WO2023240859A1 - 一种闭式布雷顿循环性能实验系统 - Google Patents

一种闭式布雷顿循环性能实验系统 Download PDF

Info

Publication number
WO2023240859A1
WO2023240859A1 PCT/CN2022/125578 CN2022125578W WO2023240859A1 WO 2023240859 A1 WO2023240859 A1 WO 2023240859A1 CN 2022125578 W CN2022125578 W CN 2022125578W WO 2023240859 A1 WO2023240859 A1 WO 2023240859A1
Authority
WO
WIPO (PCT)
Prior art keywords
compressor
gas
turbine
experimental
inlet
Prior art date
Application number
PCT/CN2022/125578
Other languages
English (en)
French (fr)
Inventor
于沛
姚鸿帅
刘亚光
堵树宏
黄晨
李亚飞
李�杰
汪俊
Original Assignee
中国核电工程有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国核电工程有限公司 filed Critical 中国核电工程有限公司
Publication of WO2023240859A1 publication Critical patent/WO2023240859A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M15/00Testing of engines
    • G01M15/04Testing internal-combustion engines
    • G01M15/05Testing internal-combustion engines by combined monitoring of two or more different engine parameters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M15/00Testing of engines
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M15/00Testing of engines
    • G01M15/02Details or accessories of testing apparatus
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Definitions

  • the present disclosure relates to the field of energy power technology, and in particular, to a closed Brayton cycle performance experimental system.
  • the Brayton cycle is a typical thermodynamic cycle, which uses gas as the working fluid and achieves efficient energy conversion through four processes: adiabatic compression, isobaric heat absorption, adiabatic expansion and isobaric cooling.
  • closed Brayton cycle technology Compared with traditional technology, closed Brayton cycle technology has the characteristics of high cycle efficiency, high power density, compact structure, and wide application range.
  • the Brayton cycle thermoelectric conversion device (hereinafter referred to as "closed cycle helium turbine”) is the key equipment for thermoelectric conversion in direct cycle gas-cooled reactors. The thermal energy generated by the gas-cooled reactor core is converted into electrical energy through the closed Brayton cycle. .
  • the present disclosure provides a closed Brayton cycle experimental system, which can meet the requirements of various experiments such as system-level verification of loop flow characteristics, heat transfer characteristics, mechanical characteristics, and transmission characteristics, and can Conduct various experiments such as flow characteristics, heat transfer characteristics, mechanical characteristics, and transmission characteristics.
  • the present disclosure provides a closed Brayton cycle performance experimental system, including a main circulation system, a gas source system, a heat source system, and a power system, wherein:
  • the gas source system is used to provide experimental gas
  • the main circulation system includes a turbine, a compressor, and a cooling unit.
  • the inlet of the compressor is connected to the gas source system and is used to introduce test gas and compress the introduced test gas.
  • the outlet is connected to the heat source system and is used to pass the compressed experimental gas into the heat source system for heating.
  • the inlet of the turbine is connected to the heat source system and is used to perform work on the heated experimental gas.
  • the cooling unit is connected to the turbine and the compressor respectively, and is used to cool down the exhaust gas output from the turbine after doing work, and transport the cooled exhaust gas to the compressor for compression again. Realize closed Brayton cycle;
  • the power system includes an inspired integrated generator connected to the compressor for driving the compressor to operate for compression and when the output power of the turbine is greater than the power consumption of the compressor. To generate electricity.
  • the closed Brayton cycle performance experiment system provided by the present disclosure can meet the requirements of various experiments such as system-level verification of loop flow characteristics, heat transfer characteristics, mechanical characteristics, and transmission characteristics, and can conduct flow characteristics, heat transfer characteristics, mechanical characteristics, etc.
  • Various experiments such as characteristics and transmission characteristics.
  • the experimental system can be made simple and compact in structure and does not require
  • the deceleration device and matching lubricating oil system are set up to occupy a small area and lower the cost; by setting up a helium gas source system, a nitrogen gas source system, and an air supply system, this experimental system can carry out helium, nitrogen, air, and other Experiments with any combination of gases have low experimental costs; by setting up a heat source system with a flange gas pipe heating method, the simulated temperature can be effectively increased to ensure continuous and uninterrupted work for a long time.
  • Figure 1 is a schematic structural diagram of a closed Brayton cycle performance experimental system provided by an embodiment of the present disclosure
  • Figure 2 is a schematic structural diagram of the main circulation system provided by an embodiment of the present disclosure
  • Figure 3 is a schematic structural diagram of a heat source system provided by an embodiment of the present disclosure.
  • Figure 4 is a schematic structural diagram of a helium source system provided by an embodiment of the present disclosure.
  • Figure 5 is a schematic structural diagram of a nitrogen source system provided by an embodiment of the present disclosure.
  • Figure 6 is a schematic structural diagram of an air supply system provided by an embodiment of the present disclosure.
  • 2-Main circulation system 201-Turbine; 202-Compressor; 203-Integrated generator; 204-Regenerator; 205-Precooler; 206-Flow regulating valve; 207-First cut-off valve; 208-second cut-off valve; 209-air bearing; 210-sealing shell; 307-first pipeline; 308-second pipeline;
  • 3-Helium source system 301-Helium storage station; 302-Empty tank; 303-Buffer tank; 304-Low pressure tank; 305-Helium compressor; 306-Filling volume regulating valve;
  • Figure 1 is a schematic structural diagram of a closed Brayton cycle performance experimental system provided by an embodiment of the present disclosure.
  • Figure 2 is a schematic structural diagram of the main circulation system provided by an embodiment of the present disclosure.
  • Figure 3 is a schematic structural diagram of a heat source system provided by an embodiment of the present disclosure.
  • Figure 4 is a schematic structural diagram of a helium gas source system provided by an embodiment of the present disclosure.
  • Figure 5 is a schematic structural diagram of a nitrogen source system provided by an embodiment of the present disclosure.
  • Figure 6 is a schematic structural diagram of an air supply system provided by an embodiment of the present disclosure.
  • This embodiment discloses a closed Brayton cycle performance experimental system, including a main circulation system 2, a gas source system, a heat source system 1, and a power system 7, wherein:
  • Gas source system used to provide experimental gas
  • the main circulation system includes a turbine 201, a compressor 202 and other test pieces, as well as a cooling unit.
  • the inlet of the compressor 202 is connected to the gas source system and is used to introduce test gas and compress the introduced test gas.
  • the compressor 202 The outlet of the turbine 201 is connected to the heat source system and is used to pass the compressed experimental gas into the heat source system for heating.
  • the inlet of the turbine 201 is connected to the heat source system and is used to perform work on the heated experimental gas.
  • the cooling unit is connected to the turbine.
  • the machine 201 and the compressor 202 are connected respectively, and are used to cool down the exhausted gas outputted by the turbine after doing work, and return the cooled exhausted gas to the compressor for compression again to achieve a closed Brayton cycle;
  • the power system includes an integrated generator (also known as a high-speed electric generator) 203.
  • the integrated generator 203 is connected to the compressor 202. It has both a motor function and a generator function and is used during the starting process of the test piece. It drives the compressor to operate for compression (that is, acts as an electric motor) and generates electricity (that is, acts as a generator) when the output power of the turbine is greater than the power consumption of the compressor.
  • the existing technologies are basically single test devices, such as compressor test benches and heat exchanger test benches, which cannot conduct comprehensive tests at the system level.
  • the closed Brayton cycle performance experimental system of this embodiment can centrally test the entire Brayton cycle system, and can satisfy the system-level verification of loop flow characteristics (such as cycle flow at rated temperature).
  • the pressure loss, leakage, expansion and compression characteristics of helium are studied), heat transfer characteristics (for example, data observation and analysis of cooling units in experiments), mechanical characteristics (for example, turbines, compressors, As well as research on the operating stability, vibration, idle rotation, thermal expansion elimination and other characteristics of thermoelectric conversion devices such as integrated generators), transmission characteristics and other experimental requirements, it can conduct flow characteristics, heat transfer characteristics, mechanical characteristics, Transmission characteristics (such as transmission stability and transmission efficiency research) and other experimental tests.
  • the system also includes a sealed shell 210.
  • the turbine 201, the compressor 202, and the integrated generator 203 are coaxially connected at the same speed, and all three are located in the sealed shell 210, so that no It is necessary to set up a deceleration device and a supporting lubricating oil system to make the system simpler and more compact in structure and lower in cost.
  • the turbine 201, the compressor 202, and the integrated generator 203 are installed on the same main shaft.
  • One or more air bearings 209 or electromagnetic bearings can be installed on the main shaft. Preferably, three are installed.
  • the air bearing 209 or the electromagnetic bearing as shown in Figure 2, the length of the main shaft between the turbine 201 and the compressor 202 is preferably greater than the length of the main shaft between the compressor 202 and the integrated generator 203.
  • the floating bearing 209 or the electromagnetic bearing is located on the main shaft between the turbine 201 and the compressor 202, and is preferably located near both ends of the main shaft.
  • the other air floating bearing 209 or electromagnetic bearing is located on the compressor.
  • the air bearing or the electromagnetic bearing 209 on the main shaft is preferably located in the middle position of the main shaft.
  • the rotation speed of the inspired integrated generator 209 is preferably 20000-40000r/min, specifically, it can be 22000r/min, 24000r/min, 26000r/min, 28000r/min, 30000r/min, 32000r/min, 34000r/min. min, 36000r/min, 38000r/min, 40000r/min, etc.
  • the cooling unit adopts a modular design, is connected to the turbine 201 and the compressor 202 through integrated designed pipelines, and is arranged in the sealed shell 210 together with the turbine 201 and the compressor 202.
  • the cooling unit includes a regenerator 204 and a precooler 205.
  • the regenerator 204 and the precooler 205 are both located in the annular chamber of the sealed shell 210, where: the regenerator 204 is connected to the outlet of the turbine 201.
  • the precooler 205 is connected to the regenerator 204 and is used to further cool down the initially cooled exhaust gas to precool it.
  • the device 205 is also connected to the inlet of the compressor 202, and is used to pass the further cooled exhaust gas into the compressor for compression and circulation.
  • the regenerator 204/precooler 205 can avoid the traditional complete form of regenerator/precooler, making the system structure more compact and occupying an area greatly reduced.
  • the design selection of the regenerator 204 and the precooler 205 is preferably a heat exchanger with a compact structure such as a printed circuit board type or a capillary tube type.
  • the cooling unit in this embodiment can reduce the temperature of the experimental gas (exhaust gas) to normal temperature to ensure smooth circulation of the experimental gas.
  • the system also includes a heat trap system 6.
  • the heat trap system 6 is located outside the sealed shell 210.
  • the precooler 205 is provided with a cooling water inlet and a cooling water outlet.
  • the cooling water inlet is preferably located close to the precooler.
  • 205 is connected to the regenerator 204.
  • the cooling water outlet is preferably located close to the position where the precooler 205 is connected to the compressor 202.
  • the outlet of the heat trap system 6 passes through the cooling water supply pipeline and the cooling water inlet of the precooler 205. Connected, the inlet of the heat trap system 6 is connected to the cooling water outlet of the precooler 205 through the cooling water return pipeline, which is used to provide cooling water to the precooler to realize cooling water circulation.
  • the temperature of the cooling water is preferably 25-30°C. Specifically, it can be 25°C, 26°C, 27°C, 28°C, 29°C, 30°C, etc.
  • a pump may be provided on the connecting pipeline between the heat trap system 6 and the precooler 205 to provide the power required for cooling water circulation.
  • the heat trap system 6 is a mechanical ventilation cooling tower, which releases the heat brought out from the precooler to the atmospheric environment through cooling water circulation.
  • the main circulation system also includes a first bypass adjustment pipeline (ie, N1-N3) and a second bypass adjustment pipeline (ie, N1-N4).
  • the first bypass adjustment pipeline The inlet end N1 of the pipeline is connected to the outlet of the compressor 202, the outlet end N3 of the first bypass adjustment pipeline is connected to the outlet of the turbine 202, and the inlet end N1 of the second bypass adjustment pipeline is connected to the outlet of the compressor 202.
  • the outlet is connected, the outlet end N4 of the first bypass adjustment pipeline is connected to the inlet of the compressor 202, and the first bypass adjustment pipeline and the second bypass adjustment pipeline are both equipped with a flow adjustment valve 206 and a cut-off valve (where , the cut-off valve located on the first bypass adjustment pipeline is the first cut-off valve 207, and the cut-off valve located on the first bypass adjustment pipeline is the second cut-off valve 208), where the flow adjustment valve is used to control the first bypass The flow rate of the experimental gas in the regulating pipeline and the second bypass regulating pipeline.
  • the cut-off valve is used to control the on/off of the first bypass regulating pipeline and the second bypass regulating pipeline to select the bypass pipeline and formulate the Different experimental plans are used to verify the response rate and system impact mode of power changes under different bypass pipeline adjustment strategies.
  • the first bypass adjustment pipeline N1-N3 is mainly used to connect when the speed of the turbine, compressor and other components (equivalent to a helium turbine) exceeds the speed. At this time, the turbine outlet The back pressure rises rapidly, which can quickly reduce the rotation speed and protect the helium turbine rotor from over-rotation and rupture.
  • the first bypass adjustment pipeline N1-N3 is connected.
  • the second bypass adjustment pipeline N1-N4 can be used to prevent helium turbine surge. For example, when a low flow alarm occurs, the second bypass adjustment pipeline N1-N4 is connected.
  • the heat source system 1 can adopt a flange gas pipeline heating method, which includes a reactor simulation heater 101, a heat storage component 102, and a pressure vessel 104.
  • the inlet of the pressure vessel 104 is connected to the pressurized gas.
  • the outlet of the reactor 202 is connected to the experimental gas compressed by the compressor.
  • the reactor simulation heater 101 is connected to the heat storage component 102, and both are located in the pressure vessel 104 for controlling the experimental gas in the pressure vessel.
  • the outlet of the pressure vessel 104 is connected to the inlet of the turbine 201 through the heat pipe 108, which is used to pass the heated experimental gas into the turbine to perform work.
  • a cold pipe 107 is provided at the inlet of the pressure vessel, and the pressure vessel 104 is connected to the outlet of the compressor 202 through the cold pipe 107 .
  • a heat pipe 108 is provided at the outlet of the pressure vessel, and the pressure vessel 104 is connected to the inlet of the turbine 201 through the heat pipe 108 .
  • the pressure vessel 101 is provided with a power terminal 103.
  • the power terminal 103 preferably has thermal insulation properties.
  • the reactor simulation heater 101 and the heat storage component 102 are connected to the external power supply through the power terminal 103 to obtain heating power.
  • the reactor simulation heater 101 is preferably a DC type or electric heating type or strip heater, and ensures that the resistance coefficient is equivalent to the reactor resistance coefficient.
  • the rated heating power of the reactor simulation heater 101 is preferably 1000-5000kw.
  • the heater temperature of the reactor simulation heater 101 is 300-850°C.
  • the heat storage component uses graphite carbon bricks with a heat storage capacity of 3x10 7 kJ.
  • An insulation layer 106 may be provided on the outside of the pressure vessel 104 to reduce heat loss.
  • the top 112 of the pressure vessel may be provided with an overpressure protection valve 113 to avoid the risk of overpressure of the pressure vessel.
  • a condensation trap 114 may be provided at the bottom of the pressure vessel 104 to discharge condensation water that may be generated in the pressure vessel.
  • the design pressure of the cold pipe 107 is preferably above 600°C, and the design pressure is preferably above 3 MPa.
  • the cold pipe 107 is preferably made of austenitic stainless steel (such as 316H).
  • the design temperature of the heat pipe 108 is preferably above 900°C, and the design pressure is preferably above 3 MPa.
  • the heat pipe 108 is preferably made of austenitic stainless steel (such as 800H).
  • the simulated temperature can be effectively increased, and it can continue to work continuously for a long time.
  • the heat source system 1 may also include a baffle 111.
  • the baffle 111 is provided in the pressure vessel 104 and is arranged vertically. The bottom and two sides of the baffle 111 are connected to the pressure vessel 104.
  • the pressure vessel The inlet and outlet of 104 are respectively located on both sides of the baffle 111 to form an upwardly flowing air inlet channel 110 and a downwardly flowing heating channel inside the pressure vessel.
  • the space size of the air inlet channel 110 is preferably smaller than the space size of the heating channel.
  • the reactor simulation heater 101 and the heat storage component 102 are located in the heating channel.
  • the gas source system may include a helium gas source system 3 and a vacuum system 8.
  • the helium gas source system 3 includes a helium gas storage station 301, an empty tank 302, a buffer tank 303, and a low-pressure tank. 304, and helium compressor 305.
  • the helium storage station 301 is connected to the inlet of the compressor 101 through a first pipeline 307, and is used to provide helium as the experimental gas.
  • the empty tank 302, the buffer tank 303, and the low-pressure tank 304 are all connected to the first pipeline 307.
  • the empty tank 302 is located upstream of the buffer tank 303, and the empty tank 302 is connected to the outlet of the compressor 202 through the second pipeline 308.
  • the empty tank 302 is used to adjust the filling volume of the experimental system.
  • the buffer tank 303 is located upstream of the low-pressure tank 304.
  • the buffer tank 303 is used to adjust the pressure fluctuations of the experimental system. It is especially suitable for pressure regulation of small fluctuations.
  • the low-pressure tank 304 is used to recover helium, and the recovered helium can be reused.
  • the helium compressor 305 is located on the first pipeline 307 and is between the buffer tank 303 and the low-pressure tank 304 for compressing helium; the vacuum system 8 is connected to the compressor 202 for evacuating the experimental system.
  • the helium source system 4 includes several helium bottles/groups (i.e., helium storage stations 301), a buffer tank 303 (0.16m3, 3MPa), a low-pressure tank 304 (2m3, 4MPa), An empty tank 302 (2m3, 4MPa), and a helium compressor 305 (400Nm3/h, pressure boost 2MPa).
  • the vacuum system 8 includes a vacuum pump, which is connected to the first pipeline 307 and connected to the inlet of the compressor 202 through the first pipeline 307 .
  • the gas source system may also include a nitrogen gas source system 4 and/or an air supply system 5. Both the nitrogen gas source system 4 and the air supply system 5 are connected to the inlet of the compressor 202, wherein the nitrogen gas source system 4 is used for Nitrogen is provided as the experimental gas, and the air supply system 5 is used to provide air as the experimental gas.
  • the nitrogen source system 4 includes a nitrogen storage station 401 and a nitrogen compressor 402 .
  • the nitrogen storage station 400 can be a nitrogen storage tank or a nitrogen preparation machine.
  • the nitrogen storage station 400 is connected to the first pipeline 307 and is connected to the inlet of the compressor 202 through the first pipeline 307 for storing or preparing nitrogen.
  • the nitrogen compressor 402 is disposed on the connecting pipeline between the nitrogen storage station 401 and the compressor 202, and is used to pressurize the nitrogen gas.
  • the air supply system 5 includes an air buffer tank 502 and an air compressor 501 .
  • the air buffer tank 502 is provided with an air inlet pipe, which connects the air buffer tank 502 and the external atmospheric environment to introduce air.
  • the air buffer tank 502 is connected to the first pipeline 307, and is connected to the compressor through the first pipeline 307.
  • 202 is connected to the inlet, and the air compressor 501 is located on the air inlet pipe.
  • the air compressor 501 is used to pressurize the air
  • the air buffer tank 502 is used to buffer the pressure fluctuation of the experimental system.
  • this experimental system can carry out experiments with helium, nitrogen, air, and any combination of gases. Compared with the traditional single helium In the early stages of the experiment, nitrogen or compressed air can be used to conduct the experiment, which can greatly reduce the experimental cost.
  • the experimental system also includes a test bench control system (not shown in the figure).
  • the test bench control system includes a control cabinet, measuring instruments, data acquisition boards, and human-machine interfaces, where: the control cabinet and the turbine The machine 201, the integrated generator 203 and other equipment that require remote control are electrically connected respectively to control the opening and closing of the turbine 201, the integrated generator 203 and other equipment; measuring instruments are installed in the turbine 201, the compressor 202, and the pressure vessel 104, used to detect the temperature and/or pressure and/or flow of the turbine 201, the compressor 202, and the pressure vessel 104, and convert them into corresponding electrical signals; the data acquisition board and the measurement Instrument electrical connection, used to receive temperature and/or pressure and/or flow signals (electrical signals) detected by the measuring instrument and convert them into corresponding temperature values and/or pressure values and/or flow values; human-machine interface and data acquisition The electrical connection of the board is used to display the temperature value and/or pressure value and/or flow value converted by the data acquisition board, and to
  • the measuring instrument includes a temperature sensor 105, a pressure sensor, and a flow meter (not shown in the figure).
  • the temperature sensor 105, a pressure sensor, and a flow detector are installed in the turbine 201 and the compressor according to specific experimental needs. 202, and the pressure vessel 104.
  • the specific detection points can be selected according to experimental needs.
  • the number of temperature sensors 105 provided on the pressure vessel 104 is preferably more than three, which are respectively provided at the upper, middle and upper parts of the pressure vessel 104. and the lower part, so as to check whether the temperature field distribution in the pressure vessel is uniform, so that timely adjustments can be made when the temperature difference at different locations is large, and the detection accuracy can be improved.
  • the measuring instrument also includes a vibration monitor.
  • the vibration monitor is installed on the spindle and is electrically connected to the data acquisition board to detect the vibration of the spindle and convert it.
  • the corresponding vibration electrical signal is sent to the data acquisition board.
  • the data acquisition board is also used to convert the vibration electrical signal into the corresponding vibration value.
  • the human-machine interface is also used to display the vibration value converted by the data acquisition board.
  • the control cabinet can also There is a vibration threshold, which is also used to compare the vibration value with the vibration threshold, and control the interactive interface to display an alarm signal when the vibration value is greater than the vibration threshold. At this time, the magnetic bearing or electromagnetic bearing needs to be corrected.
  • the measuring instrument when the experimental system needs to conduct experimental research on the mechanical characteristics of idle rotation, the measuring instrument can also include a torque measuring element; when the experimental system needs to conduct experimental research on the mechanical characteristics of thermal expansion elimination, the measuring instrument can also include deformation measurement. instrument; when this experimental system needs to carry out experimental research on transmission characteristics, the measuring instrument can also include a power measuring element.
  • the corresponding detection instruments for detecting the parameters required for the experimental research are selected, and are not limited to the measuring instruments listed above. I will not go into details here.
  • the power system 7 also includes an energy storage device (such as a battery) and a microgrid.
  • the energy storage device and the microgrid are electrically connected to the inspired integrated generator for regulating the power load to complete power regulation in conjunction with this experimental system. Tests and load shedding transient conditions experiments. In the power regulation test, the integrated generator can also play a role in load regulation.
  • the spent gas is passed into the compressor to be compressed, and then passed into the heat source system through the regenerator to achieve circulation.
  • the output power of the turbine reaches the required power, for example, when it reaches 1.0MW, a helium source system is used to supply helium gas to the compressor to carry out subsequent experimental research on flow characteristics and other aspects.
  • the flow characteristics, heat transfer characteristics, mechanical characteristics, and transmission characteristics refer to the observation content in the experiment.
  • the flow characteristics are analyzed through the measurement data of flow meters and pressure gauges at different locations during the experiment and analyzed through fluid calculation methods to obtain the flow characteristics of the system; the heat transfer characteristics are analyzed through detection data such as flow rate and temperature.
  • the measured pressure at the low-pressure side (exhaust gas side) inlet of the regenerator 204 is 1.2MPa and the temperature is 520°C, and the pressure at the low-pressure side outlet is 1.14MPa and the temperature is 230°C.
  • the pressure at the inlet of the high-pressure side is 1.97MPa and the temperature is 190°C.
  • the pressure at the outlet of the high-pressure side is 1.9MPa and the temperature is 480°C.
  • the above temperature and pressure parameters can be used to analyze the return of helium. Flow and heat transfer characteristics in heater components. The same experimental principle applies to other components such as precoolers and will not be repeated here.
  • the closed Brayton cycle experimental system of this embodiment can meet the requirements of various experiments such as system-level verification of loop flow characteristics, heat transfer characteristics, mechanical characteristics, and transmission characteristics. It can conduct flow characteristics, heat transfer characteristics, mechanical characteristics, Various experiments such as transmission characteristics. Moreover, by coaxially connecting the turbine, compressor, and integrated generator, and arranging them together with the regenerator and preheating in the sealed shell, the experimental system can be made simple and compact in structure and does not require The deceleration device and matching lubricating oil system are set up to occupy a small area and lower the cost.
  • this experimental system can carry out nitrogen, nitrogen, air, and any other
  • the experiment of a combination of gases has low experimental cost; by setting up a heat source system with a flange gas pipe heating method, the simulated temperature can be effectively increased to ensure continuous and uninterrupted work for a long time.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)

Abstract

一种闭式布雷顿循环性能实验系统,包括主循环系统(2)、气源系统、热源系统(1)、动力系统(7),主循环系统(2)包括透平机(201)、压气机(202)、冷却单元,压气机(202)的入口与气源系统相连,用于通入实验气体并压缩,压气机(202)的出口与热源系统(1)相连,用于将压缩后的实验气体加热,透平机(201)的入口与热源系统(1)相连,用于对加热后的实验气体进行做功,冷却单元与透平机(201)、压气机(202)分别相连,用于对做功后的乏气降温,并将其返回压气机(202);动力系统(7)包括启发一体式发电机(203),启发一体式发电机(203)与压气机(202)相连,用于推动压气机(202)运转以进行压缩并在透平机(201)做功的输出功大于压气机(202)的耗功时进行发电。实验系统可进行系统级的验证回路流动特性、传热特性、机械特性、传动特性等多种实验。

Description

一种闭式布雷顿循环性能实验系统
本公开要求申请日为2022年06月17日、申请号为202210693272.9、名称为“一种闭式布雷顿循环性能实验系统”的中国专利申请的优先权。
技术领域
本公开涉及能源动力技术领域,尤其涉及一种闭式布雷顿循环性能实验系统。
背景技术
布雷顿循环是一种典型热力学循环,它以气体为工质,先后经过绝热压缩、等压吸热、绝热膨胀及等压冷却四个过程实现能量的高效转化。与传统技术相比,闭式布雷顿循环技术具有循环效率高、功率密度大、结构紧凑、应用范围广等特点。布雷顿循环热电转换装置(后文简称“闭式循环氦气轮机”)是直接循环气冷堆实现热电转换的关键设备,通过闭式布雷顿循环将气冷堆堆芯产生的热能转化为电能。
目前尚无闭式循环氦气轮机产品的运行经验。清华大学的HTR-10GT项目已完成氦气轮机样机建造,但由于各种原因并未投入运转,也曾开展过部件级的试验研究,设计并搭建一套验证试验件自身压缩能力的闭式系统,但是,该闭式系统只能进行冷态试验验证压气机试验件的循环动力;中科院上海高等研究院建设了布雷顿循环试验平台,该平台的透平机和压气机不同轴,透平机仅驱动发电机,重点是分析不同试验条件下的非定常相应特性,且该平台结构复杂,存在占地面积大、耗能多等问题。
发明内容
为了解决现有技术中的上述缺陷,本公开提供一种闭式布雷顿循环实验系统,可满足系统级的验证回路流动特性、传热特性、机械特性、传动特性等多种实验的要求,可进行流动特性、传热特性、机械特性、传动特性等多种实验。
本公开提供了一种闭式布雷顿循环性能实验系统,包括主循环系统、气源系统、热源系统、以及动力系统,其中:
所述气源系统,用于提供实验气体;
所述主循环系统包括透平机、压气机、以及冷却单元,所述压气机的入口与所述气源系统相连,用于通入实验气体并对通入的实验气体进行压缩,压气机的出口与所述热源系统相连,用于将压缩后的实验气体通入到热源系统进行加热,所述透平机的入口与所述热源系统相连,用于对加热后的实验气体进行做功,所述冷却单元与所述透平机、所述压气机分别相连,用于对透平机中做功后输出的乏气进行降温,并将降温后的乏气输送到压气机中再次进行压缩,以实现闭式布雷顿循环;
所述动力系统包括启发一体式发电机,所述启发一体式发电机与所述压气机相连,用于推动压气机运转以进行压缩并在透平机做功的输出功大于压气机的耗功时进行发电。
本公开相比现有技术的有益效果:
通过本公开提供的闭式布雷顿循环性能实验系统,可满足系统级的验证回路流动特性、传热特性、机械特性、传动特性等多种实验的要求,可进行流动特性、传热特性、机械特性、传动特性等多种实验。并且,通过将透平机、压气机、以及启发一体式发电机同轴连接设置,以及将其与回热器、预热一同设于密封壳,可以使本实验系统结构简单且紧凑,不需要设置减速装置和配套的润滑油系统,占地面积小,成本更低;通过设置氦气源系统、氮气源系统、以及空气供应系统,使得本实验系统可开展氦气、氮气、空气、以及其任一组合气体的实验,实验成本低;通过设置法兰式气体管道加热方式的热源系统,能够有效的增加模拟温度,确保持续长时间连续不间断工作。
附图说明
图1为本公开实施例提供的闭式布雷顿循环性能实验系统的结构示意图;
图2为本公开实施例提供的主循环系统的结构示意图;
图3为本公开实施例提供的热源系统的结构示意图;
图4为本公开实施例提供的氦气源系统的结构示意图;
图5为本公开实施例提供的氮气源系统的结构示意图;
图6为本公开实施例提供的空气供给系统的结构示意图。
图中:1-热源系统;101-反应堆模拟加热器;102-蓄热组件;103-电源绝热接线端;104-压力容器;105-温度传感器;106-保温层;107-冷管道;108-热管道;110-进气通道;111-挡板;112-容器顶部;113-超压保护阀;114-冷凝疏水阀;
2-主循环系统;201-透平机;202-压气机;203-启发一体式发电机;204-回热器;205-预冷器;206-流量调节阀;207-第一截断阀;208-第二截断阀;209-气浮轴承;210-密封壳;307-第一管路;308-第二管路;
3-氦气源系统;301-氦气贮存站;302-空罐;303-缓冲罐;304-低压罐;305-氦气压缩机;306-充装量调节阀;
4-氮气源系统;401-氮气贮存站;402-氮气压缩机;
5-空气供给系统;501-空气压缩机;502-空气缓冲罐;
6-热阱系统;7-动力系统;8-抽真空系统。
具体实施方式
为使本领域技术人员更好地理解本公开的技术方案,下面结合附图和实施例对本公开作进一步详细描述。
实施例1
图1为本公开实施例提供的闭式布雷顿循环性能实验系统的结构示意图。图2为本公开实施例提供的主循环系统的结构示意图。图3为本公开实施例提供的热源系统的结构示意图。图4为本公开实施例提供的氦气源系统的结构示意图。图5为本公开实施例提供的氮气源系统的结构示意图。图6为本公开实施例提供的空气供给系统的结构示意图。
本实施例公开一种闭式布雷顿循环性能实验系统,包括主循环系统2、气源系统、热源系统1、以及动力系统7,其中:
气源系统,用于提供实验气体;
主循环系统包括透平机201、压气机202等试验件、以及冷却单元,压气机202的入口与气源系统相连,用于通入实验气体并对通入的实验气体进行压缩,压气机202的出口与热源系统相连,用于将压缩后的实验气体通入到热源系统进行加热,透平机201的入口与热源系统相连,用于对加热后的实验气体进行做功,冷却单元与透平机201、压气机202分别相连,用于对透平机中做功后输出的乏气进行降温,并将降温后的乏气返回到压气机中再次进行压缩,以实现闭式布雷顿循环;
动力系统包括启发一体式发电机(又称高速发电电动一体机)203,启发一体式发电机203与压气机202相连,其既具有电动机功能,又具有发电机功能,用于在试验件启动过程中推动压气机运转以进行压缩(即充当电动机)并在透平机做功的输出功大于压气机的耗功时进行发电(即充当发电机)。
目前,现有技术中,基本上都是单体试验装置,例如压气机的试验台,换热器的试验台,无法进行系统级的综合试验。相比于现有技术,本实施例闭式布雷顿循环性能实验系统,可将布雷顿循环体系的整套系统集中进行测试,可满足系统级的验证回路流动特性(比如,在额定温度下的循环过程中,研究氦气的压力损失,泄漏、膨胀和压缩特性等实验)、传热特性(比如,冷却单元在实验中的数据观测和分析)、机械特性(比如,透平机、压气机、以及启发一体式发电机等热电转换装置的运行稳定性、震动、惰转、热胀消 除等特性的研究)、传动特性等多种实验的要求,可进行流动特性、传热特性、机械特性、传动特性(比如,传动稳定性和传动效率研究)等多种实验测试。
接下来,对本实施例的细节进行进一步详细描述。
在一些实施方式中,本系统还包括密封壳210,透平机201、压气机202、以及启发一体式发电机203同轴连接转速相同,且三者均设于密封壳210内,这样可以不需要设置减速装置和配套的润滑油系统,使本系统结构更简单、紧凑,成本更低。
具体来说,透平机201、压气机202、启发一体式发电机203三者设于同一根主轴上,该主轴上可以安装一个或多个气浮轴承209或电磁轴承,优选为安装三个气浮轴承209或电磁轴承,如图2所示,透平机201与压气机202之间的主轴长度优选为大于压气机202与启发一体式发电机203之间的主轴的长度,两个气浮轴承209或电磁轴承设于位于透平机201与压气机202之间的主轴上,且优选为分别处于靠近该段主轴的两端的位置,另一个气浮轴承209或电磁轴承设于压气机202与启发一体式发电机203之间的主轴上,由于该段主轴的长度较短,该段主轴上的气浮轴承或209电磁轴承优选为处于该段主轴的中间位置。
本实施例中,启发一体式发电机209的转速优选为20000-40000r/min,具体可以为22000r/min、24000r/min、26000r/min、28000r/min、30000r/min、32000r/min、34000r/min、36000r/min、38000r/min、40000r/min等等。
在一些实施方式中,冷却单元采用模块化设计,其通过集成设计的管路与透平机201、压气机202相连通,并与透平机201、压气机202一同设置在密封壳210内,具体来说,冷却单元包括回热器204和预冷器205,回热器204和预冷器205均设于密封壳210的环形腔室内,其中:回热器204与透平机201的出口相连,用于对透平机中做功后输出的乏气进行初步降温,以回收乏气的热量;预冷器205与回热器204相连,用于对初步降温的乏气进一步降温,预冷器205还与压气机202的入口相连,用于将进一步降温后的乏气通入到压气机进行压缩并循环。通过模块化设计,回热器204/预冷器205 可避免采用传统意义上的回热器/预冷器整机形式,系统结构更紧凑,占地面积大大减少。
本实施例中,回热器204、预冷器205的设计选型优选为印刷电路板式、毛细管式等紧凑式结构的热交换器。本实施例中的冷却单元可以将实验气体(乏气)温度降低至常温,确保实验气体能顺利进行的循环。
在一些实施方式中,本系统还包括热阱系统6,热阱系统6设于密封壳210外,预冷器205设有冷却水入口和冷却水出口,冷却水入口优选设于靠近预冷器205与回热器204相连的位置,冷却水出口优选设于靠近预冷器205与压气机202相连的位置,热阱系统6的出口通过冷却水供水管路与预冷器205的冷却水入口相连,热阱系统6的入口通过冷却水返回管路与预冷器205的冷却水出口相连,用于向预冷器提供冷却水,实现冷却水循环,冷却水的温度优选为25-30℃,具体可以为25℃、26℃、27℃、28℃、29℃、30℃等等。并且,为了确保冷却水循环,热阱系统6与预冷器205之间的连接管路上还可以设有泵,以提供冷却水循环所需的动力。
本实施例中,热阱系统6为机械通风冷却塔,通过冷却水循环将从预冷器带出的热量释放到大气环境。
在一些实施方式中,如图2所示,主循环系统还包括第一旁通调节管路(即N1-N3)和第二旁通调节管路(即N1-N4),第一旁路调节管路的入口端N1与压气机202的出口相连,第一旁通调节管路的出口端N3与透平机202的出口相连,第二旁路调节管路的入口端N1与压气机202的出口相连,第一旁通调节管路的出口端N4与压气机202的入口相连,且第一旁路调节管路和第二旁路调节管路上均设有流量调节阀206和截断阀(其中,位于第一旁通调节管路上的截断阀为第一截断阀207,位于第一旁通调节管路上的截断阀为第二截断阀208),其中,流量调节阀用于控制第一旁通调节管路和第二旁通调节管路中的实验气体的流量,截断阀用于控制第一旁通调节管路和第二旁通调节管路的通断,以选择旁通管路制定出不同的实验方案,从而验证不同旁通管路调节策略下功率变化的响应速率和系统影响模式。
具体来说,第一旁通调节管路N1-N3主要是用于在透平机、压气机等部 件(相当于氦气轮机)的转速超转时接通,此时,透平机出口的背压迅速升高,可以快速降低转速,保护氦气轮机转子避免超转破裂。本实施例中,透平机的转速达到23000-24000,透平机出口的背压达到0.7-0.8MPa时,接通第一旁通调节管路N1-N3。第二旁通调节管路N1-N4一方面可以用于防止氦气轮机发生喘振,比如,在发生低流量报警时接通第二旁通调节管路N1-N4,另一方面,也可以减少参与循环的实验气体流量,让一部分又返回到了压气机202的上游,使得功率降低,即可以对功率起到调节作用,其调节范围相对第一旁通调节管路N1-N3要小,可用于小的功率波动调节。
在一些实施方式中,如图3所示,热源系统1可以采用法兰式气体管道加热方式,其包括反应堆模拟加热器101、蓄热组件102、以及压力容器104,压力容器104的入口与压气机202的出口相连,用于通入压气机压缩后的实验气体,反应堆模拟加热器101与蓄热组件102相连,且两者均设于压力容器104内,用于对压力容器中的实验气体加热,压力容器104的出口通过热管道108与透平机201的入口相连,用于将加热后的实验气体通入到透平机做功。
具体来说,压力容器的入口上设有冷管道107,压力容器104通过冷管道107与压气机202的出口相连。压力容器的出口上设有热管道108,压力容器104通过热管道108与透平机201的入口相连。压力容器101上设有电源接线端103,电源接线端103优选具有绝热性能,反应堆模拟加热器101与蓄热组件102通过该电源接线端103与外界电源相连,以获取加热电源。反应堆模拟加热器101优选为直流式或电加热式或条带式加热器,并确保阻力系数与反应堆阻力系数相当,本实施例中,反应堆模拟加热器101的额定加热功率优选为1000-5000kw,反应堆模拟加热器101加热器温度为300-850℃。蓄热组件采用石墨碳砖,蓄热能力为3x10 7kJ。压力容器104的外部可设有保温层106,以减少散热损失。压力容器顶部112可设有超压保护阀113,以避免压力容器超压危险。压力容器104的底部可设有冷凝疏水阀114,以排出压力容器内可能产生的冷凝水。冷管道107的设计压力优选为600℃以上,设计压力优选为3MPa以上,本实施例中,冷管道107优选奥氏体不锈钢材料(如316H) 制成。热管道108的设计温度优选为900℃以上,设计压力优选为3MPa以上,本实施例中,热管道108优选奥氏体不锈钢材料(如800H)制成。
通过采用法兰式气体管道加热方式加热,能够有效的增加模拟出的温度,且能持续长时间连续不间断工作。
在一些实施方式中,热源系统1还可以包括挡板111,挡板111设于压力容器104内,且竖向设置,挡板111的底部和两个侧边均与压力容器104相连,压力容器104的入口和出口分别处于挡板111的两侧,以在压力容器内部形成向上流通的进气通道110和向下流通的加热通道,进气通道110的空间大小优选为小于加热通道的空间大小,反应堆模拟加热器101和蓄热组件102处于加热通道内。通过设置挡板111,可以使得从压气机通入的压缩后的实验气体先沿压力容器内部壁面向上流动,在挡板上部折流后再进入加热通道被加热升温,这样可以提高加热效果。
在一些实施方式中,气源系统可以包括氦气源系统3和抽真空系统8,如图4所示,氦气源系统3包括氦气贮存站301、空罐302、缓冲罐303、低压罐304、以及氦气压缩机305。氦气贮存站301通过第一管路307与压气机101的入口相连,用于提供氦气作为所述实验气体。空罐302、缓冲罐303、低压罐304均与第一管路307相连,其中,空罐302处于缓冲罐303的上游,且空罐302通过第二管路308与压气机202的出口相连,空罐302用于调节本实验系统的充装量,缓冲罐303处于低压罐304的上游,缓冲罐303用于调节本实验系统的压力波动,尤其是适合用于微小波动的压力调节,低压罐304用于回收氦气,回收的氦气可用于重复利用。氦气压缩机305设于第一管路307上,并处于缓冲罐303与低压罐304之间,用于压缩氦气;抽真空系统8与压气机202相连,用于对本实验系统抽真空。
本实施例中,氦气源系统4包括若干个/组氦气瓶(即氦气贮存站301)、一台缓冲罐303(0.16m3,3MPa)、一台低压罐304(2m3,4MPa)、一台空罐302(2m3,4MPa)、以及一台氦气压缩机305(400Nm3/h,升压2MPa)。抽真空系统8包括一台真空泵,真空泵与第一管路307相连,通过第一管路307与压气机202的入口相连。
在一些实施方式中,气源系统还可以包括氮气源系统4和/或空气供给系统5,氮气源系统4和空气供给系统5均与压气机202的入口相连,其中,氮气源系统4用于提供氮气作为所述实验气体,空气供给系统5用于提供空气作为所述实验气体。
具体来说,如图5所示,氮气源系统4包括氮气贮存站401和氮气压缩机402。氮气贮存站400可以为氮气贮存罐或氮气制备机,氮气贮存站400与第一管路307相连,通过第一管路307与压气机202的入口相连,用于存贮或制备氮气。氮气压缩机402设于氮气贮存站401与压气机202之间的连接管路上,用于为氮气输送增压。
如图6所示,空气供应系统5包括空气缓冲罐502和空气压缩机501。空气缓冲罐502上设有进气管,进气管连通空气缓冲罐502和外界大气环境,以通入空气,并且,空气缓冲罐502与第一管路307相连,通过第一管路307与压气机202的入口相连,空气压缩机501设于进气管上,空气压缩机501用于为空气输送增压,空气缓冲罐502用于缓冲本实验系统压力的波动。
通过设置氦气源系统3、氮气源系统4、以及空气供给系统5,使得本实验系统可以开展氦气、氮气、空气、以及其任一组合气体的实验,相比于传统的单一的氦气实验,在实验初期可以先采用氮气或者压缩空气进行实验,从而可大大降低实验成本。
在一些实施方式中,本实验系统还包括试验台控制系统(图中未示出),试验台控制系统包括控制柜、测量仪表、数据采集板、以及人机界面,其中:控制柜与透平机201、启发一体式发电机203等需要远程控制的设备分别电连接,用于控制透平机201、启发一体式发电机203等设备的启闭;测量仪表设于透平机201、压气机202、以及压力容器104上,用于检测透平机201、压气机202、以及压力容器104的温度和/或压力和/或流量,并将其转化为对应的电信号;数据采集板与测量仪表电连接,用于接收测量仪表检测到的温度和/或压力和/或流量信号(电信号)并转换为相应的温度值和/或压力值和/或流量值;人机界面与数据采集板电连接,用于显示数据采集板转换得到的温度值和/或压力值和/或流量值,监测实验系统的运行情况。
具体来说,测量仪表包括温度传感器105、压力传感器、以及流量计(图中未示出),温度传感器105、压力传感器、以及流量检测器按照具体的实验需要设于透平机201、压气机202、以及压力容器104上,具体的检测点可根据实验需要进行选择,其中,设于压力容器104上的温度传感器105的数量优选为三个以上,分别设于压力容器104的上部、中部、以及下部,这样既可以检验压力容器内温度场分布是否均匀,以便在不同位置的温差较大时及时做出调整,提高检测准确度。
需要说明的是,当本实验系统需要进行振动机械特性研究时,测量仪表还包括振动监测仪,振动监测仪设于主轴上,与数据采集板电连接,用于检测主轴的振动情况,并转换为对应的振动电信号发送给数据采集板,数据采集板还用于将振动电信号转换为对应的振动值,人机界面还用于显示数据采集板转换得到的振动值,控制柜内还可设有振动阈值,还用于将振动值与振动阈值进行比较,并在振动值大于振动阈值时控制人家交互界面显示报警信号,此时,需要对磁浮轴承或电磁轴承进行校正。同理,当本实验系统需要进行惰转机械特性实验研究时,测量仪表还可以包括转矩测量元件;当本实验系统需要进行热胀消除机械特性实验研究时,测量仪表还可以包括形变量测量仪;本实验系统需要进行传动特性实验研究时,测量仪表还可以包括功率测量元件,通过检测、比较上游输出功率和下游的电功率,得出实际的传动效率;总之,测量仪表可根据需要进行的实验研究,选用检测该实验研究所需参数的对应检测仪表,而不限于上述例出的测量仪表,这里不再一一赘述。
在一些实施方式中,动力系统7还包括储能装置(如蓄电池)及微电网,储能装置及微电网与启发一体式发电机电连接,用于调节电力负荷,以配合本实验系统完成功率调节试验和甩负荷瞬态工况实验。在功率调节试验中,启发一体式发电机还可以起到负荷调节的作用。
本实施例实验系统的启动过程,如下:
打开抽真空系统对实验系统抽真空,再将氮气源系统或空气供应系统与压气机接通,以向压气机通入氮气或空气,并启动启发一体式发电机推动压 气机运转以对通入的氮气或空气进行压缩,压缩后的气体进回热器换热升温后通入到热源系统进行加热,加热温度为300-750℃,加热后的气体通入到透平机中,同时,启发一体式发电机对加热后的气体进行做功,做功后输出的乏气通入到回热器中与经过回热器被压缩后的气体换热后初步降温,使得乏气自身的热量被回收,之后,乏气通入到预冷器与循环冷却水进一步换热后进一步降温,进一步降温后的乏气通入到压气机中被压缩,之后经回热器通入到热源系统,实现循环。当透平机的输出功率达到所需的功率时,如,达到1.0MW时,改用氦气源系统向压气机通入氦气,以展开后续的流动特性等实验研究。
需要说明的是,关于流动特性、传热特性、机械特性、传动特性,指的是实验中的观测内容。例如,流动特性是通过实验过程中不同位置的流量计和压力表的测量数据,通过流体计算的方法进行分析,获得系统的流动特性;传热特性则是通过流量、温度等检测数据进行分析,获得传热特性;同样,机械特性、传动特性也有专门的振动、功率、转矩、转速等测量元件去进行分析。
下面以开展流动特性和传热特性实验为例,对本实施例实验系统的实验过程进行简述,具体如下:
例如,在某种稳定工况下,测得回热器204的低压侧(乏气侧)入口的压力为1.2MPa,温度为520℃,低压侧出口的压力为1.14MPa,温度为230℃,高压侧(压缩后的实验气体侧)入口的压力为1.97MPa,温度为190℃,高压侧出口的压力为1.9MPa,温度为480℃,则可以通过上述这些温度和压力参数分析氦气在回热器部件中的流动和传热特性。对于其它的如预冷器等部件也是同样的实验原理,这里不再一一赘述。
本实施例的闭式布雷顿循环实验系统,可满足系统级的验证回路流动特性、传热特性、机械特性、传动特性等多种实验的要求,可进行流动特性、传热特性、机械特性、传动特性等多种实验。并且,通过将透平机、压气机、以及启发一体式发电机同轴连接设置,以及将其与回热器、预热一同设于密封壳,可以使本实验系统结构简单且紧凑,不需要设置减速装置和配套的润 滑油系统,占地面积小,成本更低;通过设置氦气源系统、氮气源系统、以及空气供应系统,使得本实验系统可开展氮气、氮气、空气、以及其任一组合气体的实验,实验成本低;通过设置法兰式气体管道加热方式的热源系统,能够有效的增加模拟温度,确保持续长时间连续不间断工作。
可以理解的是,以上实施例仅仅是为了说明本公开的原理而采用的示例性实施方式,然而本公开并不局限于此。对于本领域内的普通技术人员而言,在不脱离本公开的精神和实质的情况下,可以做出各种变型和改进,这些变型和改进也视为本公开的保护范围。

Claims (10)

  1. 一种闭式布雷顿循环性能实验系统,其特征在于,包括主循环系统(2)、气源系统、热源系统(1)、以及动力系统(7),
    所述气源系统,用于提供实验气体;
    所述主循环系统包括透平机(201)、压气机(202)、以及冷却单元,
    所述压气机的入口与所述气源系统相连,用于通入实验气体并对通入的实验气体进行压缩,压气机的出口与所述热源系统相连,用于将压缩后的实验气体通入到热源系统进行加热,
    所述透平机的入口与所述热源系统相连,用于对加热后的实验气体进行做功,
    所述冷却单元与所述透平机、所述压气机分别相连,用于对透平机中做功后输出的乏气进行降温,并将降温后的乏气输送到压气机中再次进行压缩,以实现闭式布雷顿循环;
    所述动力系统包括启发一体式发电机(203),所述启发一体式发电机与所述压气机相连,用于推动压气机运转以进行压缩并在透平机做功的输出功大于压气机的耗功时进行发电。
  2. 根据权利要求1所述的闭式布雷顿循环性能实验系统,其特征在于,还包括密封壳,所述透平机、所述压气机、以及所述启发一体式发电机同轴连接转速相同,且三者均设于所述密封壳(210)内。
  3. 根据权利要求2所述的闭式布雷顿循环性能实验系统,其特征在于,所述冷却单元包括回热器(204)和预冷器(205),
    所述回热器与所述透平机的出口相连,用于对透平机中做功后输出的乏气进行初步降温,回收乏气的热量;
    所述预冷器与所述回热器相连,用于对初步降温的乏气进一步降温,预冷器还与所述压气机的入口相连,用于将进一步降温后的乏气通入到压气机进行压缩并循环;
    且所述回热器和所述预冷器设于所述密封壳内。
  4. 根据权利要求3所述的闭式布雷顿循环性能实验系统,其特征在于,还包括热阱系统(6),所述预冷器设有冷却水入口和冷却水出口,
    所述热阱系统的出口通过冷却水供水管路与所述预冷器的冷却水入口相连,热阱系统的入口通过冷却水返回管路与预冷器的冷却水出口相连,用于向预冷器提供冷却水。
  5. 根据权利要求3所述的闭式布雷顿循环性能实验系统,其特征在于,所述主循环系统还包括第一旁通调节管路和第二旁通调节管路,
    所述第一旁路调节管路的入口端与所述压气机的出口相连,第一旁通调节管路的出口端与所述透平机的出口相连,
    所述第二旁路调节管路的入口端与所述压气机的出口相连,第一旁通调节管路的出口端与所述压气机的入口相连,
    且第一旁路调节管路和第二旁路调节管路上均设有流量调节阀(206)和截断阀。
  6. 根据权利要求1-5任一项所述的闭式布雷顿循环性能实验系统,其特征在于,所述热源系统包括反应堆模拟加热器(101)、蓄热组件(102)、以及压力容器(104),
    所述压力容器的入口与所述压气机的出口相连,用于通入压气机压缩后的实验气体,
    所述反应堆模拟加热器与所述蓄热组件相连,且两者均设于所述压力容器内,用于对压力容器中的实验气体加热,
    所述压力容器的出口与所述透平机的入口相连,用于将加热后的实验气体通入到透平机做功。
  7. 根据权利要求6所述的闭式布雷顿循环性能实验系统,其特征在于,所述热源系统还包括挡板(111),
    所述挡板设于所述压力容器内,且竖向设置,挡板的底部和两个侧边均与压力容器相连,压力容器的入口和出口分别处于挡板的两侧,以在压力容器内部形成向上流通的进气通道(110)和向下流通的加热通道,
    所述反应堆模拟加热器和所述蓄热组件处于加热通道内。
  8. 根据权利要求7所述的闭式布雷顿循环性能实验系统,其特征在于,所述气源系统包括氦气源系统(3)和抽真空系统(8),
    所述氦气源系统包括氦气贮存站(301)、空罐(302)、缓冲罐(303)、低压罐(304)、以及氦气压缩机(305),
    所述氦气贮存站通过第一管路与所述压气机的入口相连,用于提供氦气作为所述实验气体;
    所述空罐、所述缓冲罐、所述低压罐均与所述第一管路相连,其中,空罐处于缓冲罐的上游,且空罐通过第二管路与所述压气机的出口相连,空罐用于调节所述实验系统的充装量,缓冲罐处于低压罐的上游,缓冲罐用于调节所述实验系统的压力波动,低压罐用于回收氦气;
    所述氦气压缩机设于所述第一管路上,并处于所述缓冲罐与所述低压罐之间;
    所述抽真空系统与所述压气机相连,用于对所述实验系统抽真空。
  9. 根据权利要求8所述的闭式布雷顿循环性能实验系统,其特征在于,所述气源系统还包括氮气源系统(4)或空气供给系统(5),
    所述氮气源系统和所述空气供给系统均与所述压气机的入口相连,
    氮气源系统用于提供氮气作为所述实验气体,
    空气供给系统用于提供空气作为所述实验气体。
  10. 根据权利要求9所述的闭式布雷顿循环性能实验系统,其特征在于,还包括试验台控制系统,
    所述试验台控制系统包括控制柜、测量仪表、数据采集板、以及人机界面,
    所述控制柜,与所述透平机、所述启发一体式发电机分别电连接,用于控制透平机、启发一体式发电机的启闭;
    所述测量仪表设于所述透平机、所述压气机、以及所述压力容器上,用于检测透平机、压气机、以及压力容器的温度和/或压力和/或流量;
    所述数据采集板与所述测量仪表电连接,用于接收测量仪表检测到的温 度和/或压力和/或流量信号并转换为相应的温度值和/或压力值和/或流量值;
    所述人机界面与所述数据采集板电连接,用于显示数据采集板转换得到的温度值和/或压力值和/或流量值。
PCT/CN2022/125578 2022-06-17 2022-10-17 一种闭式布雷顿循环性能实验系统 WO2023240859A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210693272.9 2022-06-17
CN202210693272.9A CN115014784A (zh) 2022-06-17 2022-06-17 一种闭式布雷顿循环性能实验系统

Publications (1)

Publication Number Publication Date
WO2023240859A1 true WO2023240859A1 (zh) 2023-12-21

Family

ID=83075182

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/125578 WO2023240859A1 (zh) 2022-06-17 2022-10-17 一种闭式布雷顿循环性能实验系统

Country Status (2)

Country Link
CN (1) CN115014784A (zh)
WO (1) WO2023240859A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115014784A (zh) * 2022-06-17 2022-09-06 中国核电工程有限公司 一种闭式布雷顿循环性能实验系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109677639A (zh) * 2018-12-30 2019-04-26 上海空间推进研究所 基于闭式布雷顿循环的空间大功率核动力系统
CN109752611A (zh) * 2018-12-25 2019-05-14 北京动力机械研究所 一种闭式布雷顿循环发电系统模拟试验台
CN112362351A (zh) * 2020-10-26 2021-02-12 北京动力机械研究所 一种闭式循环涡轮及压气机性能协同试验方法
CN112502836A (zh) * 2020-11-13 2021-03-16 至玥腾风科技集团有限公司 一种微型燃气轮机联合循环系统
CN115014784A (zh) * 2022-06-17 2022-09-06 中国核电工程有限公司 一种闭式布雷顿循环性能实验系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109752611A (zh) * 2018-12-25 2019-05-14 北京动力机械研究所 一种闭式布雷顿循环发电系统模拟试验台
CN109677639A (zh) * 2018-12-30 2019-04-26 上海空间推进研究所 基于闭式布雷顿循环的空间大功率核动力系统
CN112362351A (zh) * 2020-10-26 2021-02-12 北京动力机械研究所 一种闭式循环涡轮及压气机性能协同试验方法
CN112502836A (zh) * 2020-11-13 2021-03-16 至玥腾风科技集团有限公司 一种微型燃气轮机联合循环系统
CN115014784A (zh) * 2022-06-17 2022-09-06 中国核电工程有限公司 一种闭式布雷顿循环性能实验系统

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
LIU HAIQING, CHI ZHONGRAN, ZANG SHUSHENG: "Optimization of a closed Brayton cycle for space power systems", APPLIED THERMAL ENGINEERING, PERGAMON, OXFORD, GB, vol. 179, 1 October 2020 (2020-10-01), GB , pages 115611, XP093118706, ISSN: 1359-4311, DOI: 10.1016/j.applthermaleng.2020.115611 *
XUE, XIANG; DU, LEI; WANG, HAOMING; ZHANG, YINYONG; LIN, QINGGUO: "Simulation Analysis of Adjustment and Control Process for Core Machine in Closed Brayton Cycle", HUOJIAN TUIJIN - JOURNAL OF ROCKET PROPULSION, HANGTIAN TUIJIN JISHU YANJIUYUAN, CN, vol. 47, no. 5, 31 October 2021 (2021-10-31), CN , pages 49 - 55, XP009551733, ISSN: 1672-9374 *
ZHU, YUBO; HUANG, WEIGUANG; CUI, XIAOKANG; ZHANG, JINGXUAN: "Experimental Study and Simulation Analysis of a Closed Brayton Cycle Under Variable Working Conditions", JOURNAL OF CHINESE SOCIETY OF POWER ENGINEERING, CN, vol. 39, no. 12, 31 December 2019 (2019-12-31), CN, pages 1027 - 1034, XP009551732, ISSN: 1674-7607 *

Also Published As

Publication number Publication date
CN115014784A (zh) 2022-09-06

Similar Documents

Publication Publication Date Title
WO2018227976A1 (zh) 聚变反应堆的氦气实验回路装置
CN108918175B (zh) 一种热性能测试系统
CN106098122A (zh) 一种基于超临界二氧化碳布雷顿循环的核能发电系统
CN111595605B (zh) 一种压缩机和膨胀机综合实验系统
CN109752611A (zh) 一种闭式布雷顿循环发电系统模拟试验台
WO2023240859A1 (zh) 一种闭式布雷顿循环性能实验系统
CN111307479B (zh) 一种以蒸汽为工作介质的储热设备的性能测试系统
CN111413119B (zh) 一种适用于超临界二氧化碳布雷顿循环发电系统核心设备的性能试验平台
WO2013025319A1 (en) Backup nuclear reactor auxiliary power using decay heat
CN111610042B (zh) 一种高参数单原子工质设备的性能试验系统
CN112113717A (zh) 一种应用于低温环境的气瓶气密性测试装置及方法
Ming et al. Control strategies and transient characteristics of a 5MWth small modular supercritical CO2 Brayton-cycle reactor system
Wang et al. Development and verification of helium–xenon mixture cooled small reaction system
CN115274154B (zh) 小型氦氙冷却反应堆热工水力综合实验系统及方法
CN208208349U (zh) 基于一种驱动电机的氦冷自循环系统
JPH05203792A (ja) 発電所設備及びその運転法
CN211507135U (zh) 一种高温气冷堆核电站一回路热试系统
CN109944649A (zh) 一种自深度冷却动力循环方法及系统
CN213209396U (zh) 一种应用于低温环境的气瓶气密性测试装置
CN105756727B (zh) 一种用于燃气轮机试验台的综合气源系统
CN210981752U (zh) 一种混合式间冷压缩机实验系统
CN209875313U (zh) 集成超临界二氧化碳循环与氨吸收制冷的发电系统
CN109727689B (zh) 一种模拟氦气风机驱动电机工作环境的环路系统
Seo et al. Development of a 250-kWe class supercritical carbon dioxide rankine cycle power generation system and its core components
CN116792668B (zh) 面向液氢流量计量的高集成化的双层真空绝热冷箱结构

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22946531

Country of ref document: EP

Kind code of ref document: A1