WO2023241437A1 - 充电电路、方法、装置和电子设备 - Google Patents

充电电路、方法、装置和电子设备 Download PDF

Info

Publication number
WO2023241437A1
WO2023241437A1 PCT/CN2023/098943 CN2023098943W WO2023241437A1 WO 2023241437 A1 WO2023241437 A1 WO 2023241437A1 CN 2023098943 W CN2023098943 W CN 2023098943W WO 2023241437 A1 WO2023241437 A1 WO 2023241437A1
Authority
WO
WIPO (PCT)
Prior art keywords
module
energy path
processor
wireless charging
load
Prior art date
Application number
PCT/CN2023/098943
Other languages
English (en)
French (fr)
Inventor
童宇衡
任锟
Original Assignee
维沃移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 维沃移动通信有限公司 filed Critical 维沃移动通信有限公司
Publication of WO2023241437A1 publication Critical patent/WO2023241437A1/zh

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/80Circuit arrangements or systems for wireless supply or distribution of electric power involving the exchange of data, concerning supply or distribution of electric power, between transmitting devices and receiving devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/00712Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B40/00Technologies aiming at improving the efficiency of home appliances, e.g. induction cooking or efficient technologies for refrigerators, freezers or dish washers

Definitions

  • This application belongs to the field of electronic circuit technology, and specifically relates to a charging circuit, method, device and electronic equipment.
  • a wireless charging module is configured in the electronic device, and electromagnetic waves are emitted to the wireless charging module through the charging coil of the wireless charging stand to achieve energy transmission and signal communication.
  • the electronic device may shake or be placed unsteadily on the charging stand, causing the signal quality obtained by the coupling of the wireless charging module of the electronic device to deteriorate and communication with the charging stand to be interrupted.
  • the anti-shake time is usually added before the charging base disconnects the output to filter out instantaneous communication interruptions.
  • the charging base cannot disconnect the output in time, causing a high voltage difference between the two ends of the wireless charging module of the electronic device, which may easily cause the wireless charging module to be damaged by overpower. It can be seen that the reliability of existing wireless charging solutions is poor.
  • the output end of the LDO module is connected to the load through a first energy path, and the input end of the LDO module is connected to the load through a second energy path;
  • the two input terminals of the voltage comparison module are respectively connected to the input terminal and the output terminal of the LDO module, and are used to detect the voltage difference between the input terminal and the output terminal of the LDO module;
  • the output end of the voltage comparison module is connected to the first end of the processor, and the second end of the processor is connected to the control end of the LDO module;
  • the wireless charging coil is controlled to charge the load through the first energy path or the second energy path.
  • embodiments of the present application provide a readable storage medium that stores programs or instructions. When the programs or instructions are executed by a processor, the charging method as described in the third aspect is implemented. step.
  • inventions of the present application provide a chip.
  • the chip includes a processor and a communication interface.
  • the communication interface is coupled to the processor.
  • the processor is used to run programs or instructions to implement the third aspect. The charging method described.
  • Figure 2a is one of the circuit structure schematic diagrams of the charging circuit provided by the embodiment of the present application.
  • FIG. 3 is a flow chart of the charging method provided by the embodiment of the present application.
  • Figure 5 is a schematic structural diagram of an electronic device provided by an embodiment of the present application.
  • Figure 6 is a hardware structure diagram of an electronic device provided by an embodiment of the present application.
  • first, second, etc. in the description and claims of this application are used to distinguish similar objects and are not used to describe a specific order or sequence. It is to be understood that the figures so used are interchangeable under appropriate circumstances so that the embodiments of the present application can be practiced in orders other than those illustrated or described herein, and that "first,” “second,” etc. are distinguished Objects are usually of one type, and the number of objects is not limited. For example, the first object can be one or multiple.
  • “and/or” in the description and claims indicates at least one of the connected objects, and the character “/" generally indicates that the related objects are in an "or” relationship.
  • the mobile phone When users use electronic devices such as mobile phones for wireless charging, the mobile phone may shake or be placed unstablely on the charging stand, resulting in the degradation of the signal quality obtained by coupling the wireless charging module in the mobile phone, and the communication with the wireless charging stand. Interrupt.
  • the anti-shake time is added before the charging base disconnects the output to filter out instantaneous communication interruptions.
  • the purpose of this application is to add a hardware protection circuit design based on the original software anti-shake mechanism to ensure that appropriate charging paths can be selected at each stage of wireless charging to establish a connection, which not only ensures the reliability of the wireless charging IC but also improves charging. performance.
  • Figure 2a and Figure 2b are schematic circuit structure diagrams of a charging circuit provided by an embodiment of the present application.
  • the charging circuit includes a wireless charging coil 111, a low voltage drop linear voltage regulator LDO module 112, voltage comparison module 12, processor 13 and load 16;
  • the wireless charging coil 111 is connected to the input end of the LDO module 112;
  • the output end of the LDO module 112 is connected to the load 16 through the first energy path, and the input end of the LDO module 112 is connected to the load 16 through the second energy path;
  • the two input terminals of the voltage comparison module 12 are respectively connected to the input terminal VRECT and the output terminal VOUT of the LDO module 112, and are used to detect the voltage difference between the input terminal and the output terminal of the LDO module 112;
  • the output terminal of the voltage comparison module 12 is connected to the first terminal of the processor 13, and the second terminal of the processor 13 is connected to the control terminal of the LDO module 112;
  • this application controls the wireless charging coil to switch to the appropriate charging path by detecting the input terminal and output terminal of the LDO module.
  • the charging circuit in this application includes modules: a wireless charging module 11, a voltage comparison module 12 and a processor 13.
  • the wireless charging module 11 can include a wireless charging coil 111 and an LDO module 112 (ie, Main LDO), as shown in Figure 2a.
  • the LDO module 112 can be set independently, or as shown in Figure 2b,
  • the LDO module 112 can be integrated with the rectifier bridge 113 and installed in the wireless charging IC 114; the wireless charging coil 111 is connected to the wireless charging IC 114 to provide energy to the wireless charging IC 114.
  • the wireless charging coil 111 can be connected to the LDO module through the rectifier bridge 113.
  • the input terminal of 112 is connected, that is, the wireless charging coil 111 is connected to the input terminal of the rectifier bridge 113, the output terminal of the rectifier bridge 113 is connected to the input terminal VRECT of the LDO module 112, and the output terminal VOUT of the LDO module 112 is connected to the load 16.
  • the two input terminals of the voltage comparison module 12 are respectively connected to the input terminal and the output terminal of the LDO module 112 , that is, respectively connected to the rectification output terminal VRECT and the voltage stabilizing output terminal VOUT.
  • the output terminal of the voltage comparison module 12 is connected to the processor 13 connection, the voltage comparison module 12 is used to compare the voltages of the rectification output terminal VRECT and the voltage stabilization output terminal VOUT, obtain the voltage difference between the rectification output terminal VRECT and the voltage stabilization output terminal VOUT, and output it to the processor 13, and the processor 13 then
  • the charging status is determined based on the voltage difference, specifically to determine whether the wireless charging circuit has established communication with the wireless charging base and whether the current charging circuit is reliable, and then controls the wireless charging coil 111 to select an appropriate charging path according to the charging status to ensure the reliability of charging. .
  • multiple energy paths are provided in the charging circuit to provide multiple charging paths for the wireless charging coil 111. Specifically, there is a first energy path between the regulated output terminal VOUT and the load 16. Path 1; there is a second energy path, namely energy path 2, between the rectifier output terminal VRECT and the load 16.
  • the first energy path can be used to provide a charging path when the wireless charging coil 111 establishes a communication connection with the wireless charging base and the charging circuit is reliable (such as the mobile phone is stably placed on the charging base), so that the wireless charging coil 111 can pass through the stable charging base.
  • the load 16 is charged by pressing the voltage at the output terminal VOUT.
  • the charging circuit also includes an overvoltage protection module 14, and the overvoltage protection module 14 is disposed on the second energy path.
  • the charging circuit also includes an overvoltage protection module 14 disposed on the energy path 2, that is, the overvoltage protection module 14 is disposed between the rectifier output terminal VRECT and the load 16, with one end connected to the rectifier output terminal VRECT. Connect, one end is connected to load 16.
  • the overvoltage protection module 14 is used to provide overvoltage protection for the LDO module 112 to avoid input port overvoltage when the LDO module 112 is turned off.
  • the overvoltage protection module 14 can be a switching power supply module. Since the switching power supply module is insensitive to voltage drops, it can protect the LDO module 112 well and avoid overvoltage at the input port when the LDO module 112 is turned off, and The use of switching power supply module can make the charging circuit structure simple and easy to implement.
  • the charging circuit may also be provided with an energy path 3.
  • a third energy path that is, the energy path 3 may be provided between the input end of the LDO module 112, that is, the rectification output terminal VRECT, and the load 16. .
  • an energy path selection switch 15 can be provided between the rectifier output terminal VRECT and the load 16 to control the switching between the second energy path and the third energy path. On-off control.
  • the processor 13 can control the energy path selection switch 15 to select the second energy path, the third energy path, or neither by issuing instructions to the energy path selection switch 15 .
  • An embodiment of the present application also provides an electronic device, including the charging circuit in the embodiment shown in Figure 2a or Figure 2b, which can realize the functions of each module in the embodiment shown in Figure 2a or Figure 2b, and can achieve the same technical effect. , to avoid repetition, will not be repeated here.
  • Figure 3 is a flow chart of a charging method provided by an embodiment of the present application. It is applied to the charging circuit in the embodiment shown in Figure 2a or Figure 2b. As shown in Figure 3, the method includes the following steps:
  • Step 301 Obtain the voltage difference between the input terminal VRECT and the output terminal VOUT of the LDO module 112 output by the voltage comparison module 12.
  • the voltage comparison module 12 can compare the rectification output terminal VRECT and the voltage stabilizing output terminal VOUT, that is, the voltage at both ends of the LDO module 112 to determine the voltage between the rectification output terminal VRECT and the voltage stabilizing output terminal.
  • the processor 13 can receive the signal from the voltage comparison module 12 and output the voltage difference at the output terminal VOUT. According to the voltage difference between the rectified output terminal VRECT and the regulated output terminal VOUT sent by the voltage comparison module 12, the voltage difference is calculated. The range is judged to determine the current status of the charging circuit.
  • Step 302 According to the voltage difference, control the wireless charging coil 111 to charge the load 16 through the first energy path or the second energy path.
  • the voltage difference may be compared with a preset threshold to determine the range of the voltage difference and determine the reliability of the current wireless charging circuit.
  • the processor 13 confirms that the current wireless charging circuit is reliable, so that it can issue instructions to control the wireless charging coil 111 to perform the charging on the load 16 through the energy path 1.
  • Charging means charging the load 16 through the LDO module 112 .
  • the processor 13 confirms that the current wireless charging circuit is unreliable, and can issue instructions to control the wireless charging coil 111 to charge the load 16 through the energy path 2, that is, It does not pass through the LDO module 112 to avoid over-power damage to the wireless charging IC 114 caused by a high voltage difference between the rectifier output terminal VRECT and the voltage-stabilizing output terminal VOUT.
  • the step 302 includes:
  • the LDO module 112 When the voltage difference is less than the first threshold, the LDO module 112 is controlled to turn on, and the wireless charging coil 111 is controlled to charge the load 16 through the first energy path.
  • the processor 13 when it is detected that the voltage difference between the rectified output terminal VRECT and the regulated output terminal VOUT is less than the first threshold, such as VRECT-VOUT ⁇ V1, it is confirmed that the current wireless charging channel is reliable, and the processor 13 can The enable flag bit of the LDO module 112 is set to control the LDO module 112 to turn on, so that the wireless charging coil 111 charges the load 16 through the energy path 1 and enters a stable charging state.
  • the method further includes:
  • the LDO module 112 When the voltage difference is less than a third threshold, the LDO module 112 is controlled to turn off, and the wireless charging coil 111 is controlled to charge the load 16 through the third energy path, wherein the third threshold is less than the first threshold.
  • the processor 13 can issue an instruction to control the LDO module 112 to close, so that the wireless charging coil 111 charges the load 16 through the energy path 3. Since This charging path does not pass through the LDO module 112, thereby reducing path loss and obtaining higher charging efficiency.
  • the step 302 includes:
  • the wireless charging LDO module 112 When the voltage difference is greater than the second threshold, the wireless charging LDO module 112 is controlled to turn off, and the wireless charging coil 111 is controlled to charge the load 16 through the second energy path.
  • the voltage difference between the rectified output terminal VRECT and the regulated output terminal VOUT is greater than the second threshold, such as VRECT-VOUT>V1 (that is, the second threshold is equal to the first threshold V1).
  • the current wireless charging path is unreliable and does not meet the conditions for the LDO module 112 to be turned on.
  • the processor 13 can control the LDO module 112 to close, so that the wireless charging coil 111 charges the load 16 through the energy path 2, because the charging path does not pass through the LDO module. 112, thereby avoiding over-power damage to the wireless charging IC 114 caused by a high voltage difference between the rectifier output terminal VRECT and the voltage-stabilizing output terminal VOUT.
  • the LDO module can be protected and the input port overvoltage caused by turning off the LDO module can be avoided.
  • the charging method in the embodiment of the present application obtains the voltage difference between the input terminal and the output terminal of the LDO module 112 output by the voltage comparison module 12; according to the voltage difference, the wireless charging coil 111 is controlled to pass through the first energy path or the second energy path. Load 16 is charged. In this way, by adding a hardware protection circuit to the charging circuit and switching to different charging channels according to the voltage difference at each stage of establishing a wireless charging connection, over-power damage to the wireless charging module can be avoided and the reliability of wireless charging can be improved.
  • the mobile phone is placed stably on the charging stand and the mobile phone is on the charging stand.
  • the working principle of the charging circuit and the implementation steps of the charging method in the embodiment of the present application are explained:
  • Scenario 1 Place the mobile phone stably on the charging stand, including the following steps:
  • Step S1 The mobile phone is placed on the charging stand, the wireless charging coil 111 establishes communication with the wireless charging stand, and the voltage comparison module 12 compares the voltage difference between VRECT and VOUT;
  • Step S3 When the wireless charging coil 111 communicates successfully with the charging base, the wireless charging IC 114 turns on the Main LDO, and the charging base charges the mobile phone load through energy path 1;
  • Step S4 the voltage comparison module 12 keeps detecting the voltage difference between VRECT and VOUT.
  • the processor 13 confirms that the input voltage is stable and issues an instruction to close the Main LDO. Notify the energy path selection switch 15 to switch to energy path 3;
  • Step S5 In a stable state, the charging base charges the mobile phone load through the energy path 3 to obtain higher charging efficiency.
  • Scenario 2 The mobile phone is placed on the charging stand unstablely/repeatedly placed, including the following steps:
  • Step K1 The mobile phone is placed on the charging stand, the wireless charging coil 111 establishes communication with the wireless charging stand, and the voltage comparison module 12 compares the voltage difference between VRECT and VOUT;
  • Step K3 The processor 13 issues an instruction to notify the energy path selection switch 15 to switch to the switching power supply module.
  • the wireless charging IC 114 keeps the Main LDO closed.
  • the charging base charges the mobile phone load through the energy path 2.
  • the switching power supply module is not sensitive to voltage drop and can Protects the LDO and provides an energy path to avoid input port overvoltage when the LDO is turned off;
  • FIG 4 is a schematic structural diagram of a charging device provided by an embodiment of the present application.
  • the charging device includes the charging circuit in the embodiment shown in Figure 2a or Figure 2b.
  • the charging device 400 includes:
  • the control module 402 is used to control the wireless charging coil 111 to charge the load 16 through the first energy path or the second energy path according to the voltage difference.
  • control module 402 is used to control the LDO module 112 to turn on when the voltage difference is less than the first threshold, and to control the wireless charging coil 111 to charge the load 16 through the first energy path.
  • control module 402 is configured to control the LDO module 112 to turn off when the voltage difference is greater than the second threshold, and control the wireless charging coil 111 to charge the load 16 through the second energy path.
  • the electronic devices in the embodiments of the present application include the above-mentioned mobile electronic devices and non-mobile electronic devices.
  • the electronic device 600 includes the charging circuit in the embodiment shown in Figure 2a or Figure 2b.
  • the electronic device 600 also includes but is not limited to: a radio frequency unit 601, a network module 602, an audio output unit 603, Input unit 604, sensor 605, display unit 606, user input unit 607, interface unit 608, memory 609, processor 610 and other components.
  • the electronic device 600 may also include a power supply (such as a battery) that supplies power to various components.
  • the power supply may be logically connected to the processor 610 through a power management system, thereby managing charging, discharging, and function through the power management system. Consumption management and other functions.
  • the structure of the electronic device shown in Figure 6 does not constitute a limitation on the electronic device.
  • the electronic device may include more or less components than shown in the figure, or combine certain components, or arrange different components, which will not be described again here. .
  • the processor 610 is used to obtain the voltage difference between the input terminal and the output terminal of the LDO module 112 output by the voltage comparison module 12;
  • the wireless charging coil 111 is controlled to charge the load 16 through the first energy path or the second energy path.
  • the processor 610 is also configured to control the LDO module 112 when the voltage difference is less than the third threshold. is turned off, and the wireless charging coil 111 is controlled to charge the load 16 through the third energy path, where the third threshold is smaller than the first threshold.
  • the electronic device in the embodiment of the present application obtains the voltage difference between the input terminal and the output terminal of the LDO module 112 output by the voltage comparison module 12; according to the voltage difference, the wireless charging coil 111 is controlled to pass through the first energy path or the second energy path. Load 16 is charged. In this way, by adding a hardware protection circuit to the charging circuit and switching to different charging channels according to the voltage difference at each stage of establishing a wireless charging connection, over-power damage to the wireless charging module can be avoided and the reliability of wireless charging can be improved.
  • the input unit 604 may include a graphics processor (Graphics Processing Unit, GPU) 6041 and a microphone 6042.
  • the graphics processor 6041 is responsible for the image capture device (GPU) in the video capture mode or the image capture mode. Process the image data of still pictures or videos obtained by cameras (such as cameras).
  • the display unit 606 may include a display panel 6061, which may be configured in the form of a liquid crystal display, an organic light emitting diode, or the like.
  • the user input unit 607 includes a touch panel 6071 and at least one of other input devices 6072 .
  • Touch panel 6071 also called touch screen.
  • the touch panel 6071 may include two parts: a touch detection device and a touch controller.
  • Other input devices 6072 may include but are not limited to physical keyboards, function keys (such as volume control keys, switch keys, etc.), trackballs, mice, and joysticks, which will not be described again here.
  • Memory 609 may be used to store software programs as well as various data.
  • the memory 609 may mainly include a first storage area for storing programs or instructions and a second storage area for storing data, wherein the first storage area may store an operating system, an application program or instructions required for at least one function (such as a sound playback function, Image playback function, etc.) etc.
  • memory 609 may include volatile memory or non-volatile memory, or memory 609 may include both volatile and non-volatile memory.
  • non-volatile memory can be read-only memory (Read-Only Memory, ROM), programmable read-only memory (Programmable ROM, PROM), erasable programmable read-only memory (Erasable PROM, EPROM), electrically removable memory.
  • Volatile memory can be random access memory (Random Access Memory, RAM), static random access memory (Static RAM, SRAM), dynamic random access memory (Dynamic RAM, DRAM), synchronous dynamic random access memory (Synchronous DRAM, SDRAM), double data rate synchronous dynamic random access memory (Double Data Rate SDRAM, DDRSDRAM), enhanced synchronous dynamic random access memory (Enhanced SDRAM, ESDRAM), synchronous link dynamic random access memory (Synch link DRAM) , SLDRAM) and direct memory bus random access memory (Direct Rambus RAM, DRRAM).
  • RAM Random Access Memory
  • SRAM static random access memory
  • DRAM dynamic random access memory
  • synchronous dynamic random access memory Synchronous DRAM, SDRAM
  • Double data rate synchronous dynamic random access memory Double Data Rate SDRAM, DDRSDRAM
  • Enhanced SDRAM, ESDRAM synchronous link dynamic random access memory
  • Synch link DRAM synchronous link dynamic random access memory
  • SLDRAM direct memory bus random access memory
  • the processor 610 may include one or more processing units; optionally, the processor 610 integrates an application processor and a modem processor, where the application processor mainly handles operations related to the operating system, user For the operation of interfaces and applications, modem processors mainly process wireless communication signals, such as baseband processors. It can be understood that the above modem processor may not be integrated into the processor 610.
  • Embodiments of the present application also provide a readable storage medium.
  • Programs or instructions are stored on the readable storage medium.
  • the program or instructions are executed by a processor, each process of the above charging method embodiment is implemented and the same can be achieved. To avoid repetition, the technical effects will not be repeated here.
  • the processor is the processor in the electronic device described in the above embodiment.
  • the readable storage medium includes computer readable storage media, such as computer read-only memory ROM, random access memory RAM, magnetic disk or optical disk, etc.
  • An embodiment of the present application further provides a chip.
  • the chip includes a processor and a communication interface.
  • the communication interface is coupled to the processor.
  • the processor is used to run programs or instructions to implement each of the above charging method embodiments. The process can achieve the same technical effect. To avoid repetition, it will not be described again here.
  • Embodiments of the present application provide a computer program product.
  • the program product is stored in a storage medium.
  • the program product is executed by at least one processor to implement each process of the above charging method embodiment, and can achieve the same technical effect. To avoid repetition, they will not be repeated here.
  • the methods of the above embodiments can be implemented by means of software plus the necessary general hardware platform. Of course, it can also be implemented by hardware, but in many cases the former is better. implementation.
  • the technical solution of the present application can be embodied in the form of a computer software product that is essentially or contributes to the existing technology.
  • the computer software product is stored in a storage medium (such as ROM/RAM, disk , optical disk), including several instructions to cause a terminal (which can be a mobile phone, computer, server, or network device, etc.) to execute the methods described in various embodiments of this application.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

一种充电电路、方法、装置和电子设备,属于电子电路技术领域。充电电路包括无线充电线圈(111)、低压差线性稳压器LDO模块(112)、电压比较模块(12)、处理器(13)和负载(16);无线充电线圈与LDO模块的输入端连接;LDO模块的输出端通过第一能量通路与负载连接,LDO模块的输入端通过第二能量通路与负载连接;电压比较模块的两个输入端分别连接LDO模块的输入端和输出端,用于检测LDO模块的输入端和输出端的电压差;电压比较模块的输出端与处理器的第一端连接,处理器的第二端与LDO模块的控制端连接;处理器用于根据电压比较模块的输出端输出的电压差,控制无线充电线圈通过第一能量通路或第二能量通路对负载进行充电。

Description

充电电路、方法、装置和电子设备
相关申请的交叉引用
本申请主张在2022年6月14日在中国提交的中国专利申请No.202210669525.9的优先权,其全部内容通过引用包含于此。
技术领域
本申请属于电子电路技术领域,具体涉及一种充电电路、方法、装置和电子设备。
背景技术
目前,许多电子设备开始使用无线充电技术,即在电子设备中配置无线充电模块,通过无线充电座的充电线圈向无线充电模块发射电磁波,实现能量的传输和信号通信。在电子设备充电过程中,可能出现电子设备在充电座晃动或者放置不稳,导致电子设备的无线充电模块耦合得到的信号质量劣化,与充电座间的通信中断。
现有技术中,为避免通信中断导致的反复断充,通常会在充电座断开输出前增加防抖时间,用于过滤瞬时的通信中断。然而,防抖时间过长会导致充电座不能及时断开输出,使得电子设备的无线充电模块两端出现高电压差,进而易致使无线充电模块过功率损坏。可见,现有无线充电方案的可靠性较差。
发明内容
本申请实施例的目的是提供一种充电电路、方法、装置和电子设备,能够解决现有无线充电方案的可靠性较差的问题。
第一方面,本申请实施例提供了一种充电电路,包括无线充电线圈、低压差线性稳压器LDO模块、电压比较模块、处理器和负载;
所述无线充电线圈与所述LDO模块的输入端连接;
所述LDO模块的输出端通过第一能量通路与所述负载连接,所述LDO模块的输入端通过第二能量通路与所述负载连接;
所述电压比较模块的两个输入端分别连接所述LDO模块的输入端和输出端,用于检测所述LDO模块的输入端和输出端的电压差;
所述电压比较模块的输出端与所述处理器的第一端连接,所述处理器的第二端与所述LDO模块的控制端连接;
所述处理器用于根据所述电压比较模块的输出端输出的电压差,控制所述无线充电线圈块通过所述第一能量通路或所述第二能量通路对所述负载进行充电。
第二方面,本申请实施例提供了一种电子设备,包括第一方面所述的充电电路。
第三方面,本申请实施例提供了一种充电方法,应用于第一方面所述的充电电路,所述方法包括:
获取所述电压比较模块输出的所述LDO模块的输入端与输出端的电压差;
根据所述电压差,控制所述无线充电线圈通过所述第一能量通路或所述第二能量通路对所述负载进行充电。
第四方面,本申请实施例提供了一种充电装置,包括第一方面所述的充电电路,所述充电装置包括:
获取模块,用于获取所述电压比较模块输出的所述LDO模块的输入端与输出端的电压差;
控制模块,用于根据所述电压差,控制所述无线充电线圈通过所述第一能量通路或所述第二能量通路对所述负载进行充电。
第五方面,本申请实施例提供了一种电子设备,包括第一方面所述的充电电路,该电子设备还包括处理器和存储器,所述存储器存储可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如第三方面所述的充电方法的步骤。
第六方面,本申请实施例提供了一种可读存储介质,所述可读存储介质上存储程序或指令,所述程序或指令被处理器执行时实现如第三方面所述的充电方法的步骤。
第七方面,本申请实施例提供了一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现如第三方面所述的充电方法。
第八方面,本申请实施例提供一种计算机程序产品,该程序产品被存储在存储介质中,该程序产品被至少一个处理器执行以实现如第三方面所述的充电方法。
第九方面,本申请实施例提供一种电子设备,被配置为执行如第三方面所述的充电方法。
在本申请实施例中,充电电路,包括无线充电线圈、低压差线性稳压器LDO模块、电压比较模块、处理器和负载;所述无线充电线圈与所述LDO模块的输入端连接;所述LDO模块的输出端通过第一能量通路与所述负载连接,所述LDO模块的输入端通过第二能量通路与所述负载连接;所述电压比较模块的两个输入端分别连接所述LDO模块的输入端和输出端,用于检测所述LDO模块的输入端和输出端的电压差;所述电压比较模块的输出端与所述处理器的第一端连接,所述处理器的第二端与所述LDO模块的控制端连接;所述处理器用于根据所述电压比较模块的输出端输出的电压差,控制所述无线充电线圈块通过所述第一能量通路或所述第二能量通路对所述负载进行充电。这样,通过在充电电路中增加硬件保护电路,可确保在无线充电建立连接的各个阶段,能够根据电压差切换至不同的充电通路,从而避免无线充电模块过功率损坏,提升无线充电的可靠性。
附图说明
图1是本申请实施例提供的现有无线充电方案的电路结构示意图;
图2a是本申请实施例提供的充电电路的电路结构示意图之一;
图2b是本申请实施例提供的充电电路的电路结构示意图之二;
图3是本申请实施例提供的充电方法的流程图;
图4是本申请实施例提供的充电装置的结构示意图;
图5是本申请实施例提供的电子设备的结构示意图;
图6是本申请实施例提供的电子设备的硬件结构图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员获得的所有其他实施例,都属于本申请保护的范围。
本申请的说明书和权利要求书中的术语“第一”、“第二”等是用于区别类似的对象,而不用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便本申请的实施例能够以除了在这里图示或描述的那些以外的顺序实施,且“第一”、“第二”等所区分的对象通常为一类,并不限定对象的个数,例如第一对象可以是一个,也可以是多个。此外,说明书以及权利要求中“和/或”表示所连接对象的至少其中之一,字符“/”,一般表示前后关联对象是一种“或”的关系。
用户在使用手机等电子设备进行无线充电的过程中,手机在充电座上可能出现晃动或放置不稳等情况,导致手机中的无线充电模块耦合得到的信号质量劣化,与无线充电座间的通信中断。现有技术中,为避免由于通信中断导致反复断充,影响用户体验,会在充电座断开输出前增加防抖时间,用于过滤瞬时的通信中断。然而,在当前的无线充电方案中存在以下两点痛点:
1)软件防抖时间过长会导致快速拿放手机时,充电座不能及时断开输出,使得重新建立连接后,如图1所示,无线充电集成电路(Integrated Circuit,IC)的主通路即主(Main)低压差线性稳压器(Low Dropout Regulator,LDO)两端(VRECT端(即整流输出端)和VOUT端(即稳压输出端))存在很高 的电压差,易导致无线充电IC过功率损坏;此时断开LDO会导致输入口电压(VRECT)迅速升高,导致端口过压。
2)软件防抖时间过短会导致防抖效果不佳,仍然容易出现断充现象。
因此,在没有硬件保护机制的情况下,无法保证软件防抖时间的设定足以满足无线充电的可靠性。
本申请的目的便是在原软件防抖机制的基础上,增加硬件保护电路设计,以确保在无线充电建立连接的各个阶段可以选择合适的充电通路,既保障无线充电IC的可靠性又能提升充电性能。
下面结合附图,通过具体的实施例及其应用场景对本申请实施例提供的充电电路和充电方法进行详细地说明。
请参见图2a和图2b,图2a和图2b为本申请实施例提供的充电电路的电路结构示意图,如图2a和图2b所示,该充电电路包括无线充电线圈111、低压差线性稳压器LDO模块112、电压比较模块12、处理器13和负载16;
无线充电线圈111与LDO模块112的输入端连接;
LDO模块112的输出端通过第一能量通路与负载16连接,LDO模块112的输入端通过第二能量通路与负载16连接;
电压比较模块12的两个输入端分别连接LDO模块112的输入端VRECT和输出端VOUT,用于检测所述LDO模块112的输入端和输出端的电压差;
电压比较模块12的输出端与处理器13的第一端连接,处理器13的第二端与LDO模块112的控制端连接;
处理器13用于根据电压比较模块12的输出端输出的电压差,控制无线充电线圈111通过第一能量通路或第二能量通路对负载16进行充电。
为了达到本申请的目的,本申请通过检测LDO模块的输入端和输出端,控制无线充电线圈切换到合适的充电通路。如图2a和图2b所示,本申请中的充电电路包含的模块有:无线充电模块11、电压比较模块12和处理器13。
其中,无线充电模块11可包括无线充电线圈111和LDO模块112(即Main LDO),如图2a所示,LDO模块112可以独立设置,或者如图2b所示, LDO模块112可以与整流桥113集成设置在无线充电IC114中;无线充电线圈111与无线充电IC114连接,用于对无线充电IC114提供能量,具体地,无线充电线圈111可通过整流桥113与LDO模块112的输入端连接,即无线充电线圈111与整流桥113的输入端连接,整流桥113的输出端与LDO模块112的输入端VRECT连接,LDO模块112的输出端VOUT与负载16连接。
无线充电模块11具有整流输出端VRECT和稳压输出端VOUT,整流输出端VRECT即为整流桥113的输出端,也为LDO模块112的输入端,稳压输出端VOUT即为LDO模块112的输出端。
电压比较模块12的两个输入端分别与LDO模块112的输入端和输出端连接,也即分别与整流输出端VRECT和稳压输出端VOUT连接,电压比较模块12的输出端则与处理器13连接,电压比较模块12用于对整流输出端VRECT和稳压输出端VOUT的电压进行比较,得到整流输出端VRECT和稳压输出端VOUT的电压差,并输出给处理器13,处理器13则基于该电压差确定充电状态,具体为确定无线充电电路是否与无线充电座建立通信,以及当前充电电路是否可靠,进而根据充电状态控制无线充电线圈111选择合适的充电通路,来保证充电的可靠性。
如图2a和图2b所示,充电电路中设置有多路能量通路,以为无线充电线圈111提供多条充电路径,具体地,稳压输出端VOUT与负载16之间具有第一能量通路即能量通路1;整流输出端VRECT与负载16之间具有第二能量通路即能量通路2。
所述第一能量通路可用于在无线充电线圈111与无线充电座建立通信连接,且充电电路可靠的情况(如手机稳定放置在充电座上)下,提供充电通路,使无线充电线圈111通过稳压输出端VOUT的电压对负载16进行充电。
所述第二能量通路可用于在无线充电线圈111与无线充电座建立通信连接,但充电电路不可靠的情况(如手机在充电座上未放稳,或者反复拿放)下,提供充电通路,使无线充电线圈111通过整流输出端VRECT的电压对负载16进行充电,而不经过LDO模块112,避免整流输出端VRECT与稳压输 出端VOUT出现高电压差导致无线充电IC114过功率损坏。
处理器13还与LDO模块112的控制端连接,用于根据电压比较模块12的输出端输出的整流输出端VRECT与稳压输出端VOUT的电压差,控制无线充电线圈111通过能量通路1或能量通路2对负载16进行充电。
具体地,可在整流输出端VRECT与稳压输出端VOUT即LDO模块112两端的电压差较小,如小于预设的第一阈值的情况下,表明无线充电线圈111与无线充电座建立通信连接,且充电电路可靠,从而处理器13控制无线充电线圈111通过能量通路1对负载16进行充电,即能量通路1导通,而能量通路2处于断开状态。更具体地,可控制LDO模块112开启,使无线充电线圈111通过能量通路1对负载16进行充电。
而在整流输出端VRECT与稳压输出端VOUT即LDO模块112两端的电压差较大,如大于预设的第二阈值的情况下,表明无线充电线圈111与无线充电座建立通信连接,但充电电路不可靠,从而处理器13可以控制无线充电线圈111通过能量通路2对负载16进行充电,即能量通路2导通,而能量通路1处于断开状态。更具体地,可控制LDO模块112关闭,使无线充电线圈111通过能量通路2对负载16进行充电。其中,所述第二阈值可以与所述第一阈值相同,也可以不同,如所述第二阈值可以大于所述第一阈值。
可选地,如图2a所示,所述充电电路还包括过压保护模块14,过压保护模块14设置在第二能量通路上。
一种实施方式中,所述充电电路还包括设置在能量通路2上的过压保护模块14,即过压保护模块14设置在整流输出端VRECT与负载16在之间,一端与整流输出端VRECT连接,一端与负载16连接。过压保护模块14用于对LDO模块112提供过压保护,避免关断LDO模块112出现输入端口过压。
这样,在检测到在整流输出端VRECT与稳压输出端VOUT即LDO模块112两端的电压差较大,如大于预设的第二阈值的情况下,确认当前无线充电通路不可靠,不满足LDO模块112开启的条件,从而可控制LDO模块 112保持关闭状态,使无线充电线圈111通过能量通路2对负载16进行充电。且由于能量通路2上的过压保护模块14可以保护LDO模块112,从而可避免无线充电IC114过功率损坏,保障无线充电的可靠性。
可选地,如图2b所示,过压保护模块14为开关电源模块。
一种实施方式中,过压保护模块14可以为开关电源模块,由于开关电源模块对压降不敏感,从而可以很好地保护LDO模块112,避免关断LDO模块112出现输入端口过压,且采用开关电源模块可使充电电路结构简单,易于实现。
可选地,如图2a和图2b所示,LDO模块112的输入端还通过第三能量通路与负载16连接。
一种实施方式中,所述充电电路中还可设置有能量通路3,具体地,可在LDO模块112的输入端也即整流输出端VRECT与负载16之间设置第三能量通路即能量通路3。
能量通路3可用于在无线充电线圈111与无线充电座建立通信连接,且充电电路可靠且稳定的情况(如手机稳定放置在充电座上,且整流输出端VRECT与稳压输出端VOUT的电压差进一步减小)下,提供高效充电通路,使无线充电线圈111不经过LDO模块112而是直接通过整流输出端VRECT的电压对负载16进行充电。
具体地,可在整流输出端VRECT与稳压输出端VOUT即LDO模块112两端的电压差进一步减小,如小于预设的第三阈值的情况下,确认输入电压稳定,从而处理器13控制无线充电线圈111通过能量通路3对负载16进行充电,即能量通路3导通,而能量通路1和能量通路2处于断开状态。更具体地,可控制LDO模块112关闭,使无线充电线圈111通过能量通路3对负载16进行充电,以获取更高的充电效率。其中,所述第三阈值可以比第一阈值更小。
这样,在充电稳定状态下,通过切换至第三能量通路对负载进行充电,可减少通路损耗,获得更高的充电效率。
可选地,如图2a和图2b所示,所述充电电路还包括能量通路选择开关15;
处理器13的第三端与能量通路选择开关15的控制端连接;
能量通路选择开关15的第一端与LDO模块112的输入端VRECT连接,能量通路选择开关15的第二端和第三端分别与过压保护模块14和负载16连接。
即一种实施方式中,为更好地控制能量通路切换,可在整流输出端VRECT与负载16之间设置能量通路选择开关15,以对所述第二能量通路与所述第三能量通路的通断进行控制。
具体地,能量通路选择开关15的控制端可与处理器13连接,以接受处理器13的控制指令来切换能量通路,能量通路选择开关15的第一端如不动端可与无线充电模块11的整流输出端VRECT连接,能量通路选择开关15的第二端如其中一个动端与能量通路2上的过压保护模块14连接,能量通路选择开关15的第三端如另一个动端连通能量通路3,即直接与负载16连接。
这样,处理器13可通过对能量通路选择开关15下发指令,来控制能量通路选择开关15选通所述第二能量通路或者选通所述第三能量通路,或者都不选通。
具体地,可在整流输出端VRECT与稳压输出端VOUT即LDO模块112两端的电压差较大,如大于预设的第二阈值的情况下,确认当前无线充电通路不可靠,从而处理器13下发指令通知能量通路选择开关15切换到能量通路2,无线充电IC114保持LDO模块112关闭,通过能量通路2对负载16充电;在整流输出端VRECT与稳压输出端VOUT的电压差减小,如小于预设的第三阈值的情况下,确认输入电压稳定,从而处理器13下发指令关闭LDO模块112,并通知能量通路选择开关15切换到能量通路3,通过能量通路3对负载16充电。
这样,通过在整流输出端VRECT与负载之间设置能量通路选择开关15,能够更好地控制能量通路切换。
本申请实施例中的充电电路,包括无线充电线圈、低压差线性稳压器LDO模块、电压比较模块、处理器和负载;所述无线充电线圈与所述LDO模块的输入端连接;所述LDO模块的输出端通过第一能量通路与所述负载连接,所述LDO模块的输入端通过第二能量通路与所述负载连接;所述电压比较模块的两个输入端分别连接所述LDO模块的输入端和输出端,用于检测所述LDO模块的输入端和输出端的电压差;所述电压比较模块的输出端与所述处理器的第一端连接,所述处理器的第二端与所述LDO模块的控制端连接;所述处理器用于根据所述电压比较模块的输出端输出的电压差,控制所述无线充电线圈块通过所述第一能量通路或所述第二能量通路对所述负载进行充电。这样,通过在充电电路中增加硬件保护电路,可确保在无线充电建立连接的各个阶段,能够根据电压差切换至不同的充电通路,从而避免无线充电模块过功率损坏,提升无线充电的可靠性。
本申请实施例还提供一种电子设备,包括图2a或图2b所示实施例中的充电电路,能够实现图2a或图2b所示实施例中各模块的作用,并能取得相同的技术效果,为避免重复,这里不再赘述。
请参见图3,图3为本申请实施例提供的充电方法的流程图,应用于图2a或图2b所示实施例中的充电电路,如图3所示,该方法包括以下步骤:
步骤301、获取电压比较模块12输出的LDO模块112的输入端VRECT与输出端VOUT的电压差。
具体地,可在无线充电线圈111与无线充电座建立通信的情况下,通过电压比较模块12比较整流输出端VRECT与稳压输出端VOUT即LDO模块112两端的电压,确定整流输出端VRECT与稳压输出端VOUT的电压差并输出,处理器13可以接收到来自电压比较模块12的信号,根据电压比较模块12发送的整流输出端VRECT和稳压输出端VOUT的电压差,对该电压差的范围进行判断,以确定充电电路当前的状态。
步骤302、根据所述电压差,控制无线充电线圈111通过第一能量通路或第二能量通路对负载16进行充电。
该步骤中,可对所述电压差与预设的阈值进行比较,以确定所述电压差所处的范围,确定当前无线充电电路的可靠性。
具体地,在所述电压差较小,如在预设范围内的情况下,处理器13确认当前无线充电电路可靠,从而可以下发指令,控制无线充电线圈111通过能量通路1对负载16进行充电,即经过LDO模块112对负载16进行充电。
在所述电压差较大,如超出预设范围的情况下,处理器13确认当前无线充电电路不可靠,从而可以下发指令,控制无线充电线圈111通过能量通路2对负载16进行充电,即不经过LDO模块112,以此避免整流输出端VRECT与稳压输出端VOUT出现高电压差导致无线充电IC114过功率损坏。
可选地,所述步骤302包括:
在所述电压差小于第一阈值的情况下,控制LDO模块112开启,并控制无线充电线圈111通过所述第一能量通路对负载16进行充电。
一种实施方式中,可在检测到整流输出端VRECT与稳压输出端VOUT的电压差小于第一阈值,如VRECT-VOUT<V1的情况下,确认当前无线充电通路可靠,处理器13可对LDO模块112的使能标志位置位,控制LDO模块112开启,使无线充电线圈111通过能量通路1对负载16进行充电,进入稳定的充电状态。
这样,通过根据电压差确认无线充电通路可靠的情况下,控制无线充电线圈通过所述第一能量通路对负载进行充电,可保证对设备进行持续稳定的充电。
可选地,在LDO模块112的输入端VRECT与负载16之间还具有第三能量通路的情况下,所述步骤301之后,所述方法还包括:
在所述电压差小于第三阈值的情况下,控制LDO模块112关闭,并控制无线充电线圈111通过所述第三能量通路对负载16进行充电,其中,所述第三阈值小于第一阈值。
一种实施方式中,可在检测到整流输出端VRECT与稳压输出端VOUT的电压差小于第三阈值,如VRECT-VOUT<V2<V1(即第三阈值V2小于第 一阈值V1)的情况下,确认当前无线充电通路可靠且输入电压稳定,此时处理器13可下发指令控制LDO模块112关闭,使无线充电线圈111通过能量通路3对负载16进行充电,由于该充电通路不经过LDO模块112,从而可减少通路损耗,获取更高的充电效率。
这样,通过根据电压差确认无线充电通路可靠且稳定的情况下,控制无线充电线圈通过所述第三能量通路对负载进行充电,可保证对设备进行稳定高效的充电。
可选地,所述步骤302包括:
在所述电压差大于第二阈值的情况下,控制无线充电LDO模块112关闭,并控制无线充电线圈111通过所述第二能量通路对负载16进行充电。
一种实施方式中,可在检测到整流输出端VRECT与稳压输出端VOUT的电压差大于第二阈值,如VRECT-VOUT>V1(即第二阈值等于第一阈值V1)的情况下,确认当前无线充电通路不可靠,不满足LDO模块112可以开启的条件,处理器13可控制LDO模块112关闭,使无线充电线圈111通过能量通路2对负载16进行充电,由于该充电通路不经过LDO模块112,从而可避免整流输出端VRECT与稳压输出端VOUT出现高电压差导致无线充电IC114过功率损坏。
这样,通过根据电压差确认无线充电通路不可靠的情况下,控制无线充电线圈通过所述第二能量通路对负载进行充电,可保护LDO模块,避免关断LDO模块出现输入端口过压。
本申请实施例中的充电方法,获取电压比较模块12输出的LDO模块112的输入端与输出端的电压差;根据所述电压差,控制无线充电线圈111通过第一能量通路或第二能量通路对负载16进行充电。这样,通过在充电电路中增加硬件保护电路,并在无线充电建立连接的各个阶段,根据电压差切换至不同的充电通路,从而可避免无线充电模块过功率损坏,提升无线充电的可靠性。
下面结合图2a或图2b,以手机稳定放置在充电座上,和手机在充电座上 放置不稳定或反复拿放的充电场景为例,说明本申请实施例中充电电路的工作原理及充电方法的实施步骤:
场景一、手机稳定放置在充电座上,具体包括如下步骤:
步骤S1、手机放置在充电座上,无线充电线圈111与无线充电座建立通信,同时电压比较模块12比较VRECT和VOUT的压差;
步骤S2、当VRECT和VOUT压差在阈值V1范围内(VRECT-VOUT<V1),处理器13接收到来自电压比较模块12的信号,确认当前无线充电通路可靠,无线充电LDO使能标志位置位,作为Main LDO可以开启的初始条件;
步骤S3、当无线充电线圈111与充电座通信成功的情况下,无线充电IC114开启Main LDO,充电座通过能量通路1为手机负载充电;
步骤S4、电压比较模块12保持对VRECT和VOUT压差的检测,当压差在阈值V2范围内(VRECT-VOUT<V2<V1),处理器13确认输入电压稳定,下发指令关闭Main LDO,通知能量通路选择开关15切换到能量通路3;
步骤S5、稳定状态下,充电座通过能量通路3为手机负载充电,以获取更高的充电效率。
场景二、手机放置在充电座上不稳定/反复拿放,具体包括如下步骤:
步骤K1、手机放置在充电座上,无线充电线圈111与无线充电座建立通信,同时电压比较模块12比较VRECT和VOUT的压差;
步骤K2、当VRECT和VOUT压差在阈值V1范围外(VRECT-VOUT>V1),处理器13接收到来自电压比较模块12的信号,确认当前无线充电通路不可靠,不满足Main LDO可以开启的初始条件;
步骤K3、处理器13下发指令通知能量通路选择开关15切换到开关电源模块,无线充电IC114保持Main LDO关闭,充电座通过能量通路2为手机负载充电,开关电源模块对压降不敏感,可以保护LDO,同时提供能量通路避免关断LDO出现输入端口过压;
步骤K4、电压比较模块12保持对VRECT和VOUT压差的检测,当手机与充电座建立稳定的通信后,无线充电座会下调电压,VRECT端电压下降, 当VRECT和VOUT压差减小到阈值V1范围内(VRECT-VOUT<V1),处理器13接收到来自电压比较模块12的信号,确认当前无线充电通路可靠,无线充电LDO使能标志位置位,作为Main LDO可以开启的初始条件;
步骤K5、后续稳定充电过程同场景一中的步骤S3至步骤S5。
本申请实施例提供的充电方法,执行主体可以为充电装置。本申请实施例中以充电装置执行充电方法为例,说明本申请实施例提供的充电装置。
请参见图4,图4为本申请实施例提供的充电装置的结构示意图,该充电装置包括图2a或图2b所示实施例中的充电电路,如图4所示,充电装置400包括:
获取模块401,用于获取电压比较模块12输出的LDO模块112的输入端与输出端的电压差;
控制模块402,用于根据所述电压差,控制无线充电线圈111通过第一能量通路或第二能量通路对负载16进行充电。
可选地,控制模块402用于在所述电压差小于第一阈值的情况下,控制LDO模块112开启,并控制无线充电线圈111通过所述第一能量通路对负载16进行充电。
可选地,控制模块402用于在所述电压差大于第二阈值的情况下,控制LDO模块112关闭,并控制无线充电线圈111通过所述第二能量通路对负载16进行充电。
可选地,在LDO模块112的输入端与负载16之间还具有第三能量通路的情况下,控制模块402还用于在所述电压差小于第三阈值的情况下,控制LDO模块112关闭,并控制无线充电线圈111通过所述第三能量通路对负载16进行充电,其中,所述第三阈值小于第一阈值。
本申请实施例中的充电装置,获取电压比较模块12输出的LDO模块112的输入端与输出端的电压差;根据所述电压差,控制无线充电线圈111通过第一能量通路或第二能量通路对负载16进行充电。这样,通过在充电电路中增加硬件保护电路,并在无线充电建立连接的各个阶段,根据电压差切换至 不同的充电通路,从而可避免无线充电模块过功率损坏,提升无线充电的可靠性。
本申请实施例中的充电装置可以是电子设备,也可以是电子设备中的部件,例如集成电路或芯片。该电子设备可以是终端,也可以为除终端之外的其他设备。示例性的,电子设备可以为手机、平板电脑、笔记本电脑、掌上电脑、车载电子设备、移动上网装置(Mobile Internet Device,MID)、增强现实(Augmented Reality,AR)/虚拟现实(Virtual Reality,VR)设备、机器人、可穿戴设备、超级移动个人计算机(Ultra-Mobile Personal Computer,UMPC)、上网本或者个人数字助理(Personal Digital Assistant,PDA)等,还可以为服务器、网络附属存储器(Network Attached Storage,NAS)、个人计算机(Personal Computer,PC)、电视机(Television,TV)、柜员机或者自助机等,本申请实施例不作具体限定。
本申请实施例中的充电装置可以为具有操作系统的装置。该操作系统可以为安卓(Android)操作系统,可以为iOS操作系统,还可以为其他可能的操作系统,本申请实施例不作具体限定。
本申请实施例提供的充电装置能够实现图3的方法实施例实现的各个过程,为避免重复,这里不再赘述。
可选地,如图5所示,本申请实施例还提供一种电子设备500,包括图2a或图2b所示实施例中的充电电路,还包括处理器501和存储器502,存储器502上存储有可在所述处理器501上运行的程序或指令,该程序或指令被处理器501执行时实现上述充电方法实施例的各个步骤,且能达到相同的技术效果,为避免重复,这里不再赘述。
需要说明的是,本申请实施例中的电子设备包括上述所述的移动电子设备和非移动电子设备。
图6为实现本申请实施例的一种电子设备的硬件结构示意图。
该电子设备600包括图2a或图2b所示实施例中的充电电路,该电子设备600还包括但不限于:射频单元601、网络模块602、音频输出单元603、 输入单元604、传感器605、显示单元606、用户输入单元607、接口单元608、存储器609、以及处理器610等部件。
本领域技术人员可以理解,电子设备600还可以包括给各个部件供电的电源(比如电池),电源可以通过电源管理系统与处理器610逻辑相连,从而通过电源管理系统实现管理充电、放电、以及功耗管理等功能。图6中示出的电子设备结构并不构成对电子设备的限定,电子设备可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置,在此不再赘述。
其中,处理器610,用于获取电压比较模块12输出的LDO模块112的输入端与输出端的电压差;
根据所述电压差,控制无线充电线圈111通过第一能量通路或第二能量通路对负载16进行充电。
可选地,处理器610,还用于在所述电压差小于第一阈值的情况下,控制LDO模块112开启,并控制无线充电线圈111通过所述第一能量通路对负载16进行充电。
可选地,处理器610,还用于在所述电压差大于第二阈值的情况下,控制LDO模块112关闭,并控制无线充电线圈111通过所述第二能量通路对负载16进行充电。
可选地,在LDO模块112的输入端与负载16之间还具有第三能量通路的情况下,处理器610,还用于在所述电压差小于第三阈值的情况下,控制LDO模块112关闭,并控制无线充电线圈111通过所述第三能量通路对负载16进行充电,其中,所述第三阈值小于第一阈值。
本申请实施例中的电子设备,获取电压比较模块12输出的LDO模块112的输入端与输出端的电压差;根据所述电压差,控制无线充电线圈111通过第一能量通路或第二能量通路对负载16进行充电。这样,通过在充电电路中增加硬件保护电路,并在无线充电建立连接的各个阶段,根据电压差切换至不同的充电通路,从而可避免无线充电模块过功率损坏,提升无线充电的可靠性。
应理解的是,本申请实施例中,输入单元604可以包括图形处理器(Graphics Processing Unit,GPU)6041和麦克风6042,图形处理器6041对在视频捕获模式或图像捕获模式中由图像捕获装置(如摄像头)获得的静态图片或视频的图像数据进行处理。显示单元606可包括显示面板6061,可以采用液晶显示器、有机发光二极管等形式来配置显示面板6061。用户输入单元607包括触控面板6071以及其他输入设备6072中的至少一种。触控面板6071,也称为触摸屏。触控面板6071可包括触摸检测装置和触摸控制器两个部分。其他输入设备6072可以包括但不限于物理键盘、功能键(比如音量控制按键、开关按键等)、轨迹球、鼠标、操作杆,在此不再赘述。
存储器609可用于存储软件程序以及各种数据。存储器609可主要包括存储程序或指令的第一存储区和存储数据的第二存储区,其中,第一存储区可存储操作系统、至少一个功能所需的应用程序或指令(比如声音播放功能、图像播放功能等)等。此外,存储器609可以包括易失性存储器或非易失性存储器,或者,存储器609可以包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDRSDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synch link DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DRRAM)。本申请实施例中的存储器609包括但不限于这些和任意其它适合类型的存储器。
处理器610可包括一个或多个处理单元;可选地,处理器610集成应用处理器和调制解调处理器,其中,应用处理器主要处理涉及操作系统、用户 界面和应用程序等的操作,调制解调处理器主要处理无线通信信号,如基带处理器。可以理解的是,上述调制解调处理器也可以不集成到处理器610中。
本申请实施例还提供一种可读存储介质,所述可读存储介质上存储有程序或指令,该程序或指令被处理器执行时实现上述充电方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
其中,所述处理器为上述实施例中所述的电子设备中的处理器。所述可读存储介质,包括计算机可读存储介质,如计算机只读存储器ROM、随机存取存储器RAM、磁碟或者光盘等。
本申请实施例另提供了一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现上述充电方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
应理解,本申请实施例提到的芯片还可以称为系统级芯片、系统芯片、芯片系统或片上系统芯片等。
本申请实施例提供一种计算机程序产品,该程序产品被存储在存储介质中,该程序产品被至少一个处理器执行以实现如上述充电方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。此外,需要指出的是,本申请实施方式中的方法和装置的范围不限按示出或讨论的顺序来执行功能,还可包括根据所涉及的功能按基本同时的方式或按相反的顺序来执行功能,例如,可以按不同于所描述的次序来执行所描述的方法,并且还可以添加、省去、或组合各种步骤。另外,参照某些示例所描述的特征可在其他示例中被 组合。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分可以以计算机软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端(可以是手机,计算机,服务器,或者网络设备等)执行本申请各个实施例所述的方法。
上面结合附图对本申请的实施例进行了描述,但是本申请并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本申请的启示下,在不脱离本申请宗旨和权利要求所保护的范围情况下,还可做出很多形式,均属于本申请的保护之内。

Claims (14)

  1. 一种充电电路,包括无线充电线圈、低压差线性稳压器LDO模块、电压比较模块、处理器和负载;
    所述无线充电线圈与所述LDO模块的输入端连接;
    所述LDO模块的输出端通过第一能量通路与所述负载连接,所述LDO模块的输入端通过第二能量通路与所述负载连接;
    所述电压比较模块的两个输入端分别连接所述LDO模块的输入端和输出端,用于检测所述LDO模块的输入端和输出端的电压差;
    所述电压比较模块的输出端与所述处理器的第一端连接,所述处理器的第二端与所述LDO模块的控制端连接;
    其中,所述处理器用于根据所述电压比较模块的输出端输出的电压差,控制所述无线充电线圈通过所述第一能量通路或所述第二能量通路对所述负载进行充电。
  2. 根据权利要求1所述的充电电路,其中,所述充电电路还包括过压保护模块,所述过压保护模块设置在所述第二能量通路上。
  3. 根据权利要求2所述的充电电路,其中,所述过压保护模块为开关电源模块。
  4. 根据权利要求2或3所述的充电电路,其中,所述LDO模块的输入端还通过第三能量通路与所述负载连接。
  5. 根据权利要求4所述的充电电路,其中,所述充电电路还包括能量通路选择开关;
    所述处理器的第三端与所述能量通路选择开关的控制端连接;
    所述能量通路选择开关的第一端与所述LDO模块的输入端连接,所述能量通路选择开关的第二端和第三端分别与所述过压保护模块和所述负载连接。
  6. 一种充电方法,应用于权利要求1至5中任一项所述的充电电路,所 述方法包括:
    获取所述电压比较模块输出的所述LDO模块的输入端与输出端的电压差;
    根据所述电压差,控制所述无线充电线圈通过所述第一能量通路或所述第二能量通路对所述负载进行充电。
  7. 根据权利要求6所述的方法,其中,所述根据所述电压差,控制所述无线充电线圈通过所述第一能量通路或所述第二能量通路对负载进行充电,包括:
    在所述电压差小于第一阈值的情况下,控制所述LDO模块开启,并控制所述无线充电线圈通过所述第一能量通路对负载进行充电。
  8. 根据权利要求6所述的方法,其中,所述根据所述电压差,控制所述无线充电线圈通过所述第一能量通路或所述第二能量通路对负载进行充电,包括:
    在所述电压差大于第二阈值的情况下,控制所述LDO模块关闭,并控制所述无线充电线圈通过所述第二能量通路对负载进行充电。
  9. 一种充电装置,包括权利要求1至5中任一项所述的充电电路,所述充电装置包括:
    获取模块,用于获取所述电压比较模块输出的所述LDO模块的输入端与输出端的电压差;
    控制模块,用于根据所述电压差,控制所述无线充电线圈通过所述第一能量通路或所述第二能量通路对所述负载进行充电。
  10. 一种电子设备,包括权利要求1至5中任一项所述的充电电路,所述电子设备还包括处理器和存储器,所述存储器存储可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如权利要求6至8中任一项所述的充电方法的步骤。
  11. 一种可读存储介质,所述可读存储介质上存储程序或指令,所述程序或指令被处理器执行时实现如权利要求6至8中任一项所述的充电方法的 步骤。
  12. 一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现如权利要求6至8中任一项所述的充电方法的步骤。
  13. 一种计算机程序产品,该程序产品被存储在存储介质中,该程序产品被至少一个处理器执行以实现如权利要求6至8中任一项所述的充电方法的步骤。
  14. 一种电子设备,其中,被配置为执行如权利要求6至8中任一项所述的充电方法的步骤。
PCT/CN2023/098943 2022-06-14 2023-06-07 充电电路、方法、装置和电子设备 WO2023241437A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210669525.9A CN114865806A (zh) 2022-06-14 2022-06-14 充电电路、方法、装置和电子设备
CN202210669525.9 2022-06-14

Publications (1)

Publication Number Publication Date
WO2023241437A1 true WO2023241437A1 (zh) 2023-12-21

Family

ID=82625237

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/098943 WO2023241437A1 (zh) 2022-06-14 2023-06-07 充电电路、方法、装置和电子设备

Country Status (2)

Country Link
CN (1) CN114865806A (zh)
WO (1) WO2023241437A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114865806A (zh) * 2022-06-14 2022-08-05 维沃移动通信有限公司 充电电路、方法、装置和电子设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010207062A (ja) * 2009-03-06 2010-09-16 Oki Electric Ind Co Ltd 充電装置
CN109787337A (zh) * 2019-01-28 2019-05-21 江苏森源电气股份有限公司 复合供电式无线测温传感器及其控制方法
CN110391746A (zh) * 2018-04-23 2019-10-29 硅谷实验室公司 具有自动模式切换的pfm电源管理系统
CN111953082A (zh) * 2019-05-14 2020-11-17 X2 动力科技有限公司 高效的无线充电系统和方法
CN114598014A (zh) * 2022-04-22 2022-06-07 维沃移动通信有限公司 充电电路、充电电路的控制方法、装置及移动终端
CN114865806A (zh) * 2022-06-14 2022-08-05 维沃移动通信有限公司 充电电路、方法、装置和电子设备

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010207062A (ja) * 2009-03-06 2010-09-16 Oki Electric Ind Co Ltd 充電装置
CN110391746A (zh) * 2018-04-23 2019-10-29 硅谷实验室公司 具有自动模式切换的pfm电源管理系统
CN109787337A (zh) * 2019-01-28 2019-05-21 江苏森源电气股份有限公司 复合供电式无线测温传感器及其控制方法
CN111953082A (zh) * 2019-05-14 2020-11-17 X2 动力科技有限公司 高效的无线充电系统和方法
CN114598014A (zh) * 2022-04-22 2022-06-07 维沃移动通信有限公司 充电电路、充电电路的控制方法、装置及移动终端
CN114865806A (zh) * 2022-06-14 2022-08-05 维沃移动通信有限公司 充电电路、方法、装置和电子设备

Also Published As

Publication number Publication date
CN114865806A (zh) 2022-08-05

Similar Documents

Publication Publication Date Title
US7675571B2 (en) Cradle for connecting to portable electronic apparatus
EP1742140B1 (en) Cradle for connecting to portable electronic apparatus
JP7121865B2 (ja) 逆方向充電装置、逆方向充電電流調整方法及び装置
US10720791B2 (en) Charging method, charging device and terminal
WO2023241437A1 (zh) 充电电路、方法、装置和电子设备
US8738094B2 (en) Automatically enabling wireless communication
CN112165140B (zh) 充放电控制方法、装置及电源设备
US20090100258A1 (en) Mobile terminal aware of external device and control method for the same
WO2021135943A1 (zh) 网络切换方法、装置、存储介质及电子设备
WO2023202524A1 (zh) 充电电路、充电电路的控制方法、装置及移动终端
WO2023061333A1 (zh) 泄放电路的控制方法及装置、泄放器件及电子设备
WO2023193731A1 (zh) 信号获取方法和电子设备
WO2024012446A1 (zh) 电子设备的磁吸功能管理方法和电子设备
CN111490578A (zh) 充电控制方法及装置
CN112713629A (zh) 充电方法、装置及电子设备
CN112134337A (zh) 电源适配器、终端设备、电子设备及其充电控制方法
US10594923B2 (en) Method, system, and mobile terminal for adjusting focal length of camera
WO2023202527A1 (zh) 电源电路的控制方法、装置、电子设备和可读存储介质
WO2024001907A1 (zh) 射频控制方法、装置及电子设备
WO2023246714A1 (zh) 状态确定方法和装置、电子设备及可读存储介质
CN112290639B (zh) 一种充电接口电路和电子设备
CN110071542B (zh) 一种充电电路、充电方法及终端
CN107562167B (zh) 多路径充电方法、移动终端及计算机可读存储介质
CN115277930B (zh) 供电方法、装置及电子设备
CN114337872B (zh) 网络信号测量方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23823005

Country of ref document: EP

Kind code of ref document: A1