WO2023238725A1 - Rotary compressor - Google Patents

Rotary compressor Download PDF

Info

Publication number
WO2023238725A1
WO2023238725A1 PCT/JP2023/019929 JP2023019929W WO2023238725A1 WO 2023238725 A1 WO2023238725 A1 WO 2023238725A1 JP 2023019929 W JP2023019929 W JP 2023019929W WO 2023238725 A1 WO2023238725 A1 WO 2023238725A1
Authority
WO
WIPO (PCT)
Prior art keywords
cylinder
blade
groove
refrigerant
spring
Prior art date
Application number
PCT/JP2023/019929
Other languages
French (fr)
Japanese (ja)
Inventor
紘史 島谷
郁男 江崎
Original Assignee
三菱重工サーマルシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工サーマルシステムズ株式会社 filed Critical 三菱重工サーマルシステムズ株式会社
Publication of WO2023238725A1 publication Critical patent/WO2023238725A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/30Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C18/34Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members
    • F04C18/356Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00

Definitions

  • the present disclosure relates to a rotary compressor.
  • a rotary compressor is known as one of the compressors used in refrigeration equipment, air conditioning equipment, etc. (see Patent Document 1).
  • the rotary compressor It is desirable for the rotary compressor to have a large core diameter because it allows for spatial freedom in the design of compressor parts.
  • the core diameter of the rotary compressor is large, there is a problem that the amount of material increases, resulting in an increase in weight and material cost.
  • the present disclosure has been made in view of these circumstances, and an object of the present disclosure is to provide a rotary compressor that can be downsized while ensuring the amount of refrigerant pushed out of the compression section.
  • a rotary compressor includes a cylinder (60) in which a cylindrical compression chamber (60A) is formed, and compresses refrigerant by eccentrically rotating inside the compression chamber.
  • a pressure spring that presses the base end
  • the cylinder includes a blade groove (66) for slidably holding the base end (64b) of the blade, and a rear end side of the blade groove.
  • a bridge portion (70) that is provided in the bridge portion and forms an outer peripheral portion of the cylinder; and a spring groove (72) that is formed in the bridge portion and accommodates the pressing spring.
  • the spring When the cylinder is viewed in a longitudinal cross-section with a cross section including the central axis of the spring groove, the blade groove, and the bridge portion, the spring When the horizontal dimension of the remaining portions (70a) of the bridge portion located on both sides of the groove in the axial direction is v, and the axial dimension is h, v ⁇ h It is said that
  • FIG. 1 is a longitudinal cross-sectional view showing a rotary compressor according to an embodiment of the present disclosure.
  • FIG. 2 is a side view showing the rotary compressor of FIG. 1 installed on an installation surface.
  • FIG. 2 is a plan view of the cylinder of FIG. 1; 4 is a cross-sectional view taken along arrow IV in FIG. 3.
  • FIG. 1 is a longitudinal cross-sectional view showing a rotary compressor according to an embodiment of the present disclosure.
  • FIG. 2 is a side view showing the rotary compressor of FIG. 1 installed on an installation surface.
  • a rotary compressor (hereinafter simply referred to as "compressor") 1 is a hermetic electric rotary compressor used for, for example, an air conditioner or a refrigeration device.
  • the compressor 1 includes a compressor main body 10 and an accumulator 12.
  • the accumulator 12 is connected to the compressor main body 10 via a suction pipe 11.
  • the compressor main body 10 includes a substantially cylindrical housing 2, a rotating shaft body 3, an electric motor 5, and a rotary compression section 6.
  • the rotational axis CL of the rotating shaft body 3 coincides with the central axis of the housing 2 .
  • the rotating shaft body 3 is arranged so that its extension direction is the vertical direction, and rotates around the rotation axis CL within the housing 2.
  • the housing 2 is of a closed type and extends in the vertical direction.
  • the housing 2 includes a cylindrical main body 21, and an upper lid 22 and a lower lid 23 that close the upper and lower openings of the main body 21.
  • a plurality of legs 7 are fixed below the main body 21.
  • the legs 7 are arranged in the circumferential direction of the main body 21 at predetermined angular intervals. As shown in FIG. 2, each leg portion 7 is fixed to the installation surface FL via vibration-proof rubber 8.
  • the housing 2 has an opening 24 formed at a position facing the outer circumferential surface of the cylinder 60 at the lower part of the side wall.
  • a suction port 25 is formed in the cylinder 60 at a position facing the opening 24 and communicates with a predetermined position within the cylinder.
  • An oil reservoir is formed at the bottom of the housing 2 to store lubricating oil.
  • the liquid level of the oil reservoir when the oil is initially filled is located above the rotary compression section 6. Thereby, the rotary compression section 6 is driven in the oil pool.
  • the upper lid part 22 is provided with a discharge pipe 13 and a terminal block 30.
  • the discharge pipe 13 penetrates the upper lid portion 22 in the thickness direction, and has a lower portion disposed inside the housing 2 and an upper portion disposed outside the housing 2 .
  • the discharge pipe 13 discharges the compressed refrigerant to the outside of the housing 2 .
  • the terminal block 30 is provided with three power supply terminals 31 for supplying power to the electric motor 5. Three-phase power is supplied to the power supply terminal 31 from an inverter device (not shown).
  • the accumulator 12 is used to separate the refrigerant into gas and liquid before supplying it to the compressor main body 10.
  • the accumulator 12 has a substantially cylindrical shape and is fixed to the outer peripheral surface of the housing 2 via a bracket 14.
  • An inlet pipe 15 is provided at the top of the accumulator 12 for introducing refrigerant led from an evaporator (not shown).
  • a suction pipe 11 for causing internal refrigerant to be sucked into the compressor main body 10 is connected to the accumulator 12 .
  • Suction pipe 11 is connected to suction port 25 through opening 24 of housing 2 .
  • the accumulator 12 supplies gaseous refrigerant to the rotary compression section 6 via the suction pipe 11 .
  • a low-pressure refrigerant such as a slightly flammable refrigerant (A2L) or a highly flammable refrigerant (A3) such as propane.
  • A2L slightly flammable refrigerant
  • A3 highly flammable refrigerant
  • R410A, R32, R1234yf, natural refrigerants R290, Iso-butane, etc.
  • R290, Iso-butane, etc. can be used.
  • the electric motor 5 is housed in the center of the housing 2 in the vertical direction.
  • the electric motor 5 includes a rotor 51 and a stator 52.
  • the rotor 51 is fixed to the outer peripheral surface of the rotating shaft body 3 and is arranged above the rotary compression section 6 .
  • the stator 52 is arranged to surround the outer peripheral surface of the rotor 51 and is fixed to the inner surface 21 a of the main body 21 of the housing 2 . Electric power is supplied to the stator 52 from each power supply terminal 31 via the wiring 32 .
  • the electric motor 5 rotates the rotating shaft body 3 using electric power supplied from the power supply terminal 31.
  • the rotary compression section 6 is placed between the upper bearing 4A and the lower bearing 4B from above and below.
  • the upper bearing 4A and the lower bearing 4B are each made of a metal material and are fixed to a cylinder 60 that constitutes the rotary compression section 6 with bolts 61.
  • the rotating shaft body 3 is rotatably supported around the rotation axis CL by an upper bearing 4A and a lower bearing 4B.
  • the rotary compression section 6 is arranged at the bottom of the housing 2 below the electric motor 5.
  • the rotary compression section 6 includes a cylinder 60, an eccentric shaft section 62, and a piston rotor 63.
  • the cylinder 60 is formed with a compression chamber 60A, a suction hole 60B, and a discharge hole (not shown).
  • the compression chamber 60A is formed inside the cylinder 60.
  • a piston rotor 63 is housed within the compression chamber 60A.
  • the rotary compression part 6 is fixed to the inner surface 21a of the main body part 21 of the housing 2.
  • the upper bearing 4A that sandwiches the cylinder 60 is fixed to the inner surface 21a of the main body portion 21 of the housing 2.
  • the upper bearing 4A is fixed by plug welding at multiple locations in the circumferential direction of the housing 2. Note that instead of plug welding, shrink fitting, cold fitting, etc. may be used.
  • the eccentric shaft portion 62 is provided at the lower end of the rotary shaft body 3 and is provided inside the piston rotor 63 in a state offset from the central axis of the rotary shaft body 3 in a direction perpendicular to the center axis.
  • the piston rotor 63 has a cylindrical shape with an outer diameter smaller than the inner diameter of the cylinder 60, is disposed inside the cylinder 60, and is fixedly attached to the outer periphery of the eccentric shaft portion 62.
  • the piston rotor 63 rotates eccentrically with respect to the rotation axis CL as the rotation shaft body 3 rotates.
  • the suction hole 60B is a hole for introducing the refrigerant into the interior of the cylinder 60, and is formed in a direction perpendicular to the rotation axis CL.
  • the high-pressure refrigerant discharged from a discharge hole (not shown) formed in the cylinder 60 is introduced into the space formed between the discharge cover 65 and the upper bearing 4A, and then introduced into the internal space of the housing 2. It will be destroyed.
  • FIG. 3 shows a plan view of the cylinder 60.
  • the cylinder 60 is provided with a blade 64 that divides the compression chamber 60A into two.
  • a blade groove 66 is formed in the cylinder 60 and extends in the radial direction.
  • the blade 64 is slidably guided by the inner surface 66a of the blade groove 66 and is held so as to be movable toward and away from the piston rotor 63.
  • the radially outer base end 64b of the blade 64 is elastically pressed by a pressure spring (compression spring) not shown, and the tip 64a is always pressed against the outer circumferential surface 63a of the piston rotor 63.
  • the situation is as follows.
  • the eccentric shaft portion 62 has an outer diameter slightly smaller than the inner diameter of the piston rotor 63.
  • the outer diameter D1 of the cylinder 60 is greater than or equal to 90 mm and less than or equal to 105 mm.
  • the inner diameter D2 of the compression chamber 60A is set to be 37 mm or more and 50 mm or less.
  • a through hole 66b that penetrates in the axial direction of the cylinder 60 (i.e., in the direction of the rotational axis CL) is formed at the rear end, that is, on the outer peripheral side of the blade groove 66.
  • the through hole 66b has a cylindrical shape.
  • a bridge portion 70 is provided further on the rear end side, that is, on the outer peripheral side of the through hole 66b.
  • the bridge portion 70 forms the outer peripheral portion of the cylinder 60. As can be seen from FIG. 3, the strength of the bridge portion 70 is weak at the position where the wall thickness is the thinnest in the cylinder 60. Further, since the bridge portion 70 is formed with a spring groove 72 (see FIG. 4) for accommodating the pressing spring, the strength is further weakened.
  • FIG. 4 shows a cross section taken along arrow IV in FIG. 3, and is a longitudinal cross-sectional view of the cylinder 60 taken along a cross section that includes the central axis of the spring groove 72, the blade groove 66, and the bridge portion 70.
  • the spring groove 72 is formed at a central position in the axial direction of the cylinder 60 (that is, in the direction of the rotational axis CL) and faces in a horizontal direction perpendicular to the axial direction. That is, the spring groove center axis CL2 is provided horizontally. It is preferable that the spring groove center axis CL2 is provided so as to intersect the rotation axis CL.
  • the diameter of the spring groove 72 is, for example, ⁇ 6 or more and ⁇ 10 or less.
  • Remaining portions 70a of the bridge portion 70 are provided on both sides of the spring groove 72 in the axial direction. The strength of the bridge portion 70 is ensured by these remaining portions 70a.
  • the horizontal dimension of the remaining portion 70a is v and the axial dimension is h, v ⁇ h.
  • the axial dimension h of the remaining portion 70a is larger than the horizontal dimension v, and when viewed as shown in FIG. 4, it has a vertically long rectangular shape. More preferably, the value of h/v is in the following range. 1.4 ⁇ h/v ⁇ 3.5
  • the horizontal dimension v is, for example, 2.0 mm or more and 7.5 mm or less.
  • the axial dimension h is, for example, 2.5 mm or more and 8.5 mm or less.
  • the compressor 1 described above operates as follows. Refrigerant led from an evaporator (not shown) is taken into the accumulator 12 via an inlet pipe 15. The refrigerant is separated into gas and liquid within the accumulator 12, and the gas phase is led to the rotary compression section 6 via the suction pipe 11. In the rotary compression section 6, refrigerant is introduced into the compression chamber 60A via the suction hole 60B. Then, due to the eccentric rolling of the piston rotor 63, the volume of the compression chamber 60A gradually decreases, and the refrigerant is compressed. The compressed refrigerant is guided to the internal space of the housing 2 after passing through the discharge hole and the space inside the discharge cover 65 . The refrigerant discharged into the internal space of the housing 2 is guided from a discharge pipe 13 provided at the upper part of the housing 2 to a condenser (not shown).
  • the bridge portion 70 which is provided on the rear end side of the blade groove 66 and forms the outer peripheral portion of the cylinder 60, is weak in strength at the position where the wall thickness is the thinnest in the cylinder 60. Further, since the bridge portion 70 is formed with a spring groove 72 for accommodating a pressing spring, the strength is further weakened.
  • the thickness of the bridge portion 70 has to be made thinner. The present inventors discovered a shape of the bridge portion 70 that ensures the strength of the bridge portion 70 under such constraints.
  • the spring grooves 72 are located on both sides of the spring groove 72 in the axial direction. If the horizontal dimension of the remaining portion 70a of the bridge portion 70 is v and the axial dimension is h, then v ⁇ h. h is made larger than v, that is, the axial direction dimension h is made larger than the horizontal direction dimension v of the remaining portion 70a.
  • the desired strength of the bridge portion 70 can be obtained by increasing the horizontal dimension v to ensure the area of the remaining portion 70a.
  • the outer diameter D1 of the cylinder 60 becomes small, and the horizontal dimension v cannot be made large in order to obtain the amount of refrigerant displacement. Therefore, in this embodiment, the axial dimension h is set larger than the horizontal dimension v to ensure the area of the remaining portion 70a and obtain the desired strength of the bridge portion 70.
  • a rotary compressor (1) includes a cylinder (60) in which a cylindrical compression chamber (60A) is formed, and a rotary compressor (1) that rotates eccentrically inside the compression chamber.
  • a piston rotor (63) that compresses refrigerant;
  • a blade (64) that abuts the outer peripheral surface of the piston rotor to partition a space of the compression chamber; and a direction in which the tip of the blade abuts the outer peripheral surface of the piston rotor.
  • the cylinder includes a blade groove (66) for slidably holding the base end portion (64b) of the blade;
  • the spring groove includes a bridge part (70) provided on the rear end side and forming an outer peripheral part of the cylinder, and a spring groove (72) formed in the bridge part and accommodating the pressing spring.
  • the bridge portion provided on the rear end side of the blade groove and forming the outer peripheral portion of the cylinder is weak in strength at the position where the wall thickness is the thinnest in the cylinder. Moreover, since the bridge portion is formed with a spring groove for accommodating the pressing spring, the strength is further weakened.
  • the wall thickness of the bridge portion must be made thinner. The present inventors have discovered a shape of the bridge portion that ensures the strength of the bridge portion under such constraints.
  • the horizontal dimension of the remaining portions of the bridge located on both sides of the spring groove in the axial direction is v
  • h is the dimension in the axial direction
  • v ⁇ h. h is made larger than v, that is, the axial dimension h is made larger than the horizontal dimension v of the remaining portion. If miniaturization is not required and there is no restriction on the outer diameter of the cylinder, the desired strength of the bridge portion can be obtained by increasing the horizontal dimension v to ensure the area of the remaining portion.
  • the axial dimension h is set larger than the horizontal dimension v to secure the area of the remaining portion and obtain the desired strength of the bridge portion.
  • the v and h are expressed by the following relational expression: 1.4 ⁇ h/v ⁇ 3.5 satisfy.
  • a slightly flammable refrigerant or a highly flammable refrigerant is used as the refrigerant in the first aspect or the second aspect.
  • a compressor that can obtain a desired amount of refrigerant displacement even with a low-pressure refrigerant such as a slightly flammable refrigerant (A2L) or a highly flammable refrigerant (A3) such as propane, and has a predetermined performance. be able to.
  • a low-pressure refrigerant such as a slightly flammable refrigerant (A2L) or a highly flammable refrigerant (A3) such as propane, and has a predetermined performance. be able to.
  • Compressor (rotary compressor) 2 Housing 3 Rotating shaft body 4A Upper bearing 4B Lower bearing 5 Electric motor 6 Rotary compression part 7 Leg part 8 Vibration-proof rubber 10 Compressor body 11 Suction pipe 12 Accumulator 13 Discharge pipe 14 Bracket 15 Inlet pipe 21 Main body part 21a Inner surface 22 Upper part Lid 23 Lower lid 24 Opening 25 Suction port 30 Terminal block 31 Power supply terminal 32 Wiring 51 Rotor 52 Stator 60 Cylinder 60A Compression chamber 60B Suction hole 61 Bolt 62 Eccentric shaft 63 Piston rotor 64 Blade 64a Tip 64b Base end 65 Discharge cover 66 Blade groove 66a Inner surface 66b Through hole 70 Bridge portion 72 Spring groove CL Rotation axis CL2 Spring groove center axis FL Installation surface v Horizontal dimension h Axial dimension

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

This rotary compressor is provided with a blade that abuts on an outer peripheral surface of a piston rotor and partitions the space of a compression room, and a pressure spring that presses a base end of the blade. A cylinder (60) is provided with a blade groove (66) for slidably holding the base end of the blade, a bridge part (70) that is provided on a rear end side of the blade groove (66) and forms an outer peripheral part of the cylinder (60), and a spring groove (72) that is formed in the bridge part (70) and accommodates the pressure spring. The spring groove (72) is formed to be oriented in a horizontal direction orthogonal to the axial direction of the cylinder (60). When the cylinder (60) is viewed in a longitudinal section including a spring groove central axis (CL2) of the spring groove (72), the blade groove (66), and the bridge part (70), remaining portions (70a) of the bridge part (70) that are positioned on both sides in the axial direction of the spring groove (72) have a dimension v in the horizontal direction and a dimension h in the axial direction, where v < h.

Description

ロータリ圧縮機rotary compressor
 本開示は、ロータリ圧縮機に関するものである。 The present disclosure relates to a rotary compressor.
 冷凍装置や空気調和装置等に使用される圧縮機の1つに、ロータリ圧縮機が知られている(特許文献1参照)。 A rotary compressor is known as one of the compressors used in refrigeration equipment, air conditioning equipment, etc. (see Patent Document 1).
特開2018-76817号公報JP2018-76817A
 圧縮機部品の設計に空間的な自由度を持たせることができるので、ロータリ圧縮機のコア径は大きい方が望ましい。しかし、ロータリ圧縮機のコア径が大きいと、資材量が多くなるため重量および資材コストが増大するという問題がある。 It is desirable for the rotary compressor to have a large core diameter because it allows for spatial freedom in the design of compressor parts. However, if the core diameter of the rotary compressor is large, there is a problem that the amount of material increases, resulting in an increase in weight and material cost.
 そこで、ロータリ圧縮機の小型化が要求されている。しかし、ロータリ圧縮機を小型化するとコア径が小さくなって圧縮部の冷媒押退量が減少するおそれがある。特に、冷媒として低圧冷媒(例えば燃焼クラスが微燃性(A2L)や強燃性(A3)とされた冷媒)を用いる場合、R32の場合に対して約2倍の押退量が必要となる。したがって、ロータリ圧縮機は、押退量を確保しつつ小型化することが望まれる。 Therefore, there is a need to downsize rotary compressors. However, when the rotary compressor is downsized, the core diameter becomes smaller, which may reduce the amount of refrigerant pushed out of the compression section. In particular, when using a low-pressure refrigerant (for example, a refrigerant with a slightly flammable (A2L) or highly flammable (A3) flammability class) as the refrigerant, approximately twice the displacement amount is required compared to the case of R32. . Therefore, it is desired that the rotary compressor be made smaller while ensuring the amount of displacement.
 本開示は、このような事情に鑑みてなされたものであって、圧縮部の冷媒押退量を確保しつつ小型化できるロータリ圧縮機を提供することを目的とする。 The present disclosure has been made in view of these circumstances, and an object of the present disclosure is to provide a rotary compressor that can be downsized while ensuring the amount of refrigerant pushed out of the compression section.
 本開示の一態様に係るロータリ圧縮機は、内部に円筒形状とされた圧縮室(60A)が形成されたシリンダ(60)と、前記圧縮室の内部で偏心して回転することで冷媒を圧縮するピストンロータ(63)と、前記ピストンロータの外周面に当接して前記圧縮室の空間を仕切るブレード(64)と、前記ブレードの先端部が前記ピストンロータの外周面に当接する方向に前記ブレードの基端部を押圧する押圧バネと、を備え、前記シリンダは、前記ブレードの前記基端部(64b)を摺動可能に保持するためのブレード溝(66)と、該ブレード溝の後端側に設けられて該シリンダの外周部を形成するブリッジ部(70)と、該ブリッジ部に形成され、前記押圧バネを収容するバネ溝(72)と、を備え前記バネ溝は、前記シリンダの軸線方向の中央位置にて該軸線方向に直交する水平方向に向いて形成され、前記バネ溝の中心軸線、前記ブレード溝及び前記ブリッジ部を含む断面で前記シリンダを縦断面視した場合に、前記バネ溝の前記軸線方向の両側にそれぞれ位置する前記ブリッジ部の残余部分(70a)の前記水平方向の寸法をv、前記軸線方向の寸法をhとした場合、
 v < h
 とされている。
A rotary compressor according to an aspect of the present disclosure includes a cylinder (60) in which a cylindrical compression chamber (60A) is formed, and compresses refrigerant by eccentrically rotating inside the compression chamber. A piston rotor (63), a blade (64) that abuts against the outer peripheral surface of the piston rotor to partition the space of the compression chamber, and a blade (64) that extends in the direction in which the tip of the blade abuts the outer peripheral surface of the piston rotor. a pressure spring that presses the base end, the cylinder includes a blade groove (66) for slidably holding the base end (64b) of the blade, and a rear end side of the blade groove. a bridge portion (70) that is provided in the bridge portion and forms an outer peripheral portion of the cylinder; and a spring groove (72) that is formed in the bridge portion and accommodates the pressing spring. When the cylinder is viewed in a longitudinal cross-section with a cross section including the central axis of the spring groove, the blade groove, and the bridge portion, the spring When the horizontal dimension of the remaining portions (70a) of the bridge portion located on both sides of the groove in the axial direction is v, and the axial dimension is h,
v<h
It is said that
 ロータリ圧縮機の圧縮部の冷媒押退量を確保しつつ小型化できる。 It is possible to downsize the rotary compressor while ensuring the refrigerant displacement amount in the compression section.
本開示の一実施形態に係るロータリ圧縮機を示した縦断面図である。1 is a longitudinal cross-sectional view showing a rotary compressor according to an embodiment of the present disclosure. 図1のロータリ圧縮機が設置面上に設けられた状態を示した側面図である。FIG. 2 is a side view showing the rotary compressor of FIG. 1 installed on an installation surface. 図1のシリンダの平面図である。FIG. 2 is a plan view of the cylinder of FIG. 1; 図3の矢視IVにおける断面図である。4 is a cross-sectional view taken along arrow IV in FIG. 3. FIG.
 以下に、本開示に係る一実施形態について、図面を参照して説明する。
 図1に示すように、本実施形態に係るロータリ圧縮機(以下、単に「圧縮機」という。)1は、例えば空気調和機や冷凍装置などに用いられる密閉型の電動ロータリ圧縮機とされている。圧縮機1は、圧縮機本体10とアキュムレータ12とを備えている。アキュムレータ12は、圧縮機本体10に対して吸入管11を介して接続されている。
An embodiment according to the present disclosure will be described below with reference to the drawings.
As shown in FIG. 1, a rotary compressor (hereinafter simply referred to as "compressor") 1 according to the present embodiment is a hermetic electric rotary compressor used for, for example, an air conditioner or a refrigeration device. There is. The compressor 1 includes a compressor main body 10 and an accumulator 12. The accumulator 12 is connected to the compressor main body 10 via a suction pipe 11.
 圧縮機本体10は、略円筒形状のハウジング2と、回転軸体3と、電動モータ5と、ロータリ圧縮部6とを備えている。回転軸体3の回転軸線CLは、ハウジング2の中心軸線と一致している。回転軸体3は、延在方向が上下方向となるように配置され、ハウジング2内で回転軸線CL回りに回転する。 The compressor main body 10 includes a substantially cylindrical housing 2, a rotating shaft body 3, an electric motor 5, and a rotary compression section 6. The rotational axis CL of the rotating shaft body 3 coincides with the central axis of the housing 2 . The rotating shaft body 3 is arranged so that its extension direction is the vertical direction, and rotates around the rotation axis CL within the housing 2.
 ハウジング2は、密閉型で上下方向に延在している。ハウジング2は、円筒状をなす本体部21と、本体部21の上下の開口を閉塞する上部蓋部22及び下部蓋部23とを備えている。 The housing 2 is of a closed type and extends in the vertical direction. The housing 2 includes a cylindrical main body 21, and an upper lid 22 and a lower lid 23 that close the upper and lower openings of the main body 21.
 本体部21の下方には、複数の脚部7が固定されている。各脚部7は、所定角度間隔を空けて本体部21の周方向に配置されている。各脚部7は、図2に示すように、防振ゴム8を介して設置面FLに固定されている。 A plurality of legs 7 are fixed below the main body 21. The legs 7 are arranged in the circumferential direction of the main body 21 at predetermined angular intervals. As shown in FIG. 2, each leg portion 7 is fixed to the installation surface FL via vibration-proof rubber 8.
 ハウジング2は、側壁下部におけるシリンダ60の外周面に対向する位置に、開口部24が形成されている。シリンダ60には、開口部24に対向した位置において、シリンダ内の所定位置まで連通する吸入ポート25が形成されている。 The housing 2 has an opening 24 formed at a position facing the outer circumferential surface of the cylinder 60 at the lower part of the side wall. A suction port 25 is formed in the cylinder 60 at a position facing the opening 24 and communicates with a predetermined position within the cylinder.
 ハウジング2の底部には、潤滑油を貯留する油溜まりが形成されている。油の初期封入時における油溜まりの液面は、ロータリ圧縮部6の上方に位置している。これにより、ロータリ圧縮部6は、油溜まりの中で駆動される。 An oil reservoir is formed at the bottom of the housing 2 to store lubricating oil. The liquid level of the oil reservoir when the oil is initially filled is located above the rotary compression section 6. Thereby, the rotary compression section 6 is driven in the oil pool.
 上部蓋部22には、吐出管13と端子台30が設けられている。吐出管13は、上部蓋部22の厚さ方向に貫通し、下部がハウジング2内に配置されており、上部がハウジング2の外に配置されている。吐出管13は、圧縮された冷媒をハウジング2の外部へ吐出する。端子台30は、電動モータ5に給電する3つの給電端子31が設けられている。給電端子31には、図示しないインバータ装置から3相の電力が供給される。 The upper lid part 22 is provided with a discharge pipe 13 and a terminal block 30. The discharge pipe 13 penetrates the upper lid portion 22 in the thickness direction, and has a lower portion disposed inside the housing 2 and an upper portion disposed outside the housing 2 . The discharge pipe 13 discharges the compressed refrigerant to the outside of the housing 2 . The terminal block 30 is provided with three power supply terminals 31 for supplying power to the electric motor 5. Three-phase power is supplied to the power supply terminal 31 from an inverter device (not shown).
 アキュムレータ12は、圧縮機本体10に供給するに先立って冷媒を気液分離するため用いられる。アキュムレータ12は、略円筒形状とされており、ブラケット14を介してハウジング2の外周面に固定されている。アキュムレータ12の上部には、図示しない蒸発器から導かれた冷媒を導入するための入口管15が設けられている。アキュムレータ12には、内部の冷媒を圧縮機本体10に吸入させるための吸入管11が接続されている。吸入管11は、ハウジング2の開口部24を通して、吸入ポート25に接続されている。アキュムレータ12は、吸入管11を介して気相の冷媒をロータリ圧縮部6へ供給する。 The accumulator 12 is used to separate the refrigerant into gas and liquid before supplying it to the compressor main body 10. The accumulator 12 has a substantially cylindrical shape and is fixed to the outer peripheral surface of the housing 2 via a bracket 14. An inlet pipe 15 is provided at the top of the accumulator 12 for introducing refrigerant led from an evaporator (not shown). A suction pipe 11 for causing internal refrigerant to be sucked into the compressor main body 10 is connected to the accumulator 12 . Suction pipe 11 is connected to suction port 25 through opening 24 of housing 2 . The accumulator 12 supplies gaseous refrigerant to the rotary compression section 6 via the suction pipe 11 .
 冷媒としては、低圧冷媒が用いられ、例えば微燃性冷媒(A2L)又はプロパンなどの強燃性冷媒(A3)が用いられる。また、R410A、R32、R1234yf、自然冷媒(R290、Iso-butaneなど)を用いることができる。 As the refrigerant, a low-pressure refrigerant is used, such as a slightly flammable refrigerant (A2L) or a highly flammable refrigerant (A3) such as propane. Furthermore, R410A, R32, R1234yf, natural refrigerants (R290, Iso-butane, etc.) can be used.
 電動モータ5は、ハウジング2内の上下方向の中央部に収容されている。電動モータ5は、ロータ51と、ステータ52とを備えている。ロータ51は、回転軸体3の外周面に固定され、ロータリ圧縮部6の上方に配置されている。ステータ52は、ロータ51の外周面を囲むように配置され、ハウジング2の本体部21の内面21aに固定されている。
 ステータ52に対して、各給電端子31から配線32を介して電力が供給される。電動モータ5は、給電端子31から供給された電力によって回転軸体3を回転させる。
The electric motor 5 is housed in the center of the housing 2 in the vertical direction. The electric motor 5 includes a rotor 51 and a stator 52. The rotor 51 is fixed to the outer peripheral surface of the rotating shaft body 3 and is arranged above the rotary compression section 6 . The stator 52 is arranged to surround the outer peripheral surface of the rotor 51 and is fixed to the inner surface 21 a of the main body 21 of the housing 2 .
Electric power is supplied to the stator 52 from each power supply terminal 31 via the wiring 32 . The electric motor 5 rotates the rotating shaft body 3 using electric power supplied from the power supply terminal 31.
 ロータリ圧縮部6は、上部軸受4A及び下部軸受4Bによって上下から挟まれた状態で配置されている。上部軸受4Aと下部軸受4Bは、それぞれ金属材料から形成され、ロータリ圧縮部6を構成するシリンダ60にボルト61で固定されている。
 なお、回転軸体3は、上部軸受4Aと下部軸受4Bによって回転軸線CL回りに回転自在に支持されている。
The rotary compression section 6 is placed between the upper bearing 4A and the lower bearing 4B from above and below. The upper bearing 4A and the lower bearing 4B are each made of a metal material and are fixed to a cylinder 60 that constitutes the rotary compression section 6 with bolts 61.
Note that the rotating shaft body 3 is rotatably supported around the rotation axis CL by an upper bearing 4A and a lower bearing 4B.
 ロータリ圧縮部6は、電動モータ5の下方でハウジング2内の底部に配置されている。ロータリ圧縮部6は、シリンダ60と、偏心軸部62と、ピストンロータ63とを備えている。 The rotary compression section 6 is arranged at the bottom of the housing 2 below the electric motor 5. The rotary compression section 6 includes a cylinder 60, an eccentric shaft section 62, and a piston rotor 63.
 シリンダ60は、圧縮室60Aと、吸入孔60Bと、吐出孔(図示せず)とが形成されている。圧縮室60Aは、シリンダ60の内部に形成されている。圧縮室60A内には、ピストンロータ63が収容されている。 The cylinder 60 is formed with a compression chamber 60A, a suction hole 60B, and a discharge hole (not shown). The compression chamber 60A is formed inside the cylinder 60. A piston rotor 63 is housed within the compression chamber 60A.
 ロータリ圧縮部6は、ハウジング2の本体部21の内面21aに対して固定されている。具体的には、シリンダ60を挟み込んでいる上部軸受4Aが、ハウジング2の本体部21の内面21aに対して固定されている。上部軸受4Aは、ハウジング2の周方向の複数箇所に栓溶接を行うことによって固定される。なお、栓溶接に代えて、焼き嵌め、冷やし嵌め等を用いても良い。 The rotary compression part 6 is fixed to the inner surface 21a of the main body part 21 of the housing 2. Specifically, the upper bearing 4A that sandwiches the cylinder 60 is fixed to the inner surface 21a of the main body portion 21 of the housing 2. The upper bearing 4A is fixed by plug welding at multiple locations in the circumferential direction of the housing 2. Note that instead of plug welding, shrink fitting, cold fitting, etc. may be used.
 偏心軸部62は、回転軸体3の下端部に設けられ、ピストンロータ63の内側において回転軸体3の中心軸から直交する方向にオフセットした状態で設けられている。
 ピストンロータ63は、シリンダ60の内径よりも小さい外径の円筒状をなしてシリンダ60の内側に配置され、偏心軸部62の外周に装着された状態で固定されている。ピストンロータ63は、回転軸体3の回転に伴って回転軸線CLに対して偏心して回転する。
The eccentric shaft portion 62 is provided at the lower end of the rotary shaft body 3 and is provided inside the piston rotor 63 in a state offset from the central axis of the rotary shaft body 3 in a direction perpendicular to the center axis.
The piston rotor 63 has a cylindrical shape with an outer diameter smaller than the inner diameter of the cylinder 60, is disposed inside the cylinder 60, and is fixedly attached to the outer periphery of the eccentric shaft portion 62. The piston rotor 63 rotates eccentrically with respect to the rotation axis CL as the rotation shaft body 3 rotates.
 吸入孔60Bは、シリンダ60の内部に冷媒を導くための孔であり、回転軸線CLに対して直交する方向に形成されている。
 シリンダ60に形成された吐出孔(図示せず)から吐出された高圧冷媒は、吐出カバー65と上部軸受4Aとの間に形成された空間内に導かれた後に、ハウジング2の内部空間に導かれる。
The suction hole 60B is a hole for introducing the refrigerant into the interior of the cylinder 60, and is formed in a direction perpendicular to the rotation axis CL.
The high-pressure refrigerant discharged from a discharge hole (not shown) formed in the cylinder 60 is introduced into the space formed between the discharge cover 65 and the upper bearing 4A, and then introduced into the internal space of the housing 2. It will be destroyed.
 図3には、シリンダ60の平面図が示されている。シリンダ60には、圧縮室60Aを2つに区切るブレード64が設けられている。シリンダ60には、径方向に延在して形成されたブレード溝66が形成されている。ブレード64は、ブレード溝66の内面66aに摺動可能に案内されて、ピストンロータ63に対して接近離間する方向に進退自在に保持されている。そして、ブレード64は、径方向の外側の基端部64bが、不図示の押圧バネ(圧縮バネ)によって弾性的に押圧されており、先端部64aがピストンロータ63の外周面63aに常に押し付けられた状態となっている。 FIG. 3 shows a plan view of the cylinder 60. The cylinder 60 is provided with a blade 64 that divides the compression chamber 60A into two. A blade groove 66 is formed in the cylinder 60 and extends in the radial direction. The blade 64 is slidably guided by the inner surface 66a of the blade groove 66 and is held so as to be movable toward and away from the piston rotor 63. The radially outer base end 64b of the blade 64 is elastically pressed by a pressure spring (compression spring) not shown, and the tip 64a is always pressed against the outer circumferential surface 63a of the piston rotor 63. The situation is as follows.
 偏心軸部62は、ピストンロータ63の内径よりもわずかに小さな外径を有している。これにより、回転軸体3が回転すると、偏心軸部62が回転軸体3回りに旋回し、ピストンロータ63がシリンダ60内で偏心転動する。このとき、ブレード64は、不図示の押圧バネにより押圧されているため、先端部64aがピストンロータ63の動きに追従して進退し、ピストンロータ63に常に押し付けられる。 The eccentric shaft portion 62 has an outer diameter slightly smaller than the inner diameter of the piston rotor 63. As a result, when the rotating shaft body 3 rotates, the eccentric shaft portion 62 rotates around the rotating shaft body 3, and the piston rotor 63 eccentrically rolls within the cylinder 60. At this time, since the blade 64 is pressed by a pressing spring (not shown), the tip portion 64a moves forward and backward following the movement of the piston rotor 63, and is constantly pressed against the piston rotor 63.
 シリンダ60の外径D1は、90mm以上105mm以下とされている。
 圧縮室60Aの内径D2は、37mm以上50mm以下とさせている。
The outer diameter D1 of the cylinder 60 is greater than or equal to 90 mm and less than or equal to 105 mm.
The inner diameter D2 of the compression chamber 60A is set to be 37 mm or more and 50 mm or less.
 ブレード溝66の後端すなわち外周側には、シリンダ60の軸線方向(すなわち回転軸線CL方向)に貫通する貫通穴66bが形成されている。貫通穴66bは、円筒形状とされている。貫通穴66bのさらに後端側すなわち外周側には、ブリッジ部70が設けられている。 A through hole 66b that penetrates in the axial direction of the cylinder 60 (i.e., in the direction of the rotational axis CL) is formed at the rear end, that is, on the outer peripheral side of the blade groove 66. The through hole 66b has a cylindrical shape. A bridge portion 70 is provided further on the rear end side, that is, on the outer peripheral side of the through hole 66b.
 ブリッジ部70は、シリンダ60の外周部を形成している。図3からも分かるように、ブリッジ部70は、シリンダ60のなかで最も肉厚が薄くなる位置で強度的に弱い。また、ブリッジ部70には押圧バネを収容するバネ溝72(図4参照)が形成されているので、更に強度が弱くなる。 The bridge portion 70 forms the outer peripheral portion of the cylinder 60. As can be seen from FIG. 3, the strength of the bridge portion 70 is weak at the position where the wall thickness is the thinnest in the cylinder 60. Further, since the bridge portion 70 is formed with a spring groove 72 (see FIG. 4) for accommodating the pressing spring, the strength is further weakened.
 図4は、図3の矢視IVにおける断面を示し、バネ溝72の中心軸線、ブレード溝66及びブリッジ部70を含む断面でシリンダ60を縦断面視した図である。
 図4に示すように、バネ溝72は、シリンダ60の軸線方向(すなわち回転軸線CL方向)の中央位置にて該軸線方向に直交する水平方向に向いて形成されている。すなわち、バネ溝中心軸線CL2が水平に向かって設けられている。バネ溝中心軸線CL2は、回転軸線CLに交差するように設けられていることが好ましい。バネ溝72の径は、例えばΦ6以上φ10以下とされている。
FIG. 4 shows a cross section taken along arrow IV in FIG. 3, and is a longitudinal cross-sectional view of the cylinder 60 taken along a cross section that includes the central axis of the spring groove 72, the blade groove 66, and the bridge portion 70. As shown in FIG.
As shown in FIG. 4, the spring groove 72 is formed at a central position in the axial direction of the cylinder 60 (that is, in the direction of the rotational axis CL) and faces in a horizontal direction perpendicular to the axial direction. That is, the spring groove center axis CL2 is provided horizontally. It is preferable that the spring groove center axis CL2 is provided so as to intersect the rotation axis CL. The diameter of the spring groove 72 is, for example, Φ6 or more and Φ10 or less.
 バネ溝72の軸線方向の両側には、ブリッジ部70の残余部分70aがそれぞれ設けられている。これら残余部分70aにてブリッジ部70の強度が確保される。残余部分70aの水平方向寸法をv、軸線方向寸法をhとした場合、v < hとされている。すなわち残余部分70aの水平方向寸法vよりも軸線方向寸法hが大きくされて、図4のように見ると縦長の長方形となっている。
 より好ましくは、h/vの値としては以下の範囲とされる。
  1.4≦ h/v ≦3.5
Remaining portions 70a of the bridge portion 70 are provided on both sides of the spring groove 72 in the axial direction. The strength of the bridge portion 70 is ensured by these remaining portions 70a. When the horizontal dimension of the remaining portion 70a is v and the axial dimension is h, v < h. In other words, the axial dimension h of the remaining portion 70a is larger than the horizontal dimension v, and when viewed as shown in FIG. 4, it has a vertically long rectangular shape.
More preferably, the value of h/v is in the following range.
1.4≦h/v≦3.5
 水平方向寸法vは、例えば、2.0mm以上7.5以下とされる。
 軸線方向寸法hは、例えば、2.5mm以上8.5以下とされる。
The horizontal dimension v is, for example, 2.0 mm or more and 7.5 mm or less.
The axial dimension h is, for example, 2.5 mm or more and 8.5 mm or less.
 上述した圧縮機1は以下のように動作する。
 図示しない蒸発器から導かれた冷媒が入口管15を介してアキュムレータ12内に取り込まれる。冷媒は、アキュムレータ12内で気液分離され、その気相が吸入管11を介してロータリ圧縮部6に導かれる。ロータリ圧縮部6では、吸入孔60Bを介して圧縮室60Aに冷媒が導かれる。そして、ピストンロータ63の偏心転動により、圧縮室60Aの容積が徐々に減少して冷媒が圧縮される。圧縮後の冷媒は、吐出孔を介して吐出カバー65内の空間を経た後にハウジング2の内部空間へ導かれる。ハウジング2の内部空間に吐出された冷媒は、ハウジング2の上部に設けられた吐出管13から図示しない凝縮器へと導かれる。
The compressor 1 described above operates as follows.
Refrigerant led from an evaporator (not shown) is taken into the accumulator 12 via an inlet pipe 15. The refrigerant is separated into gas and liquid within the accumulator 12, and the gas phase is led to the rotary compression section 6 via the suction pipe 11. In the rotary compression section 6, refrigerant is introduced into the compression chamber 60A via the suction hole 60B. Then, due to the eccentric rolling of the piston rotor 63, the volume of the compression chamber 60A gradually decreases, and the refrigerant is compressed. The compressed refrigerant is guided to the internal space of the housing 2 after passing through the discharge hole and the space inside the discharge cover 65 . The refrigerant discharged into the internal space of the housing 2 is guided from a discharge pipe 13 provided at the upper part of the housing 2 to a condenser (not shown).
 以上説明した本実施形態の作用効果は以下の通りである。
 ブレード溝66の後端側に設けられてシリンダ60の外周部を形成するブリッジ部70は、シリンダ60のなかで最も肉厚が薄くなる位置で強度的に弱い。また、ブリッジ部70には押圧バネを収容するバネ溝72が形成されているので、更に強度が弱くなる。
 圧縮機本体10の小型化を図る場合、シリンダ60の外径を小さくする必要があるが、冷媒押退量を確保するために圧縮室60Aの内径D2は小さくすることを避けたい。そうすると、ブリッジ部70の肉厚を薄くせざるを得ない。
 本発明者等は、このような制約の下でブリッジ部70の強度を確保するブリッジ部70の形状を見出した。すなわち、バネ溝72のバネ溝中心軸線CL2、ブレード溝66及びブリッジ部70を含む断面でシリンダ60を縦断面視した場合(図4参照)に、バネ溝72の軸線方向の両側にそれぞれ位置するブリッジ部70の残余部分70aの水平方向の寸法をv、軸線方向の寸法をhとした場合、v < hとする。vよりもhを大きくする、すなわち残余部分70aの水平方向寸法vよりも軸線方向寸法hを大きくした。
 小型化が要求されずシリンダ60の外径D1に制約がない場合は、水平方向寸法vを大きくとって残余部分70aの面積を確保してブリッジ部70の所望の強度を得ることができる。しかし、小型化が要求される場合はシリンダ60の外径D1が小さくなるとともに、冷媒押退量を得るために水平方向寸法vを大きくとることができない。そこで、本実施形態では、軸線方向寸法hを水平方向寸法vよりも大きくとることによって残余部分70aの面積を確保してブリッジ部70の所望の強度を得ることとした。
The effects of this embodiment described above are as follows.
The bridge portion 70, which is provided on the rear end side of the blade groove 66 and forms the outer peripheral portion of the cylinder 60, is weak in strength at the position where the wall thickness is the thinnest in the cylinder 60. Further, since the bridge portion 70 is formed with a spring groove 72 for accommodating a pressing spring, the strength is further weakened.
When downsizing the compressor main body 10, it is necessary to reduce the outer diameter of the cylinder 60, but it is desirable to avoid reducing the inner diameter D2 of the compression chamber 60A in order to ensure the amount of refrigerant displacement. In this case, the thickness of the bridge portion 70 has to be made thinner.
The present inventors discovered a shape of the bridge portion 70 that ensures the strength of the bridge portion 70 under such constraints. That is, when the cylinder 60 is viewed in a longitudinal cross-section through a cross section including the spring groove center axis CL2 of the spring groove 72, the blade groove 66, and the bridge portion 70 (see FIG. 4), the spring grooves 72 are located on both sides of the spring groove 72 in the axial direction. If the horizontal dimension of the remaining portion 70a of the bridge portion 70 is v and the axial dimension is h, then v < h. h is made larger than v, that is, the axial direction dimension h is made larger than the horizontal direction dimension v of the remaining portion 70a.
If miniaturization is not required and there is no restriction on the outer diameter D1 of the cylinder 60, the desired strength of the bridge portion 70 can be obtained by increasing the horizontal dimension v to ensure the area of the remaining portion 70a. However, when miniaturization is required, the outer diameter D1 of the cylinder 60 becomes small, and the horizontal dimension v cannot be made large in order to obtain the amount of refrigerant displacement. Therefore, in this embodiment, the axial dimension h is set larger than the horizontal dimension v to ensure the area of the remaining portion 70a and obtain the desired strength of the bridge portion 70.
 微燃性冷媒(A2L)またはプロパンなどの強燃性冷媒(A3)のような低圧冷媒であっても、所望の冷媒押退量を得ることができるので、所定の性能を有する圧縮機を提供することができる。 Even with a low-pressure refrigerant such as a slightly flammable refrigerant (A2L) or a highly flammable refrigerant such as propane (A3), it is possible to obtain a desired amount of refrigerant displacement, thereby providing a compressor with a predetermined performance. can do.
 以上説明した実施形態に記載のロータリ圧縮機は、例えば以下のように把握される。 The rotary compressor described in the embodiments described above can be understood, for example, as follows.
 本開示の第1態様に係るロータリ圧縮機(1)は、内部に円筒形状とされた圧縮室(60A)が形成されたシリンダ(60)と、前記圧縮室の内部で偏心して回転することで冷媒を圧縮するピストンロータ(63)と、前記ピストンロータの外周面に当接して前記圧縮室の空間を仕切るブレード(64)と、前記ブレードの先端部が前記ピストンロータの外周面に当接する方向に前記ブレードの基端部を押圧する押圧バネと、を備え、前記シリンダは、前記ブレードの前記基端部(64b)を摺動可能に保持するためのブレード溝(66)と、該ブレード溝の後端側に設けられて該シリンダの外周部を形成するブリッジ部(70)と、該ブリッジ部に形成され、前記押圧バネを収容するバネ溝(72)と、を備え前記バネ溝は、前記シリンダの軸線方向の中央位置にて該軸線方向に直交する水平方向に向いて形成され、前記バネ溝の中心軸線、前記ブレード溝及び前記ブリッジ部を含む断面で前記シリンダを縦断面視した場合に、前記バネ溝の前記軸線方向の両側にそれぞれ位置する前記ブリッジ部の残余部分(70a)の前記水平方向の寸法をv、前記軸線方向の寸法をhとした場合、
 v < h
 とされている。
A rotary compressor (1) according to a first aspect of the present disclosure includes a cylinder (60) in which a cylindrical compression chamber (60A) is formed, and a rotary compressor (1) that rotates eccentrically inside the compression chamber. a piston rotor (63) that compresses refrigerant; a blade (64) that abuts the outer peripheral surface of the piston rotor to partition a space of the compression chamber; and a direction in which the tip of the blade abuts the outer peripheral surface of the piston rotor. a pressure spring that presses the base end portion of the blade, and the cylinder includes a blade groove (66) for slidably holding the base end portion (64b) of the blade; The spring groove includes a bridge part (70) provided on the rear end side and forming an outer peripheral part of the cylinder, and a spring groove (72) formed in the bridge part and accommodating the pressing spring. When the cylinder is viewed in a longitudinal cross section with a cross section that is formed at a central position in the axial direction of the cylinder and faces in a horizontal direction perpendicular to the axial direction, and includes the central axis of the spring groove, the blade groove, and the bridge part. If the horizontal dimension of the remaining portions (70a) of the bridge portion located on both sides of the spring groove in the axial direction is v and the axial dimension is h,
v<h
It is said that
 ブレード溝の後端側に設けられてシリンダの外周部を形成するブリッジ部は、シリンダのなかで最も肉厚が薄くなる位置で強度的に弱い。また、ブリッジ部には押圧バネを収容するバネ溝が形成されているので、更に強度が弱くなる。
 ロータリ圧縮機の小型化を図る場合、シリンダの外径を小さくする必要があるが、冷媒押退量を確保するために圧縮室の径は小さくすることを避けたい。そうすると、ブリッジ部の肉厚を薄くせざるを得ない。
 本発明者等は、このような制約の下でブリッジ部の強度を確保するブリッジ部の形状を見出した。すなわち、バネ溝の中心軸線、ブレード溝及びブリッジ部を含む断面でシリンダを縦断面視した場合に、バネ溝の軸線方向の両側にそれぞれ位置するブリッジ部の残余部分の水平方向の寸法をv、軸線方向の寸法をhとした場合、v < hとする。vよりもhを大きくする、すなわち残余部分の水平方向寸法vよりも軸線方向寸法hを大きくした。
 小型化が要求されずシリンダの外径に制約がない場合は、水平方向寸法vを大きくとって残余部分の面積を確保してブリッジ部の所望の強度を得ることができる。しかし、小型化が要求される場合はシリンダの外径が小さくなるとともに、冷媒押退量を得るために水平方向寸法vを大きくとることができない。そこで、本開示では、軸線方向寸法hを水平方向寸法vよりも大きくとることによって残余部分の面積を確保してブリッジ部の所望の強度を得ることとした。
The bridge portion provided on the rear end side of the blade groove and forming the outer peripheral portion of the cylinder is weak in strength at the position where the wall thickness is the thinnest in the cylinder. Moreover, since the bridge portion is formed with a spring groove for accommodating the pressing spring, the strength is further weakened.
When downsizing a rotary compressor, it is necessary to reduce the outer diameter of the cylinder, but in order to ensure the amount of refrigerant displacement, it is desirable to avoid reducing the diameter of the compression chamber. In this case, the wall thickness of the bridge portion must be made thinner.
The present inventors have discovered a shape of the bridge portion that ensures the strength of the bridge portion under such constraints. That is, when the cylinder is viewed in a longitudinal cross-section through a cross section that includes the center axis of the spring groove, the blade groove, and the bridge, the horizontal dimension of the remaining portions of the bridge located on both sides of the spring groove in the axial direction is v, If h is the dimension in the axial direction, then v < h. h is made larger than v, that is, the axial dimension h is made larger than the horizontal dimension v of the remaining portion.
If miniaturization is not required and there is no restriction on the outer diameter of the cylinder, the desired strength of the bridge portion can be obtained by increasing the horizontal dimension v to ensure the area of the remaining portion. However, when miniaturization is required, the outer diameter of the cylinder becomes small, and the horizontal dimension v cannot be made large in order to obtain the amount of refrigerant displacement. Therefore, in the present disclosure, the axial dimension h is set larger than the horizontal dimension v to secure the area of the remaining portion and obtain the desired strength of the bridge portion.
 本開示の第2態様に係るロータリ圧縮機は、前記第1態様において、前記vと前記hとが以下の関係式、
 1.4≦ h/v ≦3.5
を満たす。
In the rotary compressor according to a second aspect of the present disclosure, in the first aspect, the v and h are expressed by the following relational expression:
1.4≦h/v≦3.5
satisfy.
 1.4≦ h/v ≦3.5の範囲とすることによって、ブリッジ部の残余部分の面積を確保して所望の強度を得ることができる。 By setting the range of 1.4≦h/v≦3.5, it is possible to secure the area of the remaining portion of the bridge portion and obtain the desired strength.
 本開示の第3態様に係るロータリ圧縮機は、前記第1態様又は前記第2態様において、冷媒として、微燃性冷媒または強燃性冷媒が用いられる。 In the rotary compressor according to the third aspect of the present disclosure, a slightly flammable refrigerant or a highly flammable refrigerant is used as the refrigerant in the first aspect or the second aspect.
 微燃性冷媒(A2L)またはプロパンなどの強燃性冷媒(A3)のような低圧冷媒であっても、所望の冷媒押退量を得ることができ、所定の性能を有する圧縮機を提供することができる。 To provide a compressor that can obtain a desired amount of refrigerant displacement even with a low-pressure refrigerant such as a slightly flammable refrigerant (A2L) or a highly flammable refrigerant (A3) such as propane, and has a predetermined performance. be able to.
1 圧縮機(ロータリ圧縮機)
2 ハウジング
3 回転軸体
4A 上部軸受
4B 下部軸受
5 電動モータ
6 ロータリ圧縮部
7 脚部
8 防振ゴム
10 圧縮機本体
11 吸入管
12 アキュムレータ
13 吐出管
14 ブラケット
15 入口管
21 本体部
21a 内面
22 上部蓋部
23 下部蓋部
24 開口部
25 吸入ポート
30 端子台
31 給電端子
32 配線
51 ロータ
52 ステータ
60 シリンダ
60A 圧縮室
60B 吸入孔
61 ボルト
62 偏心軸部
63 ピストンロータ
64 ブレード
64a 先端部
64b 基端部
65 吐出カバー
66 ブレード溝
66a 内面
66b 貫通穴
70 ブリッジ部
72 バネ溝
CL 回転軸線
CL2 バネ溝中心軸線
FL 設置面
v 水平方向寸法
h 軸線方向寸法
1 Compressor (rotary compressor)
2 Housing 3 Rotating shaft body 4A Upper bearing 4B Lower bearing 5 Electric motor 6 Rotary compression part 7 Leg part 8 Vibration-proof rubber 10 Compressor body 11 Suction pipe 12 Accumulator 13 Discharge pipe 14 Bracket 15 Inlet pipe 21 Main body part 21a Inner surface 22 Upper part Lid 23 Lower lid 24 Opening 25 Suction port 30 Terminal block 31 Power supply terminal 32 Wiring 51 Rotor 52 Stator 60 Cylinder 60A Compression chamber 60B Suction hole 61 Bolt 62 Eccentric shaft 63 Piston rotor 64 Blade 64a Tip 64b Base end 65 Discharge cover 66 Blade groove 66a Inner surface 66b Through hole 70 Bridge portion 72 Spring groove CL Rotation axis CL2 Spring groove center axis FL Installation surface v Horizontal dimension h Axial dimension

Claims (3)

  1.  内部に円筒形状とされた圧縮室が形成されたシリンダと、
     前記圧縮室の内部で偏心して回転することで冷媒を圧縮するピストンロータと、
     前記ピストンロータの外周面に当接して前記圧縮室の空間を仕切るブレードと、
     前記ブレードの先端部が前記ピストンロータの外周面に当接する方向に前記ブレードの基端部を押圧する押圧バネと、
     を備え、
     前記シリンダは、前記ブレードの前記基端部を摺動可能に保持するためのブレード溝と、該ブレード溝の後端側に設けられて該シリンダの外周部を形成するブリッジ部と、該ブリッジ部に形成され、前記押圧バネを収容するバネ溝と、を備え
     前記バネ溝は、前記シリンダの軸線方向の中央位置にて該軸線方向に直交する水平方向に向いて形成され、
     前記バネ溝の中心軸線、前記ブレード溝及び前記ブリッジ部を含む断面で前記シリンダを縦断面視した場合に、前記バネ溝の前記軸線方向の両側にそれぞれ位置する前記ブリッジ部の残余部分の前記水平方向の寸法をv、前記軸線方向の寸法をhとした場合、
     v < h
     とされているロータリ圧縮機。
    A cylinder in which a cylindrical compression chamber is formed;
    a piston rotor that compresses refrigerant by eccentrically rotating inside the compression chamber;
    a blade that comes into contact with the outer peripheral surface of the piston rotor and partitions a space of the compression chamber;
    a pressing spring that presses a proximal end of the blade in a direction such that the distal end of the blade comes into contact with the outer circumferential surface of the piston rotor;
    Equipped with
    The cylinder includes a blade groove for slidably holding the base end portion of the blade, a bridge portion provided at the rear end side of the blade groove and forming an outer peripheral portion of the cylinder, and the bridge portion. a spring groove formed in the cylinder and accommodating the pressing spring, the spring groove being formed at a central position in the axial direction of the cylinder and facing in a horizontal direction perpendicular to the axial direction;
    When the cylinder is viewed in longitudinal section through a cross section that includes the center axis of the spring groove, the blade groove, and the bridge portion, the horizontal portion of the remaining portion of the bridge portion located on both sides of the spring groove in the axial direction When the dimension in the direction is v and the dimension in the axial direction is h,
    v<h
    A rotary compressor.
  2.  前記vと前記hとが以下の関係式、
     1.4≦ h/v ≦3.5
    を満たす請求項1に記載のロータリ圧縮機。
    The above v and the above h are expressed by the following relational expression,
    1.4≦h/v≦3.5
    The rotary compressor according to claim 1, which satisfies the following.
  3.  冷媒として、微燃性冷媒または強燃性冷媒が用いられる請求項1又は2に記載のロータリ圧縮機。 The rotary compressor according to claim 1 or 2, wherein a slightly flammable refrigerant or a highly flammable refrigerant is used as the refrigerant.
PCT/JP2023/019929 2022-06-09 2023-05-29 Rotary compressor WO2023238725A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022093808A JP2023180461A (en) 2022-06-09 2022-06-09 rotary compressor
JP2022-093808 2022-06-09

Publications (1)

Publication Number Publication Date
WO2023238725A1 true WO2023238725A1 (en) 2023-12-14

Family

ID=89118247

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/019929 WO2023238725A1 (en) 2022-06-09 2023-05-29 Rotary compressor

Country Status (2)

Country Link
JP (1) JP2023180461A (en)
WO (1) WO2023238725A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000283073A (en) * 1999-03-26 2000-10-10 Sanyo Electric Co Ltd Rotary compressor
JP2010121546A (en) * 2008-11-20 2010-06-03 Hitachi Appliances Inc Rotary compressor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000283073A (en) * 1999-03-26 2000-10-10 Sanyo Electric Co Ltd Rotary compressor
JP2010121546A (en) * 2008-11-20 2010-06-03 Hitachi Appliances Inc Rotary compressor

Also Published As

Publication number Publication date
JP2023180461A (en) 2023-12-21

Similar Documents

Publication Publication Date Title
JP4614009B1 (en) Scroll compressor
JP4909597B2 (en) Hermetic rotary compressor and refrigeration cycle apparatus
KR100299590B1 (en) Rotary type hermetic compressor and refrigerating cycle apparatus
JP3723408B2 (en) 2-cylinder two-stage compression rotary compressor
KR20030041785A (en) Defrost apparatus of refrigerant circuit and rotary compressor for refrigerant circuit
JP6145734B2 (en) Electric compressor
JPWO2018078787A1 (en) Scroll compressor, refrigeration cycle apparatus and shell
KR100862198B1 (en) Horizontal scroll compressor having an oil injection fitting
JP2020153295A (en) Scroll compressor
US20220065251A1 (en) Compressor
WO2023238725A1 (en) Rotary compressor
KR101380987B1 (en) Rotary compressor
JP5286010B2 (en) 2-cylinder rotary compressor and refrigeration cycle equipment
WO2023228874A1 (en) Rotary compressor and method for manufacturing rotary compressor
JP4792947B2 (en) Compressor
JP4973148B2 (en) Rotary compressor
JP6582244B2 (en) Scroll compressor
WO2023238709A1 (en) Compressor and design method for same
WO2024029014A1 (en) Compressor and refrigeration cycle device
JP7277848B1 (en) Scroll compressor and refrigeration equipment
WO2019111620A1 (en) Electric compressor
JP2023077785A (en) Motor compressor and manufacturing method
JP2005220752A (en) Compressor
KR20220133800A (en) Electric compressor
WO2010064377A1 (en) Rotary fluid machine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23819705

Country of ref document: EP

Kind code of ref document: A1