WO2023241664A1 - 鱼雷罐保温盖和罐口中心定位方法 - Google Patents

鱼雷罐保温盖和罐口中心定位方法 Download PDF

Info

Publication number
WO2023241664A1
WO2023241664A1 PCT/CN2023/100487 CN2023100487W WO2023241664A1 WO 2023241664 A1 WO2023241664 A1 WO 2023241664A1 CN 2023100487 W CN2023100487 W CN 2023100487W WO 2023241664 A1 WO2023241664 A1 WO 2023241664A1
Authority
WO
WIPO (PCT)
Prior art keywords
center
torpedo tank
insulation cover
mouth
torpedo
Prior art date
Application number
PCT/CN2023/100487
Other languages
English (en)
French (fr)
Inventor
黄天茂
申晨
吴瑞珉
Original Assignee
宝山钢铁股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宝山钢铁股份有限公司 filed Critical 宝山钢铁股份有限公司
Publication of WO2023241664A1 publication Critical patent/WO2023241664A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J15/00Gripping heads and other end effectors
    • B25J15/06Gripping heads and other end effectors with vacuum or magnetic holding means
    • B25J15/0608Gripping heads and other end effectors with vacuum or magnetic holding means with magnetic holding means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D2/00Arrangement of indicating or measuring devices, e.g. for temperature or viscosity of the fused mass
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D41/00Casting melt-holding vessels, e.g. ladles, tundishes, cups or the like
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J15/00Gripping heads and other end effectors
    • B25J15/06Gripping heads and other end effectors with vacuum or magnetic holding means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1679Programme controls characterised by the tasks executed
    • B25J9/1692Calibration of manipulator
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1694Programme controls characterised by use of sensors other than normal servo-feedback from position, speed or acceleration sensors, perception control, multi-sensor controlled systems, sensor fusion
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/002Measuring arrangements characterised by the use of optical techniques for measuring two or more coordinates
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures

Definitions

  • the invention relates to a torpedo tank thermal insulation cover closing and positioning technology, and in particular to a torpedo tank thermal insulation cover and a tank mouth center positioning method.
  • a torpedo tank is a device used to hold and transport molten iron.
  • the torpedo tank is usually loaded on a special rail transport trolley. This rail transport trolley loading the torpedo tank is called a torpedo tank car.
  • the main role of torpedo tank cars is to transport molten iron smelted from the blast furnace of the ironmaking plant to the steelmaking plant.
  • the upper part of the torpedo tank is equipped with a tank mouth, and molten iron enters and exits the torpedo tank through the tank mouth.
  • an insulation cover is added to the mouth of the torpedo tank. The purpose is to reduce the energy consumption and exhaust gas of the torpedo tanker during the round-trip transportation. emission.
  • a manipulator device 1 is provided at both ends of the torpedo tanker transportation line (the ironmaking plant and the steelmaking plant)
  • the manipulator device 1 has a cantilever 11 that can move flexibly.
  • An electromagnetic chuck 12 is also provided on the free end of the cantilever 11. With the cantilever 11 and the electromagnetic chuck 12 on it, the manipulator 1 can flexibly move. Use ground suction to pick up and move the insulation cover 4.
  • the manipulator device 1 is arranged on a higher working platform, which is higher than the height of the torpedo tank 2 on the torpedo tank truck 3.
  • thermal insulation covers 4 There are several thermal insulation covers 4 stacked neatly next to the manipulator device 1. These thermal insulation covers 4 stacked together are called a stack of thermal insulation covers. Whenever the torpedo tank truck 3 is about to leave, the manipulator device 1 will pick up the insulation cover 4 on the insulation cover stack and close it on the can mouth 21 of the torpedo tank 2.
  • the electromagnetic chuck 12 should pick up the center of the thermal insulation cover 4 as much as possible. Otherwise, the center of gravity of the picked thermal insulation cover 4 will shift, and the robot device 1 cannot reliably pick up the thermal insulation cover. 4.
  • the manipulator device 1 closes the picked up thermal insulation cover 4 on the torpedo tank mouth 21, it should try to align the thermal insulation cover 4 with the center of the torpedo tank mouth 21. Otherwise, the thermal insulation cover 4 may not be completely covered. The situation of closing the torpedo tank mouth 21 may even lead to the abnormal falling of the insulation cover 4 in severe cases.
  • Chinese patent (CN110378957A) discloses a method and system for visual identification and positioning of torpedo tank cars for metallurgical operations, and specifically discloses the use of visual sensors to take photos and samples of insulation covers and tank mouths, extract feature data and obtain target features, and then By fitting the target features, the plane center coordinates of the insulation cover and the can mouth are obtained.
  • This method uses machine vision images. When processing the can mouth characteristics in this way, the detection data is easily affected by the high temperature and dust of the can mouth. Increase the difficulty of data processing.
  • Chinese patent (CN107200044A) discloses a method for positioning a molten iron torpedo tanker, and specifically discloses the positioning of a molten iron torpedo tanker through non-contact sensing of the temperature of the torpedo tank target.
  • the disadvantage of this method is that since the temperature of a certain area inside and outside the tank mouth wall is not very different, the scanning hot metal detector may trigger action in advance in a local area outside the tank mouth wall. Therefore, the positioning accuracy of this positioning method is not high. Only rough positioning is possible.
  • the object of the present invention is to provide a torpedo tank thermal insulation cover and a can mouth center positioning method, which can accurately position the torpedo tank thermal insulation cover and the center of the torpedo tank mouth, and realize easy and convenient.
  • a method for centrally positioning the thermal insulation cover of a torpedo tank includes:
  • control the contour scanning instrument to scan the torpedo tank insulation cover, and obtain the coordinate positions of three or more points on the circumferential contour of the torpedo tank insulation cover;
  • S3 Determine the coordinate position of the center of the torpedo tank thermal insulation cover according to the obtained coordinate position of the point on the circumferential contour of the torpedo tank thermal insulation cover.
  • the profile scanning instrument is a two-dimensional laser radar.
  • the line scanning plane of the two-dimensional lidar is perpendicular to the horizontal plane.
  • the scanning performed by the contour scanning instrument on the torpedo tank insulation cover is two off-center scans in different directions, and each off-center scan acquires the torpedo tank insulation cover.
  • the coordinate positions of two points on the circumferential outline, and the two off-center scans obtain the coordinate positions of four points on the circumferential outline of the torpedo tank insulation cover.
  • the coordinate position of the center of the torpedo tank insulation cover is determined based on the double-chord circle center determination method.
  • a method for positioning the center of the mouth of a torpedo tank includes:
  • S3 Determine the coordinate position of the center of the torpedo tank mouth according to the acquired coordinate position of the point on the circumferential outline of the torpedo tank mouth.
  • the profile scanning instrument is a two-dimensional laser radar.
  • the line scanning plane of the two-dimensional lidar is perpendicular to the horizontal plane.
  • the scan performed by the contour scanning instrument on the torpedo tank mouth is two off-center scans in different directions, and each off-center scan acquires the torpedo tank mouth.
  • the coordinate positions of two points on the circumferential outline, and the two off-center scans obtain the coordinate positions of four points on the circumferential outline of the torpedo tank mouth.
  • the coordinate position of the center of the torpedo tank mouth is determined based on the double-chord circle center determination method.
  • the contour scanning instrument is controlled to scan the thermal insulation cover and the torpedo tank mouth, and three or more points on the circumferential contours of the thermal insulation cover and the torpedo tank mouth are obtained.
  • the coordinate position of the point can be accurately positioned according to the obtained coordinate position of the point, that is, the center of the thermal insulation cover and the torpedo tank mouth can be accurately positioned.
  • the torpedo tank thermal insulation cover and the tank mouth center positioning method of the present invention have the beneficial effect that: the thermal insulation cover and the tank mouth center positioning method of the present invention can accurately position the center of the thermal insulation cover and the torpedo tank mouth, so as to Because the robot device can accurately pick up the center of the thermal insulation cover, and accurately close the picked thermal insulation cover on the mouth of the torpedo tank, this can prevent the center of gravity of the picked thermal insulation cover from shifting and ensure that the robot device can accurately position the thermal insulation cover. Reliable picking up to avoid the situation where the insulation cover cannot completely cover the mouth of the torpedo tank, and avoid the occurrence of abnormal falling of the insulation cover. In addition, during the implementation of the method, the amount of data that needs to be processed is extremely small, making it simple and convenient to implement.
  • Figure 1 is a schematic diagram of the manipulator device and the torpedo tank truck involved in the central positioning method of the torpedo tank insulation cover of the present invention
  • Figure 2 is a top view of the manipulator device and torpedo tanker
  • Figure 3 is a schematic diagram of a two-dimensional lidar scanning thermal insulation cover
  • Figure 4 is a schematic diagram of two-dimensional laser radar scanning the mouth of a torpedo tank.
  • Figure 5 is a schematic diagram of the torpedo tank insulation cover and the torpedo tank mouth being rectangular.
  • Figure 6 is a schematic diagram of the torpedo tank insulation cover and the torpedo tank mouth being in arbitrary shapes.
  • this embodiment 1 provides a method for positioning the center of a torpedo tank insulation cover.
  • the center positioning method of the torpedo tank insulation cover can accurately position the center of the torpedo tank insulation cover, and is simple and convenient to implement.
  • the center positioning method of the torpedo tank insulation cover in Embodiment 1 is implemented in an ironmaking plant of a steel company.
  • a manipulator device 1 is provided next to the torpedo tank truck transportation line in the ironmaking plant.
  • the manipulator device 1 has a cantilever 11 that can move flexibly, and an electromagnetic chuck 12 is provided on the free end of the cantilever 11. With the cantilever 11 and the electromagnetic chuck 12 on it, the manipulator device 1 can flexibly absorb, pick up and move the insulation cover. 4.
  • the manipulator device 1 is arranged on a higher working platform, which is higher than the height of the torpedo tank 2 on the torpedo tank truck 3. There are several thermal insulation covers 4 stacked neatly next to the manipulator device 1.
  • thermal insulation covers 4 stacked together are called a stack of thermal insulation covers. Whenever the torpedo tank truck 3 is about to leave, the manipulator device 1 will pick up the insulation cover 4 on the insulation cover stack and close it on the tank mouth 21 of the torpedo tank 2.
  • the center positioning method of the thermal insulation cover in Embodiment 1 includes the following steps S1 to S3.
  • a two-dimensional lidar 5 is added to the cantilever 11 of the manipulator device 1.
  • the two-dimensional lidar 5 can move flexibly with the cantilever 11.
  • the two-dimensional lidar 5 and the cantilever 11 The horizontal directions of the orientations are consistent.
  • the cantilever 11 faces the thermal insulation cover 4 in the horizontal direction, the two-dimensional lidar 5 can scan the thermal insulation cover 4 .
  • the line scanning plane of the two-dimensional lidar 5 (refer to the gray sector part in Figure 1) is perpendicular to the horizontal plane, which is beneficial to scanning and acquiring points on the circumferential contour of the thermal insulation cover 4.
  • the two-dimensional lidar 5 is an existing technology contour scanning instrument, which has the function of scanning the contour of an object.
  • the scanning laser emitted by the two-dimensional lidar 5 has strong penetrating power. Therefore, the two-dimensional lidar 5 has the advantage of not being affected by dust and high temperature.
  • the line scanning plane of the two-dimensional lidar 5 is a concept in the prior art, which can be understood as the plane swept by the laser scanning line emitted by the two-dimensional lidar 5 .
  • the gray sector-shaped part in Figure 1 represents the line scan plane of the two-dimensional lidar 5.
  • the manipulator device 1 before the torpedo tanker 3 filled with molten iron goes to the steelmaking plant, the manipulator device 1 must pick up the insulation cover from the stack. Take an insulating cover 4 and close it on the tank mouth 21 of the torpedo tank 2. Before the manipulator device 1 picks up the insulating cover 4, the two-dimensional laser radar 5 is controlled to scan the insulating cover 4 to obtain four of the circumferential contours of the insulating cover 4. The coordinate position of the point.
  • the "controlling the two-dimensional laser radar 5 to scan the thermal insulation cover 4 and obtaining the coordinate positions of four points on the circumferential outline of the thermal insulation cover 4" specifically means controlling the two-dimensional laser radar 5 to scan the thermal insulation cover 4 twice. Off-center scanning in different directions, each off-center scan obtains the coordinate positions of two points on the circumferential contour of the thermal insulation cover 4, and two off-center scans can obtain the coordinate positions of four points on the circumferential contour of the thermal insulation cover 4.
  • controlling the two-dimensional lidar 5 to scan the thermal insulation cover 4 and obtaining the coordinate positions of four points on the circumferential outline of the thermal insulation cover 4" specifically includes: Control 2
  • the two-dimensional lidar 5 faces (controls the direction of the cantilever 11) one side of the insulation cover 4 off-center, and then controls the two-dimensional lidar 5 to scan the insulation cover 4 once. This is the first off-center scan.
  • Off-center scanning obtains the coordinate positions of two points on the circumferential outline of the thermal insulation cover 4 (i.e., point A1 and point A2 in Figure 3); then controls the steering of the two-dimensional lidar 5 (controls the steering of the cantilever 11), so that the two-dimensional lidar 5 Move toward the other side of the thermal insulation cover 4 and deviate from the center, and then control the two-dimensional lidar 5 to scan the thermal insulation cover 4 again.
  • This second off-center scan acquires the thermal insulation cover 4 again.
  • the coordinate positions of the other two points on the circumferential outline i.e., point B1 and point B2 in Figure 3
  • two off-center scans obtain the coordinate positions of four points on the circumferential outline of the thermal insulation cover 4.
  • the two dotted lines in Figure 3 represent the two scanning paths of the two-dimensional lidar 5 on the thermal insulation cover 4, but are not limited to this. They may have intersection points with the circumferential outline of the thermal insulation cover 4, and finally the circumferential contour of the thermal insulation cover 4 can be obtained.
  • the coordinate positions of three points or more than three points are enough.
  • the two-dimensional lidar 5 is a device of the prior art.
  • the two-dimensional lidar 5 is used to scan the thermal insulation cover 4 to obtain the coordinate position of the point on the circumferential outline of the thermal insulation cover 4. This is prior art, and its implementation is as follows Those skilled in the art should know.
  • off-center scanning mentioned in this article means that the two-dimensional lidar 5 scans toward the part of the thermal insulation cover 4 (ie, the target object to be scanned) that is away from the center area (ie, the center area of the circle).
  • the position of the thermal insulation cover stack is preset, that is to say, the coordinate position of the center of the thermal insulation cover 4 on the thermal insulation cover stack can be roughly positioned, so for the thermal insulation cover 4
  • the center is preset with a reference center coordinate position, and the reference center coordinate position data is preset in the main control module of the manipulator device 1.
  • the center coordinate position of this reference serves as the datum.
  • the two-dimensional lidar 5 is installed on the cantilever 11 of the robot device 1, and the orientation of the two-dimensional lidar 5 is consistent with the orientation of the cantilever 11. Therefore, the two-dimensional lidar 5 is controlled direction, Its essence is to control the direction of the cantilever 11.
  • the circumferential contour of the thermal insulation cover 4 mentioned in this article refers to the contour of the circular periphery of the thermal insulation cover 4 .
  • the “determination of the coordinate position of the center of the thermal insulation cover 4 based on the obtained coordinate positions of the four points on the circumferential outline of the thermal insulation cover 4" is based on the "double-chord circle center determination method", which is the basic principle of analytical geometry "circle The intersection point of the perpendiculars of the two non-parallel chords is the center of the circle.”
  • the four points on the circumferential outline of the thermal insulation cover 4 are the four points A1, A2, B1, and B2 in Figure 3.
  • the line connecting the A1 point and the A2 point is a chord of the circumferential outline of the thermal insulation cover 4.
  • the line connecting point B1 and point B2 is another chord of the circumferential outline of the thermal insulation cover 4. Then determine the mid-perpendicular lines of the two chords.
  • the intersection point of the mid-perpendicular lines of the two chords can be determined as the center of the thermal insulation cover 4 (i.e. The center of the circumferential outline of the insulation cover 4).
  • the position of the center of the thermal insulation cover 4 is determined based on four points, but in other embodiments, the position of the center of the thermal insulation cover 4 can also be determined based on three points. According to the principles of analytic geometry, three points can determine a circle. More specifically, if a chord is connected between every two of the three points, then the three chords of the circumferential outline of the thermal insulation cover 4 can be determined, and the intersection point of the perpendicular lines of any two chords can be determined as the thermal insulation cover 4 center of.
  • this application does not limit the specific number of scans of the two-dimensional laser radar 5 , as long as the two-dimensional laser radar 5 is controlled to scan to obtain the circumferential contour of the thermal insulation cover 4
  • the coordinate positions of three or more points can be determined based on these points and the "double chord circle center determination method" to determine the coordinate position of the center of the insulation cover 4.
  • all coordinate positions mentioned are coordinate positions based on the basic coordinate system of the manipulator device 1 , and after the two-dimensional lidar 5 is pre-calibrated, the coordinate data obtained by scanning is based on the manipulator device 1 The coordinate data of the basic coordinate system.
  • the coordinate positions can also be based on other coordinate systems, such as the work area coordinate system (a coordinate system specially used for positioning in the work area), the basic coordinate system of the two-dimensional lidar 5, as long as all coordinate positions are Just be based on the same coordinate system.
  • the positioning of the center of the thermal insulation cover 4 is essentially the positioning of the horizontal plane coordinates. Therefore, the mentioned coordinate positions are all horizontal plane coordinate data ignoring the vertical coordinate data, that is, in “according to the thermal insulation cover 4 The vertical coordinate data is not considered in the process of "determining the coordinate position of the center of the thermal insulation cover 4" from the coordinate position of the point on the circumferential outline.
  • a two-dimensional laser radar 5 is used to scan and obtain the coordinate positions of points on the circumferential contour of the thermal insulation cover 4 .
  • other forms of contour scanning instruments can also be used to implement the two-dimensional laser radar 5
  • the function is as long as the coordinate position of the point on the circumferential outline of the thermal insulation cover 4 can be scanned and obtained.
  • the center positioning method of the torpedo tank insulation cover in Embodiment 1 is set in the main control module of the manipulator device 1 in the form of a program. Before the manipulator device 1 controls to pick up the heat preservation cover 4, the main control module of the manipulator device 1 The module executes the program to implement the center positioning method of the torpedo tank insulation cover in Embodiment 1, thereby determining the center of the insulation cover 4 .
  • this embodiment 2 provides a method for positioning the center of the mouth of a torpedo tank.
  • the basic concept of the method for positioning the center of the mouth of a torpedo tank is consistent with the method for positioning the center of the insulation cover in embodiment 1.
  • the center point of the circumferential outline is determined by the double-chord circle center determination method.
  • the target object for determining the center point is the mouth 21 of the torpedo tank 2 .
  • the method for positioning the center of the torpedo tank mouth in the second embodiment can accurately position the center of the torpedo tank mouth, and is simple and convenient to implement.
  • Embodiment 2 the implementation scenario of the torpedo tank mouth center positioning method in Embodiment 2 is consistent with Embodiment 1.
  • the torpedo tank mouth center positioning method of this embodiment 2 includes the following steps S1 to S3.
  • a two-dimensional lidar 5 is added to the cantilever 11 of the manipulator device 1.
  • the two-dimensional lidar 5 is consistent with the two-dimensional lidar 5 in the first embodiment.
  • the manipulator device 1 will pick up an insulation cover 4 from the insulation cover stack and close it on the torpedo tank mouth 21, and the manipulator device 1 will pick up the insulation cover 4. 4.
  • the two-dimensional laser radar 5 is controlled to scan the mouth 21 of the torpedo tank 2, and the coordinate positions of four points on the circumferential outline of the mouth 21 of the torpedo tank 2 are obtained.
  • the "controlling the two-dimensional lidar 5 to scan the mouth 21 of the torpedo tank 2 and obtaining the coordinate positions of four points on the circumferential outline of the mouth 21 of the torpedo tank 2" specifically means controlling the two-dimensional lidar. 5. Perform two off-center scans in different directions on the tank mouth 21 of the torpedo tank 2. Each off-center scan obtains the coordinate positions of two points on the circumferential outline of the tank mouth 21 of the torpedo tank 2. Two off-center scans can Obtain the coordinate positions of four points on the circumferential outline of the tank mouth 21 of the torpedo tank 2.
  • control two-dimensional laser radar 5 scans the tank mouth 21 of the torpedo tank 2, and obtains the coordinate positions of four points on the circumferential outline of the tank mouth 21 of the torpedo tank 2 ”, which specifically includes: controlling the direction of the two-dimensional lidar 5 (controlling the direction of the cantilever 11) to one side of the tank mouth 21 of the torpedo tank 2 deviating from the center, The two-dimensional lidar 5 is then controlled to scan the mouth 21 of the torpedo tank 2 once, which is the first off-center scan.
  • the first off-center scan acquires two points on the circumferential outline of the mouth 21 of the torpedo tank 2 (i.e., point C1 and point C2 in Figure 4); then control the steering of the two-dimensional lidar 5 (control the steering of the cantilever 11), so that the two-dimensional lidar 5 deviates toward the other side of the tank mouth 21 of the torpedo tank 2 central part, and then control the two-dimensional laser radar 5 to scan the tank mouth 21 of the torpedo tank 2 again, which is the second off-center scan.
  • This second off-center scan obtains the circumference of the tank mouth 21 of the torpedo tank 2 again.
  • the coordinate positions of the other two points on the contour i.e., point D1 and point D2 in Figure 4
  • two off-center scans obtain the coordinate positions of four points on the circumferential contour of the tank mouth 21 of the torpedo tank 2.
  • the two dotted lines in Figure 4 represent the two scanning paths of the two-dimensional lidar 5 on the mouth 21 of the torpedo tank 2, but are not limited thereto. They may have intersection points with the circumferential outline of the mouth 21 of the torpedo tank 2.
  • the coordinate positions of three points or more on the circumferential outline of the tank mouth 21 of the torpedo tank 2 can be obtained.
  • the two-dimensional lidar 5 is a device in the prior art.
  • the two-dimensional lidar 5 is used to scan the mouth 21 of the torpedo tank 2 to obtain the coordinate position of the point on the circumferential outline of the mouth 21 of the torpedo tank 2. This is The existing technology and its implementation should be known to those skilled in the art.
  • the off-center scanning mentioned in this article means that the two-dimensional laser radar 5 is oriented toward the position of the tank mouth 21 of the torpedo tank 2 (i.e., the target object to be scanned) deviated from the central area (i.e., the center area of the circle). scanning.
  • the position of the mouth 21 of the torpedo tank 2 is predetermined, that is to say, the coordinate position of the center of the mouth 21 of the torpedo tank 2 can be roughly located, so for the torpedo tank 2
  • the center of the tank mouth 21 is preset with a reference center coordinate position.
  • the reference center coordinate position data is preset in the main control module of the manipulator device 1.
  • the center coordinate position of the reference is used as the benchmark.
  • the two-dimensional lidar 5 is installed on the cantilever 11 of the robot device 1, and the orientation of the two-dimensional lidar 5 is consistent with the orientation of the cantilever 11. Therefore, the two-dimensional lidar 5 is controlled The essence is to control the direction of the cantilever 11.
  • the circumferential profile of the tank mouth 21 of the torpedo tank 2 mentioned in this article refers to the circular peripheral profile of the tank mouth 21 of the torpedo tank 2 .
  • the four points on the circumferential outline of the tank mouth 21 of the torpedo tank 2 are as shown in Figure 4 as C1, C2, D1, and D2.
  • the line connecting the C1 point and the C2 point is the torpedo tank 2 A chord of the circumferential outline of the tank mouth 21 of the torpedo tank 2, and the line connecting the D1 point and the D2 point is another chord of the circumferential outline of the tank mouth 21 of the torpedo tank 2, and then determine the mid-perpendicular lines of the two chords, and the mid-vertical lines of the two chords.
  • the intersection point of the lines can be determined as the center of the mouth 21 of the torpedo tank 2 (that is, the center of the circumferential outline of the mouth 21 of the torpedo tank 2).
  • the position of the center of the mouth 21 of the torpedo tank 2 is determined based on four points.
  • the center of the mouth 21 of the torpedo tank 2 can also be determined based on three points.
  • Location According to the principles of analytic geometry, three points can determine a circle. More specifically, if a chord is connected between every two points of the three points, then the three chords of the circumferential outline of the tank mouth 21 of the torpedo tank 2 can be determined, and the intersection point of the mid-perpendicular lines of any two chords can be determined. is the center of the tank mouth 21 of the torpedo tank 2.
  • this application does not limit the specific number of scans of the two-dimensional lidar 5, as long as the two-dimensional lidar 5 is controlled to scan to obtain the tank mouth 21 of the torpedo tank 2 Based on the coordinate positions of three or more points on the circumferential outline, the coordinate position of the center of the mouth 21 of the torpedo tank 2 can be determined based on these points and the "double-chord circle center determination method".
  • all mentioned coordinate positions are coordinate positions based on the basic coordinate system of the manipulator device 1 , and after the two-dimensional lidar 5 is pre-calibrated, the coordinate data obtained by scanning is based on the manipulator device 1
  • the coordinate data of the basic coordinate system may also be based on other coordinate systems, such as the work area coordinate system and the basic coordinate system of the two-dimensional lidar 5 , as long as all coordinate positions are based on the same coordinate system.
  • the positioning of the center of the tank mouth 21 of the torpedo tank 2 is essentially the positioning of the horizontal plane coordinates.
  • the mentioned coordinate positions are all horizontal plane coordinate data ignoring the vertical coordinate data, that is, in "
  • the vertical coordinate data is not considered in the process of "determining the center coordinate position of the tank mouth 21 of the torpedo tank 2 based on the coordinate positions of the points on the circumferential outline of the tank mouth 21 of the torpedo tank 2.”
  • the two-dimensional laser radar 5 is used to scan and obtain the coordinate positions of points on the circumferential contour of the tank mouth 21 of the torpedo tank 2.
  • other forms of contour scanning instruments can also be used to realize the two-dimensional scanning.
  • the function of the dimensional lidar 5 is as long as it can scan and obtain the coordinate positions of points on the circumferential outline of the tank mouth 21 of the torpedo tank 2 .
  • the can mouth center positioning method of the second embodiment is set in the main control module of the manipulator device 1 in the form of a program.
  • the manipulator device 1 closes the picked thermal insulation cover 4 on the can mouth 21 of the torpedo tank 2 Before that, the main control module of the manipulator device 1 executes the program to implement the torpedo tank mouth center positioning method in the second embodiment, thereby determining the center of the tank mouth 21 of the torpedo tank 2 .
  • the center of the thermal insulation cover 4 can be accurately positioned before picking up the thermal insulation cover 4 , so that the robot device 1 can accurately pick up the center of the thermal insulation cover 4 . This prevents the center of gravity of the picked thermal insulation cover 4 from shifting and ensures that the robot device 1 can reliably pick up the thermal insulation cover 4 .
  • the center of the tank mouth 21 of the torpedo tank 2 can be accurately positioned before the thermal insulation cover 4 is closed on the tank mouth 21 of the torpedo tank 2, so that the manipulator device 1 can position the tank mouth center.
  • the picked up thermal insulation cover 4 is accurately closed on the mouth 21 of the torpedo tank 2, thereby avoiding the situation that the thermal insulation cover 4 cannot completely cover the jar mouth 21 of the torpedo tank 2, and preventing the abnormal falling of the thermal insulation cover 4. .
  • the coordinate data of four points are obtained by scanning the thermal insulation cover 4.
  • the mouth of the torpedo tank 2 is The 21 scan also obtains the coordinate data of four points.
  • the coordinate data of the center of the insulation cover 4 and the center of the mouth 21 of the torpedo tank 2 are determined only based on the coordinate data of these eight points.
  • the amount of data processing is very small, and it is simple and convenient to implement. , the data processing speed is also faster.
  • the present invention does not limit the shape of the thermal insulation cover 4 and the tank mouth 21 of the torpedo tank 2.
  • the shape of the circle in Embodiment 1 and Embodiment 2 can also be other shapes, and they can all be shaped by contours.
  • a scanning instrument such as a two-dimensional lidar 5, scans and determines the center position of the thermal insulation cover 4 and the tank mouth 21 of the torpedo tank 2 based on the scanned coordinate points.
  • the installation position and implementation steps of the two-dimensional lidar 5 are the same as those in the above-mentioned embodiment 1.
  • the only difference is the basis for determining the center of the insulation cover 4 of the torpedo tank 2 in step S3
  • the method specifically, when the shape of the thermal insulation cover 4 of the torpedo tank 2 in Figure 1 is the rectangle shown in Figure 5, use the two-dimensional lidar 2 to scan 4 times along the dotted line shown in Figure 5, and obtain 4 times respectively.
  • the L1 scan line and the outline edge of the rectangle intersect at points P1 and P2, the L2 scan line and the outline edge of the rectangle intersect at points P3 and P4, the L3 scan line and the outline edge of the rectangle intersect at points P5 and P6, and the L4 scan line intersects with the outline edge of the rectangle at points P5 and P6. It intersects with the outline edge of the rectangle at points P7 and P8.
  • Points P2 and P4 determine the straight line L P2P4 .
  • Points P3 and P7 determine the straight line L P3P7 .
  • P1 and P5 determines the straight line L P1P5
  • points P6 and P8 determine the straight line L P6P8 .
  • the intersection point of the extension line of straight line L P2P4 and the extension line of straight line L P3P7 is a2
  • the intersection point of the extension line of straight line L P2P4 and the extension line of straight line L P1P5 is a1
  • the extension line of straight line L P6P8 and the extension of straight line L P1P5 is a3
  • the intersection point of the extension line of the straight line L P6P8 and the extension line of the straight line L P3P7 is a4.
  • Construct straight lines La1a4 and La2a3 and the intersection of the two straight lines is the center point P of the rectangular pouring mouth.
  • the center of the thermal insulation cover 4 of the torpedo tank 2 is confirmed, the center of the tank mouth 21 of the torpedo tank 2 is confirmed.
  • the shape of the tank mouth 21 of the torpedo tank 2 in Figure 1 is a rectangle as shown in Figure 5, two of them
  • the installation position and implementation steps of the three-dimensional lidar 5 are the same as those in the above-mentioned embodiment 2.
  • the only difference is the method based on determining the center of the tank mouth 21 of the torpedo tank 2 in step S3. This method is the same as the insulation cover of the torpedo tank 2.
  • the confirmation methods of 4 centers are the same and will not be described here.
  • the installation position and implementation steps of the two-dimensional lidar 5 are the same as those in the above-mentioned embodiment 1. The only difference is the basis for determining the center of the insulation cover 4 of the torpedo tank 2 in step S3 Methods.
  • the two-dimensional laser radar 5 is used to scan the thermal insulation cover 4 of the torpedo tank 2. It is assumed that the thermal insulation cover 4 of the torpedo tank 2 is scanned once every angle ⁇ . This application calculates the angle The specific value of ⁇ is not limited, and it can be greater than 0°.
  • the coordinates (x, y) of the two endpoints of the single scan line segment are obtained. Assume that the two-dimensional lidar 5 is rotated clockwise, and the adjacent endpoints are rotated clockwise or counterclockwise. By connecting with broken lines in the clockwise direction, a contour diagram composed of the scanned point cloud of the thermal insulation cover 4 of the torpedo tank 2 can be obtained.
  • A1 to An are the coordinate points of the contour edge point cloud.
  • the center point position of the thermal insulation cover 4 of the torpedo tank 2 can be calculated.
  • the method based on determining the center of the thermal insulation cover 4 of the torpedo tank 2 in step S3 is theorem 1 for calculating the center of gravity of the contour section and theorem 2 for calculating the area of the contour section.
  • + is taken when the ⁇ A1A2A3 boundary forms a counterclockwise loop
  • - is taken when it is clockwise.
  • the position of the above-mentioned center of gravity is the center position of the thermal insulation cover 4 of the torpedo tank 2.
  • the center of the thermal insulation cover 4 of the torpedo tank 2 is confirmed, the center of the tank mouth 21 of the torpedo tank 2 is confirmed.
  • the installation position and implementation steps of the two-dimensional laser radar 5 are the same as those in the above-mentioned embodiment 2. The only difference is the steps.
  • the method based on determining the center of the tank mouth 21 of the torpedo tank 2 in S3 is the same as the method for confirming the center of the thermal insulation cover 4 of the torpedo tank 2 and will not be described again here.
  • the shape of the insulation cover 4 of the torpedo tank 2 may be inconsistent with the shape of the mouth 21 of the torpedo tank 2.
  • the corresponding center positioning method can be selected according to the specific shape.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Robotics (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

本发明公开了一种鱼雷罐保温盖和罐口中心定位方法。本发明的鱼雷罐保温盖中心定位方法包括:设置轮廓扫描仪器;控制轮廓扫描仪器对保温盖进行扫描,获取保温盖圆周轮廓上的三个或三个以上点的坐标位置;根据获取的保温盖圆周轮廓上的点的坐标位置来确定保温盖中心的坐标位置。本发明的鱼雷罐罐口中心定位方法包括:设置轮廓扫描仪器;控制轮廓扫描仪器对鱼雷罐罐口进行扫描,获取鱼雷罐罐口圆周轮廓上的三个或三个以上点的坐标位置;根据获取的鱼雷罐罐口圆周轮廓上的点的坐标位置来确定鱼雷罐罐口中心的坐标位置。本发明的鱼雷罐保温盖和罐口中心定位方法能够对保温盖以及鱼雷罐罐口的中心进行准确定位,并且实现起来简单方便。

Description

鱼雷罐保温盖和罐口中心定位方法 技术领域
本发明涉及一种鱼雷罐保温盖盖合定位技术,尤其涉及一种鱼雷罐保温盖和罐口中心定位方法。
背景技术
鱼雷罐是一种用于盛放运输铁水的设备,鱼雷罐通常是装载在一个专用的轨道运输小车上,这种装载鱼雷罐的轨道运输小车称为鱼雷罐车。在大型联合钢铁企业中,鱼雷罐车的主要作用是将炼铁厂高炉冶炼出的铁水运送至炼钢厂。鱼雷罐的上部设有罐口,铁水则是由该罐口进出鱼雷罐。目前,在鱼雷罐车运送铁水离开炼铁厂之前或返程离开炼钢厂之前,会在鱼雷罐的罐口上加盖一个保温盖,其目的是为了降低鱼雷罐车在往返运输过程中的能耗及废气排放。
参见图1和图2(图中除了二维激光雷达5均为现有技术的设备),以某钢铁企业为例,在鱼雷罐车运输线路的往返两端(炼铁厂和炼钢厂)均设置有机械手装置1,该机械手装置1具有一个可以灵活动作的悬臂11,在悬臂11的自由端上还设置有电磁吸盘12,凭借悬臂11及其上的电磁吸盘12,机械手装置1则能够灵活地吸附拾取并移动保温盖4。机械手装置1设置在一个较高的作业平台上,作业平台高于鱼雷罐车3上鱼雷罐2的高度。在机械手装置1旁整齐地堆垒有数个保温盖4,这数个堆垒在一起的保温盖4称为保温盖堆垛。每当鱼雷罐车3要离开时,机械手装置1则会拾取保温盖堆垛上的保温盖4并将其盖合在鱼雷罐2罐口21上。
机械手装置1在拾取保温盖4时,电磁吸盘12应尽可能拾取保温盖4的中心部位,否则的话,会发生拾取的保温盖4出现重心偏移的情况,机械手装置1不能可靠地拾取保温盖4。在机械手装置1将拾取的保温盖4盖合在鱼雷罐罐口21上时,应尽量将保温盖4对准鱼雷罐罐口21的中心盖合,否则的话,会发生保温盖4不能完全盖合鱼雷罐罐口21的情况,严重时甚至会导致保温盖4异常掉落的情况。
在现有技术中,对于鱼雷罐2的保温盖4以及罐口21中心的定位主要有两种方式,一种是通过视觉图像辨识的方式来定位,还有一种是通过检测鱼雷罐2的温度的方式来 定位。
中国专利(CN110378957A)公开了一种面向冶金作业的鱼雷罐车视觉识别与定位方法及其系统,并具体公开了使用视觉传感器对保温盖和罐口进行拍照取样、提取特征数据并得到目标特征,然后通过对目标特征拟合得到保温盖和罐口的平面中心坐标,其采用的是机器视觉图像的方式,这种方式在处理罐口特征的时候,检测数据容易受到罐口高温和粉尘的影响,增加数据处理的难度。
中国专利(CN107200044A)公开了一种铁水鱼雷罐车定位方法,并具体公开了通过非接触感应鱼雷罐体目标的温度来实现铁水鱼雷罐车定位。该方法的缺点在于,由于罐口壁内外一定区域的温度相差不大,扫描式热金属检测器可能在罐口壁外侧的局部范围就提前触发动作,因此这种定位方法的定位精度不高,只能进行粗定位。
发明内容
本发明的目的在于提供一种鱼雷罐保温盖和罐口中心定位方法,该鱼雷罐保温盖和罐口中心定位方法能够对鱼雷罐保温盖以及鱼雷罐罐口的中心进行准确定位,并且实现起来简单方便。
为了实现上述技术目的,本发明采用如下技术方案:
一种鱼雷罐保温盖中心定位方法,在鱼雷罐车运输线路旁设置有机械手装置,所述机械手装置具有能够动作的悬臂;所述鱼雷罐保温盖中心定位方法包括:
S1,在所述机械手装置的所述悬臂上设置轮廓扫描仪器;
S2,控制所述轮廓扫描仪器对鱼雷罐保温盖进行扫描,获取所述鱼雷罐保温盖圆周轮廓上的三个或三个以上点的坐标位置;
S3,根据获取的所述鱼雷罐保温盖圆周轮廓上的所述点的坐标位置来确定所述鱼雷罐保温盖中心的坐标位置。
进一步地,所述轮廓扫描仪器为二维激光雷达。
进一步地,所述二维激光雷达的线扫平面与水平面垂直。
进一步地,在所述S2中,所述轮廓扫描仪器对所述鱼雷罐保温盖进行的所述扫描为两次不同朝向的偏中心扫描,每次所述偏中心扫描获取所述鱼雷罐保温盖圆周轮廓上的两个点的坐标位置,两次所述偏中心扫描则获取所述鱼雷罐保温盖圆周轮廓上的四个点的坐标位置。
进一步地,在所述S3中,依据双弦圆心确定法来确定所述鱼雷罐保温盖中心的坐标位置。
一种鱼雷罐罐口中心定位方法,在鱼雷罐车运输线路旁设置有机械手装置,所述机械手装置具有能够动作的悬臂;所述鱼雷罐罐口中心定位方法包括:
S1,在所述机械手装置的所述悬臂上设置轮廓扫描仪器;
S2,控制所述轮廓扫描仪器对鱼雷罐罐口进行扫描,获取所述鱼雷罐罐口圆周轮廓上的三个或三个以上点的坐标位置;
S3,根据获取的所述鱼雷罐罐口圆周轮廓上的所述点的坐标位置来确定所述鱼雷罐罐口中心的坐标位置。
进一步地,所述轮廓扫描仪器为二维激光雷达。
进一步地,所述二维激光雷达的线扫平面与水平面垂直。
进一步地,在所述S2中,所述轮廓扫描仪器对所述鱼雷罐罐口进行的所述扫描为两次不同朝向的偏中心扫描,每次所述偏中心扫描获取所述鱼雷罐罐口圆周轮廓上的两个点的坐标位置,两次所述偏中心扫描则获取所述鱼雷罐罐口圆周轮廓上的四个点的坐标位置。
进一步地,在所述S3中,依据双弦圆心确定法来确定所述鱼雷罐罐口中心的坐标位置。
在本发明的鱼雷罐保温盖和罐口中心定位方法中,控制轮廓扫描仪器对保温盖以及鱼雷罐罐口进行扫描,获取保温盖以及鱼雷罐罐口圆周轮廓上的三个或三个以上点的坐标位置,然后根据获取的点的坐标位置就能准确定位保温盖以及鱼雷罐罐口中心的坐标位置,即,实现对保温盖以及鱼雷罐罐口中心的准确定位。
本发明的鱼雷罐保温盖和罐口中心定位方法相对现有技术,其有益效果在于:本发明的保温盖和罐口中心定位方法能够对保温盖以及鱼雷罐罐口的中心进行准确定位,以便于机械手装置能够准确拾取保温盖的中心部位,并将拾取的保温盖准确无误地盖合在鱼雷罐罐口上,由此可以防止拾取的保温盖出现重心偏移的情况,确保机械手装置对保温盖的可靠拾取,避免发生保温盖不能完全盖合鱼雷罐罐口的情况,避免保温盖异常掉落的情况发生。此外,在方法的实施过程中,需要处理的数据量极少,实现起来简单方便。
附图说明
图1为本发明鱼雷罐保温盖中心定位方法所涉及的机械手装置和鱼雷罐车的示意图;
图2为机械手装置和鱼雷罐车的俯视图;
图3为二维激光雷达扫描保温盖的示意图;
图4为二维激光雷达扫描鱼雷罐罐口的示意图。
图5为鱼雷罐保温盖和鱼雷罐罐口为矩形的示意图。
图6为鱼雷罐保温盖和鱼雷罐罐口为任意形状的示意图。
图中:1-机械手装置、11-悬臂、12-电磁吸盘、2-鱼雷罐、21-罐口、3-鱼雷罐车、4-保温盖、5-二维激光雷达。
具体实施方式
下面结合附图和具体实施方式对本发明作进一步说明:
实施方式1:
参见图1至图3,本实施方式1提供了一种鱼雷罐保温盖中心定位方法,该鱼雷罐保温盖中心定位方法能够对鱼雷罐保温盖的中心进行准确定位,并且实现起来简单方便。
参见图1和图2,本实施方式1的鱼雷罐保温盖中心定位方法,其实施场景为某钢铁公司的炼铁厂,在炼铁厂的鱼雷罐车运输线路旁设置有一个机械手装置1,该机械手装置1具有一个可以灵活动作的悬臂11,在悬臂11的自由端上还设置有电磁吸盘12,凭借悬臂11及其上的电磁吸盘12,机械手装置1则能够灵活地吸附拾取并移动保温盖4。机械手装置1设置在一个较高的作业平台上,作业平台高于鱼雷罐车3上鱼雷罐2的高度。在机械手装置1旁整齐地堆垒有数个保温盖4,这数个堆垒在一起的保温盖4称为保温盖堆垛。每当鱼雷罐车3要离开时,机械手装置1则会拾取保温盖堆垛上的保温盖4并将其盖合在鱼雷罐2的罐口21上。
本实施方式1的保温盖中心定位方法包括如下S1至S3。
S1,参见图1和图2,在机械手装置1的悬臂11上增加设置一个二维激光雷达5,该二维激光雷达5则能够随着悬臂11灵活移动,二维激光雷达5与悬臂11两者朝向的水平方向是一致的,当悬臂11在水平方向上朝向保温盖4时,二维激光雷达5则能够对保温盖4进行扫描。在本实施方式1中,二维激光雷达5的线扫平面(参考图1中的灰色扇形部分)与水平面垂直,从而有利于扫描获取保温盖4圆周轮廓上的点。
其中,二维激光雷达5是一种现有技术的轮廓扫描仪器,其具有扫描物体轮廓的功能。二维激光雷达5发射的扫描激光穿透力强,因此,二维激光雷达5具有不受粉尘和高温影响的优点。二维激光雷达5的线扫平面是现有技术的概念,可以将其理解为二维激光雷达5射出的激光扫描线扫过的平面。图1中的灰色扇形部分即表示二维激光雷达5的线扫平面。
S2,在装满铁水的鱼雷罐车3前往炼钢厂之前,机械手装置1要从保温盖堆垛上拾 取一个保温盖4盖合在鱼雷罐2的罐口21上,在机械手装置1拾取保温盖4之前,控制二维激光雷达5对保温盖4进行扫描,获取保温盖4圆周轮廓上的四个点的坐标位置。
所述“控制二维激光雷达5对保温盖4进行扫描,获取保温盖4圆周轮廓上的四个点的坐标位置”,具体来说,就是控制二维激光雷达5对保温盖4进行两次不同朝向的偏中心扫描,每次偏中心扫描获取保温盖4圆周轮廓上的两个点的坐标位置,两次偏中心扫描则能够获取保温盖4圆周轮廓上的四个点的坐标位置。
参见图3并结合图1,更具体地,所述“控制二维激光雷达5对保温盖4进行扫描,获取保温盖4圆周轮廓上的四个点的坐标位置”,其具体包括:控制二维激光雷达5朝向(控制悬臂11朝向)保温盖4的一侧偏离中心部位,然后控制二维激光雷达5对保温盖4实施一次扫描,此即为第一次偏中心扫描,该第一次偏中心扫描获取保温盖4圆周轮廓上两个点(即图3中的A1点和A2点)的坐标位置;然后控制二维激光雷达5转向(控制悬臂11转向),使二维激光雷达5朝向保温盖4的另一侧偏离中心部位,然后控制二维激光雷达5对保温盖4实施再一次扫描,此即为第二次偏中心扫描,该第二次偏中心扫描再次获取保温盖4圆周轮廓上另外两个点(即图3中的B1点和B2点)的坐标位置,两次偏中心扫描则获取保温盖4圆周轮廓上的四个点的坐标位置。图3中的两条虚线即表示二维激光雷达5对保温盖4进行的两次扫描路径,但不限于此,可以能与保温盖4的圆周轮廓有交点,最终能够获取保温盖4圆周轮廓上的三个点或者三个点以上的坐标位置即可。
需要说明的是,二维激光雷达5是现有技术的装置,采用二维激光雷达5扫描保温盖4以获取保温盖4圆周轮廓上点的坐标位置,这是现有技术,其实现方式是本领域技术人员应知晓的。
需要说明的是,本文中所提及的偏中心扫描,其是指,二维激光雷达5朝向保温盖4(即被扫描目标物)偏离中心区域(即圆心区域)的部位进行扫描。
需要说明的是,保温盖堆垛所在的位置是预先设定好的,也就是说,保温盖堆垛上的保温盖4的中心所在的坐标位置是可以大概定位的,因此针对保温盖4的中心预先设置有一个参考的中心坐标位置,该参考的中心坐标位置数据预先设定在机械手装置1的主控模块中,在控制二维激光雷达5对保温盖4进行的偏中心扫描时则以该参考的中心坐标位置作为基准。
此外,在本实施方式1中,二维激光雷达5是安装在机械手装置1的悬臂11上的,二维激光雷达5的朝向与悬臂11的朝向是一致的,因此,控制二维激光雷达5的朝向, 其实质就是控制悬臂11的朝向。
本文中所提及的保温盖4圆周轮廓是指,保温盖4的圆形周边的轮廓。
S3,根据获取的保温盖4圆周轮廓上四个点的坐标位置来确定保温盖4中心的坐标位置,从而实现对保温盖4中心的准确定位。在对保温盖4中心准确定位的基础上,机械手装置1则能够准确拾取保温盖4的中心部位。
所述“根据获取的保温盖4圆周轮廓上四个点的坐标位置来确定保温盖4中心的坐标位置”,其依据的是“双弦圆心确定法”,也就是解析几何的基本原理“圆的两条非平行的弦的中垂线的交点即为圆的圆心”。
参见图3,具体来说,保温盖4圆周轮廓上四个点如图3中A1、A2、B1、B2四个点,A1点与A2点的连线为保温盖4圆周轮廓的一条弦,而B1点与B2点的连线为保温盖4圆周轮廓的另一条弦,然后确定两条弦的中垂线,两条弦的中垂线的交点即可确定为保温盖4的中心(即保温盖4圆周轮廓的中心)。
需要说明的是,上述确定弦、弦的中垂线、中垂线的交点的过程实质是解析几何的计算过程,这种解析几何计算的套路有很多种,但无论何种套路,均是本领域技术人员均知晓的常识。
在本实施方式1中,保温盖4中心的位置是根据四个点来确定的,而在其它实施方式中,也可根据三个点来确定保温盖4中心的位置。依据解析几何的原理,三个点能够确定一个圆。更具体来说,三个点中每两个点之间连一条弦,那么就能确定保温盖4圆周轮廓的三条弦,其中任意两条弦的中垂线的交点即可确定为保温盖4的中心。在本实施方式1的保温盖中心定位方法的基础上进一步扩展,本申请对二维激光雷达5的扫描的具体次数不做限制,只要控制二维激光雷达5扫描获取保温盖4圆周轮廓上的三个或三个以上点的坐标位置,就可以根据这些点并依据“双弦圆心确定法”来确定保温盖4中心的坐标位置。在本实施方式1中,所有提及的坐标位置均是基于机械手装置1的基础坐标系的坐标位置,而二维激光雷达5经过预先校准后,其扫描获取的坐标数据则是基于机械手装置1的基础坐标系的坐标数据。在其它实施方式中,坐标位置也可基于其它的坐标系统,诸如作业区坐标系(专门用于作业区域内定位的坐标系)、二维激光雷达5的基础坐标系,只要所有的坐标位置都基于同一个坐标系统即可。此外,在本实施方式1中,对于保温盖4中心的定位实质是水平面坐标的定位,因此,所提及的坐标位置均为忽略垂直坐标数据的水平面坐标数据,即,在“根据保温盖4圆周轮廓上点的坐标位置确定保温盖4中心坐标位置”的过程中不考虑垂直坐标数据。
在本实施方式1中,采用二维激光雷达5来扫描获取保温盖4圆周轮廓上的点的坐标位置,而在其它实施方式中也可以采用其它形式的轮廓扫描仪器来实现二维激光雷达5的作用,只要能够扫描获取保温盖4圆周轮廓上的点的坐标位置即可。
需要说明的是,本实施方式1的鱼雷罐保温盖中心定位方法是以程序形式设置在机械手装置1的主控模块中,在机械手装置1控制拾取保温盖4之前,通过机械手装置1的主控模块执行程序来实现本实施方式1的鱼雷罐保温盖中心定位方法,从而确定保温盖4的中心。
实施方式2:
参见图1、图2和图4,本实施方式2提供了一种鱼雷罐罐口中心定位方法,该罐口中心定位方法的基本构思与实施方式1的保温盖中心定位方法是一致的,都是通过双弦圆心确定法来确定圆周轮廓的圆心,在本实施方式2中,确定圆心的目标对象是鱼雷罐2的罐口21。本实施方式2的鱼雷罐罐口中心定位方法能够对鱼雷罐罐口的中心进行准确定位,并且实现起来简单方便。
参见图1和图2,本实施方式2的鱼雷罐罐口中心定位方法,其实施场景与实施方式1是一致的。
本实施方式2的鱼雷罐罐口中心定位方法包括如下S1至S3。
S1,参见图1和图2,在机械手装置1的悬臂11上增加设置一个二维激光雷达5,该二维激光雷达5与实施方式1中的二维激光雷达5是一致的。
S2,在装满铁水的鱼雷罐车3前往炼钢厂之前,机械手装置1要从保温盖堆垛上拾取一个保温盖4盖合在鱼雷罐罐口21上,在机械手装置1将拾取的保温盖4盖合在鱼雷罐2的罐口21上之前,控制二维激光雷达5对鱼雷罐2的罐口21进行扫描,获取鱼雷罐2的罐口21圆周轮廓上的四个点的坐标位置。
所述“控制二维激光雷达5对鱼雷罐2的罐口21进行扫描,获取鱼雷罐2的罐口21圆周轮廓上的四个点的坐标位置”,具体来说,就是控制二维激光雷达5对鱼雷罐2的罐口21进行两次不同朝向的偏中心扫描,每次偏中心扫描获取鱼雷罐2的罐口21圆周轮廓上的两个点的坐标位置,两次偏中心扫描则能够获取鱼雷罐2的罐口21圆周轮廓上的四个点的坐标位置。
参见图4并结合图2,更具体地,所述“控制二维激光雷达5对鱼雷罐2的罐口21进行扫描,获取鱼雷罐2的罐口21圆周轮廓上的四个点的坐标位置”,其具体包括:控制二维激光雷达5朝向(控制悬臂11朝向)鱼雷罐2的罐口21的一侧偏离中心部位, 然后控制二维激光雷达5对鱼雷罐2的罐口21实施一次扫描,此即为第一次偏中心扫描,该第一次偏中心扫描获取鱼雷罐2的罐口21圆周轮廓上两个点(即图4中的C1点和C2点)的坐标位置;然后控制二维激光雷达5转向(控制悬臂11转向),使二维激光雷达5朝向鱼雷罐2的罐口21的另一侧偏离中心部位,然后控制二维激光雷达5对鱼雷罐2的罐口21实施再一次扫描,此即为第二次偏中心扫描,该第二次偏中心扫描再次获取鱼雷罐2的罐口21圆周轮廓上另外两个点(即图4中的D1点和D2点)的坐标位置,两次偏中心扫描则获取鱼雷罐2的罐口21圆周轮廓上的四个点的坐标位置。图4中的两条虚线即表示二维激光雷达5对鱼雷罐2的罐口21进行的两次扫描路径,但不限于此,可以能与鱼雷罐2的罐口21的圆周轮廓有交点,最终能够获取鱼雷罐2的罐口21圆周轮廓上的三个点或者三个点以上的坐标位置即可。
需要说明的是,二维激光雷达5是现有技术的装置,采用二维激光雷达5扫描鱼雷罐2的罐口21以获取鱼雷罐2的罐口21圆周轮廓上点的坐标位置,这是现有技术,其实现方式是本领域技术人员应知晓的。
需要说明的是,本文中所提及的偏中心扫描,其是指,二维激光雷达5朝向鱼雷罐2的罐口21(即被扫描目标物)偏离中心区域(即圆心区域)的部位进行扫描。
需要说明的是,鱼雷罐2的罐口21所在的位置是预先确定好的,也就是说,鱼雷罐2的罐口21的中心所在的坐标位置是可以大概定位的,因此针对鱼雷罐2的罐口21的中心预先设置有一个参考的中心坐标位置,该参考的中心坐标位置数据预先设定在机械手装置1的主控模块中,在控制二维激光雷达5对鱼雷罐2的罐口21进行的偏中心扫描时则以该参考的中心坐标位置作为基准。
此外,在本实施方式2中,二维激光雷达5是安装在机械手装置1的悬臂11上的,二维激光雷达5的朝向与悬臂11的朝向是一致的,因此,控制二维激光雷达5的朝向,其实质就是控制悬臂11的朝向。
本文中所提及的鱼雷罐2的罐口21圆周轮廓是指,鱼雷罐2的罐口21的圆形周边的轮廓。
S3,根据获取的鱼雷罐2的罐口21圆周轮廓上四个点的坐标位置来确定鱼雷罐2的罐口21中心的坐标位置,从而实现对鱼雷罐2的罐口21中心的准确定位。在对鱼雷罐罐口21中心准确定位的基础上,机械手装置1则能够将拾取的保温盖4准确无误地盖合在鱼雷罐2的罐口21上。
与实施方式1的保温盖中心定位方法一样,所述“根据获取的鱼雷罐罐口21圆周 轮廓上四个点的坐标位置来确定鱼雷罐2的罐口21中心的坐标位置”,其依据的也是“双弦圆心确定法”。
参见图4,具体来说,所述鱼雷罐2的罐口21圆周轮廓上四个点如图4中C1、C2、D1、D2四个点,C1点与C2点的连线为鱼雷罐2的罐口21圆周轮廓的一条弦,而D1点与D2点的连线为鱼雷罐2的罐口21圆周轮廓的另一条弦,然后确定两条弦的中垂线,两条弦的中垂线的交点即可确定为鱼雷罐2的罐口21的中心(即鱼雷罐2的罐口21圆周轮廓的中心)。
需要说明的是,上述确定弦、弦的中垂线、中垂线的交点的过程实质是解析几何的计算过程,这种解析几何计算的套路有很多种,但无论何种套路,均是本领域技术人员均知晓的常识。
在本实施方式2中,鱼雷罐2的罐口21中心的位置是根据四个点来确定的,而在其它实施方式中,也可根据三个点来确定鱼雷罐2的罐口21中心的位置。依据解析几何的原理,三个点能够确定一个圆。更具体来说,三个点中每两个点之间连一条弦,那么就能确定鱼雷罐2的罐口21圆周轮廓的三条弦,其中任意两条弦的中垂线的交点即可确定为鱼雷罐2的罐口21的中心。在本实施方式2的罐口中心定位方法的基础上进一步扩展,本申请对二维激光雷达5的扫描的具体次数不做限制,只要控制二维激光雷达5扫描获取鱼雷罐2的罐口21圆周轮廓上的三个或三个以上点的坐标位置,就可以根据这些点并依据所述“双弦圆心确定法”来确定鱼雷罐2的罐口21中心的坐标位置。
在本实施方式2中,所有提及的坐标位置均是基于机械手装置1的基础坐标系的坐标位置,而二维激光雷达5经过预先校准后,其扫描获取的坐标数据则是基于机械手装置1的基础坐标系的坐标数据。在其它实施方式中,坐标位置也可基于其它的坐标系统,诸如作业区坐标系、二维激光雷达5的基础坐标系,只要所有的坐标位置都基于同一个坐标系统即可。此外,在本实施方式2中,对于鱼雷罐2的罐口21中心的定位实质是水平面坐标的定位,因此,所提及的坐标位置均为忽略垂直坐标数据的水平面坐标数据,即,在“根据鱼雷罐2的罐口21圆周轮廓上点的坐标位置确定鱼雷罐2的罐口21中心坐标位置”的过程中不考虑垂直坐标数据。
在本实施方式2中,采用二维激光雷达5来扫描获取鱼雷罐2的罐口21圆周轮廓上的点的坐标位置,而在其它实施方式中也可以采用其它形式的轮廓扫描仪器来实现二维激光雷达5的作用,只要能够扫描获取鱼雷罐2的罐口21圆周轮廓上的点的坐标位置即可。
需要说明的是,本实施方式2的罐口中心定位方法是以程序形式设置在机械手装置1的主控模块中,在机械手装置1将拾取的保温盖4盖合在鱼雷罐2的罐口21上之前,通过机械手装置1的主控模块执行程序来实现本实施方式2的鱼雷罐罐口中心定位方法,从而确定鱼雷罐2的罐口21的中心。
采用实施方式1的保温盖中心定位方法,能够在拾取保温盖4前对保温盖4的中心进行准确定位,以便于机械手装置1能够准确拾取保温盖4的中心部位。从而防止拾取的保温盖4出现重心偏移的情况,确保了机械手装置1对保温盖4的可靠拾取。
采用实施方式2的罐口中心定位方法,能够在将保温盖4盖合在鱼雷罐2的罐口21上之前对鱼雷罐2的罐口21的中心进行准确定位,以便于机械手装置1能够将拾取的保温盖4准确无误地盖合在鱼雷罐2的罐口21上,从而避免发生保温盖4不能完全盖合鱼雷罐2的罐口21的情况,避免保温盖4异常掉落的情况发生。
此外,在实施方式1的鱼雷罐保温盖中心定位方法中,对于保温盖4扫描获得四个点的坐标数据,在实施方式2的鱼雷罐罐口中心定位方法中,对于鱼雷罐2的罐口21扫描也是获得四个点的坐标数据,仅仅根据这八个点的坐标数据来确定保温盖4中心以及鱼雷罐2的罐口21中心的坐标数据,数据的处理量极少,实现起来简单方便,数据处理的速度也较快。
需要说明的是,本发明对鱼雷罐2的保温盖4和罐口21的形状不做限制,例如本实施方式1和本实施方式2中的圆形,也可以为其他形状,均可通过轮廓扫描仪器,例如二维激光雷达5进行扫描并根据扫描的坐标点来确定鱼雷罐2的保温盖4和罐口21的中心位置。
下面来简单描述一下当鱼雷罐2的保温盖4和罐口21的形状是除圆形以外的形状时,确认鱼雷罐2的保温盖4和罐口21的中心位置的方法,例如图5所示的矩形或者图6所示的任意形状。
示例性地,参考图5并结合图1,其中二维激光雷达5的设置位置以及实施步骤均与上述实施例1相同,唯一不同的是步骤S3中确定鱼雷罐2的保温盖4中心所依据的方法,具体而言,当图1中的鱼雷罐2的保温盖4的形状为图5所示的矩形时,使用二维激光雷达2沿图5所示的虚线扫描4次,分别得到4条扫描线L1、L2、L3、L4。
其中,L1扫描线和矩形的轮廓边相交于P1、P2点,L2扫描线和矩形的轮廓边相交于P3、P4点,L3扫描线和矩形的轮廓边相交于P5、P6点,L4扫描线和矩形的轮廓边相交于P7、P8点,P2和P4两点确定直线LP2P4,P3和P7点确定直线LP3P7,P1和 P5确定直线LP1P5,P6和P8点确定直线LP6P8
其中,直线LP2P4的延长线与直线LP3P7的延长线的交点为a2,直线LP2P4的延长线与直线LP1P5的延长线的交点为a1,直线LP6P8的延长线与直线LP1P5的延长线的交点为a3,直线LP6P8的延长线与直线LP3P7的延长线的交点为a4。构造直线La1a4和La2a3,两条直线的交点即为矩形灌口的中心点P。
当鱼雷罐2的保温盖4中心确认好之后,进行鱼雷罐2的罐口21中心的确认,当图1中的鱼雷罐2的罐口21的形状为图5所示的矩形时,其中二维激光雷达5的设置位置以及实施步骤均与上述实施例2相同,唯一不同的是步骤S3中确定鱼雷罐2的罐口21中心所依据的方法,其中该方法与上述鱼雷罐2的保温盖4中心的确认方法相同,此处不做赘述。示例性地,参考图6并结合图1,其中二维激光雷达5的设置位置以及实施步骤均与上述实施例1相同,唯一不同的是步骤S3中确定鱼雷罐2的保温盖4中心所依据的方法。
具体而言,当鱼雷罐2的保温盖4的形状为图6所示的任意形状,使用二维激光雷达5扫描鱼雷罐2的保温盖4,假定每隔角度α扫描一次,本申请对角度α的具体数值不做限制,大于0°即可,得到单次扫描线段的两个端点坐标(x,y),假定按照顺时针旋转二维激光雷达5,将相邻端点按照顺时针或者逆时针方向用折线进行连接,可以得到鱼雷罐2的保温盖4的扫描点云构成的轮廓图,A1至An为轮廓边缘点云坐标点。
通过下面的算法,可以计算出鱼雷罐2的保温盖4的中心点位置。步骤S3中确定鱼雷罐2的保温盖4中心所依据的方法为计算轮廓截面重心的定理一和轮廓截面面积的定理二。
具体而言,定理一为已知三角形△A1A2A3的顶点坐标Ai(xi,yi)(i=1,2,3)。它的重心坐标为xc=(x1+x2+x3)/3;yc=(y1+y2+y3)/3定理二为已知三角形△A1A2A3的顶点坐标Ai(xi,yi)(i=1,2,3)。该三角形的面积为S=((x2-x1)*(y3-y1)-(x3-x1)*(y2-y1))/2;
其中,△A1A2A3边界构成逆时针回路时取+,顺时针时取-。在求解的过程中,不需要考虑点的输入顺序是顺时针还是逆时针,相除后就抵消了。
结合图6所示,从A1点开始,沿顺时针或者逆时针由相邻点将鱼雷罐2的保温盖4轮廓平面划分为由n-2个三角形构成的图形。
首先求解每个三角形的面积和重心:
设其中一个三角形的重心为G(cx,cy),顶点坐标分别为A1(x1,y1),A2(x2, y2),A3(x3,y3),则有cx=(x1+x2+x3)/3;cy=(y1+y2+y3)/3;
面积为S=((x2-x1)*(y3-y1)-(x3-x1)*(y2-y1))/2;
然后求解多边形的重心:
公式:cx=(∑cx[i]*s[i])/∑s[i];cy=(∑cy[i]*s[i])/∑s[i];其中(cx[i],cy[i]),s[i]分别是所划分的第i个三角形的重心坐标和面积。另外,实际上不需要在求每个三角形坐标时都除以3,只需要求出∑cx[i]*s[i]后一次性除以3即可。
上述重心的位置就是鱼雷罐2的保温盖4的中心位置。
当鱼雷罐2的保温盖4中心确认好之后,进行鱼雷罐2的罐口21中心的确认,其中二维激光雷达5的设置位置以及实施步骤均与上述实施例2相同,唯一不同的是步骤S3中确定鱼雷罐2的罐口21中心所依据的方法,其中该方法与上述鱼雷罐2的保温盖4中心的确认方法相同,此处不做赘述。
需要说明的是,其中鱼雷罐2的保温盖4的形状可以和鱼雷罐2的罐口21的形状不一致,此时可根据具体形状来选择相应的中心定位方法。
以上仅为本发明的较佳实施例而已,并非用于限定本发明的保护范围,因此,凡在本发明的精神和原则之内所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (10)

  1. 一种鱼雷罐保温盖中心定位方法,在鱼雷罐车运输线路旁设置有机械手装置(1),所述机械手装置(1)具有能够动作的悬臂(11);其特征在于:所述鱼雷罐保温盖中心定位方法包括:
    S1,在所述机械手装置(1)的所述悬臂(11)上设置轮廓扫描仪器;
    S2,控制所述轮廓扫描仪器对鱼雷罐保温盖(4)进行扫描,获取所述鱼雷罐保温盖(4)圆周轮廓上的三个或三个以上点的坐标位置;
    S3,根据获取的所述鱼雷罐保温盖(4)圆周轮廓上的所述点的坐标位置来确定所述鱼雷罐保温盖(4)中心的坐标位置。
  2. 根据权利要求1所述鱼雷罐保温盖中心定位方法,其特征在于:所述轮廓扫描仪器为二维激光雷达(5)。
  3. 根据权利要求2所述鱼雷罐保温盖中心定位方法,其特征在于:所述二维激光雷达(5)的线扫平面与水平面垂直。
  4. 根据权利要求1所述鱼雷罐保温盖中心定位方法,其特征在于:在所述S2中,所述轮廓扫描仪器对所述鱼雷罐保温盖(4)进行的所述扫描为两次不同朝向的偏中心扫描,每次所述偏中心扫描获取所述鱼雷罐保温盖(4)圆周轮廓上的两个点的坐标位置,两次所述偏中心扫描则获取所述鱼雷罐保温盖(4)圆周轮廓上的四个点的坐标位置。
  5. 根据权利要求1所述鱼雷罐保温盖中心定位方法,其特征在于:在所述S3中,依据双弦圆心确定法来确定所述鱼雷罐保温盖(4)中心的坐标位置。
  6. 一种鱼雷罐罐口中心定位方法,在鱼雷罐车运输线路旁设置有机械手装置(1),所述机械手装置(1)具有能够动作的悬臂(11);其特征在于:所述鱼雷罐罐口中心定位方法包括:
    S1,在所述机械手装置(1)的所述悬臂(11)上设置轮廓扫描仪器;
    S2,控制所述轮廓扫描仪器对鱼雷罐罐口(21)进行扫描,获取所述鱼雷罐罐口(21)圆周轮廓上的三个或三个以上点的坐标位置;
    S3,根据获取的所述鱼雷罐罐口(21)圆周轮廓上的所述点的坐标位置来确定所述鱼雷罐罐口(21)中心的坐标位置。
  7. 根据权利要求6所述鱼雷罐罐口中心定位方法,其特征在于:所述轮廓扫描仪器为二维激光雷达(5)。
  8. 根据权利要求7所述鱼雷罐罐口中心定位方法,其特征在于:所述二维激光雷达(5)的线扫平面与水平面垂直。
  9. 根据权利要求6所述鱼雷罐罐口中心定位方法,其特征在于:在所述S2中,所述轮廓扫描仪器对所述鱼雷罐罐口(21)进行的所述扫描为两次不同朝向的偏中心扫描,每次所述偏中心扫描获取所述鱼雷罐罐口(21)圆周轮廓上的两个点的坐标位置,两次所述偏中心扫描则获取所述鱼雷罐罐口(21)圆周轮廓上的四个点的坐标位置。
  10. 根据权利要求6所述鱼雷罐罐口中心定位方法,其特征在于:在所述S3中,依据双弦圆心确定法来确定所述鱼雷罐罐口(21)中心的坐标位置。
PCT/CN2023/100487 2022-06-17 2023-06-15 鱼雷罐保温盖和罐口中心定位方法 WO2023241664A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210683980.4 2022-06-17
CN202210683980.4A CN117283594A (zh) 2022-06-17 2022-06-17 鱼雷罐保温盖和罐口中心定位方法

Publications (1)

Publication Number Publication Date
WO2023241664A1 true WO2023241664A1 (zh) 2023-12-21

Family

ID=89192329

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/100487 WO2023241664A1 (zh) 2022-06-17 2023-06-15 鱼雷罐保温盖和罐口中心定位方法

Country Status (2)

Country Link
CN (1) CN117283594A (zh)
WO (1) WO2023241664A1 (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2590342C1 (ru) * 2015-04-30 2016-07-10 Федеральное государственное бюджетное образовательное учреждение высшего образования "Сибирский государственный университет геосистем и технологий" (СГУГиТ) Способ определения величины и направления отклонения наружного контура днища резервуара вертикального цилиндрического от горизонтали
CN110378957A (zh) * 2019-06-05 2019-10-25 上海交通大学 面向冶金作业的鱼雷罐车视觉识别与定位方法及其系统
CN112525093A (zh) * 2018-09-19 2021-03-19 成都理工大学 一种建立隧道三维模型的系统
WO2021075876A2 (ko) * 2019-10-15 2021-04-22 이태경 다관절 로봇 암의 정밀도 보정방법
CN112846161A (zh) * 2021-01-06 2021-05-28 何正山 鱼雷罐口上方超低净空车载式揭盖机
CN112880592A (zh) * 2021-01-20 2021-06-01 湘潭大学 一种基于芯轴的数控转台顶尖的倾斜标定方法
CN113628210A (zh) * 2021-09-15 2021-11-09 中国工程物理研究院机械制造工艺研究所 基于线激光的复杂异构产品装配参数检测方法及系统
CN114332486A (zh) * 2021-12-30 2022-04-12 高铭科维科技无锡有限公司 圆钢印中心点的视觉精密测量方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2590342C1 (ru) * 2015-04-30 2016-07-10 Федеральное государственное бюджетное образовательное учреждение высшего образования "Сибирский государственный университет геосистем и технологий" (СГУГиТ) Способ определения величины и направления отклонения наружного контура днища резервуара вертикального цилиндрического от горизонтали
CN112525093A (zh) * 2018-09-19 2021-03-19 成都理工大学 一种建立隧道三维模型的系统
CN110378957A (zh) * 2019-06-05 2019-10-25 上海交通大学 面向冶金作业的鱼雷罐车视觉识别与定位方法及其系统
WO2021075876A2 (ko) * 2019-10-15 2021-04-22 이태경 다관절 로봇 암의 정밀도 보정방법
CN112846161A (zh) * 2021-01-06 2021-05-28 何正山 鱼雷罐口上方超低净空车载式揭盖机
CN112880592A (zh) * 2021-01-20 2021-06-01 湘潭大学 一种基于芯轴的数控转台顶尖的倾斜标定方法
CN113628210A (zh) * 2021-09-15 2021-11-09 中国工程物理研究院机械制造工艺研究所 基于线激光的复杂异构产品装配参数检测方法及系统
CN114332486A (zh) * 2021-12-30 2022-04-12 高铭科维科技无锡有限公司 圆钢印中心点的视觉精密测量方法

Also Published As

Publication number Publication date
CN117283594A (zh) 2023-12-26

Similar Documents

Publication Publication Date Title
US11780101B2 (en) Automated package registration systems, devices, and methods
CN109160452B (zh) 基于激光定位和立体视觉的无人转运叉车及导航方法
WO2019000859A1 (zh) 基于集装箱箱区轮廓三维识别的吊具安全防撞系统及方法
EP3033293B1 (en) Method and system for automatically landing containers on a landing target using a container crane
WO2021098236A1 (zh) 起重机吊钩定位方法、装置、系统及工程机械
US11987477B2 (en) System and method for controlling mobile hoisting apparatus, server and mobile hoisting apparatus
US20110222995A1 (en) Robot system and transfer method
CN112010177B (zh) 一种堆场地面集装箱自动着箱方法
CN105480864A (zh) 一种集装箱起重机自动化检测标定系统及方法
CN111891927B (zh) 第一层集装箱放置方法及计算机可读存储介质
JPH11333770A (ja) 積荷位置姿勢認識装置
CN110540137A (zh) 一种基于多传感器融合的起重机作业系统
EP3418244B1 (en) Loading a container on a landing target
WO2023241664A1 (zh) 鱼雷罐保温盖和罐口中心定位方法
CN114890280A (zh) 一种吊具的检测对准方法和装置
KR20210087989A (ko) 랜딩 타겟에 컨테이너를 로딩하는 시스템 및 방법
US9339931B2 (en) Method and apparatus for locating a pickup point for an object in an installation
FI130196B (en) GRIPPER POSITION CONTROL
CN213325730U (zh) 一种自动装车定位系统
TWI663558B (zh) 鋼捲倉儲系統及鋼捲幾何中心辨識方法
Kotthauser et al. Vision-based autonomous robot control for pick and place operations
US20230382693A1 (en) Apparatus and method for determining the spatial position of pick-up elements of a container
KR20040020478A (ko) 리클레이머의 불출 자세 제어방법
US20220260997A1 (en) Movable body, movement control system, method for controlling movable body, and program
JP7155216B2 (ja) 移動体の制御装置及び制御方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23823230

Country of ref document: EP

Kind code of ref document: A1