WO2023240844A1 - 一种高效同步机的电磁暂态建模方法、系统及设备 - Google Patents

一种高效同步机的电磁暂态建模方法、系统及设备 Download PDF

Info

Publication number
WO2023240844A1
WO2023240844A1 PCT/CN2022/122582 CN2022122582W WO2023240844A1 WO 2023240844 A1 WO2023240844 A1 WO 2023240844A1 CN 2022122582 W CN2022122582 W CN 2022122582W WO 2023240844 A1 WO2023240844 A1 WO 2023240844A1
Authority
WO
WIPO (PCT)
Prior art keywords
current
component
synchronous machine
rotor
matrix
Prior art date
Application number
PCT/CN2022/122582
Other languages
English (en)
French (fr)
Inventor
苏寅生
吴小珊
涂思嘉
姚海成
李豹
赵利刚
周挺辉
高琴
黄冠标
甄鸿越
徐原
王长香
毛振宇
牟雪鹏
Original Assignee
南方电网科学研究院有限责任公司
中国南方电网有限责任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南方电网科学研究院有限责任公司, 中国南方电网有限责任公司 filed Critical 南方电网科学研究院有限责任公司
Publication of WO2023240844A1 publication Critical patent/WO2023240844A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/14Estimation or adaptation of machine parameters, e.g. flux, current or voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/14Estimation or adaptation of machine parameters, e.g. flux, current or voltage
    • H02P21/18Estimation of position or speed
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/22Current control, e.g. using a current control loop
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P25/00Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details
    • H02P25/02Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the kind of motor
    • H02P25/022Synchronous motors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/34Modelling or simulation for control purposes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/60Arrangements for transfer of electric power between AC networks or generators via a high voltage DC link [HVCD]

Definitions

  • the present invention relates to the field of electromagnetic transient technology, and in particular to an electromagnetic transient modeling method, system and equipment for a high-efficiency synchronous machine.
  • the rotating electrical machine's efficient modeling and simulation is crucial to the accuracy and efficiency of the electromagnetic transient simulation of the entire power system, especially the large-scale integration of new energy into the power system.
  • rotating motor models in existing electromagnetic transient simulation software mostly use the dq0 model. Due to the prediction and correction method of electrical quantities, the dq0 model has accumulated errors. If a larger simulation step size is used, it will easily lead to accuracy problems.
  • Embodiments of the present invention provide an electromagnetic transient modeling method, system and equipment for high-efficiency synchronous machines, which are used to solve the problem of accumulated errors and large simulation steps caused by the dq0 model used in the rotating motor model in the existing electromagnetic transient simulation software. Technical problems with low simulation accuracy.
  • An electromagnetic transient modeling method for high-efficiency synchronous machines including the following steps:
  • step S6 Compare the second current q component, the second current d component, the second rotor angular velocity, and the second rotor angle with the corresponding first current q component, the first current d respectively.
  • the components, the first rotor angular velocity, and the first rotor angle are calculated to obtain corresponding error absolute values; if all error absolute values are less than the error allowable value, return to step S1.
  • the electromagnetic transient modeling method of the high-efficiency synchronous machine includes: if the absolute value of any one of the errors is not less than the error allowable value, return to step S4.
  • the mechanical system equation is:
  • p is the number of poles of the synchronous machine
  • ⁇ q is the q component of the stator flux linkage
  • ⁇ d is the d component of the stator flux linkage
  • J is the moment of inertia of the synchronous machine
  • D is the viscosity and air friction damping coefficient of the synchronous machine
  • T is the mechanical torque of the synchronous machine
  • is the second rotor angular speed
  • is the second rotor angle
  • t is the simulation time.
  • the first Norton circuit of the analog synchronous machine is determined according to the first current q component and the first current d component; the first Norton circuit is converted from the dq0 quantity into the second abc phasor through coordinate transformation.
  • Norton circuits include:
  • stator and rotor voltage equations of the synchronous machine use the implicit trapezoidal integration method to perform discrete processing according to the stator and rotor voltage equations, and obtain the first transformation equation;
  • the first Norton circuit is:
  • R ave (R d +R q )/2;
  • the phasor coordinate transformation formula is:
  • the voltage parameters of the source matrix, i d, source is the first current d value of the first Norton circuit, i q, source is the second current q value of the first Norton circuit, i 0, source is the third current d value of the first Norton circuit Current 0 value, ⁇ 1 is the first rotor angle, i a, source is the first current of the a-phase current source of the second Norton circuit, i b, source is the second current of the b-phase current source of the second Norton circuit, i c , source is the third current of the c-phase current source of the second Norton circuit.
  • determining the second current q component, the second current d component and the rotor current of the armature current of the synchronous machine according to the three-phase voltage, and determining the stator flux d component and the stator flux q component of the synchronous machine include:
  • the second current q component and the second current d component of the synchronous machine armature current are calculated through the armature current calculation formula
  • the rotor current of the synchronous machine is calculated through the rotor current calculation formula
  • the rotor current calculation formula is:
  • ⁇ 1 is the first rotor angle
  • v a is the a-phase voltage of the three-phase voltage
  • v b is the b-phase voltage of the three-phase voltage
  • v c is the c-phase voltage of the three-phase voltage
  • v d is The first voltage d component of the dq0 axis voltage component
  • v q is the second voltage q component of the dq0 axis voltage component
  • v 0 is the third voltage 0 component of the dq0 axis voltage component
  • ⁇ d is the stator flux linkage d component
  • ⁇ q is the q component of the stator flux linkage.
  • the parameter data of the synchronous machine includes the self-inductance L d of the direct-axis armature winding of the synchronous machine, the mutual inductance M df between the direct-axis armature winding and the excitation winding, and the mutual inductance D between the direct-axis armature winding and the direct-axis damping winding.
  • the equivalent resistance matrix in the second Norton circuit is inverted to obtain the equivalent conductance matrix, and the equivalent conductance matrix is input into the network conductance matrix for solution.
  • This application also provides an electromagnetic transient modeling system for high-efficiency synchronous machines, including: a prediction data module, a first processing module, a first calculation and solution module, a second processing module, a second calculation and solution module, and a judgment module;
  • the prediction data module is used to predict the first rotor angular velocity, the first rotor angle, the first current q component and the first current d component of the armature current of the synchronous machine at a certain moment by using the linear extrapolation method;
  • the first processing module is used to determine the first Norton circuit of the analog synchronous machine according to the first current q component and the first current d component; convert the first Norton circuit from dq0 quantity to The second Norton circuit of abc phasor;
  • the first calculation and solution module is used to invert the equivalent resistance matrix in the second Norton circuit to obtain an equivalent conductance matrix, and input the equivalent conductance matrix into the network conductance matrix for solution to obtain the three-phase synchronous machine port Voltage;
  • the second processing module is used to determine the second current q component, the second current d component and the rotor current of the armature current of the synchronous machine according to the three-phase voltage, and determine the stator flux linkage d component and the stator flux linkage of the synchronous machine. q component;
  • the second calculation and solving module is used to solve the mechanical system equation through the second current q component, the second current d component, the stator flux linkage d component and the stator flux linkage q component to obtain The second rotor angular speed and second rotor angle of the synchronous machine;
  • the determination module is used to compare the second current q component, the second current d component, the second rotor angular velocity, and the second rotor angle with the corresponding first current q component, the second current q component, and the second rotor angle.
  • the first current d component, the first rotor angular velocity, and the first rotor angle are calculated to obtain the corresponding error absolute value; if all error absolute values are less than the error allowable value, the second rotor angular velocity sum of the synchronous machine is output. Second rotor angle.
  • the mechanical system equation is:
  • p is the number of poles of the synchronous machine
  • ⁇ q is the q component of the stator flux linkage
  • ⁇ d is the d component of the stator flux linkage
  • J is the moment of inertia of the synchronous machine
  • D is the viscosity and air friction damping coefficient of the synchronous machine
  • T is the mechanical torque of the synchronous machine
  • is the second rotor angular speed
  • is the second rotor angle
  • t is the simulation time.
  • the conversion submodule is used to convert the three-phase voltage using Parker transformation to obtain the dq0 axis voltage component corresponding to the three-phase voltage;
  • the first calculation sub-module is used to calculate the second current q component and the second current q component of the synchronous machine armature current through the armature current calculation formula according to the matrix parameters of the Thevenin equation on the stator side and the dq0 axis voltage component. d component of current;
  • the second calculation sub-module is used to calculate the rotor current calculation formula of the synchronous machine based on the parameter data of the synchronous machine, the dq0 axis voltage component, the second current q component and the second current d component. rotor current;
  • the third calculation sub-module is used to calculate the synchronous machine through the stator flux dq component calculation formula based on the parameter data of the synchronous machine, the second current q component, the second current d component and the rotor current.
  • the armature current calculation formula is:
  • R ave (R d +R q )/2;
  • the rotor current calculation formula is:
  • ⁇ 1 is the first rotor angle
  • v a is the a-phase voltage of the three-phase voltage
  • v b is the b-phase voltage of the three-phase voltage
  • v c is the c-phase voltage of the three-phase voltage
  • v d is The first voltage d component of the dq0 axis voltage component
  • v q is the second voltage q component of the dq0 axis voltage component
  • v 0 is the third voltage 0 component of the dq0 axis voltage component
  • ⁇ d is the stator flux linkage d component
  • ⁇ q is the q component of the stator flux linkage.
  • the parameter data of the synchronous machine includes the self-inductance L d of the direct-axis armature winding of the synchronous machine, the mutual inductance M df between the direct-axis armature winding and the excitation winding, and the mutual inductance D between the direct-axis armature winding and the direct-axis damping winding.
  • This application also provides a terminal device, including a processor and a memory;
  • the memory is used to store program code and transmit the program code to the processor
  • the processor is configured to execute the electromagnetic transient modeling method of a high-efficiency synchronous machine according to the instructions in the program code.
  • the electromagnetic transient modeling method, system and equipment for high-efficiency synchronous machines include the following steps: S1. Use linear extrapolation method Predict the first rotor angular velocity, the first rotor angle, the first current q component and the first current d component of the armature current of the synchronous machine at a certain moment; S2. Determine simulated synchronization based on the first current q component and the first current d component.
  • the first Norton circuit of the machine the second Norton circuit that converts the first Norton circuit from the dq0 quantity to the abc phasor through coordinate transformation; S3.
  • the electromagnetic transient modeling method of the high-efficiency synchronous machine establishes the first Norton model of the simulated synchronous machine by predicting the first rotor angular velocity, the first rotor angle, the first current q component and the first current d component of the armature current.
  • the three-phase voltage at the synchronous machine port is obtained; based on the three-phase voltage, the second current q component, the second current d component, and the second rotor angular velocity are obtained and the second rotor angle.
  • the error-controlled iterative solution is used to determine the electromagnetic transient simulation calculation results of the synchronous machine. This not only avoids the historical and current quantities of the synchronous machine rotation potential, but also improves the accuracy of the simulation calculation results.
  • the calculation results can reach the same level.
  • the calculation efficiency of the dq0 model can be maintained, so that the electromagnetic transient modeling method of the high-efficiency synchronous machine has high simulation accuracy and fast calculation efficiency.
  • the electromagnetic transient modeling method of the high-efficiency synchronous machine can be suitable for The development of power system electromagnetic transient simulation software for actual engineering calculations solves the technical problems of low simulation accuracy caused by the dq0 model of the rotating motor model in the existing electromagnetic transient simulation software, which has accumulated errors and long simulation steps.
  • Figure 1 is a step flow chart of the electromagnetic transient modeling method of a high-efficiency synchronous machine according to an embodiment of the present application
  • Figure 2 is a framework diagram of an electromagnetic transient modeling system for a high-efficiency synchronous machine according to an embodiment of the present application.
  • Embodiments of the present application provide an electromagnetic transient modeling method, system and equipment for high-efficiency synchronous machines, which are used to solve the problem of accumulated errors and large simulation steps in existing electromagnetic transient simulation software using the dq0 model for the rotating motor model. Technical problems with low simulation accuracy.
  • this embodiment of the present application provides an electromagnetic transient modeling method for high-efficiency synchronous machines, which includes the following steps:
  • a linear extrapolation method is used to predict the first current q component and the first current d component of the synchronous machine armature current at a certain time.
  • the main purpose is to process the first current q component and the first current d component predicted in step S1 to construct the equivalent first Norton circuit of the synchronous machine, thereby obtaining the situation of the synchronous machine when the equivalent resistance is connected in parallel with the current source.
  • the first current d value, the second current q value and the third current 0 value of the first Norton circuit are shown below. Then, the first current d value, the second current q value and the third current 0 value are converted from the dq0 quantity into the first current, the second current and the third current of the abc vector in the second Norton circuit.
  • the second current q component, the second current d component and the rotor current of the synchronous machine armature current are calculated through Parker transformation, and the synchronization is determined.
  • p is the number of poles of the synchronous machine
  • ⁇ q is the q component of the stator flux linkage
  • ⁇ d is the d component of the stator flux linkage
  • J is the moment of inertia of the synchronous machine
  • D is the viscosity and air friction damping coefficient of the synchronous machine
  • T is the mechanical torque of the synchronous machine
  • is the second rotor angular speed
  • is the second rotor angle
  • t is the simulation time.
  • the second current q component, the second current d component, the second rotor angular velocity, and the second rotor angle calculated in steps S4 and S5 are respectively combined with the first current q component, the first current d component, and the predicted first current q component in step S1.
  • the first rotor angular velocity and the first rotor angle are processed correspondingly to obtain the corresponding error absolute value. Then it is judged whether all the error absolute values are less than the error allowable value. If so, return to step S1 to perform the next synchronous machine electromagnetic transient. Modeling. If not, the absolute value of any error is not less than the allowable error value, and returns to step S4 to recalculate the second current q component, the second current d component, the second rotor angular velocity, and the second rotor angle.
  • This application provides an electromagnetic transient modeling method for a high-efficiency synchronous machine, which includes the following steps: S1. Use the linear extrapolation method to predict the first rotor angular velocity, first rotor angle, and armature current of the synchronous machine at a certain moment. A current q component and a first current d component; S2. Determine the first Norton circuit of the analog synchronous machine according to the first current q component and the first current d component; convert the first Norton circuit from dq0 to The second Norton circuit of abc phasor; S3. Invert the equivalent resistance matrix in the second Norton circuit to obtain the equivalent conductance matrix, and input the equivalent conductance matrix into the network conductance matrix for solution to obtain the three-phase voltage at the synchronous machine port ; S4.
  • the second current q component , the second current d component, the second rotor angular velocity, and the second rotor angle are respectively calculated with the corresponding first current q component, the first current d component, the first rotor angular velocity, and the first rotor angle to obtain the corresponding error absolute value; if The absolute values of all errors are less than the allowable error value, and return to step S1.
  • the electromagnetic transient modeling method of the high-efficiency synchronous machine establishes the first Norton model of the simulated synchronous machine by predicting the first rotor angular velocity, the first rotor angle, the first current q component and the first current d component of the armature current.
  • the electromagnetic transient modeling method of the high-efficiency synchronous machine can be suitable for The development of power system electromagnetic transient simulation software for actual engineering calculations solves the technical problems of low simulation accuracy caused by the dq0 model of the rotating motor model in the existing electromagnetic transient simulation software, which has accumulated errors and long simulation steps.
  • the first Norton circuit of the simulated synchronous machine is determined according to the first current q component and the first current d component; the first Norton circuit is converted from the dq0 quantity into the second abc phasor through coordinate transformation.
  • Norton circuits include:
  • stator and rotor voltage equations of the synchronous machine use the implicit trapezoidal integration method to perform discrete processing according to the stator and rotor voltage equations, and obtain the first transformation equation;
  • the phasor coordinate transformation formula is used to convert the first Norton circuit from dq0 quantity to the second Norton circuit of abc phasor.
  • the first current d value, the second current q value and the third current 0 value are determined according to the first Norton circuit.
  • the first current of the a-phase current source, the second current of the b-phase current source and the third current of the c-phase current source are determined according to the second Norton circuit.
  • the Thevenin equation on the stator side is that the resistance matrix is a constant symmetric matrix.
  • the first Norton circuit is:
  • R ave (R d +R q )/2;
  • the phasor coordinate transformation formula is:
  • the first current d component is the first current q component
  • R d , R q , and R 0 are all the resistance parameters of the resistance matrix in the Thevenin equation on the stator side
  • ed , e q , and e 0 are all the voltages in the Thevenin equation on the stator side.
  • the voltage parameters of the source matrix, i d, source is the first current d value of the first Norton circuit, i q, source is the second current q value of the first Norton circuit, i 0, source is the third current d value of the first Norton circuit Current 0 value, ⁇ 1 is the first rotor angle, i a, source is the first current of the a-phase current source of the second Norton circuit, i b, source is the second current of the b-phase current source of the second Norton circuit, i c , source is the third current of the c-phase current source of the second Norton circuit.
  • stator and rotor voltage equations and flux linkage equations of the synchronous machine are obtained, and the stator and rotor voltage equations are discretized using the implicit trapezoidal integration method to obtain the first transformation equation; the first transformation equation is subjected to Parker The rotor variables are transformed and eliminated, and the dq axis is processed by average resistance to obtain the Thevenin equation on the stator side.
  • stator and rotor voltage equations are:
  • the first transformation equation is:
  • the Thevenin equation on the stator side is:
  • stator voltage, current, and flux linkage phase domain matrices of the synchronous machine phase domain matrix respectively
  • v r , i r , and ⁇ r are respectively the rotor voltage, current, and flux linkage matrices of the synchronous machine's flux linkage matrix
  • R s and R r are respectively are the stator resistance matrix and rotor resistance of the synchronous machine
  • L( ⁇ 1 ) is the inductance related to the first rotor angle in the synchronous machine
  • L ss and L rr are the stator self-inductance and rotor self-inductance in the self-inductance matrix of the synchronous machine respectively.
  • L sr and L rs are the stator mutual inductance and rotor mutual inductance in the inductance matrix of the synchronous machine respectively
  • k is 2/ ⁇ t
  • the variables with ⁇ are the values of the previous time step of the variable, that is, historical quantities
  • R dq0 , e dq0 are respectively the resistance matrix and the series-connected voltage source matrix in the Thevenin equation on the stator side.
  • middle Obtained directly from the history of network solutions, and
  • the historical quantities of the current and flux linkage dq0 variables are obtained through Parker transformation, and v r adopts the value of the previous moment.
  • the first transformation equation is subjected to Parker transformation to obtain the second transformation equation, and then the rotor variables in the second transformation equation are eliminated to obtain the Thevenin equation on the stator side.
  • stator voltage dq0 matrix and stator current dq0 matrix of the synchronous machine respectively is the stator self-inductance dq0 matrix of the synchronous machine, They are the stator and rotor mutual inductance dq0 matrix and the rotor mutual inductance dq0 matrix of the synchronous machine respectively.
  • the Thevenin equation on the stator side obtained above is under a dq0 model.
  • the dq axis is used Averaging the resistance, we obtain the modified Thevenin equation transformed to the stator side.
  • the converted second Norton circuit is:
  • the second current q component, the second current d component and the rotor current of the armature current of the synchronous machine are determined according to the three-phase voltage, and the stator flux d component and the stator flux q component of the synchronous machine are determined include:
  • the second current q component and the second current d component of the synchronous machine armature current are calculated through the armature current calculation formula
  • the rotor current of the synchronous machine is calculated through the rotor current calculation formula
  • the second current q component, the second current d component and the rotor current, the stator flux d component and the stator flux q component of the synchronous machine are calculated through the stator flux dq component calculation formula.
  • the three-phase voltage includes a-phase voltage, b-phase voltage and c-phase voltage
  • the dq0-axis voltage component includes the first voltage d component, the second voltage q component and the third voltage 0 component.
  • the Parker transformation is:
  • the armature current calculation formula is:
  • R ave (R d +R q )/2;
  • the rotor current calculation formula is:
  • ⁇ 1 is the first rotor angle
  • v a is the a-phase voltage of the three-phase voltage
  • v b is the b-phase voltage of the three-phase voltage
  • v c is the c-phase voltage of the three-phase voltage
  • v d is The first voltage d component of the dq0 axis voltage component
  • v q is the second voltage q component of the dq0 axis voltage component
  • v 0 is the third voltage 0 component of the dq0 axis voltage component
  • ⁇ d is the stator flux linkage d component
  • ⁇ q is the q component of the stator flux linkage.
  • the parameter data of the synchronous machine includes the self-inductance L d of the direct-axis armature winding of the synchronous machine, the mutual inductance M df between the direct-axis armature winding and the excitation winding, and the mutual inductance D between the direct-axis armature winding and the direct-axis damping winding.
  • step S3 the equivalent resistance matrix R equiv is constructed according to the Thevenin equation on the stator side.
  • the electromagnetic transient modeling method of the high-efficiency synchronous machine obtains by inverting the equivalent resistance matrix.
  • the equivalent conductance matrix, and before the simulation time step cycle, input the first current, the second current, the third current and the equivalent conductance matrix into the network equation at once and solve the equation through the network to obtain the a-phase voltage, b-phase voltage and c-phase voltage.
  • R m (R 0 -R ave )/3.
  • Figure 2 is a framework diagram of an electromagnetic transient modeling system for a high-efficiency synchronous machine according to an embodiment of the present application.
  • this application also provides an electromagnetic transient modeling system for high-efficiency synchronous machines, including a prediction data module 10, a first processing module 20, a first calculation and solution module 30, a second processing module 40, a second Calculation and solution module 50 and judgment module 60;
  • the prediction data module 10 is used to predict the first rotor angular speed, the first rotor angle, the first current q component and the first current d component of the armature current of the synchronous machine at a certain moment by using the linear extrapolation method;
  • the first processing module 20 is used to determine the first Norton circuit of the analog synchronous machine based on the first current q component and the first current d component; convert the first Norton circuit from the dq0 quantity to the second Norton of abc phasor through coordinate transformation circuit;
  • the first calculation and solution module 30 is used to invert the equivalent resistance matrix in the second Norton circuit to obtain the equivalent conductance matrix, and input the equivalent conductance matrix into the network conductance matrix for solution to obtain the three-phase voltage at the synchronous machine port;
  • the second processing module 40 is used to determine the second current q component, the second current d component and the rotor current of the armature current of the synchronous machine according to the three-phase voltage, and determine the stator flux d component and the stator flux q component of the synchronous machine;
  • the second calculation and solving module 50 is used to solve the mechanical system equation through the second current q component, the second current d component, the stator flux linkage d component and the stator flux linkage q component to obtain the second rotor angular velocity and the second rotor angular velocity of the synchronous machine.
  • the judgment module 60 is used to compare the second current q component, the second current d component, the second rotor angular velocity, and the second rotor angle with the corresponding first current q component, the first current d component, the first rotor angular velocity, and the second rotor angle.
  • the first rotor angle is calculated to obtain the corresponding error absolute value; if all error absolute values are less than the error allowable value, the second rotor angular speed and second rotor angle of the synchronous machine are output.
  • p is the number of poles of the synchronous machine
  • ⁇ q is the q component of the stator flux linkage
  • ⁇ d is the d component of the stator flux linkage
  • J is the moment of inertia of the synchronous machine
  • D is the viscosity and air friction damping coefficient of the synchronous machine
  • T is the mechanical torque of the synchronous machine
  • is the second rotor angular speed
  • is the second rotor angle
  • t is the simulation time.
  • the second processing module 40 includes a conversion sub-module, a second calculation sub-module and a third calculation sub-module:
  • the conversion submodule is used to convert the three-phase voltage using Parker transformation to obtain the dq0 axis voltage component corresponding to the three-phase voltage;
  • the first calculation submodule is used to calculate the second current q component and the second current d component of the synchronous machine armature current through the armature current calculation formula based on the matrix parameters of the Thevenin equation on the stator side and the dq0 axis voltage component;
  • the second calculation submodule is used to calculate the rotor current of the synchronous machine through the rotor current calculation formula based on the parameter data of the synchronous machine, the dq0 axis voltage component, the second current q component and the second current d component;
  • the third calculation submodule is used to calculate the stator flux d component and the stator flux linkage d component of the synchronous machine through the stator flux dq component calculation formula based on the parameter data of the synchronous machine, the second current q component, the second current d component and the rotor current. q component of magnetic flux linkage;
  • the armature current calculation formula is:
  • R ave (R d +R q )/2;
  • the rotor current calculation formula is:
  • ⁇ 1 is the first rotor angle
  • v a is the a-phase voltage of the three-phase voltage
  • v b is the b-phase voltage of the three-phase voltage
  • v c is the c-phase voltage of the three-phase voltage
  • v d is The first voltage d component of the dq0 axis voltage component
  • v q is the second voltage q component of the dq0 axis voltage component
  • v 0 is the third voltage 0 component of the dq0 axis voltage component
  • ⁇ d is the stator flux linkage d component
  • ⁇ q is the q component of the stator flux linkage.
  • the parameter data of the synchronous machine includes the self-inductance L d of the direct-axis armature winding of the synchronous machine, the mutual inductance M df between the direct-axis armature winding and the excitation winding, and the mutual inductance D between the direct-axis armature winding and the direct-axis damping winding.
  • This application also provides a terminal device, including a processor and a memory;
  • Memory used to store program code and transmit the program code to the processor
  • a processor configured to execute the above-mentioned electromagnetic transient modeling method of a high-efficiency synchronous machine according to instructions in the program code.
  • the processor is configured to execute the steps in the above embodiment of the electromagnetic transient modeling method for a high-efficiency synchronous machine according to the instructions in the program code.
  • the processor executes the computer program, the functions of each module/unit in each of the above system/device embodiments are implemented.
  • a computer program can be divided into one or more modules/units, and one or more modules/units are stored in a memory and executed by a processor to complete the present application.
  • One or more modules/units may be a series of computer program instruction segments capable of completing specific functions. The instruction segments are used to describe the execution process of the computer program in the terminal device.
  • Terminal devices can be computing devices such as desktop computers, notebooks, PDAs, and cloud servers. Terminal devices may include, but are not limited to, processors and memories. Those skilled in the art can understand that this does not constitute a limitation on the terminal device. It may include more or fewer components than shown in the figure, or a combination of certain components, or different components. For example, the terminal device may also include input and output devices, Network access equipment, buses, etc.
  • the so-called processor can be a central processing unit (Central Processing Unit, CPU), or other general-purpose processor, digital signal processor (Digital Signal Processor, DSP), application specific integrated circuit (Application Specific Integrated Circuit, ASIC), off-the-shelf Programmable gate array (Field-Programmable Gate Array, FPGA) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, etc.
  • a general-purpose processor may be a microprocessor or the processor may be any conventional processor, etc.
  • the memory may be an internal storage unit of the terminal device, such as a hard disk or memory of the terminal device.
  • the memory can also be an external storage device of the terminal device, such as a plug-in hard drive equipped on the terminal device, a smart memory card (Smart Media Card, SMC), a secure digital (Secure Digital, SD) card, a flash memory card (Flash Card), etc.
  • the memory may also include both an internal storage unit of the terminal device and an external storage device.
  • Memory is used to store computer programs and other programs and data required by terminal devices.
  • the memory can also be used to temporarily store data that has been output or is to be output.
  • the disclosed systems, devices and methods can be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components may be combined or can be integrated into another system, or some features can be ignored, or not implemented.
  • the coupling or direct coupling or communication connection between each other shown or discussed may be through some interfaces, and the indirect coupling or communication connection of the devices or units may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in one place, or they may be distributed to multiple network units. Some or all of the units can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in various embodiments of the present invention can be integrated into one processing unit, or each unit can exist physically alone, or two or more units can be integrated into one unit.
  • the above integrated units can be implemented in the form of hardware or software functional units.
  • the integrated unit is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer-readable storage medium.
  • the technical solution of the present invention is essentially or contributes to the existing technology or all or part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium , including several instructions to cause a computer device (which can be a personal computer, a server, or a network device, etc.) to execute all or part of the steps of the method described in various embodiments of the present invention.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (ROM, Read-Only Memory), random access memory (RAM, Random Access Memory), magnetic disk or optical disk and other media that can store program code. .

Abstract

一种高效同步机的电磁暂态建模方法、系统及设备,该方法通过预测同步机的第一转子角速度、第一转子角、电枢电流的第一电流q分量和第一电流d分量经过建立模拟同步机的第一诺顿电路,通过将等值后的第二诺顿电路与网络电导矩阵同时求解,得到同步机端口的三相电压;根据三相电压进而得到第二电流q分量、第二电流d分量、第二转子角速度和第二转子角,采用误差控制迭代求解确定同步机电磁暂态仿真计算结果,不仅避免出现同步机旋转电势的历史量和当前量,提高了仿真计算结果的精度,计算的结果能在达到相域模型精度的基础上又能保持dq0模型的计算效率,能够适合用于工程实际计算的电力系统电磁暂态仿真。

Description

一种高效同步机的电磁暂态建模方法、系统及设备
本申请要求于2022年06月15日提交中国专利局、申请号为202210674165.1、发明名称为“一种高效同步机的电磁暂态建模方法、系统及设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及电磁暂态技术领域,尤其涉及一种高效同步机的电磁暂态建模方法、系统及设备。
背景技术
随着新能源、直流输电尤其柔性直流输电的快速推广应用,大电网电磁暂态仿真成为一种新的趋势。如何在保证仿真精度的基础上大幅度提高电磁暂态模型和算法的仿真效率是专家学者一直致力研究的课题。
旋转电机作为电磁暂态仿真中一项重要的电气元件,其高效建模仿真对于整个电力系统尤其新能源大规模接入电力系统电磁暂态仿真的精确度和效率至关重要。现有电磁暂态仿真软件中旋转电机模型为了保证仿真效率,多采用dq0模型,该dq0模型由于采用电气量的预报校正方法,存在累积误差,若采用较大的仿真步长容易导致精度问题。
发明内容
本发明实施例提供了一种高效同步机的电磁暂态建模方法、系统及设备,用于解决现有电磁暂态仿真软件中旋转电机模型采用dq0模型,存在累积误差、仿真步长大导致仿真精度低的技术问题。
为了实现上述目的,本发明实施例提供如下技术方案:
一种高效同步机的电磁暂态建模方法,包括以下步骤:
S1.采用线性外推法预测同步机某一时刻的第一转子角速度、第一转子角、电枢电流的第一电流q分量和第一电流d分量;
S2.根据所述第一电流q分量和所述第一电流d分量确定模拟同步机的第一诺顿电路;通过坐标变换将所述第一诺顿电路从dq0量转换为abc相 量的第二诺顿电路;
S3.将所述第二诺顿电路中等值电阻矩阵求逆得到等值电导矩阵,并将等值电导矩阵输入网络电导矩阵中进行求解,得到同步机端口的三相电压;
S4.根据所述三相电压确定同步机电枢电流的第二电流q分量、第二电流d分量和转子电流,以及确定同步机的定子磁链d分量和定子磁链q分量;
S5.通过所述第二电流q分量、所述第二电流d分量、所述定子磁链d分量和所述定子磁链q分量在机械系统方程中求解,得到同步机的第二转子角速度和第二转子角;
S6.将所述第二电流q分量、所述第二电流d分量、所述第二转子角速度、所述第二转子角分别与对应的所述第一电流q分量、所述第一电流d分量、所述第一转子角速度、所述第一转子角计算,得到对应的误差绝对值;若所有的误差绝对值均小于误差允许值,返回步骤S1。
优选地,该高效同步机的电磁暂态建模方法包括:若任意一个的所述误差绝对值不小于误差允许值,返回步骤S4。
优选地,所述机械系统方程为:
Figure PCTCN2022122582-appb-000001
Figure PCTCN2022122582-appb-000002
Figure PCTCN2022122582-appb-000003
式中,p为同步机的极数,λ q为定子磁链q分量,λ d为定子磁链d分量,
Figure PCTCN2022122582-appb-000004
为第二电流d分量,
Figure PCTCN2022122582-appb-000005
为第二电流q分量,J为同步机的转动惯量,D为同步机的粘滞和空气摩擦阻尼系数,T为同步机的机械转矩,ω为第二转子角速度,θ为第二转子角,t为仿真时间。
优选地,根据所述第一电流q分量和所述第一电流d分量确定模拟同步机的第一诺顿电路;通过坐标变换将所述第一诺顿电路从dq0量转换为abc相量的第二诺顿电路包括:
获取同步机的定子和转子电压方程,根据定子和转子电压方程采用隐 式梯形积分法进行离散处理,得到第一变换方程;
对所述第一变换方程进行派克变换、消去转子变量、dq轴采用平均电阻处理,得到定子侧的戴维南方程;
通过数学变换将所述定子侧的戴维南方程转换为模拟同步机的第一诺顿电路;
采用相量坐标变换公式将所述第一诺顿电路从dq0量转换为abc相量的第二诺顿电路;
其中,所述第一诺顿电路为:
Figure PCTCN2022122582-appb-000006
R ave=(R d+R q)/2;
Figure PCTCN2022122582-appb-000007
所述相量坐标变换公式为:
Figure PCTCN2022122582-appb-000008
式中,
Figure PCTCN2022122582-appb-000009
为第一电流d分量,
Figure PCTCN2022122582-appb-000010
为第一电流q分量,R d、R q、R 0均为定子侧的戴维南方程中电阻矩阵的电阻参数,e d、e q、e 0均为定子侧的戴维南方程中电压源矩阵的电压参数,i d,source为第一诺顿电路的第一电流d值,i q,source为第一诺顿电路的第二电流q值,i 0,source为第一诺顿电路的第三电流0值,θ 1为第一转子角,i a,source为第二诺顿电路a相电流源的第一电流,i b,source为第二诺顿电路b相电流源的第二电流,i c,source为第二诺顿电路c相电流源的第三电流。
优选地,根据所述三相电压确定同步机电枢电流的第二电流q分量、第二电流d分量和转子电流,以及确定同步机的定子磁链d分量和定子磁链q分量包括:
对所述三相电压采用派克变换转换得到与所述三相电压对应的dq0轴电压分量;
根据定子侧的戴维南方程的矩阵参数和所述dq0轴电压分量,通过电枢电流计算公式计算得到同步机电枢电流的第二电流q分量和第二电流d分量;
基于同步机的参数数据、所述dq0轴电压分量、所述第二电流q分量和所述第二电流d分量,通过转子电流计算公式计算得到同步机的转子电流;
基于同步机的参数数据、所述第二电流q分量、所述第二电流d分量以及所述转子电流,通过定子磁链dq分量计算公式计算得到同步机的定子磁链d分量和定子磁链q分量;
其中,所述派克变换为:
Figure PCTCN2022122582-appb-000011
所述电枢电流计算公式为:
Figure PCTCN2022122582-appb-000012
R ave=(R d+R q)/2;
Figure PCTCN2022122582-appb-000013
所述转子电流计算公式为:
Figure PCTCN2022122582-appb-000014
i r=[i f i D i g i Q] T
Figure PCTCN2022122582-appb-000015
Figure PCTCN2022122582-appb-000016
Figure PCTCN2022122582-appb-000017
Figure PCTCN2022122582-appb-000018
Figure PCTCN2022122582-appb-000019
所述定子磁链dq分量计算公式为:
Figure PCTCN2022122582-appb-000020
Figure PCTCN2022122582-appb-000021
式中,
Figure PCTCN2022122582-appb-000022
为第二电流d分量,
Figure PCTCN2022122582-appb-000023
为第二电流q分量,R d、R q、R 0均为定子侧的戴维南方程中电阻矩阵的电阻参数,e d、e q、e 0均为定子侧的戴维南方程中电压源矩阵的电压参数,θ 1为第一转子角,v a为三相电压的a相电压,v b为三相电压的b相电压,v c为三相电压的c相电压,v d为dq0轴电压分量的第一电压d分量,v q为dq0轴电压分量的第二电压q分量,v 0为dq0轴电压分量的第三电压0分量,λ d为定子磁链d分量,λ q为定子磁链q分量,同步机的参数数据包括同步机的直轴电枢绕组自感L d、直轴电枢绕组与励磁绕组互感M df、直轴电枢绕组与直轴阻尼绕组D互感M dD、交轴电枢绕组自感L q、交轴电枢绕组与交轴阻尼绕组g互感M qg、交轴电枢绕组与交轴阻尼绕组Q互感M qQ、励磁电流i f、直轴阻尼绕组D电流i D、交轴阻尼绕组g电流i g和交轴阻尼绕组Q电流i Q,i r为转子电流矩阵,
Figure PCTCN2022122582-appb-000024
为同步机的定子自感dq0矩阵,R s为同步机的定子电阻矩阵,k为2/Δt,
Figure PCTCN2022122582-appb-000025
为同步机的定转子互感dq0矩阵,
Figure PCTCN2022122582-appb-000026
Figure PCTCN2022122582-appb-000027
分别为上一时步的定子电流、定子电压和定子磁链相域矩阵。
优选地,将所述第二诺顿电路中等值电阻矩阵求逆得到等值电导矩阵,并将等值电导矩阵输入网络电导矩阵中进行求解,得到同步机端口的三相电压包括:在所述第二诺顿电路中等值电阻求逆,得到等值电导矩阵且在时步循环之前将所述等值电导矩阵输入网络电导矩阵中并通过网络求解方程进行求解,得到同步机端口的三相电压;其中,所述网络求解方程为YV=I,Y为网络电导矩阵,I为第二诺顿电路中电流组成的电流矩阵,V为求解的同步机端口的三相电压组成的电压矩阵。
本申请还提供一种高效同步机的电磁暂态建模系统,包括:预测数据模块、第一处理模块、第一计算求解模块、第二处理模块、第二计算求解模块和判断模块;
所述预测数据模块,用于采用线性外推法预测同步机某一时刻的第一转子角速度、第一转子角、电枢电流的第一电流q分量和第一电流d分量;
所述第一处理模块,用于根据所述第一电流q分量和所述第一电流d 分量确定模拟同步机的第一诺顿电路;通过坐标变换将所述第一诺顿电路从dq0量转换为abc相量的第二诺顿电路;
所述第一计算求解模块,用于将所述第二诺顿电路中等值电阻矩阵求逆得到等值电导矩阵,并将等值电导矩阵输入网络电导矩阵中进行求解,得到同步机端口的三相电压;
所述第二处理模块,用于根据所述三相电压确定同步机电枢电流的第二电流q分量、第二电流d分量和转子电流,以及确定同步机的定子磁链d分量和定子磁链q分量;
所述第二计算求解模块,用于通过所述第二电流q分量、所述第二电流d分量、所述定子磁链d分量和所述定子磁链q分量在机械系统方程中求解,得到同步机的第二转子角速度和第二转子角;
所述判断模块,用于将所述第二电流q分量、所述第二电流d分量、所述第二转子角速度、所述第二转子角分别与对应的所述第一电流q分量、所述第一电流d分量、所述第一转子角速度、所述第一转子角计算,得到对应的误差绝对值;若所有的误差绝对值均小于误差允许值,输出同步机的第二转子角速度和第二转子角。
优选地,所述机械系统方程为:
Figure PCTCN2022122582-appb-000028
Figure PCTCN2022122582-appb-000029
Figure PCTCN2022122582-appb-000030
式中,p为同步机的极数,λ q为定子磁链q分量,λ d为定子磁链d分量,
Figure PCTCN2022122582-appb-000031
为第二电流d分量,
Figure PCTCN2022122582-appb-000032
为第二电流q分量,J为同步机的转动惯量,D为同步机的粘滞和空气摩擦阻尼系数,T为同步机的机械转矩,ω为第二转子角速度,θ为第二转子角,t为仿真时间。
优选地,所述第二处理模块包括转换子模块、第一计算子模块、第二计算子模块和第三计算子模块;
所述转换子模块,用于对所述三相电压采用派克变换转换得到与所述 三相电压对应的dq0轴电压分量;
所述第一计算子模块,用于根据定子侧的戴维南方程的矩阵参数和所述dq0轴电压分量,通过电枢电流计算公式计算得到同步机电枢电流的第二电流q分量和第二电流d分量;
所述第二计算子模块,用于基于同步机的参数数据、所述dq0轴电压分量、所述第二电流q分量和所述第二电流d分量,通过转子电流计算公式计算得到同步机的转子电流;
所述第三计算子模块,用于基于同步机的参数数据、所述第二电流q分量、所述第二电流d分量以及所述转子电流,通过定子磁链dq分量计算公式计算得到同步机的定子磁链d分量和定子磁链q分量;
其中,所述派克变换为:
Figure PCTCN2022122582-appb-000033
所述电枢电流计算公式为:
Figure PCTCN2022122582-appb-000034
R ave=(R d+R q)/2;
Figure PCTCN2022122582-appb-000035
所述转子电流计算公式为:
Figure PCTCN2022122582-appb-000036
i r=[i f i D i g i Q] T
Figure PCTCN2022122582-appb-000037
Figure PCTCN2022122582-appb-000038
Figure PCTCN2022122582-appb-000039
Figure PCTCN2022122582-appb-000040
Figure PCTCN2022122582-appb-000041
所述定子磁链dq分量计算公式为:
Figure PCTCN2022122582-appb-000042
Figure PCTCN2022122582-appb-000043
式中,
Figure PCTCN2022122582-appb-000044
为第二电流d分量,
Figure PCTCN2022122582-appb-000045
为第二电流q分量,R d、R q、R 0均为定子侧的戴维南方程中电阻矩阵的电阻参数,e d、e q、e 0均为定子侧的戴维南方程中电压源矩阵的电压参数,θ 1为第一转子角,v a为三相电压的a相电压,v b为三相电压的b相电压,v c为三相电压的c相电压,v d为dq0轴电压分量的第一电压d分量,v q为dq0轴电压分量的第二电压q分量,v 0为dq0轴电压分量的第三电压0分量,λ d为定子磁链d分量,λ q为定子磁链q分量,同步机的参数数据包括同步机的直轴电枢绕组自感L d、直轴电枢绕组与励磁绕组互感M df、直轴电枢绕组与直轴阻尼绕组D互感M dD、交轴电枢绕组自感L q、交轴电枢绕组与交轴阻尼绕组g互感M qg、交轴电枢绕组与交轴阻尼绕组Q互感M qQ、励磁电流i f、直轴阻尼绕组D电流i D、交轴阻尼绕组g电流i g和交轴阻尼绕组Q电流i Q,i r为转子电流矩阵,
Figure PCTCN2022122582-appb-000046
为同步机的定子自感dq0矩阵,R s为同步机的定子电阻矩阵,k为2/Δt,
Figure PCTCN2022122582-appb-000047
为同步机的定转子互感dq0矩阵,
Figure PCTCN2022122582-appb-000048
Figure PCTCN2022122582-appb-000049
分别为上一时步的定子电流、定子电压和定子磁链相域矩阵。
本申请还提供一种终端设备,包括处理器以及存储器;
所述存储器,用于存储程序代码,并将所述程序代码传输给所述处理器;
所述处理器,用于根据所述程序代码中的指令执行上述所述的高效同步机的电磁暂态建模方法
从以上技术方案可以看出,本发明实施例具有以下优点:本申请实施例提供的高效同步机的电磁暂态建模方法、系统及设备,其方法包括以下步骤:S1.采用线性外推法预测同步机某一时刻的第一转子角速度、第一转子角、电枢电流的第一电流q分量和第一电流d分量;S2.根据第一电流q 分量和第一电流d分量确定模拟同步机的第一诺顿电路;通过坐标变换将所述第一诺顿电路从dq0量转换为abc相量的第二诺顿电路;S3.将第二诺顿电路中等值电阻矩阵求逆得到等值电导矩阵,并将等值电导矩阵输入网络电导矩阵中进行求解,得到同步机端口的三相电压;S4.根据三相电压确定同步机电枢电流的第二电流q分量、第二电流d分量和转子电流,以及确定同步机的定子磁链d分量和定子磁链q分量;S5.通过第二电流q分量、第二电流d分量、定子磁链d分量和定子磁链q分量在机械系统方程中求解,得到同步机的第二转子角速度和第二转子角;S6.将第二电流q分量、第二电流d分量、第二转子角速度、第二转子角分别与对应的第一电流q分量、第一电流d分量、第一转子角速度、第一转子角计算得到对应的误差绝对值;若所有的误差绝对值均小于误差允许值,返回步骤S1。该高效同步机的电磁暂态建模方法通过预测同步机的第一转子角速度、第一转子角、电枢电流的第一电流q分量和第一电流d分量经过建立模拟同步机的第一诺顿电路,通过将等值后的第二诺顿电路与网络电导矩阵同时求解,得到同步机端口的三相电压;根据三相电压进而得到第二电流q分量、第二电流d分量、第二转子角速度和第二转子角,采用误差控制迭代求解确定同步机电磁暂态仿真计算结果,不仅避免出现同步机旋转电势的历史量和当前量,提高了仿真计算结果的精度,计算的结果能在达到相域模型精度的基础上又能保持dq0模型的计算效率,从而使得该高效同步机的电磁暂态建模方法的仿真精度高、计算效率快,该高效同步机的电磁暂态建模方法能够适合用于工程实际计算的电力系统电磁暂态仿真软件开发,解决了现有电磁暂态仿真软件中旋转电机模型采用dq0模型,存在累积误差、仿真步长大导致仿真精度低的技术问题。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其它的 附图。
图1为本申请一实施例所述的高效同步机的电磁暂态建模方法的步骤流程图;
图2为本申请一实施例所述的高效同步机的电磁暂态建模系统的框架图。
具体实施方式
为使得本发明的发明目的、特征、优点能够更加的明显和易懂,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,下面所描述的实施例仅仅是本发明一部分实施例,而非全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其它实施例,都属于本发明保护的范围。
本申请实施例提供了一种高效同步机的电磁暂态建模方法、系统及设备,用于解决现有电磁暂态仿真软件中旋转电机模型采用dq0模型,存在累积误差、仿真步长大导致仿真精度低的技术问题。
实施例一:
图1为本申请一实施例所述的高效同步机的电磁暂态建模方法的步骤流程图。在本申请实施例中,以发电机这类同步机作为案例进行说明。
如图1所示,本申请实施例提供了一种高效同步机的电磁暂态建模方法,包括以下步骤:
S1.采用线性外推法预测同步机某一时刻的第一转子角速度、第一转子角、电枢电流的第一电流q分量和第一电流d分量。
在本申请实施例中,采用线性外推法预测同步机某一时刻的第一转子角速度为:ω 1(t)=2ω 1(t-Δt)-ω 1(t-2Δt),t为同步机某一时刻的仿真时间,Δt为仿真步长。之后通过梯形积分法对第一转子角速度进行处理,得到第一转子角。
需要说明的是,梯形积分法的表达式为:
Figure PCTCN2022122582-appb-000050
在本申请实施例中,采用线性外推法预测某一时刻同步机电枢电流的第一电流q分量和第一电流d分量。
需要说明的是,采用线性外推法预测某一时刻同步机电枢电流的第一电流d分量的表达式为:
Figure PCTCN2022122582-appb-000051
采用线性外推法预测某一时刻同步机电枢电流的第一电流q分量的表达式为:
Figure PCTCN2022122582-appb-000052
S2.根据第一电流q分量和第一电流d分量确定模拟同步机的第一诺顿电路;通过坐标变换将第一诺顿电路从dq0量转换为abc相量的第二诺顿电路。可以理解为对第一电流q分量和第一电流d分量进行处理,得到第一诺顿电路中的第一电流d值、第二电流q值和第三电流0值;对第一电流d值、第二电流值q和所述第三电流0值进行坐标变换,得到第二诺顿电路中abc相量的第一电流、第二电流和第三电流。
需要说明的是,主要是对步骤S1中预测的第一电流q分量和第一电流d分量进行处理,构建同步机的等值第一诺顿电路,从而得到同步机在等值电阻并联电流源情况下第一诺顿电路的第一电流d值、第二电流q值和第三电流0值。之后再将第一电流d值、第二电流q值和第三电流0值从dq0量转换为第二诺顿电路中abc向量的第一电流、第二电流和第三电流。
S3.将第二诺顿电路中等值电阻矩阵求逆得到等值电导矩阵,并将等值电导矩阵输入网络电导矩阵中进行求解,得到同步机端口的三相电压。可以理解为将第一电流、第二电流和第三电流输入网络电导矩阵中进行求解,得到与第一电流、第二电流和第三电流对应的同步机端口的三相电压,三相电压分别为a相电压、b相电压和c相电压。
需要说明的是,将第一电流、第二电流和第三电流输入网络电导矩阵中进行求解过程中包括:在时步循环之前,将第二诺顿电路中等值电阻矩阵求逆,得到等值电导矩阵,然后输入网络电导矩阵中并通过网络求解方程进行求解,得到同步机端口的三相电压;其中,网络求解方程为YV=I,Y为网络电导矩阵;I为整个网络的历史电流源,其中包含第二诺顿电路中电流组成的电流矩阵;V为整个网络待求节点的三相电压值,其中包含待 求解的同步机端口的三相电压组成的电压矩阵。
S4.根据三相电压确定同步机电枢电流的第二电流q分量、第二电流d分量和转子电流,以及确定同步机的定子磁链d分量和定子磁链q分量。可以理解为对a相电压、b相电压和c相电压进行处理,得到同步机电枢电流的第二电流q分量、第二电流d分量和转子电流,以及确定同步机的定子磁链d分量和定子磁链q分量。
需要说明的是,根据a相电压、b相电压和c相电压这三个数据通过派克变换后计算得到同步机电枢电流的第二电流q分量、第二电流d分量和转子电流,以及确定同步机的定子磁链d分量和定子磁链q分量。
S5.通过第二电流q分量、第二电流d分量、定子磁链d分量和定子磁链q分量在机械系统方程中求解,得到同步机的第二转子角速度和第二转子角。
需要说明的是,主要将步骤S4得到的第二电流q分量、第二电流d分量、定子磁链d分量和定子磁链q分量数据输入机械系统方程中,计算得到同步机的第二转子角速度和第二转子角。
在本申请实施例中,机械系统方程为
Figure PCTCN2022122582-appb-000053
Figure PCTCN2022122582-appb-000054
Figure PCTCN2022122582-appb-000055
式中,p为同步机的极数,λ q为定子磁链q分量,λ d为定子磁链d分量,
Figure PCTCN2022122582-appb-000056
为第二电流d分量,
Figure PCTCN2022122582-appb-000057
为第二电流q分量,J为同步机的转动惯量,D为同步机的粘滞和空气摩擦阻尼系数,T为同步机的机械转矩,ω为第二转子角速度,θ为第二转子角,t为仿真时间。其中,T为同步机的机械功率P 0与同步机的初始角速度ω s的比值,即是T=P 0s,也是同步机已知参数。
S6.将第二电流q分量、第二电流d分量、第二转子角速度、第二转子角分别与对应的第一电流q分量、第一电流d分量、第一转子角速度、第一转子角计算得到对应的误差绝对值;若所有的误差绝对值均小于误差允许值,返回步骤S1。
主要是将步骤S4和S5中计算得到第二电流q分量、第二电流d分量、第二转子角速度、第二转子角分别与步骤S1中预测的第一电流q分量、第一电流d分量、第一转子角速度、第一转子角对应作差处理,得到对应的误差绝对值,之后判断所有的误差绝对值是否均小于误差允许值,若是,则返回步骤S1,进行下一个同步机电磁暂态建模。若否,则任意一个的误差绝对值不小于误差允许值,返回步骤S4,重新计算第二电流q分量、第二电流d分量、第二转子角速度、第二转子角。
本申请提供的一种高效同步机的电磁暂态建模方法,包括以下步骤:S1.采用线性外推法预测同步机某一时刻的第一转子角速度、第一转子角、电枢电流的第一电流q分量和第一电流d分量;S2.根据第一电流q分量和第一电流d分量确定模拟同步机的第一诺顿电路;通过坐标变换将所述第一诺顿电路从dq0量转换为abc相量的第二诺顿电路;S3.将第二诺顿电路中等值电阻矩阵求逆得到等值电导矩阵,并将等值电导矩阵输入网络电导矩阵中进行求解,得到同步机端口的三相电压;S4.根据三相电压确定同步机电枢电流的第二电流q分量、第二电流d分量和转子电流,以及确定同步机的定子磁链d分量和定子磁链q分量;S5.通过第二电流q分量、第二电流d分量、定子磁链d分量和定子磁链q分量在机械系统方程中求解,得到同步机的第二转子角速度和第二转子角;S6.将第二电流q分量、第二电流d分量、第二转子角速度、第二转子角分别与对应的第一电流q分量、第一电流d分量、第一转子角速度、第一转子角计算得到对应的误差绝对值;若所有的误差绝对值均小于误差允许值,返回步骤S1。该高效同步机的电磁暂态建模方法通过预测同步机的第一转子角速度、第一转子角、电枢电流的第一电流q分量和第一电流d分量经过建立模拟同步机的第一诺顿电路,通过将等值后的第二诺顿电路与网络电导矩阵同时求解,得到同步机端口的三相电压;根据三相电压进而得到第二电流q分量、第二电流 d分量、第二转子角速度和第二转子角,采用误差控制迭代求解确定同步机电磁暂态仿真计算结果,不仅避免出现同步机旋转电势的历史量和当前量,提高了仿真计算结果的精度,计算的结果能在达到相域模型精度的基础上又能保持dq0模型的计算效率,从而使得该高效同步机的电磁暂态建模方法的仿真精度高、计算效率快,该高效同步机的电磁暂态建模方法能够适合用于工程实际计算的电力系统电磁暂态仿真软件开发,解决了现有电磁暂态仿真软件中旋转电机模型采用dq0模型,存在累积误差、仿真步长大导致仿真精度低的技术问题。
在本申请的一个实施例中,根据第一电流q分量和第一电流d分量确定模拟同步机的第一诺顿电路;通过坐标变换将第一诺顿电路从dq0量转换为abc相量的第二诺顿电路包括:
获取同步机的定子和转子电压方程,根据定子和转子电压方程采用隐式梯形积分法进行离散处理,得到第一变换方程;
对第一变换方程进行派克变换、消去转子变量、dq轴采用平均电阻处理,得到定子侧的戴维南方程;
通过数学变换将定子侧的戴维南方程转换为模拟同步机的第一诺顿电路;
采用相量坐标变换公式将第一诺顿电路从dq0量转换为abc相量的第二诺顿电路。其中,根据第一诺顿电路确定第一电流d值、第二电流q值和第三电流0值。根据第二诺顿电路确定a相电流源的第一电流、b相电流源的第二电流和c相电流源的第三电流。其中,定子侧的戴维南方程是电阻矩阵为常数对称矩阵。
在本申请实施例中,第一诺顿电路为:
Figure PCTCN2022122582-appb-000058
R ave=(R d+R q)/2;
Figure PCTCN2022122582-appb-000059
相量坐标变换公式为:
Figure PCTCN2022122582-appb-000060
式中,
Figure PCTCN2022122582-appb-000061
为第一电流d分量,
Figure PCTCN2022122582-appb-000062
为第一电流q分量,R d、R q、R 0均为定子侧的戴维南方程中电阻矩阵的电阻参数,e d、e q、e 0均为定子侧的戴维南方程中电压源矩阵的电压参数,i d,source为第一诺顿电路的第一电流d值,i q,source为第一诺顿电路的第二电流q值,i 0,source为第一诺顿电路的第三电流0值,θ 1为第一转子角,i a,source为第二诺顿电路a相电流源的第一电流,i b,source为第二诺顿电路b相电流源的第二电流,i c,source为第二诺顿电路c相电流源的第三电流。
在本申请实施例中,获取同步机的定子和转子电压方程和磁链方程并对定子和转子电压方程采用隐式梯形积分法进行离散处理,得到第一变换方程;对第一变换方程进行派克变换、消去转子变量、dq轴采用平均电阻处理,得到定子侧的戴维南方程。
需要说明的是,定子和转子电压方程为:
Figure PCTCN2022122582-appb-000063
磁链方程为:
Figure PCTCN2022122582-appb-000064
第一变换方程为:
Figure PCTCN2022122582-appb-000065
Figure PCTCN2022122582-appb-000066
Figure PCTCN2022122582-appb-000067
Figure PCTCN2022122582-appb-000068
定子侧的戴维南方程为:
Figure PCTCN2022122582-appb-000069
Figure PCTCN2022122582-appb-000070
Figure PCTCN2022122582-appb-000071
式中,
Figure PCTCN2022122582-appb-000072
分别为同步机相域矩阵的定子电压、电流、磁链相域矩阵,v r、i r、λ r分别为同步机磁链矩阵的转子电压、电流、磁链矩阵,R s、R r分别为同步机的定子电阻矩阵和转子电阻,L(θ 1)为同步机中与第一转子角相关的电感,L ss、L rr分别为同步机的自感矩阵中定子自电感和转子自电感,L sr、L rs分别为同步机的电感矩阵中定子互电感和转子互电感,k为2/Δt,带^的变量均为该变量上一时步的值,即历史量,R dq0、e dq0分别为定子侧的戴维南方程中电阻矩阵和串联的电压源矩阵。其中,
Figure PCTCN2022122582-appb-000073
Figure PCTCN2022122582-appb-000074
从网络解的历史量直接获得,
Figure PCTCN2022122582-appb-000075
Figure PCTCN2022122582-appb-000076
通过电流和磁链dq0变量的历史量通过派克变换求得,v r采用上一时刻的值。
在本申请实施例中,对第一变换方程进行派克变换得到第二变换方程,之后对第二变换方程中的转子变量消去,得到定子侧的戴维南方程。
需要说明的是,第二变换方程为:
Figure PCTCN2022122582-appb-000077
Figure PCTCN2022122582-appb-000078
式中,
Figure PCTCN2022122582-appb-000079
分别为同步机的定子电压dq0矩阵和定子电流dq0矩阵,
Figure PCTCN2022122582-appb-000080
为同步机的定子自感dq0矩阵,
Figure PCTCN2022122582-appb-000081
分别为同步机的定转子互感dq0矩阵和转子互感dq0矩阵。
在本申请实施例中,上述得到的定子侧的戴维南方程是在一个dq0模型下的,为了避免产生一个时变的非对称的3×3电阻性矩阵,提高计算精 度,在dq轴采用平均电阻,得到修改后的转换到定子侧的戴维南方程。转换后的第二诺顿电路为:
Figure PCTCN2022122582-appb-000082
在本申请的一个实施例中,根据三相电压确定同步机电枢电流的第二电流q分量、第二电流d分量和转子电流,以及确定同步机的定子磁链d分量和定子磁链q分量包括:
对三相电压采用派克变换转换得到与三相电压对应的dq0轴电压分量;
根据定子侧的戴维南方程的矩阵参数和dq0轴电压分量,通过电枢电流计算公式计算得到同步机电枢电流的第二电流q分量和第二电流d分量;
基于同步机的参数数据、dq0轴电压分量、第二电流q分量和第二电流d分量,通过转子电流计算公式计算得到同步机的转子电流;
基于同步机的参数数据、第二电流q分量、第二电流d分量以及转子电流,通过定子磁链dq分量计算公式计算得到同步机的定子磁链d分量和定子磁链q分量。其中,三相电压包括a相电压、b相电压和c相电压,dq0轴电压分量包括第一电压d分量、第二电压q分量和第三电压0分量。
在本申请实施例中,派克变换为:
Figure PCTCN2022122582-appb-000083
电枢电流计算公式为:
Figure PCTCN2022122582-appb-000084
R ave=(R d+R q)/2;
Figure PCTCN2022122582-appb-000085
转子电流计算公式为:
Figure PCTCN2022122582-appb-000086
i r=[i f i D i g i Q] T
Figure PCTCN2022122582-appb-000087
Figure PCTCN2022122582-appb-000088
Figure PCTCN2022122582-appb-000089
Figure PCTCN2022122582-appb-000090
Figure PCTCN2022122582-appb-000091
定子磁链dq分量计算公式为:
Figure PCTCN2022122582-appb-000092
Figure PCTCN2022122582-appb-000093
式中,
Figure PCTCN2022122582-appb-000094
为第二电流d分量,
Figure PCTCN2022122582-appb-000095
为第二电流q分量,R d、R q、R 0均为定子侧的戴维南方程中电阻矩阵的电阻参数,e d、e q、e 0均为定子侧的戴维南方程中电压源矩阵的电压参数,θ 1为第一转子角,v a为三相电压的a相电压,v b为三相电压的b相电压,v c为三相电压的c相电压,v d为dq0轴电压分量的第一电压d分量,v q为dq0轴电压分量的第二电压q分量,v 0为dq0轴电压分量的第三电压0分量,λ d为定子磁链d分量,λ q为定子磁链q分量,同步机的参数数据包括同步机的直轴电枢绕组自感L d、直轴电枢绕组与励磁绕组互感M df、直轴电枢绕组与直轴阻尼绕组D互感M dD、交轴电枢绕组自感L q、交轴电枢绕组与交轴阻尼绕组g互感M qg、交轴电枢绕组与交轴阻尼绕组Q互感M qQ、励磁电流i f、直轴阻尼绕组D电流i D、交轴阻尼绕组g电流i g和交轴阻尼绕组Q电流i Q,i r为转子电流矩阵,
Figure PCTCN2022122582-appb-000096
为同步机的定子自感dq0矩阵,R s为同步机的定子电阻矩阵,k为2/Δt,
Figure PCTCN2022122582-appb-000097
为同步机的定转子互感dq0矩阵,
Figure PCTCN2022122582-appb-000098
Figure PCTCN2022122582-appb-000099
分别为上一时步的定子电流、定子电压和定子磁链相域矩阵。
在本申请实施例中,在步骤S3中,根据定子侧的戴维南方程构建等值电阻矩阵R equiv,该高效同步机的电磁暂态建模方法通过对该等值电阻矩阵 求逆,得到等值电导矩阵,且在仿真时步循环之前一次性将第一电流、第二电流和第三电流以及等值电导矩阵输入网络方程中并通过网络求解方程进行求解,得到a相电压、b相电压和c相电压。
需要说明的是,等值电阻矩阵为:
Figure PCTCN2022122582-appb-000100
R m=(R 0-R ave)/3。
R s=(R 0+2R ave)/3
实施例二:
图2为本申请一实施例所述的高效同步机的电磁暂态建模系统的框架图。
如图2所示,本申请还提供一种高效同步机的电磁暂态建模系统,包括预测数据模块10、第一处理模块20、第一计算求解模块30、第二处理模块40、第二计算求解模块50和判断模块60;
预测数据模块10,用于采用线性外推法预测同步机某一时刻的第一转子角速度、第一转子角、电枢电流的第一电流q分量和第一电流d分量;
第一处理模块20,用于根据第一电流q分量和第一电流d分量确定模拟同步机的第一诺顿电路;通过坐标变换将第一诺顿电路从dq0量转换为abc相量的第二诺顿电路;
第一计算求解模块30,用于将第二诺顿电路中等值电阻矩阵求逆得到等值电导矩阵,并将等值电导矩阵输入网络电导矩阵中进行求解,得到同步机端口的三相电压;
第二处理模块40,用于根据三相电压确定同步机电枢电流的第二电流q分量、第二电流d分量和转子电流,以及确定同步机的定子磁链d分量和定子磁链q分量;
第二计算求解模块50,用于通过第二电流q分量、第二电流d分量、定子磁链d分量和定子磁链q分量在机械系统方程中求解,得到同步机的第二转子角速度和第二转子角;
判断模块60,用于将第二电流q分量、第二电流d分量、第二转子角速度、第二转子角分别与对应的第一电流q分量、第一电流d分量、第一转子角速度、第一转子角计算得到对应的误差绝对值;若所有的误差绝对值均小于误差允许值,输出同步机的第二转子角速度和第二转子角。
在本申请实施例中,机械系统方程为:
Figure PCTCN2022122582-appb-000101
Figure PCTCN2022122582-appb-000102
Figure PCTCN2022122582-appb-000103
式中,p为同步机的极数,λ q为定子磁链q分量,λ d为定子磁链d分量,
Figure PCTCN2022122582-appb-000104
为第二电流d分量,
Figure PCTCN2022122582-appb-000105
为第二电流q分量,J为同步机的转动惯量,D为同步机的粘滞和空气摩擦阻尼系数,T为同步机的机械转矩,ω为第二转子角速度,θ为第二转子角,t为仿真时间。
在本申请实施例中,第二处理模块40包括转换子模块、、第二计算子模块和第三计算子模块:
转换子模块,用于对三相电压采用派克变换转换得到与三相电压对应的dq0轴电压分量;
第一计算子模块,用于根据定子侧的戴维南方程的矩阵参数和dq0轴电压分量,通过电枢电流计算公式计算得到同步机电枢电流的第二电流q分量和第二电流d分量;
第二计算子模块,用于基于同步机的参数数据、dq0轴电压分量、第二电流q分量和第二电流d分量,通过转子电流计算公式计算得到同步机的转子电流;
第三计算子模块,用于基于同步机的参数数据、第二电流q分量、第二电流d分量以及转子电流,通过定子磁链dq分量计算公式计算得到同步机的定子磁链d分量和定子磁链q分量;
其中,派克变换为:
Figure PCTCN2022122582-appb-000106
电枢电流计算公式为:
Figure PCTCN2022122582-appb-000107
R ave=(R d+R q)/2;
Figure PCTCN2022122582-appb-000108
转子电流计算公式为:
Figure PCTCN2022122582-appb-000109
i r=[i f i D i g i Q] T
Figure PCTCN2022122582-appb-000110
Figure PCTCN2022122582-appb-000111
Figure PCTCN2022122582-appb-000112
Figure PCTCN2022122582-appb-000113
Figure PCTCN2022122582-appb-000114
定子磁链dq分量计算公式为:
Figure PCTCN2022122582-appb-000115
Figure PCTCN2022122582-appb-000116
式中,
Figure PCTCN2022122582-appb-000117
为第二电流d分量,
Figure PCTCN2022122582-appb-000118
为第二电流q分量,R d、R q、R 0均为定子侧的戴维南方程中电阻矩阵的电阻参数,e d、e q、e 0均为定子侧的戴维南方程中电压源矩阵的电压参数,θ 1为第一转子角,v a为三相电压的a相电压,v b为三相电压的b相电压,v c为三相电压的c相电压,v d为dq0轴电压分量的第一电压d分量,v q为dq0轴电压分量的第二电压q分量,v 0为dq0轴电压分量的第三电压0分量,λ d为定子磁链d分量,λ q为定子磁链q分量,同步机的参数数据包括同步机的直轴电枢绕组自感L d、直轴电 枢绕组与励磁绕组互感M df、直轴电枢绕组与直轴阻尼绕组D互感M dD、交轴电枢绕组自感L q、交轴电枢绕组与交轴阻尼绕组g互感M qg、交轴电枢绕组与交轴阻尼绕组Q互感M qQ、励磁电流i f、直轴阻尼绕组D电流i D、交轴阻尼绕组g电流i g和交轴阻尼绕组Q电流i Q,i r为转子电流矩阵,
Figure PCTCN2022122582-appb-000119
为同步机的定子自感dq0矩阵,R s为同步机的定子电阻矩阵,k为2/Δt,
Figure PCTCN2022122582-appb-000120
为同步机的定转子互感dq0矩阵,
Figure PCTCN2022122582-appb-000121
Figure PCTCN2022122582-appb-000122
分别为上一时步的定子电流、定子电压和定子磁链相域矩阵。
需要说明的是,实施例二系统中模块的内容已在实施例一方法中步骤的内容详细阐述了,此处不再对实施例二系统中模块的内容进行详细阐述。
实施例三:
本申请还提供一种终端设备,包括处理器以及存储器;
存储器,用于存储程序代码,并将程序代码传输给处理器;
处理器,用于根据程序代码中的指令执行上述的高效同步机的电磁暂态建模方法。
需要说明的是,该高效同步机的电磁暂态建模方法已在实施例一中详细描述了,此处不作详细阐述。处理器用于根据所程序代码中的指令执行上述的一种高效同步机的电磁暂态建模方法实施例中的步骤。或者,处理器执行计算机程序时实现上述各系统/装置实施例中各模块/单元的功能。
示例性的,计算机程序可以被分割成一个或多个模块/单元,一个或者多个模块/单元被存储在存储器中,并由处理器执行,以完成本申请。一个或多个模块/单元可以是能够完成特定功能的一系列计算机程序指令段,该指令段用于描述计算机程序在终端设备中的执行过程。
终端设备可以是桌上型计算机、笔记本、掌上电脑及云端服务器等计算设备。终端设备可包括,但不仅限于,处理器、存储器。本领域技术人员可以理解,并不构成对终端设备的限定,可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件,例如终端设备还可以包括输入输出设备、网络接入设备、总线等。
所称处理器可以是中央处理单元(Central Processing Unit,CPU),还可以是其他通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程 门阵列(Field-Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
存储器可以是终端设备的内部存储单元,例如终端设备的硬盘或内存。存储器也可以是终端设备的外部存储设备,例如终端设备上配备的插接式硬盘,智能存储卡(Smart Media Card,SMC),安全数字(Secure Digital,SD)卡,闪存卡(Flash Card)等。进一步地,存储器还可以既包括终端设备的内部存储单元也包括外部存储设备。存储器用于存储计算机程序以及终端设备所需的其他程序和数据。存储器还可以用于暂时地存储已经输出或者将要输出的数据。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统,装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统,装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销 售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本发明各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。

Claims (10)

  1. 一种高效同步机的电磁暂态建模方法,其特征在于,包括以下步骤:
    S1.采用线性外推法预测同步机某一时刻的第一转子角速度、第一转子角、电枢电流的第一电流q分量和第一电流d分量;
    S2.根据所述第一电流q分量和所述第一电流d分量确定模拟同步机的第一诺顿电路;通过坐标变换将所述第一诺顿电路从dq0量转换为abc相量的第二诺顿电路;
    S3.将所述第二诺顿电路中等值电阻矩阵求逆得到等值电导矩阵,并将等值电导矩阵输入网络电导矩阵中进行求解,得到同步机端口的三相电压;
    S4.根据所述三相电压确定同步机电枢电流的第二电流q分量、第二电流d分量和转子电流,以及确定同步机的定子磁链d分量和定子磁链q分量;
    S5.通过所述第二电流q分量、所述第二电流d分量、所述定子磁链d分量和所述定子磁链q分量在机械系统方程中求解,得到同步机的第二转子角速度和第二转子角;
    S6.将所述第二电流q分量、所述第二电流d分量、所述第二转子角速度、所述第二转子角分别与对应的所述第一电流q分量、所述第一电流d分量、所述第一转子角速度、所述第一转子角计算,得到对应的误差绝对值;若所有的误差绝对值均小于误差允许值,返回步骤S1。
  2. 根据权利要求1所述的高效同步机的电磁暂态建模方法,其特征在于,包括:若任意一个的所述误差绝对值不小于误差允许值,返回步骤S4。
  3. 根据权利要求1所述的高效同步机的电磁暂态建模方法,其特征在于,所述机械系统方程为:
    Figure PCTCN2022122582-appb-100001
    Figure PCTCN2022122582-appb-100002
    Figure PCTCN2022122582-appb-100003
    式中,p为同步机的极数,λ q为定子磁链q分量,λ d为定子磁链d分 量,
    Figure PCTCN2022122582-appb-100004
    为第二电流d分量,
    Figure PCTCN2022122582-appb-100005
    为第二电流q分量,J为同步机的转动惯量,D为同步机的粘滞和空气摩擦阻尼系数,T为同步机的机械转矩,ω为第二转子角速度,θ为第二转子角,t为仿真时间。
  4. 根据权利要求1所述的高效同步机的电磁暂态建模方法,其特征在于,根据所述第一电流q分量和所述第一电流d分量确定模拟同步机的第一诺顿电路;通过坐标变换将所述第一诺顿电路从dq0量转换为abc相量的第二诺顿电路包括:
    获取同步机的定子和转子电压方程,根据定子和转子电压方程采用隐式梯形积分法进行离散处理,得到第一变换方程;
    对所述第一变换方程进行派克变换、消去转子变量、dq轴采用平均电阻处理,得到定子侧的戴维南方程;
    通过数学变换将所述定子侧的戴维南方程转换为模拟同步机的第一诺顿电路;
    采用相量坐标变换公式将所述第一诺顿电路从dq0量转换为abc相量的第二诺顿电路;
    其中,所述第一诺顿电路为:
    Figure PCTCN2022122582-appb-100006
    Figure PCTCN2022122582-appb-100007
    所述相量坐标变换公式为:
    Figure PCTCN2022122582-appb-100008
    式中,
    Figure PCTCN2022122582-appb-100009
    为第一电流d分量,
    Figure PCTCN2022122582-appb-100010
    为第一电流q分量,R d、R q、R 0均为定子侧的戴维南方程中电阻矩阵的电阻参数,e d、e q、e 0均为定子侧的戴维南方程中电压源矩阵的电压参数,i d,source为第一诺顿电路的第一电流d值, i q,source为第一诺顿电路的第二电流q值,i 0,source为第一诺顿电路的第三电流0值,θ 1为第一转子角,i a,source为第二诺顿电路a相电流源的第一电流,i b,source为第二诺顿电路b相电流源的第二电流,i c,source为第二诺顿电路c相电流源的第三电流。
  5. 根据权利要求1所述的高效同步机的电磁暂态建模方法,其特征在于,根据所述三相电压确定同步机电枢电流的第二电流q分量、第二电流d分量和转子电流,以及确定同步机的定子磁链d分量和定子磁链q分量包括:
    对所述三相电压采用派克变换转换得到与所述三相电压对应的dq0轴电压分量;
    根据定子侧的戴维南方程的矩阵参数和所述dq0轴电压分量,通过电枢电流计算公式计算得到同步机电枢电流的第二电流q分量和第二电流d分量;
    基于同步机的参数数据、所述dq0轴电压分量、所述第二电流q分量和所述第二电流d分量,通过转子电流计算公式计算得到同步机的转子电流;
    基于同步机的参数数据、所述第二电流q分量和所述第二电流d分量以及所述转子电流,通过定子磁链dq分量计算公式计算得到同步机的定子磁链d分量和定子磁链q分量;
    其中,所述派克变换为:
    Figure PCTCN2022122582-appb-100011
    所述电枢电流计算公式为:
    Figure PCTCN2022122582-appb-100012
    R ave=(R d+R q)/2;
    Figure PCTCN2022122582-appb-100013
    所述转子电流计算公式为:
    Figure PCTCN2022122582-appb-100014
    i r=[i f i D i g i Q] T
    Figure PCTCN2022122582-appb-100015
    Figure PCTCN2022122582-appb-100016
    Figure PCTCN2022122582-appb-100017
    Figure PCTCN2022122582-appb-100018
    Figure PCTCN2022122582-appb-100019
    所述定子磁链dq分量计算公式为:
    Figure PCTCN2022122582-appb-100020
    Figure PCTCN2022122582-appb-100021
    式中,
    Figure PCTCN2022122582-appb-100022
    为第二电流d分量,
    Figure PCTCN2022122582-appb-100023
    为第二电流q分量,R d、R q、R 0均为定子侧的戴维南方程中电阻矩阵的电阻参数,e d、e q、e 0均为定子侧的戴维南方程中电压源矩阵的电压参数,θ 1为第一转子角,v a为三相电压的a相电压,v b为三相电压的b相电压,v c为三相电压的c相电压,v d为dq0轴电压分量的第一电压d分量,v q为dq0轴电压分量的第二电压q分量,v 0为dq0轴电压分量的第三电压0分量,λ d为定子磁链d分量,λ q为定子磁链q分量,同步机的参数数据包括同步机的直轴电枢绕组自感L d、直轴电枢绕组与励磁绕组互感M df、直轴电枢绕组与直轴阻尼绕组D互感M dD、交轴电枢绕组自感L q、交轴电枢绕组与交轴阻尼绕组g互感M qg、交轴电枢绕组与交轴阻尼绕组Q互感M qQ、励磁电流i f、直轴阻尼绕组D电流i D、交轴阻尼绕组g电流i g和交轴阻尼绕组Q电流i Q,i r为转子电流矩阵,
    Figure PCTCN2022122582-appb-100024
    为同步机的定子自感dq0矩阵,R s为同步机的定子电阻矩阵,k为2/Δt,
    Figure PCTCN2022122582-appb-100025
    为同步机的定转子互感dq0矩阵,
    Figure PCTCN2022122582-appb-100026
    Figure PCTCN2022122582-appb-100027
    分别为上一时步的定子电流、定子电压和定子磁链相域矩阵。
  6. 根据权利要求1所述的高效同步机的电磁暂态建模方法,其特征在 于,将所述第二诺顿电路中等值电阻矩阵求逆得到等值电导矩阵,并将等值电导矩阵输入网络电导矩阵中进行求解,得到同步机端口的三相电压包括:在所述第二诺顿电路中等值电阻求逆,得到等值电导矩阵且在时步循环之前将所述等值电导矩阵输入网络电导矩阵中并通过网络求解方程进行求解,得到同步机端口的三相电压;其中,所述网络求解方程为YV=I,Y为网络电导矩阵,I为第二诺顿电路中电流组成的电流矩阵,V为求解的同步机端口的三相电压组成的电压矩阵。
  7. 一种高效同步机的电磁暂态建模系统,其特征在于,包括:预测数据模块、第一处理模块、第一计算求解模块、第二处理模块、第二计算求解模块和判断模块;
    所述预测数据模块,用于采用线性外推法预测同步机某一时刻的第一转子角速度、第一转子角、电枢电流的第一电流q分量和第一电流d分量;
    所述第一处理模块,用于根据所述第一电流q分量和所述第一电流d分量确定模拟同步机的第一诺顿电路;通过坐标变换将所述第一诺顿电路从dq0量转换为abc相量的第二诺顿电路;
    所述第一计算求解模块,用于将所述第二诺顿电路中等值电阻矩阵求逆得到等值电导矩阵,并将等值电导矩阵输入网络电导矩阵中进行求解,得到同步机端口的三相电压;
    所述第二处理模块,用于根据所述三相电压确定同步机电枢电流的第二电流q分量、第二电流d分量和转子电流,以及确定同步机的定子磁链d分量和定子磁链q分量;
    所述第二计算求解模块,用于通过所述第二电流q分量、所述第二电流d分量、所述定子磁链d分量和所述定子磁链q分量在机械系统方程中求解,得到同步机的第二转子角速度和第二转子角;
    所述判断模块,用于将所述第二电流q分量、所述第二电流d分量、所述第二转子角速度、所述第二转子角分别与对应的所述第一电流q分量、所述第一电流d分量、所述第一转子角速度、所述第一转子角计算,得到对应的误差绝对值;若所有的误差绝对值均小于误差允许值,输出同步机的第二转子角速度和第二转子角。
  8. 根据权利要求7所述的高效同步机的电磁暂态建模系统,其特征在于,所述机械系统方程为:
    Figure PCTCN2022122582-appb-100028
    Figure PCTCN2022122582-appb-100029
    Figure PCTCN2022122582-appb-100030
    式中,p为同步机的极数,λ q为定子磁链q分量,λ d为定子磁链d分量,
    Figure PCTCN2022122582-appb-100031
    为第二电流d分量,
    Figure PCTCN2022122582-appb-100032
    为第二电流q分量,J为同步机的转动惯量,D为同步机的粘滞和空气摩擦阻尼系数,T为同步机的机械转矩,ω为第二转子角速度,θ为第二转子角,t为仿真时间。
  9. 根据权利要求7所述的高效同步机的电磁暂态建模系统,其特征在于,所述第二处理模块包括转换子模块、第一计算子模块、第二计算子模块和第三计算子模块;
    所述转换子模块,用于对所述三相电压采用派克变换转换得到与所述三相电压对应的dq0轴电压分量;
    所述第一计算子模块,用于根据定子侧的戴维南方程的矩阵参数和所述dq0轴电压分量,通过电枢电流计算公式计算得到同步机电枢电流的第二电流q分量和第二电流d分量;
    所述第二计算子模块,用于基于同步机的参数数据、所述dq0轴电压分量、所述第二电流q分量和所述第二电流d分量,通过转子电流计算公式计算得到同步机的转子电流;
    所述第三计算子模块,用于基于同步机的参数数据、所述第二电流q分量、所述第二电流d分量以及所述转子电流,通过定子磁链dq分量计算公式计算得到同步机的定子磁链d分量和定子磁链q分量;
    其中,所述派克变换为:
    Figure PCTCN2022122582-appb-100033
    所述电枢电流计算公式为:
    Figure PCTCN2022122582-appb-100034
    R ave=(R d+R q)/2;
    Figure PCTCN2022122582-appb-100035
    所述转子电流计算公式为:
    Figure PCTCN2022122582-appb-100036
    i r=[i f i D i g i Q] T
    Figure PCTCN2022122582-appb-100037
    Figure PCTCN2022122582-appb-100038
    Figure PCTCN2022122582-appb-100039
    Figure PCTCN2022122582-appb-100040
    Figure PCTCN2022122582-appb-100041
    所述定子磁链dq分量计算公式为:
    Figure PCTCN2022122582-appb-100042
    Figure PCTCN2022122582-appb-100043
    式中,
    Figure PCTCN2022122582-appb-100044
    为第二电流d分量,
    Figure PCTCN2022122582-appb-100045
    为第二电流q分量,R d、R q、R 0均为定子侧的戴维南方程中电阻矩阵的电阻参数,e d、e q、e 0均为定子侧的戴维南方程中电压源矩阵的电压参数,θ 1为第一转子角,v a为三相电压的a相电压,v b为三相电压的b相电压,v c为三相电压的c相电压,v d为dq0轴电压分量的第一电压d分量,v q为dq0轴电压分量的第二电压q分量,v 0为dq0轴电压分量的第三电压0分量,λ d为定子磁链d分量,λ q为定子磁链q分量,同步机的参数数据包括同步机的直轴电枢绕组自感L d、直轴电枢绕组与励磁绕组互感M df、直轴电枢绕组与直轴阻尼绕组D互感M dD、交轴电枢绕组自感L q、交轴电枢绕组与交轴阻尼绕组g互感M qg、交轴电枢绕组与交轴阻尼绕组Q互感M qQ、励磁电流i f、直轴阻尼绕组D电流i D、交轴阻尼绕组g电流i g和交轴阻尼绕组Q电流i Q,i r为转子电流矩阵,
    Figure PCTCN2022122582-appb-100046
    为同步机的定子自感dq0矩阵,R s为同步机的定子电阻矩阵,k为2/Δt,
    Figure PCTCN2022122582-appb-100047
    为同步机的定转子互感dq0矩阵,
    Figure PCTCN2022122582-appb-100048
    Figure PCTCN2022122582-appb-100049
    分别为上一时步的定子电流、定子电压和定子磁链相域矩阵。
  10. 一种终端设备,其特征在于,包括处理器以及存储器;
    所述存储器,用于存储程序代码,并将所述程序代码传输给所述处理器;
    所述处理器,用于根据所述程序代码中的指令执行如权利要求1-6任意一项所述的高效同步机的电磁暂态建模方法。
PCT/CN2022/122582 2022-06-15 2022-09-29 一种高效同步机的电磁暂态建模方法、系统及设备 WO2023240844A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210674165.1A CN115021638A (zh) 2022-06-15 2022-06-15 一种高效同步机的电磁暂态建模方法、系统及设备
CN202210674165.1 2022-06-15

Publications (1)

Publication Number Publication Date
WO2023240844A1 true WO2023240844A1 (zh) 2023-12-21

Family

ID=83074208

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/122582 WO2023240844A1 (zh) 2022-06-15 2022-09-29 一种高效同步机的电磁暂态建模方法、系统及设备

Country Status (2)

Country Link
CN (1) CN115021638A (zh)
WO (1) WO2023240844A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115021638A (zh) * 2022-06-15 2022-09-06 南方电网科学研究院有限责任公司 一种高效同步机的电磁暂态建模方法、系统及设备
CN115528965B (zh) * 2022-11-27 2023-03-10 成都优霓沃斯科技有限公司 一种转子带阻尼条的永磁电机多阻尼回路电感计算方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104079228A (zh) * 2014-07-09 2014-10-01 国家电网公司 双馈异步电机的带阻尼的隐式梯形积分电磁暂态建模方法
CN109063408A (zh) * 2018-10-31 2018-12-21 邓宏伟 一种基于直算法的电磁机电暂态仿真算法
US20200185980A1 (en) * 2018-12-07 2020-06-11 Tsinghua University Method and device for improving efficiency of electromagnetic transients program phase domain synchronous machine model
CN111697889A (zh) * 2020-05-06 2020-09-22 南方电网科学研究院有限责任公司 一种基于时域变换的异步电动机仿真建模方法及装置
CN113435013A (zh) * 2021-06-07 2021-09-24 南方电网科学研究院有限责任公司 考虑多重事件发生的电磁暂态仿真方法、装置以及介质
CN113688540A (zh) * 2021-10-26 2021-11-23 国网湖北省电力有限公司经济技术研究院 一种永磁直驱型风力发电机组电磁暂态模型的构建方法
CN115021638A (zh) * 2022-06-15 2022-09-06 南方电网科学研究院有限责任公司 一种高效同步机的电磁暂态建模方法、系统及设备

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104079228A (zh) * 2014-07-09 2014-10-01 国家电网公司 双馈异步电机的带阻尼的隐式梯形积分电磁暂态建模方法
CN109063408A (zh) * 2018-10-31 2018-12-21 邓宏伟 一种基于直算法的电磁机电暂态仿真算法
US20200185980A1 (en) * 2018-12-07 2020-06-11 Tsinghua University Method and device for improving efficiency of electromagnetic transients program phase domain synchronous machine model
CN111697889A (zh) * 2020-05-06 2020-09-22 南方电网科学研究院有限责任公司 一种基于时域变换的异步电动机仿真建模方法及装置
CN113435013A (zh) * 2021-06-07 2021-09-24 南方电网科学研究院有限责任公司 考虑多重事件发生的电磁暂态仿真方法、装置以及介质
CN113688540A (zh) * 2021-10-26 2021-11-23 国网湖北省电力有限公司经济技术研究院 一种永磁直驱型风力发电机组电磁暂态模型的构建方法
CN115021638A (zh) * 2022-06-15 2022-09-06 南方电网科学研究院有限责任公司 一种高效同步机的电磁暂态建模方法、系统及设备

Also Published As

Publication number Publication date
CN115021638A (zh) 2022-09-06

Similar Documents

Publication Publication Date Title
WO2023240844A1 (zh) 一种高效同步机的电磁暂态建模方法、系统及设备
CN102609575B (zh) 一种基于隐式数值积分的电力系统暂态稳定仿真方法
WO2016188503A2 (zh) 一种适用于电磁暂态多时间尺度实时仿真接口的实现方法
CN103995734A (zh) 基于rtds的电力系统混合实时仿真系统及仿真方法
WO2021109861A1 (zh) 一种电机控制方法、装置、终端设备及存储介质
WO2023240824A1 (zh) 基于饱和效应的同步机电磁暂态建模方法、系统及设备
CN108959792B (zh) 一种同步电机的实时仿真系统及方法
CN112290841B (zh) 一种永磁同步电机控制方法、装置、电子设备及存储介质
CN109756167A (zh) 控制器母线电流的估算方法、控制器及汽车
CN111707938A (zh) 一种基于有限元反查表模型的电机模拟器
WO2022252369A1 (zh) 一种三相永磁同步电机的控制方法、装置、设备及介质
CN114244216A (zh) 一种永磁同步电机参数辨识方法、装置及系统
Marufuzzaman et al. Hardware approach of two way conversion of floating point to fixed point for current dq PI controller of FOC PMSM drive
CN111049444B (zh) 电机控制方法、装置及电子设备
CN114584026A (zh) 一种优化永磁同步电机参数鲁棒性的方法及相关设备
CN109756143B (zh) 一种三相四开关逆变器的容错控制方法及装置
CN113794222B (zh) 并网逆变器电流预测方法、装置、计算机设备和存储介质
CN111241659A (zh) 面贴式永磁同步电机硬件在环实时仿真方法及装置、终端
CN111049448A (zh) 双y移30度永磁同步电机硬件在环实时仿真方法及装置
WO2024012591A1 (zh) 发电机的电磁暂态分析方法、装置、设备及存储介质
CN111049446A (zh) 永磁同步电机硬件在环仿真方法及装置、存储介质和终端
CN114337431B (zh) 永磁同步电机磁链辨识方法、系统、介质及终端
WO2023124893A1 (zh) 基于神经网络的转矩估测方法、装置、设备及存储介质
CN111538559B (zh) 一种虚拟机迁移方法、装置、电子设备及其存储介质
CN111049445B (zh) 双y移30度永磁同步电机硬件在环实时仿真方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22946516

Country of ref document: EP

Kind code of ref document: A1