WO2023243306A1 - Semiconductor device - Google Patents

Semiconductor device Download PDF

Info

Publication number
WO2023243306A1
WO2023243306A1 PCT/JP2023/018745 JP2023018745W WO2023243306A1 WO 2023243306 A1 WO2023243306 A1 WO 2023243306A1 JP 2023018745 W JP2023018745 W JP 2023018745W WO 2023243306 A1 WO2023243306 A1 WO 2023243306A1
Authority
WO
WIPO (PCT)
Prior art keywords
main surface
semiconductor device
base material
conductive portion
wiring board
Prior art date
Application number
PCT/JP2023/018745
Other languages
French (fr)
Japanese (ja)
Inventor
昌明 松尾
開人 井上
英夫 原
Original Assignee
ローム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ローム株式会社 filed Critical ローム株式会社
Publication of WO2023243306A1 publication Critical patent/WO2023243306A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/58Structural electrical arrangements for semiconductor devices not otherwise provided for, e.g. in combination with batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/07Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L29/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/18Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different subgroups of the same main group of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N

Definitions

  • the present disclosure relates to a semiconductor device.
  • IPM Intelligent Power Module
  • Such a semiconductor device includes a plurality of semiconductor chips, a plurality of electrode sections, a heat dissipation layer, and a sealing resin section (see Patent Document 1).
  • a semiconductor chip is placed on a die pad portion of one of the electrode portions.
  • the plurality of electrode portions serve as conduction paths that connect the semiconductor chip to the outside.
  • Semiconductor chips include LSI chips such as control ICs.
  • An LSI chip has input/output for multiple types of control signals. As the number of control signals increases, it is necessary to increase the number of conduction paths to the LSI chip, but if these conduction paths are constructed from multiple electrode sections as in the past, the integration of semiconductor devices will become even higher. It may become difficult.
  • An object of the present disclosure is to provide a semiconductor device that is improved over conventional ones. Particularly, in view of the above-mentioned circumstances, an object of the present disclosure is to provide a semiconductor device that enables even higher integration.
  • a semiconductor device provided by a first aspect of the present disclosure includes a first base material having a first main surface and a first back surface facing opposite to each other in the thickness direction, and a first base material disposed on the first main surface.
  • a second base material having a first main surface conductive portion having conductivity, a second main surface facing the same side as the first main surface in the thickness direction, and a second back surface facing the same side as the first back surface.
  • a second main surface conductive part having electrical conductivity disposed on the second main surface; a switching element disposed on the first main surface and electrically connected to the first main surface conductive part; a driving device disposed on the second main surface, electrically connected to the second main surface conductive portion, and driving the switching element; and at least a portion of the first base material and the second base material. and a sealing resin that covers the entire switching element and the drive device.
  • FIG. 1 is a perspective view showing a semiconductor device according to a first embodiment of the present disclosure.
  • FIG. 2 is a plan view showing the semiconductor device of FIG. 1.
  • FIG. 3 is a plan view showing the semiconductor device of FIG. 1, and is a view through the sealing resin.
  • FIG. 4 is a bottom view showing the semiconductor device of FIG. 1.
  • FIG. 5 is a cross-sectional view taken along line VV in FIG. 3.
  • FIG. 6 is a partially enlarged view of FIG. 5.
  • FIG. 7 is a plan view showing each wiring board of the semiconductor device of FIG. 1.
  • FIG. 8 is a flowchart showing one step of an example of the method for manufacturing the semiconductor device of FIG.
  • FIG. 9 is a cross-sectional view showing a semiconductor device according to a second embodiment of the present disclosure.
  • FIG. 10 is a cross-sectional view showing a semiconductor device according to a third embodiment of the present disclosure.
  • FIG. 11 is a cross-sectional view showing a semiconductor device according to a fourth embodiment of the present disclosure.
  • FIG. 12 is a partially enlarged plan view showing a semiconductor device according to a fifth embodiment of the present disclosure, and is a view through a sealing resin.
  • a thing A is formed on a thing B and "a thing A is formed on a thing B” mean “a thing A is formed on a thing B” unless otherwise specified.
  • "something A is placed on something B” and “something A is placed on something B” mean "something A is placed on something B” unless otherwise specified.
  • First embodiment: 1 to 7 show an example of a semiconductor device according to the present disclosure.
  • the semiconductor device A1 of this embodiment includes a plurality of leads 1, a wiring board 2, a wiring board 3, a plurality of semiconductor chips 4, a plurality of drive devices 5, a plurality of passive elements 6, a plurality of wires 7, and a sealing resin 8. It is equipped with In this embodiment, the semiconductor device A1 is an IPM (Intelligent Power Module). The semiconductor device A1 is used for applications such as air conditioners and motor control equipment, for example.
  • IPM Intelligent Power Module
  • FIG. 1 is a perspective view showing a semiconductor device A1.
  • FIG. 2 is a plan view showing the semiconductor device A1.
  • FIG. 3 is a plan view showing the semiconductor device A1, and is a view through the sealing resin 8. As shown in FIG. In addition, in FIG. 3, the outer shape of the sealing resin 8 is shown by an imaginary line (two-dot chain line).
  • FIG. 4 is a bottom view showing the semiconductor device A1.
  • FIG. 5 is a cross-sectional view taken along line VV in FIG. 3.
  • FIG. 6 is a partially enlarged view of FIG. 5.
  • FIG. 7 is a plan view showing the wiring board 2 and the wiring board 3.
  • the thickness direction of the wiring board 2 is referred to as the thickness direction z
  • the direction along one side of the wiring board 2 perpendicular to the thickness direction z is referred to as the first direction y
  • the direction perpendicular to the thickness direction z and the first direction y is the second direction x.
  • the shape and dimensions of the semiconductor device A1 are not limited.
  • the wiring board 2 is mounted with a plurality of semiconductor chips 4 and a plurality of passive elements 6 (shunt resistors 6a to be described later), and is arranged at the center of the semiconductor device A1 in the second direction x and closer to the first side y1 in the first direction y. has been done.
  • the plurality of semiconductor chips 4 are power transistors
  • the wiring board 2 is a power section board on which a power circuit is arranged.
  • the wiring board 2 includes a base material 21, a main surface conductive portion 22, and a back surface conductive portion 23.
  • the base material 21 is plate-shaped, and has a rectangular shape that is elongated in the second direction x when viewed in the thickness direction z (that is, in plan view).
  • the thickness dimension (dimension in the thickness direction z) of the base material 21 is, for example, about 0.1 mm to 1.0 mm. Note that the dimensions of the base material 21 are not limited.
  • the base material 21 is made of an insulating material.
  • the constituent material of the base material 21 is, for example, ceramics with excellent thermal conductivity, and in this embodiment, includes aluminum nitride (AlN). Note that the constituent material of the base material 21 is not limited to this.
  • the base material 21 has a main surface 211 and a back surface 212.
  • the main surface 211 and the back surface 212 are surfaces facing opposite to each other in the thickness direction z, and are both flat surfaces perpendicular to the thickness direction z.
  • the main surface 211 is a surface facing the first side z1 in the thickness direction z.
  • a main surface conductive portion 22 is arranged on the main surface 211, and a plurality of semiconductor chips 4, a plurality of passive elements 6, and a plurality of leads 1 are mounted on the main surface 211.
  • the back surface 212 is a surface facing the second side z2 in the thickness direction z. On the back surface 212, a back conductive portion 23 is arranged.
  • the shapes of the main surface 211 and the back surface 212 are both rectangular. Note that the shape of the base material 21 is not limited.
  • the main surface conductive portion 22 is arranged on the main surface 211 of the base material 21.
  • the main surface conductive portion 22 is made of a conductive material.
  • the constituent material of the main surface conductive portion 22 is not particularly limited, and examples thereof include copper (Cu), silver (Ag), gold (Au), and alloys containing these. In this embodiment, a case where copper (Cu) is used will be described.
  • the thickness dimension (dimension in the thickness direction z) T1 (see FIG. 6) of the main surface conductive portion 22 is a thickness that can maintain the heat dissipation effect of the heat generated by the semiconductor chip 4, and is, for example, 0.2 mm or more. In this embodiment, the thickness dimension T1 is approximately 0.25 mm. Note that the thickness dimension T1 is not limited.
  • the main surface conductive portion 22 includes a plurality of pads 221 and a plurality of wirings 222, as shown in FIG. 7, for example.
  • Each pad 221 has a rectangular shape, for example, and has the semiconductor chip 4, the passive element 6, the lead 1 (lead 11 described later), or the wire 7 (wires 71 and 72 described later) electrically connected.
  • the shape of the pad 221 is not limited.
  • Each pad 221 is spaced apart from each other.
  • Each of the plurality of wirings 222 is a conduction path that connects one of the pads 221 and one of the pads 221 to conduct them.
  • the shape of each wiring 222 is not limited.
  • the back conductive portion 23 is arranged on the back surface 212 of the base material 21.
  • the back conductive portion 23 is made of a conductive material.
  • the constituent material of the back conductive portion 23 is not particularly limited, and includes, for example, copper (Cu), silver (Ag), gold (Au), and alloys containing these.
  • the constituent material of the back surface conductive portion 23 is copper (Cu), as is the case with the main surface conductive portion 22.
  • the thickness dimension (dimension in the thickness direction z) of the back conductive portion 23 is a thickness that can maintain the heat dissipation effect of the heat generated by the semiconductor chip 4, and is, for example, 0.2 mm or more.
  • the thickness of the back conductive portion 23 is approximately 0.25 mm, similar to the thickness T1, but is not limited thereto.
  • the back surface conductive portion 23 covers the entire surface of the back surface 212. Note that the shape of the back conductive portion 23 is not limited. The back conductive portion 23 is exposed from the sealing resin 8, as shown in FIG.
  • the wiring board 2 is formed from a so-called DBC (Direct Bonded Copper) board.
  • the DBC board is a board in which copper foil is bonded to both sides of a ceramic plate.
  • the wiring board 2 is formed by patterning the copper foil on one side of the DBC board by etching. The patterned copper foil on one side becomes the main surface conductive part 22, and the other copper foil becomes the back surface conductive part 23.
  • the method for forming the wiring board 2 is not limited. Regardless of which method is used, it is necessary to form a copper layer of 0.2 mm or more.
  • the constituent material of the main surface conductive portion 22 and the back surface conductive portion 23 may be a metal other than copper, and layers of the metal are formed on both surfaces of the ceramic plate.
  • the wiring board 3 has a plurality of drive devices 5 and a plurality of passive elements 6 mounted thereon, and is arranged at the center of the semiconductor device A1 in the second direction x and closer to the second side y2 in the first direction y.
  • the wiring board 2 and the wiring board 3 are arranged side by side in the first direction y, and the wiring board 3 is located on the second side y2 of the first direction y with respect to the wiring board 2.
  • the wiring board 3 is a control unit board on which a control circuit for controlling the power circuit arranged on the wiring board 2 is arranged.
  • the wiring board 3 includes a base material 31, a main surface conductive portion 32, and a back surface conductive portion 33.
  • the base material 31 is plate-shaped and has a rectangular shape that is long in the second direction x when viewed in the thickness direction z.
  • the thickness dimension (dimension in the thickness direction z) of the base material 31 is, for example, about 0.1 mm to 1.0 mm, which is about the same as that of the base material 21. Note that the dimensions of the base material 31 are not limited.
  • the base material 31 is made of an insulating material.
  • the constituent material of the base material 31 is, for example, ceramics, and in this embodiment contains alumina (Al 2 O 3 ).
  • the base material 31 does not require as much thermal conductivity as the base material 21.
  • the base material 21 is made of ceramics made of aluminum nitride, and has higher thermal conductivity than the base material 31 made of ceramics made of alumina.
  • the constituent material of the base material 31 is not limited to this.
  • the constituent material of the base material 21 and the constituent material of the base material 31 may be the same.
  • the base material 31 has a main surface 311 and a back surface 312.
  • the main surface 311 and the back surface 312 are surfaces facing opposite to each other in the thickness direction z, and are both flat surfaces perpendicular to the thickness direction z.
  • the main surface 311 is a surface facing the first side z1 in the thickness direction z.
  • a main surface conductive portion 32 is arranged on the main surface 311, and a plurality of drive devices 5, a plurality of passive elements 6, and a plurality of leads 1 are mounted thereon.
  • the back surface 312 is a surface facing the second side z2 in the thickness direction z.
  • On the back surface 312, a back conductive portion 33 is arranged.
  • the shapes of the main surface 311 and the back surface 312 are both rectangular. Note that the shape of the base material 31 is not limited.
  • the main surface conductive portion 32 is arranged on the main surface 311 of the base material 31.
  • the main surface conductive portion 32 is made of a conductive material.
  • the constituent material of the main surface conductive portion 32 is not particularly limited, and includes, for example, copper (Cu), silver (Ag), gold (Au), and alloys containing these. In this embodiment, a case where copper (Cu) is used will be described.
  • the thickness dimension (dimension in the thickness direction z) T2 (see FIG. 6) of the main surface conductive part 32 is smaller than the thickness dimension T1, and has a thickness that allows finer processing than the main surface conductive part 22 by etching. be. In this embodiment, the thickness dimension T2 is, for example, about 0.1 mm. Note that the thickness dimension T2 is not limited.
  • the main surface conductive portion 32 includes a plurality of pads 321 and a plurality of wirings 322, as shown in FIG. 7, for example.
  • Each pad 321 has a rectangular shape, for example, and has a driving device 5, a passive element 6, a lead 1 (a lead 15 described later), or a wire 7 (wires 73 and 74 described later) electrically connected.
  • the shape of the pad 321 is not limited.
  • Each pad 321 is spaced apart from each other.
  • Each of the plurality of wirings 322 is a conduction path that connects one of the pads 321 and one of the pads 321 to conduct the two.
  • the shape of each wiring 322 is not limited. Note that a conductive plate-like member may be placed on the pad 321 to which the wire 7 is bonded in order to protect the pad 321 and the base material 31 from impact caused by wire bonding.
  • the back surface conductive part 33 is arranged on the back surface 312 of the base material 31.
  • the back conductive portion 33 is made of a conductive material.
  • the constituent material of the back conductive portion 33 is not particularly limited, and includes, for example, copper (Cu), silver (Ag), gold (Au), and alloys containing these.
  • the constituent material of the back conductive portion 33 is copper (Cu), as is the case with the main conductive portion 32 .
  • the thickness dimension (dimension in the thickness direction z) of the back conductive portion 33 is approximately the same as the thickness dimension T2, and is, for example, approximately 0.1 mm. Note that the thickness dimension of the back conductive portion 33 is not limited to this. In this embodiment, the back conductive portion 33 covers the entire back surface 312.
  • the shape of the back conductive portion 33 is not limited.
  • the back conductive portion 33 is exposed from the sealing resin 8, as shown in FIG.
  • the wiring board 3 does not need to include the back conductive portion 33.
  • the back surface 312 of the base material 31 may be exposed from the sealing resin 8, or the entire wiring board 3 may be covered with the sealing resin 8 (the wiring board 3 is not exposed from the sealing resin 8). good.
  • the wiring board 3 is formed from a so-called DBC board.
  • the DBC board is a board in which copper foil is bonded to both sides of a ceramic plate.
  • the copper foil of the DBC board is thinner than the copper foil of the DBC board for forming the wiring board 2.
  • the wiring board 3 is formed by patterning copper foil on one side of the DBC board by etching. The patterned copper foil on one side becomes the main surface conductive part 32, and the other copper foil becomes the back surface conductive part 33.
  • the method of forming the wiring board 3 is not limited.
  • the wiring board 3 may be formed from a so-called DPC (Direct Plated Copper) board, which is a ceramic plate with copper plating on both sides.
  • DPC Direct Plated Copper
  • the wiring board 3 may be formed by disposing copper paste on both sides of a ceramic plate and firing the same.
  • the constituent material of the main surface conductive portion 32 and the back surface conductive portion 33 may be a metal other than copper, and layers of the metal are formed on both surfaces of the ceramic plate.
  • the plurality of leads 1 are configured to include metal.
  • the metal constituting the lead 1 is not particularly limited, and includes, for example, copper (Cu), aluminum, iron (Fe), oxygen-free copper, or alloys thereof (for example, Cu-Sn alloy, Cu-Zr alloy, Cu-Fe alloy). etc.).
  • the plurality of leads 1 may be plated with nickel (Ni).
  • the plurality of leads 1 may be formed, for example, by pressing a metal mold against a metal plate, or by patterning a metal plate by etching. Note that the method for forming the plurality of leads 1 is not limited.
  • the thickness of each lead 1 is not particularly limited, and is, for example, about 0.4 mm to 0.8 mm. Each lead 1 is spaced apart from each other.
  • the plurality of leads 1 each include a plurality of leads 11, leads 12, leads 15, and leads 16.
  • the leads 11 and 12 constitute a conductive path to the semiconductor chip 4.
  • Leads 15 and 16 constitute a conduction path to drive device 5 or passive element 6.
  • the plurality of leads 11 are each arranged on the base material 21, and in this embodiment, are arranged on the main surface 211 closer to the first side y1 in the first direction y. Each lead 11 is bonded to a pad 221 of the main surface conductive portion 22 via a conductive bonding material 76 .
  • the conductive bonding material 76 may be any material that can conductively bond the leads 11 to the pads 221, such as silver paste, copper paste, solder, or the like. Note that the conductive bonding material 76 is not limited.
  • Each lead 11 is electrically connected to the semiconductor chip 4 via the main surface conductive portion 22 and the wire 71.
  • the plurality of leads 1 includes three leads 11. Note that the number and arrangement of leads 11 are not limited.
  • the structure of the lead 11 is not particularly limited. In this embodiment, as shown in FIG. 5, the lead 11 will be divided into a joint portion 111, a protruding portion 112, an inclined connection portion 113, and a parallel connection portion 114.
  • the joint portion 111 has a main surface 111a and a back surface 111b.
  • the main surface 111a and the back surface 111b are surfaces facing opposite to each other in the thickness direction z, and are both flat surfaces perpendicular to the thickness direction z.
  • the main surface 111a is a surface facing the first side z1 in the thickness direction z.
  • the back surface 111b is a surface facing the second side z2 in the thickness direction z.
  • the back surface 111b is bonded to the pad 221 of the main surface conductive portion 22 by a conductive bonding material 76.
  • the inclined connection portion 113 and the parallel connection portion 114 are covered with the sealing resin 8.
  • the inclined connection part 113 is connected to the joint part 111 and the parallel connection part 114 and is inclined with respect to the joint part 111 and the parallel connection part 114.
  • the parallel connecting portion 114 is connected to the inclined connecting portion 113 and the protruding portion 112 and is parallel to the joining portion 111 .
  • the protruding portion 112 is connected to the end of the parallel connection portion 114 and is a portion of the lead 11 that protrudes from the sealing resin 8 .
  • the protruding portion 112 protrudes to the side opposite to the joining portion 111 (y1 side) in the first direction y.
  • the protruding portion 112 is used, for example, to electrically connect the semiconductor device A1 to an external circuit. In the illustrated example, the protruding portion 112 is bent toward the side toward which the main surface 111a of the joint portion 111 faces in the thickness direction z.
  • the plurality of leads 12 are not arranged on the base material 21, but are arranged on the first side y1 of the base material 21 in the first direction y.
  • Each lead 12 does not include a portion corresponding to the joint portion 111 and the inclined connection portion 113 of the lead 11, but only includes a portion corresponding to the protrusion portion 112 and the parallel connection portion 114.
  • a wire 72 is electrically connected to a portion corresponding to the parallel connection portion 114.
  • Each lead 12 is electrically connected to the semiconductor chip 4 or the passive element 6 via the wire 72 and the main surface conductive portion 22.
  • the plurality of leads 1 includes six leads 12. Note that the configuration, number, and arrangement of the leads 12 are not limited to this.
  • the plurality of leads 15 are each arranged on the base material 31, and in this embodiment, are arranged on the main surface 311 closer to the second side y2 in the first direction y. Each lead 15 is bonded to a pad 321 of the main surface conductive portion 32 via a conductive bonding material 76 . Each lead 15 is electrically connected to the drive device 5 or the passive element 6 via the main surface conductive portion 22 . In this embodiment, the plurality of leads 1 includes 18 leads 15. Note that the number and arrangement of leads 15 are not limited.
  • the structure of the lead 15 is not particularly limited. In this embodiment, as shown in FIG. 5, the lead 15 will be divided into a joining portion 151, a protruding portion 152, an inclined connecting portion 153, and a parallel connecting portion 154.
  • the joint portion 151 has a main surface 151a and a back surface 151b.
  • the main surface 151a and the back surface 151b are surfaces facing opposite to each other in the thickness direction z, and are both flat surfaces perpendicular to the thickness direction z.
  • the main surface 151a is a surface facing the first side z1 in the thickness direction z.
  • the back surface 151b is a surface facing the second side z2 in the thickness direction z.
  • the back surface 151b is bonded to the pad 321 of the main surface conductive portion 32 by a conductive bonding material 76.
  • the inclined connection portion 153 and the parallel connection portion 154 are covered with the sealing resin 8.
  • the inclined connection portion 153 is connected to the joint portion 151 and the parallel connection portion 154 and is inclined with respect to the joint portion 151 and the parallel connection portion 154.
  • the parallel connecting portion 154 is connected to the inclined connecting portion 153 and the protruding portion 152 and is parallel to the joining portion 151.
  • the protruding portion 152 is connected to the end of the parallel connection portion 154 and is a portion of the lead 15 that protrudes from the sealing resin 8 .
  • the protruding portion 152 protrudes to the side opposite to the joining portion 151 (y2 side) in the first direction y.
  • the protruding portion 152 is used, for example, to electrically connect the semiconductor device A1 to an external circuit. In the illustrated example, the protruding portion 152 is bent toward the side toward which the main surface 151a of the joint portion 151 faces in the thickness direction z.
  • the plurality of leads 16 are not arranged on the base material 31, but are arranged on the first side x1 or the second side x2 of the base material 31 in the second direction x.
  • Each lead 16 has a similar configuration to lead 15.
  • a wire 74 is conductively bonded to a portion corresponding to the bonding portion 151 instead of being bonded to the pad 321 of the main surface conductive portion 32 .
  • Each lead 16 is electrically connected to the drive device 5 and the passive element 6 via the wire 74 and the main surface conductive portion 32.
  • the plurality of leads 1 includes four leads 16. Note that the configuration, number, and arrangement of the leads 16 are not limited to this.
  • the plurality of semiconductor chips 4 are switching elements and power transistors that control power.
  • the semiconductor chip 4 is constructed using a semiconductor material mainly composed of SiC (silicon carbide).
  • the semiconductor material is not limited to SiC, and may be Si (silicon), GaAs (gallium arsenide), GaN (gallium nitride), or the like.
  • the semiconductor chip 4 is, for example, a MOSFET (Metal-Oxide-Semiconductor Field-Effect Transistor). Note that the semiconductor chip 4 is not limited to a MOSFET, and may be an IGBT (Insulated Gate Bipolar Transistor) or the like. Although this embodiment shows a case where the semiconductor device A1 includes four semiconductor chips 4, this is just an example, and the number of semiconductor chips 4 is not limited.
  • Each semiconductor chip 4 has a rectangular plate shape when viewed in the thickness direction z, and includes an element main surface 41, an element rear surface 42, a source electrode 43, a gate electrode 44, and a drain electrode 45.
  • the element main surface 41 and the element back surface 42 face opposite sides in the thickness direction z.
  • the element main surface 41 is a surface facing the first side z1 in the thickness direction z.
  • the back surface 42 of the element is a surface facing the second side z2 in the thickness direction z.
  • a source electrode 43 and a gate electrode 44 are arranged on the main surface 41 of the element.
  • a drain electrode 45 is arranged on the back surface 42 of the element. Note that the shapes and arrangement of the source electrode 43, gate electrode 44, and drain electrode 45 are not limited.
  • Each semiconductor chip 4 is mounted on the wiring board 2, as shown in FIGS. 3 and 5.
  • Each semiconductor chip 4 is arranged on the main surface 211 of the base material 21.
  • the four semiconductor chips 4 are arranged side by side in the second direction x on the main surface 211 closer to the second side y2 in the first direction y.
  • the arrangement position of each drive device 5 is not limited.
  • each semiconductor chip 4 is bonded to a pad 221 of the main surface conductive portion 22 by a conductive bonding material 76 with the element back surface 42 facing the main surface 211.
  • the drain electrode 45 of the semiconductor chip 4 is electrically connected to the pad 221 by the conductive bonding material 76 .
  • the source electrode 43 of the semiconductor chip 4 is electrically connected to the adjacent pad 221 by a wire 71.
  • the semiconductor device A1 includes two bridge circuits each made up of two semiconductor chips 4.
  • the source electrode 43 and gate electrode 44 of the semiconductor chip 4 are electrically connected to the driving device 5 via the wire 73 and the main surface conductive portion 32 of the wiring board 3, respectively.
  • Each of the plurality of drive devices 5 is a so-called gate driver that outputs a drive signal to drive the corresponding semiconductor chip 4.
  • the drive device 5 is an insulated gate driver in which a low voltage side into which a signal is input is insulated from a high voltage side through which a drive signal is output.
  • the driving device 5 is not limited to an insulated gate driver.
  • the semiconductor device A1 includes four drive devices 5 corresponding to the number of semiconductor chips 4.
  • Each drive device 5 is mounted on the wiring board 3, as shown in FIGS. 3 and 5.
  • Each drive device 5 is arranged on the main surface 311 of the base material 31.
  • the four drive devices 5 are arranged at the center (or approximately at the center) of the main surface 311 in the first direction y and in line in the second direction x. Note that the arrangement position of each drive device 5 is not limited.
  • the drive device 5 is an SOP (Small Outline Package) type package.
  • the drive device 5 includes a plurality of terminals that protrude and extend on both sides of the first direction y. These terminals are conductively bonded to the pads 321 of the main surface conductive portion 32 by a conductive bonding material 76 .
  • the package type of the drive device 5 is not limited to the SOP type, and may be other types such as a QFP (Quad Flat Package) type or an SOJ (Small Outline J-lead Package) type. Further, the size, shape, number of terminals, etc. of the drive device 5 are not limited. Further, instead of the drive device 5, a drive chip may be directly disposed on the wiring board 3. The drive device 5 outputs a drive signal to the gate electrode 44 of the corresponding semiconductor chip 4 via the main surface conductive portion 32 and the wire 73. Further, the driving device 5 receives the potential of the source electrode 43 of the corresponding semiconductor chip 4 via the main surface conductive portion 32 and the wire 73.
  • the plurality of passive elements 6 are mounted on the wiring board 2 or the wiring board 3, as shown in FIGS. 3 and 5. Each passive element 6 is disposed on the main surface 211 of the base material 21 or the main surface 311 of the base material 31, and is electrically connected to the pad 221 of the main surface conductive part 22 or the pad 321 of the main surface conductive part 32. ing.
  • the passive element 6 is, for example, a resistor, a capacitor, a coil, a diode, or the like. Passive element 6 includes two shunt resistors 6a and a thermistor 6b.
  • the two shunt resistors 6a are mounted on the wiring board 2 and arranged on the main surface 211 of the base material 21. Each shunt resistor 6a straddles the two pads 221 of the main surface conductive portion 22 and is electrically connected to each pad 221. An output current of a bridge circuit composed of two semiconductor chips 4 flows through each shunt resistor 6a, and a potential difference between both terminals is output.
  • the thermistor 6b is mounted on the wiring board 3 and arranged on the main surface 311 of the base material 31.
  • the thermistor 6b straddles the two pads 321 of the main surface conductive portion 32 and is electrically connected to each pad 321.
  • Each pad 321 to which the thermistor 6b is bonded is electrically connected to the lead 15 via the pad 321 electrically connected by a wiring 322.
  • a predetermined current is passed through the thermistor 6b, and the thermistor 6b outputs a voltage signal according to the temperature of the wiring board 3.
  • Each passive element 6 is mounted on the wiring board 3 and arranged on the main surface 311 of the base material 31. Each passive element 6 is electrically connected to a pad 321 of the main surface conductive portion 32 and electrically connected to the drive device 5 via the wiring 322 and the pad 321. Note that the type, arrangement position, and number of each passive element 6 are not limited.
  • the plurality of wires 7 each include a plurality of wires 71, 72, 73, and 74.
  • the plurality of wires 71 are electrically connected to the source electrode 43 of the semiconductor chip 4 and the pad 221.
  • each semiconductor chip 4 and the pad 221 are connected by two wires 71, but the number of wires 71 connecting each semiconductor chip 4 and the pad 221 is not limited.
  • the wire 71 is made of, for example, aluminum (Al) or copper (Cu). Note that the material and wire diameter of the wire 71 are not limited.
  • the plurality of wires 72 are electrically connected to the pads 221 of the main surface conductive portion 22 and the leads 12 .
  • the number of wires 72 connecting pads 221 and leads 12 is not limited.
  • the wire 72 is made of, for example, aluminum (Al) or copper (Cu). Note that the material and wire diameter of the wire 72 are not limited.
  • the plurality of wires 73 are electrically connected to the source electrode 43 or gate electrode 44 of the semiconductor chip 4 and the pad 321 of the main surface conductive portion 32 of the wiring board 3.
  • each semiconductor chip 4 and the pad 321 are connected by one wire 73, but the number of wires 73 connecting each semiconductor chip 4 and the pad 321 is not limited.
  • the wire 73 is made of, for example, gold (Au), silver (Ag), copper (Cu), or aluminum (Al). Note that the material and wire diameter of the wire 73 are not limited.
  • the plurality of wires 74 are electrically connected to the pads 321 of the main surface conductive portion 32 of the wiring board 3 and the leads 16 .
  • each pad 321 and each lead 16 are connected by one wire 74, but the number of wires 74 connecting each pad 321 and each lead 16 is not limited.
  • the wire 74 is made of, for example, gold (Au), silver (Ag), copper (Cu), or aluminum (Al). Note that the material and wire diameter of the wire 74 are not limited.
  • the sealing resin 8 seals a plurality of semiconductor chips 4 , a plurality of drive devices 5 , a plurality of passive elements 6 , a plurality of wires 7 , a portion of each of the plurality of leads 1 , and a portion of the wiring board 2 and the wiring board 3 . covering at least part of each part.
  • the material of the sealing resin 8 is not particularly limited, and insulating materials such as epoxy resin and silicone gel may be used as appropriate.
  • the sealing resin 8 has a resin main surface 81, a resin back surface 82, and four resin side surfaces 83.
  • the main resin surface 81 and the resin back surface 82 are surfaces facing opposite to each other in the thickness direction z, and are both flat surfaces perpendicular to the thickness direction z.
  • the main resin surface 81 is a surface facing the first side z1 in the thickness direction z.
  • the resin back surface 82 is a surface facing the second side z2 in the thickness direction z.
  • Each resin side surface 83 is connected to the resin main surface 81 and the resin back surface 82, and faces the second direction x or the first direction y. As shown in FIG.
  • each of the plurality of leads 11 and leads 12 protrudes from the resin side surface 83 facing the first side y1 in the first direction y of the sealing resin 8.
  • Each of the plurality of leads 15 and leads 16 protrudes from the resin side surface 83 facing the second side y2 in the first direction y of the sealing resin 8.
  • the manufacturing method of this example includes a substrate forming process (step S1), a lead frame bonding process (step S2), a semiconductor chip mounting process (step S3), a drive device mounting process (step S4), a wire
  • the process includes a connecting process (step S5), a resin forming process (step S6), and a frame cutting process (step S7).
  • step S1 two types of DBC substrates are first prepared.
  • One DBC substrate is a substrate in which copper foils having a thickness of T1 are bonded to both sides of an aluminum nitride ceramic plate.
  • the other DBC substrate is a substrate in which copper foil having a thickness of T2 is bonded to both sides of an alumina ceramic plate.
  • the copper foil on one side of each DBC board is patterned by etching.
  • the aluminum nitride DBC substrate becomes the wiring board 2.
  • the patterned copper foil on one side becomes the main surface conductive part 22, and the other copper foil becomes the back surface conductive part 23.
  • the alumina DBC board becomes the wiring board 3.
  • the patterned copper foil on one side becomes the main surface conductive part 32, and the other copper foil becomes the back surface conductive part 33.
  • step S2 first, the wiring board 2 and the wiring board 3 are arranged side by side in the first direction y.
  • a conductive bonding paste is placed on a predetermined pad 221 of the main surface conductive portion 22 and a predetermined pad 321 of the main surface conductive portion 32.
  • the conductive bonding paste is, for example, silver paste, copper paste, or solder.
  • a lead frame is prepared.
  • the lead frame includes a plurality of leads 1 and further has a frame to which the plurality of leads 1 are connected. Note that the shape of the lead frame and the like are not limited at all.
  • each of the plurality of leads 11 is made to face a predetermined pad 221 via a conductive bonding paste.
  • each of the plurality of leads 15 is made to face a predetermined pad 321 via a conductive bonding paste.
  • the conductive bonding material 76 is formed by heating and then cooling the conductive bonding paste. As a result, each lead 11 is bonded to a predetermined pad 221 via the conductive bonding material 76, and each lead 15 is bonded to the pad 321 via the conductive bonding material 76.
  • step S3 first, a conductive bonding paste is placed at a predetermined position of a predetermined pad 221 on the main surface conductive portion 22 of the wiring board 2. Each semiconductor chip 4 is then attached to the conductive bonding paste. Next, the conductive bonding material 76 is formed by heating and then cooling the conductive bonding paste. Thereby, the semiconductor chip 4 is bonded to the pad 221 via the conductive bonding material 76. Further, in a similar process, the shunt resistor 6a is bonded to the pad 221 via the conductive bonding material 76.
  • step S4 first, a conductive bonding paste is placed on a predetermined pad 321 of the main surface conductive portion 32 of the wiring board 3. Each terminal of each drive device 5 is then adhered to the conductive bonding paste. Next, the conductive bonding material 76 is formed by heating and then cooling the conductive bonding paste. Thereby, the drive device 5 is bonded to the pad 321 via the conductive bonding material 76. Further, the thermistor 6b and other passive elements 6 are bonded to the pad 321 via the conductive bonding material 76 by a similar process.
  • a plurality of wires 71 and 72 are connected.
  • wires made of aluminum (Al) are sequentially connected by, for example, a wedge bonding method.
  • a plurality of wires 71 are obtained.
  • the plurality of wires 73 and 74 are connected.
  • wire materials made of gold (Au) are sequentially connected by, for example, a capillary bonding method.
  • a plurality of wires 72 are obtained.
  • step S6 for example, a part of the lead frame, the wiring boards 2 and 3, each of the plurality of semiconductor chips 4, the driving device 5, the passive element 6, and the wire 7 are surrounded by a mold. Next, a liquid resin material is injected into the space defined by the mold. Next, the sealing resin 8 is obtained by curing this resin material.
  • step S7 the lead frame is cut at an appropriate location exposed from the sealing resin 8. As a result, the plurality of leads 1 are divided from each other. Thereafter, the above-described semiconductor device A1 is obtained by performing a process such as bending the plurality of leads 1 as necessary.
  • the wiring board 3 includes the main surface conductive portion 32 disposed on the main surface 311 of the base material 31.
  • the driving device 5 is electrically connected to the pad 321 of the main surface conductive portion 32 .
  • the conduction path to the drive device 5 can be configured by the main surface conductive portion 32 disposed on the main surface 311 of the base material 31. Therefore, compared to, for example, a case where the conduction path is formed of metal leads, it is possible to make the conduction path thinner and more dense.
  • the semiconductor device A1 includes a wiring board 2 in addition to the wiring board 3.
  • the wiring board 2 includes a main surface conductive portion 22 disposed on the main surface 211 of the base material 21 .
  • the semiconductor chip 4 is bonded to the pad 221.
  • the thickness T1 of the main surface conductive portion 22 is larger than the thickness T2 of the main surface conductive portion 32, and is thick enough to maintain the heat dissipation effect of the heat generated by the semiconductor chip 4.
  • the thickness dimension T2 is smaller than the thickness dimension T1, and is a thickness that allows finer processing by etching.
  • the semiconductor device A1 includes the wiring board 2 and the wiring board 3, it is possible to dissipate the heat generated by the semiconductor chip 4 and to make the conduction path to the drive device 5 thinner and more dense.
  • the wiring board 2 is formed by patterning the copper foil on one side of the DBC board by etching. Therefore, compared to the case where the main surface conductive portion 22 and the back surface conductive portion 23 are respectively formed on the base material 21, the manufacturing process can be simplified. The same applies to the wiring board 3.
  • the base material 21 of the wiring board 2 is an aluminum nitride ceramic plate.
  • the base material 31 of the wiring board 3 is an alumina ceramic plate. Therefore, the base material 21 has higher thermal conductivity than the base material 31. Thereby, the wiring board 2 can appropriately dissipate the heat generated by the semiconductor chip 4. Further, the material cost of the wiring board 3, which does not require as much heat dissipation as the wiring board 2, can be reduced.
  • the back conductive portion 33 of the wiring board 2 is exposed from the resin back surface 82. Therefore, the heat transmitted from the semiconductor chip 4 to the wiring board 2 can be radiated to the outside more efficiently.
  • the semiconductor device A1 includes a thermistor 6b mounted on the wiring board 3. Therefore, the semiconductor device A1 can detect the temperature of the wiring board 3.
  • the plurality of leads 11 are bonded to the pads 221 of the main surface conductive portion 22 via the conductive bonding material 76. Thereby, the plurality of leads 11 are firmly fixed to the wiring board 2. Further, it is possible to reduce the resistance between the plurality of leads 11 and the main surface conductive portion 22. Further, the plurality of leads 15 are bonded to the pads 321 of the main surface conductive portion 32 via a conductive bonding material 76 . Thereby, the plurality of leads 15 are firmly fixed to the wiring board 3. Furthermore, the resistance between the plurality of leads 15 and the main surface conductive portion 32 can be reduced.
  • the base material 31 does not require as much thermal conductivity as the base material 21, it may be a substrate containing synthetic resin such as glass epoxy resin. That is, the wiring board 3 may be a so-called PCB (Printed Circuit Board) board. Further, the base material 31 may be a multilayer substrate in which a plurality of base materials are laminated.
  • PCB printed Circuit Board
  • FIG. 9 is a diagram for explaining a semiconductor device A2 according to a second embodiment of the present disclosure.
  • FIG. 9 is a cross-sectional view showing the semiconductor device A2, and corresponds to FIG. 5.
  • the semiconductor device A2 according to the second embodiment differs from the first embodiment in that the entire wiring board 3 is covered with a sealing resin 8.
  • the configuration and operation of other parts of this embodiment are similar to those of the first embodiment.
  • the wiring board 3 does not include the back conductive portion 33.
  • the wiring board 3 according to this embodiment is formed by etching and patterning the copper foil of a DBC board in which copper foil is bonded to only one side of a ceramic plate. Further, the wiring board 3 is not exposed from the resin back surface 82 and is entirely covered with the sealing resin 8. Unlike the wiring board 2 on which the semiconductor chip 4 is mounted, the wiring board 3 is not required to have much heat dissipation. Therefore, even if the wiring board 3 is not exposed from the resin back surface 82 and its heat dissipation is suppressed, it does not pose much of a problem.
  • the semiconductor device A2 since the semiconductor device A2 includes the wiring board 2 and the wiring board 3, it is possible to dissipate the heat generated by the semiconductor chip 4 and to thin and increase the density of the conduction path to the drive device 5. , can be compatible.
  • the semiconductor device A2 has the same configuration as the semiconductor device A1, and thus achieves the same effects as the semiconductor device A1. Furthermore, in the semiconductor device A2, since the wiring board 3 does not include the back conductive portion 33, material costs can be suppressed.
  • the wiring board 3 is not exposed from the resin back surface 82, but the present invention is not limited to this.
  • the back surface 312 of the base material 31 may be exposed from the resin back surface 82.
  • FIG. 10 is a diagram for explaining a semiconductor device A3 according to a third embodiment of the present disclosure.
  • FIG. 10 is a cross-sectional view showing the semiconductor device A3, and corresponds to FIG. 5.
  • the semiconductor device A3 according to the third embodiment differs from the first embodiment in that the passive element 6 is also arranged on the back surface 312 of the base material 31 of the wiring board 3.
  • the configuration and operation of other parts of this embodiment are similar to those of the first embodiment. Note that each part of the first and second embodiments described above may be combined arbitrarily.
  • the wiring board 3 has passive elements 6 arranged not only on the main surface 311 but also on the back surface 312.
  • the back conductive portion 33 includes pads 331 and wiring 332.
  • the pad 331 and the wiring 332 are formed by patterning the copper foil on the other side of the DBC substrate by etching.
  • the shape of the back conductive portion 33 is not limited.
  • the passive element 6 is conductively bonded to the pad 331 via a conductive bonding material 76 .
  • the wiring board 3 is not exposed from the resin back surface 82 and is entirely covered with the sealing resin 8, as in the second embodiment.
  • the passive element 6 disposed on the back surface 312 is also covered with the sealing resin 8.
  • the electronic components arranged on the back surface 312 are not limited to the passive element 6; for example, the driving device 5 may be arranged on the back surface 312.
  • the semiconductor device A3 since the semiconductor device A3 includes the wiring board 2 and the wiring board 3, it is possible to dissipate the heat generated by the semiconductor chip 4 and to make the conduction path to the drive device 5 thinner and more dense. , can be compatible.
  • the semiconductor device A3 has the same configuration as the semiconductor device A1, and thus achieves the same effects as the semiconductor device A1. Furthermore, in the semiconductor device A3, since the passive elements 6 can be arranged on both sides of the wiring board 3, more passive elements 6 can be mounted. Furthermore, when the passive elements 6 mounted on the wiring board 3 do not change, the shape of the wiring board 3 viewed in the thickness direction z can be made smaller by arranging the passive elements 6 on both sides. Thereby, the semiconductor device A3 can be downsized.
  • FIG. 11 is a diagram for explaining a semiconductor device A4 according to a fourth embodiment of the present disclosure.
  • FIG. 11 is a cross-sectional view showing the semiconductor device A4, and corresponds to FIG. 5.
  • the semiconductor device A4 according to the fourth embodiment differs from the first embodiment in the arrangement method of the wiring board 2 and the wiring board 3.
  • the configuration and operation of other parts of this embodiment are similar to those of the first embodiment. Note that each part of the first to third embodiments described above may be combined arbitrarily.
  • the wiring board 2 has a larger dimension in the first direction y than that of the semiconductor device A1.
  • the wiring board 3 is disposed on the first side z1 of the wiring board 2 in the thickness direction z and closer to the second side y2 of the wiring board 2 in the first direction y.
  • the entire wiring board 3 overlaps the wiring board 2 when viewed in the thickness direction z.
  • the wiring board 3 does not include the back conductive portion 33, and the back surface 312 of the base material 31 is joined to the main surface 211 of the base material 21 of the wiring board 2.
  • the semiconductor device A4 since the semiconductor device A4 includes the wiring board 2 and the wiring board 3, it is possible to dissipate the heat generated by the semiconductor chip 4 and to thin and increase the density of the conduction path to the drive device 5. , can be compatible.
  • the semiconductor device A4 has the same configuration as the semiconductor device A1, and thus achieves the same effects as the semiconductor device A1. Further, in the semiconductor device A4, since the wiring board 2 has a large dimension in the first direction y, the area of the back conductive portion 23 exposed from the resin back surface 82 is also large. Thereby, the semiconductor device A4 can more efficiently radiate heat transferred from the semiconductor chip 4 to the wiring board 2 to the outside.
  • FIG. 12 is a diagram for explaining a semiconductor device A5 according to a fifth embodiment of the present disclosure.
  • FIG. 12 is a partially enlarged plan view showing the semiconductor device A5, and is a partially enlarged view of the diagram corresponding to FIG. Note that in FIG. 12, the sealing resin 8 is omitted.
  • the semiconductor device A5 according to the fifth embodiment differs from the first embodiment in that a thermistor is also mounted on the wiring board 2. The configuration and operation of other parts of this embodiment are similar to those of the first embodiment. Note that each part of the first to fourth embodiments described above may be combined arbitrarily.
  • the semiconductor device A5 further includes a thermistor 6c.
  • the thermistor 6c is mounted on the wiring board 2 and arranged on the main surface 211 of the base material 21.
  • the main surface conductive portion 22 of the wiring board 2 includes two pads 221a.
  • the two pads 221a are arranged in the x direction at the center of the main surface 211 of the base material 21 in the second direction x, at the end of the second side y2 in the first direction y, and spaced apart from each other in the x direction.
  • the thermistor 6c straddles the two pads 221a and is electrically connected to each pad 221a.
  • two wires 75 are further provided.
  • the wire 75 is made of, for example, gold (Au), silver (Ag), copper (Cu), or aluminum (Al). Note that the material and wire diameter of the wire 75 are not limited.
  • Each wire 75 is electrically connected to the pad 221a and the pad 321 of the main surface conductive portion 32, respectively.
  • the pads 321 to which each wire 75 is bonded are electrically connected to the leads 15 via the pads 321 electrically connected by wiring 322, respectively. Note that the layout of the main surface conductive portion 32 is not described.
  • a predetermined current is passed through the thermistor 6c, and the thermistor 6c outputs a voltage signal according to the temperature of the wiring board 2.
  • the semiconductor device A5 since the semiconductor device A5 includes the wiring board 2 and the wiring board 3, it is possible to dissipate the heat generated by the semiconductor chip 4 and to thin and increase the density of the conduction path to the drive device 5. , can be compatible.
  • the semiconductor device A5 has the same configuration as the semiconductor device A1, and thus achieves the same effects as the semiconductor device A1. Further, since the semiconductor device A5 includes the thermistor 6c, the temperature of the wiring board 2 can be detected.
  • the semiconductor device A5 includes only one thermistor 6c for detecting the temperature of the wiring board 2, but the present invention is not limited to this.
  • the semiconductor device A5 may include, for example, four thermistors 6c, and each thermistor 6c may be arranged adjacent to the semiconductor chip 4. In this case, each thermistor 6c can detect the temperature of the adjacent semiconductor chip 4.
  • the semiconductor device according to the present disclosure is not limited to the embodiments described above.
  • the specific configuration of each part of the semiconductor device according to the present disclosure can be changed in design in various ways.
  • the present disclosure includes the embodiments described in the appendix below.
  • a first base material (21) having a first main surface (211) and a first back surface (212) facing oppositely to each other in the thickness direction (z); a first main surface conductive part (22) having electrical conductivity disposed on the first main surface; a second base material (31) having a second main surface (311) facing the same side as the first main surface in the thickness direction and a second back surface (312) facing the same side as the first back surface; a second main surface conductive part (32) having electrical conductivity disposed on the second main surface; a switching element (4) disposed on the first main surface and electrically connected to the first main surface conductive part; a drive device (5) disposed on the second main surface, electrically connected to the second main surface conductive part, and driving the switching element; a sealing resin (8) that covers at least a portion of the first base material and the second base material, and the entire switching element and the drive device; A semiconductor device (A1) comprising: Appendix 2.
  • the semiconductor device according to any one of appendices 1 to 6, wherein the second base material is disposed in a first direction (y) perpendicular to the thickness direction with respect to the first base material.
  • Appendix 8. further comprising a second back conductive portion (33) having conductivity disposed on the second back surface, The semiconductor device according to appendix 7, wherein the second back conductive portion is exposed from the sealing resin.
  • Appendix 9. (Third embodiment, FIG. 10) further comprising a backside electronic component (6) disposed on the second backside, The semiconductor device according to appendix 7, wherein the back side electronic component is covered with the sealing resin.
  • Appendix 10. (Fourth embodiment, FIG. 11) 7.
  • A1, A2, A3, A4, A5 Semiconductor device 1, 11, 12, 15, 16: Lead 111: Joint portion 111a: Main surface 111b: Back surface 112: Projecting portion 113: Inclined connection portion 114: Parallel connection portion 151: Joint portion 151a: Main surface 151b: Back surface 152: Protruding portion 153: Slanted connection portion 154: Parallel connection portion 2: Wiring board 21: Base material 211: Main surface 212: Back surface 22: Main surface conductive portion 221, 221a: Pad 222 : Wiring 23: Back conductive part 3: Wiring board 31: Base material 311: Main surface 312: Back surface 32: Main surface conductive part 321: Pad 322: Wiring 33: Back conductive part 331: Pad 332: Wiring 4: Semiconductor chip 41 : Element principal surface 42: Element back surface 43: Source electrode 44: Gate electrode 45: Drain electrode 5: Drive device 6: Passive element 6a: Shunt resistor 6b, 6c: Thermistor 7,

Abstract

This semiconductor device comprises: a first substrate having a first main surface; a first main surface conductive part disposed on the first main surface; a second substrate having a second main surface; a second main surface conductive part disposed on the second main surface; a switching element disposed on the first main surface and conductively connected to the first main surface conductive part; a driving device that is disposed on the second main surface and conductively connected to the second main surface conductive part, and that drives the switching element; and a sealing resin that covers at least part of the first substrate and the second substrate, and the entirety of the switching element and the driving device.

Description

半導体装置semiconductor equipment
 本開示は、半導体装置に関する。 The present disclosure relates to a semiconductor device.
 種々の半導体装置の一つとして、IPM(Intelligent Power Module)と称されるものがある。このような半導体装置は、複数の半導体チップと、複数の電極部と、放熱層と、封止樹脂部と、を備えている(特許文献1参照)。半導体チップは、いずれかの電極部のダイパッド部に配置される。複数の電極部が、半導体チップを外部と導通させる導通経路になっている。 One of the various semiconductor devices is one called IPM (Intelligent Power Module). Such a semiconductor device includes a plurality of semiconductor chips, a plurality of electrode sections, a heat dissipation layer, and a sealing resin section (see Patent Document 1). A semiconductor chip is placed on a die pad portion of one of the electrode portions. The plurality of electrode portions serve as conduction paths that connect the semiconductor chip to the outside.
特開2020-98938号公報JP2020-98938A
 半導体チップには、コントロールICなどのLSIチップが含まれている。LSIチップには、複数種類の制御信号の入出力がある。制御信号の数が増えるほど、LSIチップへの導通経路の数を増やす必要があるが、これらの導通経路を従来のように複数の電極部によって構成しようとすると、半導体装置のさらなる高集積化が困難となるおそれがある。 Semiconductor chips include LSI chips such as control ICs. An LSI chip has input/output for multiple types of control signals. As the number of control signals increases, it is necessary to increase the number of conduction paths to the LSI chip, but if these conduction paths are constructed from multiple electrode sections as in the past, the integration of semiconductor devices will become even higher. It may become difficult.
 本開示は、従来よりも改良が施された半導体装置を提供することを一の課題とする。特に本開示は、上記した事情に鑑み、さらなる高集積化を可能とする半導体装置を提供することを一の課題とする。 An object of the present disclosure is to provide a semiconductor device that is improved over conventional ones. Particularly, in view of the above-mentioned circumstances, an object of the present disclosure is to provide a semiconductor device that enables even higher integration.
 本開示の第1の側面によって提供される半導体装置は、厚さ方向において互いに反対側を向く第1主面および第1裏面を有する第1基材と、前記第1主面上に配置された導電性を有する第1主面導電部と、前記厚さ方向において前記第1主面と同じ側を向く第2主面および前記第1裏面と同じ側を向く第2裏面を有する第2基材と、前記第2主面上に配置された導電性を有する第2主面導電部と、前記第1主面上に配置されて前記第1主面導電部に導通接続されたスイッチング素子と、前記第2主面上に配置されて前記第2主面導電部に導通接続され、かつ、前記スイッチング素子を駆動させる駆動装置と、前記第1基材および前記第2基材の少なくとも一部と、前記スイッチング素子および前記駆動装置の全体と、を覆う封止樹脂と、を備えている。 A semiconductor device provided by a first aspect of the present disclosure includes a first base material having a first main surface and a first back surface facing opposite to each other in the thickness direction, and a first base material disposed on the first main surface. A second base material having a first main surface conductive portion having conductivity, a second main surface facing the same side as the first main surface in the thickness direction, and a second back surface facing the same side as the first back surface. a second main surface conductive part having electrical conductivity disposed on the second main surface; a switching element disposed on the first main surface and electrically connected to the first main surface conductive part; a driving device disposed on the second main surface, electrically connected to the second main surface conductive portion, and driving the switching element; and at least a portion of the first base material and the second base material. and a sealing resin that covers the entire switching element and the drive device.
 上記構成によると、半導体装置においてさらなる高集積化が可能である。 According to the above configuration, even higher integration is possible in the semiconductor device.
 本開示のその他の特徴および利点は、添付図面を参照して以下に行う詳細な説明によって、より明らかとなろう。 Other features and advantages of the present disclosure will become more apparent from the detailed description given below with reference to the accompanying drawings.
図1は、本開示の第1実施形態に係る半導体装置を示す斜視図である。FIG. 1 is a perspective view showing a semiconductor device according to a first embodiment of the present disclosure. 図2は、図1の半導体装置を示す平面図である。FIG. 2 is a plan view showing the semiconductor device of FIG. 1. 図3は、図1の半導体装置を示す平面図であり、封止樹脂を透過した図である。FIG. 3 is a plan view showing the semiconductor device of FIG. 1, and is a view through the sealing resin. 図4は、図1の半導体装置を示す底面図である。FIG. 4 is a bottom view showing the semiconductor device of FIG. 1. 図5は、図3のV-V線に沿う断面図である。FIG. 5 is a cross-sectional view taken along line VV in FIG. 3. 図6は、図5の部分拡大図である。FIG. 6 is a partially enlarged view of FIG. 5. 図7は、図1の半導体装置の各配線基板を示す平面図である。FIG. 7 is a plan view showing each wiring board of the semiconductor device of FIG. 1. 図8は、図1の半導体装置の製造方法の一例の一工程を示すフローチャートである。FIG. 8 is a flowchart showing one step of an example of the method for manufacturing the semiconductor device of FIG. 図9は、本開示の第2実施形態に係る半導体装置を示す断面図である。FIG. 9 is a cross-sectional view showing a semiconductor device according to a second embodiment of the present disclosure. 図10は、本開示の第3実施形態に係る半導体装置を示す断面図である。FIG. 10 is a cross-sectional view showing a semiconductor device according to a third embodiment of the present disclosure. 図11は、本開示の第4実施形態に係る半導体装置を示す断面図である。FIG. 11 is a cross-sectional view showing a semiconductor device according to a fourth embodiment of the present disclosure. 図12は、本開示の第5実施形態に係る半導体装置を示す部分拡大平面図であり、封止樹脂を透過した図である。FIG. 12 is a partially enlarged plan view showing a semiconductor device according to a fifth embodiment of the present disclosure, and is a view through a sealing resin.
 以下、本開示の好ましい実施の形態につき、図面を参照して具体的に説明する。 Hereinafter, preferred embodiments of the present disclosure will be specifically described with reference to the drawings.
 本開示において、「ある物Aがある物Bに形成されている」および「ある物Aがある物B上に形成されている」とは、特段の断りのない限り、「ある物Aがある物Bに直接形成されていること」、および、「ある物Aとある物Bとの間に他の物を介在させつつ、ある物Aがある物Bに形成されていること」を含む。同様に、「ある物Aがある物Bに配置されている」および「ある物Aがある物B上に配置されている」とは、特段の断りのない限り、「ある物Aがある物Bに直接配置されていること」、および、「ある物Aとある物Bとの間に他の物を介在させつつ、ある物Aがある物Bに配置されていること」を含む。同様に、「ある物Aがある物B上に位置している」とは、特段の断りのない限り、「ある物Aがある物Bに接して、ある物Aがある物B上に位置していること」、および、「ある物Aとある物Bとの間に他の物が介在しつつ、ある物Aがある物B上に位置していること」を含む。また、「ある物Aがある物Bにある方向に見て重なる」とは、特段の断りのない限り、「ある物Aがある物Bのすべてに重なること」、および、「ある物Aがある物Bの一部に重なること」を含む。 In this disclosure, "a thing A is formed on a thing B" and "a thing A is formed on a thing B" mean "a thing A is formed on a thing B" unless otherwise specified. "It is formed directly on object B," and "It is formed on object B, with another object interposed between object A and object B." Similarly, "something A is placed on something B" and "something A is placed on something B" mean "something A is placed on something B" unless otherwise specified. This includes ``directly placed on object B'' and ``placed on object B with another object interposed between object A and object B.'' Similarly, "a certain object A is located on a certain object B" means, unless otherwise specified, "a certain object A is in contact with a certain object B, and a certain object A is located on a certain object B." ``The fact that a certain thing A is located on a certain thing B while another thing is interposed between the certain thing A and the certain thing B.'' In addition, "a certain object A overlaps a certain object B when viewed in a certain direction" means, unless otherwise specified, "a certain object A overlaps all of a certain object B" and "a certain object A overlaps with a certain object B". This includes "overlapping a part of something B."
 第1実施形態:
 図1~図7は、本開示に係る半導体装置の一例を示している。本実施形態の半導体装置A1は、複数のリード1、配線基板2、配線基板3、複数の半導体チップ4、複数の駆動装置5、複数の受動素子6、複数のワイヤ7、および封止樹脂8を備えている。本実施形態において、半導体装置A1は、IPM(Intelligent Power Module)である。半導体装置A1は、たとえば、エアーコンディショナやモータ制御機器などの用途に用いられる。
First embodiment:
1 to 7 show an example of a semiconductor device according to the present disclosure. The semiconductor device A1 of this embodiment includes a plurality of leads 1, a wiring board 2, a wiring board 3, a plurality of semiconductor chips 4, a plurality of drive devices 5, a plurality of passive elements 6, a plurality of wires 7, and a sealing resin 8. It is equipped with In this embodiment, the semiconductor device A1 is an IPM (Intelligent Power Module). The semiconductor device A1 is used for applications such as air conditioners and motor control equipment, for example.
 図1は、半導体装置A1を示す斜視図である。図2は、半導体装置A1を示す平面図である。図3は、半導体装置A1を示す平面図であり、封止樹脂8を透過した図である。なお、図3においては、封止樹脂8の外形を想像線(二点鎖線)で示している。図4は、半導体装置A1を示す底面図である。図5は、図3のV-V線に沿う断面図である。図6は、図5の部分拡大図である。図7は、配線基板2および配線基板3を示す平面図である。 FIG. 1 is a perspective view showing a semiconductor device A1. FIG. 2 is a plan view showing the semiconductor device A1. FIG. 3 is a plan view showing the semiconductor device A1, and is a view through the sealing resin 8. As shown in FIG. In addition, in FIG. 3, the outer shape of the sealing resin 8 is shown by an imaginary line (two-dot chain line). FIG. 4 is a bottom view showing the semiconductor device A1. FIG. 5 is a cross-sectional view taken along line VV in FIG. 3. FIG. 6 is a partially enlarged view of FIG. 5. FIG. 7 is a plan view showing the wiring board 2 and the wiring board 3.
 説明の便宜上、配線基板2の厚さ方向を厚さ方向zとし、厚さ方向zに直交する配線基板2の一方の辺に沿う方向(図2~図4における上下方向)を第1方向y、厚さ方向zおよび第1方向yに直交する方向(図2~図4における左右方向)を第2方向xとする。なお、半導体装置A1の形状および各寸法は限定されない。 For convenience of explanation, the thickness direction of the wiring board 2 is referred to as the thickness direction z, and the direction along one side of the wiring board 2 perpendicular to the thickness direction z (vertical direction in FIGS. 2 to 4) is referred to as the first direction y. , the direction perpendicular to the thickness direction z and the first direction y (the left-right direction in FIGS. 2 to 4) is the second direction x. Note that the shape and dimensions of the semiconductor device A1 are not limited.
 配線基板2は、複数の半導体チップ4および複数の受動素子6(後述するシャント抵抗6a)が搭載され、半導体装置A1の第2方向xの中央で第1方向yの第1側y1寄りに配置されている。後述するように複数の半導体チップ4はパワートランジスタであり、配線基板2は、パワー回路が配置されるパワー部用基板である。配線基板2は、基材21、主面導電部22、および裏面導電部23を備えている。 The wiring board 2 is mounted with a plurality of semiconductor chips 4 and a plurality of passive elements 6 (shunt resistors 6a to be described later), and is arranged at the center of the semiconductor device A1 in the second direction x and closer to the first side y1 in the first direction y. has been done. As described later, the plurality of semiconductor chips 4 are power transistors, and the wiring board 2 is a power section board on which a power circuit is arranged. The wiring board 2 includes a base material 21, a main surface conductive portion 22, and a back surface conductive portion 23.
 基材21は、板状であり、厚さ方向zに視て(すなわち平面視で)、形状が第2方向xに長い矩形状である。基材21の厚さ寸法(厚さ方向zの寸法)は、たとえば0.1mm~1.0mm程度である。なお、基材21の各寸法は限定されない。基材21は、絶縁性の材料からなる。基材21の構成材料は、たとえば熱伝導性に優れたセラミックスであり、本実施形態では、窒化アルミニウム(AlN)を含んでいる。なお、基材21の構成材料は、これに限定されない。 The base material 21 is plate-shaped, and has a rectangular shape that is elongated in the second direction x when viewed in the thickness direction z (that is, in plan view). The thickness dimension (dimension in the thickness direction z) of the base material 21 is, for example, about 0.1 mm to 1.0 mm. Note that the dimensions of the base material 21 are not limited. The base material 21 is made of an insulating material. The constituent material of the base material 21 is, for example, ceramics with excellent thermal conductivity, and in this embodiment, includes aluminum nitride (AlN). Note that the constituent material of the base material 21 is not limited to this.
 基材21は、主面211および裏面212を有する。主面211および裏面212は、厚さ方向zにおいて互いに反対側を向く面であり、ともに厚さ方向zに対して直交する平坦面である。主面211は、厚さ方向zの第1側z1を向く面である。主面211には、主面導電部22が配置されており、複数の半導体チップ4、複数の受動素子6、および、複数のリード1が搭載されている。裏面212は、厚さ方向zの第2側z2を向く面である。裏面212には、裏面導電部23が配置されている。主面211および裏面212の形状は、ともに矩形状である。なお、基材21の形状は限定されない。 The base material 21 has a main surface 211 and a back surface 212. The main surface 211 and the back surface 212 are surfaces facing opposite to each other in the thickness direction z, and are both flat surfaces perpendicular to the thickness direction z. The main surface 211 is a surface facing the first side z1 in the thickness direction z. A main surface conductive portion 22 is arranged on the main surface 211, and a plurality of semiconductor chips 4, a plurality of passive elements 6, and a plurality of leads 1 are mounted on the main surface 211. The back surface 212 is a surface facing the second side z2 in the thickness direction z. On the back surface 212, a back conductive portion 23 is arranged. The shapes of the main surface 211 and the back surface 212 are both rectangular. Note that the shape of the base material 21 is not limited.
 主面導電部22は、基材21の主面211上に配置されている。主面導電部22は、導電性材料からなる。主面導電部22の構成材料は、特に限定されず、たとえば銅(Cu)、銀(Ag)、金(Au)、およびこれらを含む合金などである。本実施形態では、銅(Cu)である場合について説明する。主面導電部22の厚さ寸法(厚さ方向zの寸法)T1(図6参照)は、半導体チップ4が発する熱の放熱効果を維持できる厚さであり、たとえば0.2mm以上である。本実施形態では、厚さ寸法T1は、0.25mm程度である。なお、厚さ寸法T1は限定されない。 The main surface conductive portion 22 is arranged on the main surface 211 of the base material 21. The main surface conductive portion 22 is made of a conductive material. The constituent material of the main surface conductive portion 22 is not particularly limited, and examples thereof include copper (Cu), silver (Ag), gold (Au), and alloys containing these. In this embodiment, a case where copper (Cu) is used will be described. The thickness dimension (dimension in the thickness direction z) T1 (see FIG. 6) of the main surface conductive portion 22 is a thickness that can maintain the heat dissipation effect of the heat generated by the semiconductor chip 4, and is, for example, 0.2 mm or more. In this embodiment, the thickness dimension T1 is approximately 0.25 mm. Note that the thickness dimension T1 is not limited.
 主面導電部22の形状等は特に限定されない。本実施形態では、主面導電部22は、たとえば図7に示すように、複数のパッド221および複数の配線222を含んでいる。各パッド221は、たとえば矩形状であり、半導体チップ4、受動素子6、リード1(後述するリード11)、またはワイヤ7(後述するワイヤ71,72)が導通接合されている。なお、パッド221の形状は限定されない。各パッド221は、互いに離間して配置されている。複数の配線222はそれぞれ、いずれかのパッド221といずれかのパッド221とに接続し、両者を導通する導通経路である。各配線222の形状は限定されない。 The shape etc. of the main surface conductive portion 22 are not particularly limited. In this embodiment, the main surface conductive portion 22 includes a plurality of pads 221 and a plurality of wirings 222, as shown in FIG. 7, for example. Each pad 221 has a rectangular shape, for example, and has the semiconductor chip 4, the passive element 6, the lead 1 (lead 11 described later), or the wire 7 ( wires 71 and 72 described later) electrically connected. Note that the shape of the pad 221 is not limited. Each pad 221 is spaced apart from each other. Each of the plurality of wirings 222 is a conduction path that connects one of the pads 221 and one of the pads 221 to conduct them. The shape of each wiring 222 is not limited.
 裏面導電部23は、基材21の裏面212上に配置されている。裏面導電部23は、導電性材料からなる。裏面導電部23の構成材料は、特に限定されず、たとえば銅(Cu)、銀(Ag)、金(Au)、およびこれらを含む合金などである。本実施形態では、裏面導電部23の構成材料は、主面導電部22と同様、銅(Cu)である。裏面導電部23の厚さ寸法(厚さ方向zの寸法)は、半導体チップ4が発する熱の放熱効果を維持できる厚さであり、たとえば0.2mm以上である。本実施形態では、裏面導電部23の厚さ寸法は、厚さ寸法T1と同様、0.25mm程度であるが、これに限定されない。本実施形態では、裏面導電部23は、裏面212の全面を覆っている。なお、裏面導電部23の形状は限定されない。裏面導電部23は、図4に示すように、封止樹脂8から露出している。 The back conductive portion 23 is arranged on the back surface 212 of the base material 21. The back conductive portion 23 is made of a conductive material. The constituent material of the back conductive portion 23 is not particularly limited, and includes, for example, copper (Cu), silver (Ag), gold (Au), and alloys containing these. In this embodiment, the constituent material of the back surface conductive portion 23 is copper (Cu), as is the case with the main surface conductive portion 22. The thickness dimension (dimension in the thickness direction z) of the back conductive portion 23 is a thickness that can maintain the heat dissipation effect of the heat generated by the semiconductor chip 4, and is, for example, 0.2 mm or more. In this embodiment, the thickness of the back conductive portion 23 is approximately 0.25 mm, similar to the thickness T1, but is not limited thereto. In this embodiment, the back surface conductive portion 23 covers the entire surface of the back surface 212. Note that the shape of the back conductive portion 23 is not limited. The back conductive portion 23 is exposed from the sealing resin 8, as shown in FIG.
 本実施形態では、配線基板2は、いわゆるDBC(Direct Bonded Copper)基板から形成される。当該DBC基板は、セラミックスの板の両面にそれぞれ、銅箔が接合された基板である。配線基板2は、当該DBC基板の一方の面の銅箔をエッチングによりパターニングすることで形成される。一方の面のパターニングされた銅箔が主面導電部22になり、他方の銅箔が裏面導電部23になる。なお、配線基板2の形成方法は限定されない。いずれの方法で形成する場合でも、0.2mm以上の銅の層を形成する必要がある。また、上述したように、主面導電部22および裏面導電部23の構成材料は銅以外の金属であってもよく、当該金属の層がセラミックスの板の両面に形成される。 In this embodiment, the wiring board 2 is formed from a so-called DBC (Direct Bonded Copper) board. The DBC board is a board in which copper foil is bonded to both sides of a ceramic plate. The wiring board 2 is formed by patterning the copper foil on one side of the DBC board by etching. The patterned copper foil on one side becomes the main surface conductive part 22, and the other copper foil becomes the back surface conductive part 23. Note that the method for forming the wiring board 2 is not limited. Regardless of which method is used, it is necessary to form a copper layer of 0.2 mm or more. Further, as described above, the constituent material of the main surface conductive portion 22 and the back surface conductive portion 23 may be a metal other than copper, and layers of the metal are formed on both surfaces of the ceramic plate.
 配線基板3は、複数の駆動装置5および複数の受動素子6が搭載され、半導体装置A1の第2方向xの中央で第1方向yの第2側y2寄りに配置されている。配線基板2と配線基板3とは第1方向yに並んで配置され、配線基板3は、配線基板2に対して第1方向yの第2側y2に位置している。配線基板3は、配線基板2に配置されたパワー回路を制御するための制御回路が配置された制御部用基板である。配線基板3は、基材31、主面導電部32、および裏面導電部33を備えている。 The wiring board 3 has a plurality of drive devices 5 and a plurality of passive elements 6 mounted thereon, and is arranged at the center of the semiconductor device A1 in the second direction x and closer to the second side y2 in the first direction y. The wiring board 2 and the wiring board 3 are arranged side by side in the first direction y, and the wiring board 3 is located on the second side y2 of the first direction y with respect to the wiring board 2. The wiring board 3 is a control unit board on which a control circuit for controlling the power circuit arranged on the wiring board 2 is arranged. The wiring board 3 includes a base material 31, a main surface conductive portion 32, and a back surface conductive portion 33.
 基材31は、板状であり、厚さ方向zに視た形状が第2方向xに長い矩形状である。基材31の厚さ寸法(厚さ方向zの寸法)は、たとえば0.1mm~1.0mm程度であり、基材21と同程度である。なお、基材31の各寸法は限定されない。基材31は、絶縁性の材料からなる。基材31の構成材料は、たとえばセラミックスであり、本実施形態では、アルミナ(Al23)を含んでいる。基材31は、基材21ほど、熱伝導性を必要としない。本実施形態では、基材21は、構成材料が窒化アルミニウムのセラミックスであり、構成材料がアルミナのセラミックスである基材31より熱伝導性が高い。なお、基材31の構成材料は、これに限定されない。たとえば、基材21の構成材料と基材31の構成材料とが同じであってもよい。 The base material 31 is plate-shaped and has a rectangular shape that is long in the second direction x when viewed in the thickness direction z. The thickness dimension (dimension in the thickness direction z) of the base material 31 is, for example, about 0.1 mm to 1.0 mm, which is about the same as that of the base material 21. Note that the dimensions of the base material 31 are not limited. The base material 31 is made of an insulating material. The constituent material of the base material 31 is, for example, ceramics, and in this embodiment contains alumina (Al 2 O 3 ). The base material 31 does not require as much thermal conductivity as the base material 21. In this embodiment, the base material 21 is made of ceramics made of aluminum nitride, and has higher thermal conductivity than the base material 31 made of ceramics made of alumina. Note that the constituent material of the base material 31 is not limited to this. For example, the constituent material of the base material 21 and the constituent material of the base material 31 may be the same.
 基材31は、主面311および裏面312を有する。主面311および裏面312は、厚さ方向zにおいて互いに反対側を向く面であり、ともに厚さ方向zに対して直交する平坦面である。主面311は、厚さ方向zの第1側z1を向く面である。主面311には、主面導電部32が配置されており、複数の駆動装置5、複数の受動素子6、および、複数のリード1が搭載されている。裏面312は、厚さ方向zの第2側z2を向く面である。裏面312には、裏面導電部33が配置されている。主面311および裏面312の形状は、ともに矩形状である。なお、基材31の形状は限定されない。 The base material 31 has a main surface 311 and a back surface 312. The main surface 311 and the back surface 312 are surfaces facing opposite to each other in the thickness direction z, and are both flat surfaces perpendicular to the thickness direction z. The main surface 311 is a surface facing the first side z1 in the thickness direction z. A main surface conductive portion 32 is arranged on the main surface 311, and a plurality of drive devices 5, a plurality of passive elements 6, and a plurality of leads 1 are mounted thereon. The back surface 312 is a surface facing the second side z2 in the thickness direction z. On the back surface 312, a back conductive portion 33 is arranged. The shapes of the main surface 311 and the back surface 312 are both rectangular. Note that the shape of the base material 31 is not limited.
 主面導電部32は、基材31の主面311上に配置されている。主面導電部32は、導電性材料からなる。主面導電部32の構成材料は、特に限定されず、たとえば銅(Cu)、銀(Ag)、金(Au)、およびこれらを含む合金などである。本実施形態では、銅(Cu)である場合について説明する。主面導電部32の厚さ寸法(厚さ方向zの寸法)T2(図6参照)は、厚さ寸法T1より小さく、エッチングによって、主面導電部22より微細な加工が可能な厚さである。本実施形態では、厚さ寸法T2は、たとえば0.1mm程度である。なお、厚さ寸法T2は限定されない。 The main surface conductive portion 32 is arranged on the main surface 311 of the base material 31. The main surface conductive portion 32 is made of a conductive material. The constituent material of the main surface conductive portion 32 is not particularly limited, and includes, for example, copper (Cu), silver (Ag), gold (Au), and alloys containing these. In this embodiment, a case where copper (Cu) is used will be described. The thickness dimension (dimension in the thickness direction z) T2 (see FIG. 6) of the main surface conductive part 32 is smaller than the thickness dimension T1, and has a thickness that allows finer processing than the main surface conductive part 22 by etching. be. In this embodiment, the thickness dimension T2 is, for example, about 0.1 mm. Note that the thickness dimension T2 is not limited.
 主面導電部32の形状等は特に限定されない。本実施形態では、主面導電部32は、たとえば図7に示すように、複数のパッド321および複数の配線322を含んでいる。各パッド321は、たとえば矩形状であり、駆動装置5、受動素子6、リード1(後述するリード15)、またはワイヤ7(後述するワイヤ73,74)が導通接合されている。なお、パッド321の形状は限定されない。各パッド321は、互いに離間して配置されている。複数の配線322はそれぞれ、いずれかのパッド321といずれかのパッド321とに接続し、両者を導通する導通経路である。各配線322の形状は限定されない。なお、ワイヤ7が接合されるパッド321には、ワイヤボンディングによる衝撃からパッド321および基材31を保護するために、導電性の板状の部材を配置してもよい。 The shape etc. of the main surface conductive portion 32 are not particularly limited. In this embodiment, the main surface conductive portion 32 includes a plurality of pads 321 and a plurality of wirings 322, as shown in FIG. 7, for example. Each pad 321 has a rectangular shape, for example, and has a driving device 5, a passive element 6, a lead 1 (a lead 15 described later), or a wire 7 ( wires 73 and 74 described later) electrically connected. Note that the shape of the pad 321 is not limited. Each pad 321 is spaced apart from each other. Each of the plurality of wirings 322 is a conduction path that connects one of the pads 321 and one of the pads 321 to conduct the two. The shape of each wiring 322 is not limited. Note that a conductive plate-like member may be placed on the pad 321 to which the wire 7 is bonded in order to protect the pad 321 and the base material 31 from impact caused by wire bonding.
 裏面導電部33は、基材31の裏面312上に配置されている。裏面導電部33は、導電性材料からなる。裏面導電部33の構成材料は、特に限定されず、たとえば銅(Cu)、銀(Ag)、金(Au)、およびこれらを含む合金などである。本実施形態では、裏面導電部33の構成材料は、主面導電部32と同様、銅(Cu)である。裏面導電部33の厚さ寸法(厚さ方向zの寸法)は、厚さ寸法T2と同程度であり、たとえば0.1mm程度である。なお、裏面導電部33の厚さ寸法は、これに限定されない。本実施形態では、裏面導電部33は、裏面312の全面を覆っている。なお、裏面導電部33の形状は限定されない。裏面導電部33は、図4に示すように、封止樹脂8から露出している。なお、配線基板3は、裏面導電部33を備えなくてもよい。この場合、基材31の裏面312が封止樹脂8から露出してもよいし、配線基板3の全体が封止樹脂8に覆われ(配線基板3が封止樹脂8から露出しない)てもよい。 The back surface conductive part 33 is arranged on the back surface 312 of the base material 31. The back conductive portion 33 is made of a conductive material. The constituent material of the back conductive portion 33 is not particularly limited, and includes, for example, copper (Cu), silver (Ag), gold (Au), and alloys containing these. In this embodiment, the constituent material of the back conductive portion 33 is copper (Cu), as is the case with the main conductive portion 32 . The thickness dimension (dimension in the thickness direction z) of the back conductive portion 33 is approximately the same as the thickness dimension T2, and is, for example, approximately 0.1 mm. Note that the thickness dimension of the back conductive portion 33 is not limited to this. In this embodiment, the back conductive portion 33 covers the entire back surface 312. Note that the shape of the back conductive portion 33 is not limited. The back conductive portion 33 is exposed from the sealing resin 8, as shown in FIG. Note that the wiring board 3 does not need to include the back conductive portion 33. In this case, the back surface 312 of the base material 31 may be exposed from the sealing resin 8, or the entire wiring board 3 may be covered with the sealing resin 8 (the wiring board 3 is not exposed from the sealing resin 8). good.
 本実施形態では、配線基板3は、いわゆるDBC基板から形成される。当該DBC基板は、セラミックスの板の両面にそれぞれ、銅箔が接合された基板である。当該DBC基板の銅箔は、配線基板2を形成するためのDBC基板の銅箔より薄い。配線基板3は、配線基板2と同様、DBC基板の一方の面の銅箔をエッチングによりパターニングすることで形成される。一方の面のパターニングされた銅箔が主面導電部32になり、他方の銅箔が裏面導電部33になる。なお、配線基板3の形成方法は限定されない。たとえば、配線基板3は、セラミックスの板の両面にそれぞれ銅めっきを形成したいわゆるDPC(Direct Plated Copper)基板から形成されてもよい。DPC基板はDBC基板より銅の層が薄いので、主面導電部32として、より微細な加工が可能である。また、配線基板3は、セラミックスの板の両面に銅ペーストを配置して焼成することで形成されてもよい。また、上述したように、主面導電部32および裏面導電部33の構成材料は銅以外の金属であってもよく、当該金属の層がセラミックスの板の両面に形成される。 In this embodiment, the wiring board 3 is formed from a so-called DBC board. The DBC board is a board in which copper foil is bonded to both sides of a ceramic plate. The copper foil of the DBC board is thinner than the copper foil of the DBC board for forming the wiring board 2. Like the wiring board 2, the wiring board 3 is formed by patterning copper foil on one side of the DBC board by etching. The patterned copper foil on one side becomes the main surface conductive part 32, and the other copper foil becomes the back surface conductive part 33. Note that the method of forming the wiring board 3 is not limited. For example, the wiring board 3 may be formed from a so-called DPC (Direct Plated Copper) board, which is a ceramic plate with copper plating on both sides. Since the copper layer of the DPC substrate is thinner than that of the DBC substrate, finer processing as the main surface conductive portion 32 is possible. Further, the wiring board 3 may be formed by disposing copper paste on both sides of a ceramic plate and firing the same. Further, as described above, the constituent material of the main surface conductive portion 32 and the back surface conductive portion 33 may be a metal other than copper, and layers of the metal are formed on both surfaces of the ceramic plate.
 複数のリード1は、金属を含んで構成されている。リード1を構成する金属は特に限定されず、たとえば銅(Cu)、アルミニウム、鉄(Fe)、無酸素銅、またはこれらの合金(たとえば、Cu-Sn合金、Cu-Zr合金、Cu-Fe合金等)である。また、複数のリード1には、ニッケル(Ni)めっきが施されていてもよい。複数のリード1は、たとえば、金型を金属板に押し付けるプレス加工により形成されてもよいし、金属板をエッチングでパターニングすることにより形成されてもよい。なお、複数のリード1の形成方法は限定されない。各リード1の厚さは特に限定されず、たとえば0.4mm~0.8mm程度である。各リード1は、互いに離間している。 The plurality of leads 1 are configured to include metal. The metal constituting the lead 1 is not particularly limited, and includes, for example, copper (Cu), aluminum, iron (Fe), oxygen-free copper, or alloys thereof (for example, Cu-Sn alloy, Cu-Zr alloy, Cu-Fe alloy). etc.). Furthermore, the plurality of leads 1 may be plated with nickel (Ni). The plurality of leads 1 may be formed, for example, by pressing a metal mold against a metal plate, or by patterning a metal plate by etching. Note that the method for forming the plurality of leads 1 is not limited. The thickness of each lead 1 is not particularly limited, and is, for example, about 0.4 mm to 0.8 mm. Each lead 1 is spaced apart from each other.
 本実施形態においては、複数のリード1は、それぞれ複数のリード11、リード12、リード15、およびリード16を含んでいる。リード11およびリード12は、半導体チップ4への導通経路を構成している。リード15およびリード16は、駆動装置5または受動素子6への導通経路を構成している。 In this embodiment, the plurality of leads 1 each include a plurality of leads 11, leads 12, leads 15, and leads 16. The leads 11 and 12 constitute a conductive path to the semiconductor chip 4. Leads 15 and 16 constitute a conduction path to drive device 5 or passive element 6.
 複数のリード11は、それぞれ、基材21上に配置されており、本実施形態においては、主面211上の第1方向yの第1側y1寄りに配置されている。各リード11は、導電性接合材76を介して、主面導電部22のパッド221に接合されている。導電性接合材76は、リード11をパッド221に導通接合できるものであればよく、たとえば銀ペースト、銅ペーストやはんだ等が用いられる。なお、導電性接合材76は限定されない。各リード11は、主面導電部22およびワイヤ71を介して半導体チップ4に導通している。本実施形態では、複数のリード1は3個のリード11を含んでいる。なお、リード11の数および配置は限定されない。 The plurality of leads 11 are each arranged on the base material 21, and in this embodiment, are arranged on the main surface 211 closer to the first side y1 in the first direction y. Each lead 11 is bonded to a pad 221 of the main surface conductive portion 22 via a conductive bonding material 76 . The conductive bonding material 76 may be any material that can conductively bond the leads 11 to the pads 221, such as silver paste, copper paste, solder, or the like. Note that the conductive bonding material 76 is not limited. Each lead 11 is electrically connected to the semiconductor chip 4 via the main surface conductive portion 22 and the wire 71. In this embodiment, the plurality of leads 1 includes three leads 11. Note that the number and arrangement of leads 11 are not limited.
 リード11の構成は特に限定されない。本実施形態においては、図5に示すように、リード11を、接合部分111、突出部分112、傾斜接続部分113および平行接続部分114に区分けして説明する。 The structure of the lead 11 is not particularly limited. In this embodiment, as shown in FIG. 5, the lead 11 will be divided into a joint portion 111, a protruding portion 112, an inclined connection portion 113, and a parallel connection portion 114.
 接合部分111は、主面111aおよび裏面111bを有する。主面111aおよび裏面111bは、厚さ方向zにおいて互いに反対側を向く面であり、ともに厚さ方向zに対して直交する平坦面である。主面111aは、厚さ方向zの第1側z1を向く面である。裏面111bは、厚さ方向zの第2側z2を向く面である。裏面111bは、導電性接合材76によって主面導電部22のパッド221に接合されている。傾斜接続部分113および平行接続部分114は、封止樹脂8によって覆われている。傾斜接続部分113は、接合部分111および平行接続部分114につながっており、接合部分111および平行接続部分114に対して傾斜している。平行接続部分114は、傾斜接続部分113および突出部分112につながっており、接合部分111に対して平行である。突出部分112は、平行接続部分114の端部につながり、リード11のうち封止樹脂8から突出する部分である。突出部分112は、第1方向yにおいて接合部分111とは反対側(y1側)に突出している。突出部分112は、たとえば半導体装置A1を外部の回路に電気的に接続するために用いられる。図示された例においては、突出部分112は、厚さ方向zにおいて接合部分111の主面111aが向く側に折り曲げられている。 The joint portion 111 has a main surface 111a and a back surface 111b. The main surface 111a and the back surface 111b are surfaces facing opposite to each other in the thickness direction z, and are both flat surfaces perpendicular to the thickness direction z. The main surface 111a is a surface facing the first side z1 in the thickness direction z. The back surface 111b is a surface facing the second side z2 in the thickness direction z. The back surface 111b is bonded to the pad 221 of the main surface conductive portion 22 by a conductive bonding material 76. The inclined connection portion 113 and the parallel connection portion 114 are covered with the sealing resin 8. The inclined connection part 113 is connected to the joint part 111 and the parallel connection part 114 and is inclined with respect to the joint part 111 and the parallel connection part 114. The parallel connecting portion 114 is connected to the inclined connecting portion 113 and the protruding portion 112 and is parallel to the joining portion 111 . The protruding portion 112 is connected to the end of the parallel connection portion 114 and is a portion of the lead 11 that protrudes from the sealing resin 8 . The protruding portion 112 protrudes to the side opposite to the joining portion 111 (y1 side) in the first direction y. The protruding portion 112 is used, for example, to electrically connect the semiconductor device A1 to an external circuit. In the illustrated example, the protruding portion 112 is bent toward the side toward which the main surface 111a of the joint portion 111 faces in the thickness direction z.
 複数のリード12は、本実施形態では、基材21上に配置されておらず、基材21の第1方向yの第1側y1に配置されている。各リード12は、リード11の接合部分111および傾斜接続部分113に相当する部位を含まず、突出部分112および平行接続部分114に相当する部位だけの構成である。平行接続部分114に相当する部位には、ワイヤ72が導通接合されている。各リード12は、ワイヤ72および主面導電部22を介して、半導体チップ4または受動素子6に導通している。本実施形態では、複数のリード1は6個のリード12を含んでいる。なお、リード12の構成、数、および配置はこれに限定されない。 In this embodiment, the plurality of leads 12 are not arranged on the base material 21, but are arranged on the first side y1 of the base material 21 in the first direction y. Each lead 12 does not include a portion corresponding to the joint portion 111 and the inclined connection portion 113 of the lead 11, but only includes a portion corresponding to the protrusion portion 112 and the parallel connection portion 114. A wire 72 is electrically connected to a portion corresponding to the parallel connection portion 114. Each lead 12 is electrically connected to the semiconductor chip 4 or the passive element 6 via the wire 72 and the main surface conductive portion 22. In this embodiment, the plurality of leads 1 includes six leads 12. Note that the configuration, number, and arrangement of the leads 12 are not limited to this.
 複数のリード15は、それぞれ、基材31上に配置されており、本実施形態においては、主面311上の第1方向yの第2側y2寄りに配置されている。各リード15は、導電性接合材76を介して、主面導電部32のパッド321に接合されている。各リード15は、主面導電部22を介して、駆動装置5または受動素子6に導通している。本実施形態では、複数のリード1は18個のリード15を含んでいる。なお、リード15の数および配置は限定されない。 The plurality of leads 15 are each arranged on the base material 31, and in this embodiment, are arranged on the main surface 311 closer to the second side y2 in the first direction y. Each lead 15 is bonded to a pad 321 of the main surface conductive portion 32 via a conductive bonding material 76 . Each lead 15 is electrically connected to the drive device 5 or the passive element 6 via the main surface conductive portion 22 . In this embodiment, the plurality of leads 1 includes 18 leads 15. Note that the number and arrangement of leads 15 are not limited.
 リード15の構成は特に限定されない。本実施形態においては、図5に示すように、リード15を、接合部分151、突出部分152、傾斜接続部分153および平行接続部分154に区分けして説明する。 The structure of the lead 15 is not particularly limited. In this embodiment, as shown in FIG. 5, the lead 15 will be divided into a joining portion 151, a protruding portion 152, an inclined connecting portion 153, and a parallel connecting portion 154.
 接合部分151は、主面151aおよび裏面151bを有する。主面151aおよび裏面151bは、厚さ方向zにおいて互いに反対側を向く面であり、ともに厚さ方向zに対して直交する平坦面である。主面151aは、厚さ方向zの第1側z1を向く面である。裏面151bは、厚さ方向zの第2側z2を向く面である。裏面151bは、導電性接合材76によって主面導電部32のパッド321に接合されている。傾斜接続部分153および平行接続部分154は、封止樹脂8によって覆われている。傾斜接続部分153は、接合部分151および平行接続部分154につながっており、接合部分151および平行接続部分154に対して傾斜している。平行接続部分154は、傾斜接続部分153および突出部分152につながっており、接合部分151に対して平行である。突出部分152は、平行接続部分154の端部につながり、リード15のうち封止樹脂8から突出する部分である。突出部分152は、第1方向yにおいて接合部分151とは反対側(y2側)に突出している。突出部分152は、たとえば半導体装置A1を外部の回路に電気的に接続するために用いられる。図示された例においては、突出部分152は、厚さ方向zにおいて接合部分151の主面151aが向く側に折り曲げられている。 The joint portion 151 has a main surface 151a and a back surface 151b. The main surface 151a and the back surface 151b are surfaces facing opposite to each other in the thickness direction z, and are both flat surfaces perpendicular to the thickness direction z. The main surface 151a is a surface facing the first side z1 in the thickness direction z. The back surface 151b is a surface facing the second side z2 in the thickness direction z. The back surface 151b is bonded to the pad 321 of the main surface conductive portion 32 by a conductive bonding material 76. The inclined connection portion 153 and the parallel connection portion 154 are covered with the sealing resin 8. The inclined connection portion 153 is connected to the joint portion 151 and the parallel connection portion 154 and is inclined with respect to the joint portion 151 and the parallel connection portion 154. The parallel connecting portion 154 is connected to the inclined connecting portion 153 and the protruding portion 152 and is parallel to the joining portion 151. The protruding portion 152 is connected to the end of the parallel connection portion 154 and is a portion of the lead 15 that protrudes from the sealing resin 8 . The protruding portion 152 protrudes to the side opposite to the joining portion 151 (y2 side) in the first direction y. The protruding portion 152 is used, for example, to electrically connect the semiconductor device A1 to an external circuit. In the illustrated example, the protruding portion 152 is bent toward the side toward which the main surface 151a of the joint portion 151 faces in the thickness direction z.
 複数のリード16は、本実施形態では、基材31上に配置されておらず、基材31の第2方向xの第1側x1または第2側x2に配置されている。各リード16は、リード15と同様の構成である。接合部分151に相当する部位は、主面導電部32のパッド321に接合する代わりに、ワイヤ74が導通接合されている。各リード16は、ワイヤ74および主面導電部32を介して、駆動装置5および受動素子6に導通している。本実施形態では、複数のリード1は4個のリード16を含んでいる。なお、リード16の構成、数、および配置はこれに限定されない。 In this embodiment, the plurality of leads 16 are not arranged on the base material 31, but are arranged on the first side x1 or the second side x2 of the base material 31 in the second direction x. Each lead 16 has a similar configuration to lead 15. A wire 74 is conductively bonded to a portion corresponding to the bonding portion 151 instead of being bonded to the pad 321 of the main surface conductive portion 32 . Each lead 16 is electrically connected to the drive device 5 and the passive element 6 via the wire 74 and the main surface conductive portion 32. In this embodiment, the plurality of leads 1 includes four leads 16. Note that the configuration, number, and arrangement of the leads 16 are not limited to this.
 複数の半導体チップ4は、スイッチング素子であり、電力を制御するパワートランジスタである。半導体チップ4は、SiC(炭化ケイ素)を主とする半導体材料を用いて構成されている。当該半導体材料は、SiCに限定されず、Si(シリコン)、GaAs(ヒ化ガリウム)あるいはGaN(窒化ガリウム)などであってもよい。半導体チップ4は、たとえば、MOSFET(Metal-Oxide-Semiconductor Field-Effect Transistor)である。なお、半導体チップ4は、MOSFETに限定されず、IGBT(Insulated Gate Bipolar Transistor)などであってもよい。本実施形態では、半導体装置A1が4個の半導体チップ4を備えている場合を示しているが、これは一例であり、半導体チップ4の個数は、限定されない。 The plurality of semiconductor chips 4 are switching elements and power transistors that control power. The semiconductor chip 4 is constructed using a semiconductor material mainly composed of SiC (silicon carbide). The semiconductor material is not limited to SiC, and may be Si (silicon), GaAs (gallium arsenide), GaN (gallium nitride), or the like. The semiconductor chip 4 is, for example, a MOSFET (Metal-Oxide-Semiconductor Field-Effect Transistor). Note that the semiconductor chip 4 is not limited to a MOSFET, and may be an IGBT (Insulated Gate Bipolar Transistor) or the like. Although this embodiment shows a case where the semiconductor device A1 includes four semiconductor chips 4, this is just an example, and the number of semiconductor chips 4 is not limited.
 各半導体チップ4は、厚さ方向zに視て矩形状の板状であり、素子主面41、素子裏面42、ソース電極43、ゲート電極44、およびドレイン電極45を備えている。素子主面41および素子裏面42は、厚さ方向zにおいて互いに反対側を向いている。素子主面41は、厚さ方向zの第1側z1を向く面である。素子裏面42は、厚さ方向zの第2側z2を向く面である。素子主面41には、図3に示すように、ソース電極43およびゲート電極44が配置されている。また、素子裏面42には、ドレイン電極45が配置されている。なお、ソース電極43、ゲート電極44、およびドレイン電極45の形状および配置は限定されない。 Each semiconductor chip 4 has a rectangular plate shape when viewed in the thickness direction z, and includes an element main surface 41, an element rear surface 42, a source electrode 43, a gate electrode 44, and a drain electrode 45. The element main surface 41 and the element back surface 42 face opposite sides in the thickness direction z. The element main surface 41 is a surface facing the first side z1 in the thickness direction z. The back surface 42 of the element is a surface facing the second side z2 in the thickness direction z. As shown in FIG. 3, a source electrode 43 and a gate electrode 44 are arranged on the main surface 41 of the element. Further, a drain electrode 45 is arranged on the back surface 42 of the element. Note that the shapes and arrangement of the source electrode 43, gate electrode 44, and drain electrode 45 are not limited.
 各半導体チップ4は、図3および図5に示すように、配線基板2に搭載されている。各半導体チップ4は、基材21の主面211上に配置されている。本実施形態では、4個の半導体チップ4は、主面211の第1方向yの第2側y2寄りで、第2方向xに並んで配置されている。なお、各駆動装置5の配置位置は限定されない。各半導体チップ4は、図5に示すように、素子裏面42を主面211に向けて、導電性接合材76によって、主面導電部22のパッド221に接合されている。これにより、半導体チップ4のドレイン電極45は、導電性接合材76によって、パッド221に導通接続される。また、図3に示すように、半導体チップ4のソース電極43は、ワイヤ71によって、隣接するパッド221に導通接続される。半導体装置A1は、2個の半導体チップ4により構成されたブリッジ回路を2個備えている。 Each semiconductor chip 4 is mounted on the wiring board 2, as shown in FIGS. 3 and 5. Each semiconductor chip 4 is arranged on the main surface 211 of the base material 21. In this embodiment, the four semiconductor chips 4 are arranged side by side in the second direction x on the main surface 211 closer to the second side y2 in the first direction y. Note that the arrangement position of each drive device 5 is not limited. As shown in FIG. 5, each semiconductor chip 4 is bonded to a pad 221 of the main surface conductive portion 22 by a conductive bonding material 76 with the element back surface 42 facing the main surface 211. Thereby, the drain electrode 45 of the semiconductor chip 4 is electrically connected to the pad 221 by the conductive bonding material 76 . Further, as shown in FIG. 3, the source electrode 43 of the semiconductor chip 4 is electrically connected to the adjacent pad 221 by a wire 71. The semiconductor device A1 includes two bridge circuits each made up of two semiconductor chips 4.
 図3に示すように、半導体チップ4のソース電極43およびゲート電極44は、それぞれ、ワイヤ73および配線基板3の主面導電部32を介して、駆動装置5に導通接続される。 As shown in FIG. 3, the source electrode 43 and gate electrode 44 of the semiconductor chip 4 are electrically connected to the driving device 5 via the wire 73 and the main surface conductive portion 32 of the wiring board 3, respectively.
 複数の駆動装置5は、それぞれ、駆動信号を出力して、対応する半導体チップ4を駆動させるいわゆるゲートドライバである。本実施形態では、駆動装置5は、信号が入力される低電圧側と駆動信号を出力する高電圧側とが絶縁されている絶縁ゲートドライバである。なお、駆動装置5は、絶縁ゲートドライバに限定されない。半導体装置A1は、半導体チップ4の数に合わせて、4個の駆動装置5を備えている。 Each of the plurality of drive devices 5 is a so-called gate driver that outputs a drive signal to drive the corresponding semiconductor chip 4. In this embodiment, the drive device 5 is an insulated gate driver in which a low voltage side into which a signal is input is insulated from a high voltage side through which a drive signal is output. Note that the driving device 5 is not limited to an insulated gate driver. The semiconductor device A1 includes four drive devices 5 corresponding to the number of semiconductor chips 4.
 各駆動装置5は、図3および図5に示すように、配線基板3に搭載されている。各駆動装置5は、基材31の主面311上に配置されている。本実施形態では、4個の駆動装置5は、主面311の第1方向yの中央(あるいは略中央)に、第2方向xに並んで配置されている。なお、各駆動装置5の配置位置は限定されない。駆動装置5は、本実施形態では、SOP(Small Outline Package)タイプのパッケージである。駆動装置5は、第1方向yの両側に突出して延びる複数の端子を備えている。これらの端子は、導電性接合材76によって、主面導電部32のパッド321に導通接合されている。なお、駆動装置5のパッケージタイプは、SOPタイプに限定されず、例えばQFP(Quad Flat Package)タイプ、SOJ(Small Outline J-lead Package)タイプ等の他のタイプであってもよい。また、駆動装置5のサイズ、形状、端子の数などは限定されない。また、駆動装置5に代えて、駆動チップが配線基板3に直接配置されてもよい。駆動装置5は、主面導電部32およびワイヤ73を介して、対応する半導体チップ4のゲート電極44に、駆動信号を出力する。また、駆動装置5は、主面導電部32およびワイヤ73を介して、対応する半導体チップ4のソース電極43の電位を入力される。 Each drive device 5 is mounted on the wiring board 3, as shown in FIGS. 3 and 5. Each drive device 5 is arranged on the main surface 311 of the base material 31. In this embodiment, the four drive devices 5 are arranged at the center (or approximately at the center) of the main surface 311 in the first direction y and in line in the second direction x. Note that the arrangement position of each drive device 5 is not limited. In this embodiment, the drive device 5 is an SOP (Small Outline Package) type package. The drive device 5 includes a plurality of terminals that protrude and extend on both sides of the first direction y. These terminals are conductively bonded to the pads 321 of the main surface conductive portion 32 by a conductive bonding material 76 . Note that the package type of the drive device 5 is not limited to the SOP type, and may be other types such as a QFP (Quad Flat Package) type or an SOJ (Small Outline J-lead Package) type. Further, the size, shape, number of terminals, etc. of the drive device 5 are not limited. Further, instead of the drive device 5, a drive chip may be directly disposed on the wiring board 3. The drive device 5 outputs a drive signal to the gate electrode 44 of the corresponding semiconductor chip 4 via the main surface conductive portion 32 and the wire 73. Further, the driving device 5 receives the potential of the source electrode 43 of the corresponding semiconductor chip 4 via the main surface conductive portion 32 and the wire 73.
 複数の受動素子6は、図3および図5に示すように、配線基板2または配線基板3に搭載されている。各受動素子6は、基材21の主面211上または基材31の主面311上に配置されており、主面導電部22のパッド221または主面導電部32のパッド321に導通接合されている。受動素子6は、たとえば、抵抗、コンデンサ、コイル、ダイオードなどである。受動素子6には、2個のシャント抵抗6aおよびサーミスタ6bが含まれている。 The plurality of passive elements 6 are mounted on the wiring board 2 or the wiring board 3, as shown in FIGS. 3 and 5. Each passive element 6 is disposed on the main surface 211 of the base material 21 or the main surface 311 of the base material 31, and is electrically connected to the pad 221 of the main surface conductive part 22 or the pad 321 of the main surface conductive part 32. ing. The passive element 6 is, for example, a resistor, a capacitor, a coil, a diode, or the like. Passive element 6 includes two shunt resistors 6a and a thermistor 6b.
 2個のシャント抵抗6aは、配線基板2に搭載され、基材21の主面211上に配置されている。各シャント抵抗6aは、主面導電部22の2個のパッド221に跨って、各パッド221に導通接合されている。各シャント抵抗6aには、2個の半導体チップ4で構成されるブリッジ回路の出力電流が流れ、両端子間の電位差が出力される。 The two shunt resistors 6a are mounted on the wiring board 2 and arranged on the main surface 211 of the base material 21. Each shunt resistor 6a straddles the two pads 221 of the main surface conductive portion 22 and is electrically connected to each pad 221. An output current of a bridge circuit composed of two semiconductor chips 4 flows through each shunt resistor 6a, and a potential difference between both terminals is output.
 サーミスタ6bは、配線基板3に搭載され、基材31の主面311上に配置されている。サーミスタ6bは、主面導電部32の2個のパッド321に跨って、各パッド321に導通接合されている。サーミスタ6bが接合された各パッド321はそれぞれ、配線322によって導通接続されたパッド321を介して、リード15に導通している。サーミスタ6bは、所定の電流が流されて、配線基板3の温度に応じた電圧信号を出力する。 The thermistor 6b is mounted on the wiring board 3 and arranged on the main surface 311 of the base material 31. The thermistor 6b straddles the two pads 321 of the main surface conductive portion 32 and is electrically connected to each pad 321. Each pad 321 to which the thermistor 6b is bonded is electrically connected to the lead 15 via the pad 321 electrically connected by a wiring 322. A predetermined current is passed through the thermistor 6b, and the thermistor 6b outputs a voltage signal according to the temperature of the wiring board 3.
 その他の受動素子6は、配線基板3に搭載され、基材31の主面311上に配置されている。各受動素子6は、主面導電部32のパッド321に導通接合されており、配線322およびパッド321を介して、駆動装置5に導通している。なお、各受動素子6の種類、配置位置、数は限定されない。 Other passive elements 6 are mounted on the wiring board 3 and arranged on the main surface 311 of the base material 31. Each passive element 6 is electrically connected to a pad 321 of the main surface conductive portion 32 and electrically connected to the drive device 5 via the wiring 322 and the pad 321. Note that the type, arrangement position, and number of each passive element 6 are not limited.
 複数のワイヤ7は、それぞれ複数のワイヤ71,72,73,74を含んでいる。複数のワイヤ71は、半導体チップ4のソース電極43とパッド221とに導通接合されている。本実施形態では、各半導体チップ4とパッド221とは2本のワイヤ71で接続されているが、各半導体チップ4とパッド221とを接続するワイヤ71の本数は限定されない。ワイヤ71は、たとえば、アルミニウム(Al)または銅(Cu)等からなる。なお、ワイヤ71の材料および線径は限定されない。複数のワイヤ72は、主面導電部22のパッド221とリード12とに導通接合されている。パッド221とリード12とを接続するワイヤ72の本数は限定されない。ワイヤ72は、たとえば、アルミニウム(Al)または銅(Cu)等からなる。なお、ワイヤ72の材料および線径は限定されない。 The plurality of wires 7 each include a plurality of wires 71, 72, 73, and 74. The plurality of wires 71 are electrically connected to the source electrode 43 of the semiconductor chip 4 and the pad 221. In this embodiment, each semiconductor chip 4 and the pad 221 are connected by two wires 71, but the number of wires 71 connecting each semiconductor chip 4 and the pad 221 is not limited. The wire 71 is made of, for example, aluminum (Al) or copper (Cu). Note that the material and wire diameter of the wire 71 are not limited. The plurality of wires 72 are electrically connected to the pads 221 of the main surface conductive portion 22 and the leads 12 . The number of wires 72 connecting pads 221 and leads 12 is not limited. The wire 72 is made of, for example, aluminum (Al) or copper (Cu). Note that the material and wire diameter of the wire 72 are not limited.
 複数のワイヤ73は、半導体チップ4のソース電極43またはゲート電極44と、配線基板3の主面導電部32のパッド321とに導通接合されている。本実施形態では、各半導体チップ4とパッド321とはそれぞれ1本のワイヤ73で接続されているが、各半導体チップ4とパッド321とを接続するワイヤ73の本数は限定されない。ワイヤ73は、たとえば、金(Au)、銀(Ag)、銅(Cu)、またはアルミニウム(Al)等からなる。なお、ワイヤ73の材料および線径は限定されない。複数のワイヤ74は、配線基板3の主面導電部32のパッド321とリード16とに導通接合されている。本実施形態では、各パッド321と各リード16とはそれぞれ1本のワイヤ74で接続されているが、各パッド321と各リード16とを接続するワイヤ74の本数は限定されない。ワイヤ74は、たとえば、金(Au)、銀(Ag)、銅(Cu)、またはアルミニウム(Al)等からなる。なお、ワイヤ74の材料および線径は限定されない。 The plurality of wires 73 are electrically connected to the source electrode 43 or gate electrode 44 of the semiconductor chip 4 and the pad 321 of the main surface conductive portion 32 of the wiring board 3. In this embodiment, each semiconductor chip 4 and the pad 321 are connected by one wire 73, but the number of wires 73 connecting each semiconductor chip 4 and the pad 321 is not limited. The wire 73 is made of, for example, gold (Au), silver (Ag), copper (Cu), or aluminum (Al). Note that the material and wire diameter of the wire 73 are not limited. The plurality of wires 74 are electrically connected to the pads 321 of the main surface conductive portion 32 of the wiring board 3 and the leads 16 . In this embodiment, each pad 321 and each lead 16 are connected by one wire 74, but the number of wires 74 connecting each pad 321 and each lead 16 is not limited. The wire 74 is made of, for example, gold (Au), silver (Ag), copper (Cu), or aluminum (Al). Note that the material and wire diameter of the wire 74 are not limited.
 封止樹脂8は、複数の半導体チップ4、複数の駆動装置5、複数の受動素子6、および複数のワイヤ7と、複数のリード1の一部ずつと、配線基板2および配線基板3の一部ずつとを少なくとも覆っている。封止樹脂8の材料は特に限定されず、たとえばエポキシ樹脂、シリコーンゲル等の絶縁材料が適宜用いられる。 The sealing resin 8 seals a plurality of semiconductor chips 4 , a plurality of drive devices 5 , a plurality of passive elements 6 , a plurality of wires 7 , a portion of each of the plurality of leads 1 , and a portion of the wiring board 2 and the wiring board 3 . covering at least part of each part. The material of the sealing resin 8 is not particularly limited, and insulating materials such as epoxy resin and silicone gel may be used as appropriate.
 封止樹脂8は、樹脂主面81、樹脂裏面82、および4個の樹脂側面83を有する。樹脂主面81および樹脂裏面82は、厚さ方向zにおいて互いに反対側を向く面であり、ともに厚さ方向zに対して直交する平坦面である。樹脂主面81は、厚さ方向zの第1側z1を向く面である。樹脂裏面82は、厚さ方向zの第2側z2を向く面である。各樹脂側面83は、それぞれ、樹脂主面81および樹脂裏面82につながり、第2方向xまたは第1方向yを向いている。図4に示すように、配線基板2の裏面導電部23および配線基板3の裏面導電部33は、封止樹脂8の樹脂裏面82から露出している。また、それぞれ複数のリード11およびリード12は、封止樹脂8の第1方向yの第1側y1を向く樹脂側面83から突出している。それぞれ複数のリード15およびリード16は、封止樹脂8の第1方向yの第2側y2を向く樹脂側面83から突出している。 The sealing resin 8 has a resin main surface 81, a resin back surface 82, and four resin side surfaces 83. The main resin surface 81 and the resin back surface 82 are surfaces facing opposite to each other in the thickness direction z, and are both flat surfaces perpendicular to the thickness direction z. The main resin surface 81 is a surface facing the first side z1 in the thickness direction z. The resin back surface 82 is a surface facing the second side z2 in the thickness direction z. Each resin side surface 83 is connected to the resin main surface 81 and the resin back surface 82, and faces the second direction x or the first direction y. As shown in FIG. 4, the back conductive part 23 of the wiring board 2 and the back conductive part 33 of the wiring board 3 are exposed from the resin back surface 82 of the sealing resin 8. Further, each of the plurality of leads 11 and leads 12 protrudes from the resin side surface 83 facing the first side y1 in the first direction y of the sealing resin 8. Each of the plurality of leads 15 and leads 16 protrudes from the resin side surface 83 facing the second side y2 in the first direction y of the sealing resin 8.
 次に、半導体装置A1の製造方法の一例について、図8を参照して以下に説明する。なお、以下に説明する製造方法は、半導体装置A1を実現するための一手段であり、これに限定されない。 Next, an example of a method for manufacturing the semiconductor device A1 will be described below with reference to FIG. 8. Note that the manufacturing method described below is one means for realizing the semiconductor device A1, and is not limited thereto.
 図8に示すように、本例の製造方法は、基板形成工程(ステップS1)、リードフレーム接合工程(ステップS2)、半導体チップ実装工程(ステップS3)、駆動装置実装工程(ステップS4)、ワイヤ接続工程(ステップS5)、樹脂形成工程(ステップS6)、およびフレーム切断工程(ステップS7)を有する。 As shown in FIG. 8, the manufacturing method of this example includes a substrate forming process (step S1), a lead frame bonding process (step S2), a semiconductor chip mounting process (step S3), a drive device mounting process (step S4), a wire The process includes a connecting process (step S5), a resin forming process (step S6), and a frame cutting process (step S7).
 基板形成工程(ステップS1)では、まず、2種類のDBC基板が準備される。一方のDBC基板は、窒化アルミニウムのセラミックスの板の両面にそれぞれ厚さ寸法T1の銅箔が接合された基板である。他方のDBC基板は、アルミナのセラミックスの板の両面にそれぞれ厚さ寸法T2の銅箔が接合された基板である。次いで、各DBC基板の一方の面の銅箔をエッチングによりパターニングする。これにより、窒化アルミニウムのDBC基板が配線基板2になる。一方の面のパターニングされた銅箔が主面導電部22になり、他方の銅箔が裏面導電部23になる。また、アルミナのDBC基板が配線基板3になる。一方の面のパターニングされた銅箔が主面導電部32になり、他方の銅箔が裏面導電部33になる。 In the substrate forming step (step S1), two types of DBC substrates are first prepared. One DBC substrate is a substrate in which copper foils having a thickness of T1 are bonded to both sides of an aluminum nitride ceramic plate. The other DBC substrate is a substrate in which copper foil having a thickness of T2 is bonded to both sides of an alumina ceramic plate. Next, the copper foil on one side of each DBC board is patterned by etching. As a result, the aluminum nitride DBC substrate becomes the wiring board 2. The patterned copper foil on one side becomes the main surface conductive part 22, and the other copper foil becomes the back surface conductive part 23. Further, the alumina DBC board becomes the wiring board 3. The patterned copper foil on one side becomes the main surface conductive part 32, and the other copper foil becomes the back surface conductive part 33.
 リードフレーム接合工程(ステップS2)では、まず、配線基板2および配線基板3が第1方向yに並べて配置される。次いで、主面導電部22の所定のパッド221および主面導電部32の所定のパッド321に導電性接合ペーストを配置する。導電性接合ペーストは、たとえば銀ペースト、銅ペーストやはんだ等である。次いで、リードフレームを準備する。リードフレームは、複数のリード1を含んでおり、さらに複数のリード1がつながるフレームを有する。なお、リードフレームの形状等は、何ら限定されない。次いで、複数のリード11をそれぞれ導電性接合ペーストを介して所定のパッド221に対面させる。また、複数のリード15をそれぞれ導電性接合ペーストを介して所定のパッド321に対面させる。次いで、導電性接合ペーストを加熱した後に冷却することにより、導電性接合材76が形成される。これにより、各リード11が導電性接合材76を介して所定のパッド221に接合され、各リード15が導電性接合材76を介してパッド321に接合される。 In the lead frame bonding step (step S2), first, the wiring board 2 and the wiring board 3 are arranged side by side in the first direction y. Next, a conductive bonding paste is placed on a predetermined pad 221 of the main surface conductive portion 22 and a predetermined pad 321 of the main surface conductive portion 32. The conductive bonding paste is, for example, silver paste, copper paste, or solder. Next, a lead frame is prepared. The lead frame includes a plurality of leads 1 and further has a frame to which the plurality of leads 1 are connected. Note that the shape of the lead frame and the like are not limited at all. Next, each of the plurality of leads 11 is made to face a predetermined pad 221 via a conductive bonding paste. Further, each of the plurality of leads 15 is made to face a predetermined pad 321 via a conductive bonding paste. Next, the conductive bonding material 76 is formed by heating and then cooling the conductive bonding paste. As a result, each lead 11 is bonded to a predetermined pad 221 via the conductive bonding material 76, and each lead 15 is bonded to the pad 321 via the conductive bonding material 76.
 半導体チップ実装工程(ステップS3)では、まず、配線基板2の主面導電部22の所定のパッド221の所定の位置に、導電性接合ペーストを配置する。次いで、導電性接合ペーストに、各半導体チップ4を付着させる。次いで、導電性接合ペーストを加熱した後に冷却することにより、導電性接合材76が形成される。これにより、半導体チップ4が導電性接合材76を介してパッド221に接合される。また、同様の工程により、シャント抵抗6aを、導電性接合材76を介してパッド221に接合させる。 In the semiconductor chip mounting process (step S3), first, a conductive bonding paste is placed at a predetermined position of a predetermined pad 221 on the main surface conductive portion 22 of the wiring board 2. Each semiconductor chip 4 is then attached to the conductive bonding paste. Next, the conductive bonding material 76 is formed by heating and then cooling the conductive bonding paste. Thereby, the semiconductor chip 4 is bonded to the pad 221 via the conductive bonding material 76. Further, in a similar process, the shunt resistor 6a is bonded to the pad 221 via the conductive bonding material 76.
 駆動装置実装工程(ステップS4)では、まず、配線基板3の主面導電部32の所定のパッド321に、導電性接合ペーストを配置する。次いで、導電性接合ペーストに、各駆動装置5の各端子を付着させる。次いで、導電性接合ペーストを加熱した後に冷却することにより、導電性接合材76が形成される。これにより、駆動装置5が導電性接合材76を介してパッド321に接合される。また、同様の工程により、サーミスタ6bおよびその他の受動素子6を、導電性接合材76を介してパッド321に接合させる。 In the drive device mounting step (step S4), first, a conductive bonding paste is placed on a predetermined pad 321 of the main surface conductive portion 32 of the wiring board 3. Each terminal of each drive device 5 is then adhered to the conductive bonding paste. Next, the conductive bonding material 76 is formed by heating and then cooling the conductive bonding paste. Thereby, the drive device 5 is bonded to the pad 321 via the conductive bonding material 76. Further, the thermistor 6b and other passive elements 6 are bonded to the pad 321 via the conductive bonding material 76 by a similar process.
 ワイヤ接続工程(ステップS5)では、まず、複数のワイヤ71,72を接続する。本例においては、たとえばウエッジボンディングの手法により、アルミニウム(Al)からなるワイヤ材を順次接続する。これにより、複数のワイヤ71が得られる。次いで、複数のワイヤ73,74を接続する。本例においては、たとえばキャピラリボンディングの手法により、金(Au)からなるワイヤ材を順次接続する。これにより、複数のワイヤ72が得られる。 In the wire connection step (step S5), first, a plurality of wires 71 and 72 are connected. In this example, wires made of aluminum (Al) are sequentially connected by, for example, a wedge bonding method. Thereby, a plurality of wires 71 are obtained. Next, the plurality of wires 73 and 74 are connected. In this example, wire materials made of gold (Au) are sequentially connected by, for example, a capillary bonding method. Thereby, a plurality of wires 72 are obtained.
 樹脂形成工程(ステップS6)では、たとえば、リードフレームの一部と、配線基板2,3と、それぞれ複数の半導体チップ4、駆動装置5、受動素子6、およびワイヤ7とを金型によって囲む。次いで、金型によって規定された空間に液状の樹脂材料を注入する。次いで、この樹脂材料を硬化させることにより、封止樹脂8が得られる。 In the resin forming step (step S6), for example, a part of the lead frame, the wiring boards 2 and 3, each of the plurality of semiconductor chips 4, the driving device 5, the passive element 6, and the wire 7 are surrounded by a mold. Next, a liquid resin material is injected into the space defined by the mold. Next, the sealing resin 8 is obtained by curing this resin material.
 フレーム切断工程(ステップS7)では、リードフレームのうち封止樹脂8から露出した部位の適所を切断する。これにより、複数のリード1が互いに分割される。この後は、必要に応じて、複数のリード1を折り曲げる等の処理を経ることにより、上述した半導体装置A1が得られる。 In the frame cutting step (step S7), the lead frame is cut at an appropriate location exposed from the sealing resin 8. As a result, the plurality of leads 1 are divided from each other. Thereafter, the above-described semiconductor device A1 is obtained by performing a process such as bending the plurality of leads 1 as necessary.
 次に、半導体装置A1の作用効果について説明する。 Next, the effects of the semiconductor device A1 will be explained.
 本実施形態によると、配線基板3は、基材31の主面311上に配置された主面導電部32を備えている。主面導電部32は、パッド321に駆動装置5が導通接合されている。これにより、駆動装置5への導通経路を、基材31の主面311上に配置された主面導電部32によって構成できる。したがって、たとえば金属製のリードによって導通経路を構成する場合と比較して、導通経路の細線化および高密度化を図ることが可能である。 According to the present embodiment, the wiring board 3 includes the main surface conductive portion 32 disposed on the main surface 311 of the base material 31. The driving device 5 is electrically connected to the pad 321 of the main surface conductive portion 32 . Thereby, the conduction path to the drive device 5 can be configured by the main surface conductive portion 32 disposed on the main surface 311 of the base material 31. Therefore, compared to, for example, a case where the conduction path is formed of metal leads, it is possible to make the conduction path thinner and more dense.
 また、本実施形態によると、半導体装置A1は、配線基板3とは別に、配線基板2を備えている。配線基板2は、基材21の主面211上に配置された主面導電部22を備えている。主面導電部22は、パッド221に半導体チップ4が接合されている。主面導電部22の厚さ寸法T1は、主面導電部32の厚さ寸法T2と比較して大きく、半導体チップ4が発する熱の放熱効果を維持できる厚さである。一方、厚さ寸法T2は、厚さ寸法T1と比較して小さく、エッチングによってより微細な加工が可能な厚さである。共通の基材の主面に共通の主面導電部を配置した場合、主面導電部を厚くすると微細な加工が困難になり、主面導電部を薄くすると十分な放熱効果が得られない。半導体装置A1は、配線基板2および配線基板3を備えているので、半導体チップ4が発する熱の放熱と、駆動装置5への導通経路の細線化および高密度化とを、両立できる。 Furthermore, according to the present embodiment, the semiconductor device A1 includes a wiring board 2 in addition to the wiring board 3. The wiring board 2 includes a main surface conductive portion 22 disposed on the main surface 211 of the base material 21 . In the main surface conductive portion 22, the semiconductor chip 4 is bonded to the pad 221. The thickness T1 of the main surface conductive portion 22 is larger than the thickness T2 of the main surface conductive portion 32, and is thick enough to maintain the heat dissipation effect of the heat generated by the semiconductor chip 4. On the other hand, the thickness dimension T2 is smaller than the thickness dimension T1, and is a thickness that allows finer processing by etching. When a common main surface conductive portion is arranged on the main surface of a common base material, if the main surface conductive portion is made thick, fine processing becomes difficult, and if the main surface conductive portion is made thin, a sufficient heat dissipation effect cannot be obtained. Since the semiconductor device A1 includes the wiring board 2 and the wiring board 3, it is possible to dissipate the heat generated by the semiconductor chip 4 and to make the conduction path to the drive device 5 thinner and more dense.
 また、本実施形態によると、配線基板2は、DBC基板の一方の面の銅箔をエッチングによりパターニングすることで形成される。したがって、基材21に主面導電部22および裏面導電部23をそれぞれ形成する場合と比較して、製造工程を簡易にできる。配線基板3も同様である。 Furthermore, according to the present embodiment, the wiring board 2 is formed by patterning the copper foil on one side of the DBC board by etching. Therefore, compared to the case where the main surface conductive portion 22 and the back surface conductive portion 23 are respectively formed on the base material 21, the manufacturing process can be simplified. The same applies to the wiring board 3.
 また、本実施形態によると、配線基板2の基材21は、窒化アルミニウムのセラミックスの板である。また、配線基板3の基材31は、アルミナのセラミックスの板である。したがって、基材21は、基材31より熱伝導性が高い。これにより、配線基板2は、半導体チップ4が発する熱を、適切に放熱できる。また、配線基板2ほど放熱性を要求されない配線基板3の材料コストを抑制できる。 Furthermore, according to the present embodiment, the base material 21 of the wiring board 2 is an aluminum nitride ceramic plate. Further, the base material 31 of the wiring board 3 is an alumina ceramic plate. Therefore, the base material 21 has higher thermal conductivity than the base material 31. Thereby, the wiring board 2 can appropriately dissipate the heat generated by the semiconductor chip 4. Further, the material cost of the wiring board 3, which does not require as much heat dissipation as the wiring board 2, can be reduced.
 また、本実施形態によると、配線基板2の裏面導電部33は、樹脂裏面82から露出している。これにより、半導体チップ4から配線基板2に伝わった熱を、より効率よく外部に放熱できる。 Furthermore, according to the present embodiment, the back conductive portion 33 of the wiring board 2 is exposed from the resin back surface 82. Thereby, the heat transmitted from the semiconductor chip 4 to the wiring board 2 can be radiated to the outside more efficiently.
 また、本実施形態によると、半導体装置A1は、配線基板3に搭載されたサーミスタ6bを備えている。したがって、半導体装置A1は、配線基板3の温度を検出することができる。 Furthermore, according to the present embodiment, the semiconductor device A1 includes a thermistor 6b mounted on the wiring board 3. Therefore, the semiconductor device A1 can detect the temperature of the wiring board 3.
 また、本実施形態によると、複数のリード11は、導電性接合材76を介して主面導電部22のパッド221に接合されている。これにより、複数のリード11は、配線基板2に対して強固に固定される。また、複数のリード11と主面導電部22との間の低抵抗化を図ることができる。また、複数のリード15は、導電性接合材76を介して主面導電部32のパッド321に接合されている。これにより、複数のリード15は、配線基板3に対して強固に固定される。また、複数のリード15と主面導電部32との間の低抵抗化を図ることができる。 Further, according to the present embodiment, the plurality of leads 11 are bonded to the pads 221 of the main surface conductive portion 22 via the conductive bonding material 76. Thereby, the plurality of leads 11 are firmly fixed to the wiring board 2. Further, it is possible to reduce the resistance between the plurality of leads 11 and the main surface conductive portion 22. Further, the plurality of leads 15 are bonded to the pads 321 of the main surface conductive portion 32 via a conductive bonding material 76 . Thereby, the plurality of leads 15 are firmly fixed to the wiring board 3. Furthermore, the resistance between the plurality of leads 15 and the main surface conductive portion 32 can be reduced.
 なお、本実施形態においては、基材31の構成材料がセラミックスである場合について説明したが、これに限られない。基材31は、基材21ほど熱伝導性を必要としないので、ガラスエポキシ樹脂などの合成樹脂を含んだ基板であってもよい。つまり、配線基板3は、いわゆるPCB(Printed Circuit Board)基板であってもよい。また、基材31は、複数の基材が積層された多層基板であってもよい。 In addition, in this embodiment, the case where the constituent material of the base material 31 was ceramics was described, but it is not limited to this. Since the base material 31 does not require as much thermal conductivity as the base material 21, it may be a substrate containing synthetic resin such as glass epoxy resin. That is, the wiring board 3 may be a so-called PCB (Printed Circuit Board) board. Further, the base material 31 may be a multilayer substrate in which a plurality of base materials are laminated.
 図9~図12は、本開示の他の実施形態を示している。なお、これらの図において、上記実施形態と同一または類似の要素には、上記実施形態と同一の符号を付している。 9 to 12 show other embodiments of the present disclosure. Note that in these figures, elements that are the same or similar to those in the above embodiment are given the same reference numerals as in the above embodiment.
 第2実施形態:
 図9は、本開示の第2実施形態に係る半導体装置A2を説明するための図である。図9は、半導体装置A2を示す断面図であり、図5に対応する図である。第2実施形態に係る半導体装置A2は、配線基板3の全体が封止樹脂8に覆われている点で、第1実施形態と異なっている。本実施形態の他の部分の構成および動作は、第1実施形態と同様である。
Second embodiment:
FIG. 9 is a diagram for explaining a semiconductor device A2 according to a second embodiment of the present disclosure. FIG. 9 is a cross-sectional view showing the semiconductor device A2, and corresponds to FIG. 5. As shown in FIG. The semiconductor device A2 according to the second embodiment differs from the first embodiment in that the entire wiring board 3 is covered with a sealing resin 8. The configuration and operation of other parts of this embodiment are similar to those of the first embodiment.
 本実施形態では、配線基板3は、裏面導電部33を備えていない。本実施形態に係る配線基板3は、セラミックスの板の片面のみに銅箔が接合されたDBC基板の銅箔をエッチングによりパターニングすることで形成される。また、配線基板3は、樹脂裏面82から露出しておらず、全体が封止樹脂8に覆われている。配線基板3は、半導体チップ4が搭載された配線基板2とは異なり、放熱性をあまり要求されない。したがって、配線基板3は、樹脂裏面82から露出せず放熱性が抑制されても、あまり問題にならない。 In this embodiment, the wiring board 3 does not include the back conductive portion 33. The wiring board 3 according to this embodiment is formed by etching and patterning the copper foil of a DBC board in which copper foil is bonded to only one side of a ceramic plate. Further, the wiring board 3 is not exposed from the resin back surface 82 and is entirely covered with the sealing resin 8. Unlike the wiring board 2 on which the semiconductor chip 4 is mounted, the wiring board 3 is not required to have much heat dissipation. Therefore, even if the wiring board 3 is not exposed from the resin back surface 82 and its heat dissipation is suppressed, it does not pose much of a problem.
 本実施形態においても、半導体装置A2は、配線基板2および配線基板3を備えているので、半導体チップ4が発する熱の放熱と、駆動装置5への導通経路の細線化および高密度化とを、両立できる。また、半導体装置A2は、半導体装置A1と共通する構成をとることにより、半導体装置A1と同等の効果を奏する。さらに、半導体装置A2は、配線基板3が裏面導電部33を備えていないので、材料コストを抑制できる。 Also in this embodiment, since the semiconductor device A2 includes the wiring board 2 and the wiring board 3, it is possible to dissipate the heat generated by the semiconductor chip 4 and to thin and increase the density of the conduction path to the drive device 5. , can be compatible. In addition, the semiconductor device A2 has the same configuration as the semiconductor device A1, and thus achieves the same effects as the semiconductor device A1. Furthermore, in the semiconductor device A2, since the wiring board 3 does not include the back conductive portion 33, material costs can be suppressed.
 なお、本実施形態では、配線基板3が樹脂裏面82から露出していない場合について説明したが、これに限られない。配線基板3は、基材31の裏面312が樹脂裏面82から露出してもよい。 Note that, in this embodiment, a case has been described in which the wiring board 3 is not exposed from the resin back surface 82, but the present invention is not limited to this. In the wiring board 3, the back surface 312 of the base material 31 may be exposed from the resin back surface 82.
 第3実施形態:
 図10は、本開示の第3実施形態に係る半導体装置A3を説明するための図である。図10は、半導体装置A3を示す断面図であり、図5に対応する図である。第3実施形態に係る半導体装置A3は、配線基板3の基材31の裏面312上にも受動素子6が配置されている点で、第1実施形態と異なっている。本実施形態の他の部分の構成および動作は、第1実施形態と同様である。なお、上記の第1~2実施形態の各部が任意に組み合わせられてもよい。
Third embodiment:
FIG. 10 is a diagram for explaining a semiconductor device A3 according to a third embodiment of the present disclosure. FIG. 10 is a cross-sectional view showing the semiconductor device A3, and corresponds to FIG. 5. As shown in FIG. The semiconductor device A3 according to the third embodiment differs from the first embodiment in that the passive element 6 is also arranged on the back surface 312 of the base material 31 of the wiring board 3. The configuration and operation of other parts of this embodiment are similar to those of the first embodiment. Note that each part of the first and second embodiments described above may be combined arbitrarily.
 本実施形態では、配線基板3は、主面311上だけではなく、裏面312上にも受動素子6が配置されている。なお、裏面312上に配置される受動素子6の種類、個数、および配置位置は限定されない。配線基板3は、裏面導電部33がパッド331および配線332を含んでいる。パッド331および配線332は、DBC基板の他方の面の銅箔をエッチングによりパターニングすることで形成される。なお、裏面導電部33の形状は限定されない。パッド331には、導電性接合材76を介して、受動素子6が導通接合されている。また、本実施形態でも第2実施形態と同様に、配線基板3は、樹脂裏面82から露出しておらず、全体が封止樹脂8に覆われている。また、裏面312上に配置された受動素子6も封止樹脂8に覆われている。なお、裏面312上に配置される電子部品は受動素子6に限定されず、たとえば駆動装置5が裏面312上に配置されてもよい。 In this embodiment, the wiring board 3 has passive elements 6 arranged not only on the main surface 311 but also on the back surface 312. Note that the type, number, and arrangement position of the passive elements 6 arranged on the back surface 312 are not limited. In the wiring board 3, the back conductive portion 33 includes pads 331 and wiring 332. The pad 331 and the wiring 332 are formed by patterning the copper foil on the other side of the DBC substrate by etching. Note that the shape of the back conductive portion 33 is not limited. The passive element 6 is conductively bonded to the pad 331 via a conductive bonding material 76 . Further, in this embodiment as well, the wiring board 3 is not exposed from the resin back surface 82 and is entirely covered with the sealing resin 8, as in the second embodiment. Further, the passive element 6 disposed on the back surface 312 is also covered with the sealing resin 8. Note that the electronic components arranged on the back surface 312 are not limited to the passive element 6; for example, the driving device 5 may be arranged on the back surface 312.
 本実施形態においても、半導体装置A3は、配線基板2および配線基板3を備えているので、半導体チップ4が発する熱の放熱と、駆動装置5への導通経路の細線化および高密度化とを、両立できる。また、半導体装置A3は、半導体装置A1と共通する構成をとることにより、半導体装置A1と同等の効果を奏する。さらに、半導体装置A3は、配線基板3の両面に受動素子6が配置できるので、より多くの受動素子6を搭載できる。また、配線基板3に搭載される受動素子6が変わらない場合、受動素子6を両面に配置することで、配線基板3の厚さ方向zに視た形状を小さくできる。これにより、半導体装置A3は、小型化可能である。 Also in this embodiment, since the semiconductor device A3 includes the wiring board 2 and the wiring board 3, it is possible to dissipate the heat generated by the semiconductor chip 4 and to make the conduction path to the drive device 5 thinner and more dense. , can be compatible. In addition, the semiconductor device A3 has the same configuration as the semiconductor device A1, and thus achieves the same effects as the semiconductor device A1. Furthermore, in the semiconductor device A3, since the passive elements 6 can be arranged on both sides of the wiring board 3, more passive elements 6 can be mounted. Furthermore, when the passive elements 6 mounted on the wiring board 3 do not change, the shape of the wiring board 3 viewed in the thickness direction z can be made smaller by arranging the passive elements 6 on both sides. Thereby, the semiconductor device A3 can be downsized.
 第4実施形態:
 図11は、本開示の第4実施形態に係る半導体装置A4を説明するための図である。図11は、半導体装置A4を示す断面図であり、図5に対応する図である。第4実施形態に係る半導体装置A4は、配線基板2および配線基板3の配置方法が、第1実施形態と異なっている。本実施形態の他の部分の構成および動作は、第1実施形態と同様である。なお、上記の第1~3実施形態の各部が任意に組み合わせられてもよい。
Fourth embodiment:
FIG. 11 is a diagram for explaining a semiconductor device A4 according to a fourth embodiment of the present disclosure. FIG. 11 is a cross-sectional view showing the semiconductor device A4, and corresponds to FIG. 5. As shown in FIG. The semiconductor device A4 according to the fourth embodiment differs from the first embodiment in the arrangement method of the wiring board 2 and the wiring board 3. The configuration and operation of other parts of this embodiment are similar to those of the first embodiment. Note that each part of the first to third embodiments described above may be combined arbitrarily.
 本実施形態では、配線基板2は、半導体装置A1の場合と比較して、第1方向yの寸法が大きい。配線基板3は、配線基板2の厚さ方向zの第1側z1で、配線基板2の第1方向yの第2側y2寄りに配置されている。配線基板3は、厚さ方向zに視て全体が配線基板2に重なっている。配線基板3は、裏面導電部33を備えておらず、基材31の裏面312が、配線基板2の基材21の主面211に接合されている。 In this embodiment, the wiring board 2 has a larger dimension in the first direction y than that of the semiconductor device A1. The wiring board 3 is disposed on the first side z1 of the wiring board 2 in the thickness direction z and closer to the second side y2 of the wiring board 2 in the first direction y. The entire wiring board 3 overlaps the wiring board 2 when viewed in the thickness direction z. The wiring board 3 does not include the back conductive portion 33, and the back surface 312 of the base material 31 is joined to the main surface 211 of the base material 21 of the wiring board 2.
 本実施形態においても、半導体装置A4は、配線基板2および配線基板3を備えているので、半導体チップ4が発する熱の放熱と、駆動装置5への導通経路の細線化および高密度化とを、両立できる。また、半導体装置A4は、半導体装置A1と共通する構成をとることにより、半導体装置A1と同等の効果を奏する。さらに、半導体装置A4は、配線基板2の第1方向yの寸法が大きいので、樹脂裏面82から露出する裏面導電部23の面積も大きい。これにより、半導体装置A4は、半導体チップ4から配線基板2に伝わった熱を、より効率よく外部に放熱できる。 Also in this embodiment, since the semiconductor device A4 includes the wiring board 2 and the wiring board 3, it is possible to dissipate the heat generated by the semiconductor chip 4 and to thin and increase the density of the conduction path to the drive device 5. , can be compatible. In addition, the semiconductor device A4 has the same configuration as the semiconductor device A1, and thus achieves the same effects as the semiconductor device A1. Further, in the semiconductor device A4, since the wiring board 2 has a large dimension in the first direction y, the area of the back conductive portion 23 exposed from the resin back surface 82 is also large. Thereby, the semiconductor device A4 can more efficiently radiate heat transferred from the semiconductor chip 4 to the wiring board 2 to the outside.
 第5実施形態:
 図12は、本開示の第5実施形態に係る半導体装置A5を説明するための図である。図12は、半導体装置A5を示す部分拡大平面図であり、図3に対応する図の一部を拡大した図である。なお、図12においては、封止樹脂8を省略している。第5実施形態に係る半導体装置A5は、配線基板2にもサーミスタが搭載されている点で、第1実施形態と異なっている。本実施形態の他の部分の構成および動作は、第1実施形態と同様である。なお、上記の第1~4実施形態の各部が任意に組み合わせられてもよい。
Fifth embodiment:
FIG. 12 is a diagram for explaining a semiconductor device A5 according to a fifth embodiment of the present disclosure. FIG. 12 is a partially enlarged plan view showing the semiconductor device A5, and is a partially enlarged view of the diagram corresponding to FIG. Note that in FIG. 12, the sealing resin 8 is omitted. The semiconductor device A5 according to the fifth embodiment differs from the first embodiment in that a thermistor is also mounted on the wiring board 2. The configuration and operation of other parts of this embodiment are similar to those of the first embodiment. Note that each part of the first to fourth embodiments described above may be combined arbitrarily.
 本実施形態では、半導体装置A5は、サーミスタ6cをさらに備えている。サーミスタ6cは、配線基板2に搭載され、基材21の主面211上に配置されている。本実施形態では、配線基板2の主面導電部22は、2個のパッド221aを含んでいる。2個のパッド221aは、基材21の主面211の第2方向xの中央で第1方向yの第2側y2の端部に、x方向に並んで互いに離間して配置されている。サーミスタ6cは、2個のパッド221aに跨って、各パッド221aに導通接合されている。また、本実施形態では、2本のワイヤ75をさらに備えている。ワイヤ75は、たとえば、金(Au)、銀(Ag)、銅(Cu)、またはアルミニウム(Al)等からなる。なお、ワイヤ75の材料および線径は限定されない。各ワイヤ75はそれぞれ、パッド221aと主面導電部32のパッド321とに導通接合されている。各ワイヤ75が接合されたパッド321はそれぞれ、配線322によって導通接続されたパッド321を介して、リード15に導通している。なお、主面導電部32のレイアウトは記載を省略している。サーミスタ6cは、所定の電流が流されて、配線基板2の温度に応じた電圧信号を出力する。 In this embodiment, the semiconductor device A5 further includes a thermistor 6c. The thermistor 6c is mounted on the wiring board 2 and arranged on the main surface 211 of the base material 21. In this embodiment, the main surface conductive portion 22 of the wiring board 2 includes two pads 221a. The two pads 221a are arranged in the x direction at the center of the main surface 211 of the base material 21 in the second direction x, at the end of the second side y2 in the first direction y, and spaced apart from each other in the x direction. The thermistor 6c straddles the two pads 221a and is electrically connected to each pad 221a. Moreover, in this embodiment, two wires 75 are further provided. The wire 75 is made of, for example, gold (Au), silver (Ag), copper (Cu), or aluminum (Al). Note that the material and wire diameter of the wire 75 are not limited. Each wire 75 is electrically connected to the pad 221a and the pad 321 of the main surface conductive portion 32, respectively. The pads 321 to which each wire 75 is bonded are electrically connected to the leads 15 via the pads 321 electrically connected by wiring 322, respectively. Note that the layout of the main surface conductive portion 32 is not described. A predetermined current is passed through the thermistor 6c, and the thermistor 6c outputs a voltage signal according to the temperature of the wiring board 2.
 本実施形態においても、半導体装置A5は、配線基板2および配線基板3を備えているので、半導体チップ4が発する熱の放熱と、駆動装置5への導通経路の細線化および高密度化とを、両立できる。また、半導体装置A5は、半導体装置A1と共通する構成をとることにより、半導体装置A1と同等の効果を奏する。さらに、半導体装置A5は、サーミスタ6cを備えているので、配線基板2の温度を検出することができる。 Also in this embodiment, since the semiconductor device A5 includes the wiring board 2 and the wiring board 3, it is possible to dissipate the heat generated by the semiconductor chip 4 and to thin and increase the density of the conduction path to the drive device 5. , can be compatible. In addition, the semiconductor device A5 has the same configuration as the semiconductor device A1, and thus achieves the same effects as the semiconductor device A1. Further, since the semiconductor device A5 includes the thermistor 6c, the temperature of the wiring board 2 can be detected.
 なお、本実施形態では、半導体装置A5が、配線基板2の温度を検出するためのサーミスタ6cを1個だけ備えている場合について説明したが、これに限られない。半導体装置A5は、たとえば4個のサーミスタ6cを備え、各サーミスタ6cがそれぞれ半導体チップ4に隣接して配置されてもよい。この場合、各サーミスタ6cはそれぞれ、隣接した半導体チップ4の温度を検出できる。 Note that in this embodiment, a case has been described in which the semiconductor device A5 includes only one thermistor 6c for detecting the temperature of the wiring board 2, but the present invention is not limited to this. The semiconductor device A5 may include, for example, four thermistors 6c, and each thermistor 6c may be arranged adjacent to the semiconductor chip 4. In this case, each thermistor 6c can detect the temperature of the adjacent semiconductor chip 4.
 本開示に係る半導体装置は、先述した実施形態に限定されるものではない。本開示に係る半導体装置の各部の具体的な構成は、種々に設計変更自在である。本開示は以下の付記に記載された実施形態を含む。 The semiconductor device according to the present disclosure is not limited to the embodiments described above. The specific configuration of each part of the semiconductor device according to the present disclosure can be changed in design in various ways. The present disclosure includes the embodiments described in the appendix below.
 付記1.
 厚さ方向(z)において互いに反対側を向く第1主面(211)および第1裏面(212)を有する第1基材(21)と、
 前記第1主面上に配置された導電性を有する第1主面導電部(22)と、
 前記厚さ方向において前記第1主面と同じ側を向く第2主面(311)および前記第1裏面と同じ側を向く第2裏面(312)を有する第2基材(31)と、
 前記第2主面上に配置された導電性を有する第2主面導電部(32)と、
 前記第1主面上に配置されて前記第1主面導電部に導通接続されたスイッチング素子(4)と、
 前記第2主面上に配置されて前記第2主面導電部に導通接続され、かつ、前記スイッチング素子を駆動させる駆動装置(5)と、
 前記第1基材および前記第2基材の少なくとも一部と、前記スイッチング素子および前記駆動装置の全体と、を覆う封止樹脂(8)と、
を備えている、半導体装置(A1)。
 付記2.(図6)
 前記第1主面導電部の前記厚さ方向の第1寸法(T1)は、前記第2主面導電部の前記厚さ方向の第2寸法(T2)より大きい、付記1に記載の半導体装置。
 付記3.
 前記第1基材は、前記第2基材より熱伝導性が高い、付記1または2に記載の半導体装置。
 付記4.
 前記第1基材は、窒化アルミニウムを含んでいる、付記1ないし3のいずれかに記載の半導体装置。
 付記5.
 前記第2基材は、アルミナを含んでいる、付記1ないし4のいずれかに記載の半導体装置。
 付記6.
 前記第2基材は、合成樹脂を含んでいる、付記1ないし4のいずれかに記載の半導体装置。
 付記7.
 前記第2基材は、前記第1基材に対して、前記厚さ方向に直交する第1方向(y)に配置されている、付記1ないし6のいずれかに記載の半導体装置。
 付記8.
 前記第2裏面上に配置された導電性を有する第2裏面導電部(33)をさらに備え、
 前記第2裏面導電部は、前記封止樹脂から露出している、付記7に記載の半導体装置。
 付記9.(第3実施形態、図10)
 前記第2裏面上に配置された裏面電子部品(6)をさらに備え、
 前記裏面電子部品は、前記封止樹脂に覆われている、付記7に記載の半導体装置。
 付記10.(第4実施形態、図11)
 前記第2基材は、前記第1基材に対して、前記厚さ方向に配置されている、付記1ないし6のいずれかに記載の半導体装置。
 付記11.
 前記第1裏面上に配置された導電性を有する第1裏面導電部(23)をさらに備え、
 前記第1裏面導電部は、前記封止樹脂から露出している、付記1ないし10のいずれかに記載の半導体装置。
 付記12.
 前記駆動装置は、絶縁ゲートドライバである、付記1ないし11のいずれかに記載の半導体装置。
 付記13.(第5実施形態、図12)
 前記第1主面上に配置された第1温度検出部(6c)をさらに備えている、付記1ないし12のいずれかに記載の半導体装置。
 付記14.
 前記第2主面上に配置された第2温度検出部(6b)をさらに備えている、付記1ないし13のいずれかに記載の半導体装置。
Additional note 1.
a first base material (21) having a first main surface (211) and a first back surface (212) facing oppositely to each other in the thickness direction (z);
a first main surface conductive part (22) having electrical conductivity disposed on the first main surface;
a second base material (31) having a second main surface (311) facing the same side as the first main surface in the thickness direction and a second back surface (312) facing the same side as the first back surface;
a second main surface conductive part (32) having electrical conductivity disposed on the second main surface;
a switching element (4) disposed on the first main surface and electrically connected to the first main surface conductive part;
a drive device (5) disposed on the second main surface, electrically connected to the second main surface conductive part, and driving the switching element;
a sealing resin (8) that covers at least a portion of the first base material and the second base material, and the entire switching element and the drive device;
A semiconductor device (A1) comprising:
Appendix 2. (Figure 6)
The semiconductor device according to Supplementary Note 1, wherein the first dimension (T1) of the first main surface conductive part in the thickness direction is larger than the second dimension (T2) of the second main surface conductive part in the thickness direction. .
Appendix 3.
The semiconductor device according to appendix 1 or 2, wherein the first base material has higher thermal conductivity than the second base material.
Appendix 4.
The semiconductor device according to any one of Supplementary Notes 1 to 3, wherein the first base material contains aluminum nitride.
Appendix 5.
5. The semiconductor device according to any one of appendices 1 to 4, wherein the second base material contains alumina.
Appendix 6.
5. The semiconductor device according to any one of appendices 1 to 4, wherein the second base material contains a synthetic resin.
Appendix 7.
7. The semiconductor device according to any one of appendices 1 to 6, wherein the second base material is disposed in a first direction (y) perpendicular to the thickness direction with respect to the first base material.
Appendix 8.
further comprising a second back conductive portion (33) having conductivity disposed on the second back surface,
The semiconductor device according to appendix 7, wherein the second back conductive portion is exposed from the sealing resin.
Appendix 9. (Third embodiment, FIG. 10)
further comprising a backside electronic component (6) disposed on the second backside,
The semiconductor device according to appendix 7, wherein the back side electronic component is covered with the sealing resin.
Appendix 10. (Fourth embodiment, FIG. 11)
7. The semiconductor device according to any one of appendices 1 to 6, wherein the second base material is disposed in the thickness direction with respect to the first base material.
Appendix 11.
further comprising a first back conductive portion (23) having conductivity disposed on the first back surface,
11. The semiconductor device according to any one of appendices 1 to 10, wherein the first back conductive portion is exposed from the sealing resin.
Appendix 12.
12. The semiconductor device according to any one of Supplementary Notes 1 to 11, wherein the driving device is an insulated gate driver.
Appendix 13. (Fifth embodiment, FIG. 12)
The semiconductor device according to any one of appendices 1 to 12, further comprising a first temperature detection section (6c) arranged on the first main surface.
Appendix 14.
14. The semiconductor device according to any one of appendices 1 to 13, further comprising a second temperature detection section (6b) disposed on the second main surface.
A1,A2,A3,A4,A5:半導体装置
1,11,12,15,16:リード
111:接合部分    111a:主面
111b:裏面    112:突出部分
113:傾斜接続部分    114:平行接続部分
151:接合部分    151a:主面
151b:裏面    152:突出部分
153:傾斜接続部分    154:平行接続部分
2:配線基板    21:基材
211:主面    212:裏面
22:主面導電部    221,221a:パッド
222:配線    23:裏面導電部
3:配線基板    31:基材
311:主面    312:裏面
32:主面導電部    321:パッド
322:配線    33:裏面導電部
331:パッド    332:配線
4:半導体チップ    41:素子主面
42:素子裏面    43:ソース電極
44:ゲート電極    45:ドレイン電極
5:駆動装置    6:受動素子
6a:シャント抵抗    6b,6c:サーミスタ
7,71~75:ワイヤ    76:導電性接合材
8:封止樹脂    81:樹脂主面
82:樹脂裏面    83:樹脂側面
A1, A2, A3, A4, A5: Semiconductor device 1, 11, 12, 15, 16: Lead 111: Joint portion 111a: Main surface 111b: Back surface 112: Projecting portion 113: Inclined connection portion 114: Parallel connection portion 151: Joint portion 151a: Main surface 151b: Back surface 152: Protruding portion 153: Slanted connection portion 154: Parallel connection portion 2: Wiring board 21: Base material 211: Main surface 212: Back surface 22: Main surface conductive portion 221, 221a: Pad 222 : Wiring 23: Back conductive part 3: Wiring board 31: Base material 311: Main surface 312: Back surface 32: Main surface conductive part 321: Pad 322: Wiring 33: Back conductive part 331: Pad 332: Wiring 4: Semiconductor chip 41 : Element principal surface 42: Element back surface 43: Source electrode 44: Gate electrode 45: Drain electrode 5: Drive device 6: Passive element 6a: Shunt resistor 6b, 6c: Thermistor 7, 71 to 75: Wire 76: Conductive bonding material 8: Sealing resin 81: Resin main surface 82: Resin back surface 83: Resin side surface

Claims (14)

  1.  厚さ方向において互いに反対側を向く第1主面および第1裏面を有する第1基材と、
     前記第1主面上に配置された導電性を有する第1主面導電部と、
     前記厚さ方向において前記第1主面と同じ側を向く第2主面および前記第1裏面と同じ側を向く第2裏面を有する第2基材と、
     前記第2主面上に配置された導電性を有する第2主面導電部と、
     前記第1主面上に配置されて前記第1主面導電部に導通接続されたスイッチング素子と、
     前記第2主面上に配置されて前記第2主面導電部に導通接続され、かつ、前記スイッチング素子を駆動させる駆動装置と、
     前記第1基材および前記第2基材の少なくとも一部と、前記スイッチング素子および前記駆動装置の全体と、を覆う封止樹脂と、
    を備えている、半導体装置。
    a first base material having a first main surface and a first back surface facing opposite to each other in the thickness direction;
    a first main surface conductive portion having electrical conductivity disposed on the first main surface;
    a second base material having a second main surface facing the same side as the first main surface in the thickness direction and a second back surface facing the same side as the first back surface;
    a second main surface conductive portion having electrical conductivity disposed on the second main surface;
    a switching element disposed on the first main surface and electrically connected to the first main surface conductive part;
    a driving device disposed on the second main surface, electrically connected to the second main surface conductive portion, and driving the switching element;
    a sealing resin that covers at least a portion of the first base material and the second base material, and the entire switching element and the drive device;
    A semiconductor device equipped with
  2.  前記第1主面導電部の前記厚さ方向の第1寸法は、前記第2主面導電部の前記厚さ方向の第2寸法より大きい、請求項1に記載の半導体装置。 The semiconductor device according to claim 1, wherein the first dimension in the thickness direction of the first main surface conductive portion is larger than the second dimension in the thickness direction of the second main surface conductive portion.
  3.  前記第1基材は、前記第2基材より熱伝導性が高い、請求項1または2に記載の半導体装置。 3. The semiconductor device according to claim 1, wherein the first base material has higher thermal conductivity than the second base material.
  4.  前記第1基材は、窒化アルミニウムを含んでいる、請求項1ないし3のいずれかに記載の半導体装置。 4. The semiconductor device according to claim 1, wherein the first base material contains aluminum nitride.
  5.  前記第2基材は、アルミナを含んでいる、請求項1ないし4のいずれかに記載の半導体装置。 5. The semiconductor device according to claim 1, wherein the second base material contains alumina.
  6.  前記第2基材は、合成樹脂を含んでいる、請求項1ないし4のいずれかに記載の半導体装置。 5. The semiconductor device according to claim 1, wherein the second base material contains a synthetic resin.
  7.  前記第2基材は、前記第1基材に対して、前記厚さ方向に直交する第1方向に配置されている、請求項1ないし6のいずれかに記載の半導体装置。 7. The semiconductor device according to claim 1, wherein the second base material is arranged in a first direction perpendicular to the thickness direction with respect to the first base material.
  8.  前記第2裏面上に配置された導電性を有する第2裏面導電部をさらに備え、
     前記第2裏面導電部は、前記封止樹脂から露出している、請求項7に記載の半導体装置。
    further comprising a second back conductive portion having conductivity disposed on the second back surface,
    8. The semiconductor device according to claim 7, wherein the second back conductive portion is exposed from the sealing resin.
  9.  前記第2裏面上に配置された裏面電子部品をさらに備え、
     前記裏面電子部品は、前記封止樹脂に覆われている、請求項7に記載の半導体装置。
    further comprising a backside electronic component disposed on the second backside,
    8. The semiconductor device according to claim 7, wherein the backside electronic component is covered with the sealing resin.
  10.  前記第2基材は、前記第1基材に対して、前記厚さ方向に配置されている、請求項1ないし6のいずれかに記載の半導体装置。 7. The semiconductor device according to claim 1, wherein the second base material is arranged in the thickness direction with respect to the first base material.
  11.  前記第1裏面上に配置された導電性を有する第1裏面導電部をさらに備え、
     前記第1裏面導電部は、前記封止樹脂から露出している、請求項1ないし10のいずれかに記載の半導体装置。
    further comprising a first back conductive portion having conductivity disposed on the first back surface,
    11. The semiconductor device according to claim 1, wherein the first back conductive portion is exposed from the sealing resin.
  12.  前記駆動装置は、絶縁ゲートドライバである、請求項1ないし11のいずれかに記載の半導体装置。 12. The semiconductor device according to claim 1, wherein the driving device is an insulated gate driver.
  13.  前記第1主面上に配置された第1温度検出部をさらに備えている、請求項1ないし12のいずれかに記載の半導体装置。 The semiconductor device according to any one of claims 1 to 12, further comprising a first temperature detection section disposed on the first main surface.
  14.  前記第2主面上に配置された第2温度検出部をさらに備えている、請求項1ないし13のいずれかに記載の半導体装置。 The semiconductor device according to any one of claims 1 to 13, further comprising a second temperature detection section disposed on the second main surface.
PCT/JP2023/018745 2022-06-13 2023-05-19 Semiconductor device WO2023243306A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022095181 2022-06-13
JP2022-095181 2022-06-13

Publications (1)

Publication Number Publication Date
WO2023243306A1 true WO2023243306A1 (en) 2023-12-21

Family

ID=89191063

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/018745 WO2023243306A1 (en) 2022-06-13 2023-05-19 Semiconductor device

Country Status (1)

Country Link
WO (1) WO2023243306A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH098223A (en) * 1995-06-16 1997-01-10 Mitsubishi Electric Corp Semiconductor power module and its manufacture
JP2011054625A (en) * 2009-08-31 2011-03-17 Sanyo Electric Co Ltd Circuit device
JP2013058726A (en) * 2011-08-12 2013-03-28 Sanyo Electric Co Ltd Mounting substrate and circuit device using the same
JP2013074254A (en) * 2011-09-29 2013-04-22 Mitsubishi Electric Corp Semiconductor device and manufacturing method of the same
WO2014064822A1 (en) * 2012-10-26 2014-05-01 株式会社日立産機システム Power semiconductor module, and power conversion device provided with same
WO2015174198A1 (en) * 2014-05-13 2015-11-19 三菱電機株式会社 Semiconductor device and manufacturing method therefor
JP2022053848A (en) * 2020-09-25 2022-04-06 富士電機株式会社 Semiconductor device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH098223A (en) * 1995-06-16 1997-01-10 Mitsubishi Electric Corp Semiconductor power module and its manufacture
JP2011054625A (en) * 2009-08-31 2011-03-17 Sanyo Electric Co Ltd Circuit device
JP2013058726A (en) * 2011-08-12 2013-03-28 Sanyo Electric Co Ltd Mounting substrate and circuit device using the same
JP2013074254A (en) * 2011-09-29 2013-04-22 Mitsubishi Electric Corp Semiconductor device and manufacturing method of the same
WO2014064822A1 (en) * 2012-10-26 2014-05-01 株式会社日立産機システム Power semiconductor module, and power conversion device provided with same
WO2015174198A1 (en) * 2014-05-13 2015-11-19 三菱電機株式会社 Semiconductor device and manufacturing method therefor
JP2022053848A (en) * 2020-09-25 2022-04-06 富士電機株式会社 Semiconductor device

Similar Documents

Publication Publication Date Title
KR102585450B1 (en) Molded package with chip carrier comprising brazed electrically conductive layers
WO2021251126A1 (en) Semiconductor device
US7005734B2 (en) Double-sided cooling isolated packaged power semiconductor device
WO2021210402A1 (en) Semiconductor device
CN108735692B (en) Semiconductor device with a semiconductor device having a plurality of semiconductor chips
US20080029875A1 (en) Hermetically sealed semiconductor device module
US20230163078A1 (en) Semiconductor device
WO2021200337A1 (en) Electronic device
WO2021200336A1 (en) Electronic device
JP2015005681A (en) Semiconductor device and method of manufacturing the same
JP7238330B2 (en) Semiconductor device and method for manufacturing semiconductor device
JP2017107937A (en) Power semiconductor device
JP2021190505A (en) Semiconductor device
CN113228265A (en) Circuit structure of semiconductor assembly
JPH0738013A (en) Composite base member and power semiconductor device
JP2021158232A (en) Semiconductor module
JP2735912B2 (en) Inverter device
WO2021187018A1 (en) Semiconductor device
WO2023243306A1 (en) Semiconductor device
JP2019212809A (en) Semiconductor device
WO2021176996A1 (en) Semiconductor device and method for manufacturing semiconductor device
WO2021182016A1 (en) Semiconductor device
JPH09213877A (en) Multi-chip module semiconductor device
CN107154359B (en) Semiconductor package structure and manufacturing method thereof
WO2020184383A1 (en) Semiconductor device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23823607

Country of ref document: EP

Kind code of ref document: A1