WO2023241253A1 - 一种光波导镜片及其封装方法 - Google Patents

一种光波导镜片及其封装方法 Download PDF

Info

Publication number
WO2023241253A1
WO2023241253A1 PCT/CN2023/092161 CN2023092161W WO2023241253A1 WO 2023241253 A1 WO2023241253 A1 WO 2023241253A1 CN 2023092161 W CN2023092161 W CN 2023092161W WO 2023241253 A1 WO2023241253 A1 WO 2023241253A1
Authority
WO
WIPO (PCT)
Prior art keywords
grating
dielectric layer
layer
optical waveguide
waveguide
Prior art date
Application number
PCT/CN2023/092161
Other languages
English (en)
French (fr)
Inventor
郭康
张笑
宋梦亚
李多辉
谷新
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Publication of WO2023241253A1 publication Critical patent/WO2023241253A1/zh

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/0101Head-up displays characterised by optical features
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/122Basic optical elements, e.g. light-guiding paths
    • G02B6/124Geodesic lenses or integrated gratings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/13Integrated optical circuits characterised by the manufacturing method
    • G02B6/132Integrated optical circuits characterised by the manufacturing method by deposition of thin films
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B2006/12035Materials
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B2006/12083Constructional arrangements
    • G02B2006/12107Grating

Definitions

  • the invention belongs to the technical field of optical components, and specifically relates to an optical waveguide lens and a packaging method.
  • the waveguide near-eye display system based on optical waveguide technology generally consists of a microdisplay, a collimating eyepiece set, a waveguide medium, an input coupling grating, and an output coupling grating.
  • the coupling-in and coupling-out gratings are placed on the same transparent waveguide medium.
  • the basic principle of the system is that the microdisplay outputs the required virtual image information.
  • the eyepiece system plays a role in collimating this image information, converting light at each field of view into parallel light, and changing the direction of light propagation through the input coupling grating of the waveguide.
  • the parallel light at each field of view meets the total reflection condition in the waveguide medium and propagates laterally along the waveguide medium to the output coupling grating.
  • the output coupling grating will also change the propagation direction of the light, so that the light no longer satisfies total internal reflection in the waveguide.
  • the light beam expands along the propagation direction, and is coupled out from the waveguide substrate and enters the observer's eyes to achieve the purpose of exit pupil expansion.
  • AR augmented reality
  • the structural layer of waveguide lenses based on diffraction optical waveguides is mainly packaged by adding a layer of cover glass.
  • This packaging method has the problem of large thickness and weight of the overall waveguide lens.
  • the present invention aims to solve at least one of the technical problems existing in the prior art and provide an optical waveguide lens and a packaging method.
  • embodiments of the present disclosure provide an optical waveguide lens, which has a first region and a second region; the optical waveguide lens includes a waveguide dielectric layer, a grating layer and an encapsulating film layer that are stacked in sequence; wherein,
  • the grating layer includes a first grating and a second grating, and the first grating is located in the first area; the second grating is located in the second area;
  • the waveguide dielectric layer is configured to transmit the light coupled by the first grating to the second light grating to couple out through the second grating;
  • the encapsulation film layer covers the side of the first grating and the second grating away from the waveguide dielectric layer, and there is no part of the encapsulation film layer in the gap between the first grating and the second grating. Material filling.
  • the optical waveguide lens also has a third area; the grating layer further includes a third grating located in the third area; wherein,
  • the third grating is configured to change the transmission direction of the light coupled by the first grating and transmitted through the waveguide dielectric layer, and transmit the light with the changed transmission direction to the third through the waveguide dielectric layer.
  • the encapsulation film layer covers the side of the third grating away from the waveguide dielectric layer, and the gap of the third grating is not filled with the material of the encapsulation film layer.
  • the angle between the grating strips of the third grating and the waveguide dielectric layer is not equal to 90°.
  • the refractive index of the encapsulation film layer and the waveguide dielectric layer are the same.
  • the material of the grating layer is a glass material or imprinting glue with a refractive index of 1.7 to 2.1.
  • the material of the waveguide dielectric layer is an inorganic dielectric material with a refractive index of 1.7 to 2.1.
  • the material of the encapsulating film layer is an inorganic dielectric material with a refractive index of 1.7 to 2.1.
  • the material of the packaging film layer is silicon nitride or silicon oxynitride.
  • the side of the encapsulating film layer away from the waveguide medium is covered with a protective film layer.
  • the angle between the grating strips of the first grating and the second grating and the waveguide dielectric layer is not equal to 90°.
  • inventions of the present disclosure provide a packaging method for an optical waveguide lens.
  • the optical waveguide lens has a first region and a second region.
  • the preparation method includes: forming a waveguide dielectric layer and a grating layer that are stacked in sequence. and an encapsulation film layer; forming the grating layer includes:
  • the encapsulation film layer covers the side of the first grating and the second grating away from the waveguide dielectric layer, and there is no part of the encapsulation film layer in the gap between the first grating and the second grating. Material filling.
  • the optical waveguide lens also has a third area; while forming the first grating and the second grating on the waveguide dielectric layer, it also includes: forming a third grating located in the third area; The third grating is configured to change the transmission direction of the light coupled by the first grating and transmitted through the waveguide dielectric layer, and transmit the light with the changed transmission direction to the second through the waveguide dielectric layer.
  • forming the encapsulation layer includes:
  • the encapsulation film layer is formed by deposition using plasma enhanced chemical vapor deposition.
  • the deposition power of the plasma enhanced chemical vapor deposition method is between 100W and 1000W
  • the deposition pressure is between 200Torr and 1500Torr
  • the deposition atmosphere is silicon tetrahydride and nitrous oxide.
  • embodiments of the present disclosure provide an augmented reality device, which includes any of the above-mentioned optical waveguide lenses.
  • Figure 1 is a schematic diagram of an optical waveguide lens encapsulated by cover glass in the prior art.
  • FIG. 2 is a cross-sectional view of an optical waveguide lens encapsulated with an encapsulating film layer provided by an embodiment of the present disclosure.
  • FIG. 3 is a schematic diagram of an optical waveguide lens with a first grating and a second grating provided by an embodiment of the present disclosure.
  • FIG. 4 is a cross-sectional view of an optical waveguide lens in which the grating strips are not perpendicular to the waveguide dielectric layer provided by an embodiment of the present disclosure.
  • Figure 5 is a cross-sectional view of an optical waveguide lens with a protective layer provided by an embodiment of the present disclosure.
  • FIG. 6 is a schematic diagram of an optical waveguide lens with a third grating provided by an embodiment of the present disclosure.
  • FIG. 7 is a cross-sectional view of an optical waveguide lens packaged with a third grating provided by an embodiment of the present disclosure.
  • FIG 8 is a cross-sectional view of an optical waveguide lens with a third grating in which the grating strips are not perpendicular to the waveguide dielectric layer according to an embodiment of the present disclosure.
  • FIG. 9 is a cross-sectional view of an optical waveguide lens with a third grating and a protective layer provided by an embodiment of the present disclosure.
  • FIG. 10 is a schematic diagram of the overall packaging of the waveguide dielectric layer and the grating layer according to an embodiment of the present disclosure.
  • FIG. 11 is a schematic diagram of the overall packaging of the waveguide dielectric layer and the grating layer with the third grating provided by an embodiment of the present disclosure.
  • the reference numbers are: waveguide dielectric layer 1; first grating 2; second grating 3; third grating 4; encapsulation film layer 5; protective film layer 6.
  • Figure 1 is a schematic diagram of an optical waveguide lens encapsulated by cover glass in the prior art; as shown in Figure 1, the optical waveguide lens includes a laminated waveguide dielectric layer, a grating layer and a cover glass.
  • the grating includes a coupling grating and a coupling grating.
  • the coupling grating couples light into the waveguide medium.
  • the coupled light is Total reflection occurs in the waveguide medium and propagates to the coupling grating.
  • the coupling grating couples the light in the waveguide medium out of the optical waveguide lens and into the human eye, achieving the effect of augmented reality display.
  • cover glass is used to encapsulate the optical waveguide lens, which makes the optical waveguide lens thicker and heavier.
  • Augmented reality glasses include a waveguide near-eye display system.
  • the waveguide near-eye display system generally includes a microdisplay and an optical waveguide lens to achieve the near-eye display function.
  • optical waveguide lenses are packaged with cover glass. This packaging method will make the thickness and weight of the optical waveguide lenses larger, and at the same time, the overall weight of the augmented reality glasses will also increase.
  • an embodiment of the present disclosure provides an optical waveguide lens and a packaging method thereof.
  • an inorganic dielectric film is deposited on the surface of the grating and the surface of the waveguide dielectric layer.
  • optical waveguide lens according to the embodiment of the present disclosure will be described below with reference to the accompanying drawings and specific embodiments.
  • an embodiment of the present disclosure provides an optical waveguide lens, which includes a stacked waveguide dielectric layer 1, a grating layer, and an encapsulation film layer 5; wherein the waveguide dielectric layer 1 includes at least two areas provided with gratings, and the gratings are
  • the layer at least includes a first grating 2 and a second grating 3, the first grating 2 is used as a coupling grating, and the second grating 3 is used as a coupling grating.
  • the first grating 2 couples the light emitted by the light source into the waveguide medium layer 1.
  • the waveguide medium layer 1 continuously and completely reflects the coupled light until the light is transmitted to the second grating 3.
  • the light is coupled out of the waveguide by the second grating 3. Dielectric layer 1.
  • the light source can be a microdisplay.
  • the first grating 2 and the second grating 3 can be arranged on the same side according to the structure of the augmented reality glasses, or they can be arranged on different sides. In this application, the first grating 2 and the second grating 3 are arranged on the same side of the waveguide medium as an example. ,Be explained.
  • the packaging film layer 5 covers at least the side of the first grating 2 and the second grating 3 away from the waveguide dielectric layer 1 , and the portion of the waveguide dielectric layer 1 that is not provided with gratings can also cover the packaging film layer 5 .
  • the material of the encapsulation film layer 5 is not filled into the gaps of each grating, which enables the gratings to be encapsulated without affecting the functions of each grating; and the cover glass is replaced with an inorganic dielectric film Encapsulation reduces the thickness and weight of optical waveguide lenses.
  • Figure 2 is a cross-sectional view of an optical waveguide lens encapsulated with a packaging film provided by an embodiment of the present disclosure
  • Figure 3 is a schematic diagram of an optical waveguide lens with a first grating and a second grating provided by an embodiment of the present disclosure
  • Figure 4 is a cross-sectional view of an optical waveguide lens in which the grating strips are not perpendicular to the waveguide dielectric layer provided by an embodiment of the present disclosure
  • Figure 5 is a cross-sectional view of an optical waveguide lens with a protective layer provided by an embodiment of the present disclosure
  • Figures 2, 3, and 4 , 5 in the optical waveguide lens, the optical waveguide lens includes a first area and a second area, and the grating layer includes a first grating 2 and a second grating 3; the first area is provided with a first grating 2, and the second area A second grating 3 is provided.
  • the first grating 2 is used as a coupling grating
  • the second grating 3 is used as an outcoupling grating.
  • Light is coupled from the first grating 2 into the waveguide dielectric layer 1 , and the light coupled from the first grating 2 is in the waveguide dielectric layer 1 Continuous total reflection is performed, and finally propagates to the second grating 3, and the light is coupled out of the waveguide dielectric layer 1 from the second grating 3.
  • the transmission direction of the light coupled from the first grating 2 to the waveguide dielectric layer 1 and coupled out from the second grating 3 does not change during its transmission.
  • the area of the second grating 3 is larger than that of the first grating 2, and the second area on the optical waveguide lens is also larger than the first area; the slits of the first grating 2 and the second grating 3 extend in the same direction.
  • the coverage area size and proportion of the first grating 2 and the second grating 3 and the direction in which the grating gap extends are not further limited.
  • the area size and proportion of the first grating 2 and the second grating 3 are The extension direction of the gap can be adjusted according to the specific conditions of the augmented reality glasses.
  • the refractive index of the encapsulating film layer 5 and the waveguide dielectric layer 1 is the same, ensuring that light can effectively propagate on the optical waveguide lens. Since the refractive index of the encapsulation film layer 5 and the waveguide dielectric layer 1 are the same, when the light is incident on the first grating 2 from the screen display device, the refractive index of the encapsulation film layer 5 and the waveguide dielectric layer 1 are the same and will not deflect the light. .
  • the light may be deflected at an angle when it is coupled into the grating, thereby affecting the efficiency and effect of light coupling into the waveguide dielectric layer 1 .
  • the material of the grating layer is glass material or imprinting glue, and the refractive index of the material is between 1.7 to 2.1. It should be noted that in this application, the specific structure and type of the glass material are not further limited, and the specific structure and type of the embossing glue are not further limited.
  • the material of the waveguide dielectric layer 1 is an inorganic dielectric material.
  • the refractive index of the material needs to be between 1.7 and 2.1.
  • the material of the waveguide dielectric layer 1 is not further limited. It can be the same glass material as the grating layer, or other types of inorganic dielectric materials, all of which must ensure that the refractive index of the material is 1.7. to 2.1.
  • the material of the encapsulation film layer 5 is an inorganic dielectric material with a refractive index ranging from 1.7 to 2.1. Silicon nitride (SiN) or silicon oxynitride (SiON) is usually used as the inorganic dielectric material of the packaging film layer 5 .
  • Both the first grating 2 and the second grating 3 in the embodiment of the present disclosure adopt nanoscale gratings, with a grating period ranging from 250 nanometers (nm) to 450 nanometers (nm), and a gap width ranging from 125 nanometers (nm) to 225 nanometers. (nm).
  • PECVD plasma enhanced chemical vapor deposition
  • the deposition power is controlled from 100W to 1000W
  • the deposition pressure is from 200Torr to 1500Torr
  • silicon tetrahydride and nitrous oxide are used as the deposition atmosphere.
  • inorganic dielectric materials such as silicon nitride (SiN) or silicon oxynitride (SiON), are used in combination with the deposition method and deposition conditions so that the inorganic dielectric material of the encapsulation film layer will not enter the grating gap, thereby affecting the coupled light.
  • the grating strips of the first grating 2 and the second grating 3 are no longer vertically arranged on the waveguide dielectric layer 1, but form a certain included angle. .
  • the sides of the grating strips form a certain slope.
  • the inclination angles of the grating bars of the first grating 2 and the second grating 3 in this application are not further limited.
  • optical waveguide lenses are mainly used in augmented reality glasses.
  • a protective film layer 6 is covered on the packaging film layer 5 of the optical waveguide lenses to achieve Resistant to wear and stains. It should be noted that in this disclosure The material of the protective film layer 6 is not further specifically limited.
  • FIG. 6 is a schematic diagram of an optical waveguide lens with a third grating provided by an embodiment of the present disclosure
  • FIG. 7 is a cross-sectional view of an optical waveguide lens with a third grating provided by an embodiment of the present disclosure
  • FIG. 8 is A cross-sectional view of an optical waveguide lens with a third grating in which the grating strips are not perpendicular to the waveguide dielectric layer provided by an embodiment of the present disclosure
  • Figure 9 is an optical waveguide lens with a protective layer and a third grating provided by an embodiment of the present disclosure.
  • the cross-sectional view of The grating 3 also includes a third grating 4; the first grating 2 is arranged in the first area, the second grating 3 is arranged in the second area, and the third grating 4 is arranged in the third area.
  • the first grating 2 is used as a coupling grating
  • the second grating 3 is used as a coupling grating
  • the third grating 4 is used as a refraction grating; light is coupled from the first grating 2 into the waveguide dielectric layer 1, and from the first grating 2
  • the coupled light undergoes continuous total reflection in the waveguide dielectric layer 1 and propagates to the third grating 4.
  • the third grating 4 changes the original propagation direction of the light propagated from the waveguide dielectric layer 1 and propagates the changed propagation direction to Second grating 4, light is coupled out of the waveguide dielectric layer 1 from the second grating 4.
  • the light coupled from the first grating 2 to the waveguide dielectric layer 1 passes from the first grating 2 to the second grating 3.
  • the second grating 3 is coupled out, and its transmission direction changes during its transmission.
  • the area of the second grating 3 is larger than the first grating 2, and the second area on the optical waveguide lens is also larger than the first area; in order to enable the third grating 4 to change the propagation direction of light in the waveguide dielectric layer 1, the third grating 4
  • the extending direction of the slit forms a certain included angle with the extending directions of the slits of the first grating 2 and the second grating 3, and the extending directions of the slits of the first grating 2 and the second grating 3 also need to have a certain included angle.
  • the angle between the slit extension directions of the first grating 2 and the second grating 3 is 90°
  • the slit extension direction of the third grating 4 is equal to the slit extension direction of the first grating 2 and the second grating 3
  • Light is coupled from the first grating 2 to the waveguide dielectric layer 1.
  • the coupled light is continuously and totally reflected in the waveguide dielectric layer and propagates to the third grating 4.
  • the third grating 4 refracts the propagated light at an angle of 90°.
  • the light is changed from the x-axis direction to the y-axis direction, and then the changed light is propagated to the second grating 3, and is coupled out of the waveguide dielectric layer 1 by the second grating 3.
  • This process realizes the x-axis direction and Two-dimensional pupil dilation in the y-axis direction.
  • the visual range in the interpupillary direction and nose bridge direction is expanded.
  • the coverage area size and proportion of the first grating 2, the second grating 3 and the third grating 4 and the direction in which the grating gaps extend are not further limited in this disclosure.
  • the first grating 2, the second grating 3 and the The area and proportion of the third grating 4 and the extension direction of the gap can be adjusted according to the specific conditions of the augmented reality glasses.
  • the third grating 4 in the embodiment of the present disclosure uses a nanoscale grating, with a grating period ranging from 250 nanometers (nm) to 450 nanometers (nm), and a gap width ranging from 125 nanometers (nm) to 225 nanometers (nm).
  • the filling ratio of the inorganic dielectric material film in the gaps of the nanoscale grating can be controlled so that the inorganic dielectric material does not fill the gaps of the grating. Therefore, inorganic dielectric materials, such as silicon nitride (SiN) or silicon oxynitride (SiON), are used in combination with the deposition method and deposition conditions so that the inorganic dielectric material of the encapsulation film layer will not enter the grating gap, thereby affecting the coupled light.
  • SiN silicon nitride
  • SiON silicon oxynitride
  • the grating strips of the third grating 4 are no longer vertically arranged on the waveguide dielectric layer 1, but form a certain included angle.
  • the sides of the grating strips form a certain slope, and small and small particles are unavoidable during the packaging process. It is difficult for material residue to enter the depth of the grating gap, thus affecting the coupling effect of the third grating 4 .
  • the inclination angle of the grating bars of the third grating 4 in this application is not further limited.
  • FIG. 10 is a schematic diagram of the overall packaging of the waveguide dielectric layer and the grating layer provided by the embodiment of the present disclosure
  • FIG. 11 is the overall packaging of the waveguide dielectric layer and the grating layer with the third grating provided by the embodiment of the present disclosure.
  • the schematic diagram of so that the optical waveguide lens has a better packaging effect; and the protective film layer 6 can also be covered on the packaging film layer 5 covering the waveguide dielectric layer 1 that does not include the grating layer; the waveguide dielectric layer 1 of the optical waveguide lens has a grating side, playing a more overall protective role.
  • the inorganic dielectric material of the encapsulation film layer is very light and thin, the area of the waveguide dielectric layer 1 that does not include the grating layer is also covered with the encapsulation film layer 5, which will not significantly affect the weight of the optical waveguide lens. Changes can still ensure that optical waveguide lenses are thinner and lighter than those using cover glass packaging.
  • embodiments of the present disclosure provide a packaging method for an optical waveguide lens.
  • the optical waveguide lens has a first region and a second region, forming a waveguide dielectric layer 1, a grating layer and a packaging film layer 5 that are stacked in sequence;
  • the first grating 2 located in the first area and the second grating 3 located in the second area formed on the waveguide dielectric layer 1 form a grating layer;
  • the waveguide dielectric layer 1 is configured to couple the light into the first grating 2 Continuous total reflection and transmission to the second grating 3 to be coupled out through the second grating 3;
  • the packaging film layer 5 is deposited to cover the side of the first grating 2 and the second grating 3 away from the waveguide dielectric layer 1, and the first grating 2
  • the gap between the second grating 3 and the second grating 3 is filled with inorganic dielectric material without encapsulating film layer.
  • the optical waveguide lens also includes a third region, and at the same time as the first grating 2 and the second grating 3 are formed on the waveguide dielectric layer, a third grating 4 located in the third region is formed; the third grating 4 is Configured to change the transmission direction of light coupled into the first grating 2 and transmitted through the waveguide dielectric layer 1 , and transmit the light with the changed transmission direction through the waveguide dielectric layer 1 to the second grating 3 to be coupled out through the second grating 3 ;
  • the encapsulating film layer 5 is deposited to cover the side of the third grating 4 away from the waveguide dielectric layer 1, and the inorganic dielectric material of the encapsulating film layer is not filled in the gap of the third grating 4.
  • plasma enhanced chemical vapor deposition is used to deposit the encapsulating film layer 5 .
  • PECVD plasma enhanced chemical vapor deposition
  • the main advantages of plasma enhanced chemical vapor deposition are low deposition temperature and little impact on the structure and physical properties of gratings and waveguide media; the formed packaging film layer 5 has good film thickness and composition uniformity; the film structure is dense and there are few pinholes. And the film layer has strong adhesion.
  • the deposition power of plasma enhanced chemical vapor deposition method is between 100W and 1000W
  • the deposition pressure is between 200Torr and 1500Torr
  • the deposition atmosphere is silicon tetrahydride and nitrous oxide.
  • the optical waveguide lens includes a first region and a second region, and the inorganic dielectric material of the encapsulating film layer is integrally deposited on the grating on one side using a plasma enhanced chemical vapor deposition method.
  • the waveguide dielectric layer is entirely covered with the grating layer and the waveguide dielectric layer 1, which are then patterned through a photolithography process to form a first pattern and a second pattern; the first pattern and the second pattern are respectively covered with the first grating 2 and the second pattern.
  • the optical waveguide lens also includes a third area, in which the inorganic dielectric material of the encapsulating film layer is integrally deposited on the waveguide medium with a grating on one side using a plasma enhanced chemical vapor deposition method, and the grating layer and the waveguide dielectric layer are entirely covered 1. Then pattern it through a photolithography process. In addition to forming the first pattern and the second pattern, a third pattern is also formed; the third pattern covers the side of the third grating 4 away from the waveguide dielectric layer; it is removed through an etching process. Except for the rest of the first pattern, the second pattern and the third pattern, the overall deposited encapsulation film layer retains the encapsulation film layer covering the first grating 2 , the second grating 3 and the third grating 4 .
  • the encapsulation film layer 5 also covers the part of the waveguide dielectric layer 1 that does not include the grating layer, so that the encapsulation can cover more comprehensively, and the side of the waveguide dielectric layer 1 with the grating is completely encapsulated, so that the optical waveguide lens has Better encapsulation effect, and the protective film layer 6 can also be covered on the encapsulation film layer 5 covering the waveguide dielectric layer 1 that does not include the grating layer; on the side of the waveguide dielectric layer 1 of the optical waveguide lens with grating, it plays a role More overall protection.
  • the inorganic dielectric material of the packaging film layer is integrally deposited on the waveguide medium with a grating side using plasma-enhanced chemical vapor deposition, covering the grating layer and waveguide dielectric layer 1 as a whole, and then the pattern is patterned through a photolithography process. ization, so that each pattern is deposited at the corresponding position, and no etching process is required to remove the encapsulation film layer 5 that is not covered by the grating layer. While the encapsulation film layer 5 encapsulates the waveguide dielectric layer 1 more completely, it also reduces the etching process. The production cost is reduced and the production cycle is shortened.
  • embodiments of the present disclosure provide an augmented reality device, which includes an optical waveguide lens packaged in the above packaging method, and an encapsulation film layer formed of an inorganic dielectric material replaces the cover glass to encapsulate the optical waveguide lens.
  • an encapsulation film layer formed of an inorganic dielectric material replaces the cover glass to encapsulate the optical waveguide lens.
  • optical waveguide lenses provided by the embodiments of the present disclosure can be used in augmented reality devices, such as augmented reality glasses, and can also be used in products related to other augmented reality display technologies and near-eye display technologies.
  • the optical waveguide lens in the embodiment of the present disclosure uses an encapsulating film layer formed of an inorganic dielectric material instead of the cover glass, and each grating gap is not filled with the inorganic dielectric material of the encapsulating film layer. This ensures the function of the optical waveguide lens while effectively The thickness and weight of the optical waveguide lens are reduced.
  • the packaging method of the optical waveguide lens in the embodiment of the present disclosure enables the optical waveguide lens to be reliably packaged with a packaging film layer formed of inorganic materials, thereby replacing the cover glass for packaging the optical waveguide lens. And it can effectively reduce the weight of its products while ensuring the functionality of the augmented reality device.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Optical Couplings Of Light Guides (AREA)

Abstract

一种光波导镜片和光波导镜片的封装方法,属于近眼显示技术领域。光波导镜片具有第一区域和第二区域;光波导镜片包括依次叠层设置的波导介质层(1)、光栅层和封装膜层(5);其中,光栅层包括第一光栅(2)和第二光栅(3),第一光栅(2)位于第一区域;第二光栅(3)位于第二区域;波导介质层(1)被配置为对第一光栅(2)耦入的光传输至第二光栅(3),以通过第二光栅(3)耦出;封装膜层(5)覆盖在第一光栅(2)和第二光栅(3)背离波导介质层(1)的一侧,且第一光栅(2)和第二光栅(3)的缝隙中无封装膜层(5)的材料填充。

Description

一种光波导镜片及其封装方法 技术领域
本发明属于光学元件技术领域,具体涉及一种光波导镜片及封装方法。
背景技术
基于光波导技术的波导近眼显示系统一般由微显示器、准直目镜组、波导介质、输入耦合光栅、输出耦合光栅组成,其中耦入和耦出光栅置于同一块透明的波导介质上。系统的基本原理是微显示器输出所需的虚拟图像信息,目镜系统对这些图像信息起到准直的作用,将各视场角的光线转变为平行光,通过波导的输入耦合光栅改变光线传播方向进入波导,各视场角的平行光在波导介质中满足全反射条件沿波导介质横向传播到达输出耦合光栅,输出耦合光栅也会改变光线的传播方向,使光线不再满足波导内的全内反射条件,从波导中出射,光束沿传播方向进行扩展,并从波导衬底耦出后进入观察者的眼中,达到出瞳扩展的目的。为了将增强现实(AR)眼镜更好的推向消费者市场,其中的重要的一个方向是需要将波导镜片做的更轻更薄。
目前,基于衍射光波导的波导镜片结构层的封装主要是通过增加一层盖板玻璃,这种封装方式存在整体波导镜片厚度和重量较大的问题。
发明内容
本发明旨在至少解决现有技术中存在的技术问题之一,提供一种光波导镜片及封装方法。
第一方面,本公开实施例提供一种光波导镜片,其具有第一区域和第二区域;所述光波导镜片包括依次叠层设置的波导介质层、光栅层和封装膜层;其中,
所述光栅层包括第一光栅和第二光栅,且所述第一光栅位于所述第一区域;所述第二光栅位于所述第二区域;
所述波导介质层,被配置为对所述第一光栅耦入的光传输至所述第二光 栅,以通过所述第二光栅耦出;
所述封装膜层覆盖在所述第一光栅和所述第二光栅背离所述波导介质层的一侧,且所述第一光栅和所述第二光栅的缝隙中无所述封装膜层的材料填充。
其中,所述光波导镜片还具有第三区域;所述光栅层还包括位于所述第三区域的第三光栅;其中,
所述第三光栅,被配置为改变所述第一光栅耦入并经由所述波导介质层传输的光线的传输方向,并将传输方向改变后的光线通过所述波导介质层传输至所述第二光栅,以通过所述第二光栅耦出;
所述封装膜层覆盖所述第三光栅背离所述波导介质层的一侧,且在所述第三光栅的缝隙中无所述封装膜层的材料填充。
其中,所述第三光栅的光栅条与所述波导介质层的夹角不等于90°。
其中,所述封装膜层与波导介质层的折射率相同。
其中,所述光栅层的材料为折射率在1.7到2.1的玻璃材料或压印胶。
其中,所述波导介质层的材料为折射率在1.7到2.1的无机介质材料。
其中,所述封装膜层的材料为折射率在1.7到2.1的无机介质材料。
其中,所述封装膜层的材料为氮化硅或氮氧化硅。
其中,所述封装膜层远离所述波导介质的一侧覆盖有保护膜层。
其中,所述第一光栅和第二光栅的光栅条和波导介质层的夹角不等于90°。
第二方面,本公开实施例提供一种光波导镜片的封装方法,所述光波导镜片具有第一区域和第二区域,所述制备方法包括:形成依次叠层设置的波导介质层、光栅层和封装膜层;形成所述光栅层包括:
在所述波导介质层上形成的位于所述第一区域的第一光栅和位于所述第二区域的第二光栅;所述波导介质层,被配置为对所述第一光栅耦入的光传输至所述第二光栅,以通过所述第二光栅耦出;
所述封装膜层覆盖在所述第一光栅和所述第二光栅背离所述波导介质层的一侧,且所述第一光栅和所述第二光栅的缝隙中无所述封装膜层的材料填充。
其中,所述光波导镜片还具有第三区域;所述在所述波导介质层上形成的第一光栅和第二光栅的同时,还包括:形成位于所述第三区域的第三光栅;所述第三光栅,被配置为改变所述第一光栅耦入并经由所述波导介质层传输的光线的传输方向,并将传输方向改变后的光线通过所述波导介质层传输至所述第二光栅,以通过所述第二光栅耦出;所述封装膜层覆盖所述第三光栅背离所述波导介质层的一侧,且在所述第三光栅的缝隙中无所述封装膜层的材料填充。
其中,形成所述封装层包括:
采用等离子体增强化学气相沉积法沉积的方式,形成所述封装膜层。
其中,所述等离子体增强化学气相沉积法沉积的沉积功率在100W到1000W,沉积压强在200Torr到1500Torr,沉积气氛为四氢化硅和一氧化二氮。
第三方面,本公开实施例提供一种增强现实设备,其包括上述的任一光波导镜片。
附图说明
图1为现有技术中采用盖板玻璃封装的光波导镜片示意图。
图2为本公开实施例提供的采用封装膜层封装的光波导镜片的剖视图。
图3为本公开实施例提供的有第一光栅和第二光栅的光波导镜片示意图。
图4为本公开实施例提供的光栅条不垂直于波导介质层的光波导镜片的剖视图。
图5为本公开实施例提供的带有保护层的光波导镜片的剖视图。
图6为本公开实施例提供的带有第三光栅的光波导镜片示意图。
图7为本公开实施例提供的封装带有第三光栅的光波导镜片的剖视图。
图8为本公开实施例提供的光栅条不垂直于波导介质层的带有第三光栅的光波导镜片的剖视图。
图9为本公开实施例提供的带有保护层的带有第三光栅的光波导镜片的剖视图。
图10为本公开实施例提供的对波导介质层和光栅层整体封装的示意图。
图11为本公开实施例提供的对波导介质层和带有第三光栅的光栅层整体封装的示意图。
其中附图标记为:波导介质层1;第一光栅2;第二光栅3;第三光栅4;封装膜层5;保护膜层6。
具体实施方式
为使本领域技术人员更好地理解本发明的技术方案,下面结合附图和具体实施方式对本发明作进一步详细描述。
除非另外定义,本公开使用的技术术语或者科学术语应当为本公开所属领域内具有一般技能的人士所理解的通常意义。本公开中使用的“第一”、“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。同样,“一个”、“一”或者“该”等类似词语也不表示数量限制,而是表示存在至少一个。“包括”或者“包含”等类似的词语意指出现该词前面的元件或者物件涵盖出现在该词后面列举的元件或者物件及其等同,而不排除其他元件或者物件。“连接”或者“相连”等类似的词语并非限定于物理的或者机械的连接,而是可以包括电性的连接,不管是直接的还是间接的。“上”、“下”、“左”、“右”等仅用于表示相对位置关系,当被描述对象的绝对位置改变后,则该相对位置关系也可能相应地改变。
图1为现有技术中采用盖板玻璃封装的光波导镜片示意图;如图1所示,该光波导镜片包括叠层设置的波导介质层、光栅层和盖板玻璃。其中,光栅包括耦入光栅和耦出光栅,耦入光栅将光线耦入到波导介质,耦入的光线在 波导介质中全反射并传播到耦出光栅,耦出光栅将波导介质中光线耦出光波导镜片,并射入人眼,实现增强现实显示的效果。在现有技术中,封装光波导镜片采用盖板玻璃,使光波导镜片的厚度和重量较大。
随着增强现实显示技术和近眼显示技术的发展,增强现实显示设备逐渐投入市场,其中主要包括增强现实眼镜。增强现实眼镜包括有波导近眼显示系统,波导近眼显示系统一般包括微显示器和光波导镜片实现近眼显示功能。在现有技术中,光波导镜片采用盖板玻璃进行封装,而这种封装方式,会使光波导镜片的厚度和重量较大,同时使得增强现实眼镜的整体重量也会随之增加。
鉴于此,在本公开实施例中提供一种光波导镜片及其封装方法,在对光波导镜片进行封装时在光栅表面和波导介质层表面沉积一层无机介质薄膜。用无机介质材料形成薄膜代替玻璃盖板,实现光波导镜片的轻薄化,减少增强现实眼镜的重量。
以下结合附图和具体实施例对本公开实施例的光波导镜片进行说明。
第一方面,本公开实施例提供一种光波导镜片,其包括叠层设置的波导介质层1、光栅层以及封装膜层5;其中,波导介质层1至少包括两个区域设置有光栅,光栅层至少包括第一光栅2和第二光栅3,第一光栅2用作耦入光栅,第二光栅3用作耦出光栅。第一光栅2将光源发出的光线耦入到波导介质层1,波导介质层1将耦入的光线进行连续不断的全反射直到光线传输到第二光栅3,光线由第二光栅3耦出波导介质层1。
需要说明的是,光源可以为微显示器。第一光栅2和第二光栅3可以根据增强现实眼镜的结构设置在同侧,也可以设置在不同侧,本申请中以第一光栅2和的第二光栅3设置在波导介质同一侧为例,进行说明。
本公开实施例中,封装膜层5至少覆盖在第一光栅2和第二光栅3背离所述波导介质层1的一侧,波导介质层1未被设置光栅的部分也可以覆盖封装膜层5。封装膜层5的材料没有填充到各个光栅的缝隙中,实现了不影响各个光栅功能的同时,将光栅进行封装;并且用无机介质薄膜替代盖板玻璃 封装,减少了光波导镜片的厚度和重量。
第一种示例,图2为本公开实施例提供的采用封装膜层封装的光波导镜片的剖视图;图3为本公开实施例提供的有第一光栅和第二光栅的光波导镜片示意图;图4为本公开实施例提供的光栅条不垂直于波导介质层的光波导镜片的剖视图;图5为本公开实施例提供的带有保护层的光波导镜片的剖视图;如图2、3、4、5所示,在该光波导镜片中,光波导镜片包括第一区域和第二区域,光栅层包括第一光栅2和第二光栅3;第一区域设置有第一光栅2,第二区域设置有第二光栅3。第一光栅2用作耦入光栅,第二光栅3用作耦出光栅,光线从第一光栅2耦入到波导介质层1中,从第一光栅2耦入的光在波导介质层1中进行连续的全反射,最终传播到第二光栅3,光线从第二光栅3耦出波导介质层1。
进一步的,在本公开实施例中,从第一光栅2耦入到波导介质层1的光线,到从第二光栅3耦出,其传输过程中,其传输方向并未发生改变。通常情况第二光栅3面积大于第一光栅2,光波导镜片上的第二区域也大于第一区域;第一光栅2和第二光栅3的缝隙延伸方向相同。通过该方法,实现了一维扩瞳,应用于增强现实眼镜上,扩展了瞳距方向的可视范围。
需要说明的是,本公开中不对第一光栅2和第二光栅3的覆盖面积大小及比例和光栅缝隙延伸的方向做进一步的限定,第一光栅2和第二光栅3的面积大小及比例和缝隙延伸方向,可根据增强现实眼镜的具体情况进行调整。
在一些示例中,封装膜层5与波导介质层1的折射率相同,确保光线可以在光波导镜片上有效传播。由于封装膜层5与波导介质层1的折射率相同,光线在由画面显示设备射入第一光栅2时,封装膜层5与波导介质层1的折射率相同,不会对光线造成偏折。如果不使封装膜层5和波导介质层1的折射率相同,光线在耦入光栅时,角度可能会产生偏折,进而影响到光线耦入到波导介质层1的效率和效果。
在一些示例中,光栅层的材料为玻璃材料或压印胶,材料的折射率在 1.7到2.1。需要说明的是,在本申请中,不对玻璃材料的具体结构和种类进行进一步限定,也不对压印胶的具体结构和种类进行进一步限定。
在一些示例中,波导介质层1的材料采用无机介质材料,为使光线在波导介质层1中可以实现全反射,材料的折射率需要在1.7到2.1。需要说明的是,在本申请中,不对波导介质层1的材料做进一步限定,可以是与光栅层相同的玻璃材料,也可以是其他类型的无机介质材料,均需保证材料的折射率在1.7到2.1。
在一些示例中,封装膜层5的材料为无机介质材料,其折射率在1.7到2.1。通常采用氮化硅(SiN)或氮氧化硅(SiON)作为封装膜层5的无机介质材料。本公开实施例中的第一光栅2、第二光栅3均采用的是纳米级光栅,其光栅周期在250纳米(nm)到450纳米(nm),缝隙宽度在125纳米(nm)到225纳米(nm)。在沉积过程中,采用等离子体增强化学气象沉积法(PECVD),控制其沉积功率在100W到1000W,沉积压强在在200Torr到1500Torr,采用四氢化硅和一氧化二氮为沉积气氛。通过上述沉积方法和沉积条件,可以控制无机介质材料薄膜在纳米级光栅的缝隙中的填充比例,使无机介质材料不填充在光栅缝隙中。因此采用无机介质材料,例如氮化硅(SiN)或氮氧化硅(SiON)结合沉积方法和沉积条件,使封装膜层的无机介质材料不会进入到光栅缝隙中,从而影响耦合光线。
在一些示例中,为了使光栅的缝隙不被封装膜层的无机介质材料填充,第一光栅2和第二光栅3的光栅条不再垂直设置在波导介质层1上,而是形成一定夹角。封装膜层5的无机介质材料在封装过程中,由于第一光栅2和第二光栅3的光栅条和波导介质层1形成了一定的夹角,光栅条侧面形成了一定的坡度,封装过程中不可避免的细小的材料残渣不易进入到光栅缝隙的深处,从而影响第一光栅2和第二光栅3的耦合效果。需要说明的是,不对本申请中的第一光栅2和第二光栅3的光栅条倾斜角度做进一步的限定。
在一些示例中,光波导镜片主要在增强现实眼镜中使用,为了增加增强现实眼镜的使用寿命,提高产品质量,在光波导镜片的封装膜层5上在覆盖一层保护膜层6,起到耐磨损和耐沾污的作用。需要说明的是,在本公开中 不对保护膜层6的材料做进一步更具体的限定。
第二种示例,图6为本公开实施例提供的带有第三光栅的光波导镜片示意图;图7为本公开实施例提供的封装带有第三光栅的光波导镜片的剖视图;图8为本公开实施例提供的光栅条不垂直于波导介质层的带有第三光栅的光波导镜片的剖视图;图9为本公开实施例提供的带有保护层的带有第三光栅的光波导镜片的剖视图;如图6、7、8、9所示,在该光波导镜片中,光波导镜片包括第一区域和第二区域,还包括第三区域,光栅层包括第一光栅2和第二光栅3,还包括第三光栅4;第一区域设置有第一光栅2,第二区域设置有第二光栅3,第三区域设置有第三光栅4。第一光栅2用作耦入光栅,第二光栅3用作耦出光栅,第三光栅4用作折转光栅;光线从第一光栅2耦入到波导介质层1中,从第一光栅2耦入的光在波导介质层1中进行连续的全反射,传播到第三光栅4,第三光栅4改变波导介质层1传播来的光的原有传播方向,将改变传播方向的光传播到第二光栅4,光线从第二光栅4耦出波导介质层1。
需要说明的是,与仅有第一光栅2和第二光栅3的光波导镜片不同的是,在本公开实施例中,从第一光栅2耦入到波导介质层1的光线,到从第二光栅3耦出,其传输过程中,其传输方向发生改变。通常情况第二光栅3面积大于第一光栅2,光波导镜片上的第二区域也大于第一区域;为了使第三光栅4能改变光在波导介质层1的传播方向,第三光栅4的缝隙延伸方向与第一光栅2和第二光栅3的缝隙延伸方向均形成一定夹角,第一光栅2与第二光栅3的缝隙延伸方向也需有一定的夹角。
进一步的,在本公开示例中以第一光栅2和第二光栅3缝隙延伸方向夹角成90°角,第三光栅4的缝隙延伸方向与第一光栅2和第二光栅3的缝隙延伸方向夹角为45°为例,进行举例说明。光线从第一光栅2耦入到波导介质层1,耦入的光线在波导介质层连续全反射,并传播到第三光栅4,第三光栅4将传播过来的光线折转90°角,也就是说将光线从x轴方向,改变为y轴方向,再将改变方向后的光传播到第二光栅3,在由第二光栅3耦出波导介质层1,该过程实现了x轴方向和y轴方向的二维扩瞳。应用于 增强现实眼镜上,扩展了瞳距方向和鼻梁方向的可视范围。
需要说明的是,本公开中不对第一光栅2,第二光栅3和第三光栅4的覆盖面积大小及比例和光栅缝隙延伸的方向做进一步的限定,第一光栅2、第二光栅3和第三光栅4的面积及比例和缝隙延伸方向,可根据增强现实眼镜的具体情况进行调整。
在一些示例中,在沉积过程中,采用等离子体增强化学气象沉积法(PECVD),控制其沉积功率在100W到1000W,沉积压强在在200Torr到1500Torr,采用四氢化硅和一氧化二氮为沉积气氛。本公开实施例中的第三光栅4采用的是纳米级光栅,其光栅周期在250纳米(nm)到450纳米(nm),缝隙宽度在125纳米(nm)到225纳米(nm)。通过上述沉积方法和沉积条件,可以控制无机介质材料薄膜在纳米级光栅的缝隙中的填充比例,使无机介质材料不填充在光栅缝隙中。因此采用无机介质材料,例如氮化硅(SiN)或氮氧化硅(SiON)结合沉积方法和沉积条件,使封装膜层的无机介质材料不会进入到光栅缝隙中,从而影响耦合光线。
在一些示例中,为了使光栅的缝隙不被封装膜层的无机介质材料填充,第三光栅4的光栅条不再垂直设置在波导介质层1上,而是形成一定夹角。封装膜层5的无机介质材料在封装过程中,由于第三光栅4的光栅条和波导介质层1形成了一定的夹角,光栅条侧面形成了一定的坡度,封装过程中不可避免的细小的材料残渣不易进入到光栅缝隙的深处,从而影响第三光栅4的耦合效果。需要说明的是,不对本申请中的第三光栅4的光栅条倾斜角度做进一步的限定。
在一些示例中,图10为本公开实施例提供的对波导介质层和光栅层整体封装的示意图;图11为本公开实施例提供的对波导介质层和带有第三光栅的光栅层整体封装的示意图;如图10、11所示,封装膜层5还覆盖在不包括光栅层的波导介质层1部分,这样封装可以覆盖的更加全面,将带有光栅的波导介质层1一侧完全封装,使光波导镜片有更好的封装效果;并且在覆盖不包括光栅层的波导介质层1的封装膜层5上,也可以覆盖保护膜层6;对光波导镜片的波导介质层1具有光栅的一侧,起到更加整体的保护作用。
在此需要说明的是,由于封装膜层的无机介质材料非常的轻薄,所以在不包括光栅层的波导介质层1区域也覆盖封装膜层5,不会对光波导镜片的重量带来明显的改变,依旧可以保证光波导镜片相较于采用盖板玻璃封装更加轻薄。
第二方面,本公开实施例提供一种光波导镜片的封装方法,光波导镜片具有第一区域和第二区域,形成依次叠层设置的波导介质层1、光栅层和封装膜层5;在波导介质层1上形成的位于第一区域的第一光栅2和位于第二区域的第二光栅3,以此形成光栅层;波导介质层1,被配置为对第一光栅2耦入的光连续全反射并传输至第二光栅3,以通过第二光栅3耦出;封装膜层5沉积覆盖在第一光栅2和第二光栅3背离波导介质层1的一侧,且第一光栅2和第二光栅3的缝隙中无封装膜层的无机介质材料填充。
在一些示例中,光波导镜片还包括第三区域,在波导介质层上形成的第一光栅2和第二光栅3的同时,形成位于第三区域的第三光栅4;第三光栅4,被配置为改变第一光栅2耦入并经由波导介质层1传输的光线的传输方向,并将传输方向改变后的光线通过波导介质层1传输至第二光栅3,以通过第二光栅3耦出;封装膜层5沉积覆盖第三光栅4背离波导介质层1的一侧,且在第三光栅4的缝隙中无封装膜层的无机介质材料填充。
在一些示例中,采用等离子体增强化学气象沉积法(PECVD)实现沉积封装膜层5。等离子体增强化学气相沉积的主要优点是沉积温度低,对光栅和波导介质的结构和物理性质影响小;形成的封装膜层5的膜厚度及成分均匀性好;膜组织致密、针孔少,且膜层的附着力强。
进一步的,等离子体增强化学气相沉积法沉积的沉积功率在100W到1000W,沉积压强在200Torr到1500Torr,沉积气氛为四氢化硅和一氧化二氮。通过该沉积条件,可以控制无机介质材料薄膜在纳米级光栅的缝隙中的填充比例,使封装膜层的无机介质材料不填充在光栅缝隙中。
在一些示例中,光波导镜片包括第一区域和第二区域,将封装膜层的无机介质材料采用等离子体增强化学气相沉积法整体沉积在具有光栅一侧的 波导介质层上,整体覆盖光栅层和波导介质层1,再通过光刻工艺将其图案化,形成第一图案、第二图案;第一图案和第二图案分别覆盖在第一光栅2和第二光栅3远离波导介质层1的一侧;通过刻蚀工艺去除整体沉积的封装膜层除第一图案和第二图案的其余部分,保留覆盖第一光栅2和第二光栅3的封装膜层。
在一些示例中,光波导镜片还包括第三区域,将封装膜层的无机介质材料采用等离子体增强化学气相沉积法整体沉积在具有光栅一侧的波导介质上,整体覆盖光栅层和波导介质层1,再通过光刻工艺将其图案化,除形成第一图案、第二图案外,还形成第三图案;第三图案覆盖第三光栅4远离波导介质层的一侧;通过刻蚀工艺去除整体沉积的封装膜层除第一图案、第二图案和第三图案的其余部分,保留覆盖第一光栅2、第二光栅3和第三光栅4的封装膜层。
在一些示例中,封装膜层5还覆盖在不包括光栅层的波导介质层1部分,这样封装可以覆盖的更加全面,将带有光栅的波导介质层1一侧完全封装,使光波导镜片有更好的封装效果,并且在覆盖不包括光栅层的波导介质层1的封装膜层5上,也可以覆盖保护膜层6;对光波导镜片的波导介质层1具有光栅的一侧,起到更加整体的保护作用。在封装过程中,封装膜层的无机介质材料采用等离子体增强化学气相沉积法整体沉积在具有光栅一侧的波导介质上,整体覆盖光栅层和波导介质层1,再通过光刻工艺将其图案化,使各图案沉积在对应的位置,无需刻蚀工艺去除未覆盖在光栅层的封装膜层5,在使封装膜层5封装波导介质层1更完整的同时,还减少了刻蚀流程,降低了制作成本,缩短了制作周期。
第三方面,本公开实施例提供一种增强现实设备,其包括上述封装方式封装的光波导镜片,由无机介质材料形成的封装膜层替代盖板玻璃封装光波导镜片。通过该封装方式,降低光波导镜片的厚度和重量,同时降低了增强现实设备的重量,使用户使用时更加轻便。
本公开实施例提供的光波导镜片可以用于增强现实设备,例如:增强现实眼镜,还可以用于其他增强现实显示技术和近眼显示技术相关的产品。
本公开实施例中的光波导镜片用由无机介质材料形成的封装膜层代替盖板玻璃,并且各个光栅缝隙没有被封装膜层的无机介质材料填充,在保证光波导镜片的功能的同时,有效减少了光波导镜片的厚度和重量。本公开实施例中的光波导镜片的封装方法,使光波导镜片可以由无机材料形成的封装膜层可靠的封装光波导镜片,从而替代盖板玻璃封装光波导镜片。并且可在保证增强现实设备功能的前提下,有效的降低其产品的重量。
可以理解的是,以上实施方式仅仅是为了说明本发明的原理而采用的示例性实施方式,然而本发明并不局限于此。对于本领域内的普通技术人员而言,在不脱离本发明的精神和实质的情况下,可以做出各种变型和改进,这些变型和改进也视为本发明的保护范围。

Claims (15)

  1. 一种光波导镜片,其具有第一区域和第二区域;所述光波导镜片包括依次叠层设置的波导介质层、光栅层和封装膜层;其中,
    所述光栅层包括第一光栅和第二光栅,且所述第一光栅位于所述第一区域;所述第二光栅位于所述第二区域;
    所述波导介质层,被配置为对所述第一光栅耦入的光传输至所述第二光栅,以通过所述第二光栅耦出;
    所述封装膜层覆盖在所述第一光栅和所述第二光栅背离所述波导介质层的一侧,且所述第一光栅和所述第二光栅的缝隙中无所述封装膜层的材料填充。
  2. 根据权利要求1所述的光波导镜片,其中,所述光波导镜片还具有第三区域;所述光栅层还包括位于所述第三区域的第三光栅;其中,
    所述第三光栅,被配置为改变所述第一光栅耦入并经由所述波导介质层传输的光线的传输方向,并将传输方向改变后的光线通过所述波导介质层传输至所述第二光栅,以通过所述第二光栅耦出;
    所述封装膜层覆盖所述第三光栅背离所述波导介质层的一侧,且在所述第三光栅的缝隙中无所述封装膜层的材料填充。
  3. 根据权利要求2所述的光波导镜片,其中,所述第三光栅的光栅条与所述波导介质层的夹角不等于90°。
  4. 根据权利要求1所述的光波导镜片,其中,所述封装膜层与波导介质层的折射率相同。
  5. 根据权利要求1所述的光波导镜片,其中,所述光栅层的材料为折 射率在1.7到2.1的玻璃材料或压印胶。
  6. 根据权利要求1所述的光波导镜片,其中,所述波导介质层的材料为折射率在1.7到2.1的无机介质材料。
  7. 根据权利要求1所述的光波导镜片,其中,所述封装膜层的材料为折射率在1.7到2.1的无机介质材料。
  8. 根据权利要求1所述的光波导镜片,其中,所述封装膜层的材料为氮化硅或氮氧化硅。
  9. 根据权利要求1所述的光波导镜片,其中,所述封装膜层远离所述波导介质的一侧覆盖有保护膜层。
  10. 根据权利要求1所述的光波导镜片,其中,所述第一光栅和第二光栅的光栅条和波导介质层的夹角不等于90°。
  11. 一种光波导镜片的制备方法,其中,所述光波导镜片具有第一区域和第二区域,所述制备方法包括:形成依次叠层设置的波导介质层、光栅层和封装膜层;形成所述光栅层包括:
    在所述波导介质层上形成的位于所述第一区域的第一光栅和位于所述第二区域的第二光栅;所述波导介质层,被配置为对所述第一光栅耦入的光传输至所述第二光栅,以通过所述第二光栅耦出;
    所述封装膜层覆盖在所述第一光栅和所述第二光栅背离所述波导介质层的一侧,且所述第一光栅和所述第二光栅的缝隙中无所述封装膜层的材料填充。
  12. 根据权利要求11所述的制备方法,其中,所述光波导镜片还具有第三区域;所述在所述波导介质层上形成的第一光栅和第二光栅的同时,还包括:形成位于所述第三区域的第三光栅;所述第三光栅,被配置为改变所述第一光栅耦入并经由所述波导介质层传输的光线的传输方向,并将传输方向改变后的光线通过所述波导介质层传输至所述第二光栅,以通过所述第二光栅耦出;所述封装膜层覆盖所述第三光栅背离所述波导介质层的一侧,且在所述第三光栅的缝隙中无所述封装膜层的材料填充。
  13. 根据权利要求11所述的制备方法,其中,形成所述封装膜层包括:
    采用等离子体增强化学气相沉积法沉积的方式,形成所述封装膜层。
  14. 根据权利要求11所述的制备方法,其中,等离子体增强化学气相沉积法沉积的沉积功率在100W到1000W,沉积压强在200Torr到1500Torr,沉积气氛为四氢化硅和一氧化二氮。
  15. 一种增强现实设备,其中,包括权利要求1-10中任一项所述的光波导镜片。
PCT/CN2023/092161 2022-06-17 2023-05-05 一种光波导镜片及其封装方法 WO2023241253A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210692256.8A CN114994918A (zh) 2022-06-17 2022-06-17 一种光波导镜片及其封装方法
CN202210692256.8 2022-06-17

Publications (1)

Publication Number Publication Date
WO2023241253A1 true WO2023241253A1 (zh) 2023-12-21

Family

ID=83034285

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/092161 WO2023241253A1 (zh) 2022-06-17 2023-05-05 一种光波导镜片及其封装方法

Country Status (2)

Country Link
CN (1) CN114994918A (zh)
WO (1) WO2023241253A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114994918A (zh) * 2022-06-17 2022-09-02 京东方科技集团股份有限公司 一种光波导镜片及其封装方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030224116A1 (en) * 2002-05-30 2003-12-04 Erli Chen Non-conformal overcoat for nonometer-sized surface structure
US20050128592A1 (en) * 2003-01-28 2005-06-16 Nippon Sheet Glass Company, Limited Optical element, optical circuit provided with the optical element, and method for producing the optical element
CN113242990A (zh) * 2018-12-17 2021-08-10 应用材料公司 用于封装的pvd定向沉积
CN214151260U (zh) * 2021-08-04 2021-09-07 深圳小米通讯技术有限公司 近眼显示系统及增强现实设备
CN214623106U (zh) * 2021-05-27 2021-11-05 Oppo广东移动通信有限公司 衍射波导装置及近眼显示设备
US20220152724A1 (en) * 2020-11-17 2022-05-19 Applied Materials, Inc. Optical device having structural and refractive index gradation, and method of fabricating the same
CN114994918A (zh) * 2022-06-17 2022-09-02 京东方科技集团股份有限公司 一种光波导镜片及其封装方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110764260A (zh) * 2018-07-28 2020-02-07 华为技术有限公司 一种增强现实装置
CN111812773A (zh) * 2020-07-27 2020-10-23 宁波舜宇奥来技术有限公司 一种衍射光波导及其制备方法
CN212872969U (zh) * 2020-07-28 2021-04-02 浙江水晶光电科技股份有限公司 一种衍射光波导和增强现实眼镜
CN111830715A (zh) * 2020-07-28 2020-10-27 谷东科技有限公司 二维扩瞳的波导显示装置和增强现实显示设备
CN114167606B (zh) * 2020-09-11 2023-11-10 宁波舜宇光电信息有限公司 光波导组件及包括该光波导组件的显示设备
CN112054131B (zh) * 2020-09-14 2022-09-20 京东方科技集团股份有限公司 显示面板、显示装置及显示设备
CN212846017U (zh) * 2020-09-25 2021-03-30 歌尔股份有限公司 光波导镜片、增强现实显示模组及增强现实显示眼镜
CN216646967U (zh) * 2021-12-22 2022-05-31 深圳光峰科技股份有限公司 增强现实光学机构及近眼显示装置
CN114280790B (zh) * 2021-12-29 2024-03-26 材料科学姑苏实验室 一种衍射光波导器件及近眼显示设备

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030224116A1 (en) * 2002-05-30 2003-12-04 Erli Chen Non-conformal overcoat for nonometer-sized surface structure
US20050128592A1 (en) * 2003-01-28 2005-06-16 Nippon Sheet Glass Company, Limited Optical element, optical circuit provided with the optical element, and method for producing the optical element
CN113242990A (zh) * 2018-12-17 2021-08-10 应用材料公司 用于封装的pvd定向沉积
US20220152724A1 (en) * 2020-11-17 2022-05-19 Applied Materials, Inc. Optical device having structural and refractive index gradation, and method of fabricating the same
CN214623106U (zh) * 2021-05-27 2021-11-05 Oppo广东移动通信有限公司 衍射波导装置及近眼显示设备
CN214151260U (zh) * 2021-08-04 2021-09-07 深圳小米通讯技术有限公司 近眼显示系统及增强现实设备
CN114994918A (zh) * 2022-06-17 2022-09-02 京东方科技集团股份有限公司 一种光波导镜片及其封装方法

Also Published As

Publication number Publication date
CN114994918A (zh) 2022-09-02

Similar Documents

Publication Publication Date Title
US9891436B2 (en) Waveguide-based displays with anti-reflective and highly-reflective coating
JP6341270B2 (ja) 導光素子および映像表示装置
AU2010240706B2 (en) Improvements in optical waveguides
AU2010240707B2 (en) Surface relief grating in an optical waveguide having a reflecting surface and dielectric layer conforming to the surface
WO2016076153A1 (ja) 導光板および虚像表示装置
KR20200069335A (ko) 증강 현실 시스템을 위한 도파관-기반 광학 시스템 및 방법
JP2019519808A (ja) ヘッドアップディスプレイのための光導波路、および、その製造方法
US20120275746A1 (en) Highly efficient optical gratings with reduced thickness requirements and impedance-matching layers
WO2023241253A1 (zh) 一种光波导镜片及其封装方法
KR20080091981A (ko) 이중층 구조의 와이어 그리드 편광자 및 그 제조 방법
CN109906392A (zh) 两侧均具有高反射率的嵌入式线栅偏振器
US10564332B2 (en) Controlling grating outcoupling strength for AR waveguide combiners
CN111480262B (zh) 制造波导组合器的方法
JP2023041778A5 (zh)
JP2009086613A (ja) レリーフ型回折光学素子とその製造方法
WO2023246581A1 (zh) 衍射光波导
US11391957B2 (en) Embedded transmissive diffractive optical elements
US6483964B1 (en) Method of fabricating an optical component
US20220091340A1 (en) Optical coupling device having diffraction gratings for coupling light with a light guide and fabrication method thereof
WO2024051788A1 (zh) 光波导结构及其制作方法、光学组件和近眼显示设备
US20240142699A1 (en) Slab waveguide layer for enhanced near-eye-display surface relief grating lightguide
WO2024093348A1 (zh) 一种导光器件以及可穿戴设备
US11543702B2 (en) Polarizer and optical apparatus
TW202411692A (zh) 提升ar波導顯示效率及均勻性的方法
CN117706683A (zh) 非全反射光波导结构和增强现实产品

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23822824

Country of ref document: EP

Kind code of ref document: A1