WO2023241324A1 - 一种嵌套光栅结构的双极性自驱动偏振光探测器 - Google Patents

一种嵌套光栅结构的双极性自驱动偏振光探测器 Download PDF

Info

Publication number
WO2023241324A1
WO2023241324A1 PCT/CN2023/095970 CN2023095970W WO2023241324A1 WO 2023241324 A1 WO2023241324 A1 WO 2023241324A1 CN 2023095970 W CN2023095970 W CN 2023095970W WO 2023241324 A1 WO2023241324 A1 WO 2023241324A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
perovskite
polarized light
nested
nanowire
Prior art date
Application number
PCT/CN2023/095970
Other languages
English (en)
French (fr)
Inventor
曹国洋
李孝峰
王子成
吴绍龙
王长擂
桑田
王继成
Original Assignee
苏州大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州大学 filed Critical 苏州大学
Publication of WO2023241324A1 publication Critical patent/WO2023241324A1/zh

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/80Constructional details
    • H10K30/81Electrodes
    • H10K30/82Transparent electrodes, e.g. indium tin oxide [ITO] electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/12Deposition of organic active material using liquid deposition, e.g. spin coating
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/40Thermal treatment, e.g. annealing in the presence of a solvent vapour
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/60Forming conductive regions or layers, e.g. electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Definitions

  • Polarized light detectors are widely used in the detection of hidden/camouflaged/dim targets, intelligent transportation, military and other fields because they can obtain more dimensional information than ordinary light detectors. Especially in recent years, with the advent of the Internet of Everything represented by intelligent transportation, people's demand for high-performance polarized light detectors with low power consumption, high sensitivity and high integration has exploded.
  • Silicon dioxide/silicon substrate Silicon dioxide/silicon substrate, a metal nanowire grating array disposed on the substrate, a semiconductor layer covering the metal nanowire grating array, and a transparent conductive layer covering the semiconductor layer;
  • one end of the metal nanowire grating array is connected to a wire as an electrode at one end
  • the transparent conductive layer connected to the other end is connected to a wire as the other electrode
  • the wires drawn from the electrodes at both ends are connected with an ammeter or connected to a load.
  • the second object of the present invention is to provide a method for preparing a bipolar self-driven polarized light detector with a nested grating structure.
  • the method is used to prepare the bipolar self-driven polarized light detector with a nested grating structure.
  • Step 1 Prepare a metal nanowire grating array with a square cross-section on a silicon dioxide/silicon substrate through mask photolithography technology
  • Step 2 Use the spin coating method to evenly spin-coat the perovskite precursor solution on the metal nanowire grating array prepared in step 1. After spin-coating, place it on a 65°C heating stage for heating treatment for 2 minutes, and then place it at 100°C. Heat the heating stage for 10 minutes to form a perovskite film as a semiconductor layer, and then use ion beam etching to remove the excess perovskite in the metal-free nanowire area, leaving only the perovskite coating layer with a thickness of 94nm on the periphery of the metal. ;
  • Step 3 Use atomic layer deposition to grow a layer of tin oxide as a sacrificial layer outside the semiconductor perovskite layer, and then use magnetron sputtering to prepare a transparent conductive layer outside the tin oxide layer; then use ion beam etching to remove the The excess transparent conductive layer in the perovskite area is removed, leaving only the transparent conductive cladding layer with a thickness of 80nm on the periphery of the perovskite.
  • the cross-section of the silver nanowire grating array prepared in step 1 is square. It is determined by observation with a focused ion beam analyzer that the cross-sectional side length of the silver nanowire is 55 ⁇ 5nm, the length of the nanowire is 5 ⁇ m, and the period is 750nm.
  • a method for preparing a bipolar self-driven polarized light detector with a nested grating structure including:
  • Step 1 Prepare a metal nanowire grating array with a square cross-section on a silicon dioxide/silicon substrate through mask photolithography technology; pass the metal nanowire at one end of the metal nanowire grating array through a section with a width of 50 ⁇ 20nm The metal nanowires are connected;
  • step2 Use the spin coating method to evenly spin the perovskite precursor liquid to prepare the base of the metal nanowire grating array in step 1.
  • step 1 On the bottom, after spin coating, place it on a 65°C heating station for heating treatment for 2 minutes, and then place it on a 100°C heating station for 10 minutes to form a perovskite film as a semiconductor layer, and then use ion beam etching to remove the metal-free nanowire area.
  • the excess perovskite is removed, leaving only the perovskite coating layer with a thickness of 94nm on the periphery of the metal; the perovskite on the metal nanowires with a width of 50 ⁇ 20nm used to connect one end of the metal nanowire grating array also uses ions. Removal by beam etching;
  • the device can obtain equal large reverse signal currents under zero bias under orthogonal TE and TM polarized illumination, thereby effectively avoiding background natural light.
  • the interference to the signal light greatly improves the detection capability of the polarization detector; in addition, the polarization detector proposed by the present invention works under no bias voltage, that is, it does not require external energy supply, so it has ultra-low power consumption and is maintenance-free;
  • the polarization detector proposed by the present invention determines the polarization direction according to the polarity of the signal current, thereby making the judgment simpler, faster, more accurate and free of incident power calibration, and realizing bipolar signal current.
  • the polarization detector proposed by the present invention It has a grating array structure and therefore has the advantage of high integration.
  • Figure 3 is a schematic diagram of a bipolar self-driven polarized light detector with a nested grating structure provided by another embodiment of the present invention.
  • Figure 6 is a response current of a bipolar self-driven polarized light detector with a nested grating structure provided by an embodiment of the present invention. Plot of density versus incident polarization angle.
  • Figure 7 is a response current density diagram of the bipolar self-driven polarized light detector with a nested grating structure provided by this application under the same power of TM polarized light and natural light.
  • This embodiment provides a bipolar self-driven polarized light detector with a nested grating structure. See Figure 1 .
  • the bipolar self-driven polarized light detector with a nested grating structure includes:
  • the semiconductor layer is made of perovskite material, and the thickness of the semiconductor layer shell is set to 94nm.
  • This embodiment provides a method for preparing a bipolar self-driven polarized light detector with a nested grating structure. See Figure 2. The method is used to prepare the detector given in Example 1, including:
  • Step 1 Prepare a metal nanowire grating array with a square cross-section on a silicon dioxide/silicon substrate through mask photolithography technology
  • Step 2 Use the spin coating method to evenly spin-coat the perovskite precursor solution on the metal nanowire grating array prepared in step 1. After spin-coating, place it on a 65°C heating stage for heating treatment for 2 minutes, and then place it at 100°C. Heat the heating stage for 10 minutes to form a perovskite film as a semiconductor layer, and then use ion beam etching to remove the excess perovskite in the metal-free nanowire area, leaving only the perovskite coating layer with a thickness of 94nm on the periphery of the metal.
  • the 50nm long metal nanowire portion at one end of the metal nanowire grating array does not require spin coating of perovskite, and can be removed at the same time when using ion beam etching to remove excess perovskite in the metal nanowire-free area.
  • Step 3 Use atomic layer deposition to grow a layer of tin oxide as a sacrificial layer outside the semiconductor layer, and then use magnetron sputtering to prepare an ITO transparent conductive layer outside the tin oxide layer; then use ion beam etching to remove the calcium-free The excess ITP transparent conductive layer in the titanium area is removed, leaving only the ITO transparent conductive coating layer with a thickness of 80nm on the periphery of the perovskite;
  • Step 4 Use the silver nanowire core in each nested structure of the metal nanowire grating array as one end electrode, and the transparent conductive layer outside each nested structure as the other end electrode.
  • the wires drawn from the two end electrodes are connected with an ammeter. Or connect a load to obtain a bipolar self-driven polarized light detector with a nested grating structure.
  • This embodiment is based on the bipolar self-driven polarized light detector with a nested grating structure provided in Embodiment 1.
  • the metal nanowires at one end of the metal nanowire grating array are passed through a section with a width of 50 ⁇ 20nm.
  • the metal nanowires are connected; the transparent conductive layer at the other end is connected correspondingly, that is, the values of d1 and d2 in Figure 3 are 50 ⁇ 20nm.
  • One end of the metal nanowire grating array is connected to a wire as one end electrode, and the transparent conductive layer connected to the other end is connected to a wire as the other end electrode.
  • the wires drawn from the electrodes at both ends are connected with an ammeter or connected to a load, as shown in Figure 4 .
  • This embodiment provides a method for preparing a bipolar self-driven polarized light detector with a nested grating structure. See Figure 5. The method is used to prepare the detector given in Example 2, including:
  • Step 2 Use the spin coating method to evenly spin-coat the perovskite precursor solution on the metal nanowire grating array prepared in step 1. After spin-coating, place it on a 65°C heating stage for heating treatment for 2 minutes, and then place it at 100°C. Heat treatment on the heating stage for 10 minutes to form a perovskite film as a semiconductor layer, and then use ion beam etching to remove excess perovskite in the metal nanowire-free area; it is used to remove one end of the metal nanowire grating array (i.e. in Figure 5 The part of the metal nanowire with a width of 50 ⁇ 20nm connected to the metal nanowire at end A) does not need to be spin-coated with perovskite. The excess perovskite in the metal nanowire-free area can be removed at the same time using ion beam etching. remove;
  • Step 3 Use atomic layer deposition to grow a layer of tin oxide as a sacrificial layer outside the semiconductor layer, and then use magnetron sputtering to prepare a transparent conductive layer outside the tin oxide layer; then use ion beam etching to remove calcium-free titanium The excess transparent conductive layer in the mineral area is removed, and the ITO at one end (i.e. end B in Figure 5) remains 50nm long and is not removed;
  • Step (1) Prepare a silver nanowire grating array with a square cross-section on a cleaned silicon dioxide/silicon (SiO 2 /Si) substrate through mask photolithography technology, and observe and determine the silver (
  • the cross-sectional side length of the Ag) nanowire is 55nm, the length of the nanowire is 5 ⁇ m, and the period is 750nm.
  • the silver nanowires at one end of the grating are connected, and the length of the nanowires occupied by the connected area is 50nm.
  • the end where the silver nanowires of the grating array are connected is called end A, and the corresponding other end is end B, as shown in Figure 5;
  • Step (2) Use a one-step spin coating method to evenly spin-coat the perovskite (MAPbI 3 ) precursor solution on the silver grating array substrate prepared in step (1).
  • the spin-coated sample was heated on a 65°C heating stage for 2 minutes, and then placed on a 100°C heating stage for 10 minutes to form a good 94nm thick perovskite film. Ion beam etching is then used to remove excess perovskite in the metal-free nanowire areas, leaving only the coating area.
  • Step (4) Connect one end of the silver nanowire in the array to a wire as one end of the electrode, connect the other end of the nanowire to the ITO wire as the other end of the electrode, and connect the wires from the electrodes at both ends with an ammeter or a load.
  • This application uses the same power of TM polarized light and natural light to detect the device, and compares the device response current density in the two cases, as shown in Figure 7. It can be seen from Figure 7 that under the same incident power, the response current density obtained by the device when TM polarized light is incident is basically more than 1,000 times that when natural light is incident, which also shows that the device has a high ability to resist background natural light interference.
  • Table 1 presents the ratio of the response current density of the device in other sizes when TM polarized light and natural light are incident at the same power:

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Composite Materials (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Light Receiving Elements (AREA)

Abstract

本发明公开了一种嵌套光栅结构的双极性自驱动偏振光探测器,属于光电探测领域。所述探测器为嵌套光栅结构,包括二氧化硅/硅衬底、设置于衬底上的金属纳米线光栅阵列,包覆于金属纳米线光栅阵列外的半导体层以及包覆于半导体层外的透明导电层。该探测器可实现正交的TE和TM偏振光照下器件在零偏压下获得等大反向的信号电流,从而有效规避掉背景自然光对信号光的干扰,大幅提升偏振探测器的探测能力。另外,针对该纳米级探测器,在制备过程中,为尽可能避免由于尺寸误差所带来的光学性能及电学性能的变化,本申请在利用磁控溅射法在氧化锡层外制备导电层时,先通过原子层沉积法在钙钛矿层外生长一层氧化锡作为牺牲层。

Description

一种嵌套光栅结构的双极性自驱动偏振光探测器
Ambipolar Self-driving Polarized Photodetector with Nested Grating Structure
技术领域
本发明涉及一种嵌套光栅结构的双极性自驱动偏振光探测器,属于光电探测领域。
背景技术
偏振光探测器因较于普通光探测器可获得更多维度的信息而在隐藏/伪装/暗弱目标的探测、智能交通、军事等领域有着非常广泛的应用。尤其近几年以智能交通为代表的万物互联即将来临,人们对低功耗、高灵敏和高集成的高性能偏振光探测器的需求呈爆发式增长。偏振探测虽历经50年的发展,然而因相位信息难以直接获取,导致前几代偏振探测装置普遍具有体积庞大、结构复杂、需要复杂的校正和标定程序等缺点[Powell,S.B.,& Gruev,V..(2013).Calibration methods for division-of-focal-plane polarimeters.Optics Express,21(18),21039-21055.],难以满足当今对光电子器件高集成化、小型化、高性能的要求。
近年基于低维材料自身各向异性的偏振探测器因有望直接实现高集成化而备受关注[白瑞雪,杨珏晗,魏大海,&魏钟鸣.(2020).低维半导体材料在非线性光学领域的研究进展.物理学报,69(18),15]。然而至今报道的偏振探测器的各向异性比普遍较低,难以满足实际应用的要求。且目前的偏振探测器获得的信号电流都是单极性的,即光电流正负性唯一。这是因为偏振探测器普遍基于光电导或者光伏效应,其获得的电流信号极性由偏置电压或内建电势方向决定,而与光信号的偏振方向无关。这种信号电流仅具有单极性,导致系统因需功率标定而较复杂,判断精度较低等问题。为此,发明人于2021年提出基于核壳纳米线结构的自驱动偏振光探测器(参见:Cao,G.,Zhang,H.,Chen,G.,& Li,X..(2021).Ambipolar self-driving polarized photodetection.ACS Photonics,8(8).),成功实现了双极信号,有效避免了单极信号产生的问题。
然而,一方面,该核壳纳米线结构制备非常困难,并且该结构不利于集成化,难以满足当前对光电器件高集成化的要求;另一方面,背景自然光同样会产生较大的背景噪声,不利于微弱信号探测。
发明内容
为了解决目前存在的新型双极性自驱动偏振光探测器面临的背景噪声较大的问题,本发明提供了一种嵌套光栅结构的双极性自驱动偏振光探测器,所述嵌套光栅结构的双极性自驱 动偏振光探测器包括:
二氧化硅/硅衬底,设置于衬底上的金属纳米线光栅阵列,包覆于金属纳米线光栅阵列外的半导体层以及包覆于半导体层外的透明导电层;
所述金属纳米线光栅阵列中,金属纳米线材料为银,横截面为矩形或者方形;金属纳米线边长为55±5nm,长度为3~10μm,周期为750nm。
可选的,所述半导体层采用钙钛矿材料,半导体层壳层厚度设置为94nm。
可选的,所述透明导电层采用透明导电氧化物ITO制备,厚度为80nm。
可选的,所述金属纳米线光栅阵列一端的金属纳米线通过一段宽度为50±20nm的金属纳米线相连;另一端的透明导电层对应相连。
可选的,所述金属纳米线光栅阵列相连的一端处连接导线作为一端电极,另一端相连的透明导电层连接导线作为另一端电极,两端电极引出的导线用电流表相接或者连接负载。
本发明的第二个目的在于提供一种嵌套光栅结构的双极性自驱动偏振光探测器的制备方法,所述方法用于制备上述嵌套光栅结构的双极性自驱动偏振光探测器,包括:
步骤1:在二氧化硅/硅衬底上通过掩膜光刻技术制备横截面为方形的金属纳米线光栅阵列;
步骤2:采用旋涂法将钙钛矿前驱液均匀的旋涂在步骤1制备好金属纳米线光栅阵列的基底上,旋涂后将其置于65℃加热台加热处理2min,然后放置100℃加热台加热处理10min,形成钙钛矿薄膜作为半导体层,再使用离子束刻蚀法将无金属纳米线区域的多余的钙钛矿去除,仅保留金属外围厚度为94nm的钙钛矿包覆层;
步骤3:通过原子层沉积法在半导体钙钛矿层外生长一层氧化锡作为牺牲层,再利用磁控溅射法在氧化锡层外制备透明导电层;然后再使用离子束刻蚀法将无钙钛矿区域的多余的透明导电层去除,仅保留钙钛矿外围厚度为80nm的透明导电包覆层。
可选的,所述步骤1中制备的横截面为方形的银纳米线光栅阵列,通过聚焦离子束分析仪观测确定银纳米线横截面边长为55±5nm,纳米线长度为5μm,周期为750nm。
一种嵌套光栅结构的双极性自驱动偏振光探测器的制备方法,所述方法用于制备上述嵌套光栅结构的双极性自驱动偏振光探测器,包括:
step1:在二氧化硅/硅衬底上通过掩膜光刻技术制备横截面为方形的金属纳米线光栅阵列;并将所述金属纳米线光栅阵列一端的金属纳米线通过一段宽度为50±20nm的金属纳米线相连;
step2:采用旋涂法将钙钛矿前驱液均匀的旋涂在步骤1制备好金属纳米线光栅阵列的基 底上,旋涂后将其置于65℃加热台加热处理2min,然后放置100℃加热台加热处理10min,形成钙钛矿薄膜作为半导体层,再使用离子束刻蚀法将无金属纳米线区域的多余的钙钛矿去除,仅保留金属外围厚度为94nm的钙钛矿包覆层;用于连接金属纳米线光栅阵列一端的宽度为50±20nm的金属纳米线上的钙钛矿同样采用离子束刻蚀法去除;
step3:通过原子层沉积法在半导体钙钛矿层外生长一层氧化锡作为牺牲层,再利用磁控溅射法在氧化锡层外制备透明导电层;然后再使用离子束刻蚀法将无钙钛矿区域的多余的透明导电层去除,仅保留钙钛矿外围厚度为80nm的透明导电包覆层。
可选的,所述step1中制备的横截面为方形的银纳米线光栅阵列,通过聚焦离子束分析仪观测确定银纳米线横截面边长为55±5nm,纳米线长度为5μm,周期为750nm。
本发明有益效果是:
通过提供一种嵌套光栅结构的双极性自驱动偏振光探测器,实现正交的TE和TM偏振光照下器件在零偏压下获得等大反向的信号电流,从而有效规避掉背景自然光对信号光的干扰,大幅提升偏振探测器的探测能力;另外本发明所提的偏振探测器是在无偏压下工作的,即不需要外界供能,因此具有超低功耗且免维护;本发明所提的偏振探测器根据信号电流的极性确定偏振方向,从而使判断更简单、快速、精确且免入射功率标定,实现了双极性信号电流,最后本发明所提的偏振探测器具有光栅阵列结构,因此具有高集成的优势。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本发明一个实施例提供的嵌套光栅结构的双极性自驱动偏振光探测器示意图;
图2是本发明一个实施例提供的嵌套光栅结构的双极性自驱动偏振光探测器制备过程示意图。
图3是本发明另一个实施例提供的嵌套光栅结构的双极性自驱动偏振光探测器示意图。
图4是本发明一个实施例提供的嵌套光栅结构的双极性自驱动偏振光探测器用电流表连接两端电极的示意图。
图5是本发明一个实施例提供的嵌套光栅结构的双极性自驱动偏振光探测器制备过程示意图。
图6是本发明一个实施例提供的嵌套光栅结构的双极性自驱动偏振光探测器的响应电流 密度与入射偏振角关系图。
图7是相同功率的TM偏振光和自然光入射下本申请提供的嵌套光栅结构的双极性自驱动偏振光探测器的响应电流密度图。
图8是相同功率的TM偏振光和自然光入射情况下器件的响应电流密度随银纳米线核尺寸的变化关系仿真图。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚,下面将结合附图对本发明实施方式作进一步地详细描述。
实施例一:
本实施例提供一种嵌套光栅结构的双极性自驱动偏振光探测器,参见图1,所述嵌套光栅结构的双极性自驱动偏振光探测器包括:
二氧化硅/硅衬底,设置于衬底上的金属纳米线光栅阵列;包覆于金属纳米线光栅阵列外的半导体层;包覆于半导体层外的透明导电层。
所述金属纳米线光栅阵列中,金属纳米线材料为银,横截面为方形;金属纳米线边长为55±5nm nm,长度为3~10μm,周期为750nm。
所述半导体层采用钙钛矿材料,半导体层壳层厚度设置为94nm。
所述透明导电层采用透明导电氧化物ITO制备,厚度为80nm。
实施例二
本实施例提供一种嵌套光栅结构的双极性自驱动偏振光探测器的制备方法,参见图2,所述方法用于制备实施例一所给出的探测器,包括:
步骤1:在二氧化硅/硅衬底上通过掩膜光刻技术制备横截面为方形的金属纳米线光栅阵列;
步骤2:采用旋涂法将钙钛矿前驱液均匀的旋涂在步骤1制备好金属纳米线光栅阵列的基底上,旋涂后将其置于65℃加热台加热处理2min,然后放置100℃加热台加热处理10min,形成钙钛矿薄膜作为半导体层,再使用离子束刻蚀法将无金属纳米线区域的多余的钙钛矿去除,仅保留金属外围厚度为94nm的钙钛矿包覆层;金属纳米线光栅阵列一端长50nm的金属纳米线部分不需要旋涂钙钛矿,可在使用离子束刻蚀法将无金属纳米线区域的多余的钙钛矿去除时同时去除。
步骤3:通过原子层沉积法在半导体层外生长一层氧化锡作为牺牲层,再利用磁控溅射法在氧化锡层外制备ITO透明导电层;然后再使用离子束刻蚀法将无钙钛矿区域的多余的ITP透明导电层去除,仅保留钙钛矿外围厚度为80nm的ITO透明导电包覆层;
步骤4:将金属纳米线光栅阵列中每一个嵌套结构中的银纳米线芯作为一端电极,每个嵌套结构外的透明导电层作为另一端电极,两端电极引出的导线用电流表相接或者连接负载,得到嵌套光栅结构的双极性自驱动偏振光探测器。
实施例三:
本实施例在实施例一提供的嵌套光栅结构的双极性自驱动偏振光探测器的基础上,参见图3,将金属纳米线光栅阵列一端的金属纳米线通过一段宽度为50±20nm的金属纳米线相连;另一端的透明导电层对应相连,即图3中的d1和d2的值为50±20nm。
所述金属纳米线光栅阵列相连的一端处连接导线作为一端电极,另一端相连的透明导电层连接导线作为另一端电极,两端电极引出的导线用电流表相接或者连接负载,如图4所示。
实施例四
本实施例提供一种嵌套光栅结构的双极性自驱动偏振光探测器的制备方法,参见图5,所述方法用于制备实施例二所给出的探测器,包括:
步骤1:在二氧化硅/硅衬底上通过掩膜光刻技术制备横截面为方形的金属纳米线光栅阵列,金属纳米线光栅阵列一端的金属纳米线通过一段宽度为50±20nm的金属纳米线相连;
步骤2:采用旋涂法将钙钛矿前驱液均匀的旋涂在步骤1制备好金属纳米线光栅阵列的基底上,旋涂后将其置于65℃加热台加热处理2min,然后放置100℃加热台加热处理10min,形成钙钛矿薄膜作为半导体层,再使用离子束刻蚀法将无金属纳米线区域的多余的钙钛矿去除;用于将金属纳米线光栅阵列一端(即图5中A端)的金属纳米线相连的宽度为50±20nm的金属纳米线部分不需要旋涂钙钛矿,可在使用离子束刻蚀法将无金属纳米线区域的多余的钙钛矿去除时同时去除;
步骤3:通过原子层沉积法在半导体层外生长一层氧化锡作为牺牲层,再利用磁控溅射法在氧化锡层外制备透明导电层;然后再使用离子束刻蚀法将无钙钛矿区域的多余的透明导电层去除,且一端(即图5中B端)的ITO保留50nm长不去除;
步骤4:将金属纳米线光栅阵列中金属纳米线相连一端连接导线作为一端电极,将金属纳米线的另一端相连的透明导电层连接导线作为另一端电极,两端电极引出的导线用电流表相接或者连接负载,得到嵌套光栅结构的双极性自驱动偏振光探测器。
实施例五
本实施例提供一种嵌套光栅结构的双极性自驱动偏振光探测器的制备方法,以金属纳米线材料为银为例进行说明,参见图5,所述方法包括:
步骤(1)在清洁过的二氧化硅/硅(SiO2/Si)衬底上通过掩膜光刻技术制备横截面为方形的银纳米线光栅阵列,通过聚焦离子束分析仪观测确定银(Ag)纳米线横截面边长为55nm,纳米线长度为5μm,周期为750nm。且光栅的一端银纳米线是相连的,所连区域占据的纳米线长度为50nm。为便于后续描述,将光栅阵列的银纳米线相连的一端称为A端,对应的另一端为B端,如图5所示;
步骤(2)用一步旋涂法将钙钛矿(MAPbI3)前驱液均匀的旋涂在步骤(1)制备好银光栅阵列的基底上。将旋涂完后的样品至于65℃加热台加热处理2min,然后放置100℃加热台加热处理10min,形成良好的94nm厚的钙钛矿薄膜。然后再使用离子束刻蚀法将无金属纳米线区域的多余的钙钛矿去除,即仅保留包覆区。
步骤(3)通过原子层沉积法在钙钛矿层外生长一层氧化锡作为牺牲层,该牺牲层厚度控制在2nm左右,再利用磁控溅射法在氧化锡层外制备80nm厚的ITO层。然后再使用离子束刻蚀法将无钙钛矿区域的多余的ITO去除,即仅保留包覆区,银纳米线未相连的一端的ITO保留宽度50nm不去除,即B端处ITO保留50nm,从而使得B端透明导电层相连,与光栅阵列的银纳米线相连的一端对应。
步骤(4)将阵列中银纳米线相连一端连接导线作为一端电极,将纳米线的另一端相连的ITO连接导线作为另一端电极,两端电极引出的导线用电流表相接或者连接负载。
制备完成后,以不同偏振角度的线偏振光入射可以得到器件响应电流密度与入射偏振角度的关系,如图6所示。由图6可以看出在TE和TM偏振光入射下,响应电流密度分别为负值和正值,绝对值大小相等,即在零偏压下获得等大反向的信号电流,从而有效规避掉背景自然光对信号光的干扰,有效解决了背景自然光同样会产生较大的背景噪声,不利于微弱信号探测的问题,从而大幅提升偏振探测器的探测能力。
本申请以相同功率的TM偏振光和自然光入射探测器件,并比较两种情况下器件响应电流密度,如图7所示。由图7可以看出同一入射功率下,器件在TM偏振光入射时获得的响应电流密度基本是自然光入射情况下的1000倍以上,也说明器件具有很高的抗背景自然光干扰能力。
进一步对银纳米线核的尺寸做微小改变,发现器件在相同功率的TM偏振光和自然光入 射情况下的响应电流密度变化均较小,如图8所示,说明器件的尺寸范围可扩展为银纳米线横截面积边长为55±5nm。
实施例尺寸是针对矩形嵌套光栅结构进行特殊设计的,是经过大量努力尝试获得的。表1呈现了其他尺寸下该器件在相同功率的TM偏振光和自然光入射情况下的响应电流密度的比值:
表1不同尺寸下,等功率TM与自然光入射响应电流的比值的比较
由上表1可以看出,当结构尺寸与实施例中给出的尺寸有较大的差别时,电流密度比值明显降低,仅仅为1~5左右,并没有呈现出较好的抗背景自然光干扰的能力。
需要进行说明的是,在本发明的描述中,需要理解的是,术语“中”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
以上所述仅为本发明的较佳实施例,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (9)

  1. 一种嵌套光栅结构的双极性自驱动偏振光探测器,其特征在于,所述嵌套光栅结构的双极性自驱动偏振光探测器包括:
    二氧化硅/硅衬底,设置于衬底上的金属纳米线光栅阵列,包覆于金属纳米线光栅阵列外的半导体层以及包覆于半导体层外的透明导电层;
    所述金属纳米线光栅阵列中,金属纳米线材料为银,横截面为矩形或者方形;金属纳米线边长为55±5nm,长度为3~10μm,周期为750nm。
  2. 根据权利要求1所述的嵌套光栅结构的双极性自驱动偏振光探测器,其特征在于,所述半导体层采用钙钛矿材料,半导体层壳层厚度设置为94nm。
  3. 根据权利要求2所述的嵌套光栅结构的双极性自驱动偏振光探测器,其特征在于,所述透明导电层采用透明导电氧化物ITO制备,厚度为80nm。
  4. 根据权利要求1所述的嵌套光栅结构的双极性自驱动偏振光探测器,其特征在于,所述金属纳米线光栅阵列一端的金属纳米线通过一段宽度为50±20nm的金属纳米线相连;另一端的透明导电层对应相连。
  5. 根据权利要求4所述的嵌套光栅结构的双极性自驱动偏振光探测器,其特征在于,所述金属纳米线光栅阵列相连的一端处连接导线作为一端电极,另一端相连的透明导电层连接导线作为另一端电极,两端电极引出的导线用电流表相接或者连接负载。
  6. 一种嵌套光栅结构的双极性自驱动偏振光探测器的制备方法,其特征在于,所述方法用于制备权利要求1-3任一所述的嵌套光栅结构的双极性自驱动偏振光探测器,包括:
    步骤1:在二氧化硅/硅衬底上通过掩膜光刻技术制备横截面为方形的金属纳米线光栅阵列;
    步骤2:采用旋涂法将钙钛矿前驱液均匀的旋涂在步骤1制备好金属纳米线光栅阵列的基底上,旋涂后将其置于65℃加热台加热处理2min,然后放置100℃加热台加热处理10min,形成钙钛矿薄膜作为半导体层,再使用离子束刻蚀法将无金属纳米线区域的多余的钙钛矿去除,仅保留金属外围厚度为94nm的钙钛矿包覆层;
    步骤3:通过原子层沉积法在半导体钙钛矿层外生长一层氧化锡作为牺牲层,再利用磁 控溅射法在氧化锡层外制备透明导电层;然后再使用离子束刻蚀法将无钙钛矿区域的多余的透明导电层去除,仅保留钙钛矿外围厚度为80nm的透明导电包覆层。
  7. 根据权利要求6所述的嵌套光栅结构的双极性自驱动偏振光探测器的制备方法,其特征在于,所述步骤1中制备的横截面为方形的银纳米线光栅阵列,通过聚焦离子束分析仪观测确定银纳米线横截面边长为55±5nm,纳米线长度为5μm,周期为750nm。
  8. 一种嵌套光栅结构的双极性自驱动偏振光探测器的制备方法,其特征在于,所述方法用于制备权利要求4或5所述的嵌套光栅结构的双极性自驱动偏振光探测器,包括:
    step1:在二氧化硅/硅衬底上通过掩膜光刻技术制备横截面为方形的金属纳米线光栅阵列;并将所述金属纳米线光栅阵列一端的金属纳米线通过一段宽度为50±20nm的金属纳米线相连;
    step2:采用旋涂法将钙钛矿前驱液均匀的旋涂在步骤1制备好金属纳米线光栅阵列的基底上,旋涂后将其置于65℃加热台加热处理2min,然后放置100℃加热台加热处理10min,形成钙钛矿薄膜作为半导体层,再使用离子束刻蚀法将无金属纳米线区域的多余的钙钛矿去除,仅保留金属外围厚度为94nm的钙钛矿包覆层;用于连接金属纳米线光栅阵列一端的宽度为50±20nm的金属纳米线上的钙钛矿同样采用离子束刻蚀法去除;
    step3:通过原子层沉积法在半导体钙钛矿层外生长一层氧化锡作为牺牲层,再利用磁控溅射法在氧化锡层外制备透明导电层;然后再使用离子束刻蚀法将无钙钛矿区域的多余的透明导电层去除,仅保留钙钛矿外围厚度为80nm的透明导电包覆层。
  9. 根据权利要求8所述的嵌套光栅结构的双极性自驱动偏振光探测器的制备方法,其特征在于,所述step1中制备的横截面为方形的银纳米线光栅阵列,通过聚焦离子束分析仪观测确定银纳米线横截面边长为55±5nm,纳米线长度为5μm,周期为750nm。
PCT/CN2023/095970 2022-06-13 2023-05-24 一种嵌套光栅结构的双极性自驱动偏振光探测器 WO2023241324A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210660787.9 2022-06-13
CN202210660787.9A CN115132925B (zh) 2022-06-13 2022-06-13 一种嵌套光栅结构的双极性自驱动偏振光探测器

Publications (1)

Publication Number Publication Date
WO2023241324A1 true WO2023241324A1 (zh) 2023-12-21

Family

ID=83378695

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/095970 WO2023241324A1 (zh) 2022-06-13 2023-05-24 一种嵌套光栅结构的双极性自驱动偏振光探测器

Country Status (2)

Country Link
CN (1) CN115132925B (zh)
WO (1) WO2023241324A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117727826A (zh) * 2024-02-07 2024-03-19 苏州大学 一种几何-晶体各向异性耦合的光电探测器及其制备方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117038756B (zh) * 2023-10-08 2024-04-02 长春理工大学 一种同时具有光谱及偏振选择性的量子点探测器
CN117460269B (zh) * 2023-12-25 2024-03-19 苏州大学 一种双极性光电探测器及光加密通信系统、方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106876592A (zh) * 2017-02-15 2017-06-20 中国科学院合肥物质科学研究院 多彩太阳能电池及其制备方法
CN109119539A (zh) * 2018-07-31 2019-01-01 哈尔滨工业大学(深圳) 一种硅纳米线/pedot:pss-dmso有机无机杂化太阳电池及其制备方法
CN110718634A (zh) * 2019-11-06 2020-01-21 常熟理工学院 具有光栅阵列结构电子传输层的太阳能电池及其制备方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104779352B (zh) * 2015-04-24 2017-05-10 苏州大学 基于石墨烯与纳米结构钙钛矿材料的光探测器及制备方法
CN109742242A (zh) * 2019-03-01 2019-05-10 常熟理工学院 一种宽光谱纳米阵列探测器及其制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106876592A (zh) * 2017-02-15 2017-06-20 中国科学院合肥物质科学研究院 多彩太阳能电池及其制备方法
CN109119539A (zh) * 2018-07-31 2019-01-01 哈尔滨工业大学(深圳) 一种硅纳米线/pedot:pss-dmso有机无机杂化太阳电池及其制备方法
CN110718634A (zh) * 2019-11-06 2020-01-21 常熟理工学院 具有光栅阵列结构电子传输层的太阳能电池及其制备方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117727826A (zh) * 2024-02-07 2024-03-19 苏州大学 一种几何-晶体各向异性耦合的光电探测器及其制备方法
CN117727826B (zh) * 2024-02-07 2024-04-26 苏州大学 一种几何-晶体各向异性耦合的光电探测器及其制备方法

Also Published As

Publication number Publication date
CN115132925B (zh) 2023-05-30
CN115132925A (zh) 2022-09-30

Similar Documents

Publication Publication Date Title
WO2023241324A1 (zh) 一种嵌套光栅结构的双极性自驱动偏振光探测器
CN109884001B (zh) 一种区分拓扑绝缘体Sb2Te3的圆偏振光致电流和光子拽曳电流的方法
CN111029416A (zh) 一种圆偏振光探测器件及其制备方法
Chou et al. Ultrathin, high-efficiency, broad-band, omni-acceptance, organic solar cells enhanced by plasmonic cavity with subwavelength hole array
CN104656170B (zh) 一种宽波段光全吸收器及其制备方法
Neder et al. Efficient colored silicon solar modules using integrated resonant dielectric nanoscatterers
CN103681897B (zh) 一种红外光电探测器及其制备方法
CN110890434B (zh) 一种铜氧基高温超导单光子探测器及其制备方法
CN113419200A (zh) 探测Bi2Te3表面态六角翘曲的电流诱导自旋极化的方法
WO2022088204A1 (zh) 一种紫外-可见-近红外硅基光电探测器及其制备方法
US20220155150A1 (en) Infrared absorption and detection enhancement using plasmonics
CN110391314A (zh) 一种窄带光电探测器及其制备方法
CN103617999B (zh) 基于硅上液晶的短波长红外成像器件
CN105161486B (zh) 苝四甲酸二酐有机层光电耦合器及其制作方法
Hu et al. Uncooled bolometer for millimeter-wave detection using manganese-cobalt-nickel-oxide thin film
Sun et al. A Polarization‐Sensitive Photodetector with Patterned CH3NH3PbCl3 Film
CN108873390B (zh) 一种非对称传输信号可调的单层微纳结构及其制备方法
Liu et al. Reducing the dark current of cuprous oxide/Au schottky photodetector for high signal-to-noise ratio imaging
CN117727826B (zh) 一种几何-晶体各向异性耦合的光电探测器及其制备方法
CN105403944B (zh) 一种圆偏振器及其制作方法
CN106997909B (zh) 一种高灵敏度日盲深紫外光探测器
Zhao et al. Chiral 2D/Quasi‐2D Perovskite Heterojunction Nanowire Arrays for High‐Performance Full‐Stokes Polarization Detection
CN114609717B (zh) 一种适用于可见光波段的单层透射式圆偏振器
WO2023168996A1 (zh) 结构化超导带单光子探测器及其制备方法
Yin et al. Saturating quantum efficiency of SNSPDs with disorder manipulation of NbN films

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23822894

Country of ref document: EP

Kind code of ref document: A1