WO2023240775A1 - 一种利用中深层低温地能实现低温差多级发电系统及方法 - Google Patents

一种利用中深层低温地能实现低温差多级发电系统及方法 Download PDF

Info

Publication number
WO2023240775A1
WO2023240775A1 PCT/CN2022/110780 CN2022110780W WO2023240775A1 WO 2023240775 A1 WO2023240775 A1 WO 2023240775A1 CN 2022110780 W CN2022110780 W CN 2022110780W WO 2023240775 A1 WO2023240775 A1 WO 2023240775A1
Authority
WO
WIPO (PCT)
Prior art keywords
power generation
heat
temperature
working fluid
circulation
Prior art date
Application number
PCT/CN2022/110780
Other languages
English (en)
French (fr)
Inventor
张鸣
汪强
Original Assignee
等熵循环(北京)新能源科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 等熵循环(北京)新能源科技有限公司 filed Critical 等熵循环(北京)新能源科技有限公司
Publication of WO2023240775A1 publication Critical patent/WO2023240775A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03GSPRING, WEIGHT, INERTIA OR LIKE MOTORS; MECHANICAL-POWER PRODUCING DEVICES OR MECHANISMS, NOT OTHERWISE PROVIDED FOR OR USING ENERGY SOURCES NOT OTHERWISE PROVIDED FOR
    • F03G4/00Devices for producing mechanical power from geothermal energy
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03GSPRING, WEIGHT, INERTIA OR LIKE MOTORS; MECHANICAL-POWER PRODUCING DEVICES OR MECHANISMS, NOT OTHERWISE PROVIDED FOR OR USING ENERGY SOURCES NOT OTHERWISE PROVIDED FOR
    • F03G7/00Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for
    • F03G7/04Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for using pressure differences or thermal differences occurring in nature

Definitions

  • the present invention relates to the technical field related to the utilization of mid-deep ground energy, and specifically relates to a low-temperature difference multi-stage power generation system and method using mid-deep low-temperature ground energy.
  • the main forms of power generation in the world are hydropower, thermal power and nuclear power.
  • the proportion of thermal power generation in the world is about 63%
  • the proportion of hydropower generation is about 20%
  • the proportion of nuclear power generation is about 15%.
  • the United States, Russia, Netherlands, Italy, Japan, Germany, China and other countries mainly rely on thermal power generation.
  • Thermal power generation generally refers to the general term for the method of using the thermal energy generated when combustibles (mainly coal and natural gas) are burned to heat water, turning the water into high-temperature, high-pressure water vapor, and then using the water vapor to drive a generator to generate electricity.
  • Thermal power generation uses the Rankine cycle.
  • the temperature of the steam entering the generator is 540°C to 550°C.
  • the thermal efficiency (the power generation of the generator unit is converted into the ratio of heat to input heat) can reach 45%.
  • the Kalina cycle is an "improvement” based on the Rankine cycle. It changes the "pure” circulating medium (usually water) into a “mixture” of ammonia and water. The cycle reduces the heat source temperature to 149°C. -204°C, thus achieving low temperature (generally below 200°C) power generation.
  • geothermal power generation systems There are three main types of geothermal power generation systems: dry steam power generation system, expanded steam power generation system, and double cycle (intermediate medium method) power generation system.
  • Dry steam is pure steam without hot water that comes out of the ground. Dry steam is drawn from the steam well, and after the solid impurities ( ⁇ 10 ⁇ m) are separated by the separator, it directly enters the steam turbine to perform work and drive the generator to generate electricity.
  • the power generation equipment used in dry steam power stations is basically the same as conventional thermal power equipment.
  • the working principle of the dry steam power generation system is to directly export geothermal steam (pure steam) at 160°C or higher from the steam well.
  • the solid impurities larger than 10 ⁇ m are separated through the separator and then introduced into the steam turbine.
  • the high-pressure steam drives the steam turbine to operate. Thermal energy is converted into kinetic energy, and the kinetic energy is converted into electrical energy through a generator. After the steam is cooled by work, it is discharged to the condenser. The steam is turned back into cooling water, and the condensed water is guided back to the deep well along the pipeline to reheat the cycle for production.
  • Dry steam power generation systems have the following limitations: Because the steam temperature required for dry steam power generation is high, the geothermal energy is buried deep, and the dry steam geothermal resources are very limited. The mining technology is difficult, and the drilling mud used in mining needs to be able to withstand High temperature and high pressure make it difficult to drill into a well, so it is currently rarely used. The thermal efficiency of dry steam power generation is usually about 10 to 15%, and the power consumption rate in the plant is about 12%.
  • the expanded steam power generation system sucks underground high-pressure hot water into a low-pressure tank to form flash steam.
  • the flash steam enters the steam turbine to perform work to drive the generator to generate electricity.
  • the working principle of the expanded steam power generation system is that the underground hot water or steam required for power generation is generally above 150°C.
  • the geothermal water is introduced into the flash evaporator to reduce the pressure and flash to generate low-pressure steam.
  • the steam is sent to the steam turbine to expand and perform work.
  • the generator is driven to generate electricity, and the cooled water is directed back underground to be reheated for cycle production.
  • the expansion steam power generation system has the following limitations: it is suitable for geothermal resources with higher pressure and temperature, requires the steam-water mixture output from the geothermal well to have a higher temperature, and the geothermal energy utilization rate is low.
  • the expansion of the steam power generation system requires the discharge of tail water, so there is a certain amount of environmental pollution. If the geothermal water is not recharged, it will lead to the depletion of the geothermal field and cause ground collapse and settlement problems. Since this system directly uses underground hot water and steam as the working fluid, the resources are relatively limited, and the heat loss of commonly used extraction methods is large. It has higher requirements for the temperature, salinity, and non-condensable gas content of the underground hot water.
  • the thermal efficiency of expanded steam power generation is very low, only 1.5 to 4%, and the power consumption rate in the plant is about 16%.
  • the dual-cycle (intermediate medium method) power generation system is a geothermal power generation system that uses underground hot water to heat a certain low vaporization point working fluid and enters it into the steam turbine. It is also called the intermediate medium method or low vaporization point working fluid circulation. It is a circulation system that emerged to overcome the shortcomings of the flash geothermal power generation system.
  • the working principle is: underground hot water is pumped to the ground with a deep well pump and enters the evaporator in the power station. It heats a certain low vaporization point medium (such as Freon 11), turning it into low vaporization point medium steam, and then passes it into the steam turbine to perform work.
  • a certain low vaporization point medium such as Freon 11
  • the exhaust steam discharged from the steam turbine is condensed into liquid through the condenser, and then pumped back to the evaporator for reheating and recycling.
  • the dual-cycle (intermediate medium method) power generation system has the following limitations: dual-cycle refers to the self-circulation of geothermal water rising to the ground and the self-circulation of working fluid heat extraction, evaporation, power generation, and cooling. Its geothermal extraction still requires the search for underground hot water, which is limited by the relatively limited underground hot water resources.
  • the thermal efficiency of the dual-cycle power generation system is about 10% to 13%.
  • geothermal energy power stations around the world require a geothermal energy temperature of ⁇ 150°C.
  • the geothermal method is to directly extract geothermal water and geothermal steam, or use the extracted geothermal water to convert geothermal heat to a specific working fluid.
  • the present invention provides a system and method for realizing low-temperature difference multi-stage power generation by utilizing mid-deep low-temperature ground energy.
  • a low-temperature difference multi-stage power generation system using medium-deep low-temperature ground energy including a ground source heat cycle transmission system, a multi-stage power generation system and a waste heat utilization system.
  • the ground source heat cycle There is a thermal circulation pipeline between the output end and the input end of the transmission system to extract low-temperature geothermal energy in the middle and deep layers.
  • the thermal circulation pipeline uses low-temperature difference geothermal energy to generate electricity through a multi-stage power generation system.
  • the waste heat after power generation is heat exchanged through the waste heat utilization system to supply domestic heat.
  • the multi-stage power generation system and the waste heat utilization system are arranged in series, and the waste heat utilization system is set downstream of the multi-stage power generation system; the temperature difference in the inlet temperature of the heat transfer medium between the adjacent two-stage power generation systems is 5°C to 25°C.
  • the energy used in this invention comes from low-temperature geothermal energy in the middle and deep layers (depth not greater than 4000m).
  • the temperature range of the low-temperature geothermal energy extracted by the geothermal circulation transmission system is generally 140 to 110°C.
  • the geothermal circulation transmission system converts the low-temperature geothermal energy through Efficient geothermal pipes lift heat energy to the ground, and use low-temperature difference (temperature difference 5 to 15°C) generator sets to generate electricity.
  • the generator sets can be set up in multiple stages continuously.
  • the present invention uses mid-deep low-temperature ground energy to realize a low-temperature difference multi-stage power generation system, so that the inlet temperature of the heat transfer medium between each level of power generation system differs by 5°C to 25°C.
  • the lower temperature difference is used to carry out multi-stage power generation, reducing energy consumption.
  • the density is relatively dense and the power generation efficiency is high.
  • the present invention can also make the following improvements.
  • each stage realizes the utilization of low temperature difference.
  • the temperature difference range utilized by each stage is: the temperature difference between the inlet temperature of the heat transfer medium and the outlet temperature of the heat transfer medium is 5°C to 15°C.
  • the beneficial effect of adopting the above-mentioned further solution is that the temperature difference of each stage of the generator set for power generation is very low, and multi-stage power generation utilization of thermal energy can be realized, thereby increasing the number of power generation times and improving the thermoelectric conversion efficiency of the entire system.
  • the inlet temperature of the heat transfer medium in the multi-stage power generation system decreases successively; the heat transfer medium in each stage power generation system is a special special medium, and its vaporization point is specially set.
  • the vaporization point of the working fluid in the next-level power generation system is lower than the vaporization point of the working fluid in the adjacent upper-level power generation system.
  • the beneficial effect of adopting the above further scheme is that after each stage of power generation, after the temperature of the heat transfer medium in the heat cycle transmission system is reduced, it still meets the temperature requirements of the next level power generation system, and power is generated in the next level power generation system.
  • the power generation temperatures of each stage of multi-stage power generation are different, so that the heat source with the same initial temperature can maximize the utilization of heat in the multi-stage power generation system.
  • the multi-stage power generation system includes a primary power generation system, a secondary power generation system, and a third-level power generation system in sequence.
  • the ground source heat circulation transmission system uses low-temperature geothermal energy, so The temperature range of the low-temperature geothermal energy utilized is between 140°C and 110°C.
  • the inlet temperature of the heat transfer medium of the primary power generation system is 140°C ⁇ 110°C.
  • the inlet temperature of the heat transfer medium of the secondary power generation system is 130°C ⁇ 100°C.
  • the inlet temperature of the heat transfer medium for power generation is 120°C to 80°C, and the inlet temperature of the heat transfer medium for the waste heat utilization system is 90°C to 60°C.
  • the beneficial effects of adopting the above-mentioned further scheme are: the inlet temperature of multi-stage power generation is sequentially reduced, allowing the same heat source to generate electricity multiple times, increasing the thermal energy utilization space, and improving the power generation rate.
  • the temperature of the heat transfer medium is 90-60°C, and it can also provide sufficient heat energy for domestic hot water, building heating, agricultural greenhouses, etc.
  • the power generation system includes a power generation heat pump heat exchanger, a steam generator, a working medium circulation system and an external circulation cooling system, and the power generation heat pump heat exchangers of the multi-stage power generation system are all arranged on the heat circulation pipeline;
  • the steam generator and the power generation heat pump heat exchanger are connected through a heat pump circulation pipeline, and an oil pump is provided on the heat pump circulation pipeline; the steam generator is connected to the working fluid circulation system, and the working fluid The circulation system is connected with the external circulation cooling system.
  • the working fluid circulation system includes a working fluid separator, a high-temperature regenerator, and a generator.
  • the working fluid separator communicates with the external circulation cooling system through the first working fluid input pipeline and the second working fluid input pipeline respectively.
  • the input end is connected, the first working fluid input pipeline is connected to a high-temperature regenerator, the second working fluid input pipeline is connected to a generator; the output end of the external circulation cooling system is connected to a working fluid output pipe
  • the end of the working fluid output pipeline is connected to the working fluid separator, and the working fluid output pipeline is connected to the high-temperature regenerator and the steam generator in sequence along the working fluid flow direction.
  • the beneficial effect of adopting the above further solution is that better heat utilization effect can be achieved through the heat recovery of the working fluid through the high-temperature regenerator, so that after cooling, the working fluid can gradually heat up when it needs to be heated to perform work, effectively increasing the efficiency of the heat source. Heat utilization enables the heat source of the same temperature to do more work.
  • first working fluid input pipeline and the second working fluid input pipeline are respectively connected to the mixer and then connected to the input end of the external circulation cooling system;
  • a first pressure reducing valve is provided on the first working fluid input pipeline downstream of the high temperature regenerator, and a second pressure reducing valve is provided on the second working fluid input pipeline between the working fluid separator and the working fluid turbine. valve.
  • the external circulation cooling system includes a low-temperature regenerator, a cold source circulation system and a working fluid pump.
  • the output end and input end of the power generation system are respectively connected to the cooling circulation loop through the low-temperature regenerator.
  • the working fluid pump Set on the cooling circuit.
  • the beneficial effects of adopting the above further solution are: through the heat recovery of the working fluid through the low-temperature recovery device, the working fluid with waste heat can be cooled down for the first time, and the working fluid that needs to be heated can also be heated for the first time, which is an effective use of waste heat. , so that the heat source and cold source of the same temperature can achieve better heating or cooling effects.
  • the cooling cycle is provided with a cold source circulation system and a working fluid storage tank, and the working fluid storage tank is located downstream of the cold source circulation system;
  • the cold source of the cold source circulation system is urban or natural water cold water source.
  • the beneficial effect of adopting the above further solution is that the temperature of the working fluid cooled by the cold source meets the low temperature requirements of the generator for the working fluid, and at the same time the volume will be reduced to the lowest point of the working fluid cycle, and the volume requirements for the liquid storage tank will be reduced.
  • Use cold water sources from urban or natural waters as the cold source Drinking water and fire-fighting water can be used as the cold source.
  • the power generation working fluid is transported in a closed manner without affecting the water quality. After the cold source is used, it can still be used as domestic water supply. When natural waters are used as cold sources, the water will be sent to the original waters after heat exchange, which will not cause water source pollution and the ecological environment will be effectively protected.
  • the ground source heat circulation transmission system includes an underground well and a mid-deep geothermal conduit, and a heat circulation pipeline is provided between the heat source output end and the cold source input end of the mid-deep geothermal conduit; the ground source heat circulation transmission system
  • the system uses low-temperature geothermal energy, and the temperature range of the low-temperature geothermal energy used is between 140°C and 110°C; the ground source heat circulation transmission system, multi-stage power generation system and waste heat utilization system are all sealed with only heat transfer. cycle. There is only heat transfer between the various circulation systems, and there is no direct contact between the various media and working fluids.
  • the power generation system is a Kalina cycle power generation system;
  • the ground source heat circulation transmission system is an independent closed circulation system, and a heat conductive medium is provided in the ground source heat circulation transmission system.
  • a method for realizing low-temperature difference multi-level power generation by utilizing mid- and deep-level low-temperature ground energy is implemented, including the following steps: using the heat-conducting medium in the ground source heat circulation transmission system to Geothermal energy is extracted to a multi-stage power generation system; the geothermal energy goes through the multi-stage power generation system to perform work in sequence, converting the geothermal energy into electrical energy.
  • the conversion efficiency of the geothermal energy into electrical energy at each level of the power generation system is 5% to 20%; after the multi-stage power generation system After the conversion of geothermal energy to power generation, the remaining waste heat of the heat transfer medium enters the waste heat utilization system for continued utilization (such as construction or agricultural use).
  • the heat transfer medium that has undergone waste heat utilization enters the ground source heat circulation transmission system through a closed cycle of the heat cycle pipeline. geothermal energy is extracted again.
  • the multi-stage power generation method using low-temperature differences in mid-deep ground energy of the present invention has a small temperature difference in each stage, and the power generation efficiency conversion is relatively not high.
  • the power generation efficiency is superimposed so that almost all the total temperature difference is utilized.
  • the overall power generation efficiency after multi-stage power generation is effectively improved compared to the power generation efficiency of the existing technology power generation system. Since geothermal energy is endless and inexhaustible, the external cooling water source is also endless, so that the power generation system can continue to circulate, and it can continue to produce heat and electricity without the intervention of external high-level energy.
  • Figure 1 is a schematic structural diagram of the power generation system of the present invention
  • Figure 2 is a schematic structural diagram of a low-temperature difference multi-stage power generation system using mid-to-deep low-temperature ground energy according to the present invention.
  • External circulation cooling system 51. Low-temperature regenerator; 52. Cooler; 53. Working fluid pump; 54. Working fluid storage tank; 55. Cold source;
  • First-level power generation system 200.
  • Second-level power generation system 300.
  • Third-level power generation system 400. Waste heat utilization system.
  • a low-temperature difference multi-level power generation system using mid- to deep-level low-temperature ground energy in this embodiment includes a ground source heat circulation transmission system 1, a multi-level power generation system 4 and a waste heat utilization system 400.
  • a heat circulation pipeline is provided between the output end and the input end of the ground source heat circulation transmission system 1.
  • the heat circulation pipeline sequentially performs heat exchange through the multi-stage power generation system 4 and the waste heat utilization system 400.
  • the multi-stage power generation system 4 And the waste heat utilization system 400 is arranged in series, and the waste heat utilization system 400 is arranged downstream of the multi-stage power generation system 4; the temperature difference between the inlet temperatures of the heat transfer medium of the adjacent two-stage power generation systems 4 is 5°C to 25°C.
  • the power generation system in this embodiment is a Kalina cycle power generation system; the ground source heat circulation transmission system is an independent closed circulation system, and a heat conductive medium is provided in the ground source heat circulation transmission system.
  • the geothermal energy is lifted to the ground through the thermal conductive medium in the geothermal circulation transmission system (generally using geothermal collection wells).
  • the geothermal energy heats the working fluid of the generator unit, vaporizes the working fluid and drives the generator to generate electricity. After the geothermal energy heats up the generator set, the remaining heat is used for domestic heating.
  • the working fluid is cooled down by work and introduced into the external circulation cooling system.
  • the external circulation cooling system cools the working fluid.
  • the power generation system of this embodiment generates electricity from thermal energy between 75°C and 150°C, and can effectively utilize medium and low temperature geothermal energy.
  • the heat source below 75°C still has high waste heat utilization value (such as building heating, agricultural facility heating, Domestic hot water, etc.), since this embodiment uses the temperature of medium-deep underground hot rocks, it is not limited by groundwater and steam resources, nor does it use special underground high-temperature resources (such as dry hot rocks), etc., and the selection of underground locations is not subject to restrictions. limit.
  • the residual heat after power generation can be used for community water supply and heating, maximizing the utilization of geothermal heat and increasing investment benefits.
  • the geothermal energy cycle is a closed cycle and has zero impact on the environment.
  • the external circulation cold source system is easy to obtain, and it is a closed cycle, which does not pollute the cold source.
  • This embodiment uses mid- to deep-seated low-temperature ground energy to realize a low-temperature difference multi-stage power generation system, so that the inlet temperature of the heat transfer medium between each level of power generation system differs by 5°C to 25°C.
  • the lower temperature difference is used to perform multi-level power generation, reducing energy consumption.
  • the density is relatively dense and the power generation efficiency is high.
  • the temperature difference between the heat transfer medium inlet temperature and the heat transfer medium outlet temperature of each stage power generation system is 5 to 15°C.
  • the temperature difference used by each stage of generator set for power generation is very low, which can realize multi-stage power generation utilization of thermal energy and improve the efficiency of power generation utilization.
  • a specific solution of this embodiment is that along the flow direction of the heat transfer medium in the ground source heat circulation transmission system 1, the inlet temperature of the heat transfer medium in the multi-stage power generation system 4 decreases successively; the vaporization point of the working fluid in the next stage power generation system is lower than that in the adjacent The vaporization point of the working fluid in the upper-level power generation system.
  • After each level of power generation after the temperature of the heat transfer medium in the heat circulation transmission system is reduced, it still meets the temperature requirements of the next level power generation system, and work is performed in the next level power generation system to generate electricity.
  • the power generation temperatures of each stage of multi-stage power generation are different, so that the heat source with the same initial temperature can maximize the utilization of heat in the multi-stage power generation system.
  • the multi-stage power generation system 4 includes a first-level power generation system 100, a second-level power generation system 200, and a third-level power generation system 300.
  • the thermal cycle transmission system uses low-temperature geothermal energy.
  • the temperature range of the low-temperature geothermal energy used is between 140°C and 110°C.
  • the inlet temperature of the heat transfer medium of the primary power generation system 100 is 140°C and 110°C.
  • the inlet temperature of the heat transfer medium is 130°C to 100°C
  • the inlet temperature of the heat transfer medium for three-stage power generation is 120°C to 80°C
  • the inlet temperature of the heat transfer medium of the waste heat utilization system 400 is 90°C to 60°C.
  • the entrance temperature of multi-stage power generation decreases sequentially, allowing the same heat source to generate electricity multiple times, increasing the space for thermal energy utilization and improving the power generation rate.
  • the temperature of the heat transfer medium is 90-60°C, and it can also provide sufficient heat energy for domestic hot water, building heating, agricultural greenhouses, etc.
  • the waste heat utilization system 400 of this embodiment includes a domestic heat exchanger 2 and a domestic hot water heat utilization device terminal 21.
  • the heat circulation pipeline passes through the domestic heat exchanger 2.
  • the heat exchanger 2 is also connected to the end 21 of the domestic hot water heat utilization unit through the building heat utilization circulation pipeline.
  • the power generation system 4 of this embodiment includes a power generation heat pump heat exchanger 3, a steam generator 41, a working fluid circulation system and an external circulation cooling system 5.
  • the power generation heat pump heat exchanger of the multi-stage power generation system 4 3 are all arranged on the heat circulation pipeline; the steam generator 41 and the power generation heat pump heat exchanger 3 are connected through a heat pump circulation pipeline, and an oil pump 31 is provided on the heat pump circulation pipeline; the steam generator 41 is connected to the heat pump heat exchanger 3.
  • the device 41 is connected to the working fluid circulation system, and the working fluid circulation system is connected to the external circulation cooling system 5 .
  • the heat transfer medium releases the temperature through the steam generator of the multi-stage power generation system and then enters the waste heat utilization system for secondary heat release, and then is directed back to the ground source heat circulation transmission system to return to the underground for heat extraction, completing a primary heat extraction and release cycle.
  • All circulation systems are independent closed circulation systems. There is only the energy transfer process of heat conduction between each circulation system, which will not cause pollution to the heat source or cold source, nor will it cause other resource losses.
  • the working fluid circulation system of this embodiment includes a working fluid separator 42, a high temperature regenerator 43, and a generator 45.
  • the working fluid separator 42 passes through a first working fluid input pipeline 46 respectively.
  • the second working fluid input pipeline 47 is connected to the input end of the external circulation cooling system 5 .
  • the first working fluid input pipeline 46 is connected to a high-temperature regenerator 43 .
  • the second working fluid input pipeline 47 is connected to the input end of the external circulation cooling system 5 .
  • a generator 45 is connected; the output end of the external circulation cooling system 5 is connected to a working fluid output pipeline, the end of the working fluid output pipeline is connected to the working fluid separator 42, and the working fluid output pipeline is connected along the working medium
  • the mass flow direction connects the high-temperature regenerator 43 and the steam generator 41 in sequence.
  • the power generation process of the power generation system is that the power generation heat pump heat exchanger heats up the working fluid in the generator through heat transfer oil. After the working fluid is heated and turned into steam, it enters the working fluid separator, and the liquid working fluid enters the high-temperature regenerator. The gaseous working fluid is sent to the steam turbine to expand and perform work, causing it to rotate and drive the generator to generate electricity. After power generation, the working fluid cools down and is mixed with the liquid working fluid that has passed through the high-temperature regenerator and enters the low-temperature regenerator for secondary heat release. The working fluid after secondary heat release is then cooled by cold water in the city water supply system or natural waters, and then enters the working fluid storage tank for storage.
  • the working fluid pump transports the working fluid in the working fluid storage tank to the low-temperature regenerator for primary heating, and then to the high-temperature regenerator for secondary heating. Finally, it enters the steam generator for three heating periods and then enters the generator to complete a cycle. Power generation cycle.
  • the first working fluid input pipeline 46 and the second working fluid input pipeline 47 of this embodiment are respectively connected to the mixer 48 and then connected to the input end of the external circulation cooling system 5;
  • the first working fluid input pipeline 46 downstream of the high temperature regenerator 43 is provided with a first pressure reducing valve 49
  • the second working fluid input pipeline 47 between the working fluid separator 42 and the working fluid turbine 44 is provided with a first pressure reducing valve 49.
  • a second pressure reducing valve 490 is provided.
  • the external circulation cooling system 5 of this embodiment includes a low-temperature regenerator 51, a cold source circulation system and a working fluid pump 53.
  • the output and input ends of the power generation system 4 are respectively passed through the low-temperature regenerator.
  • the device 51 is connected to a cooling circulation circuit, and the working fluid pump 53 is provided on the cooling circulation circuit.
  • the working fluid with waste heat can be cooled down for the first time, and the working fluid that needs to be heated can also be heated for the first time. It is an effective use of waste heat, so that the heat source and cold source of the same temperature can be Get better heating or cooling effect.
  • the cooling cycle of this embodiment is provided with a cold source circulation system and a working fluid storage tank 54, and the working fluid storage tank 54 is located downstream of the cold source circulation system;
  • the cold source of the cold source circulation system is urban or natural water cold water source.
  • the temperature of the working fluid cooled by the cold source meets the low-temperature requirements of the generator for the working fluid.
  • the volume will be reduced to the lowest point of the working fluid cycle, and the volume requirements for the liquid storage tank will be reduced.
  • the power generation working fluid is transported in a closed manner without affecting the water quality. After the cold source is used, it can still be used as domestic water supply. When natural waters are used as cold sources, the water will be sent to the original waters after heat exchange, which will not cause water source pollution and the ecological environment will be effectively protected.
  • the ground source heat circulation transmission system of this embodiment includes an underground well and a mid-deep geothermal conduit.
  • a heat circulation pipeline is provided between the heat source output end and the cold source input end of the mid-deep geothermal conduit.
  • the ground source heat The cyclic transmission system uses low-temperature geothermal energy, and the temperature range of the low-temperature geothermal energy used is between 140°C and 110°C; the ground source heat circulation transmission system, multi-stage power generation system and waste heat utilization system are all heat transfer only closed cycle.
  • the medium-deep geothermal conduit extends into the underground well below 2,500 meters.
  • the specific penetration depth can be determined according to the actual situation, for example, it can be 3,000-4,000 meters.
  • the working fluid in the working fluid circulation system of this embodiment is generally a special working fluid with a lower vaporization point than water, such as ammonia water.
  • the ratio of ammonia + water can be adjusted according to the working conditions, and then the vaporization point can be adjusted.
  • the low-temperature difference multi-stage power generation system of this embodiment uses the gradient temperature of the heat-conducting medium to generate power, that is, each level of the power generation system must reduce a temperature gradient. After reducing the temperature gradient, the power generation system uses The vaporization point of the working fluid in the next-level power generation system must be lower than that of the working fluid in the upper-level power generation system.
  • This embodiment uses the closed circulation of the heat-conducting medium to lift the mid-to-deep geothermal energy to the ground through the ground source heat circulation transmission system, allowing the medium to release heat through the power generation heat pump heat exchanger to generate electricity and then enter the domestic heat exchanger for secondary heat release. , and then conduct the heat-conducting medium back to the ground to obtain heat, completing a cycle of heat extraction and release.
  • the underground heat source mined by the geothermal circulation transmission system is supplied to the power generation system to generate electricity, the residual heat can still be supplied for building heating and domestic hot water.
  • the geothermal energy utilization efficiency is high and can meet the needs of power generation and heating at the same time.
  • This embodiment provides a method for realizing low-temperature difference multi-level power generation using mid- and deep-level low-temperature ground energy.
  • the above-mentioned low-temperature difference multi-level power generation system using mid- and deep-level low-temperature ground energy is used, and includes the following steps: Utilizing the ground source heat circulation transmission system.
  • the heat-conducting medium extracts geothermal energy to a multi-stage power generation system; the geothermal energy goes through the multi-stage power generation system in sequence to convert the geothermal energy into electrical energy.
  • the conversion efficiency of the geothermal energy into electrical energy at each level of the power generation system is 5% to 20%; after After the multi-stage power generation system converts geothermal energy into electricity, the remaining waste heat of the heat transfer medium enters the waste heat utilization system for continued living and agricultural utilization. The heat transfer medium that has been utilized by the waste heat enters the ground source heat circulation transmission system again through the heat circulation pipeline. Extract geothermal energy.
  • the temperature difference at each stage is not large, and the power generation efficiency conversion is relatively not high.
  • the power generation efficiency is superimposed, so that the total power generation efficiency is Almost all the temperature differences are utilized, and the overall power generation efficiency after multi-stage power generation is effectively improved compared to the power generation efficiency of the existing technology power generation system.
  • geothermal energy is endless and inexhaustible
  • the external cooling water source is also endless, so that the power generation system can continue to circulate, and it can continue to produce heat and electricity without the intervention of external high-level energy.
  • the three-stage generator set of this embodiment is used to generate electricity.
  • the generator set can be a screw unit.
  • the actual power generation efficiency of the first-stage power generation system is 11%
  • the actual power generation efficiency of the second-stage generator set is 10%
  • the actual power generation efficiency of the three-stage generator set is 8%.
  • the first calculation conditions for the three-stage gradient power generation first-level generator set the inlet temperature of the first power generation is 120°C, the outlet temperature of the generator set is 110°C, and the available temperature difference is 10°C; because high-quality working conditions are used, the generator set equipment system The power generation efficiency is 11%.
  • the average electricity consumption per household is 10 kilowatt-hours per day; the refrigerator consumes 1.2 kilowatt-hours per day and 36 kilowatt-hours per month; the TV has a power of 265W and is used for 5 hours a day, consuming 1.3 kilowatt-hours and 39 kilowatt-hours per month;
  • the computer power is 250W, used for 6 hours a day, consuming 1.5 degrees of electricity, and the monthly consumption is 45 degrees;
  • the water heater power is 2000W, used for one hour every two days, and the monthly consumption is 30 degrees;
  • the air conditioner is used for 3 months a year, and consumes 18 degrees of electricity every day, totaling 1620 degrees.
  • the first calculation of the three-stage gradient power generation first-stage generator unit the heat Q (kJ) that can be released when the temperature difference between the heat source inlet and outlet decreases from 120°C to 110°C is:
  • Q the specific heat constant of water
  • the second calculation conditions of the three-stage gradient power generation two-stage generator unit the outlet temperature of the first power generation is 110°C, deducting the heat loss of 5°C, the inlet temperature of the second power generation is 105°C, the outlet temperature is 98°C, and the available temperature difference is 7°C. ; Due to the reduced quality of working conditions, the power generation efficiency of the corresponding generator set equipment system is 10%.
  • the second calculation of the three-stage gradient power generation two-stage generator unit: the heat Q (kJ) that can be released when the temperature difference between the inlet and outlet of the heat source decreases from 105°C to 98°C is:
  • Q the specific heat constant of water
  • according to the electric energy conversion 1kwh 860KCal, based on the equipment system power generation efficiency of 10%
  • the third calculation conditions of the three-stage gradient power generation three-stage generator unit the outlet temperature of the second power generation is 98°C, deducting the heat loss of 8°C, the inlet temperature of the third power generation is 90°C, the outlet temperature is 85°C, and the available temperature difference is 5°C. ;Due to the reduced quality of working conditions again, the power generation efficiency of the corresponding generator set equipment system is 8%;
  • the waste heat temperature is 85°C
  • the medium waste heat heating temperature is 85°C
  • the medium waste heat heating return temperature is 60°C
  • medium flow rate M 226m 3 /h
  • waste heat temperature of the geothermal well after cascade power generation is 85°C
  • the medium waste heat heating temperature is 85°C
  • the medium waste heat heating return temperature is 75°C
  • medium flow M 226m 3 /h
  • the daily waste heat heating can meet the heating needs of 13 buildings, with a construction area of 124,800 square meters and 1,040 households.
  • first and second are used for descriptive purposes only and cannot be understood as indicating or implying relative importance or implicitly indicating the quantity of indicated technical features. Therefore, features defined as “first” and “second” may explicitly or implicitly include at least one of these features.
  • “plurality” means at least two, such as two, three, etc., unless otherwise expressly and specifically limited.
  • connection In the present invention, unless otherwise clearly stated and limited, the terms “installation”, “connection”, “connection”, “fixing” and other terms should be understood in a broad sense. For example, it can be a fixed connection or a detachable connection. , or integrated into one; it can be a mechanical connection or an electrical connection; it can be a direct connection or an indirect connection through an intermediate medium; it can be an internal connection between two elements or an interactive relationship between two elements, unless otherwise specified restrictions. For those of ordinary skill in the art, the specific meanings of the above terms in the present invention can be understood according to specific circumstances.
  • a first feature being “on” or “below” a second feature may mean that the first and second features are in direct contact, or the first and second features are in indirect contact through an intermediate medium. touch.
  • the terms “above”, “above” and “above” the first feature is above the second feature may mean that the first feature is directly above or diagonally above the second feature, or simply means that the first feature is higher in level than the second feature.
  • "Below”, “below” and “beneath” the first feature to the second feature may mean that the first feature is directly below or diagonally below the second feature, or simply means that the first feature has a smaller horizontal height than the second feature.
  • references to the terms “one embodiment,” “some embodiments,” “an example,” “specific examples,” or “some examples” or the like means that specific features are described in connection with the embodiment or example. , structures, materials or features are included in at least one embodiment or example of the invention. In this specification, the schematic expressions of the above terms are not necessarily directed to the same embodiment or example. Furthermore, the specific features, structures, materials, or characteristics described may be combined in any suitable manner in any one or more embodiments or examples. Furthermore, those skilled in the art may combine and combine different embodiments or examples and features of different embodiments or examples described in this specification unless they are inconsistent with each other.

Abstract

本发明涉及一种利用中深层低温地能实现低温差多级发电系统及方法,利用中深层低温地能实现低温差多级发电系统包括地源热循环传输系统、多级发电系统及余热利用系统,所述地源热循环传输系统的输出端和输入端之间设有热循环管路,所述热循环管路依次通过多级发电系统和余热利用系统进行热交换,多级发电系统以及余热利用系统串联布置,余热利用系统设置在多级发电系统的下游;相邻两级发电系统的导热介质入口温度的温差为5℃~25℃。本发明的利用中深层低温地能实现低温差多级发电系统,使每级发电系统之间的导热介质入口温度相差5℃~25℃,利用较低的温度差进行多级发电,使能耗密度相对密集,发电效率高。

Description

一种利用中深层低温地能实现低温差多级发电系统及方法 技术领域
本发明涉及中深层地能利用相关技术领域,具体涉及一种利用中深层低温地能实现低温差多级发电系统及方法。
背景技术
目前世界上主要的发电形式是水力发电、火力发电和核能发电。全世界火力发电所占比重约为63%,水利发电所占比重约为20%,核能发电所占比重约为15%。美、俄、英、意、日、德、中国等国以火力发电为主。
火力发电一般是指利用可燃物(主要为煤炭和天然气)燃烧时产生的热能来加热水,使水变成高温、高压水蒸气,然后再由水蒸气推动发电机来发电的方式的总称。火力发电采用朗肯循环,进入发电机的蒸汽温度为540℃至550℃,热效率(发电机组的发电量折算成热量与输入热量之比)可达到45%。卡琳娜循环是在朗肯循环基础上的一种“改进”,是将“纯”的循环介质(通常为水)变成了氨同水的“混合物”,循环对于热源温度降低到149℃-204℃,从而实现低温(一般指200℃以下)发电。
地热发电系统主要有3种类型:干蒸汽发电系统、扩容蒸汽发电系统、双循环式(中间介质法)发电系统。
干蒸汽就是从地下喷出的无热水的纯蒸汽。干蒸汽从蒸汽井中引出,经过分离器分离出固体杂质(≥10μm)后,就直接进入汽轮机做功,驱动发电机发电。干蒸汽电站所用发电设备基本上与常规火电设备相同。干蒸汽发电系统的工作原理就是从蒸汽井中直接导出160℃或更高的地热蒸汽(纯蒸汽),经过分离器将杂志大于10μm的固体杂质分离后引入汽轮机,高压蒸 汽在汽轮机中驱动汽轮机运转将热能转换为动能,通过发电机将动能转换为电能。蒸汽做功冷却后排放到冷凝器,蒸汽变回冷却水,沿管道将冷凝水导回深井,重新加热循环生产。
干蒸汽发电系统存在以下局限性:由于干蒸汽发电所需的蒸汽温度较高,所以地热埋藏深度较深,且干蒸汽地热资源十分有限,开采技术难度较大,开采中所用钻进泥浆需要能耐高温和高压,钻进成井较困难,目前利用较少。干蒸汽发电的热效率通常约为10~15%,厂内用电率约为12%。
扩容蒸汽发电系统是将地下高压热水吸入低压罐,形成闪蒸蒸汽,闪蒸蒸汽进入汽轮机做功带动发电机发电。扩容蒸汽发电系统的工作原理为,发电需要的地下热水或蒸汽一般都要再150℃以上,地热水导入闪蒸器,使其降压闪蒸并产生低压蒸汽,蒸汽送入汽轮机膨胀做功,带动发电机发电,做功冷却后的水导回地下重新加热循环生产。
扩容蒸汽发电系统存在以下局限性:适用于压力、温度较高的地热资源,要求地热井输出的汽水混合物的温度较高,地热能利用率低。扩容蒸汽发电系统需要排放尾水,因此存在一定的环境污染,如果不进行地热水回灌,会导致地热田的枯竭和产生地面塌陷及沉降问题。由于该系统直接以地下热水、蒸汽为工质,资源相对有限,常用提取手段热损失大,对于地下热水的温度、矿化度以及不凝气体含量等有较高的要求。扩容蒸汽发电的热效率很低,热效率仅为1.5~4%,厂内用电率约为16%。
双循环式(中间介质法)发电系统是利用地下热水来加热某种低汽化点工质,使其进入汽轮机工作的地热发电系统,又称中间介质法或低汽化点工质循环。它是为克服闪蒸地热发电系统的缺点而出现的一种循环系统。工作原理为:地下热水用深井泵抽到地面进入电站内的蒸发器,加热某一种低汽化点介质(如氟里昂11),使之变为低汽化点介质蒸汽,然后通入汽轮机做功发电,汽轮机排出的乏汽经凝汽器冷凝成液体,用工质泵再打回蒸发器重新加热,循环使用。
双循环式(中间介质法)发电系统存在以下局限性:双循环指地热水提升至地面自循环和工质采热、蒸发、发电、冷却的自循环。其地热提取仍然需要寻找地下热水,受限于地下热水资源相对有限的影响。双循环发电系统的热效率约为10%~13%。
综上,全世界利用地热能发电站,对地热能温度的要求为≥150℃,采取地热方式为直接提取地热水、地热蒸汽,或利用提取地热水将地热转换给特定工质。
发明内容
本发明为解决现有技术存在技术问题的一种或几种,提供了一种利用中深层低温地能实现低温差多级发电系统及方法。
本发明解决上述技术问题的技术方案如下:一种利用中深层低温地能实现低温差多级发电系统,包括地源热循环传输系统、多级发电系统及余热利用系统,所述地源热循环传输系统的输出端和输入端之间设有热循环管路,提取中深层低温地热能。所述热循环管路通过多级发电系统利用低温差地热能发电。发电后的余热通过余热利用系统进行热交换,供给生活用热。多级发电系统以及余热利用系统串联布置,余热利用系统设置在多级发电系统的下游;相邻两级发电系统的导热介质入口温度的温差为5℃~25℃。
本发明所用能源来自于中深层(深度不大于4000m)低温地能,地源热循环传输系统提取的低温地能的温度范围一般为140至110℃,地源热循环传输系统将低温地热能经高效的地热管将热能提升至地面,利用低温差(温差5至15℃)发电机组进行发电,发电机组可连续多级设置。
本发明的利用中深层低温地能实现低温差多级发电系统,使每级发电系统之间的导热介质入口温度相差5℃~25℃,利用较低的温度差进行多级发 电,使能耗密度相对密集,发电效率高。
在上述技术方案的基础上,本发明还可以做如下改进。
进一步,多级发电系统中,每一级都实现了低温差利用,每一级所利用的温差范围为:导热介质入口温度和导热介质出口温度的温差为5℃~15℃。
采用上述进一步方案的有益效果是:每一级发电机组用于发电的温度差值都很低,能够实现热能的多级发电利用,从而增加发电次数,提高了整个系统的热电转换效率。
进一步,沿地源热循环传输系统中导热介质的流向,多级发电系统的导热介质入口温度依次降低;每一级发电系统中的导热介质均为特殊专用介质,其汽化点均特别设定,下一级发电系统中工质的汽化点低于邻近的上一级发电系统中工质的汽化点。
采用上述进一步方案的有益效果是:经过每一级发电,热循环传输系统中的导热介质温度降低后,仍满足下一级发电系统的温度要求,在下一级发电系统中做功发电。多级发电的各级之间发电温度不同,使得同一初始温度热源在多级发电系统中对热能做最大利用。
进一步,沿地源热循环传输系统中导热介质的流向,多级发电系统依次包括一级发电系统、二级发电系统、三级发电系统,地源热循环传输系统采取的为低温地热能,所利用的低温地热能的温度范围在140℃~110℃之间,一级发电系统的导热介质入口温度为140℃~110℃,二级发电的导热介质入口温度为130℃~100℃,三级发电的导热介质入口温度为120℃~80℃,所述余热利用系统的导热介质入口温度为90℃~60℃。
采用上述进一步方案的有益效果是:多级发电入口温度依次降低,使同一热源多次发电,加大热能利用空间,提高发电率。三级发电后导热介质温 度为90~60℃,还能为生活热水、建筑采暖以及农业温室等提供充足热能。
进一步,所述发电系统包括发电热泵热交换器、蒸汽发生器、工质循环系统以及外循环冷却系统,多级发电系统的发电热泵热交换器均设置在所述热循环管路上;
所述蒸汽发生器与所述发电热泵热交换器之间通过热泵循环管路连接,所述热泵循环管路上设有油泵;所述蒸汽发生器与所述工质循环系统连接,所述工质循环系统与所述外循环冷却系统连接。
采用上述进一步方案的有益效果是:所有循环系统均为独立密闭循环系统,各循环系统之间只有热传导的能量传导过程,不会对热源或冷源造成污染,也不会造成其他资源损失。
进一步,所述工质循环系统包括工质分离器、高温回热器、发电机,所述工质分离器分别通过第一工质输入管路和第二工质输入管路与外循环冷却系统的输入端连接,所述第一工质输入管路上连接有高温回热器,所述第二工质输入管路上连接有发电机;所述外循环冷却系统的输出端连接有工质输出管路,所述工质输出管路的末端与工质分离器连接,所述工质输出管路沿工质流动方向依次连接高温回热器和蒸汽发生器。
采用上述进一步方案的有益效果是:通过高温回热器对于工质的热回收,可以达到更好的热利用效果,使工质在冷却后,在需要加热做功时可以逐步升温,有效增加热源的热利用,使同温度热源做更多的功。
进一步,所述第一工质输入管路和第二工质输入管路分别连接混合器后,再与外循环冷却系统的输入端连接;
所述高温回热器下游的第一工质输入管路上设有第一减压阀,所述工质分离器与工质透平之间的第二工质输入管路上设有第二减压阀。
进一步,所述外循环冷却系统包括低温回热器、冷源循环系统和工质泵,所述发电系统的输出端和输入端分别通过低温回热器与冷却循环回路连接,所述工质泵设置在所述冷却循环回路上。
采用上述进一步方案的有益效果是:通过低温回收器对于工质的热回收,既可以将带有余热的工质首次降温,还可以对需加热的工质进行首次升温,是对余热的有效利用,使同温度热源、冷源起到更好的升温或降温的更好效果。
进一步,所述冷却循环回路上设有冷源循环系统和工质储液罐,所述工质储液罐位于所述冷源循环系统的下游;
所述冷源循环系统的冷源为城市或自然水域冷水源。
采用上述进一步方案的有益效果是:通过冷源冷却的工质温度满足发电机对于工质的低温要求,同时体积会减小到工质循环的最低点,对于储液罐的容积要求减小。采用城市或自然水域冷水源作为冷源,冷源可以使用饮用水及消防用水,发电工质封闭输送,不影响水质,冷源利用后仍作为生活给水。自然水域作为冷源时,水在做完热交换后,会送入原水域,不会造成水源污染,生态环境得到了有效保护。
进一步,所述地源热循环传输系统包括地下井和中深层地热导管,所述中深层地热导管的热源输出端和冷源输入端之间设有热循环管路;所述地源热循环传输系统采取的为低温地热能,所利用的低温地热能的温度范围在140℃~110℃之间;所述地源热循环传输系统、多级发电系统及余热利用系统全部为只有热传递的密闭循环。其各循环系统之间只有热传递,各介质、工质之间不发生任何直接接触。
所述发电系统为卡琳娜循环发电系统;所述地源热循环传输系统为独立 密闭循环系统,所述地源热循环传输系统内设有导热介质。
一种利用中深层低温地能实现低温差多级发电方法,采用上述的利用中深层低温地能实现低温差多级发电系统实现,包括以下步骤:利用地源热循环传输系统中的导热介质将地热能提取至多级发电系统;地热能经过多级发电系统依次做功,将地热能转换为电能,每级发电系统的地热能转换为电能的转换效率为5%~20%;经过多级发电系统对地热能的发电转换后,导热介质剩余的余热进入到余热利用系统进行继续利用(例如建筑或农用利用),经过余热利用的导热介质通过热循环管路闭合循环进入到地源热循环传输系统中再次提取地热能。
本发明的有益效果是:本发明的中深层地能低温差多级利用发电方法,每一级的温差不大,发电效率转换相对来说也并不高,但是由于经过了多级发电循环,发电效率叠加,使总的温差几乎都被利用,多级发电后整体的发电效率相对于现有技术发电系统的发电效率得到了有效提高。由于地热能是源源不断、取之不尽的,外部的冷却水源也是源源不断的,使发电系统能够持续循环,不需要外界高阶能源介入,就能够连续进行热和电的不断产出。
附图说明
图1为本发明发电系统的结构示意图;
图2为本发明利用中深层低温地能实现低温差多级发电系统的结构示意图。
附图中,各标号所代表的部件列表如下:
1、地源热循环传输系统;11、中深层地热导管;
2、生活用热交换器;21、生活热水热利用器末端;
3、发电热泵热交换器;31、油泵;
4、发电系统;41、蒸汽发生器;42、工质分离器;43、高温回热器;44、工质透平;45、发电机;46、第一工质输入管路;47、第二工质输入管路;48、混合器;49、第一减压阀;490、第二减压阀;
5、外循环冷却系统;51、低温回热器;52、冷却器;53、工质泵;54、工质储液罐;55、冷源;
100、一级发电系统;200、二级发电系统;300、三级发电系统;400、余热利用系统。
具体实施方式
以下结合附图对本发明的原理和特征进行描述,所举实例只用于解释本发明,并非用于限定本发明的范围。
如图1和图2所示,本实施例的一种利用中深层低温地能实现低温差多级发电系统,包括地源热循环传输系统1、多级发电系统4及余热利用系统400,所述地源热循环传输系统1的输出端和输入端之间设有热循环管路,所述热循环管路依次通过多级发电系统4和余热利用系统400进行热交换,多级发电系统4以及余热利用系统400串联布置,余热利用系统400设置在多级发电系统4的下游;相邻两级发电系统4的导热介质入口温度的温差为5℃~25℃。
本实施例的所述发电系统为卡琳娜循环发电系统;所述地源热循环传输系统为独立密闭循环系统,所述地源热循环传输系统内设有导热介质。通过地源热循环传输系统(一般采用地热采集井)中的导热介质将地热能提升至地面,地热能给发电机组工质加热,使工质汽化后带动发电机发电。地热能在对发电机组提温后,余温进行生活供热。发电机组发电后,工质做功降温, 导入外循环冷却系统,由外循环冷却系统对工质降温冷却,待工质冷却后导回到蒸汽发生器加温做功。本实施例的发电系统是从75℃~150℃之间的热能进行发电,能够有效利用中低温地热能,热源在75℃以下仍有较高的余热利用价值(例如建筑采暖、农业设施采暖、生活热水等),由于本实施例利用的是中深层地下热岩的温度,不受地下水、蒸汽资源限制,也不用地下高温的特殊资源(比如干热岩)等,在地下区位选择不受限制。发电后余温可用于社区供水、供热,对地热发挥了最大限度的热利用,增加投资效益。地热能循环为密闭循环,对于环境影响为零。外循环冷源系统容易取得,且为密闭循环,对冷源无污染。
本实施例利用中深层低温地能实现低温差多级发电系统,使每级发电系统之间的导热介质入口温度相差5℃~25℃,利用较低的温度差进行多级发电,使能耗密度相对密集,发电效率高。
具体的,多级发电系统中,每一级发电系统的导热介质入口温度和导热介质出口温度的温差为5~15℃。每一级发电机组用于发电的温度差值都很低,能够实现热能的多级发电利用,提高了发电利用效率。
本实施例的一个具体方案为,沿地源热循环传输系统1中导热介质的流向,多级发电系统4的导热介质入口温度依次降低;下一级发电系统中工质的汽化点低于邻近的上一级发电系统中工质的汽化点。经过每一级发电,热循环传输系统中的导热介质温度降低后,仍满足下一级发电系统的温度要求,在下一级发电系统中做功发电。多级发电的各级之间发电温度不同,使得同一初始温度热源在多级发电系统中对热能做最大利用。
本实施例的一个优选方案为,沿地源热循环传输系统1中导热介质的流向,多级发电系统4依次包括一级发电系统100、二级发电系统200、三级 发电系统300,地源热循环传输系统采取的为低温地热能,所利用的低温地热能的温度范围在140℃~110℃之间,一级发电系统100的导热介质入口温度为140℃~110℃,二级发电的导热介质入口温度为130℃~100℃,,三级发电的导热介质入口温度为120℃~80℃,所述余热利用系统400的导热介质入口温度为90~60℃。多级发电入口温度依次降低,使同一热源多次发电,加大热能利用空间,提高发电率。三级发电后导热介质温度为90~60℃,还能为生活热水、建筑采暖以及农业温室等提供充足热能。
如图1所示,本实施例的余热利用系统400包括生活用热交换器2和生活热水热利用器末端21,所述热循环管路经过所述生活用热交换器2,所述生活用热交换器2还通过建筑热利用循环管路与生活热水热利用器末端21连接。
如图1所示,本实施例的所述发电系统4包括发电热泵热交换器3、蒸汽发生器41、工质循环系统以及外循环冷却系统5,多级发电系统4的发电热泵热交换器3均设置在所述热循环管路上;所述蒸汽发生器41与所述发电热泵热交换器3之间通过热泵循环管路连接,所述热泵循环管路上设有油泵31;所述蒸汽发生器41与所述工质循环系统连接,所述工质循环系统与所述外循环冷却系统5连接。导热介质通过多级发电系统的蒸汽发生器释放温度后进入余热利用系统进行二次放热,再导回地源热循环传输系统返回地下取热,完成一次取、放热循环。所有循环系统均为独立密闭循环系统,各循环系统之间只有热传导的能量传导过程,不会对热源或冷源造成污染,也不会造成其他资源损失。
如图1所示,本实施例的所述工质循环系统包括工质分离器42、高温回热器43、发电机45,所述工质分离器42分别通过第一工质输入管路46和 第二工质输入管路47与外循环冷却系统5的输入端连接,所述第一工质输入管路46上连接有高温回热器43,所述第二工质输入管路47上连接有发电机45;所述外循环冷却系统5的输出端连接有工质输出管路,所述工质输出管路的末端与工质分离器42连接,所述工质输出管路沿工质流动方向依次连接高温回热器43和蒸汽发生器41。通过高温回热器对于工质的热回收,可以达到更好的热利用效果,使工质在冷却后,在需要加热做功时可以逐步升温,有效增加热源的热利用,使同温度热源做更多的功。
具体的,发电系统的发电过程为,发电热泵热交换器通过导热油将发电机内的工质提温,工质在加温变成蒸汽后进入工质分离器,液态工质进入高温回热器,气态工质送往汽轮机膨胀做功,使其旋转进而带动发电机进行发电。发电后工质降温,与经过高温回热器的液态工质混合进入低温回热器进行二次放热。二次放热后的工质,再经过城市供水系统或自然水域冷水冷却,进入工质储液罐存储。工质泵将工质储液罐内的工质输送到低温回热器进行一次升温,再输送到高温回热器进行二次升温,最后进入蒸汽发生器进行三次升温后进入发电机,完成一个发电循环。
如图1所示,本实施例的所述第一工质输入管路46和第二工质输入管路47分别连接混合器48后,再与外循环冷却系统5的输入端连接;所述高温回热器43下游的第一工质输入管路46上设有第一减压阀49,所述工质分离器42与工质透平44之间的第二工质输入管路47上设有第二减压阀490。
如图1所示,本实施例的所述外循环冷却系统5包括低温回热器51、冷源循环系统和工质泵53,所述发电系统4的输出端和输入端分别通过低温回热器51与冷却循环回路连接,所述工质泵53设置在所述冷却循环回路上。通过低温回收器对于工质的热回收,既可以将带有余热的工质首次降温,还 可以对需加热的工质进行首次升温,是对余热的有效利用,使同温度热源、冷源起到更好的升温或降温的更好效果。
如图1所示,本实施例的所述冷却循环回路上设有冷源循环系统和工质储液罐54,所述工质储液罐54位于所述冷源循环系统的下游;所述冷源循环系统的冷源为城市或自然水域冷水源。通过冷源冷却的工质温度满足发电机对于工质的低温要求,同时体积会减小到工质循环的最低点,对于储液罐的容积要求减小。采用城市或自然水域冷水源作为冷源,冷源可以使用饮用水及消防用水,发电工质封闭输送,不影响水质,冷源利用后仍作为生活给水。自然水域作为冷源时,水在做完热交换后,会送入原水域,不会造成水源污染,生态环境得到了有效保护。
本实施例的所述地源热循环传输系统包括地下井和中深层地热导管,所述中深层地热导管的热源输出端和冷源输入端之间设有热循环管路,所述地源热循环传输系统采取的为低温地热能,所利用的低温地热能的温度范围在140℃~110℃之间;所述地源热循环传输系统、多级发电系统及余热利用系统全部为只有热传递的密闭循环。所述中深层地热导管伸入所述地下井2500米以下,具体伸入深度可以根据实际情况来确定,例如可以为3000-4000米,对于地热能深度较浅地区,井深可适当减小;实际上,在有地下热资源的情况下,还可以不受深度限制。本实施例工质循环系统中的工质一般选用相对于水汽化点低的专用工质,例如选用氨水,可以根据工况调整氨+水的比例,进而调整汽化点。例如,由于本实施例的低温差多级发电系统利用的是导热介质的梯度温度来进行发电,即每一级的发电系统都要降低一个温度梯度,降低温度梯度后的发电系统中所用的工质要重新配置(比如调配氨和水的比例),即下一级的发电系统中的工质的汽化点要低于上一级发电系统中的工 质的汽化点。
本实施例利用导热介质的密闭循环,通过地源热循环传输系统将中深层的地热能提升到地面,使介质通过发电热泵热交换器放温发电后进入生活用热交换器进行二次放热,再将导热介质导回地下取热,完成一次取放热循环过程。本实施例利用地源热循环传输系统开采的地下热源在供给发电系统发电后,余温仍然可以供给建筑的采暖和生活热水使用,地热能利用效率高,能够同时满足发电和取暖的需求。
本实施例的一种利用中深层低温地能实现低温差多级发电方法,采用上述的利用中深层低温地能实现低温差多级发电系统实现,包括以下步骤:利用地源热循环传输系统中的导热介质将地热能提取至多级发电系统;地热能经过多级发电系统依次做功,将地热能转换为电能,每级发电系统的地热能转换为电能的转换效率为5%~20%;经过多级发电系统对地热能的发电转换后,导热介质剩余的余热进入到余热利用系统进行继续生活及农业利用,经过余热利用的导热介质通过热循环管路进入到地源热循环传输系统中再次提取地热能。
本实施例的中深层地能低温差多级利用发电方法,每一级的温差不大,发电效率转换相对来说也并不高,但是由于经过了多级发电循环,发电效率叠加,使总的温差几乎都被利用,多级发电后整体的发电效率相对于现有技术发电系统的发电效率得到了有效提高。由于地热能是源源不断、取之不尽的,外部的冷却水源也是源源不断的,使发电系统能够持续循环,不需要外界高阶能源介入,就能够连续进行热和电的不断产出。
采用本实施例的三级发电机组进行发电,发电机组可采用螺杆机组,一级发电系统的实际发电效率11%,二级发电机组实际发电效率10%,三级发 电机组实际发电效率8%。
三级梯度发电一级发电机组第一次计算条件:第1次发电进口温度为120℃,经发电机组出口温度为110℃,可用温差10℃;由于使用的是优质工况,发电机组设备系统发电效率为11%。
分析实例:
以中国北京地区为例:一栋20层的公寓楼,2个单元/栋,2户/单元,单户面积120㎡(按城镇居民人均住房建筑面积达到39.8㎡计);建筑面积:9600㎡/栋;80户/栋;
户均用电量分析:户均用电量为10度/天;冰箱每天耗电1.2度,月用36度;电视机功率265W,日用5小时,耗电1.3度,月用39度;电脑功率250W,日用6小时,耗电1.5度,月用45度;热水器功率2000W,2天用一个小时,月用30度;空调每年使用3个月,每天耗电18度,共计1620度,分摊到每月135度;另外电饭煲、洗衣机、微波炉、电磁灶、饮水机、热风机等小家电每月用电40度左右。每月共计用电约325度。一栋楼每天用电量=10KWh/天×80户=800KWh。每栋楼公共区域用电量:共计约52kwh。一栋楼每天用电量合计约852KWh。
户均供暖热负荷:普通建筑单位热负荷q=50W/㎡,1W=3.6KJ/h,每户建筑面积120㎡,50Wx3.6KJ/hx120㎡=21600KJ/h·户。一栋楼每小时用热量=21600KJ/h·户×80户=1728000KJ/h·栋。
户均生活热水用量:根据《建筑给水排水设计标准》普通住宅热水用水定额48L/人·天,户均人数2.8人计,约134L/天·户。一栋楼每天用热水量=134L/天·户×80户=10720L/天。
三级梯度发电一级发电机组第一次测算:热源进出口温差从120℃降低 至110℃可释放的热量Q(kJ)为:根据热工学公式为Q=CM▽t,水的比热常数为4.2kJ/(kg·℃),即Q=4.2kJ/(kg·℃)×226m 3×1000kg×(120-110)℃=9495360kJ;热能与电能的等量常数:1KJ=0.2389kCal;Q=9495360kJ×0.2389kcal=2268442kcal;根据电能换算1kwh=860KCal,按设备系统发电效率11%计,每小时热转电X=2268442÷860×0.11=290KWh。
三级梯度发电二级发电机组第二次计算条件:第1次发电出口温度为110℃,扣除热损耗5℃,第2次发电进口温度为105℃,出口温度为98℃,可用温差7℃;由于工况质量降低,相应的发电机组设备系统发电效率为10%。
三级梯度发电二级发电机组第二次测算:热源进出口温差从105℃降低至98℃可释放的热量Q(kJ)为:根据热工学公式为Q=CM▽t,水的比热常数为4.2kJ/(kg·℃),即Q=4.2kJ/(kg·℃)×226m 3×1000kg×(105-98)℃=6646752kJ;热能与电能的等量常数:1KJ=0.2389kCal;Q=6646752kJ×0.2389kcal=1587909kcal;根据电能换算1kwh=860KCal,按设备系统发电效率10%计;每小时热转电X=1587909÷860×0.10=185KWh。
三级梯度发电三级发电机组第三次计算条件:第2次发电出口温度为98℃,扣除热损耗8℃,第3次发电进口温度为90℃,出口温度为85℃,可用温差5℃;由于工况质量再次降低,相应的发电机组设备系统发电效率为8%;
三级梯度发电三级发电机组第三次测算:根据热工学公式为Q=CM▽t,水的比热常数为4.2kJ/(kg·℃),即Q=4.2kJ/(kg·℃)×226m 3×1000kg×(90-85)℃=4747680kJ;热能与电能的等量常数:1KJ=0.2389kCal;Q=4747680kJ×0.2389kcal=1134221kcal;根据电能换算1kwh=860KCal,按设 备系统发电效率8%计;每小时热转电X=1134221÷860×0.08=106KWh。
由以上测算可知,梯级发电第1次测算:每小时约290kwh;梯级发电第2次测算:每小时约185kwh;梯级发电第3次测算:每小时约106kwh;3次梯级发电测算合计:每小时约581kwh;发电系统每天热转电测算:581kwh×24小时=13927kwh。
余热供暖热量测算:地热井经过梯级发电后余热温度85℃,介质余热供暖温度85℃,介质余热供暖回流温度60℃,温差=85-60=25℃;水的比热C=4.2×1000J/kg℃=4.2KJ/kg℃,介质流量M=226m 3/h;一次放热量:Q=CM▽t=4.2KJ/kg℃×226080kg/h×25℃=23738400KJ/h。
余热供生活热水热量测算:地热井经过梯级发电后余热温度85℃,介质余热供暖温度85℃,介质余热供暖回流温度75℃,温差△t=85-75=10℃;水的比热C=4.2×1000J/kg℃=4.2KJ/kg℃,介质流量M=226m 3/h;一次放热量:Q=CM▽t=4.2KJ/kg℃×226080kg/h×10℃=9495360KJ/h。
满足楼栋数计算:13927kwh/天×70%÷852kwh/栋=11栋;一组多级发电系统每天发电量可满足11栋楼,建筑面积105600㎡,880户的用电需求。
每天余热供暖满足楼栋数计算:23738400KJ/h÷1728000KJ/h·栋=13栋,每天余热供暖可满足13栋楼,建筑面积124800㎡,1040户的供暖需求。
9495360KJ/h÷(4.2KJ/kg℃×35℃)=64594.29kg/h≈65m 3/h,每天产生热水量=65m 3/h×24h=1550m 3/d。一栋楼每天用热水量=134L/d·户×80户=10720L/d·栋≈11m 3/d·栋。每天供热水预留50%备用余量后,满足楼栋数=1550m 3/d×50%÷11m 3/d·栋=70栋,每天余热供暖可满足70栋楼(约5600户)生活热水需求。
在本发明的描述中,需要理解的是,术语“上”、“下”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。在本发明的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。
在本发明中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系,除非另有明确的限定。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。
在本发明中,除非另有明确的规定和限定,第一特征在第二特征“上”或“下”可以是第一和第二特征直接接触,或第一和第二特征通过中间媒介间接接触。而且,第一特征在第二特征“之上”、“上方”和“上面”可是第一特征在第二特征正上方或斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”可以是第一特征在第二特征正下方或斜下方,或仅仅表示第一特征水平高度小于第二特征。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示 例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
尽管上面已经示出和描述了本发明的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本发明的限制,本领域的普通技术人员在本发明的范围内可以对上述实施例进行变化、修改、替换和变型。

Claims (11)

  1. 一种利用中深层低温地能实现低温差多级发电系统,其特征在于,包括:地源热循环传输系统、多级发电系统及余热利用系统,所述地源热循环传输系统的输出端和输入端之间设有热循环管路,所述热循环管路依次通过多级发电系统和余热利用系统进行热交换,多级发电系统以及余热利用系统串联布置,余热利用系统设置在多级发电系统的下游;相邻两级发电系统的导热介质入口温度的温差为5℃~25℃。
  2. 根据权利要求1所述一种利用中深层低温地能实现低温差多级发电系统,所述发电系统的能源来源为中深层地能,所述地源热循环传输系统提取的地热温度范围为140至110℃。
  3. 根据权利要求1所述一种利用中深层低温地能实现低温差多级发电系统,其特征在于,多级发电系统中,每一级所利用的温差范围为:导热介质入口温度和导热介质出口温度的温差为5℃~15℃。
  4. 根据权利要求1所述一种利用中深层低温地能实现低温差多级发电系统,其特征在于,沿地源热循环传输系统中导热介质的流向,多级发电系统的导热介质入口温度依次降低;下一级发电系统中工质的汽化点低于邻近的上一级发电系统中工质的汽化点。
  5. 根据权利要求1所述一种利用中深层低温地能实现低温差多级发电系统,其特征在于,沿地源热循环传输系统中导热介质的流向,多级发电系统依次包括一级发电系统、二级发电系统、三级发电系统,所述余热利用系统的导热介质入口温度为90~60℃。
  6. 根据权利要求1所述一种利用中深层低温地能实现低温差多级发电 系统,其特征在于,所述发电系统包括发电热泵热交换器、蒸汽发生器、工质循环系统以及外循环冷却系统,多级发电系统的发电热泵热交换器均设置在所述热循环管路上;
    所述蒸汽发生器与所述发电热泵热交换器之间通过热泵循环管路连接,所述热泵循环管路上设有油泵;所述蒸汽发生器与所述工质循环系统连接,所述工质循环系统与所述外循环冷却系统连接。
  7. 根据权利要求6所述一种利用中深层低温地能实现低温差多级发电系统,其特征在于,所述工质循环系统包括工质分离器、高温回热器、发电机,所述工质分离器分别通过第一工质输入管路和第二工质输入管路与外循环冷却系统的输入端连接,所述第一工质输入管路上连接有高温回热器,所述第二工质输入管路上连接有发电机;所述外循环冷却系统的输出端连接有工质输出管路,所述工质输出管路的末端与工质分离器连接,所述工质输出管路沿工质流动方向依次连接高温回热器和蒸汽发生器。
  8. 根据权利要求7所述一种利用中深层低温地能实现低温差多级发电系统,其特征在于,所述第一工质输入管路和第二工质输入管路分别连接混合器后,再与外循环冷却系统的输入端连接;
    所述高温回热器下游的第一工质输入管路上设有第一减压阀,所述工质分离器与工质透平之间的第二工质输入管路上设有第二减压阀。
  9. 根据权利要求6所述一种利用中深层低温地能实现低温差多级发电系统,其特征在于,所述外循环冷却系统包括低温回热器、冷源循环系统和工质泵,所述发电系统的输出端和输入端分别通过低温回热器与冷却循环回路连接,所述工质泵设置在所述冷却循环回路上;所述冷却循环回路上设有冷源循环系统和工质储液罐,所述工质储液罐位于所述冷源循环系统的下 游;
    所述冷源循环系统的冷源为城市或自然水域冷水源。
  10. 根据权利要求1所述一种利用中深层低温地能实现低温差多级发电系统,其特征在于,所述地源热循环传输系统包括地下井和中深层地热导管,所述中深层地热导管的热源输出端和冷源输入端之间设有热循环管路;所述地源热循环传输系统、多级发电系统及余热利用系统全部为只有热传递的密闭循环。
    所述发电系统为卡琳娜循环发电系统;所述地源热循环传输系统为独立密闭循环系统,所述地源热循环传输系统内设有导热介质。
  11. 一种利用中深层低温地能实现低温差多级发电方法,其特征在于,采用权利要求1至10任一项所述的利用中深层低温地能实现低温差多级发电系统实现,包括以下步骤:利用地源热循环传输系统中的导热介质将地热能提取至多级发电系统;地热能经过多级发电系统依次做功,将地热能转换为电能,每级发电系统的地热能转换为电能的转换效率为5%~20%;经过多级发电系统对地热能的发电转换后,导热介质剩余的余热进入到余热利用系统进行继续利用,经过余热利用的导热介质通过热循环管路闭合循环进入到地源热循环传输系统中再次提取地热能。
PCT/CN2022/110780 2022-06-15 2022-08-08 一种利用中深层低温地能实现低温差多级发电系统及方法 WO2023240775A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210679287.X 2022-06-15
CN202210679287.XA CN115076056A (zh) 2022-06-15 2022-06-15 一种利用中深层低温地能实现低温差多级发电系统及方法

Publications (1)

Publication Number Publication Date
WO2023240775A1 true WO2023240775A1 (zh) 2023-12-21

Family

ID=83253825

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/110780 WO2023240775A1 (zh) 2022-06-15 2022-08-08 一种利用中深层低温地能实现低温差多级发电系统及方法

Country Status (2)

Country Link
CN (1) CN115076056A (zh)
WO (1) WO2023240775A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110159377A (zh) * 2019-05-31 2019-08-23 深圳大学 中低温地热工质梯级利用orc磁悬浮发电系统
CN112032804A (zh) * 2020-07-27 2020-12-04 中国地质科学院水文地质环境地质研究所 中低温地热梯级开发利用的发电和集中供热系统及方法
JP6896137B1 (ja) * 2020-12-08 2021-06-30 ハイブリッドエナジー株式会社 地熱発電に用いる熱交換器及びこれを利用する地熱発電システム
CN113864017A (zh) * 2021-09-26 2021-12-31 西安石油大学 一种利用lng冷能和地热能的卡琳娜/有机朗肯联合循环发电系统
CN215809494U (zh) * 2021-07-08 2022-02-11 南京国电南自新能源工程技术有限公司 一种基于地热能的冷热电多能联供系统
CN114321858A (zh) * 2022-01-17 2022-04-12 山东华电节能技术有限公司 一种地热能梯级利用多级循环闪蒸蒸汽替代系统及方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110159377A (zh) * 2019-05-31 2019-08-23 深圳大学 中低温地热工质梯级利用orc磁悬浮发电系统
CN112032804A (zh) * 2020-07-27 2020-12-04 中国地质科学院水文地质环境地质研究所 中低温地热梯级开发利用的发电和集中供热系统及方法
JP6896137B1 (ja) * 2020-12-08 2021-06-30 ハイブリッドエナジー株式会社 地熱発電に用いる熱交換器及びこれを利用する地熱発電システム
CN215809494U (zh) * 2021-07-08 2022-02-11 南京国电南自新能源工程技术有限公司 一种基于地热能的冷热电多能联供系统
CN113864017A (zh) * 2021-09-26 2021-12-31 西安石油大学 一种利用lng冷能和地热能的卡琳娜/有机朗肯联合循环发电系统
CN114321858A (zh) * 2022-01-17 2022-04-12 山东华电节能技术有限公司 一种地热能梯级利用多级循环闪蒸蒸汽替代系统及方法

Also Published As

Publication number Publication date
CN115076056A (zh) 2022-09-20

Similar Documents

Publication Publication Date Title
CN206739398U (zh) 一种基于吸收式换热的热电联产集中供热系统
CN105431686B (zh) 地热源与远距离供热网的热工连接
CN102338051B (zh) 一种太阳能及地源热一体化电冷热联供装置
CN202579063U (zh) Tr有机郎肯循环地热发电装置
WO2018176691A1 (zh) 一种油气田分布式多能互补能源微网系统
Li et al. Combined heat and water system for long-distance heat transportation
CN102478272A (zh) 一种太阳能供暖系统
Zhang et al. Municipal space heating using a ground source absorption heat pump driven by an urban heating system
CN109059149A (zh) 太阳能-地热能光热电复合能源系统及其应用
Rowshanzadeh Performance and cost evaluation of Organic Rankine Cycle at different technologies
CN102080635A (zh) 一种利用太阳能和地热发电的装置及该装置的使用方法
CN203081665U (zh) 分布式多级太阳能热发电系统
CN113237134A (zh) 基于电热泵单元的地热能集中供热系统
WO2023240775A1 (zh) 一种利用中深层低温地能实现低温差多级发电系统及方法
Coskun et al. Performance assessment of a novel hybrid district energy system
RU2459157C1 (ru) Гелио-геотермическая станция и способ ее эксплуатации
CN215809494U (zh) 一种基于地热能的冷热电多能联供系统
CN103147941A (zh) 利用地热热能的发电装置
CN212179278U (zh) 一种地源热泵系统地下岩土热量补充装置
CN211116438U (zh) 一种基于海洋温差能的发电制冷联合循环系统
CN203081664U (zh) 工厂化农业多级太阳能与其他能源互补热发电系统
CN208090778U (zh) 一种基于热电机组抽汽的能源站系统
CN207920783U (zh) 一种基于联合储能的三压三热太阳能热发电系统
CN102865202B (zh) 分布式多级太阳能热发电及多联产系统
CN202851278U (zh) 单循环低温tr地热发电装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22946448

Country of ref document: EP

Kind code of ref document: A1