氫源; (iii) 至少一種選自以下之氧化劑: U)選自 BaBr2、BaCl2、Bal2、CaBr2、MgBr2及 Mgl2 之驗土金屬齒化物; (b) 選自 EuBr2、EuBr3、EuF3、Dyl2、LaF3及 GdF3之 稀土金屬_化物; (c) 選自YF3之第二或第三系列過渡金屬鹵化物; (d) 選自CrB2及TiB2之金屬硼化物; (e) 選自LiCM、RbCl及Csl之鹼金屬鹵化物; (0選自Li2S、ZnS及Y2S3之金屬硫化物; (h) 選自γ2〇3之金屬氧化物;及 (i) 選自Ca3P2之金屬磷化物; (iv) 至少一種選自Mg及MgH2之還原劑;及 〇)至少一種選自ac、TiC及WC之載體。 如請求項2之動力源,其中引起該催化反應之該吸氣 劑、載體或基質輔助之催化反應包含如下催化反應:為 該催化反應提供至少一種化學環境,用以轉移電子以促 142257.doc 201104948 進Η催化劑功能 經歷可逆相變或其他物理變化或其電201104948 VII. Patent application scope: 1 · A power source, comprising: a reaction battery for catalyzing the formation of hydrogen materials having a lower total energy and a more stable total energy of atomic hydrogen than the uncatalyzed strontium material and containing the hydrogen substances a target composition; a reaction vessel; a vacuum pump; an atomic hydrogen source from a source in communication with the reaction vessel; a hydrogen catalyst source in communication with the reaction vessel; a source of at least one of the atomic hydrogen source and the hydrogen catalyst source And comprising at least one reaction (4) reaction mixture containing one or more elements forming at least one of the atomic hydrogen and the hydrogen catalyst, and at least one other element, whereby at least one of the S atomic hydrogen and the hydrogen catalyst Formed by the source, to > a further reactant that causes the catalysis by performing at least one of activation and expansion catalysis; and a heater for the combiner that initiates formation in the reaction vessel At least one of atomic hydrogen and the hydrogen catalyst, and the reaction is initiated to cause catalysis whereby atomic hydrogen is catalyzed during the hydrogen atom catalysis Catalytic per mole of hydrogen release amount exceeding about 300 kJ of energy. 2) The power source of claim 1, wherein the reaction causing the catalytic reaction comprises a reaction selected from the group consisting of: (1) an exothermic reaction that provides activation energy for the catalytic reaction; (ii) a coupling reaction that provides a catalyst source or At least one of 142257.doc 201104948 to maintain the catalytic reaction; (iii) a free radical reaction used as a acceptor for electrons from the catalyst during the catalytic reaction; (iv) a redox reaction, which is used a receptor for electrons from the catalyst during the catalytic reaction; (v) an exchange reaction that promotes ionization of the catalyst to form the hydrogen species when the catalyst receives energy from atomic hydrogen; and (vi) a getter , carrier or matrix-assisted catalytic reaction. 3. The power source of claim 1, wherein the reaction mixture comprises a conductive support that initiates the catalytic reaction. 4. The power source of claim 1, wherein the reaction mixture comprises a solid, liquid or non-homogeneous catalytic reaction mixture. 5. The power source of claim 2, wherein the reaction mixture comprising a redox reaction to cause the catalytic reaction comprises: (1) at least one catalyst selected from the group consisting of Li, A:, ugly, Rb, RbH, Cs, and CsH (ii) hydrogen, hydrogen source or hydride; (iii) at least one oxidizing agent selected from the group consisting of: metal compounds containing complexes, phosphides, borides, oxides, oxynitrides, hydrides, nitrides, ruthenium Compound, telluride, monument, telluride, carbide, sulfide, hydride, carbonate, bicarbonate, sulfate, hydrogen sulfate, phosphate, hydrogen phosphate, dihydrogen phosphate, nitrate, sub Nitrate, permanganate, sulphonate, perchlorate, chlorite, perchlorate, hypochlorite, bromate, 142257.doc 201104948 oxalate, bromic acid Salt, perbromate, molysate, periodate, praline salt, periodate, chromate, dichromate, citrate, lithate, arsenate, Citrate, borate, cobalt oxide, antimony oxide, and halogen, P, B, Si, N, A Oxygen anions of s, S, Te, Sb, C, S, P, Μη, Cr, Co and Te; transition metals, Sn, Ga, In, lead, bismuth, alkali metal and alkaline earth metal compounds; GeF2, GeCl2, GeBr2 , Gel2, GeO, GeP, GeS, Gel4 and GeCl4; fluorocarbon, cf4, C1CF3; chlorocarbon, CC14; 〇2; mno3; MCIOa; M〇2; nf3; n2o; NO; N〇2; a nitrogen compound such as b3n3H6; a sulfur-containing compound such as SF6, S, 5Ό2, so3, S205ci2, F5SOF, m2s2o8, SxXy (such as S2C12, sci2, S2Br2*S2F2), CS2, SOxXy (SOCl2, SOF2, S02F2, SOBr2); XxX'y, C1F5; XxX'yOz, cio2f, cio2f2, C10F3, C103F, C102F3; boron-nitrogen compound, B3N3H6; Se; Te; Bi; As; Sb; Bi; TeXx, TeF4, TeF6; TeOx, Te02, Te03 SeXx, SeF6; SeOx, Se02 or Se03; niobium oxide, halide, antimony compound, Te02, Te03, Te(OH)6, TeBr2, TeCl2, TeBr4, TeCl4, TeF4, Tel4, TeF6, CoTe or NiTe; Compound, selenium oxide, selenium halide, selenium sulfide, Se02, Se03, Se2Br2, Se2Cl2, SeBr4, SeC", SeF4, SeFe, Se OBr2, SeOCl2, SeOF2, Se〇2F2, SeS2, Se2S6, Se4S4 or Se6S2; P; P205; P2S5; PxXy, PF3, PC13, PBr3, PI3, PF5, PC15, PBr4F, 142257.doc 201104948 PC14F; POxXy 'POBr3, P〇l3, p〇ci3 or p〇f3 ; PSxXy (from alkali metal, x, y and z are integers, x and χ are halogen), psBr3, PSF3, PSC13; cans, nitrogen compounds, p3N5, (C12PN) 3, (C12PN) 4, (Br2PN) x; arsenic compounds, arsenic oxides, arsenic halides, arsenic sulfides, arsenic selenides, arsenic tellurides, AlAs, As mountains, As2Se, As4S4, AsBr3, AsC13, AsF3, Asl3, As203, As2Se3, As2S3, As2Te3, AsC15, AsF5, As205, Asjes, AsJ5; antimony compound, antimony oxide, antimony halide, antimony sulfide, barium sulfate, telluride, germanium, SbAs, SbBr3, SbCl3, SbF3, Sbl3, Sb203, SbOCl, Sb2Se3, Sb2(S04)3, Sb2S3, Sb2Te3, Sb204, SbCl5, SbF5, SbCl2F3, Sb2〇5, Sb2S5; Nar: compound, secret oxide, sulphate, antimony sulfide Material, bismuth selenide, BiAs04, BiBr3, BiCl3, BiF3, BiF5, Bi(0H)3, Bil3, Bi203, Bi OBr, BiOCl, BiOI, Bi2Se3, Bi2S3, Bi2Te3, Bi204; SiCl4, SiBr4; transition metal halide, CrCl3, ZnF2, ZnBr2, Znl2, MnCl2, MnBr2, Mnl2, CoBr2, C0I2, C0CI2, NiCl2, NiBr2, NiF2 'FeF2 , FeCh 'FeBr2, FeCh, TiF3, CuBr, CuBr2, VF3, CuCl2; metal halides, SnF2, SnCl2, SnBr], S11I2 'S11F4, S11CI4, SnBr4, S11I4 'InF, InCl, InBr, Ini, AgCl, Agl, A1F3, AlBr3, A1I3, YF3, CdCl2, CdBr2, Cdl2, InCl3, ZrCl4, NbF5, TaCl5, MoC13, MoC15, NbCl5, AsC13, TiBr4, SeCl2, SeCl4, InF3, InCl3, PbF4, Tel4, WC16, 〇sCl3, GaCl3 142257.doc -4- 201104948 PtCl3, ReCl3, RhCl3, RuC13; metal oxides, metal hydroxides, Y2〇3, FeO, Fe2〇3 or NbO, NiO, Ni203, SnO, Sn02, Ag20, AgO, Ga20 , As2〇3, Se02, Te〇2, In(OH)3, Sn(OH)2, In(OH)3, Ga(〇H)3, Bi(OH)3; C〇2; As2Se3; SF6; S ; SbF3 ; CF4 ; NF3 ; metal perchlorate, KMn〇4, NaMn〇4; P2O5; metal silicate, LiN03, NaN03, ΚΝ03; halogen> BBr3, BI3; Group 13 halide, indium halide, InBr2, InCl2, Inl3; silver halide, AgCl, Agl; toothing error; antimony halide; halogenation error; transition metal oxide, transition metal sulfide or transition metal halide (Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu or Zn with F 'Cl, Br or I); second or third transition series halide YF3, second or third transition series telluride a second or third transitional sulfide sulfide of Y2S3, Y, Zr, Nb, Mo, Tc, Ag, Cd, Hf, Ta, W, Os such as NbX3, NbX5 or TaX5; Li2S, ZnS, FeS , NiS, MnS, Cu2S, CuS, SnS; soil test metal halides, BaBr2, BaCl2, Bal2, SrBr2, Srl2, CaBr, Cal2, MgBr2 or Mgl2; rare earth metal halides, EuBr3, LaF3, LaBr3, CeBr3, GdF3 , GdBr3; metal is a rare earth metal halide, Cel2, E11F2, E11CI2, EuBr, Ε11Ι2, Dyl, Ndl2, Sml2, Ybl2 and Tml2; metal boride, lanthanum boride; MB2 boride, CrB2, TiB2 , MgB2, ZrB2, GdB2; alkali metal halide 'LiCl, RbCl or Csl; metal phosphide, such as Ca3P2; noble metal halogenation , precious metal oxides, noble metal sulfides, PtCl2, PtBr2 'Ptl2, PtCl4, PdCl2, PbBr2, Pbl2; rare earth metal sulfides 142257.doc 201104948 CeS; La halides; Gd halides; metals and anions, Na2Te04, Na2Te03, Co(CN)2, CoSb, CoAs, Co2P, CoO, CoSe, CoTe, NiSb, NiAs, NiSe, Ni2Si, MgSe; rare earth metal telluride, EuTe; rare earth metal telluride, EuSe; rare earth metal nitride, EuN; Nitride, AIN, GdN, Mg3N2; a compound containing at least two atoms selected from oxygen atoms and different halogen atoms, f2o, ci2o, cio2, Cl2〇6, Cl2〇7, C1F, C1F3, ciof3, C1F5, C102F, C102F3, C103F, BrF3, BrF5, I205, IBr, IC, IC13, IF, IF3, IF5, IF7; metal second or third transition series halide, 〇sF6, PtF6 or IrF6; compound which can form a metal after reduction a metal hydride, a rare earth metal hydride, an alkaline earth metal hydride or a metal hydride; (iv) at least one reducing agent selected from the group consisting of metals, alkali metals, alkaline earth metals, transition metals, second and third series of transitions And rare earth metals, 3/, Mg, 57, La, B, Zr and Ti powders; and H2; and (v) at least one selected from the group consisting of AC, 1% Pt/carbon or Pd/carbon (pt/c, Pd) /C), a conductive carrier of carbide TiC and WC. 6. The power source of claim 2, wherein the reaction mixture comprising a redox reaction to cause the catalytic reaction comprises: (i) at least one catalyst or catalyst source comprising a metal or hydride from the group of elements; Ii) at least one hydrogen source comprising hydrogen or a hydrogen source or hydride; (111) at least one oxidant comprising at least one from the 13th private, 14th, 15th, 16th and 17th And an atom or ion or compound selected from the group consisting of F, 142257.doc -6 - 201104948 Br, I, B, C, N, hydrazine, AJ, Si, p, s, and ^; (iv) at least one reducing agent And comprising (V) at least one electrically conductive support selected from the group consisting of carbon, AC, graphene, and niobium-containing metals; and (V) at least one electrically conductive support selected from the group consisting of carbon, AC, graphene ^Pt/C or Pd/C, carbide TiC and wc. 7. The power source of claim 2, wherein the reaction mixture comprising a redox reaction to cause the catalytic reaction comprises: (I) at least one catalyst or catalyst source comprising a metal from the group of elements or hydrogenation (II) to > a hydrogen source comprising a hydrogen or hydrogen source or a hydride; (III) to V oxidants comprising a group selected from Group IA, Group IIA, Group 3d, Group 4d, Paints, oxides or sulfides of elements of elements 5(1, 6th, 7th, 8d, 1st, 1st), iUd, i2d and (iv); (IV To a V reducing agent comprising an element or chloride selected from the group consisting of Mg, MgH2, Al, Si, B, ZrA rare earth metals; and at least one electrically conductive support selected from the group consisting of carbon, AC, graphene, such as Pt /C or Pd/C impregnated with metal carbon, carbide D 1 (: and ^. > π 2 power source ' which causes the catalytic reaction of the exchange reaction package s oxidant, the reducing agent and An anion parent of at least two of the catalysts, wherein the anion is selected from the group consisting of a tooth ion, a gas ion oxygen ion, Ions, nitrogen ions, boron ions, carbon ions, arsenic ions, selenium ions, barium ions, phosphorus ions, nitrates, sulfuric acid 142257.doc 201104948 roots, carbonate, sulfate, hydrogen sulfate, phosphate, hydrogen phosphate Root, dihydrogen dihydrogenate, peroxyacidate, chromate, dichromate, cobaltate and oxyanion. 9. 10. 11. The power source of claim 8, wherein the exchange reaction causing the catalysis is thermoreversible Regenerating the initial exchange reactants. The power source of claim 9, wherein the thermal regeneration reactant comprises (0 at least one catalyst or catalyst source selected from the group consisting of NaH and KH; (ii) selected from the group consisting of NaH, KH And a hydrogen source of MgH2; (iii) at least one oxidizing agent selected from the group consisting of: U) a soil metallization selected from the group consisting of BaBr2, BaCl2, Bal2, CaBr2, MgBr2, and Mgl2; (b) selected from the group consisting of EuBr2, EuBr3, EuF3, a rare earth metal of Dyl2, LaF3 and GdF3; (c) a second or third series of transition metal halides selected from the group consisting of YF3; (d) a metal boride selected from the group consisting of CrB2 and TiB2; (e) selected from the group consisting of LiCM and RbCl And alkali metal halide of Csl; (0 is selected from Li2S, ZnS And a metal sulfide of Y2S3; (h) a metal oxide selected from the group consisting of γ2〇3; and (i) a metal phosphide selected from the group consisting of Ca3P2; (iv) at least one reducing agent selected from the group consisting of Mg and MgH2; A carrier selected from the group consisting of ac, TiC, and WC. The power source of claim 2, wherein the getter, carrier or matrix-assisted catalytic reaction that causes the catalytic reaction comprises a catalytic reaction that provides at least one chemical for the catalytic reaction Environment, used to transfer electrons to promote 142257.doc 201104948 The catalyst function undergoes reversible phase transition or other physical changes or its electricity 度或速率中之至少一者的催化反應。Catalytic reaction of at least one of degrees or rates. 之催化反應混合物包含 ⑴至少一種選自NaH及四之催化劑或催化劑源; (1〇選自NaH、KH及MgH22氫源; (iii) 至少一種選自以下之氧化劑: 0)選自Mg3As2之金屬砷化物;及 (b)選自Mg3%及A1N之金屬氮化物; (iv) 至少一種選自Mg及MgH2之還原劑;及 (v) 至少一種選自ac、TiC及WC之載體。 14_如請求項丨之動力源,其中引起該催化反應且包含含有 鹼金屬之催化劑的該反應混合物係藉由分離一或多種該 等組份且以電解使該驗金屬再生而自該等產物再生。 15. —種氫化物反應器,其包含: 反應電池’用於催化原子氫形成總能量比未經催化之 氫物質總能量更低且更穩定之氫物質及包含該等氫物質 之目標組合物的; 反應容器; 真空泵; 原子氫源’來自與該反應容器相連通之來源; 142257.doc 201104948 氫催化劑源,與該反應容器相連通; 該原子氫源與該氫催化劑源中之至少一者的來源包含 名有或夕種形成該原子氫與該氫催化劑中之至少一者 之元素及至j/ 一種其他元素的至少一種反應物的反應混 δ物藉此5亥原子氫與該氫催化劑中之至少一者由該來 源形成, 至少一種其他反應物’藉由執行活化及擴展催化中之 至少一種功能來引起該催化的;及 用於該容器之加熱器,其起始該反應容器中形成該原 子氳與該氫催化劑中之至少一者,且起始該反應以引起 催化,藉此在該氫原子催化期間原子氫之該催化每莫耳 氫釋放超過約300 kJ之量的能量。 16.如請求項15之氫化物反應器,其中用於合成該等化合物 之该反應混合物包含至少兩種選自以下種類之組份〇)_ (v)之物質:⑴催化劑、(ii)氫源 ' (⑴)氧化劑、(iv)還原 劑及(v)載體。 17 如請求項16之氫化物反應器’其中該氧化劑係選自硫; 碟,氧、57^6、S、S〇2、S03、S205C12、F5SOF、 邮2〇8、SxXy、S2C12、SC12、S2Br2、S2F2、CS2、 Sb2S5、s〇xXy、SOCl2、SOF2、S02F2、SOBr2、P、 P2O5、P2S5、PxXy、PF3、PC13、PBr3、PI3 ' PF5、 PC15、i>Br4F、PC14F、POxXy、POBr3、p〇i3、POCl3、 P〇F3、PSxXy、PSBr3、psf3、PSC13 ;磷·氮化合物 P3N5、(Cl2pN)3 或(C12PN)4、(Br2PN)x(M 為驗金屬,x&y 142257.doc • 10- 201104948 為整數,X為鹵素);〇2、N20及Te02 ;鹵化物,CF4、 NF3、CrF2 ;磷源、硫源、MgS、MHS(M為鹼金屬)。 18. 如請求項17之氫化物反應器,其中該反應混合物進一步 包含用於該經催化氫之選自以下之吸氣劑:元素S、p、 〇、Se及Te,及包含s、p、〇、Se&Te之化合物。 19. 如請求項!之動力源,其中該催化劑能夠接受來自原子 故 27 2 氫之約27.2 eV±0.5 eV與了 #±〇.5…之一之整數單位 的能量。 2〇·如請求項1之動力源,其中該催化劑包含原子或離子Μ, 〃中?個電子自該原子或離子自電離至連續能階,禮 传該纟個電子之電離能之總和為約m ·27·2 與讲#之 一,其中m為整數。 約 WX27.2 eV^. eV 21·如請求項1之動力源,其中該催化劑包含雙原子分子 MH’其中M.斷裂加上_電子自該原子μ各自電離 =連續能階,使得^鍵能與袖電子之電離能之總和為 ’其中w為整數 之 5长項1之動力源’其中該催化劑包含選自分子AIR BiH、⑽、coH、GeH、InH、NaH、RuH、㈣ SeH、SiH、SnM η m ^ 、2 ' 2 ' 2、C〇2、卯2及肋3及原- 或離子Li、Be、κ、c V Cr、Μη ' Fe、Co /:CU、Zn、AS、Se、Kr、Rb、Sr、Nb、M〇'pd. \ Te Cs、Ce、Pr、Sm、Gd、Dy、Pb、pt、Kr, IK、He+、T严、Na+、Rb + ,“ 一 Fe 、Mo2+、m〇4+、 、心+ 及矿之原子'離 I42257.doc 201104948 及/或分子。 23. 如請求項1之動力源,以使用電解或熱再生反應維持動 力產生與再生同步之方式使其連續運作。 24. 如請求項1之動力源,其進一步包含功率變換器。 25. 如請求項24之動力源,其中該變換器包含與該反應容器 相連通之蒸汽產生器、與該蒸汽產生器相連通之蒸汽渦 輪機及與該蒸汽渦輪機相連通之發電機。 142257.doc -12-The catalytic reaction mixture comprises (1) at least one catalyst or catalyst source selected from the group consisting of NaH and tetra; (1) a source of hydrogen selected from the group consisting of NaH, KH and MgH22; (iii) at least one oxidant selected from the group consisting of: 0) a metal selected from the group consisting of Mg3As2 And arsenide; and (b) a metal nitride selected from the group consisting of Mg 3% and A1N; (iv) at least one reducing agent selected from the group consisting of Mg and MgH 2 ; and (v) at least one carrier selected from the group consisting of ac, TiC and WC. A power source as claimed in claim 1, wherein the reaction mixture causing the catalytic reaction and comprising an alkali metal-containing catalyst is obtained from the products by separating one or more of the components and regenerating the metal by electrolysis. regeneration. 15. A hydride reactor comprising: a reaction cell 'a hydrogen species for catalyzing the formation of atomic hydrogen at a lower total energy than a total energy of an uncatalyzed hydrogen species and a target composition comprising the same a reaction vessel; a vacuum pump; an atomic hydrogen source 'from a source in communication with the reaction vessel; 142257.doc 201104948 a hydrogen catalyst source in communication with the reaction vessel; at least one of the atomic hydrogen source and the hydrogen catalyst source a source comprising a reaction mixture of an element of the atomic hydrogen forming at least one of the atomic hydrogen and the hydrogen catalyst and at least one reactant of the j/an other element whereby the 5 atomic hydrogen and the hydrogen catalyst are At least one of which is formed by the source, at least one other reactant' causes the catalysis by performing at least one of activation and expansion catalysis; and a heater for the vessel that initiates formation in the reaction vessel And at least one of the atomic ruthenium and the hydrogen catalyst, and the reaction is initiated to cause catalysis, whereby the atomic hydrogen is catalyzed during the hydrogen atom catalysis Each mole of hydrogen release amount exceeding about 300 kJ of energy. 16. The hydride reactor of claim 15 wherein the reaction mixture for synthesizing the compounds comprises at least two materials selected from the group consisting of: 催化剂 (v): (1) a catalyst, (ii) hydrogen Source '((1)) oxidant, (iv) reducing agent and (v) carrier. 17 The hydride reactor of claim 16 wherein the oxidant is selected from the group consisting of sulfur; dish, oxygen, 57^6, S, S〇2, S03, S205C12, F5SOF, post 2〇8, SxXy, S2C12, SC12, S2Br2, S2F2, CS2, Sb2S5, s〇xXy, SOCl2, SOF2, S02F2, SOBr2, P, P2O5, P2S5, PxXy, PF3, PC13, PBr3, PI3 'PF5, PC15, i> Br4F, PC14F, POxXy, POBr3, P〇i3, POCl3, P〇F3, PSxXy, PSBr3, psf3, PSC13; phosphorus/nitrogen compound P3N5, (Cl2pN)3 or (C12PN)4, (Br2PN)x (M is metal, x&y 142257.doc • 10-201104948 is an integer, X is halogen); 〇2, N20 and Te02; halide, CF4, NF3, CrF2; phosphorus source, sulfur source, MgS, MHS (M is alkali metal). 18. The hydride reactor of claim 17, wherein the reaction mixture further comprises a getter selected from the group consisting of: S, p, 〇, Se, and Te, and s, p, a compound of bismuth, Se& Te. 19. As requested! A source of power wherein the catalyst is capable of accepting energy from an atomic unit of about 27.2 eV ± 0.5 eV and one of #±〇.5... 2. A power source as claimed in claim 1, wherein the catalyst comprises an atom or an ion, in the middle? The electrons self-ionize to the continuous energy level from the atom or ion, and the total ionization energy of the electrons is about one m·27·2 and one of the lectures, where m is an integer.约WX27.2 eV^. eV 21. The power source of claim 1, wherein the catalyst comprises a diatomic molecule MH' wherein M. cleavage plus _ electrons are self-ionized from the atom μ = continuous energy level, such that the bond energy The sum of the ionization energies of the sleeve electrons is 'the power source of 5 long term 1 where w is an integer', wherein the catalyst comprises a molecule selected from the group consisting of AIR BiH, (10), coH, GeH, InH, NaH, RuH, (4) SeH, SiH, SnM η m ^ , 2 ' 2 ' 2, C〇2, 卯2 and rib 3 and the original - or ions Li, Be, κ, c V Cr, Μη 'Fe, Co /: CU, Zn, AS, Se, Kr, Rb, Sr, Nb, M〇'pd. \ Te Cs, Ce, Pr, Sm, Gd, Dy, Pb, pt, Kr, IK, He+, T Yan, Na+, Rb + , "One Fe, Mo2+ , m〇4+, , and the atom of the ore 'from I42257.doc 201104948 and/or numerator. 23. The power source of claim 1 is maintained in synchronization with regeneration using electrolysis or thermal regeneration reactions. 24. The continuous operation of 24. The power source of claim 1 further comprising a power converter. 25. The power source of claim 24, wherein the converter comprises a communication with the reaction vessel Steam generator is connected to the steam generator through the steam turbine and the steam turbine is connected through the generator. 142257.doc -12-
TW098125725A 2009-07-30 2009-07-30 Heterogeneous hydrogen-catalyst reactor TWI497809B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW098125725A TWI497809B (en) 2009-07-30 2009-07-30 Heterogeneous hydrogen-catalyst reactor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW098125725A TWI497809B (en) 2009-07-30 2009-07-30 Heterogeneous hydrogen-catalyst reactor

Publications (2)

Publication Number Publication Date
TW201104948A true TW201104948A (en) 2011-02-01
TWI497809B TWI497809B (en) 2015-08-21

Family

ID=44813816

Family Applications (1)

Application Number Title Priority Date Filing Date
TW098125725A TWI497809B (en) 2009-07-30 2009-07-30 Heterogeneous hydrogen-catalyst reactor

Country Status (1)

Country Link
TW (1) TWI497809B (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9067393B2 (en) 2012-10-29 2015-06-30 Industrial Technology Research Institute Method of transferring carbon conductive film
CN115367701A (en) * 2022-09-29 2022-11-22 重庆大学 MgH 2 -AlH 3 -TiF 3 Composite hydrogen storage material and preparation method thereof
CN116288052A (en) * 2021-12-10 2023-06-23 东莞市逸昊金属材料科技有限公司 Powder metallurgy material for precision parts, powder metallurgy processing method and parts
US12066121B2 (en) 2021-04-30 2024-08-20 Entegris, Inc. Electrostatic discharge mitigation valve

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2185468A4 (en) * 2007-04-24 2012-02-01 Blacklight Power Inc Hydrogen-catalyst reactor

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9067393B2 (en) 2012-10-29 2015-06-30 Industrial Technology Research Institute Method of transferring carbon conductive film
US12066121B2 (en) 2021-04-30 2024-08-20 Entegris, Inc. Electrostatic discharge mitigation valve
CN116288052A (en) * 2021-12-10 2023-06-23 东莞市逸昊金属材料科技有限公司 Powder metallurgy material for precision parts, powder metallurgy processing method and parts
CN115367701A (en) * 2022-09-29 2022-11-22 重庆大学 MgH 2 -AlH 3 -TiF 3 Composite hydrogen storage material and preparation method thereof
CN115367701B (en) * 2022-09-29 2023-07-07 重庆大学 MgH (MgH) 2 -AlH 3 -TiF 3 Composite hydrogen storage material and preparation method thereof

Also Published As

Publication number Publication date
TWI497809B (en) 2015-08-21

Similar Documents

Publication Publication Date Title
AU2017202706A1 (en) Heterogeneous hydrogen-catalyst power system
CN102164849B (en) Heterogeneous hydrogen-catalyst reactor
CN107275722A (en) Battery or fuel cell system
CN102906925B (en) Electrochemical hydrogen catalyst dynamical system
US20130084474A1 (en) Electrochemical hydrogen-catalyst power system
JP2013542547A5 (en)
AU2015246122A1 (en) Electrochemical hydrogen-catalyst power system
US20200299130A1 (en) Heterogeneous hydrogen-catalyst reactor
JP2017014098A (en) Heterogeneous hydrogen-catalyst reactor
TW201104948A (en) Heterogeneous hydrogen-catalyst reactor

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees