WO2023238762A1 - Method for producing blue cured film, blue photosensitive composition, color filter and method for producing same, and display device - Google Patents

Method for producing blue cured film, blue photosensitive composition, color filter and method for producing same, and display device Download PDF

Info

Publication number
WO2023238762A1
WO2023238762A1 PCT/JP2023/020425 JP2023020425W WO2023238762A1 WO 2023238762 A1 WO2023238762 A1 WO 2023238762A1 JP 2023020425 W JP2023020425 W JP 2023020425W WO 2023238762 A1 WO2023238762 A1 WO 2023238762A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
blue
mass
photoinitiator
oxime
Prior art date
Application number
PCT/JP2023/020425
Other languages
French (fr)
Japanese (ja)
Inventor
充史 小野
亮 林
Original Assignee
株式会社Dnpファインケミカル
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Dnpファインケミカル filed Critical 株式会社Dnpファインケミカル
Publication of WO2023238762A1 publication Critical patent/WO2023238762A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C323/00Thiols, sulfides, hydropolysulfides or polysulfides substituted by halogen, oxygen or nitrogen atoms, or by sulfur atoms not being part of thio groups
    • C07C323/23Thiols, sulfides, hydropolysulfides or polysulfides substituted by halogen, oxygen or nitrogen atoms, or by sulfur atoms not being part of thio groups containing thio groups and nitrogen atoms, not being part of nitro or nitroso groups, bound to the same carbon skeleton
    • C07C323/31Thiols, sulfides, hydropolysulfides or polysulfides substituted by halogen, oxygen or nitrogen atoms, or by sulfur atoms not being part of thio groups containing thio groups and nitrogen atoms, not being part of nitro or nitroso groups, bound to the same carbon skeleton having the sulfur atom of at least one of the thio groups bound to a carbon atom of a six-membered aromatic ring of the carbon skeleton
    • C07C323/32Thiols, sulfides, hydropolysulfides or polysulfides substituted by halogen, oxygen or nitrogen atoms, or by sulfur atoms not being part of thio groups containing thio groups and nitrogen atoms, not being part of nitro or nitroso groups, bound to the same carbon skeleton having the sulfur atom of at least one of the thio groups bound to a carbon atom of a six-membered aromatic ring of the carbon skeleton having at least one of the nitrogen atoms bound to an acyclic carbon atom of the carbon skeleton
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/44Polymerisation in the presence of compounding ingredients, e.g. plasticisers, dyestuffs, fillers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/46Polymerisation initiated by wave energy or particle radiation
    • C08F2/48Polymerisation initiated by wave energy or particle radiation by ultraviolet or visible light
    • C08F2/50Polymerisation initiated by wave energy or particle radiation by ultraviolet or visible light with sensitising agents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F20/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride, ester, amide, imide or nitrile thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F265/00Macromolecular compounds obtained by polymerising monomers on to polymers of unsaturated monocarboxylic acids or derivatives thereof as defined in group C08F20/00
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B11/00Diaryl- or thriarylmethane dyes
    • C09B11/04Diaryl- or thriarylmethane dyes derived from triarylmethanes, i.e. central C-atom is substituted by amino, cyano, alkyl
    • C09B11/10Amino derivatives of triarylmethanes
    • C09B11/12Amino derivatives of triarylmethanes without any OH group bound to an aryl nucleus
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B19/00Oxazine dyes
    • C09B19/02Bisoxazines prepared from aminoquinones
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B47/00Porphines; Azaporphines
    • C09B47/04Phthalocyanines abbreviation: Pc
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/027Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds
    • G03F7/028Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds with photosensitivity-increasing substances, e.g. photoinitiators
    • G03F7/031Organic compounds not covered by group G03F7/029
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/35Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/38Devices specially adapted for multicolour light emission comprising colour filters or colour changing media [CCM]

Definitions

  • Patent Document 1 describes (1) forming a coating film of a colored radiation-sensitive composition containing at least one selected from the group consisting of dyes and lake pigments on a substrate; and (2) the coating film.
  • a method for forming a pixel pattern including a step of exposing at least a portion of the image using an ultraviolet LED is described, and an ultraviolet LED having a peak wavelength of 365 nm is used.
  • the LED lamp exposure machine has a single wavelength, and mainly uses an LED lamp having an emission peak wavelength of i-line at 365 nm.
  • an LED lamp having an emission peak wavelength of i-line at 365 nm is used, there is a problem in that the blue resist (blue photosensitive composition) in particular is difficult to cure.
  • the i-line of 365 nm is a wavelength range that is easily absorbed by blue resist and difficult to transmit, it was considered that the photoinitiator was difficult to react with and hard to cure. In recent years, blue resists with higher coloring material concentrations have been particularly difficult to cure.
  • Insufficient curing causes problems such as a decrease in the residual film rate after development, a line width that becomes too thin, poor adhesion to the substrate during pattern formation, and the inability to form a good pattern.
  • an LED lamp that has a peak emission wavelength in the H-line 405 nm, which is a longer wavelength than the I-line 365 nm, the light spreads and the line width tends to increase because the blue resist easily passes through the wavelength range, but the energy is Since the h-line is weaker than the i-line, it is difficult to ensure the remaining film rate after development, and it is difficult to maintain a balance between the remaining film rate and the line width.
  • the present invention has been made in view of the above circumstances, and provides a method for producing a blue cured film that can form a good pattern even by LED exposure, and a method for producing a color filter using the method for producing the blue cured film.
  • the purpose is to provide Another object of the present invention is to provide a blue photosensitive composition suitably used in the method for producing the blue cured film, and a color filter and display device formed using the blue photosensitive composition.
  • the present invention relates to the following [1] to [7].
  • a method for producing a blue cured film comprising: [2] In the LED light source, the intensity ratio (A/B) between the intensity of the emission peak wavelength of 360 nm to 380 nm (A) and the intensity of the emission peak wavelength of 400 nm to 420 nm (B) is 10/90 to 90/10.
  • the oxime photoinitiator is selected from the group consisting of an oxime photoinitiator having a diphenyl sulfide skeleton, an oxime photoinitiator having an indole skeleton, and an oxime photoinitiator having a carbazole skeleton. At least one method for producing a blue cured film according to [1] or [2].
  • Z 1 , Z 3 , Z 4 and Z 5 each independently represent a hydrogen atom, a linear or branched alkyl group having 1 to 12 carbon atoms, or a C 3 to 20 represents a cycloalkyl group or a phenyl group, and each of the alkyl group, cycloalkyl group, and phenyl group is substituted with a substituent selected from the group consisting of a halogen atom, an alkoxy group having 1 to 6 carbon atoms, and a phenyl group.
  • Z2 represents an alkyl group having 1 to 20 carbon atoms substituted with a cycloalkyl group.
  • a method for producing a color filter comprising at least a substrate and a colored layer including a blue cured film provided on the substrate, A method for producing a color filter, comprising the step of producing the cured blue film by the method for producing a cured blue film according to any one of [1] to [3] above.
  • a color filter comprising at least a substrate and a colored layer provided on the substrate, wherein at least one of the colored layers is a cured product of the blue photosensitive composition according to [4] above. color filter.
  • a display device comprising the color filter according to [6] above.
  • the present invention it is possible to provide a method for manufacturing a blue cured film that can form a good pattern even by LED exposure, and a method for manufacturing a color filter using the method for manufacturing the blue cured film. Further, the present invention can provide a blue photosensitive composition suitably used in the method for producing the blue cured film, and a color filter and display device formed using the blue photosensitive composition.
  • FIG. 1 is a schematic diagram showing an example of a color filter of the present invention.
  • FIG. 2 is a schematic diagram showing an example of a liquid crystal display device of the present invention.
  • FIG. 3 is a schematic diagram showing an example of an organic light emitting display device of the present invention.
  • light includes electromagnetic waves with wavelengths in visible and non-visible regions, as well as radiation
  • radiation includes, for example, microwaves and electron beams.
  • electromagnetic waves with a wavelength of 5 ⁇ m or less and electron beams.
  • (meth)acryloyl represents each of acryloyl and methacryloyl
  • (meth)acrylic represents each of acrylic and methacryl
  • (meth)acrylate represents each of acrylate and methacrylate.
  • " ⁇ " indicating a numerical range is used to include the numerical values written before and after it as a lower limit value and an upper limit value.
  • the method for producing a blue cured film according to the present invention includes a coloring material, an alkali-soluble resin, a photopolymerizable compound, an oxime-based photoinitiator, and a oxime-based photoinitiator having a wavelength of 400 nm to 420 nm different from the oxime-based photoinitiator.
  • the method includes a step of exposing and curing the coating film using an LED light source having an emission peak wavelength of 360 nm to 380 nm and 400 nm to 420 nm.
  • the method for producing a blue cured film according to the present invention includes a coloring material, an alkali-soluble resin, a photopolymerizable compound, an oxime-based photoinitiator, and an oxime-based photoinitiator that has a sensitizing effect at a wavelength of 400 nm to 420 nm different from the oxime-based photoinitiator.
  • a coating film of a blue photosensitive composition containing a photoinitiator containing a sensitizer is exposed and cured using an LED light source having emission peak wavelengths of 360 nm to 380 nm and 400 nm to 420 nm.
  • a blue photosensitive composition that can effectively use light having an emission peak wavelength of 400 nm to 420 nm by combining an oxime photoinitiator and a sensitizer different from the oxime photoinitiator and having a sensitizing effect in the 400 nm to 420 nm range.
  • LED light sources with emission peak wavelengths in both 360 nm to 380 nm and 400 nm to 420 nm, they complement each other's disadvantages of insufficient curing and line width shift, and suppress line width shift. Since it can be cured well to the deep part, it is thought that a good pattern can be formed while suppressing line width shift, and the adhesion to the substrate is also improved.
  • Coating film forming process First, a coloring material, an alkali-soluble resin, a photopolymerizable compound, an oxime-based photoinitiator, and a sensitizer having a sensitizing effect at 400 nm to 420 nm different from the oxime-based photoinitiator.
  • the method includes forming a coating film of a blue photosensitive composition containing a photoinitiator on a substrate.
  • the blue-sensitive composition used in the present invention will be described later.
  • a transparent substrate, a silicon substrate, or a substrate in which a thin film of aluminum, silver, silver/copper/palladium alloy, etc. is formed on a transparent substrate or a silicon substrate is used.
  • Other color filter layers, resin layers, transistors such as TFTs, circuits, etc. may be formed on these substrates.
  • the transparent substrate in the present invention is not particularly limited as long as it is a base material that is transparent to visible light, and for example, a transparent substrate used in general color filters can be used.
  • non-flexible transparent rigid materials such as quartz glass, alkali-free glass, and synthetic quartz plates, or transparent flexible materials that have flexibility such as transparent resin films, optical resin plates, and flexible glass. Examples include wood.
  • the thickness of the transparent substrate is not particularly limited, but may be, for example, about 100 ⁇ m to 1 mm depending on the use of the blue cured film produced by the present invention.
  • a blue photosensitive composition to be described later is applied onto the substrate using a coating method such as a spray coating method, a dip coating method, a bar coating method, a roll coating method, a spin coating method, or a die coating method to form a wet coating film.
  • a coating method such as a spray coating method, a dip coating method, a bar coating method, a roll coating method, a spin coating method, or a die coating method to form a wet coating film.
  • spin coating and die coating are preferably used.
  • the wet coating film is dried (prebaked) using a hot plate, an oven, or the like to form a coating film.
  • Prebaking is usually performed by combining reduced pressure drying and heat drying. Drying under reduced pressure is usually carried out until a pressure of 50 Pa to 200 Pa is reached.
  • the heating drying conditions are usually about 1 minute to 10 minutes at a temperature of 70° C. to 110° C. using a hot plate.
  • the thickness of the applied coating film may be adjusted appropriately depending on the use of the blue cured film, and the thickness of the coating film after drying is, for example, 0.5 ⁇ m to 5.0 ⁇ m, preferably 1 ⁇ m. Examples include .0 ⁇ m to 3.0 ⁇ m.
  • the exposure step is a step of exposing and curing the coating film using an LED light source having an emission peak wavelength of 360 nm to 380 nm and 400 nm to 420 nm.
  • emission peak wavelength refers to the wavelength at which the emission intensity is maximum in the LED emission spectrum, and is measured using a spectral irradiance meter (for example, USR-45DA-14 (manufactured by Ushio Inc.)). be able to.
  • the LED light source having emission peak wavelengths of 360 nm to 380 nm and 400 nm to 420 nm used in the present invention there are cases in which light having the above two types of emission peak wavelengths is irradiated from one LED irradiation device, and two cases. Both cases of irradiation from the above LED irradiation device are included. Furthermore, an LED light source having emission peak wavelengths between 360nm and 380nm and between 400nm and 420nm may have two or more emission peak wavelengths between 360nm and 380nm, and two or more emission peak wavelengths between 400nm and 420nm. May have. Furthermore, the LED light sources having emission peak wavelengths in 360 nm to 380 nm and 400 nm to 420 nm may or may not have emission peak wavelengths in other wavelength ranges.
  • the intensity ratio (A/B) between the intensity of the emission peak wavelength of 360 nm to 380 nm (A) and the intensity of the emission peak wavelength of 400 nm to 420 nm (B) is It may be appropriately selected depending on the use of the cured film and is not particularly limited.
  • the intensity ratio (A/B) may be, for example, 1/99 to 99/1, 5/95 to 95/5, and preferably 10/90 to 90/10, More preferably, the ratio is 10/90 to 80/20.
  • the intensity ratio (A/B) may be from 20/80 to 80/20, and even more from 40/60 to 60/40, depending on the use of the blue photosensitive composition and its cured film.
  • the intensity ratio (A/B) can be confirmed using a spectral irradiance meter (for example, USR-45DA-14 (manufactured by Ushio Inc.)).
  • a spectral irradiance meter for example, USR-45DA-14 (manufactured by Ushio Inc.)
  • the intensity (A) of the emission peak wavelengths in the range of 360 nm to 380 nm is defined as the intensity (A) of the emission peak wavelengths in the range of 360 nm to 380 nm.
  • the LED light source used in the present invention having an emission peak wavelength of 360nm to 380nm and 400nm to 420nm includes an LED chip having an emission peak wavelength of 360nm to 380nm, and an LED chip having an emission peak wavelength of 400nm to 420nm. They may be used in combination.
  • the intensity ratio (A/B) and the curing of the blue photosensitive composition are determined depending on the number and ratio of LED chips having an emission peak wavelength of 360 nm to 380 nm and LED chips having an emission peak wavelength of 400 nm to 420 nm. This is preferable because it is easy to adjust the properties appropriately.
  • the LED chip used in the LED light source may be equipped with a condenser lens for the purpose of further increasing the illuminance.
  • LED chip having an emission peak wavelength of 360 nm to 380 nm or 400 nm to 420 nm commercially available LEDs can be appropriately selected and used.
  • a commercially available LED for example, a UV-LED manufactured by Nichia Chemical Industries, Ltd. can be used, and specifically, NVSU233B (365 nm), NWSU333B (365 nm), NWSU333B-D4 (367 nm), NCSU276C (365 nm). , NVSU119C (375 nm), NVSU119C (405 nm), etc., but are not limited to these.
  • each LED chip When using a combination of an LED chip having an emission peak wavelength of 360 nm to 380 nm and an LED chip having an emission peak wavelength of 400 nm to 420 nm as an LED light source used in the present invention, the arrangement of each LED chip is particularly limited. It is not something that will be done.
  • the number ratio of each LED chip can be adjusted according to the intensity ratio (A/B), and the LED chips can be arranged, for example, with or without regularity.
  • an LED irradiation device having an emission peak wavelength of 360 nm to 380 nm and an LED irradiation device having an emission peak wavelength of 400 nm to 420 nm may be used simultaneously or sequentially for exposure. good. Further, the order of exposure of each LED irradiation device is not limited either.
  • the illumination intensity of the LED light source used in the present invention may be adjusted as appropriate, but is usually 5 mW/cm 2 or more, preferably 15 mW/cm 2 to 60 mW/cm 2 , and 60 mW/cm 2 or more. It may be 2 or more.
  • the cumulative amount of ultraviolet light from the LED light source may be adjusted appropriately depending on the thickness of the coating film, etc., but is usually 5 mJ/cm 2 to 200 mJ/cm 2 , and 200 mJ/cm 2 to 1000 mJ/cm 2 . There may be.
  • a cured coating film is formed in a desired pattern by performing a development process using a developer and dissolving and removing unexposed areas.
  • the developer is preferably an alkaline developer, such as sodium carbonate, sodium hydroxide, potassium hydroxide, tetramethylammonium hydroxide, choline, 1,8-diazabicyclo-[5.4.0]-7-undecene, An aqueous solution of 1,5-diazabicyclo-[4.3.0]-5-nonene or the like is used.
  • a water-soluble organic solvent such as methanol or ethanol, or a surfactant may be added to the alkaline developer. Note that after the alkaline development treatment, washing with water is usually performed.
  • development method for example, a shower development method, a spray development method, a dip development method, a paddle development method, etc. can be applied.
  • Development conditions can be, for example, at room temperature for 5 seconds to 300 seconds.
  • the cured coating film may be subjected to heat treatment in order to accelerate the polymerization reaction.
  • the heating conditions are appropriately selected depending on the heating means used, the blending ratio of each component in the blue-sensitive composition, the thickness of the cured coating film, etc.
  • the developer is usually washed and the cured coating film of the blue photosensitive composition is dried to form a blue cured film.
  • heat treatment may be performed in order to sufficiently harden the cured coating film.
  • the heating conditions are not particularly limited and are appropriately selected depending on the heating means used, the blending ratio of each component in the blue-sensitive composition, the thickness of the cured coating film, etc.
  • the heating time can be, for example, at 150° C. to 250° C. for about 20 minutes to 40 minutes.
  • the thickness of the patterned blue cured film thus formed after drying is, for example, 0.5 ⁇ m to 5.0 ⁇ m, preferably 1.0 ⁇ m to 3.0 ⁇ m.
  • the coloring material is not particularly limited as long as it is such that the color of the photosensitive composition is in the blue region, and is mixed so as to satisfy the above-mentioned range of chromaticity coordinates, for example.
  • the coloring material includes a blue coloring material, may further contain a purple coloring material, and may further contain other coloring materials.
  • a non-curing thermoplastic resin composition may be used as long as it can form a transparent coating film that allows color measurement, or a photocurable (photosensitive) or thermosetting resin composition may be used.
  • the solid content other than the coloring material used in the photosensitive composition of Example 1 described below can be used as a dispersant and a binder component.
  • a transparent coating film containing a dispersant and a binder component and capable of color measurement for example, a film thickness of 2.0 ⁇ m and a spectral transmittance of 95% or more in the range from 380 nm to 780 nm are recommended. It can be done.
  • the spectral transmittance spectrum can be measured using a spectrometer (for example, Olympus Microspectrophotometer OSP-SP200).
  • the blue coloring material used in the present invention is not particularly limited, and known blue organic pigments, blue dyes, blue lake coloring materials that are salt-forming compounds of blue dyes, etc. can be used.
  • the blue organic pigment has excellent resistance such as heat resistance and light resistance compared to dyes and lake coloring materials, and the blue dye has higher transparency than the organic pigment because it is soluble.
  • lake coloring materials are derived from dyes, they have higher transmittance than ordinary pigments and can meet the demands for high brightness.
  • blue organic pigment examples include C.I. I. Pigment Blue 15, C. I. Pigment Blue 15:3, C. I. Pigment Blue 15:4, C. I. Pigment Blue 15:6, C. I. Pigment Blue 16, C. I. Pigment Blue 60 and the like.
  • copper phthalocyanine-based blue pigments are preferred because they have relatively excellent brightness.
  • blue dye examples include methine dyes, anthraquinone dyes, azo dyes, triarylmethane dyes, and phthalocyanine dyes.
  • the counter anion of the basic dye may be an organic anion or an inorganic anion.
  • the organic anion include organic compounds having an anionic group as a substituent.
  • a known acidic dye may be used as the organic anion.
  • an acidic dye and a basic dye exist as an ion pair.
  • the lake forming agent that generates these organic anions include alkali metal salts and alkaline earth metal salts of the above-mentioned organic anions.
  • examples of inorganic anions include oxoacid anions (phosphate ion, sulfate ion, chromate ion, tungstate ion (WO 4 2- ), molybdate ion (MoO 4 2- ), etc.), and examples include inorganic anions such as polyacid anions condensed with oxo acids, and mixtures thereof.
  • the polyacid may be an isopolyate anion (M m O n ) c- or a heteropolyacid anion (X l M m O n ) c- .
  • M represents a poly atom
  • X represents a hetero atom
  • m represents a composition ratio of poly atoms
  • n represents a composition ratio of oxygen atoms.
  • the poly atom M include Mo, W, V, Ti, and Nb.
  • the heteroatom X include Si, P, As, S, Fe, and Co.
  • c is a valence number and may be an integer of 2 or more. Among these, from the viewpoint of heat resistance, a polyacid anion containing at least one of molybdenum (Mo) and tungsten (W) is preferable, and a c-valent polyacid anion containing at least tungsten is more preferable.
  • Examples of the lake forming agent that generates inorganic anions include alkali salts and alkali metal salts of the above-mentioned inorganic anions.
  • the counter anions of the basic dyes in the lake coloring material can be used alone or in combination of two or more.
  • blue lake coloring material for example, C.I. I. Pigment Blue 1, C. I. Pigment Blue 1:2, C. I. Pigment Blue 2, C. I. Pigment Blue 3, C. I. Pigment Blue 8, C. I. Pigment Blue 9, C. I. Pigment Blue 10, C. I. Pigment Blue 12, C. I. Pigment Blue 14, C. I. Pigment Blue 17:1, C. I. Pigment Blue 18, C. I. Pigment Blue 19, C. I. Pigment Blue 24, C. I. Pigment Blue 24:1, C. I. Pigment Blue 53, C. I. Pigment Blue 56, C. I. Pigment Blue 56:1, C. I. Pigment Blue 61, C. I. Pigment Blue 61:1, C. I. Pigment Blue 62, C. I.
  • the blue lake coloring material may be a triarylmethane-based lake coloring material, and may be a coloring material represented by the following general formula (1) or a coloring material represented by the following general formula. It may be at least one type of lake coloring material selected from the group consisting of coloring materials represented by (2).
  • A is an a-valent organic group in which the carbon atom directly bonded to N does not have a ⁇ bond, and the organic group has at least a saturated aliphatic carbon at the end directly bonded to N. It represents an aliphatic hydrocarbon group having a hydrogen group or an aromatic group having the aliphatic hydrocarbon group, and a hetero atom may be included in the carbon chain.
  • B c- represents a c-valent polyacid anion.
  • R i to R v each independently represent a hydrogen atom, an alkyl group that may have a substituent, or an aryl group that may have a substituent, and R ii and R iii , R iv and R v may be combined to form a ring structure.
  • R vi and R vii each independently represent an alkyl group that may have a substituent, an alkoxy group that may have a substituent, a halogen atom, or a cyano atom. represents a group.
  • Ar 1 represents a divalent aromatic group which may have a substituent.
  • a plurality of R i to R vii and Ar 1 may be the same or different.
  • a and c represent integers of 2 or more, and b and d represent integers of 1 or more.
  • f and g represent integers from 0 to 4.
  • a plurality of f and g may be the same or different. )
  • R I to R VI each independently represent a hydrogen atom, an alkyl group that may have a substituent, or an aryl group that may have a substituent, and R I and R II , R III and R IV , and R V and R VI may combine to form a ring structure.
  • R VII and R VIII each independently represent an alkyl group that may have a substituent, or a substituent. represents an alkoxy group, a halogen atom, or a cyano group that may have a substituent.
  • Ar 2 represents a divalent aromatic heterocyclic group that may have a substituent, and the plurality of R I to R VIII and Ar 2 are Each may be the same or different.
  • E m- represents an m-valent polyacid anion.
  • m represents an integer of 2 or more.
  • j is 0 or 1; when j is 0, there is no bond.
  • k and l represent integers from 0 to 4, and k+j and l+j are from 0 to 4.
  • a plurality of j, k, and l may be the same or different.
  • the blue coloring material may be appropriately selected depending on the use of the blue cured film, but in the case of color filter use, C. I. Pigment Blue 15:6, C. I. Pigment Blue 15:3, C. I. Pigment Blue 15:4, and one or more selected from the group consisting of triarylmethane lake coloring materials are preferred from the viewpoint of hue.
  • the 440 nm transmittance is 40% or more
  • the 520 nm transmittance is less than 10%
  • the 680 nm transmittance is 40% or more.
  • a coloring material with a transmittance of 40% or more is used.
  • the purple coloring material used in the present invention includes a reddish-purple coloring material that is called a red dye. Note that color measurement by forming a single coating film on the purple coloring material can be performed in the same manner as in the case of the blue coloring material described above.
  • Examples of the purple organic pigment include C.I. I. Pigment Violet 1, 14, 15, 19, 23, 29, 32, 33, 36, 37, 38 and the like. Among them, Pigment Violet 23 is preferred because it has relatively excellent coloring power.
  • Examples of the purple lake coloring material include those obtained by turning the above-mentioned purple dye into a lake using a lake forming agent.
  • the counter ions differ depending on the type of dye, and the counter ions for acidic dyes are cations, and the counter ions for basic dyes are anions.
  • the counter cation of the acidic dye and the counter anion of the basic dye the same ones as mentioned above for the blue dye can be used.
  • a xanthene coloring material containing xanthene as a basic skeleton and including a rhodamine coloring material is preferable from the viewpoint of improving the brightness and contrast of the colored layer.
  • the xanthene acid dye in the lake coloring material preferably contains a compound represented by the following general formula (3), that is, a rhodamine acid dye.
  • R a to R d each independently represent a hydrogen atom, an alkyl group, an aryl group, or a heteroaryl group, and R a and R b , and R c and R d bond A ring structure may be formed.
  • R e represents an acidic group
  • X represents a halogen atom
  • m represents an integer of 0 to 5.
  • General formula (3) has one or more acidic groups; , n is an integer greater than or equal to 0.
  • a metal lake coloring material is preferably used as the lake coloring material of the xanthene acid dye.
  • the metal lake coloring material includes a metal atom as a lake agent.
  • a lake forming agent containing metal atoms By using a lake forming agent containing metal atoms, the heat resistance of the coloring material increases.
  • a lake forming agent a lake forming agent containing a metal atom that becomes a divalent or higher metal cation is preferable.
  • the content ratio of the purple coloring material to the blue coloring material is not particularly limited as long as it is appropriately adjusted according to the desired chromaticity.
  • desired chromaticity for various light sources, it is possible to include 3 parts by mass or more and 100 parts by mass or less of a violet coloring material per 100 parts by mass of a blue coloring material, and 5 parts by mass or more and 80 parts by mass or less. May be contained.
  • the purple coloring material may be contained in 1% by mass or more and 50% by mass or less, 3% by mass or more and 40% by mass or less, and 5% by mass or more and 30% by mass or less, based on the total amount of the coloring material. You may.
  • the coloring material may further contain other coloring materials, but the total content of the blue coloring material and the purple coloring material is based on the total amount of the coloring material. It is more preferably 70% by mass or more and 100% by mass or less, even more preferably 80% by mass or more and 100% by mass or less.
  • the content of the coloring material is not particularly limited. From the viewpoint of dispersibility and dispersion stability, the content of the coloring material is usually within the range of 3% by mass to 65% by mass, preferably 4% by mass to 60% by mass, based on the total solid content of the blue photosensitive composition. %, more preferably 15% to 60% by weight. If it is at least the above lower limit, the colored layer will have sufficient color density when the blue photosensitive composition is applied to a predetermined thickness (usually 1.0 ⁇ m to 5.0 ⁇ m). Moreover, if it is below the said upper limit, a colored layer which is excellent in storage stability, and has sufficient hardness and adhesiveness with the substrate can be obtained.
  • the total content of colorants is preferably 20% by mass to 65% by mass, more preferably 30% by mass, based on the total solid content of the blue-sensitive composition. It is within the range of 60% by mass.
  • the alkali-soluble resins may form crosslinks with each other, or the alkali-soluble resin and a photopolymerizable compound such as a polyfunctional monomer may form a crosslink.
  • the film strength is improved, so that pigments are less likely to aggregate even during post-baking, and the retardation can be maintained at a low level.
  • the method for introducing ethylenically unsaturated bonds into the alkali-soluble resin may be appropriately selected from conventionally known methods. For example, a method of adding a compound having both an epoxy group and an ethylenically unsaturated bond in the molecule, such as glycidyl (meth)acrylate, to the carboxyl group of an alkali-soluble resin to introduce an ethylenically unsaturated bond into the side chain.
  • a method in which a structural unit having a hydroxyl group is introduced into a copolymer, and a compound having an isocyanate group and an ethylenically unsaturated bond is added to the molecule to introduce an ethylenically unsaturated bond into the side chain examples include.
  • the hydrocarbon ring includes an aliphatic hydrocarbon ring
  • the heat resistance and adhesion of the colored layer are improved and the brightness of the obtained colored layer is improved.
  • the cardo structure it is particularly preferable because the curability of the colored layer is improved, fading of the coloring material is suppressed, and solvent resistance (NMP swelling suppression) is improved.
  • (Meth)acrylic resins such as (meth)acrylic copolymers having structural units having a carboxyl group and styrene-(meth)acrylic copolymers having a carboxyl group are, for example, ethylenic polymers having a carboxyl group. It is a (co)polymer obtained by (co)polymerizing a saturated monomer and, if necessary, other copolymerizable monomers by a known method.
  • the carboxy group-containing copolymer may further contain other structural units such as ester group-containing structural units such as methyl (meth)acrylate and ethyl (meth)acrylate.
  • ester group-containing structural units such as methyl (meth)acrylate and ethyl (meth)acrylate.
  • the structural unit having an ester group not only functions as a component that suppresses the alkali solubility of the photosensitive composition, but also functions as a component that improves the solubility in a solvent and further the resolubility in a solvent.
  • carboxy group-containing copolymers such as (meth)acrylic copolymers and styrene-(meth)acrylic copolymers having structural units having ethylenically unsaturated bonds are more preferably used as alkali-soluble resins.
  • the compound having both an epoxy group and an ethylenically unsaturated bond is preferably 10% by mass or more and 95% by mass or less, and 15% by mass or more and 90% by mass based on the charged amount of the carboxyl group-containing ethylenically unsaturated monomer. % or less is more preferable.
  • the preferred weight average molecular weight (Mw) of the carboxyl group-containing copolymer is preferably in the range of 1,000 to 50,000, more preferably 3,000 to 20,000. When it is 1,000 or more, the binder function after curing is improved, and when it is 50,000 or less, pattern formation becomes good during development with an alkaline developer.
  • the weight average molecular weight (Mw) of the alkali-soluble resin can be measured using Shodex GPC System-21H using polystyrene as a standard substance and THF as an eluent.
  • the ethylenically unsaturated bond equivalent improves the film strength of the cured film, makes it easier to maintain a low retardation, improves development resistance, and improves bonding with the substrate.
  • the number is preferably in the range of 100 to 2,000, more preferably in the range of 140 to 1,500, and may be in the range of 140 to 1,000. If the ethylenically unsaturated bond equivalent is below the upper limit, it is easy to maintain a low retardation, and the development resistance and adhesion are excellent.
  • the ethylenically unsaturated bond equivalent can be determined, for example, by measuring the number of ethylenically unsaturated bonds contained per gram of alkali-soluble resin in accordance with the iodine value test method described in JIS K 0070:1992. It may be calculated.
  • the photopolymerizable compound used in the blue-sensitive composition of the present invention is not particularly limited as long as it can be polymerized by a photoinitiator, and compounds having two or more ethylenically unsaturated bonds are usually preferred. It is preferably a polyfunctional (meth)acrylate that is used for, and has two or more acryloyl groups or methacryloyl groups. Such polyfunctional (meth)acrylates may be appropriately selected from conventionally known ones. Specific examples include those described in JP-A No. 2013-029832.
  • the photopolymerizable compound used in the blue photosensitive composition of the present invention may contain a photopolymerizable compound having an acidic group from the viewpoint of developability.
  • the acidic group include a carboxyl group, a sulfo group, a phosphoric acid group, and a carboxyl group is preferred.
  • Commercially available photopolymerizable compounds having acidic groups include Aronix M-510, M-520, Aronix TO-2349 (manufactured by Toagosei Co., Ltd.), and the like.
  • the photopolymerizable compound used in the blue photosensitive composition of the present invention is a photopolymerizable compound having an alkyleneoxy group because it is good in terms of adjusting curability, easily forms fine patterns, and easily suppresses chipping. It may contain a polymerizable compound.
  • the photopolymerizable compound having an alkyleneoxy group is preferably a photopolymerizable compound having an ethyleneoxy group and/or a propyleneoxy group, more preferably a photopolymerizable compound having an ethyleneoxy group, and has 4 to 20 ethyleneoxy groups. More preferred are tri- to hexa-functional (meth)acrylate compounds having the following.
  • photopolymerizable compounds having an alkyleneoxy group include, for example, ethoxylated (4) pentaerythritol tetraacrylate (manufactured by Sartomer Co., Ltd., trade name SR-494), trimethylolpropane tripropoxy triacrylate (Nippon Kayaku Co., Ltd.) Co., Ltd., product name KAYARAD TPA-330), ethylene oxide 12 mole modified dipentaerythritol hexaacrylate (Nippon Kayaku Co., Ltd., product name KAYARAD DPEA-12), Daiichi Kogyo Seiyaku Co., Ltd. product name New Frontier MF -001 etc.
  • ethoxylated (4) pentaerythritol tetraacrylate manufactured by Sartomer Co., Ltd., trade name SR-494
  • trimethylolpropane tripropoxy triacrylate Nippon Kayaku Co., Ltd.
  • the content of the photopolymerizable compound having an alkyleneoxy group is set to 0 mass with respect to the total amount of the photopolymerizable compound from the viewpoint of adjusting curability. % to 50% by weight, and 5% to 40% by weight.
  • the unsaturated bond equivalent is preferably 300 or less from the viewpoint of curability, It is more preferably 250 or less, still more preferably 200 or less.
  • the unsaturated bond equivalent may be 97 or less from the viewpoint of curability.
  • the unsaturated bond equivalent is preferably small, the lower limit may be about 50.
  • the unsaturated bond equivalent herein refers to the mass average molecular weight per mole of unsaturated bonds of the photopolymerizable compound, and is expressed by the following formula (2).
  • the content of the photopolymerizable compound used in the blue-sensitive composition is not particularly limited, but is preferably 5% by mass to 60% by mass, more preferably 5% by mass, based on the total solid content of the blue-sensitive composition. is within the range of 10% by mass to 40% by mass. If the content of the photopolymerizable compound is at least the above lower limit, photocuring will proceed sufficiently, and elution of the exposed area during development can be suppressed, and if the content of the photopolymerizable compound is below the above upper limit, Alkaline developability is sufficient.
  • oxime-based photoinitiators used in the present invention when a blue coloring material and an LED light source having the above-mentioned two specific emission peak wavelengths are combined, sensitivity and undercut width that occurs after development can be improved.
  • the photoinitiator represented by the general formula (A) for example, refer to Japanese Patent Application Publication No. 2012-526185, diphenyl sulfide or a derivative thereof is used, and depending on the material used, the solvent, reaction temperature, reaction time, It can be synthesized by appropriately selecting a purification method and the like. Alternatively, commercially available products may be appropriately obtained and used.
  • oxime photoinitiators having a diphenyl sulfide skeleton examples include 1,2-octadione, 1-[4-(phenylthio)phenyl]-,2-(o-benzoyloxime) (for example, Irgacure OXE01, manufactured by BASF), 1,2-propanedione, 3-cyclopentyl-1-[4-(phenylthio)phenyl]-,2-(o-benzoyloxime) (e.g., TR-PBG-305, manufactured by Changzhou Strong Electronics New Materials Co., Ltd.), 1 , 2-propanedione, 3-cyclopentyl-1-[4-[(2-hydroxyethoxy)phenylthio]phenyl]-, 2-(o-acetyloxime), 1-pentanone, 1-[4-[4-( 2-Benzofuranylcarbonyl)phenylthio]phenyl]-4-methyl,1-(o-acetyloxime),
  • Examples of the oxime photoinitiator having an indole skeleton include a compound represented by the following general formula (B).
  • R 1 and R 2 each independently represent R 11 , OR 11 , COR 11 , SR 11 , CONR 12 R 13 or CN
  • R 11 , R 12 and R 13 are each independently a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, an aryl group having 6 to 30 carbon atoms, an arylalkyl group having 7 to 30 carbon atoms, or an arylalkyl group having 2 to 20 carbon atoms.
  • R 21 , R 22 and R 23 are each independently a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, an aryl group having 6 to 30 carbon atoms, an arylalkyl group having 7 to 30 carbon atoms, or an arylalkyl group having 2 to 20 carbon atoms.
  • R 21 , R 22 and R 23 represents a heterocyclic group
  • the hydrogen atoms of the groups represented by R 21 , R 22 and R 23 may be further substituted with a hydroxyl group, a nitro group, CN, a halogen atom, or a carboxy group
  • the hydrogen atom of the group represented by R 3 is further R 21 , OR 21 , COR 21 , SR 21 , NR 22 R 23 , CONR 22 R 23 , -NR 22 -OR 23 , -NCOR 22 -OCOR 23 , NR 22 COR 21 , OCOR 21 , COOR 21 , SCOR 21 , OCSR 21 , COSR 21 , CSOR 21 , which may be substituted with a hydroxyl group, a nitro group, CN, or a halogen atom
  • R 4 , R 5 , R 6 and R 7 are each independently R 11 , OR 11 , SR 11 , COR 14 , CONR 15 R 16 , NR 12 COR 11 , OCOR 11 , COOR 14 , SCOR 11 , OCSR 11 , COSR 14 , CSOR 11 represent a hydroxyl group, CN or a halogen atom, and R 4 and R 5 , R 5 and R 6
  • R8 may be R11 , OR11 , SR11 , COR11 , CONR12R13 , NR12COR11 , OCOR11 , COOR11 , SCOR11 , OCSR11 , COSR11 , CSOR 11 represents a hydroxyl group, CN or a halogen atom, k represents 0 or 1.
  • the oxime ester compound represented by the general formula (B) has geometric isomers due to the double bond of the oxime, but these are not distinguished. That is, in this specification, the compound represented by the above general formula (B), the compound represented by the following general formula (B') which is a preferred form of the compound described below, and its exemplary compounds are a mixture of both or either It represents either one of the isomers, and is not limited to the structure showing the isomer.
  • alkyl group 1 to 20 carbon atoms represented by R 3 , R 11 , R 12 , R 13 , R 14 , R 15 , R 16 , R 21 , R 22 , R 23 and R 24 in the above general formula (B)
  • alkyl group examples include methyl, ethyl, propyl, isopropyl, butyl, isobutyl, s-butyl, t-butyl, amyl, isoamyl, t-amyl, hexyl, heptyl, octyl, isooctyl, 2-ethylhexyl, t- Octyl, nonyl, isononyl, decyl, isodecyl, undecyl, dodecyl, tetradecyl, hexadecyl, octadecyl, icosyl, cyclopentyl, cyclopentylmethyl,
  • the aryl group having 6 to 30 carbon atoms represented by R 3 , R 11 , R 12 , R 13 , R 21 , R 22 , R 23 and R 24 in the above general formula (B) includes, for example, phenyl , tolyl, xylyl, ethylphenyl, naphthyl, anthryl, phenanthrenyl, phenyl substituted with one or more of the above alkyl groups, biphenylyl, naphthyl, anthryl, and the like.
  • the arylalkyl group having 7 to 30 carbon atoms represented by R 3 , R 11 , R 12 , R 13 , R 21 , R 22 , R 23 and R 24 in the above general formula (B) is, for example, Examples include benzyl, ⁇ -methylbenzyl, ⁇ , ⁇ -dimethylbenzyl, and phenylethyl.
  • the heterocyclic group having 2 to 20 carbon atoms represented by R 3 , R 11 , R 12 , R 13 , R 21 , R 22 , R 23 and R 24 in the above general formula (B) includes, for example , pyridyl, pyrimidyl, furyl, thienyl, tetrahydrofuryl, dioxolanyl, benzoxazol-2-yl, tetrahydropyranyl, pyrrolidyl, imidazolidyl, pyrazolidyl, thiazolidyl, isothiazolidyl, oxazolidyl, isoxazolidyl, piperidyl, piperazyl, morpholinyl, etc.
  • the ring that can be formed by combining R 4 and R 5 , R 5 and R 6 , R 6 and R 7 , R 3 and R 7 , and R 3 and R 8 is:
  • 5- to 7-membered rings such as a cyclopentane ring, a cyclohexane ring, a cyclopentene ring, a benzene ring, a piperidine ring, a morpholine ring, a lactone ring, and a lactam ring are preferably mentioned.
  • halogen atoms represented by R 4 , R 5 , R 6 , R 7 and R 8 in the above general formula (B), and R 3 , R 11 , R 12 in the above general formula (B) , R 13 , R 21 , R 22 and R 23 include fluorine, chlorine, bromine, and iodine.
  • the alkylene moiety of the group represented by R 11 , R 12 , R 13 , R 21 , R 22 and R 23 is -O-, -S-, -COO-, -OCO -, -NR 24 -, -NR 24 CO-, -NR 24 COO-, -OCONR 24 -, -SCO-, -COS-, -OCS- or -CSO- from 1 to 1 under the condition that oxygen atoms are not adjacent to each other. It may contain 5 divalent groups, and in this case, the divalent groups contained may be one type or two or more types of groups, and in the case of groups that can be contained consecutively, two or more groups may be contained consecutively. .
  • alkyl (alkylene) moiety of the group represented by R 11 , R 12 , R 13 , R 21 , R 22 , R 23 and R 24 in the above general formula (B) has a branched side chain. It may also be a cyclic alkyl.
  • R 3 is an optionally fused aromatic ring or the compounds represented by the following general formula (B') have high sensitivity and are easy to manufacture. This is preferable because it is easy.
  • R 31 , R 32 , R 33 , R 34 and R 35 are each independently R 11 , OR 11 , SR 11 , COR 11 , CONR 15 R 16 , NR 12 COR 11 , OCOR 11 , COOR 14 , SCOR 11 , OCSR 11 , COSR 14 , CSOR 11 , hydroxyl group , represents a nitro group, CN, or a halogen atom, and R 31 and R 32 , R 32 and R 33 , R 33 and R 34 , and R 34 and R 35 may each be taken together to form a ring.
  • rings formed by R 31 and R 32 , R 32 and R 33 , R 33 and R 34 and R 34 and R 35 are R 4 and R 5 , R 5 and R 6 and R 6
  • rings that can be formed by combining and R 7 , R 3 and R 7 , and R 3 and R 8 include the same rings as those listed above.
  • R 1 is an alkyl group having 1 to 12 carbon atoms or an arylalkyl group having 7 to 15 carbon atoms
  • R 11 is an aryl group having 6 to 12 carbon atoms
  • R 11 is an aryl group having 6 to 12 carbon atoms
  • ⁇ 8 alkyl groups are preferred because they have high solvent solubility
  • R2 are preferably methyl, ethyl, or phenyl groups because they have high reactivity
  • R4 ⁇ R7 are hydrogen atoms or cyano A group, especially a hydrogen atom, is preferred because it is easy to synthesize, a hydrogen atom as R 8 is preferred because it is easy to synthesize, and a group where k is 1 is preferred because it has high sensitivity.
  • At least one of R 31 to R 35 is a nitro group, CN, a halogen atom, or COR 11 , and R 11 is an aryl group having 6 to 12 carbon atoms or an alkyl group having 1 to 8 carbon atoms; It is preferable because the sensitivity is high, and it is more preferable that at least one of R 31 to R 35 is a nitro group, CN, a halogen atom, or COPh (here, Ph is a phenyl group), and R 33 is a nitro group, CN, a halogen atom, or a COPh group. Particularly preferred are atoms or COPh.
  • the compound represented by the above general formula (B) can be prepared by, for example, referring to International Publication No. 2015/152153, and selecting the solvent, reaction temperature, reaction time, purification method, etc. appropriately according to the materials used. Can be synthesized. Alternatively, commercially available products may be appropriately obtained and used.
  • oxime photoinitiators having a carbazole skeleton examples include ethanone, 1-[9-ethyl-6-(2-methylbenzoyl)-9H-carbazol-3-yl]-,1-(O-acetyloxime) (for example, Irgacure OXE02, manufactured by BASF), methanone, [8-[[(acetyloxy)imino][2-(2,2,3,3-tetrafluoropropoxy)phenyl]methyl]-11-(2- ethylhexyl)-11H-benzo[a]carbazol-5-yl]-, (2,4,6-trimethylphenyl) (e.g.
  • X 1 , X 3 and X 6 each independently represent R 41 , OR 41 , COR 41 , SR 41 , CONR 42 R 43 or CN
  • X 2 has a carbon number of 1 to 20 alkyl group, an aryl group having 6 to 30 carbon atoms, an arylalkyl group having 7 to 30 carbon atoms, or a heterocyclic group having 2 to 20 carbon atoms
  • X 4 and X 5 are each independently R 41 , OR 41 , SR 41 , COR 41 , CONR 42 R 43 , NR 42 COR 41 , OCOR 41 , COOR 41 , SCOR 41 , OCSR 41 , COSR 41 , CSOR 41 , CN, represents a halogen atom or a hydroxyl group.
  • R 51 , R 52 and R 53 are each independently a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, an aryl group having 6 to 30 carbon atoms, an arylalkyl group having 7 to 30 carbon atoms, or an arylalkyl group having 2 to 20 carbon atoms.
  • R 51 , R 52 and R 53 represents a heterocyclic group
  • the hydrogen atoms of the groups represented by R 51 , R 52 and R 53 may be further substituted with a hydroxyl group, a nitro group, CN, a halogen atom, or a carboxy group
  • the alkylene moiety of the group represented by R 41 , R 42 , R 43 , X 2 , R 51 , R 52 and R 53 is -O-, -S-, -COO-, -OCO-, -NR 54 - , -NR 54 CO-, -NR 54 COO-, -OCONR 54 -, -SCO-, -COS-, -OCS- or -CSO-, even if it contains 1 to 5 oxygen atoms adjacent to each other.
  • R 54 represents a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, an aryl group having 6 to 30 carbon atoms, an arylalkyl group having 7 to 30 carbon atoms, or a heterocyclic group having 2 to 20 carbon atoms;
  • the alkyl portion of the group represented by R 41 , R 42 , R 43 , R 51 , R 52 , R 53 and R 54 may have a branched side chain or may be a cyclic alkyl.
  • a and b are each independently an integer of 0 to 3.
  • the oxime ester compound represented by the general formula (C) also has geometric isomers due to the double bond of the oxime, but these are not distinguished. That is, in this specification, the compound represented by the general formula (C) and its exemplified compounds represent a mixture of both or either one, and are not limited to structures showing isomers.
  • the alkyl group having 1 to 20 carbon atoms represented by Examples include the same alkyl groups having 1 to 20 carbon atoms in (B).
  • the aryl group having 6 to 30 carbon atoms represented by X 2 , R 41 , R 42 , R 43 , R 51 , R 52 , R 53 and R 54 in the general formula (C) is Examples include those similar to the aryl group having 6 to 30 carbon atoms in (B).
  • the arylalkyl group having 7 to 30 carbon atoms represented by Examples include those similar to the arylalkyl group having 7 to 30 carbon atoms in formula (B).
  • the heterocyclic group having 2 to 20 carbon atoms represented by X 2 , R 41 , R 42 , R 43 , R 51 , R 52 , R 53 and R 54 in the above general formula (C) is Examples include those similar to the heterocyclic group having 2 to 20 carbon atoms in formula (B). Furthermore, examples of the halogen atom in the above general formula (C) include the same halogen atoms as in the above general formula (B).
  • X 1 is more preferably a methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, from the viewpoint of sensitivity, solubility, and compatibility.
  • Alkyl groups having 1 to 10 carbon atoms such as t-butyl group, n-amyl group, isoamyl group, t-amyl group, n-hexyl group and 2-ethylhexyl group; 5 carbon atoms such as cyclopentyl group and cyclohexyl group; A cyclic alkyl group which may have ⁇ 10 side chains, or a methoxymethyl group, an ethoxymethyl group, an ethoxyethyl group, a 2-(1-methoxypropyl) group, a 2-(1-ethoxypropyl) group, etc.
  • X 2 , X 3 and X 6 are each independently particularly preferably a methyl group, an ethyl group, an n-propyl group, an isopropyl group alkyl groups having 1 to 6 carbon atoms such as n-butyl, isobutyl, t-butyl, n-amyl, isoamyl, t-amyl and n-hexyl groups, cyclopentyl and cyclohexyl groups, etc.
  • An alkyl group having 2 to 6 carbon atoms and one ether bond in the methylene chain more preferably an alkyl group having 1 to 6 carbon atoms, or an alkyl group having 2 to 6 carbon atoms and one ether bond in the methylene chain.
  • X 3 and X 6 are each independently an alkyl group having 1 to 6 carbon atoms.
  • X 2 is more preferably an alkyl group having 2 to 6 carbon atoms and having one ether bond in the methylene chain.
  • X 4 and X 5 are each independently particularly preferably hydrogen, methyl group, ethyl group, n-propyl group, Alkyl groups having 1 to 6 carbon atoms such as isopropyl group, n-butyl group, isobutyl group, t-butyl group, n-amyl group, isoamyl group, t-amyl group and n-hexyl group.
  • Preferred specific examples of the compound represented by the above general formula (C) include the following compounds.
  • the compound represented by the above general formula (C) can be prepared by, for example, referring to JP-A No. 2010-256891 and selecting the solvent, reaction temperature, reaction time, purification method, etc. as appropriate depending on the materials used. Can be synthesized. Alternatively, commercially available products may be appropriately obtained and used.
  • the oxime photoinitiator can be used alone or in a mixture of two or more.
  • the sensitizer having a sensitizing effect in the wavelength range of 400 nm to 420 nm which is different from the oxime photoinitiator, can be used without particular limitation as long as it has absorption in the wavelength range of 400 nm to 420 nm.
  • Whether or not the sensitizer used in the present invention has a sensitizing effect in the wavelength range of 400 nm to 420 nm can be determined by observing the absorption spectrum of a solution prepared by dissolving the sensitizer in a solvent such as acetonitrile at a concentration of 0.01 mg/ml under ultraviolet light. It can be measured with a visible spectrophotometer and can be determined to have absorption in the range of 400 nm to 420 nm.
  • the sensitizer used in the present invention has an absorbance of 0.1 or more when the absorption spectrum of a solution dissolved in a solvent such as acetonitrile at a concentration of 0.01 mg/ml is measured using an ultraviolet-visible spectrophotometer. It is preferable.
  • the sensitizers having a sensitizing effect in the wavelength range of 400 nm to 420 nm used in the present invention include, for example, thioxanthone sensitizers, aromatic ketone sensitizers, anthracene sensitizers, and naphthalene sensitizers. At least one selected from the group can be appropriately selected and used.
  • thioxanthone-based sensitizers include 2,4-isopropylthioxanthone, 2,4-diethylthioxanthone, 1-chloro-4-propoxythioxanthone, and 2,4-dichlorothioxanthone.
  • aromatic ketone sensitizer examples include benzophenone sensitizers, such as benzophenone, 4,4'-bisdiethylaminobenzophenone, and 4-methoxy-4'-dimethylaminobenzophenone.
  • aromatic ketone sensitizers examples include benzophenone sensitizers, such as benzophenone, 4,4'-bisdiethylaminobenzophenone, and 4-methoxy-4'-dimethylaminobenzophenone.
  • anthracene-based sensitizers include anthracene compounds substituted with alkoxy or acyloxy groups, such as 9,10-bis(acetyloxy)anthracene, 9,10-bis(propionyloxy)anthracene, and 9,10-bis(propionyloxy)anthracene.
  • naphthalene-based sensitizers include naphthalene compounds substituted with alkoxy or acyloxy groups
  • the sensitizers having a sensitizing effect in the wavelength range of 400 nm to 420 nm used in the blue-sensitive composition of the present invention can be used alone or in combination of two or more.
  • the blue-sensitive composition used in the present invention may contain other photoinitiators different from the oxime photoinitiator and the sensitizer having a sensitizing effect in the range of 400 nm to 420 nm, as long as the effects of the present invention are not impaired. It may also contain an agent.
  • Other photoinitiators may be appropriately selected from benzoin ethers, halomethyloxadiazole compounds, ⁇ -aminoketones, biimidazoles, halomethyl-S-triazine compounds, acylphosphine oxides, etc. can.
  • the total content of the oxime-based photoinitiator may be 50% by mass or more with respect to the total content of the oxime-based photoinitiator and other photoinitiators. , 70% by mass or more.
  • the total content of oxime photoinitiators may have a lower limit of 15% by mass or more, and may be 25% by mass or more, and an upper limit of 90% by mass, from the viewpoint of improving curability. or less, and may be less than or equal to 80% by mass.
  • the lower limit of the total content of the oxime photoinitiator and other photoinitiator may be 15% by mass or more, and 25% by mass or more, from the viewpoint of improving curability.
  • the upper limit may be 90% by mass or less, and may be 80% by mass or less.
  • the lower limit of the total content of sensitizers having a sensitizing effect in the range of 400 nm to 420 nm, which is different from oxime photoinitiators may be 10% by mass or more from the viewpoint of improving curability. , may be 20% by mass or more, and the upper limit may be 85% by mass or less, and may be 75% by mass or less.
  • the content ratio of the total of the oxime photoinitiator and other photoinitiators used in the blue photosensitive composition and the sensitizer having a sensitizing effect in the range of 400 nm to 420 nm is determined by the sensitivity and line width shift.
  • the total content of the sensitizers having a sensitizing effect in the range of 400 nm to 420 nm is preferably set to 100 parts by mass of the oxime photoinitiator and other photoinitiators. It is 20 parts by mass or more, more preferably 50 parts by mass or more, preferably 500 parts by mass or less, and more preferably 300 parts by mass or less.
  • the total content of sensitizers having a sensitizing effect at 400 nm to 420 nm is not particularly limited as long as the effect of the present invention is not impaired. It is preferably within the range of 0.1% by mass to 5% by mass, more preferably within the range of 0.2% by mass to 3% by mass, based on the total solid content. If this content is above the above lower limit, photocuring will proceed sufficiently, the exposed areas will be prevented from dissolving during development, and the solvent resistance will be good, while if it is below the above upper limit, the coloring obtained will be improved. Decrease in brightness and deterioration in developability due to yellowing of the layer can be suppressed.
  • the total content of photoinitiators is not particularly limited as long as the effects of the present invention are not impaired, but it is preferably based on the total solid content of the blue photosensitive composition. is within the range of 0.5% by mass to 12.0% by mass, more preferably within the range of 1.0% by mass to 8.0% by mass. If this content is above the above lower limit, photocuring will proceed sufficiently, the exposed areas will be prevented from dissolving during development, and the solvent resistance will be good, while if it is below the above upper limit, the coloring obtained will be improved. Decrease in brightness and deterioration in developability due to yellowing of the layer can be suppressed.
  • the content ratio of the photopolymerizable compound and the photoinitiator used in the blue photosensitive composition is such that line width shift is suppressed and the pattern shape is improved.
  • the total content of the photoinitiator is preferably 2 parts by mass or more, more preferably 5 parts by mass or more, preferably 40 parts by mass or less, and more preferably 30 parts by mass or less.
  • the content ratio of the photopolymerizable compound and the sensitizer having a sensitizing effect in the range of 400 nm to 420 nm used in the blue photosensitive composition is determined from the viewpoint of suppressing line width shift and improving the pattern shape.
  • the total content of the sensitizer having a sensitizing effect in the wavelength range of 400 nm to 420 nm is preferably 1 part by mass or more, more preferably 5 parts by mass or more, Preferably it is 30 parts by mass or less, more preferably 20 parts by mass or less.
  • the blue-sensitive composition used in the present invention may contain a solvent.
  • the solvent is not particularly limited as long as it is an organic solvent that does not react with the components in the blue-sensitive composition and can dissolve or disperse them. Solvents can be used alone or in combination of two or more.
  • the solvent include alcohol solvents such as methyl alcohol, ethyl alcohol, N-propyl alcohol, i-propyl alcohol, methoxy alcohol, and ethoxy alcohol; carbitol solvents such as methoxyethoxyethanol and ethoxyethoxyethanol; Ethyl acetate, butyl acetate, methyl methoxypropionate, ethyl methoxypropionate, ethyl ethoxypropionate, ethyl lactate, methyl hydroxypropionate, ethyl hydroxypropionate, n-butyl acetate, isobutyl acetate, isobutyl butyrate, n-butyl butyrate, Ester solvents such as ethyl lactate and cyclohexanol acetate; Ketone solvents such as acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, and
  • glycol ether acetate solvents examples include propylene glycol monomethyl ether acetate, propylene glycol monomethyl ether, butyl carbitol acetate (BCA), 3-methoxy-3-methyl-1-butyl acetate, ethyl ethoxypropionate, ethyl lactate, and 3-methoxybutyl acetate, from the viewpoint of solubility of other components and suitability for coating.
  • the content of the solvent may be appropriately set within a range that allows a blue cured film or a colored layer to be formed with high precision.
  • the content of the solvent is usually preferably in the range of 55% to 95% by weight, more preferably 65% to 88% by weight, based on the total amount of the blue photosensitive composition containing the solvent.
  • excellent coating properties can be obtained.
  • a dispersant may be further included from the viewpoint of coloring material dispersibility and coloring material dispersion stability.
  • the dispersant can be appropriately selected from conventionally known dispersants.
  • the dispersant for example, cationic, anionic, nonionic, amphoteric, silicone, or fluorine-based surfactants can be used.
  • surfactants polymeric dispersants are preferred because they can be uniformly and finely dispersed.
  • polymeric dispersants include (meth)acrylate copolymer dispersants; polyurethanes; unsaturated polyamides; polysiloxanes; long-chain polyaminoamide phosphates; polyethyleneimine derivatives (poly(lower alkyleneimine) and Amides obtained by reaction with polyesters containing free carboxyl groups and their bases); polyallylamine derivatives (three types: polyallylamine and polyesters, polyamides, or co-condensates of esters and amides (polyesteramides) having free carboxyl groups); (a reaction product obtained by reacting one or more compounds selected from among the compounds).
  • polymeric dispersants include (meth)acrylate copolymer dispersants; polyurethanes; unsaturated polyamides; polysiloxanes; long-chain polyaminoamide phosphates; polyethyleneimine derivatives (poly(lower alkyleneimine) and Amides obtained by reaction with polyesters containing free carboxyl groups and their bases); polyally
  • a (meth)acrylate copolymer-based dispersant as the dispersant from the viewpoint of controlling developability. Since the (meth)acrylate copolymer-based dispersant has good compatibility with the alkali-soluble resin and the photopolymerizable compound, it is presumed that the generation of development residues is suppressed.
  • the (meth)acrylate copolymer-based dispersant refers to a dispersant that is a copolymer and includes at least a structural unit derived from (meth)acrylate.
  • the (meth)acrylate copolymer-based dispersant is preferably a copolymer containing a structural unit that functions as a coloring material adsorption site and a constitutional unit that functions as a solvent affinity site, and functions as a solvent affinity site. It is preferable that the structural units include at least (meth)acrylate-derived structural units.
  • Examples of the structural unit functioning as a coloring material adsorption site include a structural unit derived from an ethylenically unsaturated monomer that is copolymerizable with a structural unit derived from (meth)acrylate.
  • the colorant adsorption site may be a structural unit derived from an ethylenically unsaturated monomer containing an acidic group or a structural unit derived from an ethylenically unsaturated monomer containing a basic group.
  • a structural unit represented by the following general formula (I) is preferable from the viewpoint of excellent dispersibility of the coloring material.
  • R 61 is a hydrogen atom or a methyl group
  • a 1 is a divalent linking group
  • R 62 and R 63 are each independently a hydrogen atom or a hydrocarbon that may contain a heteroatom
  • R 62 and R 63 may be bonded to each other to form a ring structure.
  • a 1 is a divalent linking group.
  • the divalent linking group include a straight chain, branched or cyclic alkylene group, a straight chain, branched or cyclic alkylene group having a hydroxyl group, an arylene group, -CONH- group, -COO- group, -NHCOO- group, ether group (-O- group), thioether group (-S- group), and combinations thereof.
  • the direction of bonding of the divalent linking group is arbitrary.
  • a 1 in general formula (I) is preferably a divalent linking group containing a -CONH- group or a -COO- group, and a -CONH- group or a -COO- group is preferably a divalent linking group.
  • Examples of the hydrocarbon group in R 62 and R 63 which may include a hetero atom include an alkyl group, an aralkyl group, and an aryl group.
  • Examples of the alkyl group include a methyl group, an ethyl group, a propyl group, a butyl group, an isopropyl group, a tert-butyl group, a 2-ethylhexyl group, a cyclopentyl group, a cyclohexyl group, and the number of carbon atoms in the alkyl group is 1. -18 is preferable, and among them, a methyl group or an ethyl group is more preferable.
  • Examples of the aralkyl group include benzyl group, phenethyl group, naphthylmethyl group, and biphenylmethyl group.
  • the number of carbon atoms in the aralkyl group is preferably 7 to 20, more preferably 7 to 14.
  • examples of the aryl group include a phenyl group, a biphenyl group, a naphthyl group, a tolyl group, and a xylyl group.
  • the number of carbon atoms in the aryl group is preferably 6 to 24, more preferably 6 to 12. Note that the above preferred carbon number does not include the carbon number of the substituent.
  • a hydrocarbon group containing a hetero atom has a structure in which a carbon atom in the above hydrocarbon group is replaced with a hetero atom, or a structure in which a hydrogen atom in the above hydrocarbon group is replaced with a substituent containing a hetero atom. has.
  • the heteroatom that the hydrocarbon group may contain include an oxygen atom, a nitrogen atom, a sulfur atom, and a silicon atom.
  • the hydrogen atom in the hydrocarbon group may be substituted with a halogen atom such as a fluorine atom, a chlorine atom, or a bromine atom.
  • R 62 and R 63 are bonded to each other to form a ring structure means that R 62 and R 63 form a ring structure via a nitrogen atom.
  • the ring structure formed by R 62 and R 63 may contain a heteroatom.
  • the ring structure is not particularly limited, examples thereof include a pyrrolidine ring, a piperidine ring, and a morpholine ring.
  • R 62 and R 63 are each independently a hydrogen atom, an alkyl group having 1 to 5 carbon atoms, or a phenyl group, or R 62 and R 63 are combined to form a pyrrolidine ring, a piperidine ring, or It is preferable that they form a ring or a morpholine ring.
  • Monomers for inducing the structural unit represented by the above general formula (I) include dimethylaminoethyl (meth)acrylate, dimethylaminopropyl (meth)acrylate, diethylaminoethyl (meth)acrylate, diethylaminopropyl (meth)acrylate, etc.
  • Examples include alkyl group-substituted amino group-containing (meth)acrylates, and alkyl group-substituted amino group-containing (meth)acrylamides such as dimethylaminoethyl (meth)acrylamide and dimethylaminopropyl (meth)acrylamide.
  • dimethylaminoethyl (meth)acrylate, diethylaminoethyl (meth)acrylate, and dimethylaminopropyl (meth)acrylamide are preferably used because they improve dispersibility and dispersion stability.
  • the structural unit represented by the general formula (I) may consist of one type, or may contain two or more types of structural units.
  • the structural unit functioning as a colorant adsorption site is selected from the group consisting of at least a part of the nitrogen site possessed by the structural unit represented by the general formula (I), an organic acid compound, and a halogenated hydrocarbon. At least one kind may form a salt.
  • the organic acid compound is preferably an acidic organic phosphorus compound such as phenylphosphonic acid or phenylphosphinic acid from the viewpoint of excellent dispersibility and dispersion stability of the coloring material.
  • organic acid compound used in such a dispersant for example, organic acid compounds described in JP-A-2012-236882 and the like can be mentioned as suitable ones.
  • the halogenated hydrocarbon is preferably at least one of allyl halides such as allyl bromide and benzyl chloride, and aralkyl halides, from the viewpoint of excellent dispersibility and dispersion stability of the coloring material.
  • the copolymer having the structural unit represented by the general formula (I) has the structural unit represented by the general formula (I) from the viewpoint of dispersibility and dispersion stability, and has ( A graft copolymer having a structural unit derived from meth)acrylate, and a block having an A block containing a structural unit represented by the general formula (I) and a B block containing a structural unit derived from (meth)acrylate. More preferably, it is at least one type of copolymer.
  • a conventionally known structure can be appropriately selected and used as the graft polymer chain having a structural unit derived from (meth)acrylate.
  • graft copolymers and salt-type graft copolymers described in International Publication No. 2021/006077 may be used.
  • block copolymer as the B block containing a structural unit derived from (meth)acrylate, a conventionally known structure can be appropriately selected and used.
  • block copolymers and salt-type block copolymers described in International Publication No. 2016/104493 may be used.
  • (meth)acrylate copolymer-based dispersant commercially available products may be used, and examples thereof include LP-N6919 (trade name) and LP-N21116 (trade name) manufactured by Big Chemie Japan Co., Ltd.
  • the content of the dispersant may be selected so as to have excellent dispersibility and dispersion stability of the coloring material, and is not particularly limited. For example, it is preferably in the range of 2% by mass to 30% by mass, more preferably 3% by mass to 25% by mass, based on the total amount. If it is more than the above lower limit, the dispersibility and dispersion stability of the coloring material are excellent, and the storage stability of the blue-sensitive composition is also excellent. Moreover, if it is below the said upper limit, developability will become good.
  • the content of the dispersant is preferably 2% to 25% by mass, more preferably 3% by mass, based on the total solid content of the blue-sensitive composition. It is within the range of % by mass to 20% by mass.
  • the blue photosensitive composition of the present invention preferably further contains a thiol compound in order to improve solvent resistance and substrate adhesion after low-temperature heat treatment.
  • a thiol compound examples include monofunctional thiol compounds having one thiol group in one molecule and polyfunctional thiol compounds having two or more thiol groups in one molecule. From the viewpoint of suppressing line width shift and improving adhesion to the substrate, it is more preferable to use a monofunctional thiol compound having one thiol group.
  • Examples of monofunctional thiol compounds include 2-mercaptobenzothiazole, 2-mercaptobenzoxazole, 2-mercaptobenzimidazole, 2-mercapto-5-methoxybenzothiazole, 2-mercapto-5-methoxybenzimidazole, and 3-mercaptobenzimidazole.
  • Examples include propionic acid, methyl 3-mercaptopropionate, ethyl 3-mercaptopropionate, octyl 3-mercaptopropionate, and the like.
  • polyfunctional thiol compounds include 1,4-bis(3-mercaptobutyryloxy)butane, 1,3,5-tris(3-mercaptobutyloxyethyl)-1,3,5-triazine-2, 4,6(1H,3H,5H)-trione, trimethylolpropane tris (3-mercaptopropionate), pentaerythritol tetrakis (3-mercaptobutyrate), pentaerythritol tetrakis (3-mercaptopropionate), di Examples include pentaerythritol hexakis (3-mercaptopropionate) and tetraethylene glycol bis(3-mercaptopropionate).
  • the thiol compound may be used alone or in combination of two or more, and among them, 2-mercaptobenzoxazole or 2-mercaptobenzothiazole improves solvent resistance and substrate adhesion after low-temperature heat treatment. Preferable from this point of view.
  • the content of the thiol compound is usually in the range of 0.5% by mass to 10% by mass, preferably 1% by mass to 5% by mass, based on the total solid content of the blue photosensitive composition. If it is at least the above lower limit, the adhesion to the substrate is excellent. On the other hand, if it is below the above-mentioned upper limit, the blue photosensitive composition of the present invention is likely to have good developability and suppress line width shift.
  • the blue photosensitive composition may contain various additives as necessary.
  • additives include antioxidants, polymerization terminators, chain transfer agents, leveling agents, plasticizers, surfactants, antifoaming agents, silane coupling agents, ultraviolet absorbers, adhesion promoters, etc.
  • specific examples of surfactants and plasticizers include those described in JP-A No. 2013-029832.
  • the blue photosensitive composition of the present invention preferably further contains an antioxidant from the viewpoint of suppressing the amount of line width shift.
  • an antioxidant in combination with the specific photoinitiator, the blue photosensitive composition of the present invention can control excessive radical chain reactions without impairing curability when forming a cured film.
  • linearity is further improved, and the ability to form a thin line pattern according to the designed mask line width is improved.
  • the antioxidant used in the present invention is not particularly limited, and may be appropriately selected from conventionally known antioxidants. Specific examples of antioxidants include hindered phenol antioxidants, amine antioxidants, phosphorus antioxidants, sulfur antioxidants, hydrazine antioxidants, etc. It is preferable to use a hindered phenolic antioxidant from the viewpoint of improving the ability to form a fine line pattern as designed and from the viewpoint of heat resistance. It may also be a latent antioxidant as described in International Publication No. 2014/021023.
  • hindered phenolic antioxidant examples include pentaerythritol tetrakis [3-(3,5-di-tert-butyl-4-hydroxyphenyl)propionate] (trade name: IRGANOX1010, manufactured by BASF), 1,3 , 5-tris(3,5-di-tert-butyl-4-hydroxybenzyl)isocyanurate (trade name: Irganox 3114, manufactured by BASF), 2,4,6-tris(4-hydroxy-3,5- Di-tert-butylbenzyl) mesitylene (product name: Irganox 1330, manufactured by BASF), 2,2'-methylenebis(6-tert-butyl-4-methylphenol) (product name: Sumilizer MDP-S, manufactured by Sumitomo Chemical) ), 6,6'-thiobis(2-tert-butyl-4-methylphenol) (trade name: Irganox 1081, manufactured by BASF), diethyl 3,5-di
  • pentaerythritol tetrakis [3-(3,5-di-tert-butyl-4-hydroxyphenyl)propionate] (trade name: IRGANOX1010, manufactured by BASF) is preferred from the viewpoint of heat resistance and light resistance.
  • the content of the antioxidant is preferably 0.1% by mass to 10.0% by mass, more preferably 0.5% by mass to 5.0% by mass, based on the total solid content of the blue photosensitive composition. is within the range of If it is more than the above lower limit, the ability to form a fine line pattern according to the designed mask line width is improved and the heat resistance is excellent. On the other hand, if it is below the above upper limit, the blue photosensitive composition of the present invention can be made into a highly sensitive photosensitive composition.
  • silane coupling agent examples include KBM-502, KBM-503, KBE-502, KBE-503, KBM-5103, KBM-903, KBE-903, KBM573, KBM-403, KBE-402, KBE-403. , KBM-303, KBM-802, KBM-803, KBE-9007, and X-12-967C (manufactured by Shin-Etsu Silicone Co., Ltd.).
  • KBM-502, KBM-503, KBE-502, KBE-503, and KBM-5103 which have methacrylic groups and acrylic groups, are preferred from the viewpoint of adhesion to the SiN substrate.
  • the content of the silane coupling agent is preferably in the range of 0.05% by mass to 10.0% by mass, more preferably 0.1% by mass based on the total solid content of the blue photosensitive composition. It is within the range of ⁇ 5.0% by mass. If it is greater than or equal to the lower limit value and less than or equal to the upper limit value, the adhesion to the substrate is excellent.
  • the method for producing the blue photosensitive composition used in the present invention includes a coloring material, an alkali-soluble resin, a photopolymerizable compound, a photoinitiator, a sensitizer, and optionally a dispersant and a solvent. , and various additive components used as desired, and the colorant can be uniformly dispersed in the solvent, and can be prepared by mixing using known mixing means.
  • a method for preparing a blue photosensitive composition for example, (1) first, a coloring material and a dispersant are added to a solvent to prepare a coloring material dispersion, and an alkali-soluble resin and an alkali-soluble resin are added to the dispersion.
  • Examples include a method of adding and mixing various additive components to be used. If the photopolymerizable compound is used in place of the solvent, the solvent may not be used. Among these methods, methods (1) and (4) above are preferred because they can effectively prevent agglomeration of the coloring material and uniformly disperse it.
  • the method for preparing the coloring material dispersion can be appropriately selected from conventionally known dispersion methods. For example, (1) a dispersant is mixed in advance with a solvent and stirred to prepare a dispersant solution, and then, if necessary, an organic acid compound is mixed to form a salt between the amino group of the dispersant and the organic acid compound.
  • a method of mixing this with the coloring material and other components as necessary and dispersing it using a known stirrer or dispersion machine (2) Mixing the dispersant with a solvent and stirring to prepare a dispersant solution; , a method of mixing a coloring material and an organic acid compound as necessary, and further other components as necessary, and dispersing the mixture using a known stirrer or disperser; (3) mixing a dispersant with a solvent and stirring; , prepare a dispersant solution, then mix the coloring material and other components as necessary, make a dispersion liquid using a known stirrer or dispersion machine, and then add an organic acid compound as necessary. Examples include methods.
  • the dispersion machine for performing the dispersion treatment examples include roll mills such as two-roll and three-roll mills, ball mills such as ball mills and vibrating ball mills, paint conditioners, bead mills such as continuous disc-type bead mills, and continuous annular bead mills.
  • the diameter of the beads used is preferably 0.03 mm to 2.00 mm, more preferably 0.10 mm to 1.0 mm.
  • the blue photosensitive composition according to the present invention can improve the residual film rate after development while suppressing line width shift, and can form a good pattern with suppressed undercuts after development. Since the adhesion of the cured film pattern to the substrate is also improved, it can be suitably used for color filter applications.
  • the method for manufacturing a color filter of the present invention is a method for manufacturing a color filter comprising at least a substrate and a colored layer including a blue cured film provided on the substrate,
  • the present invention is characterized by comprising a step of manufacturing the blue cured film by the method for manufacturing a blue cured film according to the present invention.
  • the color filter according to the present invention is a color filter comprising at least a substrate and a colored layer provided on the substrate, and at least one of the colored layers is composed of the blue photosensitive composition according to the present invention. It is characterized by being a cured product.
  • FIG. 1 is a schematic cross-sectional view showing an example of a color filter of the present invention.
  • the color filter 10 of the present invention includes a substrate 1, a light shielding part 2, and a colored layer 3.
  • the substrate may be the same as the substrate mentioned in the method for manufacturing the blue cured film, the explanation here will be omitted.
  • the thickness of the transparent substrate is not particularly limited, but may be, for example, about 100 ⁇ m to 1 mm depending on the use of the color filter of the present invention.
  • the light shielding part in the color filter of the present invention is formed in a pattern on the substrate, and can be similar to that used as a light shielding part in a general color filter.
  • the pattern shape of the light shielding portion is not particularly limited, and examples thereof include stripe shapes, matrix shapes, and the like.
  • the light shielding portion may be a thin film of metal such as chromium formed by sputtering, vacuum evaporation, or the like.
  • the light-shielding portion may be a resin layer containing light-shielding particles such as carbon fine particles, metal oxides, inorganic pigments, and organic pigments in a resin binder.
  • a resin layer containing light-shielding particles there are methods such as patterning by development using a photosensitive resist, patterning using an inkjet ink containing light-shielding particles, and thermal transfer of a photosensitive resist. be.
  • the film thickness of the light-shielding part is set at about 0.2 ⁇ m to 0.4 ⁇ m in the case of a metal thin film, and set at about 0.5 ⁇ m to 2 ⁇ m in the case of a black pigment dispersed or dissolved in a binder resin. be done.
  • At least one of the colored layers used in the color filter of the present invention is a cured product of the blue photosensitive composition according to the present invention.
  • the colored layer is usually formed in the opening of the light shielding part on the substrate, and is usually composed of a colored pattern of three or more colors.
  • the arrangement of the colored layers is not particularly limited, and may be a general arrangement such as a stripe type, a mosaic type, a triangle type, or a four-pixel arrangement type.
  • the width, area, etc. of the colored layer can be set arbitrarily.
  • the thickness of the colored layer is appropriately controlled by adjusting the coating method, solid content concentration, viscosity, etc. of the blue-sensitive composition, and is usually preferably in the range of 1 ⁇ m to 5 ⁇ m.
  • the blue colored layer that is, the blue cured film has a step of producing it by the method for producing a blue cured film according to the present invention.
  • Colored layers other than the blue colored layer may be manufactured by conventionally known manufacturing methods, but similarly to the method for manufacturing the blue cured film according to the present invention, the step of forming a coating film on a substrate, the coating
  • the film may include a step of exposing and curing the film using an LED lamp having an emission peak wavelength of 360 nm to 380 nm and 400 nm to 420 nm, and may be produced in the same manner as the blue cured film according to the present invention. It's fine.
  • the color filter of the present invention may include, for example, an overcoat layer, a transparent electrode layer, an alignment film, a columnar spacer, etc., in addition to the above-described substrate, light shielding portion, and colored layer.
  • Display Device A display device according to the present invention is characterized by having the color filter according to the present invention.
  • the configuration of the display device is not particularly limited, and can be appropriately selected from conventionally known display devices, such as a liquid crystal display device, an organic light emitting display device, and the like.
  • FIG. 2 is a schematic diagram showing an example of a liquid crystal display device of the present invention.
  • a liquid crystal display device 40 of the present invention includes a color filter 10, a counter substrate 20 having a TFT array substrate, etc., and a liquid crystal layer formed between the color filter 10 and the counter substrate 20. 30.
  • the liquid crystal display device of the present invention is not limited to the configuration shown in FIG. 2, and may have a generally known configuration as a liquid crystal display device using a color filter.
  • the driving method of the liquid crystal display device of the present invention is not particularly limited, and any driving method generally used for liquid crystal display devices can be adopted. Examples of such driving methods include a TN method, an IPS method, an OCB method, and an MVA method. In the present invention, any of these methods can be suitably used. Further, the counter substrate can be appropriately selected and used depending on the driving method of the liquid crystal display device of the present invention. Further, as the liquid crystal constituting the liquid crystal layer, various liquid crystals having different dielectric anisotropy and mixtures thereof can be used depending on the driving method of the liquid crystal display device of the present invention.
  • liquid crystal layer As a method for forming the liquid crystal layer, methods generally used for manufacturing liquid crystal cells can be used, such as a vacuum injection method, a liquid crystal dropping method, and the like. After forming the liquid crystal layer by the method described above, the liquid crystal cell is gradually cooled to room temperature, thereby making it possible to orient the encapsulated liquid crystal.
  • FIG. 3 is a schematic diagram showing an example of an organic light emitting display device of the present invention.
  • an organic light emitting display device 100 of the present invention includes a color filter 10 and an organic light emitter 80.
  • An organic protective layer 50 or an inorganic oxide film 60 may be provided between the color filter 10 and the organic light emitter 80.
  • a transparent anode 71, a hole injection layer 72, a hole transport layer 73, a light emitting layer 74, an electron injection layer 75, and a cathode 76 are sequentially formed on the upper surface of the color filter.
  • Examples include a method in which an organic light emitting body 80 formed on a separate substrate is bonded onto an inorganic oxide film 60, and the like.
  • the transparent anode 71, hole injection layer 72, hole transport layer 73, light emitting layer 74, electron injection layer 75, cathode 76, and other structures in the organic light emitter 80 publicly known ones can be used as appropriate.
  • the organic light emitting display device 100 manufactured in this manner is applicable to, for example, both a passive drive type organic EL display and an active drive type organic EL display.
  • the organic light emitting display device of the present invention is not limited to the configuration shown in FIG. 3, and may have a generally known configuration as an organic light emitting display device using a color filter.
  • LED light source As an LED light source having an emission peak wavelength of 360 nm to 380 nm and 400 nm to 420 nm, an LED chip having an emission peak wavelength of 365 nm and an LED chip having an emission peak wavelength of 405 nm are used, and the number ratio of each LED chip is Accordingly, the intensity ratio (A/B) between the intensity of the emission peak wavelength of 360 nm to 380 nm (A) and the intensity of the emission peak wavelength of 400 nm to 420 nm (B) was adjusted.
  • the LED chips were arranged so that the curing properties were not biased depending on the light irradiation position.
  • the intensity ratio (A/B) was confirmed using a spectral irradiance meter (USR-45DA-14 (manufactured by Ushio Inc.)).
  • glycidyl methacrylate 20 parts by mass of glycidyl methacrylate (GMA), 0.2 parts by mass of triethylamine, and 0.05 parts by mass of p-methoxyphenol were added to the obtained polymer solution, and the mixture was heated at 110°C for 10 hours.
  • Alkali-soluble resin A was obtained by reacting the carboxylic acid group of main chain methacrylic acid with the epoxy group of glycidyl methacrylate. During the reaction, air was bubbled into the reaction solution to prevent polymerization of glycidyl methacrylate. The reaction was tracked by measuring the acid value of the solution.
  • the obtained alkali-soluble resin A is a resin in which a side chain having an ethylenically unsaturated bond is introduced into the main chain formed by copolymerization of BzMA, MMA, and MAA using GMA, and has a solid content of 40% by mass,
  • the acid value was 74 mgKOH/g and the mass average molecular weight was 12,000.
  • the above mass average molecular weight was determined by using polystyrene as a standard substance and THF as an eluent using Shodex GPC System-21H.
  • the acid value was measured based on JIS K 0070. Further, the glass transition temperature (Tg) was measured using differential scanning calorimetry (EXSTAR DSC 7020, manufactured by SII Nano Technology) according to the method described in JIS K7121.
  • EEMA 1-ethoxyethyl methacrylate
  • HEMA 2-hydroxyethyl methacrylate
  • EHMA 2-ethylhexyl methacrylate
  • MMA methyl methacrylate
  • the obtained block copolymer PGMEA solution is reprecipitated in hexane, purified by filtration and vacuum drying, and the A block containing the structural unit represented by general formula (I) and the structural unit derived from the carboxyl group-containing monomer are extracted.
  • a block copolymer A (acid value: 8 mgKOH/g, Tg: 38° C.) was obtained, which contained a B block having solvent affinity.
  • GPC gel permeation chromatography
  • the mass average molecular weight Mw was 7,730.
  • the amine value was 95 mgKOH/g.
  • reaction solution was discharged.
  • the lower layer was separated using a separatory funnel, the upper layer was extracted with 50 ml of dichloroethane, and the extract and lower layer were separated. Combined with liquid. Thereafter, it was washed with a NaHCO 3 solution containing 10 g of NaHCO 3 and 200 g of water, further washed with 200 ml of water three times until the pH value became neutral, and dried with 60 g of anhydrous MgSO 4 to remove moisture. Afterwards, dichloroethane was evaporated by rotary evaporation.
  • the solid powder remaining in the rotary evaporator was poured into 200 ml of petroleum ether, filtered with suction, and then poured into 150 ml of absolute ethanol, heated, and refluxed. Thereafter, the mixture was cooled to room temperature, further cooled with ice for 2 hours, filtered under suction, and dried in an oven at 50°C for 2 hours to obtain intermediate A1 below.
  • the viscous liquid was extracted with dichloroethane, dried by adding 50 g of anhydrous MgSO 4 , filtered under suction, and the filtrate was rotary evaporated to remove the solvent to obtain an oily viscous substance. Subsequently, the viscous substance was poured into 150 ml of petroleum ether, stirred, precipitated, and filtered under suction to obtain a white powdery solid. Thereafter, it was dried at 60° C. for 5 hours to obtain Intermediate A2 below.
  • Preparation example 2 Preparation of coloring material dispersion B
  • C.I. I. Pigment Blue 15:6 and 11.6 parts by mass of C.I. I. Pigment Violet 23 in place of 1.4 parts by mass C.I. I. Colorant dispersion B was obtained in the same manner as in Preparation Example 1, except that 3.3 parts by mass of Pigment Blue 15:6 and 9.7 parts by mass of Lake Colorant 1 obtained in Synthesis Example 3 were used. .
  • Blue photosensitive composition B-1 was prepared by adding 0.15 parts by mass of KBM503 (manufactured by Shin-Etsu Chemical Co., Ltd.) as a silane coupling agent and 62.54 parts by mass of PGMEA (manufactured by DIC Corporation). Obtained.
  • Example 1 Production of blue cured film
  • Example 1-1 The blue photosensitive composition obtained in each Example and each Comparative Example was applied onto a glass substrate (manufactured by NH Techno Glass Co., Ltd., "NA35") using a spin coater, and after post-baking, the desired color (blue) was applied.
  • Example 1-1 the LED lamps were, as shown in Table 1, an LED light source with an A/B ratio of 80/20, an LED light source with an A/B ratio of 60/40, and an LED light source with an A/B ratio of 40/60. Blue curing was carried out in the same manner as in Example 1-1 except that the LED light source was changed to an LED light source with an A/B ratio of 20/80, or an LED light source with an A/B ratio of 10/90. A membrane was produced.
  • Examples 2 to 45, Comparative Examples 1 to 3 Production of blue cured film
  • a blue cured film was produced in the same manner as in Example 1-1, except that the blue photosensitive composition and/or the LED light source were changed as shown in Tables 1 to 6.
  • A/B is 90/10, 80/20, 60/40, 40/60, 20/80, corresponding to Example 1-1 to Example 1-6 in Example 1. , 10/90 to produce a blue cured film.
  • Example 1-1 (3) Production of blue cured film
  • the blue photosensitive composition was changed to blue photosensitive composition B-46, and the LED light source was changed to have (A/B) of 100 as shown in Table 7.
  • a blue cured film was produced in the same manner as in Example 1-1, except that a single LED light source with an A/B ratio of 0/0 or 0/100 was used.
  • Table 7 shows the results of evaluation in the same manner as in Example 1.
  • Examples 1 to 45 which is the method for producing a blue cured film according to the present invention, the coloring material, the alkali-soluble resin, the photopolymerizable compound, the oxime-based photoinitiator, and the oxime-based photoinitiator were different from 400 nm to A coating film of a blue photosensitive composition containing a photoinitiator containing a sensitizer having a sensitizing effect at 420 nm is exposed using an LED light source having emission peak wavelengths at 360 nm to 380 nm and 400 nm to 420 nm.
  • a coating film of a blue photosensitive composition that does not contain a sensitizer that has a sensitizing effect in the 400 nm to 420 nm range, which is different from an oxime photoinitiator, has an emission peak wavelength in the 360 nm to 380 nm range and 400 nm to 420 nm.
  • Comparative Examples 1 to 3 which were exposed and cured using an LED light source, the line width was narrow, the residual film rate after development was poor, and the formed blue cured film pattern had poor adhesion to the substrate. Furthermore, an oxime photoinitiator having a fluorene skeleton and a sensitizer used in Patent Document 2 were used instead, and exposure was performed using a single LED light source (an LED light source having an emission peak wavelength of 365 nm). In Comparative Example 4, which was cured, although the residual film rate after development was secured, the line width became narrow and the substrate adhesion of the pattern of the formed blue cured film was also poor.
  • the oxime-based photoinitiator and sensitizer having a fluorene skeleton used in Patent Document 2 were used instead, and the method was exposed to light using a single LED light source (an LED light source having an emission peak wavelength of 405 nm) and cured.
  • a single LED light source an LED light source having an emission peak wavelength of 405 nm
  • Comparative Example 5 since the blue photosensitive composition easily penetrated the coating film, the light spread and the line width increased, but curing was insufficient and the residual film rate after development was poor.
  • a single LED light source an LED light source with an emission peak wavelength of 365 nm, or In Comparative Examples 6 to 15, which were exposed and cured using an LED light source with an emission peak wavelength of 405 nm, the line width became narrower, and the adhesion of the formed blue cured film pattern to the substrate was also poor. .
  • Substrate 2 Light shielding part 3 Colored layer 10 Color filter 20
  • Counter substrate 30 Liquid crystal layer 40
  • Organic protective layer 60
  • Inorganic oxide film 71 Transparent anode 72
  • Hole injection layer 73
  • Hole transport layer 74
  • Light emitting layer 75
  • Electron injection layer 76
  • Organic light emitter 100 Organic light emitting display device

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Optical Filters (AREA)
  • Materials For Photolithography (AREA)

Abstract

This method for producing a blue cured film includes: a step for forming, on a substrate, a coating film of a blue photosensitive composition that contains a colorant, an alkali-soluble resin, a photopolymerizable compound, and a photoinitiator that contains an oxime-based photoinitiator and a sensitizer which is different from the oxime-based photoinitiator and which has a sensitizing effect at wavelengths of 400 nm to 420 nm; and a step for curing the coating film by exposing the coating film to light using an LED light source have emission peak wavelengths at 360 nm to 380 nm and 400 nm to 420 nm.

Description

青色硬化膜の製造方法、青色感光性組成物、カラーフィルタ及びその製造方法、並びに、表示装置Method for producing a blue cured film, blue photosensitive composition, color filter and method for producing the same, and display device
 本発明は、青色硬化膜の製造方法、青色感光性組成物、カラーフィルタ及びその製造方法、並びに、表示装置に関する。 The present invention relates to a method for producing a blue cured film, a blue photosensitive composition, a color filter and a method for producing the same, and a display device.
 近年、パーソナルコンピュータの発達、特に携帯用パーソナルコンピュータの発達に伴って、液晶ディスプレイの需要が増加している。モバイルディスプレイ(携帯電話、スマートフォン、タブレットPC)の普及率も高まっており、益々液晶ディスプレイの市場は拡大する状況にある。自発光により視認性が高い有機ELディスプレイのような有機発光表示装置も、次世代画像表示装置として注目されている。
 これらの液晶表示装置や有機発光表示装置には、カラーフィルタが用いられる。例えば液晶表示装置のカラー画像の形成は、カラーフィルタを通過した光がそのままカラーフィルタを構成する各画素の色に着色されて、それらの色の光が合成されてカラー画像を形成する。その際の光源としては、従来の冷陰極管のほか、白色発光の有機発光素子や白色発光の無機発光素子が利用される場合がある。有機発光表示装置では、色調整などのためにカラーフィルタを用いる。
In recent years, with the development of personal computers, especially portable personal computers, the demand for liquid crystal displays has increased. The penetration rate of mobile displays (mobile phones, smartphones, tablet PCs) is also increasing, and the market for liquid crystal displays is expanding. Organic light emitting display devices such as organic EL displays, which have high visibility due to their self-emission, are also attracting attention as next-generation image display devices.
Color filters are used in these liquid crystal display devices and organic light emitting display devices. For example, when forming a color image on a liquid crystal display device, light that has passed through a color filter is colored as it is in the color of each pixel that makes up the color filter, and the lights of these colors are combined to form a color image. In addition to conventional cold cathode tubes, organic light-emitting elements that emit white light or inorganic light-emitting elements that emit white light may be used as light sources in this case. Organic light emitting display devices use color filters for color adjustment and the like.
 ここで、カラーフィルタは、一般的に、基板と、基板上に形成され、赤、緑、青の三原色の着色パターンからなる着色層と、各着色パターンを区画するように基板上に形成された遮光部とを有している。
 カラーフィルタにおける着色層の形成方法としては、例えば、分散剤等により色材を分散してなる色材分散液にバインダー樹脂、光重合性化合物及び光開始剤を添加してなる着色樹脂組成物をガラス基板に塗布して乾燥後、フォトマスクを用いて露光し、現像を行うことによって着色パターンを形成し、加熱することによりパターンを固着して着色層を形成する。これらの工程を、各色ごとに繰り返してカラーフィルタを形成する。
Here, the color filter generally includes a substrate, a colored layer formed on the substrate and consisting of colored patterns of the three primary colors of red, green, and blue, and formed on the substrate so as to partition each colored pattern. It has a light shielding part.
As a method for forming a colored layer in a color filter, for example, a colored resin composition is formed by adding a binder resin, a photopolymerizable compound, and a photoinitiator to a coloring material dispersion obtained by dispersing a coloring material with a dispersant or the like. After coating on a glass substrate and drying, a colored pattern is formed by exposing using a photomask and developing, and the pattern is fixed by heating to form a colored layer. These steps are repeated for each color to form a color filter.
 従来、前記露光工程においては、高圧水銀灯が用いられてきた。高圧水銀灯は、破裂リスクがあり、高消費電力であり、劣化しやすいという問題がある。
 一方、LEDは、省エネルギーや環境負荷低減の観点から、露光用の光源として使用が進められている。
 例えば特許文献1には、(1)基板上に染料及びレーキ顔料よりなる群から選ばれる少なくとも1種を含有する着色感放射線性組成物の塗膜を形成する工程、並びに(2)前記塗膜の少なくとも一部に紫外線LEDを用いて露光する工程を含む画素パターンの形成方法が記載されており、ピーク波長が365nmの紫外線LEDが用いられている。
 また、特許文献2には、(A)光重合性化合物と、(B)9,9-ジ置換フルオレニル基を有する特定構造のオキシムエステル化合物である光重合開始剤と、(C)増感剤とを含む感光性組成物が、LEDにより露光されても良好に硬化すると記載されており、市販されているLEDライトが用いられている。
Conventionally, a high-pressure mercury lamp has been used in the exposure step. High-pressure mercury lamps have problems such as the risk of bursting, high power consumption, and easy deterioration.
On the other hand, LEDs are increasingly being used as light sources for exposure from the viewpoint of energy saving and environmental load reduction.
For example, Patent Document 1 describes (1) forming a coating film of a colored radiation-sensitive composition containing at least one selected from the group consisting of dyes and lake pigments on a substrate; and (2) the coating film. A method for forming a pixel pattern including a step of exposing at least a portion of the image using an ultraviolet LED is described, and an ultraviolet LED having a peak wavelength of 365 nm is used.
Further, Patent Document 2 describes (A) a photopolymerizable compound, (B) a photopolymerization initiator which is an oxime ester compound having a specific structure having a 9,9-disubstituted fluorenyl group, and (C) a sensitizer. It is described that a photosensitive composition containing the above cures well even when exposed to light using an LED, and a commercially available LED light is used.
特開2012-189994号公報Japanese Patent Application Publication No. 2012-189994 特開2017-125972号公報JP 2017-125972 Publication
 LEDランプ露光機は、単一波長であり、主にi線365nmに発光ピーク波長を有するLEDランプが使用されている。しかしながら、i線365nmに発光ピーク波長を有するLEDランプを使用すると、特に青色レジスト(青色感光性組成物)が硬化し難いという問題があった。
 i線365nmは、青色レジストが吸収しやすく透過しにくい波長領域であるため、光開始剤が反応し難く、硬化し難いと考えられた。近年の色材濃度が高くなっている青色レジストにおいては硬化し難さが顕著であった。硬化が不十分であると、現像後の残膜率が低下したり、線幅が細くなりすぎて、パターン形成時の基板密着性が悪化したり、良好なパターンを形成できないという問題が生じる。
 一方でi線365nmより長波長のh線405nmに発光ピーク波長を有するLEDランプを使用すると、青色レジストが透過しやすい波長領域となるため光が広がって線幅としては大きくなりやすいものの、エネルギーとしてはi線よりもh線の方が弱いので、現像後の残膜率を確保し難く、残膜率と線幅のバランスがとりにくいという問題がある。
The LED lamp exposure machine has a single wavelength, and mainly uses an LED lamp having an emission peak wavelength of i-line at 365 nm. However, when an LED lamp having an emission peak wavelength of i-line at 365 nm is used, there is a problem in that the blue resist (blue photosensitive composition) in particular is difficult to cure.
Since the i-line of 365 nm is a wavelength range that is easily absorbed by blue resist and difficult to transmit, it was considered that the photoinitiator was difficult to react with and hard to cure. In recent years, blue resists with higher coloring material concentrations have been particularly difficult to cure. Insufficient curing causes problems such as a decrease in the residual film rate after development, a line width that becomes too thin, poor adhesion to the substrate during pattern formation, and the inability to form a good pattern.
On the other hand, when using an LED lamp that has a peak emission wavelength in the H-line 405 nm, which is a longer wavelength than the I-line 365 nm, the light spreads and the line width tends to increase because the blue resist easily passes through the wavelength range, but the energy is Since the h-line is weaker than the i-line, it is difficult to ensure the remaining film rate after development, and it is difficult to maintain a balance between the remaining film rate and the line width.
 本発明は、上記実情に鑑みてなされたものであり、LED露光によっても、良好なパターンを形成可能な青色硬化膜の製造方法、及び当該青色硬化膜の製造方法を用いたカラーフィルタの製造方法を提供することを目的とする。また、本発明は、当該青色硬化膜の製造方法に好適に用いられる青色感光性組成物、当該青色感光性組成物を用いて形成されたカラーフィルタ及び表示装置を提供することを目的とする。 The present invention has been made in view of the above circumstances, and provides a method for producing a blue cured film that can form a good pattern even by LED exposure, and a method for producing a color filter using the method for producing the blue cured film. The purpose is to provide Another object of the present invention is to provide a blue photosensitive composition suitably used in the method for producing the blue cured film, and a color filter and display device formed using the blue photosensitive composition.
 すなわち、本発明は以下の[1]~[7]に関する。
[1]色材と、アルカリ可溶性樹脂と、光重合性化合物と、オキシム系光開始剤及びオキシム系光開始剤とは異なる400nm~420nmに増感作用を有する増感剤を含む光開始剤とを含有する青色感光性組成物の塗膜を、基板上に形成する工程、並びに、
 前記塗膜に、360nm~380nm、及び、400nm~420nmに発光ピーク波長を有するLED光源を用いて露光して硬化させる工程、
を含む青色硬化膜の製造方法。
[2]前記LED光源において、360nm~380nmの発光ピーク波長の強度(A)と400nm~420nmの発光ピーク波長の強度(B)との強度比(A/B)が10/90~90/10である、前記[1]に記載の青色硬化膜の製造方法。
[3]前記オキシム系光開始剤は、ジフェニルスルフィド骨格を有するオキシム系光開始剤、インドール骨格を有するオキシム系光開始剤、及び、カルバゾール骨格を有するオキシム系光開始剤からなる群から選択される少なくとも1種である、前記[1]又は[2]に記載の青色硬化膜の製造方法。
[4]色材と、アルカリ可溶性樹脂と、光重合性化合物と、下記一般式(A)で表されるオキシム系光開始剤及びオキシム系光開始剤とは異なる400nm~420nmに増感作用を有する増感剤を含む光開始剤とを含有する、360nm~380nm、及び、400nm~420nmに発光ピーク波長を有するLED光源を用いて露光して硬化させるための、青色感光性組成物。
That is, the present invention relates to the following [1] to [7].
[1] A photoinitiator containing a coloring material, an alkali-soluble resin, a photopolymerizable compound, an oxime-based photoinitiator, and a sensitizer having a sensitizing effect at 400 nm to 420 nm different from the oxime-based photoinitiator. a step of forming a coating film of a blue photosensitive composition containing on a substrate, and
a step of exposing and curing the coating film using an LED light source having an emission peak wavelength of 360 nm to 380 nm and 400 nm to 420 nm;
A method for producing a blue cured film comprising:
[2] In the LED light source, the intensity ratio (A/B) between the intensity of the emission peak wavelength of 360 nm to 380 nm (A) and the intensity of the emission peak wavelength of 400 nm to 420 nm (B) is 10/90 to 90/10. The method for producing a blue cured film according to [1] above.
[3] The oxime photoinitiator is selected from the group consisting of an oxime photoinitiator having a diphenyl sulfide skeleton, an oxime photoinitiator having an indole skeleton, and an oxime photoinitiator having a carbazole skeleton. At least one method for producing a blue cured film according to [1] or [2].
[4] A coloring material, an alkali-soluble resin, a photopolymerizable compound, an oxime-based photoinitiator represented by the following general formula (A), and a sensitizing effect at 400 nm to 420 nm different from the oxime-based photoinitiator. A blue photosensitive composition for curing by exposure using an LED light source having an emission peak wavelength of 360 nm to 380 nm and 400 nm to 420 nm.
Figure JPOXMLDOC01-appb-C000002
(一般式(A)において、Z、Z、Z及びZは、それぞれ独立して、水素原子、炭素数1~12の直鎖状もしくは分岐状のアルキル基、炭素数3~20のシクロアルキル基、またはフェニル基を表し、前記アルキル基、シクロアルキル基、およびフェニル基はそれぞれ、ハロゲン原子、炭素数1~6のアルコキシ基、およびフェニル基からなる群から選ばれる置換基で置換されていてもよい。Zはシクロアルキル基で置換された炭素数1~20のアルキル基を表す。)
Figure JPOXMLDOC01-appb-C000002
(In general formula (A), Z 1 , Z 3 , Z 4 and Z 5 each independently represent a hydrogen atom, a linear or branched alkyl group having 1 to 12 carbon atoms, or a C 3 to 20 represents a cycloalkyl group or a phenyl group, and each of the alkyl group, cycloalkyl group, and phenyl group is substituted with a substituent selected from the group consisting of a halogen atom, an alkoxy group having 1 to 6 carbon atoms, and a phenyl group. ( Z2 represents an alkyl group having 1 to 20 carbon atoms substituted with a cycloalkyl group.)
[5]基板と、当該基板上に設けられた青色硬化膜を含む着色層を少なくとも備えるカラーフィルタの製造方法であって、
 当該青色硬化膜を前記[1]~[3]のいずれかに記載の青色硬化膜の製造方法により製造する工程を有する、カラーフィルタの製造方法。
[6]基板と、当該基板上に設けられた着色層とを少なくとも備えるカラーフィルタであって、当該着色層の少なくとも1つが前記[4]に記載の青色感光性組成物の硬化物である、カラーフィルタ。
[7]前記[6]に記載のカラーフィルタを有する、表示装置。
[5] A method for producing a color filter comprising at least a substrate and a colored layer including a blue cured film provided on the substrate,
A method for producing a color filter, comprising the step of producing the cured blue film by the method for producing a cured blue film according to any one of [1] to [3] above.
[6] A color filter comprising at least a substrate and a colored layer provided on the substrate, wherein at least one of the colored layers is a cured product of the blue photosensitive composition according to [4] above. color filter.
[7] A display device comprising the color filter according to [6] above.
 本発明によれば、LED露光によっても、良好なパターンを形成可能な青色硬化膜の製造方法、及び当該青色硬化膜の製造方法を用いたカラーフィルタの製造方法を提供することができる。また、本発明は、当該青色硬化膜の製造方法に好適に用いられる青色感光性組成物、当該青色感光性組成物を用いて形成されたカラーフィルタ及び表示装置を提供することができる。 According to the present invention, it is possible to provide a method for manufacturing a blue cured film that can form a good pattern even by LED exposure, and a method for manufacturing a color filter using the method for manufacturing the blue cured film. Further, the present invention can provide a blue photosensitive composition suitably used in the method for producing the blue cured film, and a color filter and display device formed using the blue photosensitive composition.
図1は、本発明のカラーフィルタの一例を示す概略図である。FIG. 1 is a schematic diagram showing an example of a color filter of the present invention. 図2は、本発明の液晶表示装置の一例を示す概略図である。FIG. 2 is a schematic diagram showing an example of a liquid crystal display device of the present invention. 図3は、本発明の有機発光表示装置の一例を示す概略図である。FIG. 3 is a schematic diagram showing an example of an organic light emitting display device of the present invention.
 以下、本発明に係る青色硬化膜の製造方法、青色感光性組成物、カラーフィルタ及びその製造方法、並びに、表示装置について、順に詳細に説明する。
 なお、本発明において光には、可視及び非可視領域の波長の電磁波、さらには放射線が含まれ、放射線には、例えばマイクロ波、電子線が含まれる。具体的には、波長5μm以下の電磁波、及び電子線のことをいう。
 本発明において(メタ)アクリロイルとは、アクリロイル及びメタクリロイルの各々を表し、(メタ)アクリルとは、アクリル及びメタクリルの各々を表し、(メタ)アクリレートとは、アクリレート及びメタクリレートの各々を表す。
 また、本明細書において数値範囲を示す「~」とは、その前後に記載された数値を下限値及び上限値として含む意味で使用される。
Hereinafter, a method for producing a blue cured film, a blue photosensitive composition, a color filter and a method for producing the same, and a display device according to the present invention will be explained in detail in order.
Note that in the present invention, light includes electromagnetic waves with wavelengths in visible and non-visible regions, as well as radiation, and radiation includes, for example, microwaves and electron beams. Specifically, it refers to electromagnetic waves with a wavelength of 5 μm or less and electron beams.
In the present invention, (meth)acryloyl represents each of acryloyl and methacryloyl, (meth)acrylic represents each of acrylic and methacryl, and (meth)acrylate represents each of acrylate and methacrylate.
Furthermore, in this specification, "~" indicating a numerical range is used to include the numerical values written before and after it as a lower limit value and an upper limit value.
I.青色硬化膜の製造方法
 本発明に係る青色硬化膜の製造方法は、色材と、アルカリ可溶性樹脂と、光重合性化合物と、オキシム系光開始剤及びオキシム系光開始剤とは異なる400nm~420nmに増感作用を有する増感剤を含む光開始剤とを含有する青色感光性組成物の塗膜を、基板上に形成する工程、並びに、
 前記塗膜に、360nm~380nm、及び、400nm~420nmに発光ピーク波長を有するLED光源を用いて露光して硬化させる工程、を含む。
I. Method for producing a blue cured film The method for producing a blue cured film according to the present invention includes a coloring material, an alkali-soluble resin, a photopolymerizable compound, an oxime-based photoinitiator, and a oxime-based photoinitiator having a wavelength of 400 nm to 420 nm different from the oxime-based photoinitiator. a step of forming on a substrate a coating film of a blue photosensitive composition containing a photoinitiator containing a sensitizer having a sensitizing effect;
The method includes a step of exposing and curing the coating film using an LED light source having an emission peak wavelength of 360 nm to 380 nm and 400 nm to 420 nm.
 本発明に係る青色硬化膜の製造方法は、色材と、アルカリ可溶性樹脂と、光重合性化合物と、オキシム系光開始剤及びオキシム系光開始剤とは異なる400nm~420nmに増感作用を有する増感剤を含む光開始剤とを含有する青色感光性組成物の塗膜に、360nm~380nm、及び、400nm~420nmに発光ピーク波長を有するLED光源を用いて露光して硬化させることから、線幅シフトを抑制しながら、現像後の残膜率を向上でき、現像後のアンダーカットが抑制された良好なパターンを形成可能で、形成された青色硬化膜のパターンの基板密着性も向上する。オキシム系光開始剤とオキシム系光開始剤とは異なる400nm~420nmに増感作用を有する増感剤とを組み合わせて、400nm~420nmの発光ピーク波長を有する光を有効に使用できる青色感光性組成物とした上で、360nm~380nmと400nm~420nmの両方に発光ピーク波長を有するLED光源を用いることから、硬化不足と線幅シフトという互いのデメリットを補完し合い、線幅シフトを抑制しながら深部まで良好に硬化できるため、線幅シフトを抑制しながら、良好なパターンを形成でき、基板密着性も向上すると考えられる。 The method for producing a blue cured film according to the present invention includes a coloring material, an alkali-soluble resin, a photopolymerizable compound, an oxime-based photoinitiator, and an oxime-based photoinitiator that has a sensitizing effect at a wavelength of 400 nm to 420 nm different from the oxime-based photoinitiator. A coating film of a blue photosensitive composition containing a photoinitiator containing a sensitizer is exposed and cured using an LED light source having emission peak wavelengths of 360 nm to 380 nm and 400 nm to 420 nm. It is possible to improve the residual film rate after development while suppressing line width shift, it is possible to form a good pattern with suppressed undercuts after development, and the adhesion of the formed blue cured film pattern to the substrate is also improved. . A blue photosensitive composition that can effectively use light having an emission peak wavelength of 400 nm to 420 nm by combining an oxime photoinitiator and a sensitizer different from the oxime photoinitiator and having a sensitizing effect in the 400 nm to 420 nm range. In addition, since we use LED light sources with emission peak wavelengths in both 360 nm to 380 nm and 400 nm to 420 nm, they complement each other's disadvantages of insufficient curing and line width shift, and suppress line width shift. Since it can be cured well to the deep part, it is thought that a good pattern can be formed while suppressing line width shift, and the adhesion to the substrate is also improved.
(1)塗膜形成工程
 まず、色材と、アルカリ可溶性樹脂と、光重合性化合物と、オキシム系光開始剤及びオキシム系光開始剤とは異なる400nm~420nmに増感作用を有する増感剤を含む光開始剤とを含有する青色感光性組成物の塗膜を、基板上に形成する工程を有する。ここで、本発明に用いられる青色感光性組成物は後述する。
(1) Coating film forming process First, a coloring material, an alkali-soluble resin, a photopolymerizable compound, an oxime-based photoinitiator, and a sensitizer having a sensitizing effect at 400 nm to 420 nm different from the oxime-based photoinitiator. The method includes forming a coating film of a blue photosensitive composition containing a photoinitiator on a substrate. Here, the blue-sensitive composition used in the present invention will be described later.
 基板としては、透明基板、シリコン基板、及び、透明基板又はシリコン基板上にアルミニウム、銀、銀/銅/パラジウム合金薄膜などを形成したものが用いられる。これらの基板上には、別のカラーフィルタ層、樹脂層、TFT等のトランジスタ、回路等が形成されていてもよい。
 本発明における透明基板としては、可視光に対して透明な基材であればよく、特に限定されず、例えば一般的なカラーフィルタに用いられる透明基板を使用することができる。具体的には、石英ガラス、無アルカリガラス、合成石英板等の可撓性のない透明なリジッド材、あるいは、透明樹脂フィルム、光学用樹脂板、フレキシブルガラス等の可撓性を有する透明なフレキシブル材が挙げられる。
 当該透明基板の厚みは、特に限定されるものではないが、本発明で製造される青色硬化膜の用途に応じて、例えば100μm~1mm程度のものを使用することができる。
As the substrate, a transparent substrate, a silicon substrate, or a substrate in which a thin film of aluminum, silver, silver/copper/palladium alloy, etc. is formed on a transparent substrate or a silicon substrate is used. Other color filter layers, resin layers, transistors such as TFTs, circuits, etc. may be formed on these substrates.
The transparent substrate in the present invention is not particularly limited as long as it is a base material that is transparent to visible light, and for example, a transparent substrate used in general color filters can be used. Specifically, non-flexible transparent rigid materials such as quartz glass, alkali-free glass, and synthetic quartz plates, or transparent flexible materials that have flexibility such as transparent resin films, optical resin plates, and flexible glass. Examples include wood.
The thickness of the transparent substrate is not particularly limited, but may be, for example, about 100 μm to 1 mm depending on the use of the blue cured film produced by the present invention.
 後述する青色感光性組成物を、スプレーコート法、ディップコート法、バーコート法、ロールコート法、スピンコート法、ダイコート法などの塗布手段を用いて前記基板上に塗布して、ウェット塗膜を形成する。なかでもスピンコート法、ダイコート法を好ましく用いることができる。 A blue photosensitive composition to be described later is applied onto the substrate using a coating method such as a spray coating method, a dip coating method, a bar coating method, a roll coating method, a spin coating method, or a die coating method to form a wet coating film. Form. Among these, spin coating and die coating are preferably used.
 次いで、ホットプレートやオーブンなどを用いて、該ウェット塗膜を乾燥(プリベーク)させ、塗膜を形成する。
 プリベークは、通常、減圧乾燥と加熱乾燥とを組み合わせて行われる。減圧乾燥は、通常、50Pa~200Paに到達するまで行う。また、加熱乾燥の条件は、通常、ホットプレートを用いて、70℃~110℃の温度の下で1分間~10分間程度である。また、塗布される塗膜の厚さは、青色硬化膜の用途に応じて適宜調整されればよく、乾燥後の塗膜の厚さとして、例えば、0.5μm~5.0μm、好ましくは1.0μm~3.0μmが挙げられる。
Next, the wet coating film is dried (prebaked) using a hot plate, an oven, or the like to form a coating film.
Prebaking is usually performed by combining reduced pressure drying and heat drying. Drying under reduced pressure is usually carried out until a pressure of 50 Pa to 200 Pa is reached. The heating drying conditions are usually about 1 minute to 10 minutes at a temperature of 70° C. to 110° C. using a hot plate. Further, the thickness of the applied coating film may be adjusted appropriately depending on the use of the blue cured film, and the thickness of the coating film after drying is, for example, 0.5 μm to 5.0 μm, preferably 1 μm. Examples include .0 μm to 3.0 μm.
(2)露光工程
 本発明において露光工程は、前記塗膜に、360nm~380nm、及び、400nm~420nmに発光ピーク波長を有するLED光源を用いて露光して硬化させる工程である。
 ここで、「発光ピーク波長」とは、LED発光スペクトルにおいて発光強度が極大となる波長をいい、分光放射照度計(例えば、USR-45DA-14(ウシオ電機株式会社製))を用いて測定することができる。
 本発明において用いられる360nm~380nm、及び、400nm~420nmに発光ピーク波長を有するLED光源としては、前記2種類の発光ピーク波長を有する光を、1つのLED照射装置から照射する場合と、2つ以上のLED照射装置から照射する場合の両方が包含される。
 また、360nm~380nm、及び、400nm~420nmに発光ピーク波長を有するLED光源としては、360nm~380nmに発光ピーク波長を2つ以上有してもよく、400nm~420nmに発光ピーク波長を2つ以上有してもよい。
 また、360nm~380nm、及び、400nm~420nmに発光ピーク波長を有するLED光源としては、さらに他の波長領域に発光ピーク波長を有してもよいが、有していなくてもよい。
(2) Exposure step In the present invention, the exposure step is a step of exposing and curing the coating film using an LED light source having an emission peak wavelength of 360 nm to 380 nm and 400 nm to 420 nm.
Here, the "emission peak wavelength" refers to the wavelength at which the emission intensity is maximum in the LED emission spectrum, and is measured using a spectral irradiance meter (for example, USR-45DA-14 (manufactured by Ushio Inc.)). be able to.
As the LED light source having emission peak wavelengths of 360 nm to 380 nm and 400 nm to 420 nm used in the present invention, there are cases in which light having the above two types of emission peak wavelengths is irradiated from one LED irradiation device, and two cases. Both cases of irradiation from the above LED irradiation device are included.
Furthermore, an LED light source having emission peak wavelengths between 360nm and 380nm and between 400nm and 420nm may have two or more emission peak wavelengths between 360nm and 380nm, and two or more emission peak wavelengths between 400nm and 420nm. May have.
Furthermore, the LED light sources having emission peak wavelengths in 360 nm to 380 nm and 400 nm to 420 nm may or may not have emission peak wavelengths in other wavelength ranges.
 本発明において用いられるLED光源において、360nm~380nmの発光ピーク波長の強度(A)と400nm~420nmの発光ピーク波長の強度(B)との強度比(A/B)は、青色感光性組成物及びその硬化膜の用途により適宜選択されればよく、特に限定されない。前記強度比(A/B)は、例えば1/99~99/1であってよく、5/95~95/5であってよく、中でも、10/90~90/10であることが好ましく、10/90~80/20であることがより好ましい。前記強度比(A/B)は、青色感光性組成物及びその硬化膜の用途により、更に20/80~80/20であってよく、より更に40/60~60/40であってよい。
 前記強度比(A/B)は、分光放射照度計(例えば、USR-45DA-14(ウシオ電機株式会社製))を用いて確認することができる。
 例えば360nm~380nmに発光ピーク波長を2つ以上有する場合、2つの発光ピーク波長の強度の合計を360nm~380nmの発光ピーク波長の強度(A)とする。
In the LED light source used in the present invention, the intensity ratio (A/B) between the intensity of the emission peak wavelength of 360 nm to 380 nm (A) and the intensity of the emission peak wavelength of 400 nm to 420 nm (B) is It may be appropriately selected depending on the use of the cured film and is not particularly limited. The intensity ratio (A/B) may be, for example, 1/99 to 99/1, 5/95 to 95/5, and preferably 10/90 to 90/10, More preferably, the ratio is 10/90 to 80/20. The intensity ratio (A/B) may be from 20/80 to 80/20, and even more from 40/60 to 60/40, depending on the use of the blue photosensitive composition and its cured film.
The intensity ratio (A/B) can be confirmed using a spectral irradiance meter (for example, USR-45DA-14 (manufactured by Ushio Inc.)).
For example, when there are two or more emission peak wavelengths in the range of 360 nm to 380 nm, the sum of the intensities of the two emission peak wavelengths is defined as the intensity (A) of the emission peak wavelengths in the range of 360 nm to 380 nm.
 本発明において用いられる360nm~380nm、及び、400nm~420nmに発光ピーク波長を有するLED光源は、360nm~380nmに発光ピーク波長を有するLEDチップと、400nm~420nmに発光ピーク波長を有するLEDチップとを組み合わせて用いるものであってよい。この場合、360nm~380nmに発光ピーク波長を有するLEDチップと、400nm~420nmに発光ピーク波長を有するLEDチップとの個数及び比率によって、前記強度比(A/B)や青色感光性組成物の硬化性を適宜調整しやすい点から好ましい。
 LED光源に用いられるLEDチップは、さらに照度を上げることを目的とした集光レンズを備えていてもよい。
 360nm~380nm、又は、400nm~420nmに発光ピーク波長を有するLEDチップとしては、それぞれ、市販のLEDを適宜選択して用いることができる。市販のLEDとしては、例えば、日亜化学工業株式会社製UV-LEDを用いることができ、具体的には、NVSU233B(365nm)、NWSU333B(365nm)、NWSU333B-D4(367nm)、NCSU276C(365nm)、NVSU119C(375nm)、NVSU119C(405nm)等が挙げられるが、これらに限定されるものではない。
The LED light source used in the present invention having an emission peak wavelength of 360nm to 380nm and 400nm to 420nm includes an LED chip having an emission peak wavelength of 360nm to 380nm, and an LED chip having an emission peak wavelength of 400nm to 420nm. They may be used in combination. In this case, the intensity ratio (A/B) and the curing of the blue photosensitive composition are determined depending on the number and ratio of LED chips having an emission peak wavelength of 360 nm to 380 nm and LED chips having an emission peak wavelength of 400 nm to 420 nm. This is preferable because it is easy to adjust the properties appropriately.
The LED chip used in the LED light source may be equipped with a condenser lens for the purpose of further increasing the illuminance.
As the LED chip having an emission peak wavelength of 360 nm to 380 nm or 400 nm to 420 nm, commercially available LEDs can be appropriately selected and used. As a commercially available LED, for example, a UV-LED manufactured by Nichia Chemical Industries, Ltd. can be used, and specifically, NVSU233B (365 nm), NWSU333B (365 nm), NWSU333B-D4 (367 nm), NCSU276C (365 nm). , NVSU119C (375 nm), NVSU119C (405 nm), etc., but are not limited to these.
 本発明において用いられるLED光源として、360nm~380nmに発光ピーク波長を有するLEDチップと、400nm~420nmに発光ピーク波長を有するLEDチップとを組み合わせて用いる場合、各LEDチップの配列としては、特に限定されるものではない。前記強度比(A/B)に応じて各LEDチップの個数比率を調整し、例えば、規則性の有無を問わず配列することができる。 When using a combination of an LED chip having an emission peak wavelength of 360 nm to 380 nm and an LED chip having an emission peak wavelength of 400 nm to 420 nm as an LED light source used in the present invention, the arrangement of each LED chip is particularly limited. It is not something that will be done. The number ratio of each LED chip can be adjusted according to the intensity ratio (A/B), and the LED chips can be arranged, for example, with or without regularity.
 或いは、本発明において用いられるLED光源としては、360nm~380nmに発光ピーク波長を有するLED照射装置と、400nm~420nmに発光ピーク波長を有するLED照射装置とを同時に又は順次用いて、露光してもよい。また、各LED照射装置の露光順についても限定されない。 Alternatively, as the LED light source used in the present invention, an LED irradiation device having an emission peak wavelength of 360 nm to 380 nm and an LED irradiation device having an emission peak wavelength of 400 nm to 420 nm may be used simultaneously or sequentially for exposure. good. Further, the order of exposure of each LED irradiation device is not limited either.
 本発明において用いられるLED光源は、その照度としては、適宜調整されればよいが、通常、5mW/cm以上のものが用いられ、15mW/cm~60mW/cmが好ましく、60mW/cm以上であってもよい。 The illumination intensity of the LED light source used in the present invention may be adjusted as appropriate, but is usually 5 mW/cm 2 or more, preferably 15 mW/cm 2 to 60 mW/cm 2 , and 60 mW/cm 2 or more. It may be 2 or more.
 露光工程において、LED光源による紫外線積算光量は、塗膜の厚みなどによって適宜調整されればよいが、通常、5mJ/cm~200mJ/cmであり、200mJ/cm~1000mJ/cmであってもよい。 In the exposure process, the cumulative amount of ultraviolet light from the LED light source may be adjusted appropriately depending on the thickness of the coating film, etc., but is usually 5 mJ/cm 2 to 200 mJ/cm 2 , and 200 mJ/cm 2 to 1000 mJ/cm 2 . There may be.
 本発明に係る青色硬化膜の製造方法においては、前記露光工程の後、必要に応じて(3)露光後の塗膜を現像する工程(現像工程)、及び/又は、(4)塗膜をポストベークする工程(加熱工程)が行われてよい。 In the method for producing a blue cured film according to the present invention, after the exposure step, if necessary, (3) developing the exposed coating film (development step); and/or (4) developing the coating film. A post-baking process (heating process) may be performed.
(3)現像工程
 前記露光工程の後、現像液を用いて現像処理し、未露光部分を溶解、除去することにより、所望のパターンで硬化塗膜が形成される。
 現像液としては、アルカリ現像液が好ましく、例えば、炭酸ナトリウム、水酸化ナトリウム、水酸化カリウム、テトラメチルアンモニウムハイドロオキサイド、コリン、1,8-ジアザビシクロ-[5.4.0]-7-ウンデセン、1,5-ジアザビシクロ-[4.3.0]-5-ノネンなどの水溶液が用いられる。アルカリ現像液には、例えば、メタノール、エタノールなどの水溶性有機溶剤や、界面活性剤などを適量添加することもできる。尚、アルカリ現像処理の後は、通常、水洗を行う。
(3) Development process After the exposure process, a cured coating film is formed in a desired pattern by performing a development process using a developer and dissolving and removing unexposed areas.
The developer is preferably an alkaline developer, such as sodium carbonate, sodium hydroxide, potassium hydroxide, tetramethylammonium hydroxide, choline, 1,8-diazabicyclo-[5.4.0]-7-undecene, An aqueous solution of 1,5-diazabicyclo-[4.3.0]-5-nonene or the like is used. For example, an appropriate amount of a water-soluble organic solvent such as methanol or ethanol, or a surfactant may be added to the alkaline developer. Note that after the alkaline development treatment, washing with water is usually performed.
 現像処理法としては、例えば、シャワー現像法、スプレー現像法、ディップ(浸漬)現像法またはパドル(液盛り)現像法などを適用することができる。現像条件は、例えば、常温で5秒間~300秒間とすることができる。 As the development method, for example, a shower development method, a spray development method, a dip development method, a paddle development method, etc. can be applied. Development conditions can be, for example, at room temperature for 5 seconds to 300 seconds.
(4)加熱工程
 露光後、現像工程前に重合反応を促進させるために、硬化塗膜に加熱処理を行ってもよい。加熱条件は、使用する加熱手段、青色感光性組成物中の各成分の配合割合や、硬化塗膜の厚み等によって適宜選択される。
(4) Heating process After exposure and before the development process, the cured coating film may be subjected to heat treatment in order to accelerate the polymerization reaction. The heating conditions are appropriately selected depending on the heating means used, the blending ratio of each component in the blue-sensitive composition, the thickness of the cured coating film, etc.
 また、現像処理後は、通常、現像液の洗浄、青色感光性組成物の硬化塗膜の乾燥が行われ、青色硬化膜が形成される。なお、現像工程後に、硬化塗膜を十分に硬化させるために加熱処理を行ってもよい。加熱条件としては特に限定はなく、使用する加熱手段、青色感光性組成物中の各成分の配合割合や、硬化塗膜の厚み等によって適宜選択される。温風加熱炉を用いた場合、例えば、150℃~250℃で20分間~40分間程度とすることができる。 After the development process, the developer is usually washed and the cured coating film of the blue photosensitive composition is dried to form a blue cured film. Note that, after the development step, heat treatment may be performed in order to sufficiently harden the cured coating film. The heating conditions are not particularly limited and are appropriately selected depending on the heating means used, the blending ratio of each component in the blue-sensitive composition, the thickness of the cured coating film, etc. When a hot air heating furnace is used, the heating time can be, for example, at 150° C. to 250° C. for about 20 minutes to 40 minutes.
 このようにして形成されるパターン状の青色硬化膜の膜厚は、乾燥後の膜厚として、例えば、0.5μm~5.0μm、好ましくは1.0μm~3.0μmが挙げられる。 The thickness of the patterned blue cured film thus formed after drying is, for example, 0.5 μm to 5.0 μm, preferably 1.0 μm to 3.0 μm.
 このようにして形成される青色硬化膜は、C光源を使用して測色したJIS Z8701のXYZ表色系における色度座標が、x=0.110以上0.150以下、y=0.035以上0.190以下の範囲にある硬化膜であってよく、中でも、色再現性を向上する点から、x=0.120以上0.147以下、y=0.038以上0.180以下の範囲にある硬化膜であってよく、x=0.122以上0.147以下、y=0.038以上0.150以下の範囲にある硬化膜であってよく、x=0.125以上0.147以下、y=0.038以上0.120以下の範囲にある硬化膜であってよい。 The blue cured film thus formed has chromaticity coordinates in the JIS Z8701 XYZ color system measured using a C light source: x=0.110 or more and 0.150 or less, y=0.035 The cured film may be in the range of 0.190 or more, and in particular, from the viewpoint of improving color reproducibility, x = 0.120 or more and 0.147 or less, y = 0.038 or more and 0.180 or less. The cured film may be in the range of x = 0.122 or more and 0.147 or less, y = 0.038 or more and 0.150 or less, and x = 0.125 or more and 0.147. Hereinafter, the cured film may be in the range of y=0.038 or more and 0.120 or less.
 本発明の青色硬化膜の製造方法によれば、線幅シフトを抑制しながら、現像後の残膜率を向上でき、現像後のアンダーカットが抑制された良好なパターンを形成可能で、形成された青色硬化膜のパターンの基板密着性も向上することから、当該青色硬化膜の製造方法はカラーフィルタの製造方法に好適に用いられる。 According to the method for producing a blue cured film of the present invention, it is possible to improve the residual film rate after development while suppressing line width shift, and it is possible to form a good pattern with suppressed undercuts after development. Since the adhesion of the blue cured film pattern to the substrate is also improved, the method for producing the blue cured film is suitably used in the method for producing color filters.
II.青色感光性組成物 
 前記本発明の青色硬化膜の製造方法に用いられる青色感光性組成物は、色材と、アルカリ可溶性樹脂と、光重合性化合物と、オキシム系光開始剤及びオキシム系光開始剤とは異なる400nm~420nmに増感作用を有する増感剤を含む光開始剤を含有する。
II. blue photosensitive composition
The blue photosensitive composition used in the method for producing a blue cured film of the present invention includes a coloring material, an alkali-soluble resin, a photopolymerizable compound, an oxime-based photoinitiator, and a 400 nm wavelength different from the oxime-based photoinitiator. Contains a photoinitiator containing a sensitizer that has a sensitizing effect at ~420 nm.
 中でも前記本発明の青色硬化膜の製造方法に、好適に用いられる本発明の青色感光性組成物は、色材と、アルカリ可溶性樹脂と、光重合性化合物と、下記一般式(A)で表されるオキシム系光開始剤及びオキシム系光開始剤とは異なる400nm~420nmに増感作用を有する増感剤を含む光開始剤とを含有する、360nm~380nm、及び、400nm~420nmに発光ピーク波長を有するLEDランプを用いて露光して硬化させるための青色感光性組成物である。 Among them, the blue photosensitive composition of the present invention suitably used in the method for producing a blue cured film of the present invention comprises a coloring material, an alkali-soluble resin, a photopolymerizable compound, and a composition represented by the following general formula (A). and a photoinitiator containing a sensitizer that has a sensitizing effect at 400 nm to 420 nm, which is different from the oxime photo initiator. This is a blue photosensitive composition to be cured by exposure using an LED lamp having a wavelength.
Figure JPOXMLDOC01-appb-C000003
(一般式(A)において、Z、Z、Z及びZは、それぞれ独立して、水素原子、炭素数1~12の直鎖状もしくは分岐状のアルキル基、炭素数3~20のシクロアルキル基、またはフェニル基を表し、前記アルキル基、シクロアルキル基、およびフェニル基はそれぞれ、ハロゲン原子、炭素数1~6のアルコキシ基、およびフェニル基からなる群から選ばれる置換基で置換されていてもよい。Zはシクロアルキル基で置換された炭素数1~20のアルキル基を表す。)
Figure JPOXMLDOC01-appb-C000003
(In general formula (A), Z 1 , Z 3 , Z 4 and Z 5 each independently represent a hydrogen atom, a linear or branched alkyl group having 1 to 12 carbon atoms, or a C 3 to 20 represents a cycloalkyl group or a phenyl group, and each of the alkyl group, cycloalkyl group, and phenyl group is substituted with a substituent selected from the group consisting of a halogen atom, an alkoxy group having 1 to 6 carbon atoms, and a phenyl group. ( Z2 represents an alkyl group having 1 to 20 carbon atoms substituted with a cycloalkyl group.)
 前記本発明の青色硬化膜の製造方法に用いられる青色感光性組成物は、前記本発明の青色硬化膜の製造方法で形成される青色硬化膜が、例えばC光源を使用して測色したJIS Z8701のXYZ表色系における色度座標が、x=0.110以上0.150以下、y=0.035以上0.190以下の範囲にある硬化膜となるように、各成分を選択することができる。
 以下、前記本発明の青色硬化膜の製造方法に用いられる青色感光性組成物に含まれる各成分について順に説明する。
The blue photosensitive composition used in the method for producing a blue cured film of the present invention is such that the blue cured film formed by the method for producing a blue cured film of the present invention has a JIS color measured using, for example, a C light source. Select each component so that the cured film has chromaticity coordinates in the XYZ color system of Z8701 in the range of x = 0.110 or more and 0.150 or less and y = 0.035 or more and 0.190 or less. I can do it.
Hereinafter, each component contained in the blue photosensitive composition used in the method for producing a blue cured film of the present invention will be explained in order.
<色材>
 色材は、感光性組成物の色味が青色領域であるようにすればよく、例えば前述の色度座標の範囲を満たすように混合されれば特に限定されない。
 色材としては、青色色材を含み、更に紫色色材を含んでもよく、更にその他の色材を含んでもよい。
<Color material>
The coloring material is not particularly limited as long as it is such that the color of the photosensitive composition is in the blue region, and is mixed so as to satisfy the above-mentioned range of chromaticity coordinates, for example.
The coloring material includes a blue coloring material, may further contain a purple coloring material, and may further contain other coloring materials.
 本発明で用いられる青色色材としては、P/V=0.2で2.5μmの塗膜を形成し分光透過率スペクトルを測定した場合に、440nm透過率が60%以上且つ520nm透過率が10%以上且つ580nm透過率が10%未満の色材が用いられる。
 なお、青色色材を単体で塗膜化して測色することは、青色色材に適当な分散剤、バインダー成分及び溶剤を配合して塗工液を調製し、透明基板上に塗工して乾燥し、必要に応じて硬化させればよい。バインダー成分としては、測色を行い得る透明な塗膜を形成できる限り、非硬化性の熱可塑性樹脂組成物を用いても良いし、光硬化性(感光性)又は熱硬化性の樹脂組成物を用いても良い。具体的には例えば、後述の実施例1の感光性組成物に用いられた色材以外の固形分を、分散剤及びバインダー成分とすることができる。
 分散剤、バインダー成分を含む、測色を行い得る透明な塗膜としては、例えば、膜厚2.0μmで、380nm以上780nm以下における分光透過率スペクトルの透過率が95%以上であることを目安にすることができる。
 なお、分光透過率スペクトルは、分光測定装置(例えば、オリンパス製 顕微分光光度計 OSP-SP200)を用いて測定することができる。
The blue coloring material used in the present invention has a 440 nm transmittance of 60% or more and a 520 nm transmittance when a 2.5 μm coating film is formed at P/V = 0.2 and the spectral transmittance spectrum is measured. A coloring material having a transmittance of 10% or more and less than 10% at 580 nm is used.
Note that to measure the color of a single blue coloring material as a coating, it is possible to prepare a coating solution by blending the blue coloring material with an appropriate dispersant, binder component, and solvent, and then apply it on a transparent substrate. It may be dried and hardened if necessary. As the binder component, a non-curing thermoplastic resin composition may be used as long as it can form a transparent coating film that allows color measurement, or a photocurable (photosensitive) or thermosetting resin composition may be used. You may also use Specifically, for example, the solid content other than the coloring material used in the photosensitive composition of Example 1 described below can be used as a dispersant and a binder component.
As a transparent coating film containing a dispersant and a binder component and capable of color measurement, for example, a film thickness of 2.0 μm and a spectral transmittance of 95% or more in the range from 380 nm to 780 nm are recommended. It can be done.
Note that the spectral transmittance spectrum can be measured using a spectrometer (for example, Olympus Microspectrophotometer OSP-SP200).
 本発明で用いられる青色色材としては、特に限定されず、公知の青色有機顔料、青色染料、及び青色染料の造塩化合物である青色レーキ色材等を用いることができる。ここで、青色有機顔料は、染料やレーキ色材に比べ、耐熱性や耐光性等の諸耐性に優れ、青色染料は、可溶性のため有機顔料に比べて透過性が高い。また、レーキ色材は、染料由来のため、通常の顔料に比べて透過率が高く、高輝度化の要求を達成することが可能である。 The blue coloring material used in the present invention is not particularly limited, and known blue organic pigments, blue dyes, blue lake coloring materials that are salt-forming compounds of blue dyes, etc. can be used. Here, the blue organic pigment has excellent resistance such as heat resistance and light resistance compared to dyes and lake coloring materials, and the blue dye has higher transparency than the organic pigment because it is soluble. Furthermore, since lake coloring materials are derived from dyes, they have higher transmittance than ordinary pigments and can meet the demands for high brightness.
 前記青色有機顔料としては、例えば、C.I.ピグメントブルー15、C.I.ピグメントブルー15:3、C.I.ピグメントブルー15:4、C.I.ピグメントブルー15:6、C.I.ピグメントブルー16、C.I.ピグメントブルー60等が挙げられる。中でも、比較的輝度に優れる点から、銅フタロシアニン系の青色顔料が好ましい。 Examples of the blue organic pigment include C.I. I. Pigment Blue 15, C. I. Pigment Blue 15:3, C. I. Pigment Blue 15:4, C. I. Pigment Blue 15:6, C. I. Pigment Blue 16, C. I. Pigment Blue 60 and the like. Among these, copper phthalocyanine-based blue pigments are preferred because they have relatively excellent brightness.
 前記青色染料としては、例えば、メチン系染料、アントラキノン系染料、アゾ系染料、トリアリールメタン系染料、フタロシアニン系染料等が挙げられる。 Examples of the blue dye include methine dyes, anthraquinone dyes, azo dyes, triarylmethane dyes, and phthalocyanine dyes.
 前記青色染料の造塩化合物である青色レーキ色材においてカウンターイオンは、上記染料の種類に応じて異なり、酸性染料のカウンターイオンはカチオンであり、塩基性染料のカウンターイオンはアニオンである。
 酸性染料のカウンターカチオンとしては、アンモニウムカチオンの他、金属カチオンや、無機ポリマー等が挙げられる。
 アンモニウムイオンを発生するレーキ化剤としては、例えば、1級アミン化合物、2級アミン化合物、3級アミン化合物等が好適なものとして挙げられ、中でも、耐熱性及び耐光性に優れる点から、2級アミン化合物又は3級アミン化合物を用いることが好ましい。
 また金属カチオンを発生するレーキ化剤としては、所望の金属イオンを有する金属塩の中から適宜選択すればよい。
 酸性染料のカウンターカチオンは、1種単独で、又は2種以上を組み合わせて用いることができる。
In the blue lake coloring material, which is a salt-forming compound of the blue dye, the counter ion differs depending on the type of dye, and the counter ion of the acidic dye is a cation, and the counter ion of the basic dye is an anion.
Counter cations for acidic dyes include ammonium cations, metal cations, inorganic polymers, and the like.
Preferred examples of the lake forming agent that generates ammonium ions include primary amine compounds, secondary amine compounds, and tertiary amine compounds. It is preferable to use an amine compound or a tertiary amine compound.
Further, the lake forming agent that generates metal cations may be appropriately selected from metal salts having desired metal ions.
The counter cations of acidic dyes can be used alone or in combination of two or more.
 一方、塩基性染料のカウンターアニオンとしては、有機アニオンであっても、無機アニオンであってもよい。当該有機アニオンとしては、アニオン性基を置換基として有する有機化合物が挙げられる。
 また、有機アニオンとして公知の酸性染料を用いてもよい。この場合、レーキ色材は、酸性染料と塩基性染料とがイオン対となって存在する。これらの有機アニオンを発生するレーキ化剤としては、上記の有機アニオンのアルカリ金属塩やアルカリ土類金属塩等が挙げられる。
 一方、無機アニオンとしては、例えば、オキソ酸のアニオン(リン酸イオン、硫酸イオン、クロム酸イオン、タングステン酸イオン(WO 2-)、モリブデン酸イオン(MoO 2-)等)や、複数のオキソ酸が縮合したポリ酸アニオン等の無機アニオンやその混合物を挙げることができる。
 上記ポリ酸としては、イソポリ酸アニオン(Mc-であってもヘテロポリ酸アニオン(Xc-であってもよい。上記イオン式中、Mはポリ原子、Xはヘテロ原子、mはポリ原子の組成比、nは酸素原子の組成比を表す。ポリ原子Mとしては、例えば、Mo、W、V、Ti、Nb等が挙げられる。またヘテロ原子Xとしては、例えば、Si、P、As、S、Fe、Co等が挙げられる。cは、価数であり、2以上の整数であってよい。
 中でも、耐熱性の点から、モリブデン(Mo)及びタングステン(W)のうち少なくとも一方を含むポリ酸アニオンであることが好ましく、少なくともタングステンを含むc価のポリ酸アニオンであることがより好ましい。
 無機アニオンを発生するレーキ化剤としては、上記無機アニオンのアルカリ塩やアルカリ金属塩等が挙げられる。
 レーキ色材における塩基性染料のカウンターアニオンは、1種単独で又は2種以上を組み合わせて用いることができる。
On the other hand, the counter anion of the basic dye may be an organic anion or an inorganic anion. Examples of the organic anion include organic compounds having an anionic group as a substituent.
Furthermore, a known acidic dye may be used as the organic anion. In this case, in the lake coloring material, an acidic dye and a basic dye exist as an ion pair. Examples of the lake forming agent that generates these organic anions include alkali metal salts and alkaline earth metal salts of the above-mentioned organic anions.
On the other hand, examples of inorganic anions include oxoacid anions (phosphate ion, sulfate ion, chromate ion, tungstate ion (WO 4 2- ), molybdate ion (MoO 4 2- ), etc.), and Examples include inorganic anions such as polyacid anions condensed with oxo acids, and mixtures thereof.
The polyacid may be an isopolyate anion (M m O n ) c- or a heteropolyacid anion (X l M m O n ) c- . In the above ionic formula, M represents a poly atom, X represents a hetero atom, m represents a composition ratio of poly atoms, and n represents a composition ratio of oxygen atoms. Examples of the poly atom M include Mo, W, V, Ti, and Nb. Examples of the heteroatom X include Si, P, As, S, Fe, and Co. c is a valence number and may be an integer of 2 or more.
Among these, from the viewpoint of heat resistance, a polyacid anion containing at least one of molybdenum (Mo) and tungsten (W) is preferable, and a c-valent polyacid anion containing at least tungsten is more preferable.
Examples of the lake forming agent that generates inorganic anions include alkali salts and alkali metal salts of the above-mentioned inorganic anions.
The counter anions of the basic dyes in the lake coloring material can be used alone or in combination of two or more.
 青色レーキ色材としては、例えば、C.I.ピグメントブルー1、C.I.ピグメントブルー1:2、C.I.ピグメントブルー2、C.I.ピグメントブルー3、C.I.ピグメントブルー8、C.I.ピグメントブルー9、C.I.ピグメントブルー10、C.I.ピグメントブルー12、C.I.ピグメントブルー14、C.I.ピグメントブルー17:1、C.I.ピグメントブルー18、C.I.ピグメントブルー19、C.I.ピグメントブルー24、C.I.ピグメントブルー24:1、C.I.ピグメントブルー53、C.I.ピグメントブルー56、C.I.ピグメントブルー56:1、C.I.ピグメントブルー61、C.I.ピグメントブルー61:1、C.I.ピグメントブルー62、C.I.ピグメントブルー63、C.I.ピグメントブルー78等が挙げられる。
 また、青色レーキ色材としては、耐熱性や耐候性等の信頼性の点から、トリアリールメタン系レーキ色材であってよく、下記一般式(1)で表される色材及び下記一般式(2)で表される色材からなる群から選択される少なくとも1種のレーキ色材であってもよい。
As the blue lake coloring material, for example, C.I. I. Pigment Blue 1, C. I. Pigment Blue 1:2, C. I. Pigment Blue 2, C. I. Pigment Blue 3, C. I. Pigment Blue 8, C. I. Pigment Blue 9, C. I. Pigment Blue 10, C. I. Pigment Blue 12, C. I. Pigment Blue 14, C. I. Pigment Blue 17:1, C. I. Pigment Blue 18, C. I. Pigment Blue 19, C. I. Pigment Blue 24, C. I. Pigment Blue 24:1, C. I. Pigment Blue 53, C. I. Pigment Blue 56, C. I. Pigment Blue 56:1, C. I. Pigment Blue 61, C. I. Pigment Blue 61:1, C. I. Pigment Blue 62, C. I. Pigment Blue 63, C. I. Pigment Blue 78 and the like.
In addition, from the viewpoint of reliability such as heat resistance and weather resistance, the blue lake coloring material may be a triarylmethane-based lake coloring material, and may be a coloring material represented by the following general formula (1) or a coloring material represented by the following general formula. It may be at least one type of lake coloring material selected from the group consisting of coloring materials represented by (2).
Figure JPOXMLDOC01-appb-C000004
(一般式(1)中、Aは、Nと直接結合する炭素原子がπ結合を有しないa価の有機基であって、当該有機基は、少なくともNと直接結合する末端に飽和脂肪族炭化水素基を有する脂肪族炭化水素基、又は当該脂肪族炭化水素基を有する芳香族基を表し、炭素鎖中にヘテロ原子が含まれていてもよい。Bc-はc価のポリ酸アニオンを表す。R~Rは各々独立に水素原子、置換基を有していてもよいアルキル基又は置換基を有していてもよいアリール基を表し、RiiとRiii、RivとRが結合して環構造を形成してもよい。Rvi及びRviiは各々独立に、置換基を有してもよいアルキル基、置換基を有してもよいアルコキシ基、ハロゲン原子又はシアノ基を表す。Arは置換基を有していてもよい2価の芳香族基を表す。複数あるR~Rvii及びArはそれぞれ同一であっても異なっていてもよい。
 a及びcは2以上の整数、b及びdは1以上の整数を表す。f及びgは0以上4以下の整数を表す。複数あるf及びgはそれぞれ同一であっても異なっていてもよい。)
Figure JPOXMLDOC01-appb-C000004
(In general formula (1), A is an a-valent organic group in which the carbon atom directly bonded to N does not have a π bond, and the organic group has at least a saturated aliphatic carbon at the end directly bonded to N. It represents an aliphatic hydrocarbon group having a hydrogen group or an aromatic group having the aliphatic hydrocarbon group, and a hetero atom may be included in the carbon chain.B c- represents a c-valent polyacid anion. R i to R v each independently represent a hydrogen atom, an alkyl group that may have a substituent, or an aryl group that may have a substituent, and R ii and R iii , R iv and R v may be combined to form a ring structure. R vi and R vii each independently represent an alkyl group that may have a substituent, an alkoxy group that may have a substituent, a halogen atom, or a cyano atom. represents a group. Ar 1 represents a divalent aromatic group which may have a substituent. A plurality of R i to R vii and Ar 1 may be the same or different.
a and c represent integers of 2 or more, and b and d represent integers of 1 or more. f and g represent integers from 0 to 4. A plurality of f and g may be the same or different. )
Figure JPOXMLDOC01-appb-C000005
(一般式(2)中、R~RVIは各々独立に水素原子、置換基を有していてもよいアルキル基又は置換基を有していてもよいアリール基を表し、RとRII、RIIIとRIV、RとRVIが結合して環構造を形成してもよい。RVII及びRVIIIは各々独立に、置換基を有してもよいアルキル基、置換基を有してもよいアルコキシ基、ハロゲン原子又はシアノ基を表す。Arは置換基を有していてもよい2価の芳香族複素環基を表し、複数あるR~RVIII及びArはそれぞれ同一であっても異なっていてもよい。Em-はm価のポリ酸アニオンを表す。
 mは2以上の整数を表す。jは0又は1であり、jが0のとき結合は存在しない。k及びlは0以上4以下の整数を表し、k+j及びl+jは0以上4以下である。複数あるj、k及びlはそれぞれ同一であっても異なっていてもよい。)
Figure JPOXMLDOC01-appb-C000005
(In general formula (2), R I to R VI each independently represent a hydrogen atom, an alkyl group that may have a substituent, or an aryl group that may have a substituent, and R I and R II , R III and R IV , and R V and R VI may combine to form a ring structure. R VII and R VIII each independently represent an alkyl group that may have a substituent, or a substituent. represents an alkoxy group, a halogen atom, or a cyano group that may have a substituent.Ar 2 represents a divalent aromatic heterocyclic group that may have a substituent, and the plurality of R I to R VIII and Ar 2 are Each may be the same or different. E m- represents an m-valent polyacid anion.
m represents an integer of 2 or more. j is 0 or 1; when j is 0, there is no bond. k and l represent integers from 0 to 4, and k+j and l+j are from 0 to 4. A plurality of j, k, and l may be the same or different. )
 前記一般式(1)で表される色材及び前記一般式(2)で表される色材からなる群から選択される少なくとも1種のレーキ色材の各符号の説明は、国際公開第2020/071041号公報の段落0031~0061を参照することができる。 The explanation of each symbol of at least one lake coloring material selected from the group consisting of the coloring material represented by the general formula (1) and the coloring material represented by the general formula (2) is given in International Publication No. 2020 Paragraphs 0031 to 0061 of Publication No./071041 can be referred to.
 前記青色色材としては、青色硬化膜の用途により適宜選択されればよいが、カラーフィルタ用途の場合、C.I.ピグメントブルー15:6、C.I.ピグメントブルー15:3、C.I.ピグメントブルー15:4、及びトリアリールメタン系レーキ色材よりなる群から選択される1種以上であることが、色相の点から好ましい。 The blue coloring material may be appropriately selected depending on the use of the blue cured film, but in the case of color filter use, C. I. Pigment Blue 15:6, C. I. Pigment Blue 15:3, C. I. Pigment Blue 15:4, and one or more selected from the group consisting of triarylmethane lake coloring materials are preferred from the viewpoint of hue.
 紫色色材としては、P/V=0.2で2.5μmの塗膜を形成し分光透過率スペクトルを測定した場合に、440nm透過率が40%以上且つ520nm透過率が10%未満且つ680nm透過率が40%以上の色材が用いられる。
 本発明で用いられる紫色色材には、赤色染料の呼称が付けられている赤紫色色材まで包含される。
 なお、紫色色材を単体で塗膜化して測色することは、前述の青色色材と同様に行うことができる。
As a purple coloring material, when a 2.5 μm coating film is formed at P/V = 0.2 and the spectral transmittance spectrum is measured, the 440 nm transmittance is 40% or more, the 520 nm transmittance is less than 10%, and the 680 nm transmittance is 40% or more. A coloring material with a transmittance of 40% or more is used.
The purple coloring material used in the present invention includes a reddish-purple coloring material that is called a red dye.
Note that color measurement by forming a single coating film on the purple coloring material can be performed in the same manner as in the case of the blue coloring material described above.
 本発明に用いられる紫色色材としては、特に限定されず、公知の紫色有機顔料、紫色染料、及び紫色レーキ色材等を用いることができる。 The purple coloring material used in the present invention is not particularly limited, and known purple organic pigments, purple dyes, purple lake coloring materials, and the like can be used.
 前記紫色有機顔料としては、例えば、C.I.ピグメントバイオレット1、14、15、19、23、29、32、33、36、37、38等が挙げられる。中でも、比較的着色力に優れる点から、ピグメントバイオレット23が好ましい。 Examples of the purple organic pigment include C.I. I. Pigment Violet 1, 14, 15, 19, 23, 29, 32, 33, 36, 37, 38 and the like. Among them, Pigment Violet 23 is preferred because it has relatively excellent coloring power.
 前記紫色染料としては、例えば、C.I.アシッドバイオレット29,31,33,34,36,36:1,39,41,42,43,47,51,63,76,103,118,126等のアントラキノン系酸性染料、C.I.ベーシックレッド12等のシアニン系酸性染料、アシッドバイオレット15,16,17,19,21,23,24,25,38,49,72等のトリアリールメタン系酸性染料、C.I.アシッドレッド289、C.I.アシッドバイオレット9、C.I.アシッドバイオレット30等のローダミン系酸性染料;また、C.I.ベーシックバイオレット1,3,14等のトリアリールメタン系塩基性染料、C.I.ベーシックバイオレット11等のキサンテン系塩基性染料等が挙げられる。 Examples of the purple dye include C.I. I. Anthraquinone acid dyes such as Acid Violet 29, 31, 33, 34, 36, 36:1, 39, 41, 42, 43, 47, 51, 63, 76, 103, 118, 126, C.I. I. Cyanine acid dyes such as Basic Red 12, triarylmethane acid dyes such as Acid Violet 15, 16, 17, 19, 21, 23, 24, 25, 38, 49, 72, C.I. I. Acid Red 289, C. I. Acid Violet 9, C. I. Rhodamine acid dyes such as Acid Violet 30; also C.I. I. Triarylmethane basic dyes such as Basic Violet 1, 3, 14, C.I. I. Examples include xanthene basic dyes such as Basic Violet 11.
 前記紫色レーキ色材としては、例えば、上記のような紫色染料をレーキ化剤によりレーキ化したもの等が挙げられる。
 レーキ色材においてカウンターイオンは、上記染料の種類に応じて異なり、酸性染料のカウンターイオンはカチオンであり、塩基性染料のカウンターイオンはアニオンである。酸性染料のカウンターカチオンや、塩基性染料のカウンターアニオンとしては、前記青色染料と挙げたものと同様のものを用いることができる。
Examples of the purple lake coloring material include those obtained by turning the above-mentioned purple dye into a lake using a lake forming agent.
In the lake coloring material, the counter ions differ depending on the type of dye, and the counter ions for acidic dyes are cations, and the counter ions for basic dyes are anions. As the counter cation of the acidic dye and the counter anion of the basic dye, the same ones as mentioned above for the blue dye can be used.
 前記紫色レーキ色材としては、アントラキノン系色材、シアニン系色材、及びキサンテン系色材よりなる群から選択される1種以上であることが、色相の点から好ましい。 The purple lake coloring material is preferably one or more selected from the group consisting of anthraquinone coloring materials, cyanine coloring materials, and xanthene coloring materials from the viewpoint of hue.
 また、前記紫色染料及び前記紫色レーキ色材としては、着色層の輝度及びコントラストを向上する点から、キサンテンを基本骨格として含み、ローダミン系色材を包含する、キサンテン系色材が好ましい。
 当該レーキ色材におけるキサンテン系酸性染料としては、中でも、下記一般式(3)で表される化合物、即ち、ローダミン系酸性染料を含むことが好ましい。
Further, as the purple dye and the purple lake coloring material, a xanthene coloring material containing xanthene as a basic skeleton and including a rhodamine coloring material is preferable from the viewpoint of improving the brightness and contrast of the colored layer.
The xanthene acid dye in the lake coloring material preferably contains a compound represented by the following general formula (3), that is, a rhodamine acid dye.
Figure JPOXMLDOC01-appb-C000006
(一般式(3)中、R~Rは、それぞれ独立に、水素原子、アルキル基、アリール基、又はヘテロアリール基を表し、RとR、RとRが結合して環構造を形成してもよい。Rは、酸性基、Xは、ハロゲン原子を表す。mは0~5の整数を表す。一般式(3)は酸性基を1個以上有するものであり、nは0以上の整数である。)
Figure JPOXMLDOC01-appb-C000006
(In general formula (3), R a to R d each independently represent a hydrogen atom, an alkyl group, an aryl group, or a heteroaryl group, and R a and R b , and R c and R d bond A ring structure may be formed.R e represents an acidic group, X represents a halogen atom, m represents an integer of 0 to 5. General formula (3) has one or more acidic groups; , n is an integer greater than or equal to 0.)
 前記一般式(3)で表される化合物の各符号の説明は、国際公開第2018/135370号公報の段落0057~0059を参照することができる。 For the explanation of each symbol of the compound represented by the general formula (3), reference can be made to paragraphs 0057 to 0059 of International Publication No. 2018/135370.
 上記キサンテン系酸性染料のレーキ色材としては、金属レーキ色材が好適に用いられる。金属レーキ色材は、レーキ化剤として、金属原子を含むものが用いられる。金属原子を含むレーキ化剤を用いることにより、色材の耐熱性が高くなる。このようなレーキ化剤としては、2価以上の金属カチオンとなる金属原子を含むレーキ化剤が好ましい。 A metal lake coloring material is preferably used as the lake coloring material of the xanthene acid dye. The metal lake coloring material includes a metal atom as a lake agent. By using a lake forming agent containing metal atoms, the heat resistance of the coloring material increases. As such a lake forming agent, a lake forming agent containing a metal atom that becomes a divalent or higher metal cation is preferable.
 本発明において用いられる他の色材としては、他の色材としては、例えば、赤色色材、オレンジ色色材、緑色色材等が好適に用いられ、中でも色相の点から、赤色色材、緑色色材であってよい。
 他の色材としては、例えば以下が挙げられるがこれらに限定されるものではない。
 赤色色材として、C.I.ピグメントレッド177、168、254等。
 緑色色材として、C.I.ピグメントグリーン7、36、58、59等。
As other coloring materials used in the present invention, for example, red coloring materials, orange coloring materials, green coloring materials, etc. are suitably used, and among them, from the viewpoint of hue, red coloring materials, green coloring materials, etc. It may be a coloring material.
Examples of other coloring materials include, but are not limited to, the following.
As a red colorant, C. I. Pigment Red 177, 168, 254, etc.
As a green coloring material, C. I. Pigment Green 7, 36, 58, 59, etc.
 本発明に用いられる青色感光性組成物において、色材全体に対する青色色材の含有割合は、所望の色度に合わせて適宜調整されればよく、特に限定されない。
 種々の光源に対する所望の色度の点から、色材全量に対して、青色色材を50質量%以上100質量%以下含有することが好ましく、青色色材を60質量%以上90質量%以下含有することがより好ましく、70質量%以上80質量%以下含有してもよい。
In the blue photosensitive composition used in the present invention, the content ratio of the blue coloring material to the entire coloring material may be appropriately adjusted according to the desired chromaticity, and is not particularly limited.
From the viewpoint of desired chromaticity for various light sources, it is preferable to contain a blue coloring material at 50% by mass or more and 100% by mass or less with respect to the total amount of coloring materials, and contain a blue coloring material at 60% by mass or more and 90% by mass or less. It is more preferable to do so, and the content may be 70% by mass or more and 80% by mass or less.
 本発明に用いられる青色感光性組成物において、青色色材に対する紫色色材の含有割合は、所望の色度に合わせて適宜調整されればよく、特に限定されない。
 種々の光源に対する所望の色度の点から、青色色材を100質量部に対して、紫色色材を3質量部以上100質量部以下含有することが挙げられ、5質量部以上80質量部以下含有してもよい。
 また、色材全量に対して、紫色色材を1質量%以上50質量%以下含有してもよく、3質量%以上40質量%以下含有してもよく、5質量%以上30質量%以下含有してもよい。
In the blue photosensitive composition used in the present invention, the content ratio of the purple coloring material to the blue coloring material is not particularly limited as long as it is appropriately adjusted according to the desired chromaticity.
In terms of desired chromaticity for various light sources, it is possible to include 3 parts by mass or more and 100 parts by mass or less of a violet coloring material per 100 parts by mass of a blue coloring material, and 5 parts by mass or more and 80 parts by mass or less. May be contained.
In addition, the purple coloring material may be contained in 1% by mass or more and 50% by mass or less, 3% by mass or more and 40% by mass or less, and 5% by mass or more and 30% by mass or less, based on the total amount of the coloring material. You may.
 本発明に用いられる青色感光性組成物において、色材中に、他の色材を更に含んでいても良いが、青色色材と紫色色材の合計含有量は、色材全量に対して、70質量%以上100質量%以下であることがより好ましく、80質量%以上100質量%以下であることがより更に好ましい。 In the blue photosensitive composition used in the present invention, the coloring material may further contain other coloring materials, but the total content of the blue coloring material and the purple coloring material is based on the total amount of the coloring material. It is more preferably 70% by mass or more and 100% by mass or less, even more preferably 80% by mass or more and 100% by mass or less.
 本発明に係る青色感光性組成物において、色材の含有量は、特に限定されない。色材の含有量は、分散性及び分散安定性の点から、青色感光性組成物の固形分全量に対して、通常3質量%~65質量%の範囲内、好ましくは4質量%~60質量%の範囲内であり、より好ましくは15質量%~60質量%の範囲内である。上記下限値以上であれば、青色感光性組成物を所定の膜厚(通常は1.0μm~5.0μm)に塗布した際の着色層が充分な色濃度を有する。また、上記上限値以下であれば、保存安定性に優れると共に、充分な硬度や、基板との密着性を有する着色層を得ることができる。特に色材濃度が高い着色層を形成する場合には、色材の合計含有量は、青色感光性組成物の固形分全量に対して、好ましくは20質量%~65質量%、より好ましくは30質量%~60質量%の範囲内である。 In the blue photosensitive composition according to the present invention, the content of the coloring material is not particularly limited. From the viewpoint of dispersibility and dispersion stability, the content of the coloring material is usually within the range of 3% by mass to 65% by mass, preferably 4% by mass to 60% by mass, based on the total solid content of the blue photosensitive composition. %, more preferably 15% to 60% by weight. If it is at least the above lower limit, the colored layer will have sufficient color density when the blue photosensitive composition is applied to a predetermined thickness (usually 1.0 μm to 5.0 μm). Moreover, if it is below the said upper limit, a colored layer which is excellent in storage stability, and has sufficient hardness and adhesiveness with the substrate can be obtained. In particular, when forming a colored layer with a high colorant concentration, the total content of colorants is preferably 20% by mass to 65% by mass, more preferably 30% by mass, based on the total solid content of the blue-sensitive composition. It is within the range of 60% by mass.
<アルカリ可溶性樹脂>
 本発明におけるアルカリ可溶性樹脂は酸性基を有するものであり、バインダー樹脂として作用し、かつパターン形成する際に用いられるアルカリ現像液に可溶性であるものの中から、適宜選択して使用することができる。
 本発明において、アルカリ可溶性樹脂とは、酸価が40mgKOH/g以上であることを目安にすることができる。
 本発明における好ましいアルカリ可溶性樹脂は、酸性基、通常カルボキシ基を有する樹脂であり、具体的には、例えば、カルボキシ基を有する(メタ)アクリル系共重合体及びカルボキシ基を有するスチレン-(メタ)アクリル系共重合体等の(メタ)アクリル系樹脂、カルボキシ基を有するエポキシ(メタ)アクリレート樹脂等が挙げられる。
<Alkali-soluble resin>
The alkali-soluble resin in the present invention has an acidic group, and can be appropriately selected and used from those that act as a binder resin and are soluble in the alkaline developer used in pattern formation.
In the present invention, the alkali-soluble resin can be defined as having an acid value of 40 mgKOH/g or more.
Preferred alkali-soluble resins in the present invention are resins having an acidic group, usually a carboxyl group, and specifically, for example, a (meth)acrylic copolymer having a carboxyl group and a styrene-(meth) copolymer having a carboxyl group. Examples include (meth)acrylic resins such as acrylic copolymers, and epoxy (meth)acrylate resins having a carboxyl group.
 これらの中で特に好ましいものは、側鎖にカルボキシ基を有するとともに、さらに側鎖にエチレン性不飽和基等の光重合性官能基を有するものである。光重合性官能基を含有する場合には、露光工程において、当該アルカリ可溶性樹脂同士、乃至、当該アルカリ可溶性樹脂と多官能モノマー等の光重合性化合物が架橋結合を形成し得る。光重合性官能基を含有する場合には、膜強度が向上するため、ポストベークにおいても顔料が凝集しにくくなり位相差が低いまま維持できる。また、硬化膜の膜強度が向上して現像耐性が向上し、硬化膜の熱収縮が抑制されて基板との密着性に優れるようになる。
 アルカリ可溶性樹脂中に、エチレン性不飽和結合を導入する方法は、従来公知の方法から適宜選択すればよい。例えば、アルカリ可溶性樹脂が有するカルボキシ基に、分子内にエポキシ基とエチレン性不飽和結合とを併せ持つ化合物、例えばグリシジル(メタ)アクリレート等を付加させ、側鎖にエチレン性不飽和結合を導入する方法や、水酸基を有する構成単位を共重合体に導入しておいて、分子内にイソシアネート基とエチレン性不飽和結合とを備えた化合物を付加させ、側鎖にエチレン性不飽和結合を導入する方法などが挙げられる。
Among these, particularly preferred are those having a carboxy group in the side chain and further having a photopolymerizable functional group such as an ethylenically unsaturated group in the side chain. When containing a photopolymerizable functional group, in the exposure step, the alkali-soluble resins may form crosslinks with each other, or the alkali-soluble resin and a photopolymerizable compound such as a polyfunctional monomer may form a crosslink. When a photopolymerizable functional group is contained, the film strength is improved, so that pigments are less likely to aggregate even during post-baking, and the retardation can be maintained at a low level. Furthermore, the film strength of the cured film is improved, development resistance is improved, and thermal shrinkage of the cured film is suppressed, resulting in excellent adhesion to the substrate.
The method for introducing ethylenically unsaturated bonds into the alkali-soluble resin may be appropriately selected from conventionally known methods. For example, a method of adding a compound having both an epoxy group and an ethylenically unsaturated bond in the molecule, such as glycidyl (meth)acrylate, to the carboxyl group of an alkali-soluble resin to introduce an ethylenically unsaturated bond into the side chain. Or, a method in which a structural unit having a hydroxyl group is introduced into a copolymer, and a compound having an isocyanate group and an ethylenically unsaturated bond is added to the molecule to introduce an ethylenically unsaturated bond into the side chain. Examples include.
 また、アルカリ可溶性樹脂は、着色層の密着性が優れる点から、更に炭化水素環を有することが好ましい。アルカリ可溶性樹脂に嵩高い基である、炭化水素環を有することにより硬化時の収縮が抑制され、基板との間の剥離が緩和し、基板密着性が向上する。
 このような炭化水素環としては、置換基を有していてもよい脂肪族炭化水素環、置換基を有していてもよい芳香族炭化水素環、及びこれらの組み合わせが挙げられ、炭化水素環がアルキル基、カルボニル基、カルボキシ基、オキシカルボニル基、アミド基、水酸基、ニトロ基、アミノ基、ハロゲン原子等の置換基を有していてもよい。
 炭化水素環は、1価の基として含まれていても良いし、2価以上の基として含まれていても良い。
Moreover, it is preferable that the alkali-soluble resin further has a hydrocarbon ring from the viewpoint of excellent adhesion of the colored layer. By having a hydrocarbon ring, which is a bulky group, in the alkali-soluble resin, shrinkage during curing is suppressed, peeling from the substrate is alleviated, and adhesion to the substrate is improved.
Examples of such hydrocarbon rings include aliphatic hydrocarbon rings that may have a substituent, aromatic hydrocarbon rings that may have a substituent, and combinations thereof. may have a substituent such as an alkyl group, a carbonyl group, a carboxy group, an oxycarbonyl group, an amide group, a hydroxyl group, a nitro group, an amino group, or a halogen atom.
The hydrocarbon ring may be included as a monovalent group, or may be included as a divalent or higher group.
 炭化水素環の具体例としては、シクロプロパン、シクロブタン、シクロペンタン、シクロヘキサン、ノルボルナン、イソボルナン、トリシクロ[5.2.1.0(2,6)]デカン(ジシクロペンタン)、アダマンタン等の脂肪族炭化水素環;ベンゼン、ナフタレン、アントラセン、フェナントレン、フルオレン等の芳香族炭化水素環;ビフェニル、ターフェニル、ジフェニルメタン、トリフェニルメタン、スチルベン等の鎖状多環や、カルド構造(9,9-ジアリールフルオレン);これらの基の一部が置換基によって置換された基等が挙げられる。
 上記置換基としては、アルキル基、シクロアルキル基、アルキルシクロアルキル基、水酸基、カルボニル基、ニトロ基、アミノ基、ハロゲン原子等が挙げられる。
Specific examples of hydrocarbon rings include aliphatic rings such as cyclopropane, cyclobutane, cyclopentane, cyclohexane, norbornane, isobornane, tricyclo[5.2.1.0(2,6)]decane (dicyclopentane), and adamantane. Hydrocarbon rings: Aromatic hydrocarbon rings such as benzene, naphthalene, anthracene, phenanthrene, and fluorene; chain polycyclic rings such as biphenyl, terphenyl, diphenylmethane, triphenylmethane, and stilbene; ); Examples include groups in which a part of these groups is substituted with a substituent.
Examples of the substituent include an alkyl group, a cycloalkyl group, an alkylcycloalkyl group, a hydroxyl group, a carbonyl group, a nitro group, an amino group, a halogen atom, and the like.
 炭化水素環として、脂肪族炭化水素環を含む場合には、着色層の耐熱性や密着性が向上すると共に、得られた着色層の輝度が向上する点から好ましい。
 また、前記カルド構造を含む場合には、着色層の硬化性が向上し、色材の退色を抑制し、耐溶剤性(NMP膨潤抑制)が向上する点から特に好ましい。
When the hydrocarbon ring includes an aliphatic hydrocarbon ring, it is preferable because the heat resistance and adhesion of the colored layer are improved and the brightness of the obtained colored layer is improved.
Further, when the cardo structure is included, it is particularly preferable because the curability of the colored layer is improved, fading of the coloring material is suppressed, and solvent resistance (NMP swelling suppression) is improved.
 カルボキシ基を有する構成単位を有する(メタ)アクリル系共重合体、及びカルボキシ基を有するスチレン-(メタ)アクリル系共重合体等の(メタ)アクリル系樹脂は、例えば、カルボキシ基含有エチレン性不飽和モノマー、及び必要に応じて共重合可能なその他のモノマーを、公知の方法により(共)重合して得られた(共)重合体である。
 カルボキシ基含有エチレン性不飽和モノマーとしては、例えば、(メタ)アクリル酸、ビニル安息香酸、マレイン酸、マレイン酸モノアルキルエステル、フマル酸、イタコン酸、クロトン酸、桂皮酸、アクリル酸ダイマーなどが挙げられる。また、2-ヒドロキシエチル(メタ)アクリレートなどの水酸基を有する単量体と無水マレイン酸や無水フタル酸、シクロヘキサンジカルボン酸無水物のような環状無水物との付加反応物、ω-カルボキシ-ポリカプロラクトンモノ(メタ)アクリレートなども利用できる。また、カルボキシ基の前駆体として無水マレイン酸、無水イタコン酸、無水シトラコン酸などの無水物含有モノマーを用いてもよい。中でも、共重合性やコスト、溶解性、ガラス転移温度などの点から(メタ)アクリル酸が特に好ましい。
(Meth)acrylic resins such as (meth)acrylic copolymers having structural units having a carboxyl group and styrene-(meth)acrylic copolymers having a carboxyl group are, for example, ethylenic polymers having a carboxyl group. It is a (co)polymer obtained by (co)polymerizing a saturated monomer and, if necessary, other copolymerizable monomers by a known method.
Examples of the carboxyl group-containing ethylenically unsaturated monomer include (meth)acrylic acid, vinylbenzoic acid, maleic acid, maleic acid monoalkyl ester, fumaric acid, itaconic acid, crotonic acid, cinnamic acid, and acrylic acid dimer. It will be done. In addition, addition reaction products of monomers having a hydroxyl group such as 2-hydroxyethyl (meth)acrylate and cyclic anhydrides such as maleic anhydride, phthalic anhydride, and cyclohexanedicarboxylic anhydride, ω-carboxy-polycaprolactone Mono(meth)acrylates can also be used. Furthermore, anhydride-containing monomers such as maleic anhydride, itaconic anhydride, and citraconic anhydride may be used as a precursor of the carboxy group. Among these, (meth)acrylic acid is particularly preferred in terms of copolymerizability, cost, solubility, glass transition temperature, and the like.
 本発明におけるアルカリ可溶性樹脂は、カルボキシ基を有する構成単位と、炭化水素環を有する構成単位とを有する(メタ)アクリル系共重合体及びスチレン-(メタ)アクリル系共重合体等のカルボキシ基含有共重合体であることが好ましく、カルボキシ基を有する構成単位と、炭化水素環を有する構成単位と、エチレン性不飽和結合を有する構成単位とを有する(メタ)アクリル系共重合体及びスチレン-(メタ)アクリル系共重合体等のカルボキシ基含有共重合体であることがより好ましい。 The alkali-soluble resin in the present invention is a carboxyl group-containing resin such as a (meth)acrylic copolymer having a structural unit having a carboxyl group and a structural unit having a hydrocarbon ring, or a styrene-(meth)acrylic copolymer. A (meth)acrylic copolymer and a styrene-( More preferably, it is a carboxyl group-containing copolymer such as a meth)acrylic copolymer.
 炭化水素環を有するエチレン性不飽和モノマーとしては、例えば、シクロヘキシル(メタ)アクリレート、ジシクロペンタニル(メタ)アクリレート、アダマンチル(メタ)アクリレート、イソボルニル(メタ)アクリレート、ベンジル(メタ)アクリレート、フェノキシエチル(メタ)アクリレート、スチレンなどが挙げられ、現像後の着色層の断面形状が加熱処理においても維持される効果が大きい点から、シクロヘキシル(メタ)アクリレート、ジシクロペンタニル(メタ)アクリレート、アダマンチル(メタ)アクリレート、ベンジル(メタ)アクリレート、及びスチレンから選択される少なくとも1種を用いることが好ましい。 Examples of ethylenically unsaturated monomers having a hydrocarbon ring include cyclohexyl (meth)acrylate, dicyclopentanyl (meth)acrylate, adamantyl (meth)acrylate, isobornyl (meth)acrylate, benzyl (meth)acrylate, and phenoxyethyl. Examples include (meth)acrylate, styrene, etc.; cyclohexyl (meth)acrylate, dicyclopentanyl (meth)acrylate, adamantyl ( It is preferable to use at least one selected from meth)acrylate, benzyl(meth)acrylate, and styrene.
 当該カルボキシ基含有共重合体は、更にメチル(メタ)アクリレート、エチル(メタ)アクリレート等、エステル基を有する構成単位等の他の構成単位を含有していてもよい。エステル基を有する構成単位は、感光性組成物のアルカリ可溶性を抑制する成分として機能するだけでなく、溶剤に対する溶解性、さらには溶剤再溶解性を向上させる成分としても機能する。 The carboxy group-containing copolymer may further contain other structural units such as ester group-containing structural units such as methyl (meth)acrylate and ethyl (meth)acrylate. The structural unit having an ester group not only functions as a component that suppresses the alkali solubility of the photosensitive composition, but also functions as a component that improves the solubility in a solvent and further the resolubility in a solvent.
 当該カルボキシ基含有共重合体は、各構成単位の仕込み量を適宜調整することにより、所望の性能を有するアルカリ可溶性樹脂とすることができる。
 カルボキシ基含有エチレン性不飽和モノマーの仕込み量は、良好なパターンが得られる点から、モノマー全量に対して5質量%以上であることが好ましく、10質量%以上であることがより好ましい。一方、現像後のパターン表面の膜荒れ等を抑制する点から、カルボキシ基含有エチレン性不飽和モノマーの仕込み量は、モノマー全量に対して50質量%以下であることが好ましく、40質量%以下であることがより好ましい。
The carboxyl group-containing copolymer can be made into an alkali-soluble resin having desired performance by appropriately adjusting the amount of each constituent unit added.
The amount of the carboxyl group-containing ethylenically unsaturated monomer charged is preferably 5% by mass or more, more preferably 10% by mass or more based on the total amount of monomers, from the viewpoint of obtaining a good pattern. On the other hand, from the viewpoint of suppressing film roughness on the pattern surface after development, the amount of the carboxyl group-containing ethylenically unsaturated monomer added is preferably 50% by mass or less, and 40% by mass or less based on the total amount of monomers. It is more preferable that there be.
 また、アルカリ可溶性樹脂としてより好ましく用いられる、エチレン性不飽和結合を有する構成単位とを有する(メタ)アクリル系共重合体及びスチレン-(メタ)アクリル系共重合体等のカルボキシ基含有共重合体において、エポキシ基とエチレン性不飽和結合とを併せ持つ化合物はカルボキシ基含有エチレン性不飽和モノマーの仕込み量に対して、10質量%以上95質量%以下であることが好ましく、15質量%以上90質量%以下であることがより好ましい。 In addition, carboxy group-containing copolymers such as (meth)acrylic copolymers and styrene-(meth)acrylic copolymers having structural units having ethylenically unsaturated bonds are more preferably used as alkali-soluble resins. The compound having both an epoxy group and an ethylenically unsaturated bond is preferably 10% by mass or more and 95% by mass or less, and 15% by mass or more and 90% by mass based on the charged amount of the carboxyl group-containing ethylenically unsaturated monomer. % or less is more preferable.
 カルボキシ基含有共重合体の好ましい質量平均分子量(Mw)は、好ましくは1,000~50,000の範囲であり、さらに好ましくは3,000~20,000である。1,000以上では硬化後のバインダー機能が向上し、50,000以下だとアルカリ現像液による現像時に、パターン形成が良好となる。
 なお、アルカリ可溶性樹脂の質量平均分子量(Mw)は、ポリスチレンを標準物質とし、THFを溶離液としてショウデックスGPCシステム-21H(Shodex GPC System-21H)により測定することができる。
The preferred weight average molecular weight (Mw) of the carboxyl group-containing copolymer is preferably in the range of 1,000 to 50,000, more preferably 3,000 to 20,000. When it is 1,000 or more, the binder function after curing is improved, and when it is 50,000 or less, pattern formation becomes good during development with an alkaline developer.
The weight average molecular weight (Mw) of the alkali-soluble resin can be measured using Shodex GPC System-21H using polystyrene as a standard substance and THF as an eluent.
 カルボキシ基を有するエポキシ(メタ)アクリレート樹脂としては、特に限定されるものではないが、エポキシ化合物と不飽和基含有モノカルボン酸との反応物を酸無水物と反応させて得られるエポキシ(メタ)アクリレート化合物が適している。
 エポキシ化合物、不飽和基含有モノカルボン酸、及び酸無水物は、公知のものの中から適宜選択して用いることができる。
 カルボキシ基を有するエポキシ(メタ)アクリレート樹脂としても、分子内に、前記炭化水素環を有することが好ましく、中でも、カルド構造を含むものが、着色層の硬化性が向上し、色材の退色を抑制し、また着色層の残膜率が高くなる点から好ましい。
 カルボキシ基を有するエポキシ(メタ)アクリレート樹脂は、それぞれ1種単独で使用してもよいし、二種以上を併用してもよい。
The epoxy (meth) acrylate resin having a carboxyl group is not particularly limited, but includes epoxy (meth) acrylate obtained by reacting a reaction product of an epoxy compound and an unsaturated group-containing monocarboxylic acid with an acid anhydride. Acrylate compounds are suitable.
The epoxy compound, unsaturated group-containing monocarboxylic acid, and acid anhydride can be appropriately selected from known ones and used.
The epoxy (meth)acrylate resin having a carboxyl group preferably has the hydrocarbon ring in the molecule, and among them, those containing a cardo structure improve the curability of the colored layer and prevent discoloration of the coloring material. This is preferable from the viewpoint of suppressing the amount of color and increasing the residual film rate of the colored layer.
The epoxy (meth)acrylate resins having a carboxyl group may be used alone or in combination of two or more.
 アルカリ可溶性樹脂は、現像液に用いるアルカリ水溶液に対する現像性(溶解性)の点から、酸価が40mgKOH/g以上のものを選択して用いることが好ましい。アルカリ可溶性樹脂は、現像液に用いるアルカリ水溶液に対する現像性(溶解性)の点、及び基板への密着性の点から、酸価が40mgKOH/g以上300mgKOH/g以下であることが好ましく、中でも、50mgKOH/g以上280mgKOH/g以下であることが好ましい。 It is preferable to select and use an alkali-soluble resin having an acid value of 40 mgKOH/g or more from the viewpoint of developability (solubility) in an alkaline aqueous solution used as a developer. The alkali-soluble resin preferably has an acid value of 40 mgKOH/g or more and 300 mgKOH/g or less, from the viewpoint of developability (solubility) in an alkaline aqueous solution used in the developer and adhesion to the substrate. It is preferably 50 mgKOH/g or more and 280 mgKOH/g or less.
 アルカリ可溶性樹脂の側鎖にエチレン性不飽和基を有する場合のエチレン性不飽和結合当量は、硬化膜の膜強度が向上して、低位相差を維持しやすく、現像耐性が向上し、基板との密着性に優れるといった効果を得る点から、100~2000の範囲であることが好ましく、140~1500の範囲であることがより好ましく、140~1000の範囲であってもよい。該エチレン性不飽和結合当量が、上限値以下であれば低位相差を維持しやすく、現像耐性や密着性に優れている。また、下限値以上であれば、前記カルボキシ基を有する構成単位や、炭化水素環を有する構成単位などの他の構成単位の割合を相対的に増やすことができるため、現像性や耐熱性に優れている。
 ここで、エチレン性不飽和結合当量とは、上記アルカリ可溶性樹脂におけるエチレン性不飽和結合1モル当りの質量平均分子量のことであり、下記数式(1)で表される。
When the alkali-soluble resin has an ethylenically unsaturated group in its side chain, the ethylenically unsaturated bond equivalent improves the film strength of the cured film, makes it easier to maintain a low retardation, improves development resistance, and improves bonding with the substrate. In order to obtain the effect of excellent adhesion, the number is preferably in the range of 100 to 2,000, more preferably in the range of 140 to 1,500, and may be in the range of 140 to 1,000. If the ethylenically unsaturated bond equivalent is below the upper limit, it is easy to maintain a low retardation, and the development resistance and adhesion are excellent. In addition, if it is above the lower limit, it is possible to relatively increase the proportion of other structural units such as the structural unit having a carboxy group or a structural unit having a hydrocarbon ring, resulting in excellent developability and heat resistance. ing.
Here, the ethylenically unsaturated bond equivalent refers to the mass average molecular weight per mole of ethylenically unsaturated bonds in the alkali-soluble resin, and is expressed by the following formula (1).
数式(1)
  エチレン性不飽和結合当量(g/mol)=W(g)/M(mol)
(数式(1)中、Wは、アルカリ可溶性樹脂の質量(g)を表し、Mはアルカリ可溶性樹脂W(g)中に含まれるエチレン性不飽和結合のモル数(mol)を表す。)
Formula (1)
Ethylenically unsaturated bond equivalent (g/mol) = W (g)/M (mol)
(In formula (1), W represents the mass (g) of the alkali-soluble resin, and M represents the number of moles (mol) of ethylenically unsaturated bonds contained in the alkali-soluble resin W (g).)
 上記エチレン性不飽和結合当量は、例えば、JIS K 0070:1992に記載のよう素価の試験方法に準拠して、アルカリ可溶性樹脂1gあたりに含まれるエチレン性不飽和結合の数を測定することにより算出してもよい。 The ethylenically unsaturated bond equivalent can be determined, for example, by measuring the number of ethylenically unsaturated bonds contained per gram of alkali-soluble resin in accordance with the iodine value test method described in JIS K 0070:1992. It may be calculated.
 青色感光性組成物において用いられるアルカリ可溶性樹脂は、1種単独で用いてもよいし、2種以上を組み合わせて用いてもよい。アルカリ可溶性樹脂の含有量としては特に制限はないが、青色感光性組成物の固形分全量に対して、例えば好ましくは5質量%~60質量%、さらに好ましくは10質量%~40質量%の範囲内である。アルカリ可溶性樹脂の含有量が上記下限値以上であると、充分なアルカリ現像性が得られ、また、アルカリ可溶性樹脂の含有量が上記上限値以下であると、現像時に膜荒れやパターンの欠けを抑制できる。 The alkali-soluble resins used in the blue photosensitive composition may be used alone or in combination of two or more. The content of the alkali-soluble resin is not particularly limited, but is preferably in the range of 5% to 60% by mass, more preferably 10% to 40% by mass, based on the total solid content of the blue photosensitive composition. It is within. When the content of the alkali-soluble resin is at least the above lower limit, sufficient alkali developability can be obtained, and when the content of the alkali-soluble resin is at or below the above upper limit, film roughness and pattern chipping may occur during development. It can be suppressed.
<光重合性化合物>
 本発明の青色感光性組成物において用いられる光重合性化合物は、光開始剤によって重合可能なものであればよく、特に限定されず、通常、エチレン性不飽和結合を2つ以上有する化合物が好適に用いられ、特にアクリロイル基又はメタクリロイル基を2つ以上有する、多官能(メタ)アクリレートであることが好ましい。
 このような多官能(メタ)アクリレートとしては、従来公知のものの中から適宜選択して用いればよい。具体例としては、例えば、特開2013-029832号公報に記載のもの等が挙げられる。
<Photopolymerizable compound>
The photopolymerizable compound used in the blue-sensitive composition of the present invention is not particularly limited as long as it can be polymerized by a photoinitiator, and compounds having two or more ethylenically unsaturated bonds are usually preferred. It is preferably a polyfunctional (meth)acrylate that is used for, and has two or more acryloyl groups or methacryloyl groups.
Such polyfunctional (meth)acrylates may be appropriately selected from conventionally known ones. Specific examples include those described in JP-A No. 2013-029832.
 これらの多官能(メタ)アクリレートは1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。また、本発明の青色感光性組成物においては、優れた光硬化性が要求されることから、多官能(メタ)アクリレートが、エチレン性不飽和結合を3つ(三官能)以上有する化合物が好ましく、エチレン性不飽和結合基を3~15個含む化合物であることがより好ましく、エチレン性不飽和結合基を3~6個含む化合物であることが更に好ましい。また、重合性化合物は、3~15官能の(メタ)アクリレート化合物であることが好ましく、3~6官能の(メタ)アクリレート化合物であることがより好ましい。
 エチレン性不飽和結合を3つ(三官能)以上有する化合物としては、例えば、3価以上の多価アルコールのポリ(メタ)アクリレート類やそれらのジカルボン酸変性物が好ましく、具体的には、トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレートのコハク酸変性物、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレートのコハク酸変性物、ジペンタエリスリトールヘキサ(メタ)アクリレート等が好ましい。
One type of these polyfunctional (meth)acrylates may be used alone, or two or more types may be used in combination. In addition, in the blue-sensitive composition of the present invention, since excellent photocurability is required, the polyfunctional (meth)acrylate is preferably a compound having three or more ethylenically unsaturated bonds (trifunctional). , more preferably a compound containing 3 to 15 ethylenically unsaturated bond groups, and even more preferably a compound containing 3 to 6 ethylenically unsaturated bond groups. Further, the polymerizable compound is preferably a 3- to 15-functional (meth)acrylate compound, more preferably a 3- to 6-functional (meth)acrylate compound.
As the compound having three or more ethylenically unsaturated bonds (trifunctional), for example, poly(meth)acrylates of trihydric or higher polyhydric alcohols and dicarboxylic acid modified products thereof are preferable. Methylolpropane tri(meth)acrylate, pentaerythritol tri(meth)acrylate, succinic acid modified product of pentaerythritol tri(meth)acrylate, pentaerythritol tetra(meth)acrylate, dipentaerythritol tetra(meth)acrylate, dipentaerythritol penta Preferred are (meth)acrylate, a succinic acid-modified product of dipentaerythritol penta(meth)acrylate, dipentaerythritol hexa(meth)acrylate, and the like.
 本発明の青色感光性組成物において用いられる光重合性化合物は、現像性の点から、酸性基を有する光重合性化合物を含有していてもよい。酸性基としては、カルボキシル基、スルホ基、リン酸基等が挙げられ、カルボキシル基が好ましい。酸性基を有する光重合性化合物の市販品としては、アロニックスM-510、M-520、アロニックスTO-2349(東亞合成(株)製)等が挙げられる。
 本発明の青色感光性組成物において用いられる光重合性化合物において、酸性基を有する光重合性化合物の含有量は、現像性の点から、光重合性化合物全量に対して、20質量%以下であってよく、10質量%以下であってよく、5質量%以下であってよく、組み合わせる前記アルカリ可溶性樹脂の酸価の点から、0質量%であってもよい。
The photopolymerizable compound used in the blue photosensitive composition of the present invention may contain a photopolymerizable compound having an acidic group from the viewpoint of developability. Examples of the acidic group include a carboxyl group, a sulfo group, a phosphoric acid group, and a carboxyl group is preferred. Commercially available photopolymerizable compounds having acidic groups include Aronix M-510, M-520, Aronix TO-2349 (manufactured by Toagosei Co., Ltd.), and the like.
In the photopolymerizable compound used in the blue photosensitive composition of the present invention, the content of the photopolymerizable compound having an acidic group is 20% by mass or less based on the total amount of the photopolymerizable compound from the viewpoint of developability. The content may be 10% by mass or less, 5% by mass or less, and 0% by mass from the viewpoint of the acid value of the alkali-soluble resin to be combined.
 本発明の青色感光性組成物において用いられる光重合性化合物は、硬化性の調整の点で良好で、微細パターンを形成しやすく、欠けを抑制しやすい点から、カプロラクトン構造を有する光重合性化合物を含有していてもよい。カプロラクトン構造を有する光重合性化合物は、ε-カプロラクトンを開環した構造を含有すればよく、ε-カプロラクトンを開環した構造を繰り返し単位として含有するものであってもよい。
 カプロラクトン構造を有する光重合性化合物は、例えば、アルコールと、(メタ)アクリル酸及びε-カプロラクトンをエステル化することにより得ることができ、中でも、多価アルコールと、(メタ)アクリル酸及びε-カプロラクトンをエステル化して得られる化合物が好適に用いられる。
 カプロラクトン構造を有する光重合性化合物としては、適宜市販品を用いてもよい。市販品としては、例えば、日本化薬株式会社からKAYARAD DPCAシリーズとして市販されている。
 本発明の青色感光性組成物において用いられる光重合性化合物において、カプロラクトン構造を有する光重合性化合物の含有量は、硬化性の調整の点から、光重合性化合物全量に対して、0質量%~70質量%であってよく、10質量%~50質量%であってよい。
The photopolymerizable compound used in the blue photosensitive composition of the present invention is a photopolymerizable compound having a caprolactone structure because it is good in terms of adjusting curability, is easy to form a fine pattern, and is easy to suppress chipping. may contain. The photopolymerizable compound having a caprolactone structure may contain a ring-opened structure of ε-caprolactone, and may contain a ring-opened structure of ε-caprolactone as a repeating unit.
A photopolymerizable compound having a caprolactone structure can be obtained, for example, by esterifying an alcohol, (meth)acrylic acid, and ε-caprolactone, and among them, a polyhydric alcohol, (meth)acrylic acid, and ε-caprolactone. A compound obtained by esterifying caprolactone is preferably used.
As the photopolymerizable compound having a caprolactone structure, commercially available products may be used as appropriate. As a commercial product, for example, it is commercially available from Nippon Kayaku Co., Ltd. as the KAYARAD DPCA series.
In the photopolymerizable compound used in the blue photosensitive composition of the present invention, the content of the photopolymerizable compound having a caprolactone structure is 0% by mass based on the total amount of the photopolymerizable compound from the viewpoint of adjusting curability. It may be between 70% and 10% and 50% by weight.
 また、本発明の青色感光性組成物において用いられる光重合性化合物は、硬化性の調整の点で良好で、微細パターンを形成しやすく、欠けを抑制しやすい点から、アルキレンオキシ基を有する光重合性化合物を含有していてもよい。アルキレンオキシ基を有する光重合性化合物は、エチレンオキシ基および/またはプロピレンオキシ基を有する光重合性化合物が好ましく、エチレンオキシ基を有する光重合性化合物がより好ましく、エチレンオキシ基を4~20個有する3~6官能(メタ)アクリレート化合物がさらに好ましい。アルキレンオキシ基を有する光重合性化合物の市販品としては、例えば、エトキシ化(4)ペンタエリスリトールテトラアクリレート(サートマー社製、商品名 SR-494)、トリメチロールプロパントリプロポキシトリアクリレート(日本化薬(株)製、商品名 KAYARAD TPA-330)、エチレンオキサイド12モル変性ジペンタエリスリトールヘキサアクリレート(日本化薬(株)製、商品名 KAYARAD DPEA-12)、第一工業製薬製の商品名 ニューフロンティアMF-001などが挙げられる。
 本発明の青色感光性組成物において用いられる光重合性化合物において、アルキレンオキシ基を有する光重合性化合物の含有量は、硬化性の調整の点から、光重合性化合物全量に対して、0質量%~50質量%であってよく、5質量%~40質量%であってよい。
In addition, the photopolymerizable compound used in the blue photosensitive composition of the present invention is a photopolymerizable compound having an alkyleneoxy group because it is good in terms of adjusting curability, easily forms fine patterns, and easily suppresses chipping. It may contain a polymerizable compound. The photopolymerizable compound having an alkyleneoxy group is preferably a photopolymerizable compound having an ethyleneoxy group and/or a propyleneoxy group, more preferably a photopolymerizable compound having an ethyleneoxy group, and has 4 to 20 ethyleneoxy groups. More preferred are tri- to hexa-functional (meth)acrylate compounds having the following. Commercially available photopolymerizable compounds having an alkyleneoxy group include, for example, ethoxylated (4) pentaerythritol tetraacrylate (manufactured by Sartomer Co., Ltd., trade name SR-494), trimethylolpropane tripropoxy triacrylate (Nippon Kayaku Co., Ltd.) Co., Ltd., product name KAYARAD TPA-330), ethylene oxide 12 mole modified dipentaerythritol hexaacrylate (Nippon Kayaku Co., Ltd., product name KAYARAD DPEA-12), Daiichi Kogyo Seiyaku Co., Ltd. product name New Frontier MF -001 etc.
In the photopolymerizable compound used in the blue photosensitive composition of the present invention, the content of the photopolymerizable compound having an alkyleneoxy group is set to 0 mass with respect to the total amount of the photopolymerizable compound from the viewpoint of adjusting curability. % to 50% by weight, and 5% to 40% by weight.
 本発明の青色感光性組成物において用いられる光重合性化合物全体の光重合性基1モル当りの質量平均分子量として、例えば不飽和結合当量は、硬化性の点から、好ましくは300以下であり、より好ましくは250以下、更に好ましくは200以下の範囲内である。不飽和結合当量は、硬化性の点から、97以下であってもよい。不飽和結合当量は小さい方が好ましいが、下限値は50程度であって良い。
 ここでの不飽和結合当量は、光重合性化合物の不飽和結合1モル当りの質量平均分子量をいい、下記数式(2)で表される。
数式(2)
  不飽和結合当量(g/mol)=W2(g)/M2(mol)
(数式(1)中、W2は、光重合性化合物の質量(g)を表し、M2は光重合性化合物W2(g)中に含まれる不飽和結合のモル数(mol)を表す。)
As the mass average molecular weight per mole of photopolymerizable groups of the entire photopolymerizable compound used in the blue photosensitive composition of the present invention, for example, the unsaturated bond equivalent is preferably 300 or less from the viewpoint of curability, It is more preferably 250 or less, still more preferably 200 or less. The unsaturated bond equivalent may be 97 or less from the viewpoint of curability. Although the unsaturated bond equivalent is preferably small, the lower limit may be about 50.
The unsaturated bond equivalent herein refers to the mass average molecular weight per mole of unsaturated bonds of the photopolymerizable compound, and is expressed by the following formula (2).
Formula (2)
Unsaturated bond equivalent (g/mol) = W2 (g)/M2 (mol)
(In formula (1), W2 represents the mass (g) of the photopolymerizable compound, and M2 represents the number of moles (mol) of unsaturated bonds contained in the photopolymerizable compound W2 (g).)
 青色感光性組成物において用いられる上記光重合性化合物の含有量は、特に制限はないが、青色感光性組成物の固形分全量に対して、例えば好ましくは5質量%~60質量%、さらに好ましくは10質量%~40質量%の範囲内である。光重合性化合物の含有量が上記下限値以上であると十分に光硬化が進み、露光部分が現像時の溶出を抑制でき、また、光重合性化合物の含有量が上記上限値以下であるとアルカリ現像性が十分である。 The content of the photopolymerizable compound used in the blue-sensitive composition is not particularly limited, but is preferably 5% by mass to 60% by mass, more preferably 5% by mass, based on the total solid content of the blue-sensitive composition. is within the range of 10% by mass to 40% by mass. If the content of the photopolymerizable compound is at least the above lower limit, photocuring will proceed sufficiently, and elution of the exposed area during development can be suppressed, and if the content of the photopolymerizable compound is below the above upper limit, Alkaline developability is sufficient.
<光開始剤>
 本発明の青色硬化膜の製造方法に用いられる青色感光性組成物における光開始剤は、オキシム系光開始剤と、オキシム系光開始剤とは異なる400nm~420nmに増感作用を有する増感剤とを含む。
 中でも本発明の青色硬化膜の製造方法に好適に用いられる本発明の青色感光性組成物は、下記一般式(A)で表されるオキシム系光開始剤と、オキシム系光開始剤とは異なる400nm~420nmに増感作用を有する増感剤とを含む。
<Photoinitiator>
The photoinitiators in the blue photosensitive composition used in the method for producing a blue cured film of the present invention include an oxime photoinitiator and a sensitizer having a sensitizing effect in the range of 400 nm to 420 nm, which is different from the oxime photoinitiator. including.
Among them, the blue photosensitive composition of the present invention suitably used in the method for producing a blue cured film of the present invention is an oxime-based photoinitiator represented by the following general formula (A), which is different from the oxime-based photoinitiator. Contains a sensitizer that has a sensitizing effect at 400 nm to 420 nm.
(オキシム系光開始剤)
 本発明においてオキシム系光開始剤とは、オキシムエステル骨格を有する光開始剤をいう。
 オキシム系光開始剤としては、例えば、1,2-オクタジオン-1-[4-(フェニルチオ)フェニル]-,2-(o-ベンゾイルオキシム)、エタノン,1-[9-エチル-6-(2-メチルベンゾイル)-9H-カルバゾール-3-イル]-,1-(o-アセチルオキシム)、特開2000-80068号公報、特開2001-233842号公報、特表2010-527339号公報、特表2010-527338号公報、特開2013-041153号公報、国際公開2015/152153号公報、国際公開2018/062105号公報等に記載のオキシム系光開始剤を適宜選択して用いることができる。
 本発明で用いられるオキシム系光開始剤としては、中でも、青色色材と前記特定の2種の発光ピーク波長を有するLED光源とを組み合わせた場合に、感度、及び、現像後に生じるアンダーカット幅の抑制が向上する点から、ジフェニルスルフィド骨格を有するオキシム系光開始剤、インドール骨格を有するオキシム系光開始剤、及び、カルバゾール骨格を有するオキシム系光開始剤からなる群から選択される少なくとも1種であることが好ましい。
(oxime photoinitiator)
In the present invention, the oxime-based photoinitiator refers to a photoinitiator having an oxime ester skeleton.
Examples of oxime photoinitiators include 1,2-octadione-1-[4-(phenylthio)phenyl]-,2-(o-benzoyloxime), ethanone, 1-[9-ethyl-6-(2 -Methylbenzoyl)-9H-carbazol-3-yl]-,1-(o-acetyloxime), JP 2000-80068, JP 2001-233842, JP 2010-527339, JP 2010-527339, JP Oxime-based photoinitiators described in JP 2010-527338, JP 2013-041153, WO 2015/152153, WO 2018/062105, etc. can be appropriately selected and used.
Among the oxime-based photoinitiators used in the present invention, when a blue coloring material and an LED light source having the above-mentioned two specific emission peak wavelengths are combined, sensitivity and undercut width that occurs after development can be improved. In order to improve suppression, at least one member selected from the group consisting of an oxime photoinitiator having a diphenyl sulfide skeleton, an oxime photoinitiator having an indole skeleton, and an oxime photoinitiator having a carbazole skeleton. It is preferable that there be.
 ジフェニルスルフィド骨格を有するオキシム系光開始剤としては、中でも、下記一般式(A)で表される化合物が、青色色材と前記特定の2種の発光ピーク波長を有するLED光源とを組み合わせた場合に、感度、現像後に生じるアンダーカット幅の抑制、及び現像後の耐水性が向上する点から、好適に用いられる。 As an oxime photoinitiator having a diphenyl sulfide skeleton, among others, a compound represented by the following general formula (A) is used in combination with a blue coloring material and an LED light source having the above-mentioned two specific emission peak wavelengths. It is preferably used because it improves sensitivity, suppresses undercut width that occurs after development, and improves water resistance after development.
Figure JPOXMLDOC01-appb-C000007
(一般式(A)において、Z、Z、Z及びZは、それぞれ独立して、水素原子、炭素数1~12の直鎖状もしくは分岐状のアルキル基、炭素数3~20のシクロアルキル基、またはフェニル基を表し、前記アルキル基、シクロアルキル基、およびフェニル基はそれぞれ、ハロゲン原子、炭素数1~6のアルコキシ基、およびフェニル基からなる群から選ばれる置換基で置換されていてもよい。Zはシクロアルキル基で置換された炭素数1~20のアルキル基を表す。)
Figure JPOXMLDOC01-appb-C000007
(In general formula (A), Z 1 , Z 3 , Z 4 and Z 5 each independently represent a hydrogen atom, a linear or branched alkyl group having 1 to 12 carbon atoms, or a C 3 to 20 represents a cycloalkyl group or a phenyl group, and each of the alkyl group, cycloalkyl group, and phenyl group is substituted with a substituent selected from the group consisting of a halogen atom, an alkoxy group having 1 to 6 carbon atoms, and a phenyl group. ( Z2 represents an alkyl group having 1 to 20 carbon atoms substituted with a cycloalkyl group.)
 前記一般式(A)において、Z、Z、Z及びZにおける炭素数1~12の直鎖状もしくは分岐状のアルキル基としては、例えば、メチル基、エチル基、n-プロピル基、i-プロピル基、n-ブチル基、i-ブチル基、sec-ブチル基、t-ブチル基、n-ペンチル基、n-ヘキシル基、n-ヘプチル基、n-オクチル基、n-ノニル基、n-デシル基、n-ウンデシル基、n-ドデシル基等が挙げられる。
 Z、Z、Z及びZにおける前記炭素数3~20のシクロアルキル基としては、例えば、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基、シクロオクチル基、シクロオクタデシル基等が挙げられる。
 Zにおける前記シクロアルキル基としては、前記炭素数3~20のシクロアルキル基と同様であって良く、シクロペンチル基、シクロヘキシル基が好ましい。
 Zにおける前記炭素数1~20のアルキル基としては、前記炭素数1~12の直鎖状もしくは分岐状のアルキル基に加えて、n-テトラデシル、n-ヘキサデシル、n-オクタデシル基等が挙げられる。
In the general formula (A), the linear or branched alkyl group having 1 to 12 carbon atoms in Z 1 , Z 3 , Z 4 and Z 5 includes, for example, a methyl group, an ethyl group, and an n-propyl group. , i-propyl group, n-butyl group, i-butyl group, sec-butyl group, t-butyl group, n-pentyl group, n-hexyl group, n-heptyl group, n-octyl group, n-nonyl group , n-decyl group, n-undecyl group, n-dodecyl group, etc.
Examples of the cycloalkyl group having 3 to 20 carbon atoms in Z 1 , Z 3 , Z 4 and Z 5 include cyclopropyl group, cyclobutyl group, cyclopentyl group, cyclohexyl group, cycloheptyl group, cyclooctyl group, cyclooctadecyl group. Examples include groups.
The cycloalkyl group in Z 2 may be the same as the cycloalkyl group having 3 to 20 carbon atoms, and cyclopentyl group and cyclohexyl group are preferable.
Examples of the alkyl group having 1 to 20 carbon atoms in Z 2 include n-tetradecyl, n-hexadecyl, n-octadecyl groups, etc. in addition to the linear or branched alkyl group having 1 to 12 carbon atoms. It will be done.
 また、Z、Z、Z及びZにおいて、前記アルキル基、シクロアルキル基、およびフェニル基に置換されていても良いハロゲン原子としては、フッ素原子、塩素原子、臭素原子等が挙げられる。
 Z、Z、Z及びZにおいて、前記アルキル基、シクロアルキル基、およびフェニル基に置換されていても良い前記炭素数1~6のアルコキシ基としては、例えば、メトキシ基、エトキシ基、n-プロポキシ基、i-プロポキシ基、n-ブトキシ基、t-ブトキシ基等が挙げられる。
Further, in Z 1 , Z 3 , Z 4 and Z 5 , examples of the halogen atom which may be substituted in the alkyl group, cycloalkyl group, and phenyl group include a fluorine atom, a chlorine atom, a bromine atom, etc. .
In Z 1 , Z 3 , Z 4 and Z 5 , the alkyl group, cycloalkyl group, and alkoxy group having 1 to 6 carbon atoms which may be substituted with a phenyl group include, for example, a methoxy group, an ethoxy group , n-propoxy group, i-propoxy group, n-butoxy group, t-butoxy group, etc.
 一般式(A)において、Zとしては、感度が向上する点から、炭素数1~6のアルキル基またはフェニル基が好ましく、メチル基、エチル基、またはフェニル基がより好ましく、メチル基がより更に好ましい。
 また、一般式(A)において、Z、Z及びZとしては、水素原子、メチル基、エチル基、n-プロピル基、またはi-プロピル基が、輝度の点から好ましい。
In general formula (A), from the viewpoint of improving sensitivity, Z 1 is preferably an alkyl group having 1 to 6 carbon atoms or a phenyl group, more preferably a methyl group, an ethyl group, or a phenyl group, and more preferably a methyl group. More preferred.
In general formula (A), Z 3 , Z 4 and Z 5 are preferably a hydrogen atom, a methyl group, an ethyl group, an n-propyl group, or an i-propyl group from the viewpoint of brightness.
 一般式(A)において、Zとしては、溶剤溶解性や相溶性の点から、炭素数5~6のシクロアルキル基で置換された炭素数1~14のアルキル基が好ましく、炭素数5~6のシクロアルキル基で置換された炭素数1~10のアルキル基が更に好ましく、シクロヘキシルメチル基、またはシクロペンチルメチル基がより更に好ましく、シクロヘキシルメチル基が特に好ましい。 In general formula (A), from the viewpoint of solvent solubility and compatibility, Z 2 is preferably an alkyl group having 1 to 14 carbon atoms substituted with a cycloalkyl group having 5 to 6 carbon atoms; An alkyl group having 1 to 10 carbon atoms substituted with 6 cycloalkyl groups is more preferred, a cyclohexylmethyl group or a cyclopentylmethyl group is even more preferred, and a cyclohexylmethyl group is particularly preferred.
 前記一般式(A)で表される光開始剤としては、中でも昇華物が発生し難い点から、下記化学式(A-1)で表されるオキシムエステル化合物が好ましい。市販品としてはTR-PBG-3057(常州強力電子新材料社製)等が挙げられる。 As the photoinitiator represented by the general formula (A), an oxime ester compound represented by the following chemical formula (A-1) is particularly preferable, since sublimates are unlikely to be generated. Commercially available products include TR-PBG-3057 (manufactured by Changzhou Strong Electronics New Materials Co., Ltd.).
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
 前記一般式(A)で表される光開始剤は、例えば、特表2012―526185号公報を参照し、ジフェニルスルフィド又はその誘導体を用い、使用する材料に応じて溶剤、反応温度、反応時間、精製方法等を適宜選択することにより、合成できる。また、市販品を適宜入手して用いても良い。 For the photoinitiator represented by the general formula (A), for example, refer to Japanese Patent Application Publication No. 2012-526185, diphenyl sulfide or a derivative thereof is used, and depending on the material used, the solvent, reaction temperature, reaction time, It can be synthesized by appropriately selecting a purification method and the like. Alternatively, commercially available products may be appropriately obtained and used.
 ジフェニルスルフィド骨格を有するオキシム系光開始剤としては、1,2-オクタジオン,1-[4-(フェニルチオ)フェニル]-,2-(o-ベンゾイルオキシム)(例えば、イルガキュアOXE01、BASF社製)、1,2-プロパンジオン,3-シクロペンチル-1-[4-(フェニルチオ)フェニル]-,2-(o-ベンゾイルオキシム)(例えば、TR-PBG-305、常州強力電子新材料社製)、1,2-プロパンジオン,3-シクロペンチル-1-[4-[(2-ヒドロキシエトキシ)フェニルチオ]フェニル]-,2-(o-アセチルオキシム)、1-ペンタノン,1-[4-[4-(2-ベンゾフラニルカルボニル)フェニルチオ]フェニル]-4-メチル,1-(o-アセチルオキシム)、市販品としてアデカアークルズNCI-930(ADEKA社製)、イルガキュアOXE04(BASF社製)等を用いてもよい。 Examples of oxime photoinitiators having a diphenyl sulfide skeleton include 1,2-octadione, 1-[4-(phenylthio)phenyl]-,2-(o-benzoyloxime) (for example, Irgacure OXE01, manufactured by BASF), 1,2-propanedione, 3-cyclopentyl-1-[4-(phenylthio)phenyl]-,2-(o-benzoyloxime) (e.g., TR-PBG-305, manufactured by Changzhou Strong Electronics New Materials Co., Ltd.), 1 , 2-propanedione, 3-cyclopentyl-1-[4-[(2-hydroxyethoxy)phenylthio]phenyl]-, 2-(o-acetyloxime), 1-pentanone, 1-[4-[4-( 2-Benzofuranylcarbonyl)phenylthio]phenyl]-4-methyl,1-(o-acetyloxime), commercially available products such as Adeka Arcles NCI-930 (manufactured by ADEKA) and Irgacure OXE04 (manufactured by BASF) were used. It's okay.
 インドール骨格を有するオキシム系光開始剤としては、例えば、下記一般式(B)で表される化合物が挙げられる。 Examples of the oxime photoinitiator having an indole skeleton include a compound represented by the following general formula (B).
Figure JPOXMLDOC01-appb-C000009
(式中、R及びRは、それぞれ独立に、R11、OR11、COR11、SR11、CONR1213又はCNを表し、
 R11、R12及びR13は、それぞれ独立に、水素原子、炭素数1~20のアルキル基、炭素数6~30のアリール基、炭素数7~30のアリールアルキル基又は炭素数2~20の複素環基を表し、
 R11、R12及びR13で表される基の水素原子は、更にR21、OR21、COR21、SR21、NR2223、CONR2223、-NR22-OR23、-NCOR22-OCOR23、NR22COR21、OCOR21、COOR21、SCOR21、OCSR21、COSR21、CSOR21、水酸基、ニトロ基、CN、又はハロゲン原子で置換されていてもよく、
 R21、R22及びR23は、それぞれ独立に、水素原子、炭素数1~20のアルキル基、炭素数6~30のアリール基、炭素数7~30のアリールアルキル基又は炭素数2~20の複素環基を表し、
 R21、R22及びR23で表される基の水素原子は、更に水酸基、ニトロ基、CN、ハロゲン原子、又はカルボキシ基で置換されていてもよく、
 R11、R12、R13、R21、R22及びR23で表される基のアルキレン部分は、-O-、-S-、-COO-、-OCO-、-NR24-、-NR24CO-、-NR24COO-、-OCONR24-、-SCO-、-COS-、-OCS-又は-CSO-を酸素原子が隣り合わない条件で1~5個含んでいてもよく、
 R24は、水素原子、炭素数1~20のアルキル基、炭素数6~30のアリール基、炭素数7~30のアリールアルキル基又は炭素数2~20の複素環基を表し、
 R11、R12、R13、R21、R22、R23及びR24で表される基のアルキル部分は、分岐側鎖があってもよく、環状アルキルであってもよく、
 Rは、水素原子、炭素数1~20のアルキル基、炭素数6~30のアリール基、炭素数7~30のアリールアルキル基又は炭素数2~20の複素環基を表し、Rで表される基のアルキル部分は、分岐側鎖があってもよく、環状アルキルであってもよく、また、RとR、及びRとRはそれぞれ一緒になって環を形成していてもよく、
 Rで表される基の水素原子は、更にR21、OR21、COR21、SR21、NR2223、CONR2223、-NR22-OR23、-NCOR22-OCOR23、NR22COR21、OCOR21、COOR21、SCOR21、OCSR21、COSR21、CSOR21、水酸基、ニトロ基、CN、又はハロゲン原子で置換されていてもよく、
 R、R、R及びRは、それぞれ独立に、R11、OR11、SR11、COR14、CONR1516、NR12COR11、OCOR11、COOR14、SCOR11、OCSR11、COSR14、CSOR11、水酸基、CN又はハロゲン原子を表し、RとR、RとR、及びRとRはそれぞれ一緒になって環を形成していてもよく、
 R14、R15及びR16は、水素原子又は炭素数1~20のアルキル基を表し、R14、R15及びR16で表される基のアルキル部分は、分岐側鎖があってもよく、環状アルキルであってもよく、Rは、R11、OR11、SR11、COR11、CONR1213、NR12COR11、OCOR11、COOR11、SCOR11、OCSR11、COSR11、CSOR11、水酸基、CN又はハロゲン原子を表し、
 kは、0又は1を表す。)
Figure JPOXMLDOC01-appb-C000009
(wherein R 1 and R 2 each independently represent R 11 , OR 11 , COR 11 , SR 11 , CONR 12 R 13 or CN,
R 11 , R 12 and R 13 are each independently a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, an aryl group having 6 to 30 carbon atoms, an arylalkyl group having 7 to 30 carbon atoms, or an arylalkyl group having 2 to 20 carbon atoms. represents a heterocyclic group,
The hydrogen atoms of the groups represented by R 11 , R 12 and R 13 are further represented by R 21 , OR 21 , COR 21 , SR 21 , NR 22 R 23 , CONR 22 R 23 , -NR 22 -OR 23 , -NCOR 22 - OCOR 23 , NR 22 COR 21 , OCOR 21 , COOR 21 , SCOR 21 , OCSR 21 , COSR 21 , CSOR 21 , optionally substituted with a hydroxyl group, a nitro group, CN, or a halogen atom,
R 21 , R 22 and R 23 are each independently a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, an aryl group having 6 to 30 carbon atoms, an arylalkyl group having 7 to 30 carbon atoms, or an arylalkyl group having 2 to 20 carbon atoms. represents a heterocyclic group,
The hydrogen atoms of the groups represented by R 21 , R 22 and R 23 may be further substituted with a hydroxyl group, a nitro group, CN, a halogen atom, or a carboxy group,
The alkylene moiety of the group represented by R 11 , R 12 , R 13 , R 21 , R 22 and R 23 is -O-, -S-, -COO-, -OCO-, -NR 24 -, -NR 24 CO-, -NR 24 COO-, -OCONR 24 -, -SCO-, -COS-, -OCS- or -CSO- may contain 1 to 5 of them, provided that oxygen atoms are not adjacent to each other,
R24 represents a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, an aryl group having 6 to 30 carbon atoms, an arylalkyl group having 7 to 30 carbon atoms, or a heterocyclic group having 2 to 20 carbon atoms;
The alkyl portion of the group represented by R 11 , R 12 , R 13 , R 21 , R 22 , R 23 and R 24 may have a branched side chain or may be a cyclic alkyl,
R 3 represents a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, an aryl group having 6 to 30 carbon atoms, an arylalkyl group having 7 to 30 carbon atoms, or a heterocyclic group having 2 to 20 carbon atoms; The alkyl portion of the group represented may have a branched side chain or may be a cyclic alkyl, and R 3 and R 7 and R 3 and R 8 may each be taken together to form a ring. You can also
The hydrogen atom of the group represented by R 3 is further R 21 , OR 21 , COR 21 , SR 21 , NR 22 R 23 , CONR 22 R 23 , -NR 22 -OR 23 , -NCOR 22 -OCOR 23 , NR 22 COR 21 , OCOR 21 , COOR 21 , SCOR 21 , OCSR 21 , COSR 21 , CSOR 21 , which may be substituted with a hydroxyl group, a nitro group, CN, or a halogen atom,
R 4 , R 5 , R 6 and R 7 are each independently R 11 , OR 11 , SR 11 , COR 14 , CONR 15 R 16 , NR 12 COR 11 , OCOR 11 , COOR 14 , SCOR 11 , OCSR 11 , COSR 14 , CSOR 11 represent a hydroxyl group, CN or a halogen atom, and R 4 and R 5 , R 5 and R 6 , and R 6 and R 7 may each be taken together to form a ring,
R 14 , R 15 and R 16 represent a hydrogen atom or an alkyl group having 1 to 20 carbon atoms, and the alkyl portion of the group represented by R 14 , R 15 and R 16 may have a branched side chain. , cyclic alkyl, R8 may be R11 , OR11 , SR11 , COR11 , CONR12R13 , NR12COR11 , OCOR11 , COOR11 , SCOR11 , OCSR11 , COSR11 , CSOR 11 represents a hydroxyl group, CN or a halogen atom,
k represents 0 or 1. )
 前記一般式(B)で表されるオキシムエステル化合物には、オキシムの二重結合による幾何異性体が存在するが、これらを区別するものではない。即ち、本明細書において、前記一般式(B)で表わされる化合物、並びに後述する該化合物の好ましい形態である下記一般式(B’)で表わされる化合物及びその例示化合物は、両方の混合物又はどちらか一方を表すものであり、異性体を示した構造に限定するものではない。 The oxime ester compound represented by the general formula (B) has geometric isomers due to the double bond of the oxime, but these are not distinguished. That is, in this specification, the compound represented by the above general formula (B), the compound represented by the following general formula (B') which is a preferred form of the compound described below, and its exemplary compounds are a mixture of both or either It represents either one of the isomers, and is not limited to the structure showing the isomer.
 上記一般式(B)中の、R、R11、R12、R13、R14、R15、R16、R21、R22、R23及びR24で表される炭素数1~20のアルキル基としては、例えば、メチル、エチル、プロピル、イソプロピル、ブチル、イソブチル、s-ブチル、t-ブチル、アミル、イソアミル、t-アミル、ヘキシル、ヘプチル、オクチル、イソオクチル、2-エチルヘキシル、t-オクチル、ノニル、イソノニル、デシル、イソデシル、ウンデシル、ドデシル、テトラデシル、ヘキサデシル、オクタデシル、イコシル、シクロペンチル、シクロペンチルメチル、シクロペンチルエチル、シクロヘキシル、シクロヘキシルメチル、シクロヘキシルエチル等が挙げられる。 1 to 20 carbon atoms represented by R 3 , R 11 , R 12 , R 13 , R 14 , R 15 , R 16 , R 21 , R 22 , R 23 and R 24 in the above general formula (B) Examples of the alkyl group include methyl, ethyl, propyl, isopropyl, butyl, isobutyl, s-butyl, t-butyl, amyl, isoamyl, t-amyl, hexyl, heptyl, octyl, isooctyl, 2-ethylhexyl, t- Octyl, nonyl, isononyl, decyl, isodecyl, undecyl, dodecyl, tetradecyl, hexadecyl, octadecyl, icosyl, cyclopentyl, cyclopentylmethyl, cyclopentylethyl, cyclohexyl, cyclohexylmethyl, cyclohexylethyl and the like.
 上記一般式(B)中の、R、R11、R12、R13、R21、R22、R23及びR24で表される炭素数6~30のアリール基としては、例えば、フェニル、トリル、キシリル、エチルフェニル、ナフチル、アンスリル、フェナンスレニル、上記アルキル基で1つ以上置換されたフェニル、ビフェニリル、ナフチル、アンスリル等が挙げられる。 The aryl group having 6 to 30 carbon atoms represented by R 3 , R 11 , R 12 , R 13 , R 21 , R 22 , R 23 and R 24 in the above general formula (B) includes, for example, phenyl , tolyl, xylyl, ethylphenyl, naphthyl, anthryl, phenanthrenyl, phenyl substituted with one or more of the above alkyl groups, biphenylyl, naphthyl, anthryl, and the like.
 上記一般式(B)中の、R、R11、R12、R13、R21、R22、R23及びR24で表される炭素数7~30のアリールアルキル基としては、例えば、ベンジル、α-メチルベンジル、α、α-ジメチルベンジル、フェニルエチル等が挙げられる。 The arylalkyl group having 7 to 30 carbon atoms represented by R 3 , R 11 , R 12 , R 13 , R 21 , R 22 , R 23 and R 24 in the above general formula (B) is, for example, Examples include benzyl, α-methylbenzyl, α,α-dimethylbenzyl, and phenylethyl.
 上記一般式(B)中の、R、R11、R12、R13、R21、R22、R23、及びR24で表される炭素数2~20の複素環基としては、例えば、ピリジル、ピリミジル、フリル、チエニル、テトラヒドロフリル、ジオキソラニル、ベンゾオキサゾール-2-イル、テトラヒドロピラニル、ピロリジル、イミダゾリジル、ピラゾリジル、チアゾリジル、イソチアゾリジル、オキサゾリジル、イソオキサゾリジル、ピペリジル、ピペラジル、モルホリニル等の5~7員複素環が挙げられる。
上記一般式(B)中の、RとR、RとR及びRとR並びにRとR及びRとRが一緒になって形成し得る環としては、例えば、シクロペンタン環、シクロヘキサン環、シクロペンテン環、ベンゼン環、ピペリジン環、モルホリン環、ラクトン環、ラクタム環等の5~7員環が好ましく挙げられる。
The heterocyclic group having 2 to 20 carbon atoms represented by R 3 , R 11 , R 12 , R 13 , R 21 , R 22 , R 23 and R 24 in the above general formula (B) includes, for example , pyridyl, pyrimidyl, furyl, thienyl, tetrahydrofuryl, dioxolanyl, benzoxazol-2-yl, tetrahydropyranyl, pyrrolidyl, imidazolidyl, pyrazolidyl, thiazolidyl, isothiazolidyl, oxazolidyl, isoxazolidyl, piperidyl, piperazyl, morpholinyl, etc. ~7-membered heterocycles.
In the above general formula (B), the ring that can be formed by combining R 4 and R 5 , R 5 and R 6 , R 6 and R 7 , R 3 and R 7 , and R 3 and R 8 is: For example, 5- to 7-membered rings such as a cyclopentane ring, a cyclohexane ring, a cyclopentene ring, a benzene ring, a piperidine ring, a morpholine ring, a lactone ring, and a lactam ring are preferably mentioned.
 また、上記一般式(B)中の、R、R、R、R及びRで表されるハロゲン原子、並びに上記一般式(B)中の、R、R11、R12、R13、R21、R22及びR23を置換してもよいハロゲン原子としては、フッ素、塩素、臭素、ヨウ素が挙げられる。 Further, halogen atoms represented by R 4 , R 5 , R 6 , R 7 and R 8 in the above general formula (B), and R 3 , R 11 , R 12 in the above general formula (B) , R 13 , R 21 , R 22 and R 23 include fluorine, chlorine, bromine, and iodine.
 上記一般式(B)中の、R11、R12、R13、R21、R22及びR23で表される基のアルキレン部分は、-O-、-S-、-COO-、-OCO-、-NR24-、-NR24CO-、-NR24COO-、-OCONR24-、-SCO-、-COS-、-OCS-又は-CSO-を酸素原子が隣合わない条件で1~5個含んでいてもよく、この時含まれる2価の基は1種又は2種以上の基でもよく、連続して含まれ得る基の場合は2個以上連続して含まれていてもよい。 In the above general formula (B), the alkylene moiety of the group represented by R 11 , R 12 , R 13 , R 21 , R 22 and R 23 is -O-, -S-, -COO-, -OCO -, -NR 24 -, -NR 24 CO-, -NR 24 COO-, -OCONR 24 -, -SCO-, -COS-, -OCS- or -CSO- from 1 to 1 under the condition that oxygen atoms are not adjacent to each other. It may contain 5 divalent groups, and in this case, the divalent groups contained may be one type or two or more types of groups, and in the case of groups that can be contained consecutively, two or more groups may be contained consecutively. .
 また、上記一般式(B)中の、R11、R12、R13、R21、R22、R23及びR24で表される基のアルキル(アルキレン)部分は、分岐側鎖があってもよく、環状アルキルであってもよい。
 上記一般式(B)で表される化合物の中でも、Rが縮合していてもよい芳香族環であるもの、あるいは下記一般式(B’)で表される化合物は、感度が高く、製造が容易であるため好ましい。
In addition, the alkyl (alkylene) moiety of the group represented by R 11 , R 12 , R 13 , R 21 , R 22 , R 23 and R 24 in the above general formula (B) has a branched side chain. It may also be a cyclic alkyl.
Among the compounds represented by the above general formula (B), those in which R 3 is an optionally fused aromatic ring or the compounds represented by the following general formula (B') have high sensitivity and are easy to manufacture. This is preferable because it is easy.
Figure JPOXMLDOC01-appb-C000010
(式中、R、R、R、R、R、R、R及びkは、上記一般式(B)と同じであり、R31、R32、R33、R34及びR35は、それぞれ独立に、R11、OR11、SR11、COR11、CONR1516、NR12COR11、OCOR11、COOR14、SCOR11、OCSR11、COSR14、CSOR11、水酸基、ニトロ基、CN又はハロゲン原子を表し、R31とR32、R32とR33、R33とR34及びR34とR35はそれぞれ一緒になって環を形成していてもよい。)
Figure JPOXMLDOC01-appb-C000010
(In the formula, R 1 , R 2 , R 4 , R 5 , R 6 , R 7 , R 8 and k are the same as in the above general formula (B), and R 31 , R 32 , R 33 , R 34 and R 35 are each independently R 11 , OR 11 , SR 11 , COR 11 , CONR 15 R 16 , NR 12 COR 11 , OCOR 11 , COOR 14 , SCOR 11 , OCSR 11 , COSR 14 , CSOR 11 , hydroxyl group , represents a nitro group, CN, or a halogen atom, and R 31 and R 32 , R 32 and R 33 , R 33 and R 34 , and R 34 and R 35 may each be taken together to form a ring.)
 R31とR32、R32とR33、R33とR34及びR34とR35が一緒になって形成する環の例としては、RとR、RとR及びRとR並びにRとR及びRとRが一緒になって形成し得る環の例として上記で挙げたものと同様の環が挙げられる。 Examples of rings formed by R 31 and R 32 , R 32 and R 33 , R 33 and R 34 and R 34 and R 35 are R 4 and R 5 , R 5 and R 6 and R 6 Examples of rings that can be formed by combining and R 7 , R 3 and R 7 , and R 3 and R 8 include the same rings as those listed above.
 上記一般式(B)及び(B’)において、Rとして炭素数1~12のアルキル基又は炭素数7~15のアリールアルキル基、R11が炭素数6~12のアリール基、炭素数1~8のアルキル基であるものが、溶媒溶解性が高いので好ましく、Rとしてメチル基、エチル基又はフェニル基であるものが反応性が高いので好ましく、R~Rとして水素原子又はシアノ基、特に水素原子であるものが合成が容易なので好ましく、Rとして水素原子であるものが合成が容易なので好ましく、kは1であるものが、感度が高いので好ましく、上記一般式(B’)において、R31~R35のうち少なくとも1つがニトロ基、CN、ハロゲン原子、COR11であり、R11が炭素数6~12のアリール基、炭素数1~8のアルキル基であるものが感度が高いので好ましく、R31~R35のうち少なくとも1つがニトロ基、CN、ハロゲン原子、又はCOPh(ここでPhはフェニル基)であるものがより好ましく、R33がニトロ基、CN、ハロゲン原子、又はCOPhであるものが特に好ましい。 In the above general formulas (B) and (B'), R 1 is an alkyl group having 1 to 12 carbon atoms or an arylalkyl group having 7 to 15 carbon atoms, R 11 is an aryl group having 6 to 12 carbon atoms, and R 11 is an aryl group having 6 to 12 carbon atoms; ~8 alkyl groups are preferred because they have high solvent solubility; R2 are preferably methyl, ethyl, or phenyl groups because they have high reactivity; R4 ~ R7 are hydrogen atoms or cyano A group, especially a hydrogen atom, is preferred because it is easy to synthesize, a hydrogen atom as R 8 is preferred because it is easy to synthesize, and a group where k is 1 is preferred because it has high sensitivity. ), at least one of R 31 to R 35 is a nitro group, CN, a halogen atom, or COR 11 , and R 11 is an aryl group having 6 to 12 carbon atoms or an alkyl group having 1 to 8 carbon atoms; It is preferable because the sensitivity is high, and it is more preferable that at least one of R 31 to R 35 is a nitro group, CN, a halogen atom, or COPh (here, Ph is a phenyl group), and R 33 is a nitro group, CN, a halogen atom, or a COPh group. Particularly preferred are atoms or COPh.
 上記一般式(B)で表される化合物の好ましい具体例としては、例えば、以下の化合物が挙げられる。また、国際公開2015/152153号公報に記載されている、化合物No.1~No.212が挙げられる。 Preferable specific examples of the compound represented by the above general formula (B) include the following compounds. In addition, compound No. 1, which is described in International Publication No. 2015/152153, 1~No. 212 is mentioned.
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
 上記一般式(B)で表される化合物は、例えば、国際公開2015/152153号公報を参照し、使用する材料に応じて溶剤、反応温度、反応時間、精製方法等を適宜選択することにより、合成できる。また、市販品を適宜入手して用いても良い。 The compound represented by the above general formula (B) can be prepared by, for example, referring to International Publication No. 2015/152153, and selecting the solvent, reaction temperature, reaction time, purification method, etc. appropriately according to the materials used. Can be synthesized. Alternatively, commercially available products may be appropriately obtained and used.
 カルバゾール骨格を有するオキシム系光開始剤としては、例えば、エタノン,1-[9-エチル-6-(2-メチルベンゾイル)-9H-カルバゾール-3-イル]-,1-(O-アセチルオキシム)(例えば、イルガキュアOXE02、BASF社製)、メタノン,[8-[[(アセチルオキシ)イミノ][2-(2,2,3,3-テトラフルオロプロポキシ)フェニル]メチル]-11-(2-エチルヘキシル)-11H-ベンゾ[a]カルバゾール-5-イル]-,(2,4,6-トリメチルフェニル)(例えば、イルガキュアOXE-03、BASF製)、エタノン,1-[9-エチル-6-(1,3-ジオキソラン,4-(2-メトキシフェノキシ)-9H-カルバゾール-3-イル]-,1-(o-アセチルオキシム)、メタノン,(9-エチル-6-ニトロ-9H-カルバゾール-3-イル)[4-(2-メトキシ-1-メチルエトキシ-2-メチルフェニル]-,o-アセチルオキシム、1-プロパノン,3-シクロペンチル-1-[9-エチル-6-(2-メチルベンゾイル)-9H-カルバゾール-3-イル]-,1-(o-アセチルオキシム)(例えば、TR-PBG-304、常州強力電子新材料社製)、1-プロパノン,3-シクロペンチル-1-[2-(2-ピリミジニルチオ)-9H-カルバゾール-3-イル]-,1-(o-アセチルオキシム)、エタノン,2-シクロヘキシル-1-[2-(2-ピリミジニルオキシ)-9H-カルバゾール-3-イル]-,1-(o-アセチルオキシム)、エタノン,2-シクロヘキシル-1-[2-(2-ピリミジニルチオ)-9H-カルバゾール-3-イル]-,1-(o-アセチルオキシム)、1-オクタノン,1-[4-[3-[1-[(アセチルオキシ)イミノ]エチル]-6-[4-[(4,6-ジメチル-2-ピリミジニル)チオ]-2-メチルベンゾイル]-9H-カルバゾール-9-イル]フェニル]-,1-(o-アセチルオキシム)(例えば、EXTA-9、ユニオンケミカル製)、市販品としてはADEKA OPT-N-1919(ADEKA社製)、アデカアークルズNCI-831(ADEKA社製)等が挙げられる。
 カルバゾール骨格を有するオキシム系光開始剤としては、中でも下記一般式(C)で表される化合物であることが好ましい。
Examples of oxime photoinitiators having a carbazole skeleton include ethanone, 1-[9-ethyl-6-(2-methylbenzoyl)-9H-carbazol-3-yl]-,1-(O-acetyloxime) (for example, Irgacure OXE02, manufactured by BASF), methanone, [8-[[(acetyloxy)imino][2-(2,2,3,3-tetrafluoropropoxy)phenyl]methyl]-11-(2- ethylhexyl)-11H-benzo[a]carbazol-5-yl]-, (2,4,6-trimethylphenyl) (e.g. Irgacure OXE-03, manufactured by BASF), ethanone, 1-[9-ethyl-6- (1,3-dioxolane, 4-(2-methoxyphenoxy)-9H-carbazol-3-yl]-, 1-(o-acetyloxime), methanone, (9-ethyl-6-nitro-9H-carbazol- 3-yl)[4-(2-methoxy-1-methylethoxy-2-methylphenyl]-,o-acetyloxime, 1-propanone,3-cyclopentyl-1-[9-ethyl-6-(2-methyl benzoyl)-9H-carbazol-3-yl]-,1-(o-acetyloxime) (for example, TR-PBG-304, manufactured by Changzhou Strong Electronics New Materials Co., Ltd.), 1-propanone, 3-cyclopentyl-1-[ 2-(2-pyrimidinylthio)-9H-carbazol-3-yl]-, 1-(o-acetyloxime), ethanone, 2-cyclohexyl-1-[2-(2-pyrimidinyloxy)-9H-carbazole- 3-yl]-,1-(o-acetyloxime), ethanone, 2-cyclohexyl-1-[2-(2-pyrimidinylthio)-9H-carbazol-3-yl]-,1-(o-acetyloxime) ), 1-octanone, 1-[4-[3-[1-[(acetyloxy)imino]ethyl]-6-[4-[(4,6-dimethyl-2-pyrimidinyl)thio]-2-methyl Benzoyl]-9H-carbazol-9-yl]phenyl]-,1-(o-acetyloxime) (for example, EXTA-9, manufactured by Union Chemical), commercially available products include ADEKA OPT-N-1919 (manufactured by ADEKA) , ADEKA Arkles NCI-831 (manufactured by ADEKA), and the like.
As the oxime photoinitiator having a carbazole skeleton, a compound represented by the following general formula (C) is particularly preferred.
Figure JPOXMLDOC01-appb-C000012
(式(C)において、X、X及びXは、それぞれ独立に、R41、OR41、COR41、SR41、CONR4243又はCNを表し、Xは、炭素数1~20のアルキル基、炭素数6~30のアリール基、炭素数7~30のアリールアルキル基又は炭素数2~20の複素環基を表し、X及びXは、それぞれ独立に、R41、OR41、SR41、COR41、CONR4243、NR42COR41、OCOR41、COOR41、SCOR41、OCSR41、COSR41、CSOR41、CN、ハロゲン原子又は水酸基を表す。
 R41、R42及びR43は、それぞれ独立に、水素原子、炭素数1~20のアルキル基、炭素数6~30のアリール基、炭素数7~30のアリールアルキル基又は炭素数2~20の複素環基を表し、
 R41、R42及びR43、並びにXで表される基の水素原子は、更にR51、OR51、COR51、SR51、NR5253、CONR5253、-NR52-OR53、-NCOR52-OCOR53、NR52COR51、OCOR51、COOR51、SCOR51、OCSR51、COSR51、CSOR51、水酸基、ニトロ基、CN、又はハロゲン原子で置換されていてもよく、
 R51、R52及びR53は、それぞれ独立に、水素原子、炭素数1~20のアルキル基、炭素数6~30のアリール基、炭素数7~30のアリールアルキル基又は炭素数2~20の複素環基を表し、
 R51、R52及びR53で表される基の水素原子は、更に水酸基、ニトロ基、CN、ハロゲン原子、又はカルボキシ基で置換されていてもよく、
 R41、R42、R43、X、R51、R52及びR53で表される基のアルキレン部分は、-O-、-S-、-COO-、-OCO-、-NR54-、-NR54CO-、-NR54COO-、-OCONR54-、-SCO-、-COS-、-OCS-又は-CSO-を酸素原子が隣り合わない条件で1~5個含んでいてもよく、
 R54は、水素原子、炭素数1~20のアルキル基、炭素数6~30のアリール基、炭素数7~30のアリールアルキル基又は炭素数2~20の複素環基を表し、
 R41、R42、R43、R51、R52、R53及びR54で表される基のアルキル部分は、分岐側鎖があってもよく、環状アルキルであってもよい。
 a及びbは、それぞれ独立に、0~3の整数である。)
Figure JPOXMLDOC01-appb-C000012
(In formula (C), X 1 , X 3 and X 6 each independently represent R 41 , OR 41 , COR 41 , SR 41 , CONR 42 R 43 or CN, and X 2 has a carbon number of 1 to 20 alkyl group, an aryl group having 6 to 30 carbon atoms, an arylalkyl group having 7 to 30 carbon atoms, or a heterocyclic group having 2 to 20 carbon atoms, and X 4 and X 5 are each independently R 41 , OR 41 , SR 41 , COR 41 , CONR 42 R 43 , NR 42 COR 41 , OCOR 41 , COOR 41 , SCOR 41 , OCSR 41 , COSR 41 , CSOR 41 , CN, represents a halogen atom or a hydroxyl group.
R 41 , R 42 and R 43 are each independently a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, an aryl group having 6 to 30 carbon atoms, an arylalkyl group having 7 to 30 carbon atoms, or an arylalkyl group having 2 to 20 carbon atoms. represents a heterocyclic group,
R 41 , R 42 and R 43 , and the hydrogen atom of the group represented by 53 , -NCOR 52 -OCOR 53 , NR 52 COR 51 , OCOR 51 , COOR 51 , SCOR 51 , OCSR 51 , COSR 51 , CSOR 51 , optionally substituted with a hydroxyl group, a nitro group, CN, or a halogen atom,
R 51 , R 52 and R 53 are each independently a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, an aryl group having 6 to 30 carbon atoms, an arylalkyl group having 7 to 30 carbon atoms, or an arylalkyl group having 2 to 20 carbon atoms. represents a heterocyclic group,
The hydrogen atoms of the groups represented by R 51 , R 52 and R 53 may be further substituted with a hydroxyl group, a nitro group, CN, a halogen atom, or a carboxy group,
The alkylene moiety of the group represented by R 41 , R 42 , R 43 , X 2 , R 51 , R 52 and R 53 is -O-, -S-, -COO-, -OCO-, -NR 54 - , -NR 54 CO-, -NR 54 COO-, -OCONR 54 -, -SCO-, -COS-, -OCS- or -CSO-, even if it contains 1 to 5 oxygen atoms adjacent to each other. often,
R 54 represents a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, an aryl group having 6 to 30 carbon atoms, an arylalkyl group having 7 to 30 carbon atoms, or a heterocyclic group having 2 to 20 carbon atoms;
The alkyl portion of the group represented by R 41 , R 42 , R 43 , R 51 , R 52 , R 53 and R 54 may have a branched side chain or may be a cyclic alkyl.
a and b are each independently an integer of 0 to 3. )
 前記一般式(C)で表されるオキシムエステル化合物にも、オキシムの二重結合による幾何異性体が存在するが、これらを区別するものではない。即ち、本明細書において、前記一般式(C)で表わされる化合物及びその例示化合物は、両方の混合物又はどちらか一方を表すものであり、異性体を示した構造に限定するものではない。 The oxime ester compound represented by the general formula (C) also has geometric isomers due to the double bond of the oxime, but these are not distinguished. That is, in this specification, the compound represented by the general formula (C) and its exemplified compounds represent a mixture of both or either one, and are not limited to structures showing isomers.
 上記一般式(C)中の、X、R41、R42、R43、R51、R52、R53及びR54で表される炭素数1~20のアルキル基としては、前記一般式(B)における炭素数1~20のアルキル基と同様のものが挙げられる。
 上記一般式(C)中の、X、R41、R42、R43、R51、R52、R53及びR54で表される炭素数6~30のアリール基としては、前記一般式(B)における炭素数6~30のアリール基と同様のものが挙げられる。
 上記一般式(C)中の、X、R41、R42、R43、R51、R52、R53及びR54で表される炭素数7~30のアリールアルキル基としては、前記一般式(B)における炭素数7~30のアリールアルキル基と同様のものが挙げられる。
 上記一般式(C)中の、X、R41、R42、R43、R51、R52、R53及びR54で表される炭素数2~20の複素環基としては、前記一般式(B)における炭素数2~20の複素環基と同様のものが挙げられる。
 また、上記一般式(C)中のハロゲン原子としては、前記一般式(B)におけるハロゲン原子と同様のものが挙げられる。
In the above general formula (C ) , the alkyl group having 1 to 20 carbon atoms represented by Examples include the same alkyl groups having 1 to 20 carbon atoms in (B).
The aryl group having 6 to 30 carbon atoms represented by X 2 , R 41 , R 42 , R 43 , R 51 , R 52 , R 53 and R 54 in the general formula (C) is Examples include those similar to the aryl group having 6 to 30 carbon atoms in (B).
In the above general formula ( C ) , the arylalkyl group having 7 to 30 carbon atoms represented by Examples include those similar to the arylalkyl group having 7 to 30 carbon atoms in formula (B).
The heterocyclic group having 2 to 20 carbon atoms represented by X 2 , R 41 , R 42 , R 43 , R 51 , R 52 , R 53 and R 54 in the above general formula (C) is Examples include those similar to the heterocyclic group having 2 to 20 carbon atoms in formula (B).
Furthermore, examples of the halogen atom in the above general formula (C) include the same halogen atoms as in the above general formula (B).
 上記一般式(C)中の、R41、R42、R43、X、R51、R52及びR53で表される基のアルキレン部分は、-O-、-S-、-COO-、-OCO-、-NR54-、-NR54CO-、-NR54COO-、-OCONR54-、-SCO-、-COS-、-OCS-又は-CSO-を酸素原子が隣り合わない条件で1~5個含んでいてもよく、この時含まれる2価の基は1種又は2種以上の基でもよく、連続して含まれ得る基の場合は2個以上連続して含まれていてもよい。 In the above general formula (C), the alkylene moiety of the group represented by R 41 , R 42 , R 43 , X 2 , R 51 , R 52 and R 53 is -O-, -S-, -COO- , -OCO-, -NR 54 -, -NR 54 CO-, -NR 54 COO-, -OCONR 54 -, -SCO-, -COS-, -OCS- or -CSO- under conditions where oxygen atoms are not adjacent to each other. It may contain 1 to 5 divalent groups, and the divalent groups contained in this case may be one type or two or more types of groups, and in the case of groups that can be contained consecutively, two or more groups may be contained consecutively. It's okay.
 上記一般式(C)中の、Xは、感度、溶解性、相溶性の点から、より好ましくは、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、t-ブチル基、n-アミル基、イソアミル基、t-アミル基、n-ヘキシル基及び2-エチルヘキシル基等の炭素数が1~10のアルキル基、シクロペンチル基及びシクロヘキシル基等の炭素数が5~10の側鎖を有してもよい環状アルキル基、又は、メトキシメチル基、エトキシメチル基、エトキシエチル基、2-(1-メトキシプロピル)基及び2-(1-エトキシプロピル)基等の炭素数が2~10のメチレン鎖中に1つのエーテル結合を有するアルキル基であり、さらに好ましくは、メチル基、エチル基、2-エチルヘキシル基等の炭素数が1~10のアルキル基である。 In the above general formula (C), X 1 is more preferably a methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, from the viewpoint of sensitivity, solubility, and compatibility. Alkyl groups having 1 to 10 carbon atoms such as t-butyl group, n-amyl group, isoamyl group, t-amyl group, n-hexyl group and 2-ethylhexyl group; 5 carbon atoms such as cyclopentyl group and cyclohexyl group; A cyclic alkyl group which may have ~10 side chains, or a methoxymethyl group, an ethoxymethyl group, an ethoxyethyl group, a 2-(1-methoxypropyl) group, a 2-(1-ethoxypropyl) group, etc. An alkyl group having one ether bond in a methylene chain having 2 to 10 carbon atoms, and more preferably an alkyl group having 1 to 10 carbon atoms such as a methyl group, ethyl group, or 2-ethylhexyl group.
 上記一般式(C)中の、X、X及びXは、それぞれ独立に、感度、溶解性、相溶性の点から、特に好ましくは、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、t-ブチル基、n-アミル基、イソアミル基、t-アミル基及びn-ヘキシル基等の炭素数が1~6のアルキル基、シクロペンチル基及びシクロヘキシル基等の炭素数が5~6の環状アルキル基、又は、メトキシメチル基、エトキシメチル基、エトキシエチル基、2-(1-メトキシプロピル)基及び2-(1-エトキシプロピル)基等の炭素数が2~6の且つメチレン鎖中に1つのエーテル結合を有するアルキル基であり、さらに好ましくは炭素数が1~6のアルキル基、又は、炭素数が2~6のメチレン鎖中に1つのエーテル結合を有するアルキル基である。
 X、及びXは、それぞれ独立に、感度、溶解性、相溶性の点から、さらに好ましくは炭素数が1~6のアルキル基である。
 Xは感度、溶解性、相溶性の点から、さらに好ましくは炭素数が2~6のメチレン鎖中に1つのエーテル結合を有するアルキル基である。
In the general formula (C), X 2 , X 3 and X 6 are each independently particularly preferably a methyl group, an ethyl group, an n-propyl group, an isopropyl group alkyl groups having 1 to 6 carbon atoms such as n-butyl, isobutyl, t-butyl, n-amyl, isoamyl, t-amyl and n-hexyl groups, cyclopentyl and cyclohexyl groups, etc. A cyclic alkyl group having 5 to 6 carbon atoms, or a cyclic alkyl group having a carbon number of 5 to 6, such as a methoxymethyl group, an ethoxymethyl group, an ethoxyethyl group, a 2-(1-methoxypropyl) group, and a 2-(1-ethoxypropyl) group. An alkyl group having 2 to 6 carbon atoms and one ether bond in the methylene chain, more preferably an alkyl group having 1 to 6 carbon atoms, or an alkyl group having 2 to 6 carbon atoms and one ether bond in the methylene chain. is an alkyl group having
From the viewpoint of sensitivity, solubility, and compatibility, X 3 and X 6 are each independently an alkyl group having 1 to 6 carbon atoms.
From the viewpoints of sensitivity, solubility and compatibility, X 2 is more preferably an alkyl group having 2 to 6 carbon atoms and having one ether bond in the methylene chain.
 上記一般式(C)中の、X、及びXはそれぞれ独立に、感度、溶解性、相溶性の点から、特に好ましくは、水素、又は、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、t-ブチル基、n-アミル基、イソアミル基、t-アミル基及びn-ヘキシル基等の炭素数が1~6のアルキル基である。 In the general formula (C), X 4 and X 5 are each independently particularly preferably hydrogen, methyl group, ethyl group, n-propyl group, Alkyl groups having 1 to 6 carbon atoms such as isopropyl group, n-butyl group, isobutyl group, t-butyl group, n-amyl group, isoamyl group, t-amyl group and n-hexyl group.
 上記一般式(C)で表される化合物の好ましい具体例としては、例えば、以下の化合物が挙げられる。 Preferred specific examples of the compound represented by the above general formula (C) include the following compounds.
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000014
 上記一般式(C)で表される化合物は、例えば、特開2010-256891号公報を参照し、使用する材料に応じて溶剤、反応温度、反応時間、精製方法等を適宜選択することにより、合成できる。また、市販品を適宜入手して用いても良い。 The compound represented by the above general formula (C) can be prepared by, for example, referring to JP-A No. 2010-256891 and selecting the solvent, reaction temperature, reaction time, purification method, etc. as appropriate depending on the materials used. Can be synthesized. Alternatively, commercially available products may be appropriately obtained and used.
 本発明に用いられる青色感光性組成物において、オキシム系光開始剤は、1種または2種以上で混合して用いることができる。 In the blue photosensitive composition used in the present invention, the oxime photoinitiator can be used alone or in a mixture of two or more.
(400nm~420nmに増感作用を有する増感剤)
 本発明に用いられる青色感光性組成物においては、400nm~420nmに発光ピーク波長を有するLEDランプを用いることから、前記オキシム系光開始剤に加えて、前記オキシム系光開始剤とは異なる400nm~420nmに増感作用を有する増感剤を含有させる。
 前記オキシム系光開始剤とは異なる400nm~420nmに増感作用を有する増感剤としては、400nm~420nmに吸収を有すれば、特に限定されず用いることができる。本発明に用いられる増感剤において、400nm~420nmに増感作用を有するか否かは、増感剤をアセトニトリルなどの溶剤に0.01mg/mlの濃度で溶解させた溶液の吸収スペクトルを紫外可視分光光度計で測定し、400nm~420nmに吸収を有することを目安にすることができる。本発明に用いられる増感剤は、アセトニトリルなどの溶剤に0.01mg/mlの濃度で溶解させた溶液の吸収スペクトルを紫外可視分光光度計で測定したときに、吸光度が0.1以上であることが好ましい。
(Sensitizer that has a sensitizing effect at 400 nm to 420 nm)
In the blue photosensitive composition used in the present invention, since an LED lamp having an emission peak wavelength of 400 nm to 420 nm is used, in addition to the oxime photoinitiator, an LED lamp having an emission peak wavelength of 400 nm to 420 nm, which is different from the oxime photoinitiator, is used. A sensitizer having a sensitizing effect at 420 nm is contained.
The sensitizer having a sensitizing effect in the wavelength range of 400 nm to 420 nm, which is different from the oxime photoinitiator, can be used without particular limitation as long as it has absorption in the wavelength range of 400 nm to 420 nm. Whether or not the sensitizer used in the present invention has a sensitizing effect in the wavelength range of 400 nm to 420 nm can be determined by observing the absorption spectrum of a solution prepared by dissolving the sensitizer in a solvent such as acetonitrile at a concentration of 0.01 mg/ml under ultraviolet light. It can be measured with a visible spectrophotometer and can be determined to have absorption in the range of 400 nm to 420 nm. The sensitizer used in the present invention has an absorbance of 0.1 or more when the absorption spectrum of a solution dissolved in a solvent such as acetonitrile at a concentration of 0.01 mg/ml is measured using an ultraviolet-visible spectrophotometer. It is preferable.
 本発明に用いられる400nm~420nmに増感作用を有する増感剤としては、例えば、チオキサントン系増感剤、芳香族ケトン系増感剤、アントラセン系増感剤、及びナフタレン系増感剤からなる群から選択される少なくとも1種を適宜選択して用いることができる。
 チオキサントン系増感剤としては、例えば、2,4-イソプロピルチオキサントン、2,4-ジエチルチオキサントン、1-クロロ-4-プロポキシチオキサントン、2,4-ジクロロチオキサントン等が挙げられる。
 芳香族ケトン系増感剤としては、ベンゾフェノン系増感剤が挙げられ、例えば、ベンゾフェノン、4,4’-ビスジエチルアミノベンゾフェノン、4-メトキシ-4’-ジメチルアミノベンゾフェノン等が挙げられる。
 アントラセン系増感剤としては、アルコキシ基またはアシルオキシ基が置換したアントラセン化合物が挙げられ、例えば、9,10-ビス(アセチルオキシ)アントラセン、9,10-ビス(プロピオニルオキシ)アントラセン、9,10-ビス(n-プロピルカルボニルオキシ)アントラセン、9,10-ビス(イソプロピルカルボニルオキシ)アントラセン、9,10-ビス(n-ブチルカルボニルオキシ)アントラセン、9,10-ビス(イソブチルカルボニルオキシ)アントラセン、9,10-ビス(n-ヘキサノイルオキシ)アントラセン、9,10-ビス(n-ヘプタノイルオキシ)アントラセン、9,10-ビス(n-オクタノイルオキシ)アントラセン、9,10-ビス(2-エチルヘキサノイルオキシ)アントラセン、9,10-ビス(n-ノナノイルオキシ)アントラセン、9,10-ジエトキシアントラセン、9,10-ジプロポキシアントラセン、及び9,10-ジブトキシアントラセン等が挙げられる。
 ナフタレン系増感剤としては、アルコキシ基またはアシルオキシ基が置換したナフタレン化合物が挙げられ、例えば、1,4-ジエトキシナフタレン等が挙げられる。
The sensitizers having a sensitizing effect in the wavelength range of 400 nm to 420 nm used in the present invention include, for example, thioxanthone sensitizers, aromatic ketone sensitizers, anthracene sensitizers, and naphthalene sensitizers. At least one selected from the group can be appropriately selected and used.
Examples of thioxanthone-based sensitizers include 2,4-isopropylthioxanthone, 2,4-diethylthioxanthone, 1-chloro-4-propoxythioxanthone, and 2,4-dichlorothioxanthone.
Examples of the aromatic ketone sensitizer include benzophenone sensitizers, such as benzophenone, 4,4'-bisdiethylaminobenzophenone, and 4-methoxy-4'-dimethylaminobenzophenone.
Examples of anthracene-based sensitizers include anthracene compounds substituted with alkoxy or acyloxy groups, such as 9,10-bis(acetyloxy)anthracene, 9,10-bis(propionyloxy)anthracene, and 9,10-bis(propionyloxy)anthracene. Bis(n-propylcarbonyloxy)anthracene, 9,10-bis(isopropylcarbonyloxy)anthracene, 9,10-bis(n-butylcarbonyloxy)anthracene, 9,10-bis(isobutylcarbonyloxy)anthracene, 9, 10-bis(n-hexanoyloxy)anthracene, 9,10-bis(n-heptanoyloxy)anthracene, 9,10-bis(n-octanoyloxy)anthracene, 9,10-bis(2-ethylhexane) Examples include 9,10-bis(n-nonanoyloxy)anthracene, 9,10-diethoxyanthracene, 9,10-dipropoxyanthracene, and 9,10-dibutoxyanthracene.
Examples of naphthalene-based sensitizers include naphthalene compounds substituted with alkoxy or acyloxy groups, such as 1,4-diethoxynaphthalene.
 本発明の青色感光性組成物において用いられる400nm~420nmに増感作用を有する増感剤は、1種または2種以上混合して用いることができる。 The sensitizers having a sensitizing effect in the wavelength range of 400 nm to 420 nm used in the blue-sensitive composition of the present invention can be used alone or in combination of two or more.
(他の光開始剤)
 本発明に用いられる青色感光性組成物は、本発明の効果が損なわれない限り、前記オキシム系光開始剤及び前記400nm~420nmに増感作用を有する増感剤とは異なる、他の光開始剤を含んでもよい。他の光開始剤としては、ベンゾインエーテル類、ハロメチルオキサジアゾール化合物、α-アミノケトン、ビイミダゾール類、ハロメチル-S-トリアジン系化合物、アシルフォスフィンオキサイド等の中から適宜選択して用いることができる。
 他の光開始剤を含む場合であっても、オキシム系光開始剤と他の光開始剤の合計含有量に対して、オキシム系光開始剤の合計含有量は50質量%以上であってよく、70質量%以上であってよい。
(Other photoinitiators)
The blue-sensitive composition used in the present invention may contain other photoinitiators different from the oxime photoinitiator and the sensitizer having a sensitizing effect in the range of 400 nm to 420 nm, as long as the effects of the present invention are not impaired. It may also contain an agent. Other photoinitiators may be appropriately selected from benzoin ethers, halomethyloxadiazole compounds, α-aminoketones, biimidazoles, halomethyl-S-triazine compounds, acylphosphine oxides, etc. can.
Even when other photoinitiators are included, the total content of the oxime-based photoinitiator may be 50% by mass or more with respect to the total content of the oxime-based photoinitiator and other photoinitiators. , 70% by mass or more.
 光開始剤の総量中、オキシム系光開始剤の合計含有量は、硬化性向上の点から、下限は15質量%以上であってよく、25質量%以上であって良く、上限は90質量%以下であってよく、80質量%以下であってよい。
 前記他の光開始剤を含む場合、前記オキシム系光開始剤と他の光開始剤の合計含有量は、硬化性向上の点から、下限は15質量%以上であってよく、25質量%以上であって良く、上限は90質量%以下であってよく、80質量%以下であってよい。
In the total amount of photoinitiators, the total content of oxime photoinitiators may have a lower limit of 15% by mass or more, and may be 25% by mass or more, and an upper limit of 90% by mass, from the viewpoint of improving curability. or less, and may be less than or equal to 80% by mass.
When the other photoinitiator is included, the lower limit of the total content of the oxime photoinitiator and other photoinitiator may be 15% by mass or more, and 25% by mass or more, from the viewpoint of improving curability. The upper limit may be 90% by mass or less, and may be 80% by mass or less.
 光開始剤の総量中、オキシム系光開始剤とは異なる400nm~420nmに増感作用を有する増感剤の合計含有量は、硬化性向上の点から、下限は10質量%以上であってよく、20質量%以上であって良く、上限は85質量%以下であってよく、75質量%以下であってよい。 In the total amount of photoinitiators, the lower limit of the total content of sensitizers having a sensitizing effect in the range of 400 nm to 420 nm, which is different from oxime photoinitiators, may be 10% by mass or more from the viewpoint of improving curability. , may be 20% by mass or more, and the upper limit may be 85% by mass or less, and may be 75% by mass or less.
 また、青色感光性組成物において用いられる前記オキシム系光開始剤と他の光開始剤の合計と、前記400nm~420nmに増感作用を有する増感剤との含有割合は、感度及び線幅シフトとのバランスの点から、前記オキシム系光開始剤と他の光開始剤の合計含有量100質量部に対して、前記400nm~420nmに増感作用を有する増感剤の合計含有量が好ましくは20質量部以上であり、より好ましくは50質量部以上であり、好ましくは500質量部以下であり、より好ましくは300質量部以下である。 In addition, the content ratio of the total of the oxime photoinitiator and other photoinitiators used in the blue photosensitive composition and the sensitizer having a sensitizing effect in the range of 400 nm to 420 nm is determined by the sensitivity and line width shift. In terms of balance, the total content of the sensitizers having a sensitizing effect in the range of 400 nm to 420 nm is preferably set to 100 parts by mass of the oxime photoinitiator and other photoinitiators. It is 20 parts by mass or more, more preferably 50 parts by mass or more, preferably 500 parts by mass or less, and more preferably 300 parts by mass or less.
 本発明に用いられる青色感光性組成物において、400nm~420nmに増感作用を有する増感剤の合計含有量は、本発明の効果が損なわれない限り特に制限はないが、青色感光性組成物の固形分全量に対して、好ましくは0.1質量%~5質量%の範囲内、より好ましくは0.2質量%~3質量%の範囲内である。この含有量が上記下限値以上であると十分に光硬化が進み、露光部分が現像時に溶出することを抑制し、耐溶剤性が良好になり、一方上記上限値以下であると、得られる着色層の黄変による輝度の低下や、現像性の悪化を抑制できる。 In the blue photosensitive composition used in the present invention, the total content of sensitizers having a sensitizing effect at 400 nm to 420 nm is not particularly limited as long as the effect of the present invention is not impaired. It is preferably within the range of 0.1% by mass to 5% by mass, more preferably within the range of 0.2% by mass to 3% by mass, based on the total solid content. If this content is above the above lower limit, photocuring will proceed sufficiently, the exposed areas will be prevented from dissolving during development, and the solvent resistance will be good, while if it is below the above upper limit, the coloring obtained will be improved. Decrease in brightness and deterioration in developability due to yellowing of the layer can be suppressed.
 本発明に用いられる青色感光性組成物において、光開始剤の合計含有量は、本発明の効果が損なわれない限り特に制限はないが、青色感光性組成物の固形分全量に対して、好ましくは0.5質量%~12.0質量%の範囲内、より好ましくは1.0質量%~8.0質量%の範囲内である。この含有量が上記下限値以上であると十分に光硬化が進み、露光部分が現像時に溶出することを抑制し、耐溶剤性が良好になり、一方上記上限値以下であると、得られる着色層の黄変による輝度の低下や、現像性の悪化を抑制できる。 In the blue photosensitive composition used in the present invention, the total content of photoinitiators is not particularly limited as long as the effects of the present invention are not impaired, but it is preferably based on the total solid content of the blue photosensitive composition. is within the range of 0.5% by mass to 12.0% by mass, more preferably within the range of 1.0% by mass to 8.0% by mass. If this content is above the above lower limit, photocuring will proceed sufficiently, the exposed areas will be prevented from dissolving during development, and the solvent resistance will be good, while if it is below the above upper limit, the coloring obtained will be improved. Decrease in brightness and deterioration in developability due to yellowing of the layer can be suppressed.
 また、青色感光性組成物において用いられる前記光重合性化合物と前記光開始剤との含有割合は、線幅シフトが抑制され、パターン形状が良好になる点から、前記光重合性化合物100質量部に対して、前記光開始剤の合計含有割合が好ましくは2質量部以上であり、より好ましくは5質量部以上であり、好ましくは40質量部以下であり、より好ましくは30質量部以下である。
 また、青色感光性組成物において用いられる前記光重合性化合物と前記400nm~420nmに増感作用を有する増感剤との含有割合は、線幅シフトが抑制され、パターン形状が良好になる点から、前記光重合性化合物100質量部に対して、前記400nm~420nmに増感作用を有する増感剤の合計含有割合が好ましくは1質量部以上であり、より好ましくは5質量部以上であり、好ましくは30質量部以下であり、より好ましくは20質量部以下である。
In addition, the content ratio of the photopolymerizable compound and the photoinitiator used in the blue photosensitive composition is such that line width shift is suppressed and the pattern shape is improved. , the total content of the photoinitiator is preferably 2 parts by mass or more, more preferably 5 parts by mass or more, preferably 40 parts by mass or less, and more preferably 30 parts by mass or less. .
In addition, the content ratio of the photopolymerizable compound and the sensitizer having a sensitizing effect in the range of 400 nm to 420 nm used in the blue photosensitive composition is determined from the viewpoint of suppressing line width shift and improving the pattern shape. , with respect to 100 parts by mass of the photopolymerizable compound, the total content of the sensitizer having a sensitizing effect in the wavelength range of 400 nm to 420 nm is preferably 1 part by mass or more, more preferably 5 parts by mass or more, Preferably it is 30 parts by mass or less, more preferably 20 parts by mass or less.
<溶剤>
 本発明に用いられる青色感光性組成物は、溶剤を含んでもよい。溶剤としては、青色感光性組成物中の各成分とは反応せず、これらを溶解もしくは分散可能な有機溶剤であればよく、特に限定されない。溶剤は単独もしくは2種以上組み合わせて使用することができる。
 溶剤の具体例としては、例えば、メチルアルコール、エチルアルコール、N-プロピルアルコール、i-プロピルアルコール、メトキシアルコール、エトキシアルコールなどのアルコール系溶剤;メトキシエトキシエタノール、エトキシエトキシエタノールなどのカルビトール系溶剤;酢酸エチル、酢酸ブチル、メトキシプロピオン酸メチル、メトキシプロピオン酸エチル、エトキシプロピオン酸エチル、乳酸エチル、ヒドロキシプロピオン酸メチル、ヒドロキシプロピオン酸エチル、n-ブチルアセテート、イソブチルアセテート、酪酸イソブチル、酪酸n-ブチル、乳酸エチル、シクロヘキサノールアセテートなどのエステル系溶剤;アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン、2-ヘプタノンなどのケトン系溶剤;メトキシエチルアセテート、プロピレングリコールモノメチルエーテルアセテート、3-メトキシ-3-メチル-1-ブチルアセテート、3-メトキシブチルアセテート、エトキシエチルアセテートなどのグリコールエーテルアセテート系溶剤;メトキシエトキシエチルアセテート、エトキシエトキシエチルアセテート、ブチルカルビトールアセテート(BCA)などのカルビトールアセテート系溶剤;プロピレングリコールジアセテート、1,3-ブチレングリコールジアセテート等のジアセテート類;エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールジメチルエーテル、ジエチレングリコールジメチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールジエチルエーテル、プロピレングリコールモノメチルエーテル、ジプロピレングリコールジメチルエーテルなどのグリコールエーテル系溶剤;N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチルピロリドンなどの非プロトン性アミド溶剤;γ-ブチロラクトンなどのラクトン系溶剤;テトラヒドロフランなどの環状エーテル系溶剤;ベンゼン、トルエン、キシレン、ナフタレンなどの不飽和炭化水素系溶剤;N-ヘプタン、N-ヘキサン、N-オクタンなどの飽和炭化水素系溶剤;トルエン、キシレン等の芳香族炭化水素類などの有機溶剤が挙げられる。これらの溶剤の中ではグリコールエーテルアセテート系溶剤、カルビトールアセテート系溶剤、グリコールエーテル系溶剤、エステル系溶剤が他の成分の溶解性の点で好適に用いられる。中でも、本発明に用いる溶剤としては、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノメチルエーテル、ブチルカルビトールアセテート(BCA)、3-メトキシ-3-メチル-1-ブチルアセテート、エトキシプロピオン酸エチル、乳酸エチル、及び、3-メトキシブチルアセテートよりなる群から選択される1種以上であることが、他の成分の溶解性や塗布適性の点から好ましい。
<Solvent>
The blue-sensitive composition used in the present invention may contain a solvent. The solvent is not particularly limited as long as it is an organic solvent that does not react with the components in the blue-sensitive composition and can dissolve or disperse them. Solvents can be used alone or in combination of two or more.
Specific examples of the solvent include alcohol solvents such as methyl alcohol, ethyl alcohol, N-propyl alcohol, i-propyl alcohol, methoxy alcohol, and ethoxy alcohol; carbitol solvents such as methoxyethoxyethanol and ethoxyethoxyethanol; Ethyl acetate, butyl acetate, methyl methoxypropionate, ethyl methoxypropionate, ethyl ethoxypropionate, ethyl lactate, methyl hydroxypropionate, ethyl hydroxypropionate, n-butyl acetate, isobutyl acetate, isobutyl butyrate, n-butyl butyrate, Ester solvents such as ethyl lactate and cyclohexanol acetate; Ketone solvents such as acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, and 2-heptanone; methoxyethyl acetate, propylene glycol monomethyl ether acetate, 3-methoxy-3-methyl-1 - Glycol ether acetate solvents such as butyl acetate, 3-methoxybutyl acetate and ethoxyethyl acetate; Carbitol acetate solvents such as methoxyethoxyethyl acetate, ethoxyethoxyethyl acetate and butyl carbitol acetate (BCA); Propylene glycol diacetate , 1,3-butylene glycol diacetate and other diacetates; ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol dimethyl ether, diethylene glycol dimethyl ether, diethylene glycol monoethyl ether, diethylene glycol diethyl ether, propylene glycol monomethyl ether, dipropylene glycol Glycol ether solvents such as dimethyl ether; aprotic amide solvents such as N,N-dimethylformamide, N,N-dimethylacetamide, and N-methylpyrrolidone; lactone solvents such as γ-butyrolactone; cyclic ether solvents such as tetrahydrofuran ; Unsaturated hydrocarbon solvents such as benzene, toluene, xylene, and naphthalene; Saturated hydrocarbon solvents such as N-heptane, N-hexane, and N-octane; Organic solvents such as aromatic hydrocarbons such as toluene and xylene can be mentioned. Among these solvents, glycol ether acetate solvents, carbitol acetate solvents, glycol ether solvents, and ester solvents are preferably used from the viewpoint of solubility of other components. Among them, the solvents used in the present invention include propylene glycol monomethyl ether acetate, propylene glycol monomethyl ether, butyl carbitol acetate (BCA), 3-methoxy-3-methyl-1-butyl acetate, ethyl ethoxypropionate, ethyl lactate, and 3-methoxybutyl acetate, from the viewpoint of solubility of other components and suitability for coating.
 本発明で用いられる青色感光性組成物において、溶剤の含有量は、青色硬化膜乃至着色層を精度良く形成することができる範囲で適宜設定すればよい。溶剤の含有量は、該溶剤を含む青色感光性組成物の全量に対して、通常、好ましくは55質量%~95質量%、より好ましくは65質量%~88質量%の範囲内である。上記溶剤の含有量が、上記範囲内であることにより、塗布性に優れたものとすることができる。 In the blue photosensitive composition used in the present invention, the content of the solvent may be appropriately set within a range that allows a blue cured film or a colored layer to be formed with high precision. The content of the solvent is usually preferably in the range of 55% to 95% by weight, more preferably 65% to 88% by weight, based on the total amount of the blue photosensitive composition containing the solvent. When the content of the above-mentioned solvent is within the above-mentioned range, excellent coating properties can be obtained.
<分散剤>
 本発明の青色感光性組成物において、色材を分散させる場合には、色材分散性と色材分散安定性の点から、分散剤を更に含んでいても良い。
 本発明において分散剤は、従来公知の分散剤の中から適宜選択して用いることができる。分散剤としては、例えば、カチオン系、アニオン系、ノニオン系、両性、シリコーン系、フッ素系等の界面活性剤を使用できる。界面活性剤の中でも、均一に、微細に分散し得る点から、高分子分散剤が好ましい。
<Dispersant>
In the case of dispersing a coloring material in the blue photosensitive composition of the present invention, a dispersant may be further included from the viewpoint of coloring material dispersibility and coloring material dispersion stability.
In the present invention, the dispersant can be appropriately selected from conventionally known dispersants. As the dispersant, for example, cationic, anionic, nonionic, amphoteric, silicone, or fluorine-based surfactants can be used. Among surfactants, polymeric dispersants are preferred because they can be uniformly and finely dispersed.
 高分子分散剤としては、例えば、(メタ)アクリレート共重合体系分散剤;ポリウレタン類;不飽和ポリアミド類;ポリシロキサン類;長鎖ポリアミノアミドリン酸塩類;ポリエチレンイミン誘導体(ポリ(低級アルキレンイミン)と遊離カルボキシ基含有ポリエステルとの反応により得られるアミドやそれらの塩基);ポリアリルアミン誘導体(ポリアリルアミンと、遊離のカルボキシ基を有するポリエステル、ポリアミド又はエステルとアミドの共縮合物(ポリエステルアミド)の3種の化合物の中から選ばれる1種以上の化合物とを反応させて得られる反応生成物)等が挙げられる。 Examples of polymeric dispersants include (meth)acrylate copolymer dispersants; polyurethanes; unsaturated polyamides; polysiloxanes; long-chain polyaminoamide phosphates; polyethyleneimine derivatives (poly(lower alkyleneimine) and Amides obtained by reaction with polyesters containing free carboxyl groups and their bases); polyallylamine derivatives (three types: polyallylamine and polyesters, polyamides, or co-condensates of esters and amides (polyesteramides) having free carboxyl groups); (a reaction product obtained by reacting one or more compounds selected from among the compounds).
 本発明においては、分散剤として、(メタ)アクリレート共重合体系分散剤を用いることが、現像性の制御の点から好ましい。(メタ)アクリレート共重合体系分散剤は、前記アルカリ可溶性樹脂、前記光重合性化合物との相溶性が良好になるため、現像残渣の発生が抑制されると推定される。 In the present invention, it is preferable to use a (meth)acrylate copolymer-based dispersant as the dispersant from the viewpoint of controlling developability. Since the (meth)acrylate copolymer-based dispersant has good compatibility with the alkali-soluble resin and the photopolymerizable compound, it is presumed that the generation of development residues is suppressed.
 本発明において、(メタ)アクリレート共重合体系分散剤とは、共重合体であって、少なくとも(メタ)アクリレート由来の構成単位を含む分散剤をいう。
 (メタ)アクリレート共重合体系分散剤は、色材吸着部位として機能する構成単位と、溶剤親和性部位として機能する構成単位とを含有する共重合体であることが好ましく、溶剤親和性部位として機能する構成単位に少なくとも(メタ)アクリレート由来の構成単位を含むことが好ましい。
In the present invention, the (meth)acrylate copolymer-based dispersant refers to a dispersant that is a copolymer and includes at least a structural unit derived from (meth)acrylate.
The (meth)acrylate copolymer-based dispersant is preferably a copolymer containing a structural unit that functions as a coloring material adsorption site and a constitutional unit that functions as a solvent affinity site, and functions as a solvent affinity site. It is preferable that the structural units include at least (meth)acrylate-derived structural units.
 色材吸着部位として機能する構成単位は、(メタ)アクリレート由来の構成単位と共重合可能なエチレン性不飽和モノマー由来の構成単位を挙げることができる。色材吸着部位としては、酸性基含有エチレン性不飽和モノマー由来の構成単位であってもよいし、塩基性基含有エチレン性不飽和モノマー由来の構成単位であってもよい。
 塩基性基含有エチレン性不飽和モノマー由来の構成単位としては、下記一般式(I)で表される構成単位が、前記色材の分散性に優れている点から好ましい。
Examples of the structural unit functioning as a coloring material adsorption site include a structural unit derived from an ethylenically unsaturated monomer that is copolymerizable with a structural unit derived from (meth)acrylate. The colorant adsorption site may be a structural unit derived from an ethylenically unsaturated monomer containing an acidic group or a structural unit derived from an ethylenically unsaturated monomer containing a basic group.
As the structural unit derived from the basic group-containing ethylenically unsaturated monomer, a structural unit represented by the following general formula (I) is preferable from the viewpoint of excellent dispersibility of the coloring material.
Figure JPOXMLDOC01-appb-C000015
(一般式(I)中、R61は水素原子又はメチル基、Aは2価の連結基、R62及びR63は、それぞれ独立して、水素原子、又はヘテロ原子を含んでもよい炭化水素基を表し、R62及びR63が互いに結合して環構造を形成してもよい。)
Figure JPOXMLDOC01-appb-C000015
(In general formula (I), R 61 is a hydrogen atom or a methyl group, A 1 is a divalent linking group, R 62 and R 63 are each independently a hydrogen atom or a hydrocarbon that may contain a heteroatom) represents a group, and R 62 and R 63 may be bonded to each other to form a ring structure.)
 一般式(I)において、Aは、2価の連結基である。2価の連結基としては、例えば、直鎖、分岐又は環状のアルキレン基、水酸基を有する、直鎖、分岐又は環状のアルキレン基、アリーレン基、-CONH-基、-COO-基、-NHCOO-基、エーテル基(-O-基)、チオエーテル基(-S-基)、及びこれらの組み合わせ等が挙げられる。なお、本発明において、2価の連結基の結合の向きは任意である。すなわち、2価の連結基に-CONH-が含まれる場合、-COが主鎖の炭素原子側で-NHが側鎖の窒素原子側であっても良いし、反対に、-NHが主鎖の炭素原子側で-COが側鎖の窒素原子側であっても良い。
 中でも、分散性の点から、一般式(I)におけるAは、-CONH-基又は-COO-基を含む2価の連結基であることが好ましく、-CONH-基又は-COO-基と、炭素数1~10のアルキレン基とを含む2価の連結基であることがより好ましい。
In general formula (I), A 1 is a divalent linking group. Examples of the divalent linking group include a straight chain, branched or cyclic alkylene group, a straight chain, branched or cyclic alkylene group having a hydroxyl group, an arylene group, -CONH- group, -COO- group, -NHCOO- group, ether group (-O- group), thioether group (-S- group), and combinations thereof. In the present invention, the direction of bonding of the divalent linking group is arbitrary. That is, when the divalent linking group contains -CONH-, -CO may be on the carbon atom side of the main chain and -NH may be on the nitrogen atom side of the side chain, or conversely, -NH may be on the side chain nitrogen atom side. -CO may be on the side chain nitrogen atom side.
Among these, from the viewpoint of dispersibility, A 1 in general formula (I) is preferably a divalent linking group containing a -CONH- group or a -COO- group, and a -CONH- group or a -COO- group is preferably a divalent linking group. , and an alkylene group having 1 to 10 carbon atoms.
 R62及びR63における、ヘテロ原子を含んでもよい炭化水素基における炭化水素基は、例えば、アルキル基、アラルキル基、アリール基などが挙げられる。
 アルキル基としては、例えば、メチル基、エチル基、プロピル基、ブチル基、イソプロピル基、tert-ブチル基、2-エチルヘキシル基、シクロペンチル基、シクロヘキシル基等が挙げられ、アルキル基の炭素数は、1~18が好ましく、中でも、メチル基又はエチル基であることがより好ましい。
 アラルキル基としては、例えば、ベンジル基、フェネチル基、ナフチルメチル基、ビフェニルメチル基等が挙げられる。アラルキル基の炭素数は、7~20が好ましく、更に7~14が好ましい。
 また、アリール基としては、フェニル基、ビフェニル基、ナフチル基、トリル基、キシリル基等が挙げられる。アリール基の炭素数は、6~24が好ましく、更に6~12が好ましい。なお、上記好ましい炭素数には、置換基の炭素数は含まれない。
 ヘテロ原子を含む炭化水素基とは、上記炭化水素基中の炭素原子がヘテロ原子で置き換えられた構造を有するか、上記炭化水素基中の水素原子がヘテロ原子を含む置換基で置き換えられた構造を有する。炭化水素基が含んでいてもよいヘテロ原子としては、例えば、酸素原子、窒素原子、硫黄原子、ケイ素原子等が挙げられる。
 また、炭化水素基中の水素原子は、フッ素原子、塩素原子、臭素原子等のハロゲン原子により置換されていてもよい。
Examples of the hydrocarbon group in R 62 and R 63 which may include a hetero atom include an alkyl group, an aralkyl group, and an aryl group.
Examples of the alkyl group include a methyl group, an ethyl group, a propyl group, a butyl group, an isopropyl group, a tert-butyl group, a 2-ethylhexyl group, a cyclopentyl group, a cyclohexyl group, and the number of carbon atoms in the alkyl group is 1. -18 is preferable, and among them, a methyl group or an ethyl group is more preferable.
Examples of the aralkyl group include benzyl group, phenethyl group, naphthylmethyl group, and biphenylmethyl group. The number of carbon atoms in the aralkyl group is preferably 7 to 20, more preferably 7 to 14.
Furthermore, examples of the aryl group include a phenyl group, a biphenyl group, a naphthyl group, a tolyl group, and a xylyl group. The number of carbon atoms in the aryl group is preferably 6 to 24, more preferably 6 to 12. Note that the above preferred carbon number does not include the carbon number of the substituent.
A hydrocarbon group containing a hetero atom has a structure in which a carbon atom in the above hydrocarbon group is replaced with a hetero atom, or a structure in which a hydrogen atom in the above hydrocarbon group is replaced with a substituent containing a hetero atom. has. Examples of the heteroatom that the hydrocarbon group may contain include an oxygen atom, a nitrogen atom, a sulfur atom, and a silicon atom.
Further, the hydrogen atom in the hydrocarbon group may be substituted with a halogen atom such as a fluorine atom, a chlorine atom, or a bromine atom.
 R62及びR63が互いに結合して環構造を形成しているとは、R62及びR63が窒素原子を介して環構造を形成していることをいう。R62及びR63が形成する環構造にヘテロ原子が含まれていても良い。環構造は特に限定されないが、例えば、ピロリジン環、ピペリジン環、モルフォリン環等が挙げられる。 The expression that R 62 and R 63 are bonded to each other to form a ring structure means that R 62 and R 63 form a ring structure via a nitrogen atom. The ring structure formed by R 62 and R 63 may contain a heteroatom. Although the ring structure is not particularly limited, examples thereof include a pyrrolidine ring, a piperidine ring, and a morpholine ring.
 本発明においては、中でも、R62及びR63が各々独立に、水素原子、炭素数1~5のアルキル基、フェニル基であるか、又は、R62及びR63が結合してピロリジン環、ピペリジン環、モルフォリン環を形成していることが好ましい。 In the present invention, among others, R 62 and R 63 are each independently a hydrogen atom, an alkyl group having 1 to 5 carbon atoms, or a phenyl group, or R 62 and R 63 are combined to form a pyrrolidine ring, a piperidine ring, or It is preferable that they form a ring or a morpholine ring.
 上記一般式(I)で表される構成単位を誘導するモノマーとしては、ジメチルアミノエチル(メタ)アクリレート、ジメチルアミノプロピル(メタ)アクリレート、ジエチルアミノエチル(メタ)アクリレート、ジエチルアミノプロピル(メタ)アクリレート等のアルキル基置換アミノ基含有(メタ)アクリレート等、ジメチルアミノエチル(メタ)アクリルアミド、ジメチルアミノプロピル(メタ)アクリルアミドなどのアルキル基置換アミノ基含有(メタ)アクリルアミド等が挙げられる。中でも分散性、及び分散安定性が向上する点でジメチルアミノエチル(メタ)アクリレート、ジエチルアミノエチル(メタ)アクリレート、ジメチルアミノプロピル(メタ)アクリルアミドを好ましく用いることができる。
 重合体において、一般式(I)で表される構成単位は、1種類からなるものであってもよく、2種以上の構成単位を含むものであってもよい。
Monomers for inducing the structural unit represented by the above general formula (I) include dimethylaminoethyl (meth)acrylate, dimethylaminopropyl (meth)acrylate, diethylaminoethyl (meth)acrylate, diethylaminopropyl (meth)acrylate, etc. Examples include alkyl group-substituted amino group-containing (meth)acrylates, and alkyl group-substituted amino group-containing (meth)acrylamides such as dimethylaminoethyl (meth)acrylamide and dimethylaminopropyl (meth)acrylamide. Among them, dimethylaminoethyl (meth)acrylate, diethylaminoethyl (meth)acrylate, and dimethylaminopropyl (meth)acrylamide are preferably used because they improve dispersibility and dispersion stability.
In the polymer, the structural unit represented by the general formula (I) may consist of one type, or may contain two or more types of structural units.
 また、色材吸着部位として機能する構成単位としては、前記一般式(I)で表される構成単位が有する窒素部位の少なくとも一部と、有機酸化合物及びハロゲン化炭化水素からなる群から選ばれる少なくとも1種とが塩を形成してもよい。
 前記有機酸化合物としては、フェニルホスホン酸やフェニルホスフィン酸等の酸性有機リン化合物であることが、色材の分散性及び分散安定性に優れる点から好ましい。このような分散剤に用いられる有機酸化合物の具体例としては、例えば、特開2012-236882号公報等に記載の有機酸化合物が好適なものとして挙げられる。
 また、前記ハロゲン化炭化水素としては、臭化アリル、塩化ベンジル等のハロゲン化アリル及びハロゲン化アラルキルの少なくとも1種であることが、色材の分散性及び分散安定性に優れる点から好ましい。
Furthermore, the structural unit functioning as a colorant adsorption site is selected from the group consisting of at least a part of the nitrogen site possessed by the structural unit represented by the general formula (I), an organic acid compound, and a halogenated hydrocarbon. At least one kind may form a salt.
The organic acid compound is preferably an acidic organic phosphorus compound such as phenylphosphonic acid or phenylphosphinic acid from the viewpoint of excellent dispersibility and dispersion stability of the coloring material. As a specific example of the organic acid compound used in such a dispersant, for example, organic acid compounds described in JP-A-2012-236882 and the like can be mentioned as suitable ones.
Further, the halogenated hydrocarbon is preferably at least one of allyl halides such as allyl bromide and benzyl chloride, and aralkyl halides, from the viewpoint of excellent dispersibility and dispersion stability of the coloring material.
 前記一般式(I)で表される構成単位を有する共重合体は、分散性及び分散安定性の点から、前記一般式(I)で表される構成単位を有し、グラフトポリマー鎖に(メタ)アクリレート由来の構成単位を有するグラフト共重合体、及び、前記一般式(I)で表される構成単位を含むAブロックと、(メタ)アクリレート由来の構成単位を含むBブロックとを有するブロック共重合体、の少なくとも1種であることがより好ましい。
 前記グラフト共重合体において、(メタ)アクリレート由来の構成単位を有するグラフトポリマー鎖としては、従来公知の構造を適宜選択して用いることができる。例えば、国際公開第2021/006077号公報に記載されているグラフト共重合体及び塩型グラフト共重合体の少なくとも1種を用いてもよい。
 また、前記ブロック共重合体において、(メタ)アクリレート由来の構成単位を含むBブロックとしては、従来公知の構造を適宜選択して用いることができる。例えば、国際公開第2016/104493号に記載されているブロック共重合体及び塩型ブロック共重合体の少なくとも1種を用いてもよい。
The copolymer having the structural unit represented by the general formula (I) has the structural unit represented by the general formula (I) from the viewpoint of dispersibility and dispersion stability, and has ( A graft copolymer having a structural unit derived from meth)acrylate, and a block having an A block containing a structural unit represented by the general formula (I) and a B block containing a structural unit derived from (meth)acrylate. More preferably, it is at least one type of copolymer.
In the graft copolymer, a conventionally known structure can be appropriately selected and used as the graft polymer chain having a structural unit derived from (meth)acrylate. For example, at least one of the graft copolymers and salt-type graft copolymers described in International Publication No. 2021/006077 may be used.
Moreover, in the block copolymer, as the B block containing a structural unit derived from (meth)acrylate, a conventionally known structure can be appropriately selected and used. For example, at least one of the block copolymers and salt-type block copolymers described in International Publication No. 2016/104493 may be used.
 前記(メタ)アクリレート共重合体系分散剤としては、市販品を用いてもよく、例えば、ビッグケミー・ジャパン(株)社製の商品名LP-N6919、商品名LP-N21116等が挙げられる。 As the (meth)acrylate copolymer-based dispersant, commercially available products may be used, and examples thereof include LP-N6919 (trade name) and LP-N21116 (trade name) manufactured by Big Chemie Japan Co., Ltd.
 本発明に係る青色感光性組成物において、分散剤の含有量は、色材の分散性及び分散安定性に優れるように選択されればよく、特に限定されないが、青色感光性組成物中の固形分全量に対して、例えば好ましくは2質量%~30質量%、より好ましくは3質量%~25質量%の範囲内である。上記下限値以上であれば、色材の分散性及び分散安定性に優れ、青色感光性組成物の保存安定性により優れている。また、上記上限値以下であれば、現像性が良好なものとなる。特に色材濃度が高い硬化膜を形成する場合には、分散剤の含有量は、青色感光性組成物の固形分全量に対して、例えば好ましくは2質量%~25質量%、より好ましくは3質量%~20質量%の範囲内である。 In the blue-sensitive composition according to the present invention, the content of the dispersant may be selected so as to have excellent dispersibility and dispersion stability of the coloring material, and is not particularly limited. For example, it is preferably in the range of 2% by mass to 30% by mass, more preferably 3% by mass to 25% by mass, based on the total amount. If it is more than the above lower limit, the dispersibility and dispersion stability of the coloring material are excellent, and the storage stability of the blue-sensitive composition is also excellent. Moreover, if it is below the said upper limit, developability will become good. In particular, when forming a cured film with a high concentration of coloring material, the content of the dispersant is preferably 2% to 25% by mass, more preferably 3% by mass, based on the total solid content of the blue-sensitive composition. It is within the range of % by mass to 20% by mass.
<チオール化合物>
 本発明の青色感光性組成物は、低温加熱処理後の耐溶剤性、及び基板密着性を向上する点から、更に、チオール化合物を含有することが好ましい。
 チオール化合物としては、1分子中に1つのチオール基を有する単官能チオール化合物、1分子中に2つ以上のチオール基を有する多官能チオール化合物が挙げられる。線幅シフトの抑制と基板密着性の向上の点からは、チオール基が1つの単官能チオール化合物を用いることがより好ましい。
 単官能チオール化合物としては、例えば、2-メルカプトベンゾチアゾール、2-メルカプトベンゾオキサゾール、2-メルカプトベンゾイミダゾール、2-メルカプト-5-メトキシベンゾチアゾール、2-メルカプト-5-メトキシベンゾイミダゾール、3-メルカプトプロピオン酸、3-メルカプトプロピオン酸メチル、3-メルカプトプロピオン酸エチル、3-メルカプトプロピオン酸オクチル等が挙げられる。
 多官能チオール化合物としては、例えば、1,4-ビス(3-メルカプトブチリルオキシ)ブタン、1,3,5-トリス(3-メルカプトブチルオキシエチル)-1,3,5-トリアジン-2,4,6(1H,3H,5H)-トリオン、トリメチロールプロパントリス(3-メルカプトプロピオネート)、ペンタエリスリトールテトラキス(3-メルカプトブチレート)、ペンタエリスリトールテトラキス(3-メルカプトプロピオネート)、ジペンタエリスリトールヘキサキス(3-メルカプトプロピオネート)、およびテトラエチレングリコールビス(3-メルカプトプロピオネート)等が挙げられる。
 チオール化合物としては、単独で又は2種以上組み合わせて用いても良く、中でも、2-メルカプトベンゾオキサゾール、又は2-メルカプトベンゾチアゾールが、低温加熱処理後の耐溶剤性、及び基板密着性を向上する点から好ましい。
 チオール化合物の含有量としては、青色感光性組成物の固形分全量に対して、通常0.5質量%~10質量%、好ましくは1質量%~5質量%の範囲内である。上記下限値以上であれば、基板密着性に優れている。一方、上記上限値以下であれば、本発明の青色感光性組成物を現像性が良好で線幅シフトが抑制されたものとしやすい。
<thiol compound>
The blue photosensitive composition of the present invention preferably further contains a thiol compound in order to improve solvent resistance and substrate adhesion after low-temperature heat treatment.
Examples of the thiol compound include monofunctional thiol compounds having one thiol group in one molecule and polyfunctional thiol compounds having two or more thiol groups in one molecule. From the viewpoint of suppressing line width shift and improving adhesion to the substrate, it is more preferable to use a monofunctional thiol compound having one thiol group.
Examples of monofunctional thiol compounds include 2-mercaptobenzothiazole, 2-mercaptobenzoxazole, 2-mercaptobenzimidazole, 2-mercapto-5-methoxybenzothiazole, 2-mercapto-5-methoxybenzimidazole, and 3-mercaptobenzimidazole. Examples include propionic acid, methyl 3-mercaptopropionate, ethyl 3-mercaptopropionate, octyl 3-mercaptopropionate, and the like.
Examples of polyfunctional thiol compounds include 1,4-bis(3-mercaptobutyryloxy)butane, 1,3,5-tris(3-mercaptobutyloxyethyl)-1,3,5-triazine-2, 4,6(1H,3H,5H)-trione, trimethylolpropane tris (3-mercaptopropionate), pentaerythritol tetrakis (3-mercaptobutyrate), pentaerythritol tetrakis (3-mercaptopropionate), di Examples include pentaerythritol hexakis (3-mercaptopropionate) and tetraethylene glycol bis(3-mercaptopropionate).
The thiol compound may be used alone or in combination of two or more, and among them, 2-mercaptobenzoxazole or 2-mercaptobenzothiazole improves solvent resistance and substrate adhesion after low-temperature heat treatment. Preferable from this point of view.
The content of the thiol compound is usually in the range of 0.5% by mass to 10% by mass, preferably 1% by mass to 5% by mass, based on the total solid content of the blue photosensitive composition. If it is at least the above lower limit, the adhesion to the substrate is excellent. On the other hand, if it is below the above-mentioned upper limit, the blue photosensitive composition of the present invention is likely to have good developability and suppress line width shift.
<任意添加成分>
 青色感光性組成物には、必要に応じて各種添加剤を含むものであってもよい。添加剤としては、例えば、酸化防止剤、重合停止剤、連鎖移動剤、レベリング剤、可塑剤、界面活性剤、消泡剤、シランカップリング剤、紫外線吸収剤、密着促進剤等などが挙げられる。
 界面活性剤及び可塑剤の具体例としては、例えば、特開2013-029832号公報に記載のものが挙げられる。
<Optional addition ingredients>
The blue photosensitive composition may contain various additives as necessary. Examples of additives include antioxidants, polymerization terminators, chain transfer agents, leveling agents, plasticizers, surfactants, antifoaming agents, silane coupling agents, ultraviolet absorbers, adhesion promoters, etc. .
Specific examples of surfactants and plasticizers include those described in JP-A No. 2013-029832.
 本発明の青色感光性組成物は、更に酸化防止剤を含むものであることが、線幅シフト量の抑制の点から好ましい。本発明の青色感光性組成物は、前記特定の光開始剤と組み合わせて酸化防止剤を含むことにより、硬化膜を形成する際に硬化性を損なうことなく過度なラジカル連鎖反応を制御できるため、細線パターンを形成する際に、直線性がより向上したり、マスク線幅の設計通りに細線パターンを形成する能力が向上する。
 本発明に用いられる酸化防止剤としては、特に限定されず、従来公知のものの中から適宜選択すればよい。酸化防止剤の具体例としては、例えば、ヒンダードフェノール系酸化防止剤、アミン系酸化防止剤、リン系酸化防止剤、硫黄系酸化防止剤、ヒドラジン系酸化防止剤等が挙げられ、マスク線幅の設計通りに細線パターンを形成する能力が向上する点、及び耐熱性の点から、ヒンダードフェノール系酸化防止剤を用いることが好ましい。国際公開第2014/021023号に記載されているような潜在性酸化防止剤であっても良い。
The blue photosensitive composition of the present invention preferably further contains an antioxidant from the viewpoint of suppressing the amount of line width shift. By containing an antioxidant in combination with the specific photoinitiator, the blue photosensitive composition of the present invention can control excessive radical chain reactions without impairing curability when forming a cured film. When forming a thin line pattern, linearity is further improved, and the ability to form a thin line pattern according to the designed mask line width is improved.
The antioxidant used in the present invention is not particularly limited, and may be appropriately selected from conventionally known antioxidants. Specific examples of antioxidants include hindered phenol antioxidants, amine antioxidants, phosphorus antioxidants, sulfur antioxidants, hydrazine antioxidants, etc. It is preferable to use a hindered phenolic antioxidant from the viewpoint of improving the ability to form a fine line pattern as designed and from the viewpoint of heat resistance. It may also be a latent antioxidant as described in International Publication No. 2014/021023.
 ヒンダードフェノール系酸化防止剤としては、例えば、ペンタエリトリトールテトラキス[3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオナート](商品名:IRGANOX1010、BASF社製)、1,3,5-トリス(3,5-ジ-tert-ブチル-4-ヒドロキシベンジル)イソシアヌレート(商品名:イルガノックス3114、BASF製)、2,4,6-トリス(4-ヒドロキシ-3,5-ジ-tert-ブチルベンジル)メシチレン(商品名:イルガノックス1330、BASF製)、2,2’-メチレンビス(6-tert-ブチル-4-メチルフェノール)(商品名:スミライザーMDP-S、住友化学製)、6,6’-チオビス(2-tert-ブチル-4-メチルフェノール)(商品名:イルガノックス1081、BASF製)、3,5-ジ-tert-ブチル-4-ヒドロキシベンジルホスホン酸ジエチル(商品名:イルガモド195、BASF製)等が挙げられる。中でも、耐熱性及び耐光性の点から、ペンタエリトリトールテトラキス[3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオナート](商品名:IRGANOX1010、BASF社製)が好ましい。 Examples of the hindered phenolic antioxidant include pentaerythritol tetrakis [3-(3,5-di-tert-butyl-4-hydroxyphenyl)propionate] (trade name: IRGANOX1010, manufactured by BASF), 1,3 , 5-tris(3,5-di-tert-butyl-4-hydroxybenzyl)isocyanurate (trade name: Irganox 3114, manufactured by BASF), 2,4,6-tris(4-hydroxy-3,5- Di-tert-butylbenzyl) mesitylene (product name: Irganox 1330, manufactured by BASF), 2,2'-methylenebis(6-tert-butyl-4-methylphenol) (product name: Sumilizer MDP-S, manufactured by Sumitomo Chemical) ), 6,6'-thiobis(2-tert-butyl-4-methylphenol) (trade name: Irganox 1081, manufactured by BASF), diethyl 3,5-di-tert-butyl-4-hydroxybenzylphosphonate ( Trade name: Irgamod 195 (manufactured by BASF), etc. Among them, pentaerythritol tetrakis [3-(3,5-di-tert-butyl-4-hydroxyphenyl)propionate] (trade name: IRGANOX1010, manufactured by BASF) is preferred from the viewpoint of heat resistance and light resistance.
 酸化防止剤の含有量としては、青色感光性組成物の固形分全量に対して、好ましくは0.1質量%~10.0質量%、より好ましくは0.5質量%~5.0質量%の範囲内である。上記下限値以上であれば、マスク線幅の設計通りに細線パターンを形成する能力が向上する点、及び耐熱性に優れている。一方、上記上限値以下であれば、本発明の青色感光性組成物を高感度の感光性組成物とすることができる。 The content of the antioxidant is preferably 0.1% by mass to 10.0% by mass, more preferably 0.5% by mass to 5.0% by mass, based on the total solid content of the blue photosensitive composition. is within the range of If it is more than the above lower limit, the ability to form a fine line pattern according to the designed mask line width is improved and the heat resistance is excellent. On the other hand, if it is below the above upper limit, the blue photosensitive composition of the present invention can be made into a highly sensitive photosensitive composition.
 またシランカップリング剤としては、例えばKBM-502、KBM-503、KBE-502、KBE-503、KBM-5103、KBM-903、KBE-903、KBM573、KBM-403、KBE-402、KBE-403、KBM-303、KBM-802、KBM-803、KBE-9007、X-12-967C(信越シリコーン社製)などが挙げられる。中でもSiN基板の密着性の点からメタクリル基、アクリル基を有するKBM-502、KBM-503、KBE-502、KBE-503、KBM-5103が好ましい。 Examples of the silane coupling agent include KBM-502, KBM-503, KBE-502, KBE-503, KBM-5103, KBM-903, KBE-903, KBM573, KBM-403, KBE-402, KBE-403. , KBM-303, KBM-802, KBM-803, KBE-9007, and X-12-967C (manufactured by Shin-Etsu Silicone Co., Ltd.). Among them, KBM-502, KBM-503, KBE-502, KBE-503, and KBM-5103, which have methacrylic groups and acrylic groups, are preferred from the viewpoint of adhesion to the SiN substrate.
 シランカップリング剤の含有量としては、青色感光性組成物の固形分全量に対して、好ましくは0.05質量%~10.0質量%の範囲内であり、より好ましくは0.1質量%~5.0質量%の範囲内である。上記下限値以上、上記上限値以下であれば、基板密着性に優れている。 The content of the silane coupling agent is preferably in the range of 0.05% by mass to 10.0% by mass, more preferably 0.1% by mass based on the total solid content of the blue photosensitive composition. It is within the range of ~5.0% by mass. If it is greater than or equal to the lower limit value and less than or equal to the upper limit value, the adhesion to the substrate is excellent.
<青色感光性組成物の製造方法>
 本発明に用いられる青色感光性組成物の製造方法は、色材と、アルカリ可溶性樹脂と、光重合性化合物と、光開始剤と、増感剤と、必要に応じて分散剤と、溶剤と、所望により用いられる各種添加成分とを含有し、色材が溶剤中に均一に分散されうる方法であることが好ましく、公知の混合手段を用いて混合することにより、調製することができる。
 青色感光性組成物の調製方法としては、例えば、(1)まず溶剤中に、色材と、分散剤とを添加して色材分散液を調製し、当該分散液に、アルカリ可溶性樹脂と、光重合性化合物と、光開始剤と、増感剤と、所望により用いられる各種添加成分を混合する方法;(2)溶剤中に、色材と、アルカリ可溶性樹脂と、光重合性化合物と、光開始剤と、増感剤と、所望により用いられる分散剤と、各種添加成分とを同時に投入し混合する方法;(3)溶剤中に、アルカリ可溶性樹脂と、光重合性化合物と、光開始剤と、増感剤と、所望により用いられる分散剤と、各種添加成分とを添加し、混合したのち、色材を加えて分散する方法;(4)溶剤中に、色材と、分散剤と、アルカリ可溶性樹脂とを添加して色材分散液を調製し、当該分散液に、更にアルカリ可溶性樹脂と、溶剤と、光重合性化合物と、光開始剤と、増感剤と、所望により用いられる各種添加成分を添加し、混合する方法;などを挙げることができる。光重合性化合物が溶剤の代わりになる場合には、溶剤を用いなくてもよい。
 これらの方法の中で、上記(1)及び(4)の方法が、色材の凝集を効果的に防ぎ、均一に分散させ得る点から好ましい。
<Method for producing blue photosensitive composition>
The method for producing the blue photosensitive composition used in the present invention includes a coloring material, an alkali-soluble resin, a photopolymerizable compound, a photoinitiator, a sensitizer, and optionally a dispersant and a solvent. , and various additive components used as desired, and the colorant can be uniformly dispersed in the solvent, and can be prepared by mixing using known mixing means.
As a method for preparing a blue photosensitive composition, for example, (1) first, a coloring material and a dispersant are added to a solvent to prepare a coloring material dispersion, and an alkali-soluble resin and an alkali-soluble resin are added to the dispersion. A method of mixing a photopolymerizable compound, a photoinitiator, a sensitizer, and various optional additive components; (2) a coloring material, an alkali-soluble resin, a photopolymerizable compound in a solvent, A method in which a photoinitiator, a sensitizer, a dispersant used if desired, and various additive components are simultaneously added and mixed; (4) A method in which a coloring agent, a sensitizer, a dispersing agent used as desired, and various additive components are added and mixed, and then a coloring material is added and dispersed; (4) a coloring material and a dispersing agent in a solvent; and an alkali-soluble resin to prepare a coloring material dispersion, and to the dispersion, further an alkali-soluble resin, a solvent, a photopolymerizable compound, a photoinitiator, a sensitizer, and optionally an alkali-soluble resin. Examples include a method of adding and mixing various additive components to be used. If the photopolymerizable compound is used in place of the solvent, the solvent may not be used.
Among these methods, methods (1) and (4) above are preferred because they can effectively prevent agglomeration of the coloring material and uniformly disperse it.
 色材分散液を調製する方法は、従来公知の分散方法の中から適宜選択して用いることができる。例えば、(1)予め、分散剤を溶剤に混合、撹拌し、分散剤溶液を調製し、次いで必要に応じて有機酸化合物を混合して分散剤が有するアミノ基と有機酸化合物との塩形成させる。これを色材と必要に応じてその他の成分を混合し、公知の攪拌機または分散機を用いて分散させる方法;(2)分散剤を溶剤に混合、撹拌し、分散剤溶液を調製し、次いで、色材及び必要に応じて有機酸化合物と、更に必要に応じてその他の成分を混合し、公知の攪拌機または分散機を用いて分散させる方法;(3)分散剤を溶剤に混合、攪拌し、分散剤溶液を調製し、次いで、色材及び必要に応じてその他の成分を混合し、公知の攪拌機または分散機を用いて分散液としたのちに、必要に応じて有機酸化合物を添加する方法などが挙げられる。 The method for preparing the coloring material dispersion can be appropriately selected from conventionally known dispersion methods. For example, (1) a dispersant is mixed in advance with a solvent and stirred to prepare a dispersant solution, and then, if necessary, an organic acid compound is mixed to form a salt between the amino group of the dispersant and the organic acid compound. let A method of mixing this with the coloring material and other components as necessary and dispersing it using a known stirrer or dispersion machine; (2) Mixing the dispersant with a solvent and stirring to prepare a dispersant solution; , a method of mixing a coloring material and an organic acid compound as necessary, and further other components as necessary, and dispersing the mixture using a known stirrer or disperser; (3) mixing a dispersant with a solvent and stirring; , prepare a dispersant solution, then mix the coloring material and other components as necessary, make a dispersion liquid using a known stirrer or dispersion machine, and then add an organic acid compound as necessary. Examples include methods.
 分散処理を行うための分散機としては、2本ロール、3本ロール等のロールミル、ボールミル、振動ボールミル等のボールミル、ペイントコンディショナー、連続ディスク型ビーズミル、連続アニュラー型ビーズミル等のビーズミルが挙げられる。ビーズミルの好ましい分散条件として、使用するビーズ径は0.03mm~2.00mmが好ましく、より好ましくは0.10mm~1.0mmである。 Examples of the dispersion machine for performing the dispersion treatment include roll mills such as two-roll and three-roll mills, ball mills such as ball mills and vibrating ball mills, paint conditioners, bead mills such as continuous disc-type bead mills, and continuous annular bead mills. As preferred dispersion conditions for the bead mill, the diameter of the beads used is preferably 0.03 mm to 2.00 mm, more preferably 0.10 mm to 1.0 mm.
<用途>
 本発明に係る青色感光性組成物は、線幅シフトを抑制しながら、現像後の残膜率を向上でき、現像後のアンダーカットが抑制された良好なパターンを形成可能で、形成された青色硬化膜のパターンの基板密着性も向上することから、カラーフィルタ用途に好適に用いることができる。
<Application>
The blue photosensitive composition according to the present invention can improve the residual film rate after development while suppressing line width shift, and can form a good pattern with suppressed undercuts after development. Since the adhesion of the cured film pattern to the substrate is also improved, it can be suitably used for color filter applications.
III.カラーフィルタ、及びその製造方法
 本発明のカラーフィルタの製造方法は、基板と、当該基板上に設けられた青色硬化膜を含む着色層を少なくとも備えるカラーフィルタの製造方法であって、
 当該青色硬化膜を前記本発明に係る青色硬化膜の製造方法により製造する工程を有することを特徴とする。
 また、本発明に係るカラーフィルタは、基板と、当該基板上に設けられた着色層とを少なくとも備えるカラーフィルタであって、当該着色層の少なくとも1つが、前記本発明に係る青色感光性組成物の硬化物であることを特徴とする。
III. Color filter and method for manufacturing the same The method for manufacturing a color filter of the present invention is a method for manufacturing a color filter comprising at least a substrate and a colored layer including a blue cured film provided on the substrate,
The present invention is characterized by comprising a step of manufacturing the blue cured film by the method for manufacturing a blue cured film according to the present invention.
Further, the color filter according to the present invention is a color filter comprising at least a substrate and a colored layer provided on the substrate, and at least one of the colored layers is composed of the blue photosensitive composition according to the present invention. It is characterized by being a cured product.
 このような本発明に係るカラーフィルタについて、図を参照しながら説明する。図1は、本発明のカラーフィルタの一例を示す概略断面図である。図1によれば、本発明のカラーフィルタ10は、基板1と、遮光部2と、着色層3とを有している。 The color filter according to the present invention will be explained with reference to the drawings. FIG. 1 is a schematic cross-sectional view showing an example of a color filter of the present invention. According to FIG. 1, the color filter 10 of the present invention includes a substrate 1, a light shielding part 2, and a colored layer 3.
<基板>
 基板としては、前記青色硬化膜の製造方法で挙げた基板と同様であって良いので、ここでの説明を省略する。
 当該透明基板の厚みは、特に限定されるものではないが、本発明のカラーフィルタの用途に応じて、例えば100μm~1mm程度のものを使用することができる。
<Substrate>
Since the substrate may be the same as the substrate mentioned in the method for manufacturing the blue cured film, the explanation here will be omitted.
The thickness of the transparent substrate is not particularly limited, but may be, for example, about 100 μm to 1 mm depending on the use of the color filter of the present invention.
<遮光部>
 本発明のカラーフィルタにおける遮光部は、基板上にパターン状に形成されるものであって、一般的なカラーフィルタに遮光部として用いられるものと同様とすることができる。
 当該遮光部のパターン形状としては、特に限定されず、例えば、ストライプ状、マトリクス状等の形状が挙げられる。遮光部は、スパッタリング法、真空蒸着法等によるクロム等の金属薄膜であっても良い。或いは、遮光部は、樹脂バインダー中にカーボン微粒子、金属酸化物、無機顔料、有機顔料等の遮光性粒子を含有させた樹脂層であってもよい。遮光性粒子を含有させた樹脂層の場合には、感光性レジストを用いて現像によりパターニングする方法、遮光性粒子を含有するインクジェットインクを用いてパターニングする方法、感光性レジストを熱転写する方法等がある。
<Light shielding part>
The light shielding part in the color filter of the present invention is formed in a pattern on the substrate, and can be similar to that used as a light shielding part in a general color filter.
The pattern shape of the light shielding portion is not particularly limited, and examples thereof include stripe shapes, matrix shapes, and the like. The light shielding portion may be a thin film of metal such as chromium formed by sputtering, vacuum evaporation, or the like. Alternatively, the light-shielding portion may be a resin layer containing light-shielding particles such as carbon fine particles, metal oxides, inorganic pigments, and organic pigments in a resin binder. In the case of a resin layer containing light-shielding particles, there are methods such as patterning by development using a photosensitive resist, patterning using an inkjet ink containing light-shielding particles, and thermal transfer of a photosensitive resist. be.
 遮光部の膜厚としては、金属薄膜の場合は0.2μm~0.4μm程度で設定され、黒色顔料をバインダー樹脂中に分散又は溶解させたものである場合は0.5μm~2μm程度で設定される。 The film thickness of the light-shielding part is set at about 0.2 μm to 0.4 μm in the case of a metal thin film, and set at about 0.5 μm to 2 μm in the case of a black pigment dispersed or dissolved in a binder resin. be done.
<着色層>
 本発明のカラーフィルタに用いられる着色層は、少なくとも1つが、前記本発明に係る青色感光性組成物の硬化物である着色層である。
 着色層は、通常、前記基板上の遮光部の開口部に形成され、通常3色以上の着色パターンから構成される。
 また、当該着色層の配列としては、特に限定されず、例えば、ストライプ型、モザイク型、トライアングル型、4画素配置型等の一般的な配列とすることができる。また、着色層の幅、面積等は任意に設定することができる。
 当該着色層の厚みは、塗布方法、青色感光性組成物の固形分濃度や粘度等を調整することにより、適宜制御されるが、通常、1μm~5μmの範囲であることが好ましい。
<Colored layer>
At least one of the colored layers used in the color filter of the present invention is a cured product of the blue photosensitive composition according to the present invention.
The colored layer is usually formed in the opening of the light shielding part on the substrate, and is usually composed of a colored pattern of three or more colors.
Further, the arrangement of the colored layers is not particularly limited, and may be a general arrangement such as a stripe type, a mosaic type, a triangle type, or a four-pixel arrangement type. Furthermore, the width, area, etc. of the colored layer can be set arbitrarily.
The thickness of the colored layer is appropriately controlled by adjusting the coating method, solid content concentration, viscosity, etc. of the blue-sensitive composition, and is usually preferably in the range of 1 μm to 5 μm.
 当該着色層において、少なくとも青色着色層、すなわち青色硬化膜は、前記本発明に係る青色硬化膜の製造方法により製造する工程を有する。
 青色着色層以外の着色層は、従来公知の製造方法で製造してもよいが、前記本発明に係る青色硬化膜の製造方法と同様に、塗膜を、基板上に形成する工程、前記塗膜に、360nm~380nm、及び、400nm~420nmに発光ピーク波長を有するLEDランプを用いて露光して硬化させる工程を含むものであってよく、前記本発明に係る青色硬化膜と同様に製造してよい。
In the colored layer, at least the blue colored layer, that is, the blue cured film has a step of producing it by the method for producing a blue cured film according to the present invention.
Colored layers other than the blue colored layer may be manufactured by conventionally known manufacturing methods, but similarly to the method for manufacturing the blue cured film according to the present invention, the step of forming a coating film on a substrate, the coating The film may include a step of exposing and curing the film using an LED lamp having an emission peak wavelength of 360 nm to 380 nm and 400 nm to 420 nm, and may be produced in the same manner as the blue cured film according to the present invention. It's fine.
 なお、本発明のカラーフィルタは、上記基板、遮光部及び着色層以外にも、例えば、オーバーコート層や透明電極層、さらには配向膜や柱状スペーサ等が形成されたものであってもよい。 Note that the color filter of the present invention may include, for example, an overcoat layer, a transparent electrode layer, an alignment film, a columnar spacer, etc., in addition to the above-described substrate, light shielding portion, and colored layer.
IV.表示装置
 本発明に係る表示装置は、前記本発明に係るカラーフィルタを有することを特徴とする。本発明において表示装置の構成は特に限定されず、従来公知の表示装置の中から適宜選択することができ、例えば、液晶表示装置や、有機発光表示装置などが挙げられる。
IV. Display Device A display device according to the present invention is characterized by having the color filter according to the present invention. In the present invention, the configuration of the display device is not particularly limited, and can be appropriately selected from conventionally known display devices, such as a liquid crystal display device, an organic light emitting display device, and the like.
[液晶表示装置]
 本発明の液晶表示装置としては、例えば、前述した本発明に係るカラーフィルタと、対向基板と、前記カラーフィルタと前記対向基板との間に形成された液晶層とを有する液晶表示装置が挙げられる。
 このような本発明の液晶表示装置について、図を参照しながら説明する。図2は、本発明の液晶表示装置の一例を示す概略図である。図2に例示するように本発明の液晶表示装置40は、カラーフィルタ10と、TFTアレイ基板等を有する対向基板20と、上記カラーフィルタ10と上記対向基板20との間に形成された液晶層30とを有している。
 なお、本発明の液晶表示装置は、この図2に示される構成に限定されるものではなく、一般的にカラーフィルタが用いられた液晶表示装置として公知の構成とすることができる。
[Liquid crystal display device]
Examples of the liquid crystal display device of the present invention include a liquid crystal display device including the color filter according to the present invention described above, a counter substrate, and a liquid crystal layer formed between the color filter and the counter substrate. .
Such a liquid crystal display device of the present invention will be explained with reference to the drawings. FIG. 2 is a schematic diagram showing an example of a liquid crystal display device of the present invention. As illustrated in FIG. 2, a liquid crystal display device 40 of the present invention includes a color filter 10, a counter substrate 20 having a TFT array substrate, etc., and a liquid crystal layer formed between the color filter 10 and the counter substrate 20. 30.
Note that the liquid crystal display device of the present invention is not limited to the configuration shown in FIG. 2, and may have a generally known configuration as a liquid crystal display device using a color filter.
 本発明の液晶表示装置の駆動方式としては、特に限定はなく一般的に液晶表示装置に用いられている駆動方式を採用することができる。このような駆動方式としては、例えば、TN方式、IPS方式、OCB方式、及びMVA方式等を挙げることができる。本発明においてはこれらのいずれの方式であっても好適に用いることができる。
 また、対向基板としては、本発明の液晶表示装置の駆動方式等に応じて適宜選択して用いることができる。
 さらに、液晶層を構成する液晶としては、本発明の液晶表示装置の駆動方式等に応じて、誘電異方性の異なる各種液晶、及びこれらの混合物を用いることができる。
The driving method of the liquid crystal display device of the present invention is not particularly limited, and any driving method generally used for liquid crystal display devices can be adopted. Examples of such driving methods include a TN method, an IPS method, an OCB method, and an MVA method. In the present invention, any of these methods can be suitably used.
Further, the counter substrate can be appropriately selected and used depending on the driving method of the liquid crystal display device of the present invention.
Further, as the liquid crystal constituting the liquid crystal layer, various liquid crystals having different dielectric anisotropy and mixtures thereof can be used depending on the driving method of the liquid crystal display device of the present invention.
 液晶層の形成方法としては、一般に液晶セルの作製方法として用いられる方法を使用することができ、例えば、真空注入方式や液晶滴下方式等が挙げられる。前記方法によって液晶層を形成後、液晶セルを常温まで徐冷することにより、封入された液晶を配向させることができる。 As a method for forming the liquid crystal layer, methods generally used for manufacturing liquid crystal cells can be used, such as a vacuum injection method, a liquid crystal dropping method, and the like. After forming the liquid crystal layer by the method described above, the liquid crystal cell is gradually cooled to room temperature, thereby making it possible to orient the encapsulated liquid crystal.
[有機発光表示装置]
 本発明の有機発光表示装置としては、例えば、前述した本発明に係るカラーフィルタと、有機発光体とを有する有機発光表示装置が挙げられる。
 このような本発明の有機発光表示装置について、図を参照しながら説明する。図3は、本発明の有機発光表示装置の一例を示す概略図である。図3に例示するように本発明の有機発光表示装置100は、カラーフィルタ10と、有機発光体80とを有している。カラーフィルタ10と、有機発光体80との間に、有機保護層50や無機酸化膜60を有していても良い。
[Organic light emitting display device]
Examples of the organic light emitting display device of the present invention include an organic light emitting display device having the above-described color filter according to the present invention and an organic light emitter.
The organic light emitting display device of the present invention will be described with reference to the drawings. FIG. 3 is a schematic diagram showing an example of an organic light emitting display device of the present invention. As illustrated in FIG. 3, an organic light emitting display device 100 of the present invention includes a color filter 10 and an organic light emitter 80. An organic protective layer 50 or an inorganic oxide film 60 may be provided between the color filter 10 and the organic light emitter 80.
 有機発光体80の積層方法としては、例えば、カラーフィルタ上面へ透明陽極71、正孔注入層72、正孔輸送層73、発光層74、電子注入層75、および陰極76を逐次形成していく方法や、別基板上へ形成した有機発光体80を無機酸化膜60上に貼り合わせる方法などが挙げられる。有機発光体80における、透明陽極71、正孔注入層72、正孔輸送層73、発光層74、電子注入層75、および陰極76、その他の構成は、公知のものを適宜用いることができる。このようにして作製された有機発光表示装置100は、例えば、パッシブ駆動方式の有機ELディスプレイにもアクティブ駆動方式の有機ELディスプレイにも適用可能である。
 なお、本発明の有機発光表示装置は、この図3に示される構成に限定されるものではなく、一般的にカラーフィルタが用いられた有機発光表示装置として公知の構成とすることができる。
As a method of stacking the organic light emitter 80, for example, a transparent anode 71, a hole injection layer 72, a hole transport layer 73, a light emitting layer 74, an electron injection layer 75, and a cathode 76 are sequentially formed on the upper surface of the color filter. Examples include a method in which an organic light emitting body 80 formed on a separate substrate is bonded onto an inorganic oxide film 60, and the like. For the transparent anode 71, hole injection layer 72, hole transport layer 73, light emitting layer 74, electron injection layer 75, cathode 76, and other structures in the organic light emitter 80, publicly known ones can be used as appropriate. The organic light emitting display device 100 manufactured in this manner is applicable to, for example, both a passive drive type organic EL display and an active drive type organic EL display.
Note that the organic light emitting display device of the present invention is not limited to the configuration shown in FIG. 3, and may have a generally known configuration as an organic light emitting display device using a color filter.
 以下、本発明について実施例を示して具体的に説明する。これらの記載により本発明を制限するものではない。 Hereinafter, the present invention will be specifically explained by showing examples. The present invention is not limited to these descriptions.
[LED光源の準備]
 360nm~380nm、及び、400nm~420nmに発光ピーク波長を有するLED光源としては、365nmに発光ピーク波長を有するLEDチップと、405nmに発光ピーク波長を有するLEDチップとを用い、各LEDチップの個数比率により、360nm~380nmの発光ピーク波長の強度(A)と400nm~420nmの発光ピーク波長の強度(B)との強度比(A/B)を調整した。各LEDチップの配列としては、光照射位置により硬化性が偏らないようにした。
 強度比(A/B)=100/0、90/10、80/20、60/40、40/60、20/80、10/90、0/100のLED光源を準備した。
 なお、強度比(A/B)は、分光放射照度計(USR-45DA-14(ウシオ電機株式会社製))により確認した。
[Preparation of LED light source]
As an LED light source having an emission peak wavelength of 360 nm to 380 nm and 400 nm to 420 nm, an LED chip having an emission peak wavelength of 365 nm and an LED chip having an emission peak wavelength of 405 nm are used, and the number ratio of each LED chip is Accordingly, the intensity ratio (A/B) between the intensity of the emission peak wavelength of 360 nm to 380 nm (A) and the intensity of the emission peak wavelength of 400 nm to 420 nm (B) was adjusted. The LED chips were arranged so that the curing properties were not biased depending on the light irradiation position.
LED light sources with intensity ratios (A/B)=100/0, 90/10, 80/20, 60/40, 40/60, 20/80, 10/90, and 0/100 were prepared.
The intensity ratio (A/B) was confirmed using a spectral irradiance meter (USR-45DA-14 (manufactured by Ushio Inc.)).
(合成例1:アルカリ可溶性樹脂Aの調製)
 ベンジルメタクリレート(BzMA) 40質量部、メチルメタクリレート(MMA) 15質量部、メタクリル酸(MAA) 25質量部、及びアゾイソブチロニトリル(AIBN) 3質量部の混合液を、PGMEA 150質量部を入れた重合槽中に、窒素気流下、100℃で、3時間かけて滴下した。滴下終了後、更に100℃で、3時間加熱し、重合体溶液を得た。この重合体溶液の質量平均分子量は、7000であった。
 次に、得られた重合体溶液に、グリシジルメタクリレート(GMA) 20質量部、トリエチルアミン0.2質量部、及びp-メトキシフェノール0.05質量部を添加し、110℃で10時間加熱することにより、主鎖メタクリル酸のカルボン酸基と、グリシジルメタクリレートのエポキシ基との反応を行ない、アルカリ可溶性樹脂Aを得た。反応中は、グリシジルメタクリレートの重合を防ぐために、反応溶液中に、空気をバブリングさせた。尚、反応は溶液の酸価を測定することで追跡した。得られたアルカリ可溶性樹脂Aは、BzMA、MMA、MAAの共重合により形成された主鎖にGMAを用いてエチレン性不飽和結合を有する側鎖を導入した樹脂であり、固形分40質量%、酸価74mgKOH/g、質量平均分子量12000であった。
 なお、上記質量平均分子量は、ポリスチレンを標準物質とし、THFを溶離液としてショウデックスGPCシステム-21H(Shodex GPC System-21H)により質量平均分子量を測定した。酸価は、JIS K 0070に基づいて測定した。また、ガラス転移温度(Tg)はJIS K7121に記載の方法に準じて示差走査熱量測定(SIIナノテクノロジー社製、EXSTAR DSC 7020)を用いて測定した。
(Synthesis Example 1: Preparation of alkali-soluble resin A)
A mixed solution of 40 parts by mass of benzyl methacrylate (BzMA), 15 parts by mass of methyl methacrylate (MMA), 25 parts by mass of methacrylic acid (MAA), and 3 parts by mass of azoisobutyronitrile (AIBN) was added with 150 parts by mass of PGMEA. The mixture was added dropwise into a polymerization tank at 100° C. over a period of 3 hours under a nitrogen stream. After the dropwise addition was completed, the mixture was further heated at 100° C. for 3 hours to obtain a polymer solution. The mass average molecular weight of this polymer solution was 7,000.
Next, 20 parts by mass of glycidyl methacrylate (GMA), 0.2 parts by mass of triethylamine, and 0.05 parts by mass of p-methoxyphenol were added to the obtained polymer solution, and the mixture was heated at 110°C for 10 hours. Alkali-soluble resin A was obtained by reacting the carboxylic acid group of main chain methacrylic acid with the epoxy group of glycidyl methacrylate. During the reaction, air was bubbled into the reaction solution to prevent polymerization of glycidyl methacrylate. The reaction was tracked by measuring the acid value of the solution. The obtained alkali-soluble resin A is a resin in which a side chain having an ethylenically unsaturated bond is introduced into the main chain formed by copolymerization of BzMA, MMA, and MAA using GMA, and has a solid content of 40% by mass, The acid value was 74 mgKOH/g and the mass average molecular weight was 12,000.
The above mass average molecular weight was determined by using polystyrene as a standard substance and THF as an eluent using Shodex GPC System-21H. The acid value was measured based on JIS K 0070. Further, the glass transition temperature (Tg) was measured using differential scanning calorimetry (EXSTAR DSC 7020, manufactured by SII Nano Technology) according to the method described in JIS K7121.
(合成例2:ブロック共重合体A(分散剤A)の調製)
 冷却管、添加用ロート、窒素用インレット、機械的攪拌機、デジタル温度計を備えた500mL丸底4口セパラブルフラスコにTHF250質量部、塩化リチウム0.6質量部を加え、充分に窒素置換を行った。反応フラスコを-60℃まで冷却した後、ブチルリチウム4.9質量部(15質量%ヘキサン溶液)、ジイソプロピルアミン1.1質量部、イソ酪酸メチル1.0質量部をシリンジを用いて注入した。Bブロック用モノマーのメタクリル酸1-エトキシエチル(EEMA)2.2質量部、メタクリル酸2-ヒドロキシエチル(HEMA)18.7質量部、メタクリル酸2-エチルヘキシル(EHMA)12.8質量部、メタクリル酸n-ブチル(BMA)13.7質量部、メタクリル酸ベンジル(BzMA)9.5質量部、メタクリル酸メチル(MMA)17.5質量部を、添加用ロートを用いて60分かけて滴下した。30分後、Aブロック用モノマーであるメタクリル酸ジメチルアミノエチル(DMMA)26.7質量部を20分かけて滴下した。30分間反応させた後、メタノール1.5質量部を加えて反応を停止させた。得られた前駆体ブロック共重合体THF溶液はヘキサン中で再沈殿させ、ろ過、真空乾燥により精製を行い、PGMEAで希釈し固形分30質量%溶液とした。水を32.5質量部加え、100℃に昇温し7時間反応させ、EEMA由来の構成単位を脱保護しメタクリル酸(MAA)由来の構成単位とした。得られたブロック共重合体PGMEA溶液はヘキサン中で再沈殿させ、ろ過、真空乾燥により精製を行い、一般式(I)で表される構成単位を含むAブロックとカルボキシ基含有モノマー由来の構成単位を含み親溶剤性を有するBブロックとを含むブロック共重合体A(酸価 8mgKOH/g、Tg38℃)を得た。このようにして得られたブロック共重合体Aを、GPC(ゲルパーミエーションクロマトグラフィー)にて確認したところ、質量平均分子量Mwは7730であった。また、アミン価は95mgKOH/gであった。
(Synthesis Example 2: Preparation of block copolymer A (dispersant A))
Add 250 parts by mass of THF and 0.6 parts by mass of lithium chloride to a 500 mL round-bottomed 4-neck separable flask equipped with a cooling tube, an addition funnel, a nitrogen inlet, a mechanical stirrer, and a digital thermometer, and thoroughly purge with nitrogen. Ta. After cooling the reaction flask to −60° C., 4.9 parts by mass of butyllithium (15% by mass hexane solution), 1.1 parts by mass of diisopropylamine, and 1.0 parts by mass of methyl isobutyrate were injected using a syringe. B block monomers 1-ethoxyethyl methacrylate (EEMA) 2.2 parts by mass, 2-hydroxyethyl methacrylate (HEMA) 18.7 parts by mass, 2-ethylhexyl methacrylate (EHMA) 12.8 parts by mass, methacryl 13.7 parts by mass of n-butyl acid (BMA), 9.5 parts by mass of benzyl methacrylate (BzMA), and 17.5 parts by mass of methyl methacrylate (MMA) were added dropwise over 60 minutes using an addition funnel. . After 30 minutes, 26.7 parts by mass of dimethylaminoethyl methacrylate (DMMA), which is a monomer for A block, was added dropwise over 20 minutes. After reacting for 30 minutes, 1.5 parts by mass of methanol was added to stop the reaction. The obtained precursor block copolymer THF solution was reprecipitated in hexane, purified by filtration and vacuum drying, and diluted with PGMEA to obtain a solution with a solid content of 30% by mass. 32.5 parts by mass of water was added, the temperature was raised to 100° C., and the mixture was reacted for 7 hours to deprotect the structural unit derived from EEMA and obtain a structural unit derived from methacrylic acid (MAA). The obtained block copolymer PGMEA solution is reprecipitated in hexane, purified by filtration and vacuum drying, and the A block containing the structural unit represented by general formula (I) and the structural unit derived from the carboxyl group-containing monomer are extracted. A block copolymer A (acid value: 8 mgKOH/g, Tg: 38° C.) was obtained, which contained a B block having solvent affinity. When the thus obtained block copolymer A was confirmed by GPC (gel permeation chromatography), the mass average molecular weight Mw was 7,730. Moreover, the amine value was 95 mgKOH/g.
(合成例3:レーキ色材1の合成)
(1)中間体1の合成
 特開2018-3013号公報に記載の中間体A-2、中間体B-1、及び化合物1-3の製造方法を参照して、下記化学式(a)で示される中間体1を得た(収率87%)。
 得られた化合物は、下記の分析結果より目的の化合物であることを確認した。
・MS(ESI) (m/z):677(+)、2価
・元素分析値:CHN実測値 (81.81%、7.31%、5.85%);理論値(81.77%、7.36%、5.90%)
(Synthesis example 3: Synthesis of lake color material 1)
(1) Synthesis of Intermediate 1 Referring to the method for producing Intermediate A-2, Intermediate B-1, and Compound 1-3 described in JP-A-2018-3013, Intermediate 1 was obtained (yield 87%).
The obtained compound was confirmed to be the desired compound based on the analysis results described below.
・MS (ESI) (m/z): 677 (+), divalent ・Elemental analysis value: CHN actual value (81.81%, 7.31%, 5.85%); theoretical value (81.77%) , 7.36%, 5.90%)
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000016
(2)レーキ色材1の合成
 関東化学製12タングストリン酸・n水和物2.59g(0.76mmol)をメタノール40mL、水40mLの混合液に加熱溶解させ、前記中間体1 1.6g(1.19mmol)を加え、1時間攪拌した。沈殿物を濾取し、水で洗浄した。得られた沈殿物を減圧乾燥して下記化学式(b)で示されるレーキ色材1を(収率95%)得た。
 得られた化合物は、下記の分析結果より目的の化合物であることを確認した。
・31P NMR(d-dmso、ppm)δ-15.15
・MS(MALDI) (m/z):1355(M)、2879(MH
・元素分析値:CHN実測値 (35.55%、3.24%、2.61%);理論値(35.61%、3.20%、2.57%)
・蛍光X線分析:MoW実測比 (0%、100%);理論値(0%、100%)
(2) Synthesis of Lake Colorant 1 2.59 g (0.76 mmol) of Kanto Chemical's 12-tungstophosphoric acid n-hydrate was heated and dissolved in a mixed solution of 40 mL of methanol and 40 mL of water, and 1.6 g of the intermediate 1 was dissolved. (1.19 mmol) was added and stirred for 1 hour. The precipitate was collected by filtration and washed with water. The obtained precipitate was dried under reduced pressure to obtain Lake Coloring Material 1 represented by the following chemical formula (b) (yield: 95%).
The obtained compound was confirmed to be the desired compound based on the analysis results described below.
・31P NMR (d-dmso, ppm) δ-15.15
・MS (MALDI) (m/z): 1355 (M + ), 2879 (MH 2 - )
・Elemental analysis value: CHN actual value (35.55%, 3.24%, 2.61%); theoretical value (35.61%, 3.20%, 2.57%)
・Fluorescent X-ray analysis: MoW actual measurement ratio (0%, 100%); theoretical value (0%, 100%)
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000017
(合成例4:オキシム系光開始剤 化合物A-1の合成)
(1)中間体A1の合成
 500mlの四口フラスコ中に、ジフェニルチオエーテル0.2molと、粉砕したAlCl 0.22molと、ジクロロエタン150mlとを投入して攪拌し、アルゴンガスを流して氷浴で冷却して温度が0℃まで低下した時に、シクロヘキシル塩化プロピオニル0.22molとジクロロエタン42gからなる溶液を滴下し始め、温度を10℃以下に調整しながら約1.5時間かけて添加した。温度を15℃に上昇して、引き続き2時間攪拌した後、反応液を排出した。
 氷400gと濃塩酸65mlとを配合した希塩酸中に、攪拌下で反応液を徐々に投入した後、分液漏斗で下層を分液し、上層を50mlのジクロロエタンで抽出した後、抽出液と下層液とを合わせた。その後、NaHCO 10gと水200gとを配合したNaHCO溶液で洗浄し、更にpH値が中性を呈するまで200mlの水で3回洗浄し、60gの無水MgSOで乾燥して水分を除去した後、回転蒸発によりジクロロエタンを蒸発させた。回転蒸発瓶中に残った固体粉末を石油エーテル200mlに入れ、吸引ろ過を行い、更に150mlの無水エタノールに投入して加熱し、還流した。その後室温まで冷却し、更に氷で2時間冷却し、吸引ろ過した後、50℃のオーブン中で2時間乾燥することにより、下記中間体A1を得た。
(Synthesis Example 4: Synthesis of oxime photoinitiator compound A-1)
(1) Synthesis of Intermediate A1 0.2 mol of diphenylthioether, 0.22 mol of ground AlCl 3 and 150 ml of dichloroethane were put into a 500 ml four-necked flask, stirred, and heated in an ice bath under argon gas flow. When the temperature decreased to 0°C, dropwise addition of a solution consisting of 0.22 mol of cyclohexylpropionyl chloride and 42 g of dichloroethane was started, and the addition took about 1.5 hours while adjusting the temperature to below 10°C. After increasing the temperature to 15° C. and stirring continuously for 2 hours, the reaction solution was discharged.
After gradually adding the reaction solution into dilute hydrochloric acid containing 400 g of ice and 65 ml of concentrated hydrochloric acid under stirring, the lower layer was separated using a separatory funnel, the upper layer was extracted with 50 ml of dichloroethane, and the extract and lower layer were separated. Combined with liquid. Thereafter, it was washed with a NaHCO 3 solution containing 10 g of NaHCO 3 and 200 g of water, further washed with 200 ml of water three times until the pH value became neutral, and dried with 60 g of anhydrous MgSO 4 to remove moisture. Afterwards, dichloroethane was evaporated by rotary evaporation. The solid powder remaining in the rotary evaporator was poured into 200 ml of petroleum ether, filtered with suction, and then poured into 150 ml of absolute ethanol, heated, and refluxed. Thereafter, the mixture was cooled to room temperature, further cooled with ice for 2 hours, filtered under suction, and dried in an oven at 50°C for 2 hours to obtain intermediate A1 below.
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000018
(2)中間体A2の合成
 500mlの四口フラスコに、前記中間体A1 42gと、テトラヒドロフラン400gと、濃塩酸200gと、亜硝酸イソアミル24.2gとを投入して、常温で5時間攪拌した後、反応液を排出した。
 反応液を大ビーカーに入れ、水1000mlを加えて攪拌した後、一晩静置することにより分層し、黄色の粘稠状液体を得た。粘稠状液体をジクロロエタンで抽出し、50gの無水MgSOを投入して乾燥した後、吸引ろ過を行い、ろ液を回転蒸発させて溶剤を除去し、油状粘稠物を得た。続いて、該粘稠物を石油エーテル150mlに入れ、攪拌、析出し、吸引ろ過を行って、白色粉末状固体を得た。その後、60℃で5時間乾燥して、下記中間体A2を得た。
(2) Synthesis of Intermediate A2 42 g of Intermediate A1, 400 g of tetrahydrofuran, 200 g of concentrated hydrochloric acid, and 24.2 g of isoamyl nitrite were put into a 500 ml four-necked flask, and the mixture was stirred at room temperature for 5 hours. , and the reaction solution was discharged.
The reaction solution was placed in a large beaker, 1000 ml of water was added thereto, stirred, and then allowed to stand overnight to separate the layers to obtain a yellow viscous liquid. The viscous liquid was extracted with dichloroethane, dried by adding 50 g of anhydrous MgSO 4 , filtered under suction, and the filtrate was rotary evaporated to remove the solvent to obtain an oily viscous substance. Subsequently, the viscous substance was poured into 150 ml of petroleum ether, stirred, precipitated, and filtered under suction to obtain a white powdery solid. Thereafter, it was dried at 60° C. for 5 hours to obtain Intermediate A2 below.
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000019
(3)化合物A-1の合成
 1000mlの四口フラスコ中に、前記中間体A2 34gと、ジクロロエタン350mlと、トリエチルアミン12.7gとを投入して攪拌し、氷浴で冷却して、温度が0℃まで低下した時に酢酸クロリド15.7gとジクロロエタン15gからなる溶液を滴下し始め、約1.5時間かけて添加した。引き続いて1時間攪拌した後、冷水500mlを滴下し、分液漏斗で分層した。5%NaHCO溶液200mlで1回洗い、更にpH値が中性を呈するまで200ml水で2回洗い、その後、濃塩酸20gと水400mlとを配合した希塩酸で一1回洗い、続いて200ml水で3回洗った後、100gの無水MgSOで乾燥し、溶剤を回転蒸発させて除去し、粘稠状液体を得た。該粘稠状液体に適量のメタノールを投入して析出した白色固体を、ろ過、乾燥して、下記化学式(A-1)で表される化合物A-1を得た。なお、下記化合物A-1の分子量は395.51である。
(3) Synthesis of Compound A-1 34 g of the intermediate A2, 350 ml of dichloroethane, and 12.7 g of triethylamine were put into a 1000 ml four-necked flask, stirred, and cooled in an ice bath until the temperature reached 0. When the temperature dropped to 0.degree. C., a solution consisting of 15.7 g of acetic chloride and 15 g of dichloroethane was started to be added dropwise over about 1.5 hours. After stirring for 1 hour, 500 ml of cold water was added dropwise, and the layers were separated using a separatory funnel. Wash once with 200 ml of 5% NaHCO 3 solution, then twice with 200 ml water until the pH value becomes neutral, then wash once with dilute hydrochloric acid containing 20 g of concentrated hydrochloric acid and 400 ml of water, followed by 200 ml of water. After washing three times with water, drying with 100 g of anhydrous MgSO 4 and removing the solvent by rotary evaporation, a viscous liquid was obtained. A suitable amount of methanol was added to the viscous liquid, and the precipitated white solid was filtered and dried to obtain compound A-1 represented by the following chemical formula (A-1). Note that the molecular weight of the following compound A-1 is 395.51.
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000020
(合成例5:式(B-2)で表されるオキシム系光開始剤の合成)
 国際公開2015/152153号公報の段落0114~0117の化合物No.73の製造と同様にして、下記式(B-2)で表されるオキシムエステル系光開始剤を合成した。
(Synthesis Example 5: Synthesis of oxime photoinitiator represented by formula (B-2))
Compound No. 0114 to 0117 of International Publication No. 2015/152153. In the same manner as in the production of No. 73, an oxime ester photoinitiator represented by the following formula (B-2) was synthesized.
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000021
(合成例6:式(C-1)で表されるオキシムエステル系光開始剤の合成)
 特開2010-256891号公報の段落0080の光重合開始剤W(式(3)で表される光重合開始剤)の製造と同様にして、下記式(C-1)で表されるオキシムエステル系光開始剤を合成した。
(Synthesis Example 6: Synthesis of oxime ester photoinitiator represented by formula (C-1))
Oxime ester represented by the following formula (C-1) was prepared in the same manner as in the production of photopolymerization initiator W (photopolymerization initiator represented by formula (3)) in paragraph 0080 of JP-A No. 2010-256891. A system photoinitiator was synthesized.
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000022
(調製例1:色材分散液Aの調製)
 分散剤として合成例2のブロック共重合体Aを5.1質量部、色材としてC.I.ピグメントブルー15:6(商品名 FASTOGEN BLUE A510、DIC(株)製)11.6質量部及びC.I.ピグメントバイオレット23(商品名 Hostaperm Violet RL-NF、クラリアント社製)1.4質量部、合成例1で得られたアルカリ可溶性樹脂A溶液を固形分換算で5.1質量部、PGMEAを76.8質量部、粒径2.0mmジルコニアビーズ100質量部をマヨネーズビンに入れ、予備解砕としてペイントシェーカー(浅田鉄工(株)製)にて1時間振とうし、次いで粒径2.0mmジルコニアビーズを取り出し、粒径0.1mmのジルコニアビーズ200質量部を加えて、同様に本解砕としてペイントシェーカーにて4時間分散を行い、色材分散液Aを得た。
(Preparation example 1: Preparation of coloring material dispersion A)
5.1 parts by mass of block copolymer A of Synthesis Example 2 was used as a dispersant, and C.I. was used as a coloring material. I. Pigment Blue 15:6 (trade name FASTOGEN BLUE A510, manufactured by DIC Corporation) 11.6 parts by mass and C.I. I. Pigment Violet 23 (trade name: Hostaperm Violet RL-NF, manufactured by Clariant) 1.4 parts by mass, 5.1 parts by mass of the alkali-soluble resin A solution obtained in Synthesis Example 1 in terms of solid content, and 76.8 parts by mass of PGMEA. 100 parts by mass of zirconia beads with a particle size of 2.0 mm were placed in a mayonnaise bottle and shaken for 1 hour in a paint shaker (manufactured by Asada Tekko Co., Ltd.) for preliminary crushing, and then zirconia beads with a particle size of 2.0 mm were placed in a mayonnaise bottle. The mixture was taken out, 200 parts by mass of zirconia beads having a particle size of 0.1 mm were added thereto, and dispersion was similarly carried out for 4 hours in a paint shaker as main disintegration to obtain coloring material dispersion A.
(調製例2:色材分散液Bの調製)
 調製例1において、色材としてC.I.ピグメントブルー15:6を11.6質量部及びC.I.ピグメントバイオレット23を1.4質量部の代わりに、C.I.ピグメントブルー15:6を3.3質量部及び合成例3で得られたレーキ色材1を9.7質量部用いた以外は、調製例1と同様にして、色材分散液Bを得た。
(Preparation example 2: Preparation of coloring material dispersion B)
In Preparation Example 1, C.I. I. Pigment Blue 15:6 and 11.6 parts by mass of C.I. I. Pigment Violet 23 in place of 1.4 parts by mass, C.I. I. Colorant dispersion B was obtained in the same manner as in Preparation Example 1, except that 3.3 parts by mass of Pigment Blue 15:6 and 9.7 parts by mass of Lake Colorant 1 obtained in Synthesis Example 3 were used. .
(製造例1:青色感光性組成物B-1の製造)
 色材分散液Aを22.37質量部、合成例1で得られたアルカリ可溶性樹脂A溶液を7.86質量部、光重合性化合物(商品名アロニックスM-403、東亞合成株式会社製)を5.84質量部、光開始剤として合成例4の化学式(A-1)で表されるオキシム系光開始剤を0.29質量部、400nm~420nmに増感作用を有する増感剤としてジエチルチオキサントン(DETX-S、日本化薬株式会社製)を0.29質量部、チオール化合物としてカレンズMT PE1(昭和電工株式会社製)を0.36質量部、界面活性剤としてメガファックR-08MH(DIC株式会社製)を0.15質量部、シランカップリング剤としてKBM503(信越化学株式会社製)を0.30質量部、PGMEAを62.54質量部加え、青色感光性組成物B-1を得た。
(Production Example 1: Production of blue photosensitive composition B-1)
22.37 parts by mass of coloring material dispersion A, 7.86 parts by mass of the alkali-soluble resin A solution obtained in Synthesis Example 1, and a photopolymerizable compound (trade name Aronix M-403, manufactured by Toagosei Co., Ltd.). 5.84 parts by mass, 0.29 parts by mass of the oxime photoinitiator represented by the chemical formula (A-1) of Synthesis Example 4 as a photoinitiator, and diethyl as a sensitizing agent having a sensitizing effect in the wavelength range of 400 nm to 420 nm. 0.29 parts by mass of thioxanthone (DETX-S, manufactured by Nippon Kayaku Co., Ltd.), 0.36 parts by mass of Karenz MT PE1 (manufactured by Showa Denko Co., Ltd.) as a thiol compound, and Megafac R-08MH (manufactured by Showa Denko Co., Ltd.) as a surfactant. Blue photosensitive composition B-1 was prepared by adding 0.15 parts by mass of KBM503 (manufactured by Shin-Etsu Chemical Co., Ltd.) as a silane coupling agent and 62.54 parts by mass of PGMEA (manufactured by DIC Corporation). Obtained.
(製造例2~22:青色感光性組成物B-2~B-22の製造)
 製造例1において、表1~3に示したように各成分の種類や量を変更して調製した以外は、製造例1の青色感光性組成物B-1と同様にして、青色感光性組成物B-2~B-22を得た。
(Production Examples 2 to 22: Production of blue photosensitive compositions B-2 to B-22)
In Production Example 1, a blue photosensitive composition was prepared in the same manner as Blue Photosensitive Composition B-1 of Production Example 1, except that the types and amounts of each component were changed as shown in Tables 1 to 3. Products B-2 to B-22 were obtained.
(比較製造例1~2:比較青色感光性組成物CB-1~CB-2の製造)
 製造例1において、表3に示したように400nm~420nmに増感作用を有する増感剤を用いず、各成分の種類や量を変更して調製した以外は、製造例1の青色感光性組成物B-1と同様にして、青色感光性組成物CB-1~CB-2を得た。
(Comparative Production Examples 1 and 2: Production of Comparative Blue Photosensitive Compositions CB-1 and CB-2)
The blue sensitivity of Production Example 1 was the same as that of Production Example 1, except that as shown in Table 3, the sensitizer having a sensitizing effect at 400 nm to 420 nm was not used and the types and amounts of each component were changed. Blue photosensitive compositions CB-1 to CB-2 were obtained in the same manner as composition B-1.
(製造例23:青色感光性組成物B-23の製造)
 色材分散液Bを27.09質量部、合成例1で得られたアルカリ可溶性樹脂A溶液を8.186量部、光重合性化合物(商品名アロニックスM-403、東亞合成株式会社製)を6.08質量部、光開始剤として合成例4の化学式(A-1)で表されるオキシム系光開始剤を0.22質量部、400nm~420nmに増感作用を有する増感剤としてジエチルチオキサントン(DETX-S、日本化薬株式会社製)を0.12質量部、チオール化合物としてカレンズMT PE1(昭和電工株式会社製)を0.37質量部、酸化防止剤としてIrganox1010(BASF製)を0.10質量部、界面活性剤としてメガファックR-08MH(DIC株式会社製)を0.15質量部、シランカップリング剤としてKBM503(信越化学株式会社製)を0.30質量部、PGMEAを57.41質量部加え、青色感光性組成物B-23を得た。
(Production Example 23: Production of blue photosensitive composition B-23)
27.09 parts by mass of coloring material dispersion B, 8.186 parts by mass of the alkali-soluble resin A solution obtained in Synthesis Example 1, and a photopolymerizable compound (trade name Aronix M-403, manufactured by Toagosei Co., Ltd.). 6.08 parts by mass, 0.22 parts by mass of the oxime photoinitiator represented by the chemical formula (A-1) of Synthesis Example 4 as a photoinitiator, and diethyl as a sensitizing agent having a sensitizing effect at 400 nm to 420 nm. 0.12 parts by mass of thioxanthone (DETX-S, manufactured by Nippon Kayaku Co., Ltd.), 0.37 parts by mass of Karenz MT PE1 (manufactured by Showa Denko Co., Ltd.) as a thiol compound, and Irganox 1010 (manufactured by BASF) as an antioxidant. 0.10 parts by mass, 0.15 parts by mass of Megafac R-08MH (manufactured by DIC Corporation) as a surfactant, 0.30 parts by mass of KBM503 (manufactured by Shin-Etsu Chemical Co., Ltd.) as a silane coupling agent, and PGMEA. 57.41 parts by mass was added to obtain blue photosensitive composition B-23.
(製造例24~45:青色感光性組成物B-24~B-45の製造)
 製造例23において、表4~6に示したように各成分の種類や量を変更して調製した以外は、製造例23の青色感光性組成物B-23と同様にして、青色感光性組成物B-24~B-45を得た。
(Production Examples 24 to 45: Production of blue photosensitive compositions B-24 to B-45)
In Production Example 23, a blue photosensitive composition was prepared in the same manner as Blue Photosensitive Composition B-23 of Production Example 23, except that the types and amounts of each component were changed as shown in Tables 4 to 6. Products B-24 to B-45 were obtained.
(比較製造例3:比較青色感光性組成物CB-3の製造)
 製造例23において、表6に示したように400nm~420nmに増感作用を有する増感剤を用いず、各成分の種類や量を変更して調製した以外は、製造例23の青色感光性組成物B-23と同様にして、青色感光性組成物CB-3を得た。
(Comparative Production Example 3: Production of Comparative Blue Photosensitive Composition CB-3)
In Production Example 23, as shown in Table 6, no sensitizer having a sensitizing effect at 400 nm to 420 nm was used and the types and amounts of each component were changed. A blue-sensitive composition CB-3 was obtained in the same manner as composition B-23.
(実施例1:青色硬化膜の製造)
<実施例1-1>
 各実施例及び各比較例で得られた青色感光性組成物を、ガラス基板(NHテクノグラス(株)製、「NA35」)上に、スピンコーターを用いて、ポストベーク後に所望の色(青色塗膜:C光源でのx=0.100)になるように塗布した。80℃のホットプレート上で3分間加熱乾燥を行った後、この青色塗膜に2~90μmのマスク開口幅をもつフォトマスクを介して、360nm~380nmの発光ピーク波長の強度(A)と400nm~420nmの発光ピーク波長の強度(B)との強度比(A/B)が90/10であるLED光源を用いて、積算露光量として35mJ/cmの紫外線を照射した。上記露光後の青色塗膜が形成されたガラス板を、アルカリ現像液として0.05質量%水酸化カリウム水溶液を用いてシャワー現像した。その後、230℃のクリーンオーブンで25分間ポストベークして、独立細線パターン状の青色硬化膜を製造した。
(Example 1: Production of blue cured film)
<Example 1-1>
The blue photosensitive composition obtained in each Example and each Comparative Example was applied onto a glass substrate (manufactured by NH Techno Glass Co., Ltd., "NA35") using a spin coater, and after post-baking, the desired color (blue) was applied. Coating film: Coated so that x=0.100) at light source C. After heating and drying on a hot plate at 80°C for 3 minutes, this blue coating was coated with a photomask having a mask opening width of 2 to 90 μm to measure the intensity of the emission peak wavelength (A) of 360 nm to 380 nm and 400 nm. Using an LED light source with an intensity ratio (A/B) of 90/10 to the intensity (B) of the emission peak wavelength of ~420 nm, ultraviolet rays were irradiated at a cumulative exposure dose of 35 mJ/cm 2 . The exposed glass plate on which the blue coating film was formed was subjected to shower development using a 0.05% by mass potassium hydroxide aqueous solution as an alkaline developer. Thereafter, it was post-baked in a clean oven at 230° C. for 25 minutes to produce a blue cured film in the form of an independent thin line pattern.
<実施例1-2~実施例1-6>
 実施例1-1において、LEDランプを表1に示すように、それぞれ、A/Bが80/20であるLED光源、A/Bが60/40であるLED光源、A/Bが40/60であるLED光源、A/Bが20/80であるLEDランプ、又は、A/Bが10/90であるLED光源に変更して用いた以外は実施例1-1と同様にして、青色硬化膜を製造した。
<Example 1-2 to Example 1-6>
In Example 1-1, the LED lamps were, as shown in Table 1, an LED light source with an A/B ratio of 80/20, an LED light source with an A/B ratio of 60/40, and an LED light source with an A/B ratio of 40/60. Blue curing was carried out in the same manner as in Example 1-1 except that the LED light source was changed to an LED light source with an A/B ratio of 20/80, or an LED light source with an A/B ratio of 10/90. A membrane was produced.
(実施例2~45、比較例1~3:青色硬化膜の製造)
 実施例1-1において、青色感光性組成物、及び/またはLED光源を、表1~6に示すように変更した以外は、実施例1-1と同様にして、青色硬化膜を製造した。
 各実施例及び比較例において、実施例1における実施例1-1~実施例1-6に対応し、A/Bが90/10、80/20、60/40、40/60、20/80、10/90であるLED光源に変更して、青色硬化膜を製造した。
(Examples 2 to 45, Comparative Examples 1 to 3: Production of blue cured film)
A blue cured film was produced in the same manner as in Example 1-1, except that the blue photosensitive composition and/or the LED light source were changed as shown in Tables 1 to 6.
In each example and comparative example, A/B is 90/10, 80/20, 60/40, 40/60, 20/80, corresponding to Example 1-1 to Example 1-6 in Example 1. , 10/90 to produce a blue cured film.
[評価方法]
<細線パターンの線幅シフトの評価(線幅)>
 得られた独立細線パターン状の青色硬化膜について、マスク開口90μmで、設計線幅を95μmとした時の線幅を測定した。下記評価基準により、線幅シフトの抑制効果について評価した。
(線幅シフトの評価基準)
◎:マスク開口90μmにて線幅93μm以上97μm以下
〇:マスク開口90μmにて線幅90μm以上93μm未満、又は、97μm超過100μm以下
×:マスク開口90μmにて線幅90μm未満又は100μm超過
 評価結果が〇であれば線幅シフトの抑制効果は良好であり、◎であれば線幅シフトの抑制効果は優れている。
[Evaluation method]
<Evaluation of line width shift of thin line pattern (line width)>
The line width of the obtained blue cured film in the form of an independent thin line pattern was measured using a mask opening of 90 μm and a designed line width of 95 μm. The effect of suppressing line width shift was evaluated using the following evaluation criteria.
(Evaluation criteria for line width shift)
◎: Line width 93 μm or more and 97 μm or less at mask opening 90 μm ○: Line width 90 μm or more and less than 93 μm at mask opening 90 μm, or more than 97 μm and 100 μm or less ×: Line width less than 90 μm or more than 100 μm at mask opening 90 μm Evaluation results If it is ◯, the line width shift suppression effect is good, and if it is ◎, the line width shift suppression effect is excellent.
<現像後残膜率の評価>
 青色硬化膜をパターン形成する際に、青色着色層について、露光後の膜厚及び焼成後の膜厚を触針式プロファイラP-16(KLA-Tencor社製)で測定し、現像後膜厚/露光後の膜厚×100を残膜率(%)として算出し、下記評価基準により評価した。なお、残膜率が高いほど、青色感光性組成物は高感度である。
◎:残膜率が80%以上
〇:残膜率が75%以上80%未満
△:残膜率が65%以上75%未満
×:残膜率が65%未満。
 評価結果が△であれば使用可能であるが、〇であれば残膜率は良好であり、◎であれば残膜率は優れている。
<Evaluation of residual film rate after development>
When patterning the blue cured film, the film thickness after exposure and the film thickness after baking of the blue colored layer were measured using a stylus profiler P-16 (manufactured by KLA-Tencor), and the film thickness after development/ The film thickness after exposure x 100 was calculated as the residual film rate (%), and evaluated according to the following evaluation criteria. Note that the higher the residual film rate, the higher the sensitivity of the blue-sensitive composition.
◎: Film remaining ratio is 80% or more. ○: Film remaining ratio is 75% or more and less than 80%. △: Film remaining ratio is 65% or more and less than 75%. ×: Film remaining ratio is less than 65%.
If the evaluation result is △, it can be used, but if the evaluation result is ◯, the residual film rate is good, and if the evaluation result is ◎, the residual film rate is excellent.
<基板密着性(最小密着幅)評価>
 得られた青色硬化膜を光学顕微鏡で観察して、2~90μmのマスク開口幅に対して、何μmのパターンまで密着しているか、最も細いパターンの線幅の確認を行った。
◎:マスク開口8μm以下までパターンが残存(最も細いパターンの線幅が8μm以下)
〇:最も細いパターンの線幅が9μmから15μm以下
△:最も細いパターンの線幅が16μmから25μm以下
×:最も細いパターンの線幅が26μm以上
 評価結果が△であれば使用可能であるが、〇であれば基板密着性は良好であり、◎であれば基板密着性は優れている。
<総合判定>
 前記細線パターンの線幅シフトの評価、現像後残膜率の評価、及び基板密着性(最小密着幅)評価に対して総合判定を行った。
◎:評価結果の全てが○又は◎である
〇:評価結果に△が含まれる
×:評価結果に×が含まれる
<Substrate adhesion (minimum adhesion width) evaluation>
The obtained blue cured film was observed with an optical microscope to confirm how many micrometers of the pattern was in close contact with the mask opening width of 2 to 90 micrometers, and the line width of the narrowest pattern.
◎: Pattern remains until the mask opening is 8 μm or less (line width of the thinnest pattern is 8 μm or less)
〇: Line width of the thinnest pattern is 9 μm to 15 μm or less △: Line width of the thinnest pattern is 16 μm to 25 μm or less ×: Line width of the thinnest pattern is 26 μm or more If the evaluation result is △, it can be used. If it is ◎, the adhesion to the substrate is good, and if it is ◎, the adhesion to the substrate is excellent.
<Overall Judgment>
Comprehensive evaluation was performed on the evaluation of the line width shift of the fine line pattern, the evaluation of the residual film rate after development, and the evaluation of substrate adhesion (minimum adhesion width).
◎: All evaluation results are ○ or ◎ 〇: Evaluation results include △ ×: Evaluation results include ×
Figure JPOXMLDOC01-appb-T000023
Figure JPOXMLDOC01-appb-T000023
Figure JPOXMLDOC01-appb-T000024
Figure JPOXMLDOC01-appb-T000024
Figure JPOXMLDOC01-appb-T000025
Figure JPOXMLDOC01-appb-T000025
Figure JPOXMLDOC01-appb-T000026
Figure JPOXMLDOC01-appb-T000026
Figure JPOXMLDOC01-appb-T000027
Figure JPOXMLDOC01-appb-T000027
Figure JPOXMLDOC01-appb-T000028
 表中の略称は以下の通りである。
アルカリ可溶性樹脂:合成例1のアルカリ可溶性樹脂A
光重合性化合物:商品名アロニックスM-403、東亞合成株式会社製
オキシム系(A-1):合成例4の化学式(A-1)で表されるオキシム系光開始剤
オキシム系(B-2):合成例5の化学式(B-2)で表されるオキシム系光開始剤
オキシム系(C-1):合成例6の化学式(C-1)で表されるオキシム系光開始剤
IRGACURE369:商品名IRGACURE369、BASF製
増感剤1:チオキサントン系増感剤、ジエチルチオキサントン(DETX-S、日本化薬株式会社製)
増感剤2:ベンゾフェノン系増感剤、4,4’-ビス(ジエチルアミノ)ベンゾフェノン(EAB-SS、大同化成工業株式会社製)
増感剤3:アントラセン系増感剤、9,10-ジブトキシアントラセン(富士フイルム和光純薬株式会社製)
チオール化合物:カレンズMT PE1(昭和電工株式会社製)
界面活性剤:メガファックR-08MH(DIC株式会社製)
シランカップリング剤:KBM503(信越化学株式会社製)
溶剤:PGMEA
Figure JPOXMLDOC01-appb-T000028
The abbreviations in the table are as follows.
Alkali-soluble resin: Alkali-soluble resin A of Synthesis Example 1
Photopolymerizable compound: Trade name Aronix M-403, manufactured by Toagosei Co., Ltd. Oxime type (A-1): Oxime type photoinitiator represented by chemical formula (A-1) in Synthesis Example 4 Oxime type (B-2) ): Oxime-based photoinitiator represented by chemical formula (B-2) in Synthesis Example 5 Oxime-based (C-1): Oxime-based photoinitiator represented by chemical formula (C-1) in Synthesis Example 6 IRGACURE369: Product name IRGACURE369, manufactured by BASF Sensitizer 1: Thioxanthone-based sensitizer, diethylthioxanthone (DETX-S, manufactured by Nippon Kayaku Co., Ltd.)
Sensitizer 2: Benzophenone sensitizer, 4,4'-bis(diethylamino)benzophenone (EAB-SS, manufactured by Daido Kasei Kogyo Co., Ltd.)
Sensitizer 3: Anthracene sensitizer, 9,10-dibutoxyanthracene (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.)
Thiol compound: Karenz MT PE1 (manufactured by Showa Denko K.K.)
Surfactant: Megafac R-08MH (manufactured by DIC Corporation)
Silane coupling agent: KBM503 (manufactured by Shin-Etsu Chemical Co., Ltd.)
Solvent: PGMEA
(比較例4~5:青色硬化膜の製造)
(1)フルオレン骨格を有するオキシム系光開始剤の合成
 特開2017-125972の合成例1及び2を参照して、下記フルオレン骨格を有するオキシム系光開始剤を合成した。
(Comparative Examples 4 to 5: Production of blue cured film)
(1) Synthesis of oxime-based photoinitiator having fluorene skeleton With reference to Synthesis Examples 1 and 2 of JP-A-2017-125972, an oxime-based photoinitiator having the following fluorene skeleton was synthesized.
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000029
(2)青色感光性組成物B-46の製造
 製造例1において、合成例4の化学式(A-1)で表されるオキシム系光開始剤の代わりに前記(1)で得られたフルオレン骨格を有するオキシム系光開始剤を用い、増感剤としてジエチルチオキサントンの代わりに、2-イソプロピル-9H-チオキサンテン-9-オンを用いた以外は、製造例1の青色感光性組成物B-1と同様にして、青色感光性組成物B-46を得た。
(2) Production of blue photosensitive composition B-46 In Production Example 1, the fluorene skeleton obtained in the above (1) was substituted for the oxime photoinitiator represented by the chemical formula (A-1) in Synthesis Example 4. Blue photosensitive composition B-1 of Production Example 1, except that an oxime-based photoinitiator having In the same manner as above, blue-sensitive composition B-46 was obtained.
(3)青色硬化膜の製造
 実施例1-1において、青色感光性組成物を青色感光性組成物B-46に変更し、LED光源を、表7に示すように(A/B)が100/0、又は、(A/B)が0/100である単一のLED光源を用いるように変更した以外は、実施例1-1と同様にして、青色硬化膜を製造した。
 実施例1等と同様に評価した結果を表7に示す。
(3) Production of blue cured film In Example 1-1, the blue photosensitive composition was changed to blue photosensitive composition B-46, and the LED light source was changed to have (A/B) of 100 as shown in Table 7. A blue cured film was produced in the same manner as in Example 1-1, except that a single LED light source with an A/B ratio of 0/0 or 0/100 was used.
Table 7 shows the results of evaluation in the same manner as in Example 1.
(比較例6~15:青色硬化膜の製造)
 実施例1-1において、青色感光性組成物、及び、LED光源を、表7に示すように変更した以外は、実施例1-1と同様にして、青色硬化膜を製造した。
 実施例1等と同様に評価した結果を表7に示す。
(Comparative Examples 6 to 15: Production of blue cured film)
A blue cured film was produced in the same manner as in Example 1-1, except that the blue photosensitive composition and the LED light source were changed as shown in Table 7.
Table 7 shows the results of evaluation in the same manner as in Example 1.
Figure JPOXMLDOC01-appb-T000030
Figure JPOXMLDOC01-appb-T000030
[結果のまとめ]
 本発明に係る青色硬化膜の製造方法である実施例1~45では、色材と、アルカリ可溶性樹脂と、光重合性化合物と、オキシム系光開始剤及びオキシム系光開始剤とは異なる400nm~420nmに増感作用を有する増感剤を含む光開始剤とを含有する青色感光性組成物の塗膜に、360nm~380nm、及び、400nm~420nmに発光ピーク波長を有するLED光源を用いて露光して硬化させたことから、線幅シフトを抑制しながら、現像後の残膜率を向上でき、現像後のアンダーカットが抑制された良好なパターンを形成可能で、形成された青色硬化膜のパターンの基板密着性も向上することが示された。
 それに対して、オキシム系光開始剤とは異なる400nm~420nmに増感作用を有する増感剤を含まない青色感光性組成物の塗膜に360nm~380nm、及び、400nm~420nmに発光ピーク波長を有するLED光源を用いて露光して硬化させた比較例1~3では、線幅が細くなり、現像後の残膜率も劣り、形成された青色硬化膜のパターンの基板密着性も悪かった。
 また、特許文献2で用いられたフルオレン骨格を有するオキシム系光開始剤と増感剤とを代わりに用い、単一のLED光源(365nmに発光ピーク波長を有するLED光源)を用いて露光して硬化させた比較例4では、硬化して現像後の残膜率は確保できたものの、線幅が細くなり、形成された青色硬化膜のパターンの基板密着性も悪かった。
 特許文献2で用いられたフルオレン骨格を有するオキシム系光開始剤と増感剤とを代わりに用い、単一のLED光源(405nmに発光ピーク波長を有するLED光源)を用いて露光して硬化させた比較例5では、青色感光性組成物の塗膜を透過しやすいので、光が広がって線幅としては大きくなったが、硬化が不十分となり現像後の残膜率が悪かった。
 オキシム系光開始剤とは異なる400nm~420nmに増感作用を有する増感剤を含まない青色感光性組成物の塗膜に、単一のLED光源(365nmに発光ピーク波長を有するLED光源、または、405nmに発光ピーク波長を有するLED光源)を用いて露光して硬化させた比較例6~15では、いずれも線幅が細くなり、形成された青色硬化膜のパターンの基板密着性も悪かった。
[Summary of results]
In Examples 1 to 45, which is the method for producing a blue cured film according to the present invention, the coloring material, the alkali-soluble resin, the photopolymerizable compound, the oxime-based photoinitiator, and the oxime-based photoinitiator were different from 400 nm to A coating film of a blue photosensitive composition containing a photoinitiator containing a sensitizer having a sensitizing effect at 420 nm is exposed using an LED light source having emission peak wavelengths at 360 nm to 380 nm and 400 nm to 420 nm. As the blue cured film is cured, it is possible to improve the residual film rate after development while suppressing line width shift, and it is possible to form a good pattern with suppressed undercuts after development. It was also shown that the adhesion of the pattern to the substrate was improved.
In contrast, a coating film of a blue photosensitive composition that does not contain a sensitizer that has a sensitizing effect in the 400 nm to 420 nm range, which is different from an oxime photoinitiator, has an emission peak wavelength in the 360 nm to 380 nm range and 400 nm to 420 nm. In Comparative Examples 1 to 3, which were exposed and cured using an LED light source, the line width was narrow, the residual film rate after development was poor, and the formed blue cured film pattern had poor adhesion to the substrate.
Furthermore, an oxime photoinitiator having a fluorene skeleton and a sensitizer used in Patent Document 2 were used instead, and exposure was performed using a single LED light source (an LED light source having an emission peak wavelength of 365 nm). In Comparative Example 4, which was cured, although the residual film rate after development was secured, the line width became narrow and the substrate adhesion of the pattern of the formed blue cured film was also poor.
The oxime-based photoinitiator and sensitizer having a fluorene skeleton used in Patent Document 2 were used instead, and the method was exposed to light using a single LED light source (an LED light source having an emission peak wavelength of 405 nm) and cured. In Comparative Example 5, since the blue photosensitive composition easily penetrated the coating film, the light spread and the line width increased, but curing was insufficient and the residual film rate after development was poor.
A single LED light source (an LED light source with an emission peak wavelength of 365 nm, or In Comparative Examples 6 to 15, which were exposed and cured using an LED light source with an emission peak wavelength of 405 nm, the line width became narrower, and the adhesion of the formed blue cured film pattern to the substrate was also poor. .
 1 基板
 2 遮光部
 3 着色層
 10 カラーフィルタ
 20 対向基板
 30 液晶層
 40 液晶表示装置
 50 有機保護層
 60 無機酸化膜
 71 透明陽極
 72 正孔注入層
 73 正孔輸送層
 74 発光層
 75 電子注入層
 76 陰極
 80 有機発光体
100 有機発光表示装置
1 Substrate 2 Light shielding part 3 Colored layer 10 Color filter 20 Counter substrate 30 Liquid crystal layer 40 Liquid crystal display device 50 Organic protective layer 60 Inorganic oxide film 71 Transparent anode 72 Hole injection layer 73 Hole transport layer 74 Light emitting layer 75 Electron injection layer 76 Cathode 80 Organic light emitter 100 Organic light emitting display device

Claims (7)

  1.  色材と、アルカリ可溶性樹脂と、光重合性化合物と、オキシム系光開始剤及びオキシム系光開始剤とは異なる400nm~420nmに増感作用を有する増感剤を含む光開始剤とを含有する青色感光性組成物の塗膜を、基板上に形成する工程、並びに、
     前記塗膜に、360nm~380nm、及び、400nm~420nmに発光ピーク波長を有するLED光源を用いて露光して硬化させる工程、
    を含む青色硬化膜の製造方法。
    Contains a coloring material, an alkali-soluble resin, a photopolymerizable compound, an oxime-based photoinitiator, and a photoinitiator including a sensitizer having a sensitizing effect at 400 nm to 420 nm different from the oxime-based photoinitiator. forming a coating film of a blue photosensitive composition on a substrate, and
    a step of exposing and curing the coating film using an LED light source having an emission peak wavelength of 360 nm to 380 nm and 400 nm to 420 nm;
    A method for producing a blue cured film.
  2.  前記LED光源において、360nm~380nmの発光ピーク波長の強度(A)と400nm~420nmの発光ピーク波長の強度(B)との強度比(A/B)が10/90~90/10である、請求項1に記載の青色硬化膜の製造方法。 In the LED light source, the intensity ratio (A/B) of the intensity of the emission peak wavelength of 360 nm to 380 nm (A) and the intensity of the emission peak wavelength of 400 nm to 420 nm (B) is 10/90 to 90/10. The method for producing a blue cured film according to claim 1.
  3.  前記オキシム系光開始剤は、ジフェニルスルフィド骨格を有するオキシム系光開始剤、インドール骨格を有するオキシム系光開始剤、及び、カルバゾール骨格を有するオキシム系光開始剤からなる群から選択される少なくとも1種である、請求項1又は2に記載の青色硬化膜の製造方法。 The oxime photoinitiator is at least one selected from the group consisting of an oxime photoinitiator having a diphenyl sulfide skeleton, an oxime photoinitiator having an indole skeleton, and an oxime photoinitiator having a carbazole skeleton. The method for producing a blue cured film according to claim 1 or 2.
  4.  色材と、アルカリ可溶性樹脂と、光重合性化合物と、下記一般式(A)で表されるオキシム系光開始剤及びオキシム系光開始剤とは異なる400nm~420nmに増感作用を有する増感剤を含む光開始剤とを含有する、360nm~380nm、及び、400nm~420nmに発光ピーク波長を有するLED光源を用いて露光して硬化させるための、青色感光性組成物。
    Figure JPOXMLDOC01-appb-C000001
    (一般式(A)において、Z、Z、Z及びZは、それぞれ独立して、水素原子、炭素数1~12の直鎖状もしくは分岐状のアルキル基、炭素数3~20のシクロアルキル基、またはフェニル基を表し、前記アルキル基、シクロアルキル基、およびフェニル基はそれぞれ、ハロゲン原子、炭素数1~6のアルコキシ基、およびフェニル基からなる群から選ばれる置換基で置換されていてもよい。Zはシクロアルキル基で置換された炭素数1~20のアルキル基を表す。)
    A coloring material, an alkali-soluble resin, a photopolymerizable compound, an oxime photoinitiator represented by the following general formula (A), and a sensitizer having a sensitizing effect at 400 nm to 420 nm different from the oxime photoinitiator. A blue photosensitive composition for curing by exposure using an LED light source having emission peak wavelengths in the range of 360 nm to 380 nm and 400 nm to 420 nm.
    Figure JPOXMLDOC01-appb-C000001
    (In general formula (A), Z 1 , Z 3 , Z 4 and Z 5 each independently represent a hydrogen atom, a linear or branched alkyl group having 1 to 12 carbon atoms, or a C 3 to 20 represents a cycloalkyl group or a phenyl group, and each of the alkyl group, cycloalkyl group, and phenyl group is substituted with a substituent selected from the group consisting of a halogen atom, an alkoxy group having 1 to 6 carbon atoms, and a phenyl group. ( Z2 represents an alkyl group having 1 to 20 carbon atoms substituted with a cycloalkyl group.)
  5.  基板と、当該基板上に設けられた青色硬化膜を含む着色層を少なくとも備えるカラーフィルタの製造方法であって、
     当該青色硬化膜を請求項1又は2に記載の青色硬化膜の製造方法により製造する工程を有する、カラーフィルタの製造方法。
    A method for producing a color filter comprising at least a substrate and a colored layer including a blue cured film provided on the substrate,
    A method for producing a color filter, comprising the step of producing the blue cured film by the method for producing a blue cured film according to claim 1 or 2.
  6.  基板と、当該基板上に設けられた着色層とを少なくとも備えるカラーフィルタであって、当該着色層の少なくとも1つが請求項4に記載の青色感光性組成物の硬化物である、カラーフィルタ。 A color filter comprising at least a substrate and a colored layer provided on the substrate, wherein at least one of the colored layers is a cured product of the blue photosensitive composition according to claim 4.
  7.  請求項6に記載のカラーフィルタを有する、表示装置。 A display device comprising the color filter according to claim 6.
PCT/JP2023/020425 2022-06-10 2023-06-01 Method for producing blue cured film, blue photosensitive composition, color filter and method for producing same, and display device WO2023238762A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022094317 2022-06-10
JP2022-094317 2022-06-10

Publications (1)

Publication Number Publication Date
WO2023238762A1 true WO2023238762A1 (en) 2023-12-14

Family

ID=89118303

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/020425 WO2023238762A1 (en) 2022-06-10 2023-06-01 Method for producing blue cured film, blue photosensitive composition, color filter and method for producing same, and display device

Country Status (2)

Country Link
TW (1) TW202409219A (en)
WO (1) WO2023238762A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019174635A (en) * 2018-03-28 2019-10-10 株式会社Dnpファインケミカル Photosensitive colored resin composition, cured product, color filter, and display device
JP2020514788A (en) * 2017-03-31 2020-05-21 東友ファインケム株式会社Dongwoo Fine−Chem Co., Ltd. Blue photosensitive resin composition, color filter manufactured using the same, and image display device
JP2020086317A (en) * 2018-11-29 2020-06-04 東京応化工業株式会社 Photosensitive resin composition, production method of patterned cured film, and patterned cured film
WO2020226099A1 (en) * 2019-05-08 2020-11-12 住友化学株式会社 Colored curable resin composition

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020514788A (en) * 2017-03-31 2020-05-21 東友ファインケム株式会社Dongwoo Fine−Chem Co., Ltd. Blue photosensitive resin composition, color filter manufactured using the same, and image display device
JP2019174635A (en) * 2018-03-28 2019-10-10 株式会社Dnpファインケミカル Photosensitive colored resin composition, cured product, color filter, and display device
JP2020086317A (en) * 2018-11-29 2020-06-04 東京応化工業株式会社 Photosensitive resin composition, production method of patterned cured film, and patterned cured film
WO2020226099A1 (en) * 2019-05-08 2020-11-12 住友化学株式会社 Colored curable resin composition

Also Published As

Publication number Publication date
TW202409219A (en) 2024-03-01

Similar Documents

Publication Publication Date Title
JP7008508B2 (en) Photosensitive colored resin compositions for color filters, color filters, and display devices
JP6741427B2 (en) Self-luminous photosensitive resin composition, display device including color conversion layer produced therefrom
JP7308993B2 (en) Photosensitive colored resin composition, color filter, manufacturing method thereof, and display device
JP2018101018A (en) Colored resin composition for color filter, coloring material dispersion liquid, color filter, and display
TWI719007B (en) Self-emission type photosensitive resin composition, and display device comprising color conversion layer prepared thereof
CN113924527A (en) Photosensitive colored resin composition for color filter, cured product, color filter and display device
JP2019174635A (en) Photosensitive colored resin composition, cured product, color filter, and display device
JP7153651B2 (en) Photosensitive colored resin composition and cured product thereof, color filter, and display device
KR102012523B1 (en) Colored photosensitive resin composition, color filter and liquid crystal display having the same
WO2023238762A1 (en) Method for producing blue cured film, blue photosensitive composition, color filter and method for producing same, and display device
KR20130015631A (en) A colored photosensitive resin composition, colored pattern, color filter and liquid crystal display device having the same
JP7346435B2 (en) Coloring material dispersions, colored resin compositions and cured products thereof, color filters, and display devices
KR20240026179A (en) Photosensitive colored resin composition, cured product, color filter, display device, and method for producing a laminate of an organic light-emitting element and an external light anti-reflection film
JP6450057B1 (en) Photosensitive colored resin composition and cured product thereof, color filter, and display device
JP7509561B2 (en) Modified colorant, colorant dispersion, colored curable composition, color filter, display device
WO2022270349A1 (en) Photosensitive red resin composition, cured product, color filter and display device
WO2023120268A1 (en) Photosensitive colored resin composition, color filter, and display device
WO2022270357A1 (en) Photosensitive colored resin composition, cured product, color filter and display device
WO2022181403A1 (en) Photosensitive colored resin composition, cured product, color filter, and display device
WO2021090762A1 (en) Colorant dispersion, dispersant, photosensitive colored resin composition, cured product, color filter, and display device
KR20190096604A (en) A green photosensitive resin composition, color filter and display device comprising the same
WO2022070977A1 (en) Photocurable colored resin composition, cured product, color filter, and display device
JP6949527B2 (en) Photosensitive colored resin composition, cured product, color filter, display device
KR101990183B1 (en) Red Colored Photosensitive Resin Composition and Color Filter Using the Same
TW202313742A (en) Photosensitive colored resin composition, color filter and display device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23819742

Country of ref document: EP

Kind code of ref document: A1