WO2023228874A1 - Rotary compressor and method for manufacturing rotary compressor - Google Patents

Rotary compressor and method for manufacturing rotary compressor Download PDF

Info

Publication number
WO2023228874A1
WO2023228874A1 PCT/JP2023/018689 JP2023018689W WO2023228874A1 WO 2023228874 A1 WO2023228874 A1 WO 2023228874A1 JP 2023018689 W JP2023018689 W JP 2023018689W WO 2023228874 A1 WO2023228874 A1 WO 2023228874A1
Authority
WO
WIPO (PCT)
Prior art keywords
recess
rotary compressor
axis
discharge hole
height
Prior art date
Application number
PCT/JP2023/018689
Other languages
French (fr)
Japanese (ja)
Inventor
紘史 島谷
Original Assignee
三菱重工サーマルシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工サーマルシステムズ株式会社 filed Critical 三菱重工サーマルシステムズ株式会社
Publication of WO2023228874A1 publication Critical patent/WO2023228874A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/30Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C18/34Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members
    • F04C18/356Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/12Arrangements for admission or discharge of the working fluid, e.g. constructional features of the inlet or outlet

Definitions

  • the present disclosure relates to a rotary compressor and a method for manufacturing a rotary compressor.
  • a rotary compressor that compresses a refrigerant using a rotor arranged eccentrically with respect to a rotating shaft within a compression chamber (see, for example, Patent Document 1).
  • the upper surface of the upper bearing is dug down to form a thin walled portion, and a discharge port that penetrates toward the cylinder chamber is formed in the thin walled portion.
  • the rotary compressor disclosed in Patent Document 1 achieves high pump efficiency by shortening the discharge port and reducing the volume.
  • the discharge port is provided at the bottom of the recess formed by digging into the upper surface of the upper bearing, so that the refrigerant gas discharged from the discharge port reaches the end surface of the recess. Collisions can cause large pressure losses. Particularly in a small rotary compressor (for example, a housing inner diameter of ⁇ 95 [mm] or less), the distance from the discharge port to the end face of the recess is short, so the pressure loss is significant.
  • the present disclosure has been made in view of the above circumstances, and provides a rotary compressor and a rotary compressor capable of suppressing pressure loss of refrigerant discharged from a discharge valve housed in a recess formed in a bearing.
  • An object of the present invention is to provide a method for manufacturing a rotary compressor.
  • a rotary compressor of the present disclosure includes: a housing having a cylindrical part extending in a vertical direction along an axis; a compression part housed in the housing and compressing a refrigerant; a drive section that is housed in a housing and drives the compression section by rotating a rotation shaft that extends along the axis, the compression section being fixed to the rotation shaft and biased with respect to the axis.
  • a piston rotor that rotates around the center; a cylinder that accommodates the piston rotor; and a cylinder that rotatably supports the rotating shaft about the axis and is arranged to sandwich the cylinder along the axis to accommodate the piston rotor.
  • a recess for accommodating the discharge valve is formed in the opposing surface facing one of the driving parts, and the discharge hole is formed at the bottom of the recess to penetrate along the axis.
  • a sloped portion is formed in the recess such that the height from the bottom portion to the opposing surface decreases as the distance from the discharge hole increases.
  • a method of manufacturing a rotary compressor is a method of manufacturing a rotary compressor, wherein the rotary compressor includes a housing having a cylindrical portion extending in a vertical direction along an axis; a compression section that is housed in the housing and compresses the refrigerant; and a drive section that is housed in the housing and drives the compression section by rotating a rotating shaft that extends along the axis, and the compression section is configured to compress the refrigerant.
  • a piston rotor that is fixed to a rotating shaft and rotates eccentrically with respect to the axis; a cylinder that accommodates the piston rotor; and a cylinder that rotatably supports the rotating shaft about the axis and rotates along the axis.
  • a pair of bearings that are arranged to sandwich the piston rotor and form a compression chamber that accommodates the piston rotor; and a discharge hole that is attached to one of the pair of bearings and that opens and closes the discharge hole that discharges the refrigerant compressed in the compression chamber.
  • a sloped portion is formed.
  • a rotary compressor that can suppress pressure loss of refrigerant discharged from a discharge valve housed in a recess formed in a bearing, and a method for manufacturing the rotary compressor. .
  • FIG. 1 is a longitudinal cross-sectional view showing a rotary compressor according to an embodiment of the present disclosure.
  • FIG. 2 is a side view showing the rotary compressor of FIG. 1 installed on an installation surface.
  • FIG. 3 is a plan view of the upper bearing of the rotary compression section viewed from above along the rotation axis.
  • 4 is a cross-sectional view taken along the line AA of the rotary compression section shown in FIG. 3.
  • FIG. 4 is a partially enlarged view of the vicinity of a discharge hole of the rotary compression section shown in FIG. 3.
  • FIG. It is a top view of the upper bearing of the rotary compression part of a 1st modification seen from above along a rotational axis.
  • 7 is a sectional view taken along the line BB of the rotary compression section shown in FIG. 6.
  • FIG. It is a top view of the upper bearing of the rotary compression part of a 2nd modification seen from above along a rotation axis.
  • 9 is a sectional view taken
  • a rotary compressor 1 is a hermetic electric rotary compressor used, for example, in an air conditioner or a refrigeration device.
  • the rotary compressor 1 includes a compressor main body 10 and an accumulator 12.
  • the accumulator 12 is connected to the compressor main body 10 via a suction pipe 11.
  • the compressor main body 10 includes a substantially cylindrical housing 2, a rotating shaft 3, an electric motor (drive section) 5, and a rotary compression section 6.
  • the rotation axis CL of the rotation shaft 3 coincides with the central axis of the housing 2.
  • the rotating shaft 3 is arranged so that its extension direction is the vertical direction, and rotates around the rotation axis CL within the housing 2.
  • the housing 2 is of a closed type and extends in the vertical direction.
  • the housing 2 includes a cylindrical main body portion (cylindrical portion) 21 extending in a vertical direction VD along the rotation axis CL, and an upper lid portion 22 and a lower lid portion 23 that close the upper and lower openings of the main body portion 21. We are prepared.
  • a plurality of legs 7 are fixed below the main body 21.
  • the legs 7 are arranged in the circumferential direction of the main body 21 at predetermined angular intervals. As shown in FIG. 2, each leg portion 7 is fixed to the installation surface FL via vibration-proof rubber 8.
  • the housing 2 has an opening 24 formed at a position facing the outer circumferential surface of the cylinder 60 at the lower part of the side wall.
  • a suction port 25 is formed in the cylinder 60 at a position facing the opening 24 and communicates with a predetermined position within the cylinder.
  • An oil reservoir is formed at the bottom of the housing 2 to store lubricating oil.
  • the liquid level of the oil reservoir when the oil is initially filled is located above the rotary compression section 6. Thereby, the rotary compression section 6 is driven in the oil pool.
  • the upper lid part 22 is provided with a discharge pipe 13 and a terminal block 30.
  • the discharge pipe 13 penetrates the upper lid portion 22 in the thickness direction, and has a lower portion disposed inside the housing 2 and an upper portion disposed outside the housing 2 .
  • the discharge pipe 13 discharges the compressed refrigerant to the outside of the housing 2 .
  • the terminal block 30 is provided with three power supply terminals 31 for supplying power to the electric motor 5. Three-phase power is supplied to the power supply terminal 31 from an inverter device (not shown).
  • the accumulator 12 is used to separate the refrigerant into gas and liquid before supplying it to the compressor main body 10.
  • the accumulator 12 has a substantially cylindrical shape and is fixed to the outer peripheral surface of the housing 2 via a bracket 14.
  • An inlet pipe 15 is provided at the top of the accumulator 12 for introducing refrigerant led from an evaporator (not shown).
  • a suction pipe 11 for causing internal refrigerant to be sucked into the compressor main body 10 is connected to the accumulator 12 .
  • Suction pipe 11 is connected to suction port 25 through opening 24 of housing 2 .
  • the accumulator 12 supplies gaseous refrigerant to the rotary compression section 6 via the suction pipe 11 .
  • the electric motor 5 is housed in the center of the housing 2 in the vertical direction.
  • the electric motor 5 includes a rotor 51 and a stator 52.
  • the rotor 51 is fixed to the outer peripheral surface of the rotating shaft 3 and is arranged above the rotary compression section 6 .
  • the stator 52 is arranged to surround the outer peripheral surface of the rotor 51 and is fixed to the inner surface 21 a of the main body 21 of the housing 2 . Electric power is supplied to the stator 52 from each power supply terminal 31 via the wiring 32 .
  • the electric motor 5 drives the rotary compression section 6 by rotating the rotating shaft 3 using electric power supplied from the power supply terminal 31 .
  • the rotary compression unit 6 is a device that is housed in the housing 2 and compresses refrigerant.
  • the rotary compression section 6 is placed between the upper bearing 4A and the lower bearing 4B from above and below.
  • the upper bearing 4A and the lower bearing 4B are each made of a metal material and are fixed to a cylinder 60 that constitutes the rotary compression section 6 with bolts 61.
  • the rotating shaft 3 is rotatably supported around the rotational axis CL by an upper bearing 4A and a lower bearing 4B.
  • the rotary compression section 6 is arranged at the bottom of the housing 2 below the electric motor 5.
  • the rotary compression section 6 includes an upper bearing 4A, a lower bearing 4B, a cylinder 60, an eccentric shaft section 62, a piston rotor 63, and a discharge valve 64 (see FIG. 3).
  • the cylinder 60 is formed with a compression chamber 60A, a suction hole 60B, and a discharge hole (not shown).
  • the compression chamber 60A is formed inside the cylinder 60.
  • a piston rotor 63 is housed within the compression chamber 60A.
  • the upper bearing 4A and the lower bearing 4B are arranged to sandwich the cylinder 60 along the rotation axis CL, and form a compression chamber 60A that accommodates the piston rotor 63.
  • the rotary compression part 6 is fixed to the inner surface 21a of the main body part 21 of the housing 2.
  • the upper bearing 4A that sandwiches the cylinder 60 is fixed to the inner surface 21a of the main body portion 21 of the housing 2.
  • the upper bearing 4A is fixed by plug welding at multiple locations in the circumferential direction of the housing 2. Note that instead of plug welding, shrink fitting, cold fitting, etc. may be used.
  • the eccentric shaft portion 62 is provided at the lower end of the rotating shaft 3 , and is provided inside the piston rotor 63 so as to be offset (eccentric) in a direction orthogonal to the central axis of the rotating shaft 3 .
  • the piston rotor 63 has a cylindrical shape with an outer diameter smaller than the inner diameter of the cylinder 60, is disposed inside the cylinder 60, and is fixedly attached to the outer periphery of the eccentric shaft portion 62.
  • the piston rotor 63 rotates eccentrically with respect to the rotation axis CL as the rotation shaft 3 rotates.
  • the suction hole 60B is a hole for guiding the refrigerant into the interior of the cylinder 60, and is formed in a direction perpendicular to the rotation axis CL.
  • the high-pressure refrigerant discharged from the discharge hole 4Aa (see FIG. 4) formed in the cylinder 60 is guided into the space formed between the discharge cover 65 and the upper bearing 4A, and then the high-pressure refrigerant is introduced into the space provided in the discharge cover 65.
  • the liquid is introduced into the internal space of the housing 2 through a discharge hole (not shown).
  • the rotary compressor 1 described above operates as follows. Refrigerant led from an evaporator (not shown) is taken into the accumulator 12 via an inlet pipe 15. The refrigerant is separated into gas and liquid within the accumulator 12, and the gas phase is led to the rotary compression section 6 via the suction pipe 11. In the rotary compression section 6, refrigerant is introduced into the compression chamber 60A via the suction hole 60B.
  • the volume of the compression chamber 60A gradually decreases, and the refrigerant is compressed.
  • the compressed refrigerant is guided to the internal space of the housing 2 after passing through the space within the discharge cover 65 via the discharge hole 4Aa.
  • the refrigerant discharged into the internal space of the housing 2 is guided from a discharge pipe 13 provided at the upper part of the housing 2 to a condenser (not shown).
  • FIG. 3 is a plan view of the upper bearing 4A of the rotary compression section 6 viewed from above along the rotation axis CL.
  • FIG. 4 is a sectional view taken along the line AA of the rotary compression section 6 shown in FIG. 3 and 4 show a state in which the discharge cover 65 is removed from the upper bearing 4A.
  • FIG. 5 is a partially enlarged view of the vicinity of the discharge hole 4Aa of the rotary compression section 6 shown in FIG. 3.
  • a discharge valve 64 is attached to the upper bearing 4A.
  • the discharge valve 64 is a device that opens and closes the discharge hole 4Aa that discharges the refrigerant compressed in the compression chamber 60A.
  • the discharge valve 64 includes a valve body 64a, a retainer 64b, and a fastening bolt 64c.
  • the valve body 64a is a plate-like member that has a biasing force that closes the discharge hole 4Aa when the pressure of the refrigerant in the compression chamber 60A is below a predetermined pressure.
  • the base end 64a1 of the valve body 64a is fixed to the position of the fastening hole 4Ac of the upper bearing 4A by a fastening bolt 64c.
  • the tip 64a2 of the valve body 64a is disposed in the discharge hole 4Aa and closes the discharge hole 4Aa.
  • a recess 4Ad that accommodates the discharge valve 64 is formed in the opposing surface 4Ab of the upper bearing 4A that faces the electric motor 5.
  • a discharge hole 4Aa penetrating in the vertical direction VD along the rotation axis CL is formed in the bottom portion 4Ad1, which is the lower end of the recess 4Ad in the vertical direction VD.
  • the recess 4Ad is formed with an inclined portion 4Ad2 in which the height in the vertical direction VD from the bottom portion 4Ad1 to the opposing surface 4Ab decreases as the distance in the horizontal direction HD from the discharge hole 4Aa increases.
  • the inclined portion 4Ad2 extends in the vertical direction VD from the bottom portion 4Ad1 to the opposing surface 4Ab along the extending direction from the base end 64a1 to the distal end 64a2 (same direction as the horizontal direction HD) of the valve body 64a of the discharge valve 64. It is formed so that the height gradually decreases.
  • the inclined portion 4Ad2 has a first recess 4Ad21 and a second recess 4Ad22 when the opposing surface 4Ab of the upper bearing 4A is viewed along the rotation axis CL.
  • the first recess 4Ad21 is a circular portion having a diameter (first diameter) D1 centered on the discharge hole 4Aa.
  • the second recess 4Ad22 is a circular portion having a diameter (second diameter) D2 centered on the axis Z2 (see FIG. 5) that is spaced from the discharge hole 4Aa.
  • the second recess 4Ad22 is arranged to overlap with the first recess 4Ad21.
  • the refrigerant that has passed through the end of the first recess 4Ad21 further flows radially from the discharge hole 4Aa along the horizontal direction HD, collides with the end of the second recess 4Ad22, and is guided upward in the vertical direction VD.
  • the refrigerant guided upward in the vertical direction VD and reaching the opposing surface 4Ab of the upper bearing 4A is guided into the internal space of the housing 2 through a discharge hole (not shown) provided in the discharge cover 65.
  • the diameter D1 of the first recess 4Ad21 and the diameter D2 of the second recess 4Ad22 satisfy the following formula (1).
  • D1 D2 (1)
  • the diameter D1 and the diameter D2 may be set so as to satisfy the following equation (2). D1 ⁇ D2 (2)
  • the height (first height) H1 from the bottom 4Ad1 to the opposing surface 4Ab in the vertical direction VD of the first recess 4Ad21 is higher than the height H1 from the bottom 4Ad1 to the opposing surface in the vertical direction VD of the second recess 4Ad22.
  • the height (second height) H2 up to 4Ab is lower. It is desirable that the height H1 and the height H2 have a relationship expressed by the following equation (3), for example. 0 ⁇ (H1-H2)/H1 ⁇ 0.5 (3)
  • the discharge hole 4Aa is a hole formed circularly in plan view around an axis Z1 parallel to the rotation axis CL, and has a diameter D0.
  • the discharge hole 4Aa and the first recess 4Ad21 are each formed in a circular shape centered on the axis Z1. It is desirable that the diameter D1 of the first recess 4Ad21 and the diameter D0 of the discharge hole 4Aa satisfy the relationship expressed by the following equation (4). D1 ⁇ 2 ⁇ D0 (4)
  • the inclined part 4Ad2 has a first recessed part 4Ad21 and a second recessed part 4Ad22 in order of decreasing distance from the discharge hole 4Aa, but in other embodiments. There may be.
  • the inclined part 4Ad2 has a first recessed part 4Ad21, a second recessed part 4Ad22, and a third recessed part 4Ad23 in order of shortest distance from the discharge hole 4Aa. Good too.
  • FIG. 6 is a plan view of the upper bearing 4A of the rotary compression section 6A of the first modification as viewed from above along the rotation axis CL.
  • FIG. 7 is a sectional view taken along the line BB of the rotary compression section 6A shown in FIG.
  • the inclined portion 4Ad2 has a first recess 4Ad21, a second recess 4Ad22, and a third recess 4Ad23 when the opposing surface 4Ab of the upper bearing 4A is viewed along the rotation axis CL.
  • the third recess 4Ad23 is a circular portion having a diameter (third diameter) D3 centered on a position spaced apart from the discharge hole 4Aa.
  • the diameter D1 of the first recess 4Ad21, the diameter D2 of the second recess 4Ad22, and the diameter D3 of the third recess 4Ad23 satisfy the following formula (5).
  • the diameter D1, the diameter D2, and the diameter D3 may be set so as to satisfy the following equation (6).
  • the height H2 from the bottom 4Ad1 to the opposing surface 4Ab in the vertical direction VD of the second recess 4Ad22 is higher than the height H1 from the bottom 4Ad1 to the opposing surface 4Ab in the vertical direction VD of the second recess 4Ad22. is lower. Furthermore, the height (third) H3 of the third recess 4Ad23 from the bottom 4Ad1 to the opposing surface 4Ab in the vertical direction VD is lower than the height H2 of the second recess 4Ad22.
  • the height H1, the height H2, and the height H3 have the relationship expressed by the following equation (7), for example. (H1-H2) ⁇ (H2-H3) (7) That is, it is desirable to make the difference between the heights H2 and H3 larger than the difference between the heights H1 and H2 so that the difference in level becomes higher as the distance from the discharge hole 4Aa increases. This is to prevent such excessive pressure loss from occurring because if the distance from the discharge hole 4Aa is short and the level difference is large, the pressure loss when the refrigerant collides with the level difference will be excessive. be.
  • the inclined part 4Ad2 has a first recessed part 4Ad21 and a second recessed part 4Ad22 in order of decreasing distance from the discharge hole 4Aa, but in other embodiments. There may be.
  • the height H of the inclined section 4Ad2 from the bottom section 4Ad1 to the opposing surface 4Ab in the vertical direction VD increases as the distance from the discharge hole 4Aa increases. It may have an inclined shape that gradually becomes lower.
  • FIG. 8 is a plan view of the upper bearing 4A of the rotary compression section 6B of the second modification as viewed from above along the rotation axis CL.
  • FIG. 9 is a sectional view taken along the line CC of the rotary compression section 6B shown in FIG.
  • the inclined portion 4Ad2 has an inclined shape in which the height H from the bottom portion 4Ad1 to the opposing surface 4Ab in the vertical direction VD gradually decreases as the distance from the discharge hole 4Aa increases.
  • the pressure of the refrigerant in the compression chamber 60A exceeds a predetermined pressure and the tip 64a2 of the valve body 64a separates from the discharge hole 4Aa, the discharge valve 64 becomes open and the refrigerant radially flows from the discharge hole 4Aa in the horizontal direction HD. flows along.
  • the refrigerant discharged from the discharge hole 4Aa is guided upward in the vertical direction VD along the shape of the inclined portion 4Ad2.
  • the operator hits a drill (not shown) against the facing surface 4Ab of the upper bearing 4A where the recess 4Ad is not formed, and cuts the facing surface 4Ab, thereby forming the recess 4Ad shown in FIG. process of forming a recess).
  • the operator aligns the center of the drill with the axis Z1 to form the first recess 4Ad21 having a diameter D1 centered on the axis Z1.
  • the operator operates the drill so that the height H1 is from the bottom 4Ad1 to the opposing surface 4Ab.
  • the operator aligns the center of the drill with the axis Z2 to form the second recess 4Ad22 having a diameter D2 centered on the axis Z2.
  • the operator operates the drill so that the height from the bottom portion 4Ad1 to the opposing surface 4Ab is H2.
  • the diameter D2 is made to match the diameter D1
  • the operator forms the second recess 4Ad22 without replacing the drill after forming the first recess 4Ad21.
  • the operator forms the inclined portion 4Ad2 having the first recessed portion 4Ad21 and the second recessed portion 4Ad22.
  • the operator uses a drill to form a discharge hole 4Aa penetrating along the axis Z1 in the bottom 4Ad1 of the recess 4Ad formed in the opposing surface 4Ab of the upper bearing 4A by cutting. Thereafter, the operator fixes the discharge valve 64 at the position of the fastening hole 4Ac of the upper bearing 4A by fastening the fastening bolt 64c to the fastening hole 4Ac of the upper bearing 4A.
  • the rotary compressor 1 of this embodiment described above has the following functions and effects.
  • the rotary compression section 6 is driven by the electric motor 5 rotating the rotating shaft 3.
  • the rotary compression unit 6 gradually reduces the volume of the compression chamber 60A and compresses the refrigerant by rotating the piston rotor 63 within the compression chamber 60A formed by sandwiching the cylinder 60 between the upper bearing 4A and the lower bearing 4B. do.
  • the compressed refrigerant is guided from the discharge hole 4Aa through the discharge valve 64 to the internal space of the housing 2 where the electric motor 5 is disposed.
  • the discharge valve 64 is accommodated in the recess 4Ad formed in the opposing surface 4Ab facing the electric motor 5, and the refrigerant is compressed from the discharge valve 64 toward the recess 4Ad. is discharged. Since the inclined portion is formed in the recess 4Ad, the flow direction of the refrigerant discharged from the discharge valve toward the recess is changed so as to approach the opposite surface stepwise from the bottom. Therefore, the pressure loss of the refrigerant can be suppressed compared to the case where the flow direction of the refrigerant discharged from the discharge valve toward the recess is changed in only one step.
  • the discharge valve 64 opens and the refrigerant is guided.
  • the flow direction of the refrigerant can be changed so as to gradually approach the opposite surface 4Ab from the bottom portion 4Ad1 along the stretching direction.
  • the inclined part 4Ad2 has the first recessed part 4Ad21 and the second recessed part 4Ad22, and is higher than the height H1 from the bottom part 4Ad1 of the first recessed part 4Ad21 to the opposing surface 4Ab.
  • the height H2 from the bottom 4Ad1 of the second recess 4Ad22 to the opposing surface 4Ab is low.
  • the flow direction of the refrigerant discharged from the discharge valve 64 toward the recess 4Ad is arranged in at least two stages at the end of the first recess 4Ad21 and the end of the second recess 4Ad22 so that the flow direction of the refrigerant discharged from the discharge valve 64 approaches the opposite surface 4Ab from the bottom 4Ad1. Be changed. Therefore, the pressure loss of the refrigerant can be further suppressed compared to the case where the flow direction of the refrigerant discharged from the discharge valve 64 toward the recess 4Ad is changed only in one step at the end of the recess 4Ad.
  • the rotary compressor 1 of the present embodiment by making the diameter D1 of the first recess 4Ad21 twice or more the diameter D0 of the discharge hole 4Aa, the refrigerant discharged from the discharge hole 4Aa is transferred to the diameter D0 of the discharge hole 4Aa. It is possible to prevent excessive pressure loss from occurring due to collision with the recess 4Ad at a position less than twice the position.
  • the first recess 4Ad21 and the second recess are formed on the opposing surface 4Ab of the upper bearing 4A.
  • the same cutting tool can be used for processing.
  • the refrigerant is Pressure loss when colliding with the end face of the second recess 4Ad22 can be reduced.
  • the step of forming the recess 4Ad is to cut the opposing surface 4Ab facing the upper bearing 4A, and as the distance from the discharge hole 4Aa increases, the recess 4Ad is formed from the bottom 4Ad1.
  • An inclined portion 4Ad2 is formed with a lower height to the opposing surface 4Ab. Since the recess 4Ad having the inclined portion 4Ad2 is formed by cutting, a bearing with a smaller outer diameter (for example, ⁇ 95 [mm] or less) can be easily produced compared to the case where the upper bearing 4A having the recess 4Ad is formed by casting. can be manufactured.
  • the discharge valve 64 is accommodated in the recess 4Ad formed in the opposing surface 4Ab facing the electric motor 5, and the discharge valve 64 is connected to the recess 4Ad. Compressed refrigerant is discharged toward the Since the inclined portion 4Ad2 is formed in the recess 4Ad, the flow direction of the refrigerant discharged from the discharge valve 64 toward the recess 4Ad is changed so as to approach the opposite surface 4Ab in stages from the bottom 4Ad1. Therefore, the pressure loss of the refrigerant can be suppressed compared to the case where the flow direction of the refrigerant discharged from the discharge valve 64 toward the recess 4Ad is changed in only one step.
  • the first recess 4Ad21 and the second recess 4Ad22 are formed by cutting the opposing surface 4Ab to form the slope 4Ad2, and the slope 4Ad2 is formed from the bottom 4Ad1 of the first recess 4Ad21.
  • a rotary compressor 1 is manufactured in which the height H2 from the bottom 4Ad1 of the second recess 4Ad22 to the opposing surface 4Ab is lower than the height H1 from the opposing surface 4Ab.
  • the flow direction of the refrigerant discharged from the discharge valve 64 toward the recess 4Ad is arranged in at least two stages at the end of the first recess 4Ad21 and the end of the second recess 4Ad22 so that the flow direction of the refrigerant discharged from the discharge valve 64 approaches the opposite surface 4Ab from the bottom 4Ad1. Be changed. Therefore, the pressure loss of the refrigerant can be further suppressed compared to the case where the flow direction of the refrigerant discharged from the discharge valve 64 toward the recess 4Ad is changed only in one step at the end of the recess 4Ad.
  • the opposing surface 4Ab of the upper bearing 4A is cut to form the first recess.
  • the same cutting tool can be used.
  • the rotary compressor (1) described in each embodiment described above can be understood, for example, as follows.
  • a rotary compressor includes a housing (2) having a cylindrical part extending in a vertical direction along an axis, and a compression part (6) housed in the housing and compressing a refrigerant. and a drive section (5) that drives the compression section by rotating a rotation shaft (3) that is housed in the housing and extends along the axis, and the compression section is fixed to the rotation shaft.
  • a piston rotor (63) that rotates eccentrically with respect to the axis; a cylinder (60) that accommodates the piston rotor; a pair of bearings (4A, 4B) that are arranged to sandwich the cylinder and form a compression chamber (60A) that accommodates the piston rotor; a discharge valve (64) that opens and closes the discharge hole (4Aa) for discharging the compressed refrigerant;
  • a recess (4Ad) for accommodating the valve is formed, the discharge hole penetrating along the axis is formed in the bottom (4Ad1) of the recess, and the discharge hole is formed in the recess to accommodate the valve.
  • a sloped portion (4Ad2) is formed in which the height from the bottom portion to the opposing surface decreases as the distance from the hole increases.
  • the compression section is driven by the drive section rotating the rotating shaft.
  • the compression section compresses the refrigerant by rotating a piston rotor within a compression chamber formed by sandwiching a cylinder between a pair of bearings, thereby gradually reducing the volume of the compression chamber.
  • the compressed refrigerant is guided from the discharge hole through the discharge valve to the space where the drive unit is arranged.
  • the discharge valve is housed in the recess formed in the opposing surface facing the drive unit, and the compressed refrigerant is discharged from the discharge valve toward the recess. Ru. Since the inclined portion is formed in the recess, the flow direction of the refrigerant discharged from the discharge valve toward the recess is changed so that it approaches the opposite surface stepwise from the bottom. Therefore, the pressure loss of the refrigerant can be suppressed compared to the case where the flow direction of the refrigerant discharged from the discharge valve toward the recess is changed in only one step.
  • the discharge valve has a base end fixed to the bottom of the recess and a distal end disposed in the discharge hole,
  • the inclined portion is formed along an extending direction from the base end to the distal end of the discharge valve.
  • the inclined portion when the opposing surface of the bearing is viewed along the axis, the inclined portion has a circular shape with the discharge hole as the center. a first recess (4Ad21) formed therein; and a second recess (4Ad22) formed in a circular shape centered on a position spaced from the discharge hole and arranged to overlap with the first recess,
  • the height from the bottom of the first recess to the opposing surface is a first height
  • the height from the bottom of the second recess to the opposing surface is a second height lower than the first height. It is.
  • the inclined portion has the first recess and the second recess, and the bottom of the second recess is lower than the first height from the bottom of the first recess to the opposing surface.
  • the second height from the to the opposing surface is low. Therefore, the flow direction of the refrigerant discharged from the discharge valve toward the recess is changed in at least two stages: at the end of the first recess and at the end of the second recess, so that the flow direction of the refrigerant discharged from the discharge valve toward the recess approaches from the bottom to the opposing surface. Therefore, the pressure loss of the refrigerant can be further suppressed compared to the case where the flow direction of the refrigerant discharged from the discharge valve toward the recess is changed only in one step at the end of the recess.
  • the first diameter of the first recess is twice or more the diameter of the discharge hole. According to the rotary compressor according to the fourth aspect of the present disclosure, by making the first diameter of the first recess twice or more the diameter of the discharge hole, the refrigerant discharged from the discharge hole is It is possible to prevent excessive pressure loss from occurring due to collision with a recess at a position less than twice as large.
  • the second diameter of the second recess is the same as the first diameter of the first recess.
  • the first recess and the second recess are formed on the opposing surfaces of the bearing. The same cutting tool can be used for machining.
  • the second diameter of the second recess is larger than the first diameter of the first recess. According to the rotary compressor according to the sixth aspect of the present disclosure, since the second diameter of the second recess is larger than the first diameter of the first recess, compared to the case where the second diameter is made the same as the first diameter, It is possible to reduce pressure loss when the refrigerant collides with the end face of the second recess.
  • a method for manufacturing a rotary compressor according to a seventh aspect of the present disclosure is a method for manufacturing a rotary compressor, wherein the rotary compressor includes a housing having a cylindrical portion extending in a vertical direction along an axis. , a compression section that is housed in the housing and compresses the refrigerant, and a drive section that is housed in the housing and drives the compression section by rotating a rotating shaft that extends along the axis, the compression section includes a piston rotor that is fixed to the rotating shaft and rotates eccentrically with respect to the axis; a cylinder that accommodates the piston rotor; and a cylinder that rotatably supports the rotating shaft and rotates along the axis.
  • a pair of bearings that are arranged to sandwich the cylinder and form a compression chamber that accommodates the piston rotor; and a discharge hole that is attached to one of the pair of bearings and that discharges the refrigerant compressed in the compression chamber.
  • a discharge valve that opens and closes, and forming a recess for accommodating the discharge valve by cutting an opposing surface of one of the pair of bearings that faces the drive section; forming the discharge hole penetrating the bottom along the axis, and the step of forming the recess increases the height from the bottom to the opposing surface as the distance from the discharge hole increases.
  • a sloped portion with a lower height is formed.
  • the step of forming the recess includes cutting the opposing surface facing one of the driving parts of the pair of bearings, and A sloped portion is formed in which the height from the bottom to the opposing surface decreases as the height increases. Since a recess with an inclined portion is formed by cutting, it is easier to manufacture a bearing with a smaller outer diameter (for example, ⁇ 95 [mm] or less) than when a bearing with a recess is formed by casting. .
  • the discharge valve is accommodated in the recess formed in the facing surface facing the drive part, and the discharge valve is moved from the discharge valve to the recess.
  • the compressed refrigerant is discharged towards. Since the inclined portion is formed in the recess, the flow direction of the refrigerant discharged from the discharge valve toward the recess is changed so that it approaches the opposite surface stepwise from the bottom. Therefore, the pressure loss of the refrigerant can be suppressed compared to the case where the flow direction of the refrigerant discharged from the discharge valve toward the recess is changed in only one step.
  • the opposing surface of the bearing is aligned along the axis by cutting the opposing surface.
  • a first recess is formed in a circular shape centered on the discharge hole, and a second recess formed in a circle centered at a position spaced from the discharge hole and arranged to overlap with the first recess. and the height from the bottom of the first recess to the opposing surface is the first height, and the height from the bottom of the second recess to the opposing surface is the first height.
  • the second height is lower than the second height.
  • the first recess and the second recess are formed by cutting the opposing surfaces to form the inclined portion, and from the bottom of the first recess to the opposing surface.
  • a rotary compressor is manufactured in which the second height from the bottom of the second recess to the opposing surface is lower than the first height. Therefore, the flow direction of the refrigerant discharged from the discharge valve toward the recess is changed in at least two stages: at the end of the first recess and at the end of the second recess, so that the flow direction of the refrigerant discharged from the discharge valve toward the recess approaches from the bottom to the opposing surface. Therefore, the pressure loss of the refrigerant can be further suppressed compared to the case where the flow direction of the refrigerant discharged from the discharge valve toward the recess is changed only in one step at the end of the recess.
  • the first diameter of the first recess is twice or more the diameter of the discharge hole. According to the method for manufacturing a rotary compressor according to the ninth aspect of the present disclosure, by making the first diameter of the first recess twice or more the diameter of the discharge hole, the refrigerant discharged from the discharge hole is It is possible to prevent excessive pressure loss from occurring due to collision with a recess at a position less than twice the diameter.
  • the second diameter of the second recess is the same as the first diameter of the first recess. According to the method for manufacturing a rotary compressor according to the tenth aspect of the present disclosure, since the second diameter of the second recess is the same as the first diameter of the first recess, the opposing surface of the bearing is cut to form the first recess. The same cutting tool can be used to form the second recess.
  • Rotary compressor 2 Housing 3 Rotating shaft 4A Upper bearing 4Aa Discharge hole 4Ab Opposing surface 4Ac Fastening hole 4Ad Recess 4Ad1 Bottom 4Ad2 Inclined part 4Ad21 First recess 4Ad22 Second recess 4Ad23 Third recess 4B Lower bearing 5 Electric motor (drive part ) 6, 6A, 6B Rotary compression part 10 Compressor main body 11 Suction pipe 12 Accumulator 13 Discharge pipe 14 Bracket 15 Inlet pipe 21 Main body part 21a Inner surface 22 Upper lid part 23 Lower lid part 24 Opening part 25 Suction port 60 Cylinder 60A Compression chamber 60B Suction hole 61 Bolt 62 Eccentric shaft 63 Piston rotor 64 Discharge valve 64a Valve body 64a1 Base end 64a2 Tip 64b Retainer 64c Fastening bolt 65 Discharge cover CL Rotation axis FL Installation surface H, H1, H2, H3 Height HD Horizontal direction VD Vertical direction Z1, Z2 Axis

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

Provided is a rotary compressor wherein a rotary compression unit (6) has: a piston rotor; a cylinder that houses the piston rotor; an upper bearing (4A) and a lower bearing that are arranged so as to sandwich the cylinder therebetween and form a compression chamber (60A) that houses the piston rotor; and a discharge valve (64) that is attached to the upper bearing (4A) and opens and closes a discharge hole (4Aa) for discharging the refrigerant compressed in the compression chamber (60A). A facing surface (4Ab) of the upper bearing (4A), facing an electric motor, is formed with a recess (4Ad) that houses the discharge valve (64). A bottom (4Ad1) of the recess (4Ad) is formed with a discharge hole (4Aa) that penetrates therethrough along the axis of rotation. The recess (4Ad) is formed with a slope (4Ad2) where the height from the bottom (4Ad1) to the facing surface (4Ab) decreases as the distance from the discharge hole (4Aa) increases.

Description

ロータリ圧縮機およびロータリ圧縮機の製造方法Rotary compressor and rotary compressor manufacturing method
 本開示は、ロータリ圧縮機およびロータリ圧縮機の製造方法に関するものである。 The present disclosure relates to a rotary compressor and a method for manufacturing a rotary compressor.
 圧縮室内で回転軸に対して偏心して配置されるロータにより冷媒を圧縮するロータリ圧縮機が知られている(例えば、特許文献1参照)。特許文献1に開示されるロータリ圧縮機は、上部軸受の上面を掘り下げて薄肉部を形成し、薄肉部にシリンダ室に向けて貫通する吐出ポートを形成したものである。特許文献1に開示されるロータリ圧縮機は、吐出ポートを短くして容積を縮小することにより、高いポンプ効率を得ている。 A rotary compressor is known that compresses a refrigerant using a rotor arranged eccentrically with respect to a rotating shaft within a compression chamber (see, for example, Patent Document 1). In the rotary compressor disclosed in Patent Document 1, the upper surface of the upper bearing is dug down to form a thin walled portion, and a discharge port that penetrates toward the cylinder chamber is formed in the thin walled portion. The rotary compressor disclosed in Patent Document 1 achieves high pump efficiency by shortening the discharge port and reducing the volume.
特開平11-132178号公報Japanese Patent Application Publication No. 11-132178
 しかしながら、特許文献1に開示されるロータリ圧縮機は、上部軸受の上面を掘り下げて形成された凹所の底部に吐出ポートが設けられるため、吐出ポートから吐出される冷媒ガスが凹所の端面に衝突して大きな圧力損失が発生する可能性がある。特に、小型(例えば、ハウジング内径Φ95[mm]以下)のロータリ圧縮機においては、吐出ポートから凹所の端面までの距離が短いため、圧力損失の発生が顕著となる。 However, in the rotary compressor disclosed in Patent Document 1, the discharge port is provided at the bottom of the recess formed by digging into the upper surface of the upper bearing, so that the refrigerant gas discharged from the discharge port reaches the end surface of the recess. Collisions can cause large pressure losses. Particularly in a small rotary compressor (for example, a housing inner diameter of Φ95 [mm] or less), the distance from the discharge port to the end face of the recess is short, so the pressure loss is significant.
 本開示は、このような事情に鑑みてなされたものであって、軸受に形成された凹所に収容される吐出弁から吐出される冷媒の圧力損失を抑制することが可能なロータリ圧縮機およびロータリ圧縮機の製造方法を提供することを目的とする。 The present disclosure has been made in view of the above circumstances, and provides a rotary compressor and a rotary compressor capable of suppressing pressure loss of refrigerant discharged from a discharge valve housed in a recess formed in a bearing. An object of the present invention is to provide a method for manufacturing a rotary compressor.
 上記課題を解決するために、本開示のロータリ圧縮機は、軸線に沿う鉛直方向に延びた筒状部を有しているハウジングと、前記ハウジングに収容され、冷媒を圧縮する圧縮部と、前記ハウジングに収容され、前記軸線に沿って延びる回転軸を回転させることにより前記圧縮部を駆動する駆動部と、を備え、前記圧縮部は、前記回転軸に固定されるとともに前記軸線に対して偏心して回転するピストンロータと、前記ピストンロータを収容するシリンダと、前記回転軸を前記軸線回りに回転自在に支持するとともに前記軸線に沿って前記シリンダを挟むように配置されて前記ピストンロータを収容する圧縮室を形成する一対の軸受と、一対の前記軸受の一方に取り付けられるとともに前記圧縮室で圧縮された前記冷媒を吐出する吐出孔を開閉させる吐出弁と、を有し、一対の前記軸受の一方の前記駆動部と対向する対向面には、前記吐出弁を収容する凹所が形成されており、前記凹所の底部には、前記軸線に沿って貫通する前記吐出孔が形成されており、前記凹所には、前記吐出孔からの距離が長くなるにつれて前記底部から前記対向面までの高さが低くなる傾斜部が形成されている。 In order to solve the above problems, a rotary compressor of the present disclosure includes: a housing having a cylindrical part extending in a vertical direction along an axis; a compression part housed in the housing and compressing a refrigerant; a drive section that is housed in a housing and drives the compression section by rotating a rotation shaft that extends along the axis, the compression section being fixed to the rotation shaft and biased with respect to the axis. a piston rotor that rotates around the center; a cylinder that accommodates the piston rotor; and a cylinder that rotatably supports the rotating shaft about the axis and is arranged to sandwich the cylinder along the axis to accommodate the piston rotor. a pair of bearings that form a compression chamber; and a discharge valve that is attached to one of the pair of bearings and opens and closes a discharge hole that discharges the refrigerant compressed in the compression chamber; A recess for accommodating the discharge valve is formed in the opposing surface facing one of the driving parts, and the discharge hole is formed at the bottom of the recess to penetrate along the axis. A sloped portion is formed in the recess such that the height from the bottom portion to the opposing surface decreases as the distance from the discharge hole increases.
 また、本開示のロータリ圧縮機の製造方法は、ロータリ圧縮機の製造方法であって、前記ロータリ圧縮機は、軸線に沿う鉛直方向に延びた筒状部を有しているハウジングと、該ハウジングに収容され、冷媒を圧縮する圧縮部と、前記ハウジングに収容され、前記軸線に沿って延びる回転軸を回転させることにより前記圧縮部を駆動する駆動部と、を備え、前記圧縮部は、前記回転軸に固定されるとともに前記軸線に対して偏心して回転するピストンロータと、前記ピストンロータを収容するシリンダと、前記回転軸を前記軸線回りに回転自在に支持するとともに前記軸線に沿って前記シリンダを挟むように配置されて前記ピストンロータを収容する圧縮室を形成する一対の軸受と、一対の前記軸受の一方に取り付けられるとともに前記圧縮室で圧縮された前記冷媒を吐出する吐出孔を開閉させる吐出弁と、を有し、一対の前記軸受の一方の前記駆動部と対向する対向面を切削することにより、前記吐出弁を収容する凹所を形成する工程と、前記凹所の底部に、前記軸線に沿って貫通する前記吐出孔を形成する工程と、を備え、前記凹所を形成する工程は、前記吐出孔からの距離が長くなるにつれて前記底部から前記対向面までの高さが低くなる傾斜部を形成する。 Further, a method of manufacturing a rotary compressor according to the present disclosure is a method of manufacturing a rotary compressor, wherein the rotary compressor includes a housing having a cylindrical portion extending in a vertical direction along an axis; a compression section that is housed in the housing and compresses the refrigerant; and a drive section that is housed in the housing and drives the compression section by rotating a rotating shaft that extends along the axis, and the compression section is configured to compress the refrigerant. a piston rotor that is fixed to a rotating shaft and rotates eccentrically with respect to the axis; a cylinder that accommodates the piston rotor; and a cylinder that rotatably supports the rotating shaft about the axis and rotates along the axis. a pair of bearings that are arranged to sandwich the piston rotor and form a compression chamber that accommodates the piston rotor; and a discharge hole that is attached to one of the pair of bearings and that opens and closes the discharge hole that discharges the refrigerant compressed in the compression chamber. a discharge valve, and forming a recess for accommodating the discharge valve by cutting a facing surface of one of the pair of bearings that faces the driving part; and a step of forming a recess in a bottom of the recess, forming the discharge hole penetrating along the axis, and in the step of forming the recess, the height from the bottom to the opposing surface decreases as the distance from the discharge hole increases. A sloped portion is formed.
 本開示によれば、軸受に形成された凹所に収容される吐出弁から吐出される冷媒の圧力損失を抑制することが可能なロータリ圧縮機およびロータリ圧縮機の製造方法を提供することができる。 According to the present disclosure, it is possible to provide a rotary compressor that can suppress pressure loss of refrigerant discharged from a discharge valve housed in a recess formed in a bearing, and a method for manufacturing the rotary compressor. .
本開示の一実施形態に係るロータリ圧縮機を示した縦断面図である。1 is a longitudinal cross-sectional view showing a rotary compressor according to an embodiment of the present disclosure. 図1のロータリ圧縮機が設置面上に設けられた状態を示した側面図である。FIG. 2 is a side view showing the rotary compressor of FIG. 1 installed on an installation surface. ロータリ圧縮部の上部軸受を回転軸線に沿って上方からみた平面図である。FIG. 3 is a plan view of the upper bearing of the rotary compression section viewed from above along the rotation axis. 図3に示すロータリ圧縮部のA-A矢視断面図である。4 is a cross-sectional view taken along the line AA of the rotary compression section shown in FIG. 3. FIG. 図3に示すロータリ圧縮部の吐出孔の近傍の部分拡大図である。4 is a partially enlarged view of the vicinity of a discharge hole of the rotary compression section shown in FIG. 3. FIG. 第1変形例のロータリ圧縮部の上部軸受を回転軸線に沿って上方からみた平面図である。It is a top view of the upper bearing of the rotary compression part of a 1st modification seen from above along a rotational axis. 図6に示すロータリ圧縮部のB-B矢視断面図である。7 is a sectional view taken along the line BB of the rotary compression section shown in FIG. 6. FIG. 第2変形例のロータリ圧縮部の上部軸受を回転軸線に沿って上方からみた平面図である。It is a top view of the upper bearing of the rotary compression part of a 2nd modification seen from above along a rotation axis. 図8に示すロータリ圧縮部のC-C矢視断面図である。9 is a sectional view taken along the line CC of the rotary compression section shown in FIG. 8. FIG.
 以下に、本開示に係る一実施形態について、図面を参照して説明する。
 図1に示すように、本実施形態に係るロータリ圧縮機1は、例えば空気調和機や冷凍装置などに用いられる密閉型の電動ロータリ圧縮機とされている。ロータリ圧縮機1は、圧縮機本体10とアキュムレータ12とを備えている。アキュムレータ12は、圧縮機本体10に対して吸入管11を介して接続されている。
An embodiment according to the present disclosure will be described below with reference to the drawings.
As shown in FIG. 1, a rotary compressor 1 according to the present embodiment is a hermetic electric rotary compressor used, for example, in an air conditioner or a refrigeration device. The rotary compressor 1 includes a compressor main body 10 and an accumulator 12. The accumulator 12 is connected to the compressor main body 10 via a suction pipe 11.
 圧縮機本体10は、略円筒形状のハウジング2と、回転軸3と、電動モータ(駆動部)5と、ロータリ圧縮部6とを備えている。回転軸3の回転軸線CLは、ハウジング2の中心軸線と一致している。回転軸3は、延在方向が上下方向となるように配置され、ハウジング2内で回転軸線CL回りに回転する。 The compressor main body 10 includes a substantially cylindrical housing 2, a rotating shaft 3, an electric motor (drive section) 5, and a rotary compression section 6. The rotation axis CL of the rotation shaft 3 coincides with the central axis of the housing 2. The rotating shaft 3 is arranged so that its extension direction is the vertical direction, and rotates around the rotation axis CL within the housing 2.
 ハウジング2は、密閉型で上下方向に延在している。ハウジング2は、回転軸線CLに沿う鉛直方向VDに延びた円筒状をなす本体部(筒状部)21と、本体部21の上下の開口を閉塞する上部蓋部22及び下部蓋部23とを備えている。 The housing 2 is of a closed type and extends in the vertical direction. The housing 2 includes a cylindrical main body portion (cylindrical portion) 21 extending in a vertical direction VD along the rotation axis CL, and an upper lid portion 22 and a lower lid portion 23 that close the upper and lower openings of the main body portion 21. We are prepared.
 本体部21の下方には、複数の脚部7が固定されている。各脚部7は、所定角度間隔を空けて本体部21の周方向に配置されている。各脚部7は、図2に示すように、防振ゴム8を介して設置面FLに固定されている。 A plurality of legs 7 are fixed below the main body 21. The legs 7 are arranged in the circumferential direction of the main body 21 at predetermined angular intervals. As shown in FIG. 2, each leg portion 7 is fixed to the installation surface FL via vibration-proof rubber 8.
 ハウジング2は、側壁下部におけるシリンダ60の外周面に対向する位置に、開口部24が形成されている。シリンダ60には、開口部24に対向した位置において、シリンダ内の所定位置まで連通する吸入ポート25が形成されている。 The housing 2 has an opening 24 formed at a position facing the outer circumferential surface of the cylinder 60 at the lower part of the side wall. A suction port 25 is formed in the cylinder 60 at a position facing the opening 24 and communicates with a predetermined position within the cylinder.
 ハウジング2の底部には、潤滑油を貯留する油溜まりが形成されている。油の初期封入時における油溜まりの液面は、ロータリ圧縮部6の上方に位置している。これにより、ロータリ圧縮部6は、油溜まりの中で駆動される。 An oil reservoir is formed at the bottom of the housing 2 to store lubricating oil. The liquid level of the oil reservoir when the oil is initially filled is located above the rotary compression section 6. Thereby, the rotary compression section 6 is driven in the oil pool.
 上部蓋部22には、吐出管13と端子台30が設けられている。吐出管13は、上部蓋部22の厚さ方向に貫通し、下部がハウジング2内に配置されており、上部がハウジング2の外に配置されている。吐出管13は、圧縮された冷媒をハウジング2の外部へ吐出する。端子台30は、電動モータ5に給電する3つの給電端子31が設けられている。給電端子31には、図示しないインバータ装置から3相の電力が供給される。 The upper lid part 22 is provided with a discharge pipe 13 and a terminal block 30. The discharge pipe 13 penetrates the upper lid portion 22 in the thickness direction, and has a lower portion disposed inside the housing 2 and an upper portion disposed outside the housing 2 . The discharge pipe 13 discharges the compressed refrigerant to the outside of the housing 2 . The terminal block 30 is provided with three power supply terminals 31 for supplying power to the electric motor 5. Three-phase power is supplied to the power supply terminal 31 from an inverter device (not shown).
 アキュムレータ12は、圧縮機本体10に供給するに先立って冷媒を気液分離するため用いられる。アキュムレータ12は、略円筒形状とされており、ブラケット14を介してハウジング2の外周面に固定されている。アキュムレータ12の上部には、図示しない蒸発器から導かれた冷媒を導入するための入口管15が設けられている。アキュムレータ12には、内部の冷媒を圧縮機本体10に吸入させるための吸入管11が接続されている。吸入管11は、ハウジング2の開口部24を通して、吸入ポート25に接続されている。アキュムレータ12は、吸入管11を介して気相の冷媒をロータリ圧縮部6へ供給する。 The accumulator 12 is used to separate the refrigerant into gas and liquid before supplying it to the compressor main body 10. The accumulator 12 has a substantially cylindrical shape and is fixed to the outer peripheral surface of the housing 2 via a bracket 14. An inlet pipe 15 is provided at the top of the accumulator 12 for introducing refrigerant led from an evaporator (not shown). A suction pipe 11 for causing internal refrigerant to be sucked into the compressor main body 10 is connected to the accumulator 12 . Suction pipe 11 is connected to suction port 25 through opening 24 of housing 2 . The accumulator 12 supplies gaseous refrigerant to the rotary compression section 6 via the suction pipe 11 .
 電動モータ5は、ハウジング2内の上下方向の中央部に収容されている。電動モータ5は、ロータ51と、ステータ52とを備えている。ロータ51は、回転軸3の外周面に固定され、ロータリ圧縮部6の上方に配置されている。ステータ52は、ロータ51の外周面を囲むように配置され、ハウジング2の本体部21の内面21aに固定されている。
 ステータ52に対して、各給電端子31から配線32を介して電力が供給される。電動モータ5は、給電端子31から供給された電力によって回転軸3を回転させることにより、ロータリ圧縮部6を駆動する。
The electric motor 5 is housed in the center of the housing 2 in the vertical direction. The electric motor 5 includes a rotor 51 and a stator 52. The rotor 51 is fixed to the outer peripheral surface of the rotating shaft 3 and is arranged above the rotary compression section 6 . The stator 52 is arranged to surround the outer peripheral surface of the rotor 51 and is fixed to the inner surface 21 a of the main body 21 of the housing 2 .
Electric power is supplied to the stator 52 from each power supply terminal 31 via the wiring 32 . The electric motor 5 drives the rotary compression section 6 by rotating the rotating shaft 3 using electric power supplied from the power supply terminal 31 .
 ロータリ圧縮部6は、ハウジング2に収容され、冷媒を圧縮する装置である。ロータリ圧縮部6は、上部軸受4A及び下部軸受4Bによって上下から挟まれた状態で配置されている。上部軸受4Aと下部軸受4Bは、それぞれ金属材料から形成され、ロータリ圧縮部6を構成するシリンダ60にボルト61で固定されている。なお、回転軸3は、上部軸受4Aと下部軸受4Bによって回転軸線CL回りに回転自在に支持されている。 The rotary compression unit 6 is a device that is housed in the housing 2 and compresses refrigerant. The rotary compression section 6 is placed between the upper bearing 4A and the lower bearing 4B from above and below. The upper bearing 4A and the lower bearing 4B are each made of a metal material and are fixed to a cylinder 60 that constitutes the rotary compression section 6 with bolts 61. Note that the rotating shaft 3 is rotatably supported around the rotational axis CL by an upper bearing 4A and a lower bearing 4B.
 ロータリ圧縮部6は、電動モータ5の下方でハウジング2内の底部に配置されている。ロータリ圧縮部6は、上部軸受4Aと、下部軸受4Bと、シリンダ60と、偏心軸部62と、ピストンロータ63と、吐出弁64(図3参照)と、を備えている。 The rotary compression section 6 is arranged at the bottom of the housing 2 below the electric motor 5. The rotary compression section 6 includes an upper bearing 4A, a lower bearing 4B, a cylinder 60, an eccentric shaft section 62, a piston rotor 63, and a discharge valve 64 (see FIG. 3).
 シリンダ60は、圧縮室60Aと、吸入孔60Bと、吐出孔(図示せず)とが形成されている。圧縮室60Aは、シリンダ60の内部に形成されている。圧縮室60A内には、ピストンロータ63が収容されている。上部軸受4Aおよび下部軸受4Bは、回転軸線CLに沿ってシリンダ60を挟むように配置されてピストンロータ63を収容する圧縮室60Aを形成する。 The cylinder 60 is formed with a compression chamber 60A, a suction hole 60B, and a discharge hole (not shown). The compression chamber 60A is formed inside the cylinder 60. A piston rotor 63 is housed within the compression chamber 60A. The upper bearing 4A and the lower bearing 4B are arranged to sandwich the cylinder 60 along the rotation axis CL, and form a compression chamber 60A that accommodates the piston rotor 63.
 ロータリ圧縮部6は、ハウジング2の本体部21の内面21aに対して固定されている。具体的には、シリンダ60を挟み込んでいる上部軸受4Aが、ハウジング2の本体部21の内面21aに対して固定されている。上部軸受4Aは、ハウジング2の周方向の複数箇所に栓溶接を行うことによって固定される。なお、栓溶接に代えて、焼き嵌め、冷やし嵌め等を用いても良い。 The rotary compression part 6 is fixed to the inner surface 21a of the main body part 21 of the housing 2. Specifically, the upper bearing 4A that sandwiches the cylinder 60 is fixed to the inner surface 21a of the main body portion 21 of the housing 2. The upper bearing 4A is fixed by plug welding at multiple locations in the circumferential direction of the housing 2. Note that instead of plug welding, shrink fitting, cold fitting, etc. may be used.
 偏心軸部62は、回転軸3の下端部に設けられ、ピストンロータ63の内側において回転軸3の中心軸から直交する方向にオフセット(偏心)した状態で設けられている。
 ピストンロータ63は、シリンダ60の内径よりも小さい外径の円筒状をなしてシリンダ60の内側に配置され、偏心軸部62の外周に装着された状態で固定されている。ピストンロータ63は、回転軸3の回転に伴って回転軸線CLに対して偏心して回転する。
The eccentric shaft portion 62 is provided at the lower end of the rotating shaft 3 , and is provided inside the piston rotor 63 so as to be offset (eccentric) in a direction orthogonal to the central axis of the rotating shaft 3 .
The piston rotor 63 has a cylindrical shape with an outer diameter smaller than the inner diameter of the cylinder 60, is disposed inside the cylinder 60, and is fixedly attached to the outer periphery of the eccentric shaft portion 62. The piston rotor 63 rotates eccentrically with respect to the rotation axis CL as the rotation shaft 3 rotates.
 吸入孔60Bは、シリンダ60の内部に冷媒を導くための孔であり、回転軸線CLに対して直交する方向に形成されている。シリンダ60に形成された吐出孔4Aa(図4参照)から吐出された高圧冷媒は、吐出カバー65と上部軸受4Aとの間に形成された空間内に導かれた後に、吐出カバー65に設けられた吐出孔(図示略)を介して、ハウジング2の内部空間に導かれる。 The suction hole 60B is a hole for guiding the refrigerant into the interior of the cylinder 60, and is formed in a direction perpendicular to the rotation axis CL. The high-pressure refrigerant discharged from the discharge hole 4Aa (see FIG. 4) formed in the cylinder 60 is guided into the space formed between the discharge cover 65 and the upper bearing 4A, and then the high-pressure refrigerant is introduced into the space provided in the discharge cover 65. The liquid is introduced into the internal space of the housing 2 through a discharge hole (not shown).
 上述したロータリ圧縮機1は以下のように動作する。図示しない蒸発器から導かれた冷媒が入口管15を介してアキュムレータ12内に取り込まれる。冷媒は、アキュムレータ12内で気液分離され、その気相が吸入管11を介してロータリ圧縮部6に導かれる。ロータリ圧縮部6では、吸入孔60Bを介して圧縮室60Aに冷媒が導かれる。 The rotary compressor 1 described above operates as follows. Refrigerant led from an evaporator (not shown) is taken into the accumulator 12 via an inlet pipe 15. The refrigerant is separated into gas and liquid within the accumulator 12, and the gas phase is led to the rotary compression section 6 via the suction pipe 11. In the rotary compression section 6, refrigerant is introduced into the compression chamber 60A via the suction hole 60B.
 そして、ピストンロータ63の偏心転動により、圧縮室60Aの容積が徐々に減少して冷媒が圧縮される。圧縮後の冷媒は、吐出孔4Aaを介して吐出カバー65内の空間を経た後にハウジング2の内部空間へ導かれる。ハウジング2の内部空間に吐出された冷媒は、ハウジング2の上部に設けられた吐出管13から図示しない凝縮器へと導かれる。 Then, due to the eccentric rolling of the piston rotor 63, the volume of the compression chamber 60A gradually decreases, and the refrigerant is compressed. The compressed refrigerant is guided to the internal space of the housing 2 after passing through the space within the discharge cover 65 via the discharge hole 4Aa. The refrigerant discharged into the internal space of the housing 2 is guided from a discharge pipe 13 provided at the upper part of the housing 2 to a condenser (not shown).
 次に、図3から図5を参照して、ロータリ圧縮部6の上部軸受4Aおよび吐出弁64について説明する。図3は、ロータリ圧縮部6の上部軸受4Aを回転軸線CLに沿って上方からみた平面図である。図4は、図3に示すロータリ圧縮部6のA-A矢視断面図である。図3および図4は、上部軸受4Aから吐出カバー65を取り外した状態を示している。図5は、図3に示すロータリ圧縮部6の吐出孔4Aaの近傍の部分拡大図である。 Next, the upper bearing 4A of the rotary compression section 6 and the discharge valve 64 will be explained with reference to FIGS. 3 to 5. FIG. 3 is a plan view of the upper bearing 4A of the rotary compression section 6 viewed from above along the rotation axis CL. FIG. 4 is a sectional view taken along the line AA of the rotary compression section 6 shown in FIG. 3 and 4 show a state in which the discharge cover 65 is removed from the upper bearing 4A. FIG. 5 is a partially enlarged view of the vicinity of the discharge hole 4Aa of the rotary compression section 6 shown in FIG. 3.
 図3および図4に示すように、上部軸受4Aには、吐出弁64が取り付けられている。吐出弁64は、圧縮室60Aで圧縮された冷媒を吐出する吐出孔4Aaを開閉させる装置である。吐出弁64は、弁体64aと、リテーナ64bと、締結ボルト64cと、を有する。 As shown in FIGS. 3 and 4, a discharge valve 64 is attached to the upper bearing 4A. The discharge valve 64 is a device that opens and closes the discharge hole 4Aa that discharges the refrigerant compressed in the compression chamber 60A. The discharge valve 64 includes a valve body 64a, a retainer 64b, and a fastening bolt 64c.
 弁体64aは、圧縮室60A内の冷媒の圧力が所定の圧力以下である場合に吐出孔4Aaを閉止する付勢力を有する板状部材である。弁体64aの基端部64a1は、締結ボルト64cにより上部軸受4Aの締結穴4Acの位置に固定される。弁体64aの先端部64a2は、吐出孔4Aaに配置されて吐出孔4Aaを閉止する。 The valve body 64a is a plate-like member that has a biasing force that closes the discharge hole 4Aa when the pressure of the refrigerant in the compression chamber 60A is below a predetermined pressure. The base end 64a1 of the valve body 64a is fixed to the position of the fastening hole 4Ac of the upper bearing 4A by a fastening bolt 64c. The tip 64a2 of the valve body 64a is disposed in the discharge hole 4Aa and closes the discharge hole 4Aa.
 上部軸受4Aの電動モータ5と対向する対向面4Abには、吐出弁64を収容する凹所4Adが形成されている。凹所4Adの鉛直方向VDの下端である底部4Ad1には、回転軸線CLに沿った鉛直方向VDに向けて貫通する吐出孔4Aaが形成されている。 A recess 4Ad that accommodates the discharge valve 64 is formed in the opposing surface 4Ab of the upper bearing 4A that faces the electric motor 5. A discharge hole 4Aa penetrating in the vertical direction VD along the rotation axis CL is formed in the bottom portion 4Ad1, which is the lower end of the recess 4Ad in the vertical direction VD.
 凹所4Adには、吐出孔4Aaからの水平方向HDの距離が長くなるにつれて底部4Ad1から対向面4Abまでの鉛直方向VDの高さが低くなる傾斜部4Ad2が形成されている。傾斜部4Ad2は、吐出弁64の弁体64aの基端部64a1から先端部64a2に向けた延伸方向(水平方向HDと同方向)に沿って、底部4Ad1から対向面4Abまでの鉛直方向VDの高さが漸次低くなるように形成されている。 The recess 4Ad is formed with an inclined portion 4Ad2 in which the height in the vertical direction VD from the bottom portion 4Ad1 to the opposing surface 4Ab decreases as the distance in the horizontal direction HD from the discharge hole 4Aa increases. The inclined portion 4Ad2 extends in the vertical direction VD from the bottom portion 4Ad1 to the opposing surface 4Ab along the extending direction from the base end 64a1 to the distal end 64a2 (same direction as the horizontal direction HD) of the valve body 64a of the discharge valve 64. It is formed so that the height gradually decreases.
 図3に示すように、傾斜部4Ad2は、上部軸受4Aの対向面4Abを回転軸線CLに沿ってみた場合、第1凹部4Ad21と、第2凹部4Ad22と、を有する。第1凹部4Ad21は、吐出孔4Aaを中心として直径(第1直径)D1を有する円形に形成される部分である。第2凹部4Ad22は、吐出孔4Aaから離間した軸線Z2(図5参照)の位置を中心として直径(第2直径)D2を有する円形に形成される部分である。第2凹部4Ad22は、第1凹部4Ad21と重なるように配置される。 As shown in FIG. 3, the inclined portion 4Ad2 has a first recess 4Ad21 and a second recess 4Ad22 when the opposing surface 4Ab of the upper bearing 4A is viewed along the rotation axis CL. The first recess 4Ad21 is a circular portion having a diameter (first diameter) D1 centered on the discharge hole 4Aa. The second recess 4Ad22 is a circular portion having a diameter (second diameter) D2 centered on the axis Z2 (see FIG. 5) that is spaced from the discharge hole 4Aa. The second recess 4Ad22 is arranged to overlap with the first recess 4Ad21.
 図5に矢印で示すように、圧縮室60A内の冷媒の圧力が所定の圧力を上回って弁体64aの先端部64a2が吐出孔4Aaから離れると、吐出弁64が開状態となり、冷媒が吐出孔4Aaから放射状に水平方向HDに沿って流れる。吐出孔4Aaから吐出された冷媒は、第1凹部4Ad21の端部(軸線Z1からD1/2の位置)に衝突し、鉛直方向VDの上方に導かれる。 As shown by the arrow in FIG. 5, when the pressure of the refrigerant in the compression chamber 60A exceeds a predetermined pressure and the tip 64a2 of the valve body 64a separates from the discharge hole 4Aa, the discharge valve 64 becomes open and the refrigerant is discharged. The water flows radially from the hole 4Aa along the horizontal direction HD. The refrigerant discharged from the discharge hole 4Aa collides with the end of the first recess 4Ad21 (at a position D1/2 from the axis Z1) and is guided upward in the vertical direction VD.
 第1凹部4Ad21の端部を通過した冷媒は、吐出孔4Aaから放射状に水平方向HDに沿って更に流れ、第2凹部4Ad22の端部に衝突し、鉛直方向VDの上方に導かれる。鉛直方向VDの上方に導かれて上部軸受4Aの対向面4Abに到達した冷媒は、吐出カバー65に設けられた吐出孔(図示略)を介して、ハウジング2の内部空間に導かれる。 The refrigerant that has passed through the end of the first recess 4Ad21 further flows radially from the discharge hole 4Aa along the horizontal direction HD, collides with the end of the second recess 4Ad22, and is guided upward in the vertical direction VD. The refrigerant guided upward in the vertical direction VD and reaching the opposing surface 4Ab of the upper bearing 4A is guided into the internal space of the housing 2 through a discharge hole (not shown) provided in the discharge cover 65.
 第1凹部4Ad21の直径D1と第2凹部4Ad22の直径D2は、以下の式(1)を満たすようにするのが好ましい。
  D1=D2              (1)
 また、直径D1と直径D2は、以下の式(2)を満たすように設定してもよい。
  D1<D2              (2)
It is preferable that the diameter D1 of the first recess 4Ad21 and the diameter D2 of the second recess 4Ad22 satisfy the following formula (1).
D1=D2 (1)
Further, the diameter D1 and the diameter D2 may be set so as to satisfy the following equation (2).
D1<D2 (2)
 図4に示すように、第1凹部4Ad21の鉛直方向VDにおける底部4Ad1から対向面4Abまでの高さ(第1高さ)H1よりも、第2凹部4Ad22の鉛直方向VDにおける底部4Ad1から対向面4Abまでの高さ(第2高さ)H2の方が低くなっている。高さH1と高さH2は、例えば、以下の式(3)の関係とするのが望ましい。
  0<(H1-H2)/H1≦0.5     (3)
As shown in FIG. 4, the height (first height) H1 from the bottom 4Ad1 to the opposing surface 4Ab in the vertical direction VD of the first recess 4Ad21 is higher than the height H1 from the bottom 4Ad1 to the opposing surface in the vertical direction VD of the second recess 4Ad22. The height (second height) H2 up to 4Ab is lower. It is desirable that the height H1 and the height H2 have a relationship expressed by the following equation (3), for example.
0<(H1-H2)/H1≦0.5 (3)
 図4に示すように、吐出孔4Aaは、回転軸線CLと平行な軸線Z1を中心に平面視が円形に形成される孔であり、直径D0を有する。吐出孔4Aaと第1凹部4Ad21は、それぞれ軸線Z1を中心に円形に形成されている。第1凹部4Ad21の直径D1と、吐出孔4Aaの直径D0は、以下の式(4)の関係とするのが望ましい。
  D1≧2・D0            (4)
As shown in FIG. 4, the discharge hole 4Aa is a hole formed circularly in plan view around an axis Z1 parallel to the rotation axis CL, and has a diameter D0. The discharge hole 4Aa and the first recess 4Ad21 are each formed in a circular shape centered on the axis Z1. It is desirable that the diameter D1 of the first recess 4Ad21 and the diameter D0 of the discharge hole 4Aa satisfy the relationship expressed by the following equation (4).
D1≧2・D0 (4)
 図3から図5に示すロータリ圧縮部6は、傾斜部4Ad2が、吐出孔4Aaからの距離が短い順に、第1凹部4Ad21と第2凹部4Ad22とを有するものであったが、他の態様であってもよい。例えば、第1変形例のロータリ圧縮部6Aのように、傾斜部4Ad2が、吐出孔4Aaからの距離が短い順に、第1凹部4Ad21と第2凹部4Ad22と第3凹部4Ad23を有するものであってもよい。 In the rotary compression part 6 shown in FIGS. 3 to 5, the inclined part 4Ad2 has a first recessed part 4Ad21 and a second recessed part 4Ad22 in order of decreasing distance from the discharge hole 4Aa, but in other embodiments. There may be. For example, like the rotary compression part 6A of the first modification, the inclined part 4Ad2 has a first recessed part 4Ad21, a second recessed part 4Ad22, and a third recessed part 4Ad23 in order of shortest distance from the discharge hole 4Aa. Good too.
 図6は、第1変形例のロータリ圧縮部6Aの上部軸受4Aを回転軸線CLに沿って上方からみた平面図である。図7は、図6に示すロータリ圧縮部6AのB-B矢視断面図である。 FIG. 6 is a plan view of the upper bearing 4A of the rotary compression section 6A of the first modification as viewed from above along the rotation axis CL. FIG. 7 is a sectional view taken along the line BB of the rotary compression section 6A shown in FIG.
 図6に示すように、傾斜部4Ad2は、上部軸受4Aの対向面4Abを回転軸線CLに沿ってみた場合、第1凹部4Ad21と、第2凹部4Ad22と、第3凹部4Ad23とを有する。第3凹部4Ad23は、吐出孔4Aaから離間した位置を中心として直径(第3直径)D3を有する円形に形成される部分である。 As shown in FIG. 6, the inclined portion 4Ad2 has a first recess 4Ad21, a second recess 4Ad22, and a third recess 4Ad23 when the opposing surface 4Ab of the upper bearing 4A is viewed along the rotation axis CL. The third recess 4Ad23 is a circular portion having a diameter (third diameter) D3 centered on a position spaced apart from the discharge hole 4Aa.
 第1凹部4Ad21の直径D1と第2凹部4Ad22の直径D2と第3凹部4Ad23の直径D3は、以下の式(5)を満たすようにするのが好ましい。
  D1=D2=D3           (5)
 また、直径D1と直径D2と直径D3は、以下の式(6)を満たすように設定してもよい。
  D1<D2<D3           (6)
It is preferable that the diameter D1 of the first recess 4Ad21, the diameter D2 of the second recess 4Ad22, and the diameter D3 of the third recess 4Ad23 satisfy the following formula (5).
D1=D2=D3 (5)
Further, the diameter D1, the diameter D2, and the diameter D3 may be set so as to satisfy the following equation (6).
D1<D2<D3 (6)
 図7に示すように、第2凹部4Ad22の鉛直方向VDにおける底部4Ad1から対向面4Abまでの高さH1よりも、第2凹部4Ad22の鉛直方向VDにおける底部4Ad1から対向面4Abまでの高さH2の方が低くなっている。さらに、第2凹部4Ad22の高さH2よりも、第3凹部4Ad23の鉛直方向VDにおける底部4Ad1から対向面4Abまでの高さ(第3)H3の方が低くなっている。 As shown in FIG. 7, the height H2 from the bottom 4Ad1 to the opposing surface 4Ab in the vertical direction VD of the second recess 4Ad22 is higher than the height H1 from the bottom 4Ad1 to the opposing surface 4Ab in the vertical direction VD of the second recess 4Ad22. is lower. Furthermore, the height (third) H3 of the third recess 4Ad23 from the bottom 4Ad1 to the opposing surface 4Ab in the vertical direction VD is lower than the height H2 of the second recess 4Ad22.
 高さH1と高さH2と高さH3は、例えば、以下の式(7)の関係とするのが望ましい。
  (H1-H2)<(H2-H3)    (7)
 すなわち、吐出孔4Aaからの距離が長くなるほど段差が高くなるように、高さH1と高さH2との差よりも、高さH2と高さH3との差を大きくするのが望ましい。これは、吐出孔4Aaからの距離が短い位置で段差が大きいと冷媒が段差に衝突する際の圧力損失が過大となってしまうため、このような過大な圧力損失が発生しないようにするためである。
It is desirable that the height H1, the height H2, and the height H3 have the relationship expressed by the following equation (7), for example.
(H1-H2)<(H2-H3) (7)
That is, it is desirable to make the difference between the heights H2 and H3 larger than the difference between the heights H1 and H2 so that the difference in level becomes higher as the distance from the discharge hole 4Aa increases. This is to prevent such excessive pressure loss from occurring because if the distance from the discharge hole 4Aa is short and the level difference is large, the pressure loss when the refrigerant collides with the level difference will be excessive. be.
 図3から図5に示すロータリ圧縮部6は、傾斜部4Ad2が、吐出孔4Aaからの距離が短い順に、第1凹部4Ad21と第2凹部4Ad22とを有するものであったが、他の態様であってもよい。例えば、図9に示す第2変形例のロータリ圧縮部6Bのように、傾斜部4Ad2は、吐出孔4Aaからの距離が長くなるにつれて鉛直方向VDにおける底部4Ad1から対向面4Abまでの高さHが漸次低くなる傾斜した形状を有するものとしてもよい。 In the rotary compression part 6 shown in FIGS. 3 to 5, the inclined part 4Ad2 has a first recessed part 4Ad21 and a second recessed part 4Ad22 in order of decreasing distance from the discharge hole 4Aa, but in other embodiments. There may be. For example, as in the rotary compression section 6B of the second modification shown in FIG. 9, the height H of the inclined section 4Ad2 from the bottom section 4Ad1 to the opposing surface 4Ab in the vertical direction VD increases as the distance from the discharge hole 4Aa increases. It may have an inclined shape that gradually becomes lower.
 図8は、第2変形例のロータリ圧縮部6Bの上部軸受4Aを回転軸線CLに沿って上方からみた平面図である。図9は、図8に示すロータリ圧縮部6BのC-C矢視断面図である。 FIG. 8 is a plan view of the upper bearing 4A of the rotary compression section 6B of the second modification as viewed from above along the rotation axis CL. FIG. 9 is a sectional view taken along the line CC of the rotary compression section 6B shown in FIG.
 図9に示すように、傾斜部4Ad2は、吐出孔4Aaからの距離が長くなるにつれて鉛直方向VDにおける底部4Ad1から対向面4Abまでの高さHが漸次低くなる傾斜した形状を有する。圧縮室60A内の冷媒の圧力が所定の圧力を上回って弁体64aの先端部64a2が吐出孔4Aaから離れると、吐出弁64が開状態となり、冷媒が吐出孔4Aaから放射状に水平方向HDに沿って流れる。吐出孔4Aaから吐出された冷媒は、傾斜部4Ad2の形状に沿って、鉛直方向VDの上方に導かれる。 As shown in FIG. 9, the inclined portion 4Ad2 has an inclined shape in which the height H from the bottom portion 4Ad1 to the opposing surface 4Ab in the vertical direction VD gradually decreases as the distance from the discharge hole 4Aa increases. When the pressure of the refrigerant in the compression chamber 60A exceeds a predetermined pressure and the tip 64a2 of the valve body 64a separates from the discharge hole 4Aa, the discharge valve 64 becomes open and the refrigerant radially flows from the discharge hole 4Aa in the horizontal direction HD. flows along. The refrigerant discharged from the discharge hole 4Aa is guided upward in the vertical direction VD along the shape of the inclined portion 4Ad2.
 次に、本実施形態のロータリ圧縮機1の製造方法について説明する。以下では、ロータリ圧縮機1の製造方法のうち、上部軸受4Aに凹所4Adおよび吐出孔4Aaを形成する工程について説明し、他の工程についての説明を省略する。 Next, a method for manufacturing the rotary compressor 1 of this embodiment will be described. In the method for manufacturing the rotary compressor 1, the process of forming the recess 4Ad and the discharge hole 4Aa in the upper bearing 4A will be described below, and the description of other processes will be omitted.
 作業者は、凹所4Adが形成されていない上部軸受4Aの対向面4Abに、ドリル(図示略)を突き当て、対向面4Abを切削することにより、図5に示す凹所4Adを形成する(凹所を形成する工程)。作業者は、第1凹部4Ad21を座繰り加工により形成する際に、ドリルの中心を軸線Z1に一致させ、軸線Z1を中心とした直径D1の第1凹部4Ad21を形成する。作業者は、底部4Ad1から対向面4Abまで高さH1となるようにドリルを動作させる。 The operator hits a drill (not shown) against the facing surface 4Ab of the upper bearing 4A where the recess 4Ad is not formed, and cuts the facing surface 4Ab, thereby forming the recess 4Ad shown in FIG. process of forming a recess). When forming the first recess 4Ad21 by spot boring, the operator aligns the center of the drill with the axis Z1 to form the first recess 4Ad21 having a diameter D1 centered on the axis Z1. The operator operates the drill so that the height H1 is from the bottom 4Ad1 to the opposing surface 4Ab.
 次に、作業者は、第2凹部4Ad22を座繰り加工により形成する際に、ドリルの中心を軸線Z2に一致させ、軸線Z2を中心とした直径D2の第2凹部4Ad22を形成する。作業者は、底部4Ad1から対向面4Abまで高さH2となるようにドリルを動作させる。なお、直径D2を直径D1と一致させる場合、作業者は、第1凹部4Ad21を形成した後に、ドリルを交換せずに第2凹部4Ad22を形成する。以上により、作業者は、第1凹部4Ad21および第2凹部4Ad22を有する傾斜部4Ad2を形成する。 Next, when forming the second recess 4Ad22 by spot boring, the operator aligns the center of the drill with the axis Z2 to form the second recess 4Ad22 having a diameter D2 centered on the axis Z2. The operator operates the drill so that the height from the bottom portion 4Ad1 to the opposing surface 4Ab is H2. Note that when the diameter D2 is made to match the diameter D1, the operator forms the second recess 4Ad22 without replacing the drill after forming the first recess 4Ad21. Through the above steps, the operator forms the inclined portion 4Ad2 having the first recessed portion 4Ad21 and the second recessed portion 4Ad22.
 次に、作業者は、上部軸受4Aの対向面4Abに形成された凹所4Adの底部4Ad1に、軸線Z1に沿って貫通する吐出孔4Aaを、ドリルを用いて切削加工により形成する。その後、作業者は、上部軸受4Aの締結穴4Acに締結ボルト64cを締結することにより、吐出弁64を上部軸受4Aの締結穴4Acの位置に固定する。 Next, the operator uses a drill to form a discharge hole 4Aa penetrating along the axis Z1 in the bottom 4Ad1 of the recess 4Ad formed in the opposing surface 4Ab of the upper bearing 4A by cutting. Thereafter, the operator fixes the discharge valve 64 at the position of the fastening hole 4Ac of the upper bearing 4A by fastening the fastening bolt 64c to the fastening hole 4Ac of the upper bearing 4A.
 以上で説明した本実施形態のロータリ圧縮機1は、以下の作用および効果を奏する。
 本実施形態のロータリ圧縮機1によれば、電動モータ5が回転軸3を回転させることによりロータリ圧縮部6が駆動される。ロータリ圧縮部6は、シリンダ60を上部軸受4Aおよび下部軸受4Bで挟んで形成される圧縮室60A内でピストンロータ63を回転させることにより、圧縮室60Aの容積を徐々に減少させて冷媒を圧縮する。圧縮された冷媒は、吐出孔4Aaから吐出弁64を介して電動モータ5が配置されるハウジング2の内部空間へ導かれる。
The rotary compressor 1 of this embodiment described above has the following functions and effects.
According to the rotary compressor 1 of this embodiment, the rotary compression section 6 is driven by the electric motor 5 rotating the rotating shaft 3. The rotary compression unit 6 gradually reduces the volume of the compression chamber 60A and compresses the refrigerant by rotating the piston rotor 63 within the compression chamber 60A formed by sandwiching the cylinder 60 between the upper bearing 4A and the lower bearing 4B. do. The compressed refrigerant is guided from the discharge hole 4Aa through the discharge valve 64 to the internal space of the housing 2 where the electric motor 5 is disposed.
 本実施形態のロータリ圧縮機1によれば、電動モータ5と対向する対向面4Abに形成される凹所4Adに吐出弁64が収容され、吐出弁64から凹所4Adに向けて圧縮された冷媒が吐出される。凹所4Adに傾斜部が形成されているため、吐出弁から凹所に向けて吐出される冷媒の流通方向が底部から対向面まで段階的に近づくように変更される。そのため、吐出弁から凹所に向けて吐出される冷媒の流通方向が1段階のみで変更される場合に比べ、冷媒の圧力損失を抑制することができる。 According to the rotary compressor 1 of this embodiment, the discharge valve 64 is accommodated in the recess 4Ad formed in the opposing surface 4Ab facing the electric motor 5, and the refrigerant is compressed from the discharge valve 64 toward the recess 4Ad. is discharged. Since the inclined portion is formed in the recess 4Ad, the flow direction of the refrigerant discharged from the discharge valve toward the recess is changed so as to approach the opposite surface stepwise from the bottom. Therefore, the pressure loss of the refrigerant can be suppressed compared to the case where the flow direction of the refrigerant discharged from the discharge valve toward the recess is changed in only one step.
 本実施形態のロータリ圧縮機1によれば、傾斜部4Ad2が吐出弁64の基端部から先端部に向けた延伸方向に沿って形成されているため、吐出弁64が開いて冷媒が導かれる方向である延伸方向に沿って、冷媒の流通方向を底部4Ad1から対向面4Abまで段階的に近づくように変更することができる。 According to the rotary compressor 1 of the present embodiment, since the inclined portion 4Ad2 is formed along the extending direction from the base end to the distal end of the discharge valve 64, the discharge valve 64 opens and the refrigerant is guided. The flow direction of the refrigerant can be changed so as to gradually approach the opposite surface 4Ab from the bottom portion 4Ad1 along the stretching direction.
 また、本実施形態のロータリ圧縮機1によれば、傾斜部4Ad2が第1凹部4Ad21と第2凹部4Ad22とを有し、第1凹部4Ad21の底部4Ad1から対向面4Abまでの高さH1よりも第2凹部4Ad22の底部4Ad1から対向面4Abまでの高さH2が低い。そのため、吐出弁64から凹所4Adに向けて吐出される冷媒の流通方向が底部4Ad1から対向面4Abまで近づくように第1凹部4Ad21の端部、第2凹部4Ad22の端部の少なくとも2段階で変更される。そのため、吐出弁64から凹所4Adに向けて吐出される冷媒の流通方向が凹所4Adの端部の1段階のみで変更される場合に比べ、冷媒の圧力損失を更に抑制することができる。 Moreover, according to the rotary compressor 1 of this embodiment, the inclined part 4Ad2 has the first recessed part 4Ad21 and the second recessed part 4Ad22, and is higher than the height H1 from the bottom part 4Ad1 of the first recessed part 4Ad21 to the opposing surface 4Ab. The height H2 from the bottom 4Ad1 of the second recess 4Ad22 to the opposing surface 4Ab is low. Therefore, the flow direction of the refrigerant discharged from the discharge valve 64 toward the recess 4Ad is arranged in at least two stages at the end of the first recess 4Ad21 and the end of the second recess 4Ad22 so that the flow direction of the refrigerant discharged from the discharge valve 64 approaches the opposite surface 4Ab from the bottom 4Ad1. Be changed. Therefore, the pressure loss of the refrigerant can be further suppressed compared to the case where the flow direction of the refrigerant discharged from the discharge valve 64 toward the recess 4Ad is changed only in one step at the end of the recess 4Ad.
 本実施形態のロータリ圧縮機1によれば、第1凹部4Ad21の直径D1を吐出孔4Aaの直径D0の2倍以上とすることで、吐出孔4Aaから吐出される冷媒が吐出孔4Aaの直径D0の2倍に満たない位置で凹所4Adに衝突することによる過度な圧力損失の発生を防止することができる。 According to the rotary compressor 1 of the present embodiment, by making the diameter D1 of the first recess 4Ad21 twice or more the diameter D0 of the discharge hole 4Aa, the refrigerant discharged from the discharge hole 4Aa is transferred to the diameter D0 of the discharge hole 4Aa. It is possible to prevent excessive pressure loss from occurring due to collision with the recess 4Ad at a position less than twice the position.
 本実施形態のロータリ圧縮機1によれば、第2凹部4Ad22の直径D2を第1凹部4Ad21の直径D1と同一とすることで、上部軸受4Aの対向面4Abに第1凹部4Ad21および第2凹部4Ad22を形成する際に、同一の切削工具を用いて加工をすることができる。 According to the rotary compressor 1 of this embodiment, by making the diameter D2 of the second recess 4Ad22 the same as the diameter D1 of the first recess 4Ad21, the first recess 4Ad21 and the second recess are formed on the opposing surface 4Ab of the upper bearing 4A. When forming 4Ad22, the same cutting tool can be used for processing.
 本実施形態のロータリ圧縮機1によれば、第2凹部4Ad22の直径D2を第1凹部4Ad21の直径D1よりも大きくすることで、直径D2を直径D1と同一にする場合に比べ、冷媒が第2凹部4Ad22の端面に衝突する際の圧力損失を低減することができる。 According to the rotary compressor 1 of this embodiment, by making the diameter D2 of the second recess 4Ad22 larger than the diameter D1 of the first recess 4Ad21, the refrigerant is Pressure loss when colliding with the end face of the second recess 4Ad22 can be reduced.
 本実施形態のロータリ圧縮機1の製造方法によれば、凹所4Adを形成する工程は、上部軸受4Aと対向する対向面4Abを切削し、吐出孔4Aaからの距離が長くなるにつれて底部4Ad1から対向面4Abまでの高さが低くなる傾斜部4Ad2を形成する。切削加工により傾斜部4Ad2を有する凹所4Adを形成するため、凹所4Adを有する上部軸受4Aを鋳造により成形する場合に比べて外径が小さい(例えば、Φ95[mm]以下)軸受を容易に製造することができる。 According to the manufacturing method of the rotary compressor 1 of this embodiment, the step of forming the recess 4Ad is to cut the opposing surface 4Ab facing the upper bearing 4A, and as the distance from the discharge hole 4Aa increases, the recess 4Ad is formed from the bottom 4Ad1. An inclined portion 4Ad2 is formed with a lower height to the opposing surface 4Ab. Since the recess 4Ad having the inclined portion 4Ad2 is formed by cutting, a bearing with a smaller outer diameter (for example, Φ95 [mm] or less) can be easily produced compared to the case where the upper bearing 4A having the recess 4Ad is formed by casting. can be manufactured.
 本実施形態の製造方法により製造されるロータリ圧縮機1によれば、電動モータ5と対向する対向面4Abに形成される凹所4Adに吐出弁64が収容され、吐出弁64から凹所4Adに向けて圧縮された冷媒が吐出される。凹所4Adに傾斜部4Ad2が形成されているため、吐出弁64から凹所4Adに向けて吐出される冷媒の流通方向が底部4Ad1から対向面4Abまで段階的に近づくように変更される。そのため、吐出弁64から凹所4Adに向けて吐出される冷媒の流通方向が1段階のみで変更される場合に比べ、冷媒の圧力損失を抑制することができる。 According to the rotary compressor 1 manufactured by the manufacturing method of this embodiment, the discharge valve 64 is accommodated in the recess 4Ad formed in the opposing surface 4Ab facing the electric motor 5, and the discharge valve 64 is connected to the recess 4Ad. Compressed refrigerant is discharged toward the Since the inclined portion 4Ad2 is formed in the recess 4Ad, the flow direction of the refrigerant discharged from the discharge valve 64 toward the recess 4Ad is changed so as to approach the opposite surface 4Ab in stages from the bottom 4Ad1. Therefore, the pressure loss of the refrigerant can be suppressed compared to the case where the flow direction of the refrigerant discharged from the discharge valve 64 toward the recess 4Ad is changed in only one step.
 本実施形態のロータリ圧縮機1の製造方法によれば、対向面4Abを切削することにより第1凹部4Ad21と第2凹部4Ad22とを形成して傾斜部4Ad2とし、第1凹部4Ad21の底部4Ad1から対向面4Abまでの高さH1よりも第2凹部4Ad22の底部4Ad1から対向面4Abまでの高さH2が低いロータリ圧縮機1が製造される。そのため、吐出弁64から凹所4Adに向けて吐出される冷媒の流通方向が底部4Ad1から対向面4Abまで近づくように第1凹部4Ad21の端部、第2凹部4Ad22の端部の少なくとも2段階で変更される。そのため、吐出弁64から凹所4Adに向けて吐出される冷媒の流通方向が凹所4Adの端部の1段階のみで変更される場合に比べ、冷媒の圧力損失を更に抑制することができる。 According to the manufacturing method of the rotary compressor 1 of this embodiment, the first recess 4Ad21 and the second recess 4Ad22 are formed by cutting the opposing surface 4Ab to form the slope 4Ad2, and the slope 4Ad2 is formed from the bottom 4Ad1 of the first recess 4Ad21. A rotary compressor 1 is manufactured in which the height H2 from the bottom 4Ad1 of the second recess 4Ad22 to the opposing surface 4Ab is lower than the height H1 from the opposing surface 4Ab. Therefore, the flow direction of the refrigerant discharged from the discharge valve 64 toward the recess 4Ad is arranged in at least two stages at the end of the first recess 4Ad21 and the end of the second recess 4Ad22 so that the flow direction of the refrigerant discharged from the discharge valve 64 approaches the opposite surface 4Ab from the bottom 4Ad1. Be changed. Therefore, the pressure loss of the refrigerant can be further suppressed compared to the case where the flow direction of the refrigerant discharged from the discharge valve 64 toward the recess 4Ad is changed only in one step at the end of the recess 4Ad.
 本実施形態のロータリ圧縮機1の製造方法によれば、第2凹部4Ad22の直径D2が第1凹部4Ad21の直径D1と同一であるため、上部軸受4Aの対向面4Abを切削して第1凹部4Ad21および第2凹部4Ad22を形成する際に、同一の切削工具を用いて加工をすることができる。 According to the method for manufacturing the rotary compressor 1 of this embodiment, since the diameter D2 of the second recess 4Ad22 is the same as the diameter D1 of the first recess 4Ad21, the opposing surface 4Ab of the upper bearing 4A is cut to form the first recess. When forming 4Ad21 and the second recess 4Ad22, the same cutting tool can be used.
 以上で説明した各実施形態に記載のロータリ圧縮機(1)は、例えば以下のように把握される。 The rotary compressor (1) described in each embodiment described above can be understood, for example, as follows.
 本開示の第1態様に係るロータリ圧縮機は、軸線に沿う鉛直方向に延びた筒状部を有しているハウジング(2)と、前記ハウジングに収容され、冷媒を圧縮する圧縮部(6)と、前記ハウジングに収容され、前記軸線に沿って延びる回転軸(3)を回転させることにより前記圧縮部を駆動する駆動部(5)と、を備え、前記圧縮部は、前記回転軸に固定されるとともに前記軸線に対して偏心して回転するピストンロータ(63)と、前記ピストンロータを収容するシリンダ(60)と、前記回転軸を前記軸線回りに回転自在に支持するとともに前記軸線に沿って前記シリンダを挟むように配置されて前記ピストンロータを収容する圧縮室(60A)を形成する一対の軸受(4A,4B)と、一対の前記軸受の一方(4A)に取り付けられるとともに前記圧縮室で圧縮された前記冷媒を吐出する吐出孔(4Aa)を開閉させる吐出弁(64)と、を有し、一対の前記軸受の一方(4A)の前記駆動部と対向する対向面には、前記吐出弁を収容する凹所(4Ad)が形成されており、前記凹所の底部(4Ad1)には、前記軸線に沿って貫通する前記吐出孔が形成されており、前記凹所には、前記吐出孔からの距離が長くなるにつれて前記底部から前記対向面までの高さが低くなる傾斜部(4Ad2)が形成されている。 A rotary compressor according to a first aspect of the present disclosure includes a housing (2) having a cylindrical part extending in a vertical direction along an axis, and a compression part (6) housed in the housing and compressing a refrigerant. and a drive section (5) that drives the compression section by rotating a rotation shaft (3) that is housed in the housing and extends along the axis, and the compression section is fixed to the rotation shaft. a piston rotor (63) that rotates eccentrically with respect to the axis; a cylinder (60) that accommodates the piston rotor; a pair of bearings (4A, 4B) that are arranged to sandwich the cylinder and form a compression chamber (60A) that accommodates the piston rotor; a discharge valve (64) that opens and closes the discharge hole (4Aa) for discharging the compressed refrigerant; A recess (4Ad) for accommodating the valve is formed, the discharge hole penetrating along the axis is formed in the bottom (4Ad1) of the recess, and the discharge hole is formed in the recess to accommodate the valve. A sloped portion (4Ad2) is formed in which the height from the bottom portion to the opposing surface decreases as the distance from the hole increases.
 本開示の第1態様に係るロータリ圧縮機によれば、駆動部が回転軸を回転させることにより圧縮部が駆動される。圧縮部は、シリンダを一対の軸受で挟んで形成される圧縮室内でピストンロータを回転させることにより、圧縮室の容積を徐々に減少させて冷媒を圧縮する。圧縮された冷媒は、吐出孔から吐出弁を介して駆動部が配置される空間へ導かれる。 According to the rotary compressor according to the first aspect of the present disclosure, the compression section is driven by the drive section rotating the rotating shaft. The compression section compresses the refrigerant by rotating a piston rotor within a compression chamber formed by sandwiching a cylinder between a pair of bearings, thereby gradually reducing the volume of the compression chamber. The compressed refrigerant is guided from the discharge hole through the discharge valve to the space where the drive unit is arranged.
 本開示の第1態様に係るロータリ圧縮機によれば、駆動部と対向する対向面に形成される凹所に吐出弁が収容され、吐出弁から凹所に向けて圧縮された冷媒が吐出される。凹所に傾斜部が形成されているため、吐出弁から凹所に向けて吐出される冷媒の流通方向が底部から対向面まで段階的に近づくように変更される。そのため、吐出弁から凹所に向けて吐出される冷媒の流通方向が1段階のみで変更される場合に比べ、冷媒の圧力損失を抑制することができる。 According to the rotary compressor according to the first aspect of the present disclosure, the discharge valve is housed in the recess formed in the opposing surface facing the drive unit, and the compressed refrigerant is discharged from the discharge valve toward the recess. Ru. Since the inclined portion is formed in the recess, the flow direction of the refrigerant discharged from the discharge valve toward the recess is changed so that it approaches the opposite surface stepwise from the bottom. Therefore, the pressure loss of the refrigerant can be suppressed compared to the case where the flow direction of the refrigerant discharged from the discharge valve toward the recess is changed in only one step.
 本開示の第2態様に係るロータリ圧縮機は、第1態様において、前記吐出弁は、基端部が前記凹所の前記底部に固定されるとともに先端部が前記吐出孔に配置されており、前記傾斜部は、前記吐出弁の前記基端部から前記先端部に向けた延伸方向に沿って形成されている。
 本開示の第2態様に係るロータリ圧縮機によれば、傾斜部が吐出弁の基端部から先端部に向けた延伸方向に沿って形成されているため、吐出弁が開いて冷媒が導かれる方向である延伸方向に沿って、冷媒の流通方向を底部から対向面まで段階的に近づくように変更することができる。
In the rotary compressor according to a second aspect of the present disclosure, in the first aspect, the discharge valve has a base end fixed to the bottom of the recess and a distal end disposed in the discharge hole, The inclined portion is formed along an extending direction from the base end to the distal end of the discharge valve.
According to the rotary compressor according to the second aspect of the present disclosure, since the inclined portion is formed along the extending direction from the base end to the distal end of the discharge valve, the discharge valve opens and refrigerant is guided. Along the stretching direction, the flow direction of the refrigerant can be changed from the bottom to the opposing surface in a stepwise manner.
 本開示の第3態様に係るロータリ圧縮機は、第1態様または第2態様において、前記傾斜部は、前記軸受の前記対向面を前記軸線に沿ってみた場合、前記吐出孔を中心として円形に形成される第1凹部(4Ad21)と、前記吐出孔から離間した位置を中心として円形に形成されるとともに前記第1凹部と重なるように配置される第2凹部(4Ad22)と、を有し、前記第1凹部の前記底部から前記対向面までの高さが第1高さであり、前記第2凹部の前記底部から前記対向面までの高さが前記第1高さよりも低い第2高さである。 In the rotary compressor according to a third aspect of the present disclosure, in the first aspect or the second aspect, when the opposing surface of the bearing is viewed along the axis, the inclined portion has a circular shape with the discharge hole as the center. a first recess (4Ad21) formed therein; and a second recess (4Ad22) formed in a circular shape centered on a position spaced from the discharge hole and arranged to overlap with the first recess, The height from the bottom of the first recess to the opposing surface is a first height, and the height from the bottom of the second recess to the opposing surface is a second height lower than the first height. It is.
 本開示の第3態様に係るロータリ圧縮機によれば、傾斜部が第1凹部と第2凹部とを有し、第1凹部の底部から対向面までの第1高さよりも第2凹部の底部から対向面までの第2高さが低い。そのため、吐出弁から凹所に向けて吐出される冷媒の流通方向が底部から対向面まで近づくように第1凹部の端部、第2凹部の端部の少なくとも2段階で変更される。そのため、吐出弁から凹所に向けて吐出される冷媒の流通方向が凹所の端部の1段階のみで変更される場合に比べ、冷媒の圧力損失を更に抑制することができる。 According to the rotary compressor according to the third aspect of the present disclosure, the inclined portion has the first recess and the second recess, and the bottom of the second recess is lower than the first height from the bottom of the first recess to the opposing surface. The second height from the to the opposing surface is low. Therefore, the flow direction of the refrigerant discharged from the discharge valve toward the recess is changed in at least two stages: at the end of the first recess and at the end of the second recess, so that the flow direction of the refrigerant discharged from the discharge valve toward the recess approaches from the bottom to the opposing surface. Therefore, the pressure loss of the refrigerant can be further suppressed compared to the case where the flow direction of the refrigerant discharged from the discharge valve toward the recess is changed only in one step at the end of the recess.
 本開示の第4態様に係るロータリ圧縮機は、第3態様において、前記第1凹部の第1直径は、前記吐出孔の直径の2倍以上である。
 本開示の第4態様に係るロータリ圧縮機によれば、第1凹部の第1直径を吐出孔の直径の2倍以上とすることで、吐出孔から吐出される冷媒が吐出孔の直径の2倍に満たない位置で凹所に衝突することによる過度な圧力損失の発生を防止することができる。
In the rotary compressor according to a fourth aspect of the present disclosure, in the third aspect, the first diameter of the first recess is twice or more the diameter of the discharge hole.
According to the rotary compressor according to the fourth aspect of the present disclosure, by making the first diameter of the first recess twice or more the diameter of the discharge hole, the refrigerant discharged from the discharge hole is It is possible to prevent excessive pressure loss from occurring due to collision with a recess at a position less than twice as large.
 本開示の第5態様に係るロータリ圧縮機は、第3態様において、前記第2凹部の第2直径は、前記第1凹部の第1直径と同一である。
 本開示の第5態様に係るロータリ圧縮機によれば、第2凹部の第2直径が第1凹部の第1直径と同一であるため、軸受の対向面に第1凹部および第2凹部を形成する際に、同一の切削工具を用いて加工をすることができる。
In the rotary compressor according to a fifth aspect of the present disclosure, in the third aspect, the second diameter of the second recess is the same as the first diameter of the first recess.
According to the rotary compressor according to the fifth aspect of the present disclosure, since the second diameter of the second recess is the same as the first diameter of the first recess, the first recess and the second recess are formed on the opposing surfaces of the bearing. The same cutting tool can be used for machining.
 本開示の第6態様に係るロータリ圧縮機は、第3態様において、前記第2凹部の第2直径は、前記第1凹部の第1直径よりも大きい。
 本開示の第6態様に係るロータリ圧縮機によれば、第2凹部の第2直径が第1凹部の第1直径よりも大きいため、第2直径を第1直径と同一にする場合に比べ、冷媒が第2凹部の端面に衝突する際の圧力損失を低減することができる。
In the rotary compressor according to a sixth aspect of the present disclosure, in the third aspect, the second diameter of the second recess is larger than the first diameter of the first recess.
According to the rotary compressor according to the sixth aspect of the present disclosure, since the second diameter of the second recess is larger than the first diameter of the first recess, compared to the case where the second diameter is made the same as the first diameter, It is possible to reduce pressure loss when the refrigerant collides with the end face of the second recess.
 本開示の第7態様に係るロータリ圧縮機の製造方法は、ロータリ圧縮機の製造方法であって、前記ロータリ圧縮機は、軸線に沿う鉛直方向に延びた筒状部を有しているハウジングと、前記ハウジングに収容され、冷媒を圧縮する圧縮部と、前記ハウジングに収容され、前記軸線に沿って延びる回転軸を回転させることにより前記圧縮部を駆動する駆動部と、を備え、前記圧縮部は、前記回転軸に固定されるとともに前記軸線に対して偏心して回転するピストンロータと、前記ピストンロータを収容するシリンダと、前記回転軸を前記軸線回りに回転自在に支持するとともに前記軸線に沿って前記シリンダを挟むように配置されて前記ピストンロータを収容する圧縮室を形成する一対の軸受と、一対の前記軸受の一方に取り付けられるとともに前記圧縮室で圧縮された前記冷媒を吐出する吐出孔を開閉させる吐出弁と、を有し、一対の前記軸受の一方の前記駆動部と対向する対向面を切削することにより、前記吐出弁を収容する凹所を形成する工程と、前記凹所の底部に、前記軸線に沿って貫通する前記吐出孔を形成する工程と、を備え、前記凹所を形成する工程は、前記吐出孔からの距離が長くなるにつれて前記底部から前記対向面までの高さが低くなる傾斜部を形成する。 A method for manufacturing a rotary compressor according to a seventh aspect of the present disclosure is a method for manufacturing a rotary compressor, wherein the rotary compressor includes a housing having a cylindrical portion extending in a vertical direction along an axis. , a compression section that is housed in the housing and compresses the refrigerant, and a drive section that is housed in the housing and drives the compression section by rotating a rotating shaft that extends along the axis, the compression section includes a piston rotor that is fixed to the rotating shaft and rotates eccentrically with respect to the axis; a cylinder that accommodates the piston rotor; and a cylinder that rotatably supports the rotating shaft and rotates along the axis. a pair of bearings that are arranged to sandwich the cylinder and form a compression chamber that accommodates the piston rotor; and a discharge hole that is attached to one of the pair of bearings and that discharges the refrigerant compressed in the compression chamber. a discharge valve that opens and closes, and forming a recess for accommodating the discharge valve by cutting an opposing surface of one of the pair of bearings that faces the drive section; forming the discharge hole penetrating the bottom along the axis, and the step of forming the recess increases the height from the bottom to the opposing surface as the distance from the discharge hole increases. A sloped portion with a lower height is formed.
 本開示の第7態様に係るロータリ圧縮機の製造方法によれば、凹所を形成する工程は、一対の軸受の一方の駆動部と対向する対向面を切削し、吐出孔からの距離が長くなるにつれて底部から前記対向面までの高さが低くなる傾斜部を形成する。切削加工により傾斜部を有する凹所を形成するため、凹所を有する軸受を鋳造により成形する場合に比べて外径が小さい(例えば、Φ95[mm]以下)軸受を容易に製造することができる。 According to the method for manufacturing a rotary compressor according to the seventh aspect of the present disclosure, the step of forming the recess includes cutting the opposing surface facing one of the driving parts of the pair of bearings, and A sloped portion is formed in which the height from the bottom to the opposing surface decreases as the height increases. Since a recess with an inclined portion is formed by cutting, it is easier to manufacture a bearing with a smaller outer diameter (for example, Φ95 [mm] or less) than when a bearing with a recess is formed by casting. .
 本開示の第7態様に係るロータリ圧縮機の製造方法により製造されるロータリ圧縮機によれば、駆動部と対向する対向面に形成される凹所に吐出弁が収容され、吐出弁から凹所に向けて圧縮された冷媒が吐出される。凹所に傾斜部が形成されているため、吐出弁から凹所に向けて吐出される冷媒の流通方向が底部から対向面まで段階的に近づくように変更される。そのため、吐出弁から凹所に向けて吐出される冷媒の流通方向が1段階のみで変更される場合に比べ、冷媒の圧力損失を抑制することができる。 According to the rotary compressor manufactured by the method for manufacturing a rotary compressor according to the seventh aspect of the present disclosure, the discharge valve is accommodated in the recess formed in the facing surface facing the drive part, and the discharge valve is moved from the discharge valve to the recess. The compressed refrigerant is discharged towards. Since the inclined portion is formed in the recess, the flow direction of the refrigerant discharged from the discharge valve toward the recess is changed so that it approaches the opposite surface stepwise from the bottom. Therefore, the pressure loss of the refrigerant can be suppressed compared to the case where the flow direction of the refrigerant discharged from the discharge valve toward the recess is changed in only one step.
 本開示の第8態様に係るロータリ圧縮機の製造方法は、第7態様において、前記凹所を形成する工程は、前記対向面を切削することにより、前記軸受の前記対向面を前記軸線に沿ってみた場合、前記吐出孔を中心とした円形となる第1凹部と、前記吐出孔から離間した位置を中心とした円形となり前記第1凹部と重なるように配置される第2凹部と、を形成して前記傾斜部とし、前記第1凹部の前記底部から前記対向面までの高さが第1高さであり、前記第2凹部の前記底部から前記対向面までの高さが前記第1高さよりも低い第2高さである。 In the method for manufacturing a rotary compressor according to an eighth aspect of the present disclosure, in the seventh aspect, in the step of forming the recess, the opposing surface of the bearing is aligned along the axis by cutting the opposing surface. When viewed from above, a first recess is formed in a circular shape centered on the discharge hole, and a second recess formed in a circle centered at a position spaced from the discharge hole and arranged to overlap with the first recess. and the height from the bottom of the first recess to the opposing surface is the first height, and the height from the bottom of the second recess to the opposing surface is the first height. The second height is lower than the second height.
 本開示の第8態様に係るロータリ圧縮機の製造方法によれば、対向面を切削することにより第1凹部と第2凹部とを形成して傾斜部とし、第1凹部の底部から対向面までの第1高さよりも第2凹部の底部から対向面までの第2高さが低いロータリ圧縮機が製造される。そのため、吐出弁から凹所に向けて吐出される冷媒の流通方向が底部から対向面まで近づくように第1凹部の端部、第2凹部の端部の少なくとも2段階で変更される。そのため、吐出弁から凹所に向けて吐出される冷媒の流通方向が凹所の端部の1段階のみで変更される場合に比べ、冷媒の圧力損失を更に抑制することができる。 According to the method for manufacturing a rotary compressor according to the eighth aspect of the present disclosure, the first recess and the second recess are formed by cutting the opposing surfaces to form the inclined portion, and from the bottom of the first recess to the opposing surface. A rotary compressor is manufactured in which the second height from the bottom of the second recess to the opposing surface is lower than the first height. Therefore, the flow direction of the refrigerant discharged from the discharge valve toward the recess is changed in at least two stages: at the end of the first recess and at the end of the second recess, so that the flow direction of the refrigerant discharged from the discharge valve toward the recess approaches from the bottom to the opposing surface. Therefore, the pressure loss of the refrigerant can be further suppressed compared to the case where the flow direction of the refrigerant discharged from the discharge valve toward the recess is changed only in one step at the end of the recess.
 本開示の第9態様に係るロータリ圧縮機の製造方法は、第8態様において、前記第1凹部の第1直径は、前記吐出孔の直径の2倍以上である。
 本開示の第9態様に係るロータリ圧縮機の製造方法によれば、第1凹部の第1直径を吐出孔の直径の2倍以上とすることで、吐出孔から吐出される冷媒が吐出孔の直径の2倍に満たない位置で凹所に衝突することによる過度な圧力損失の発生を防止することができる。
In the method for manufacturing a rotary compressor according to a ninth aspect of the present disclosure, in the eighth aspect, the first diameter of the first recess is twice or more the diameter of the discharge hole.
According to the method for manufacturing a rotary compressor according to the ninth aspect of the present disclosure, by making the first diameter of the first recess twice or more the diameter of the discharge hole, the refrigerant discharged from the discharge hole is It is possible to prevent excessive pressure loss from occurring due to collision with a recess at a position less than twice the diameter.
 本開示の第10態様に係るロータリ圧縮機の製造方法は、第8態様において、前記第2凹部の第2直径は、前記第1凹部の第1直径と同一である。
 本開示の第10態様に係るロータリ圧縮機の製造方法によれば、第2凹部の第2直径が第1凹部の第1直径と同一であるため、軸受の対向面を切削して第1凹部および第2凹部を形成する際に、同一の切削工具を用いて加工をすることができる。
In the method for manufacturing a rotary compressor according to a tenth aspect of the present disclosure, in the eighth aspect, the second diameter of the second recess is the same as the first diameter of the first recess.
According to the method for manufacturing a rotary compressor according to the tenth aspect of the present disclosure, since the second diameter of the second recess is the same as the first diameter of the first recess, the opposing surface of the bearing is cut to form the first recess. The same cutting tool can be used to form the second recess.
1     ロータリ圧縮機
2     ハウジング
3     回転軸
4A    上部軸受
4Aa   吐出孔
4Ab   対向面
4Ac   締結穴
4Ad   凹所
4Ad1  底部
4Ad2  傾斜部
4Ad21 第1凹部
4Ad22 第2凹部
4Ad23 第3凹部
4B    下部軸受
5     電動モータ(駆動部)
6,6A,6B ロータリ圧縮部
10    圧縮機本体
11    吸入管
12    アキュムレータ
13    吐出管
14    ブラケット
15    入口管
21    本体部
21a   内面
22    上部蓋部
23    下部蓋部
24    開口部
25    吸入ポート
60    シリンダ
60A   圧縮室
60B   吸入孔
61    ボルト
62    偏心軸部
63    ピストンロータ
64    吐出弁
64a   弁体
64a1  基端部
64a2  先端部
64b   リテーナ
64c   締結ボルト
65    吐出カバー
CL    回転軸線
FL    設置面
H,H1,H2,H3 高さ
HD    水平方向
VD    鉛直方向
Z1,Z2 軸線
 
1 Rotary compressor 2 Housing 3 Rotating shaft 4A Upper bearing 4Aa Discharge hole 4Ab Opposing surface 4Ac Fastening hole 4Ad Recess 4Ad1 Bottom 4Ad2 Inclined part 4Ad21 First recess 4Ad22 Second recess 4Ad23 Third recess 4B Lower bearing 5 Electric motor (drive part )
6, 6A, 6B Rotary compression part 10 Compressor main body 11 Suction pipe 12 Accumulator 13 Discharge pipe 14 Bracket 15 Inlet pipe 21 Main body part 21a Inner surface 22 Upper lid part 23 Lower lid part 24 Opening part 25 Suction port 60 Cylinder 60A Compression chamber 60B Suction hole 61 Bolt 62 Eccentric shaft 63 Piston rotor 64 Discharge valve 64a Valve body 64a1 Base end 64a2 Tip 64b Retainer 64c Fastening bolt 65 Discharge cover CL Rotation axis FL Installation surface H, H1, H2, H3 Height HD Horizontal direction VD Vertical direction Z1, Z2 Axis

Claims (10)

  1.  軸線に沿う鉛直方向に延びた筒状部を有しているハウジングと、
     前記ハウジングに収容され、冷媒を圧縮する圧縮部と、
     前記ハウジングに収容され、前記軸線に沿って延びる回転軸を回転させることにより前記圧縮部を駆動する駆動部と、を備え、
     前記圧縮部は、
     前記回転軸に固定されるとともに前記軸線に対して偏心して回転するピストンロータと、
     前記ピストンロータを収容するシリンダと、
     前記回転軸を前記軸線回りに回転自在に支持するとともに前記軸線に沿って前記シリンダを挟むように配置されて前記ピストンロータを収容する圧縮室を形成する一対の軸受と、
     一対の前記軸受の一方に取り付けられるとともに前記圧縮室で圧縮された前記冷媒を吐出する吐出孔を開閉させる吐出弁と、を有し、
     一対の前記軸受の一方の前記駆動部と対向する対向面には、前記吐出弁を収容する凹所が形成されており、
     前記凹所の底部には、前記軸線に沿って貫通する前記吐出孔が形成されており、
     前記凹所には、前記吐出孔からの距離が長くなるにつれて前記底部から前記対向面までの高さが低くなる傾斜部が形成されているロータリ圧縮機。
    a housing having a cylindrical portion extending vertically along the axis;
    a compression section that is housed in the housing and compresses the refrigerant;
    a drive unit that is housed in the housing and drives the compression unit by rotating a rotating shaft that extends along the axis;
    The compression section is
    a piston rotor fixed to the rotating shaft and rotating eccentrically with respect to the axis;
    a cylinder that accommodates the piston rotor;
    a pair of bearings that rotatably support the rotating shaft around the axis and are arranged along the axis to sandwich the cylinder to form a compression chamber that accommodates the piston rotor;
    a discharge valve that is attached to one of the pair of bearings and opens and closes a discharge hole that discharges the refrigerant compressed in the compression chamber;
    A recess for accommodating the discharge valve is formed in an opposing surface of one of the pair of bearings that faces the drive unit;
    The discharge hole is formed at the bottom of the recess and extends through the axis,
    In the rotary compressor, the recess is formed with an inclined portion in which the height from the bottom portion to the opposing surface decreases as the distance from the discharge hole increases.
  2.  前記吐出弁は、基端部が前記凹所の前記底部に固定されるとともに先端部が前記吐出孔に配置されており、
     前記傾斜部は、前記吐出弁の前記基端部から前記先端部に向けた延伸方向に沿って形成されている請求項1に記載のロータリ圧縮機。
    The discharge valve has a base end fixed to the bottom of the recess and a distal end disposed in the discharge hole,
    The rotary compressor according to claim 1, wherein the inclined portion is formed along an extending direction from the base end to the distal end of the discharge valve.
  3.  前記傾斜部は、前記軸受の前記対向面を前記軸線に沿ってみた場合、前記吐出孔を中心として円形に形成される第1凹部と、前記吐出孔から離間した位置を中心として円形に形成されるとともに前記第1凹部と重なるように配置される第2凹部と、を有し、
     前記第1凹部の前記底部から前記対向面までの高さが第1高さであり、前記第2凹部の前記底部から前記対向面までの高さが前記第1高さよりも低い第2高さである請求項1または請求項2に記載のロータリ圧縮機。
    When the opposing surface of the bearing is viewed along the axis, the inclined portion includes a first recess formed in a circular shape centered on the discharge hole, and a circular shape centered on a position spaced apart from the discharge hole. and a second recess arranged to overlap with the first recess,
    The height from the bottom of the first recess to the opposing surface is a first height, and the height from the bottom of the second recess to the opposing surface is a second height lower than the first height. The rotary compressor according to claim 1 or claim 2.
  4.  前記第1凹部の第1直径は、前記吐出孔の直径の2倍以上である請求項3に記載のロータリ圧縮機。 The rotary compressor according to claim 3, wherein the first diameter of the first recess is twice or more the diameter of the discharge hole.
  5.  前記第2凹部の第2直径は、前記第1凹部の第1直径と同一である請求項3に記載のロータリ圧縮機。 The rotary compressor according to claim 3, wherein the second diameter of the second recess is the same as the first diameter of the first recess.
  6.  前記第2凹部の第2直径は、前記第1凹部の第1直径よりも大きい請求項3に記載のロータリ圧縮機。 The rotary compressor according to claim 3, wherein the second diameter of the second recess is larger than the first diameter of the first recess.
  7.  ロータリ圧縮機の製造方法であって、
     前記ロータリ圧縮機は、
     軸線に沿う鉛直方向に延びた筒状部を有しているハウジングと、
     該ハウジングに収容され、冷媒を圧縮する圧縮部と、
     前記ハウジングに収容され、前記軸線に沿って延びる回転軸を回転させることにより前記圧縮部を駆動する駆動部と、を備え、
     前記圧縮部は、
     前記回転軸に固定されるとともに前記軸線に対して偏心して回転するピストンロータと、
     前記ピストンロータを収容するシリンダと、
     前記回転軸を前記軸線回りに回転自在に支持するとともに前記軸線に沿って前記シリンダを挟むように配置されて前記ピストンロータを収容する圧縮室を形成する一対の軸受と、
     一対の前記軸受の一方に取り付けられるとともに前記圧縮室で圧縮された前記冷媒を吐出する吐出孔を開閉させる吐出弁と、を有し、
     一対の前記軸受の一方の前記駆動部と対向する対向面を切削することにより、前記吐出弁を収容する凹所を形成する工程と、
     前記凹所の底部に、前記軸線に沿って貫通する前記吐出孔を形成する工程と、を備え、
     前記凹所を形成する工程は、前記吐出孔からの距離が長くなるにつれて前記底部から前記対向面までの高さが低くなる傾斜部を形成するロータリ圧縮機の製造方法。
    A method for manufacturing a rotary compressor, the method comprising:
    The rotary compressor is
    a housing having a cylindrical portion extending vertically along the axis;
    a compression section that is housed in the housing and compresses the refrigerant;
    a drive unit that is housed in the housing and drives the compression unit by rotating a rotating shaft that extends along the axis;
    The compression section is
    a piston rotor fixed to the rotating shaft and rotating eccentrically with respect to the axis;
    a cylinder that accommodates the piston rotor;
    a pair of bearings that rotatably support the rotating shaft around the axis and are arranged along the axis to sandwich the cylinder to form a compression chamber that accommodates the piston rotor;
    a discharge valve that is attached to one of the pair of bearings and opens and closes a discharge hole that discharges the refrigerant compressed in the compression chamber;
    forming a recess for accommodating the discharge valve by cutting an opposing surface of one of the pair of bearings that faces the drive section;
    forming the discharge hole penetrating along the axis at the bottom of the recess;
    In the method for manufacturing a rotary compressor, the step of forming the recess forms an inclined portion in which the height from the bottom to the opposing surface decreases as the distance from the discharge hole increases.
  8.  前記凹所を形成する工程は、前記対向面を切削することにより、前記軸受の前記対向面を前記軸線に沿ってみた場合、前記吐出孔を中心とした円形となる第1凹部と、前記吐出孔から離間した位置を中心とした円形となり前記第1凹部と重なるように配置される第2凹部と、を形成して前記傾斜部とし、
     前記第1凹部の前記底部から前記対向面までの高さが第1高さであり、前記第2凹部の前記底部から前記対向面までの高さが前記第1高さよりも低い第2高さである請求項7に記載のロータリ圧縮機の製造方法。
    The step of forming the recess includes cutting the opposing surface to form a first recess that has a circular shape centered on the discharge hole when the opposing surface of the bearing is viewed along the axis; a second recess formed in a circle centered at a position spaced from the hole and arranged to overlap with the first recess, to form the inclined part;
    The height from the bottom of the first recess to the opposing surface is a first height, and the height from the bottom of the second recess to the opposing surface is a second height lower than the first height. The method for manufacturing a rotary compressor according to claim 7.
  9.  前記第1凹部の第1直径は、前記吐出孔の直径の2倍以上である請求項8に記載のロータリ圧縮機の製造方法。 The method for manufacturing a rotary compressor according to claim 8, wherein the first diameter of the first recess is twice or more the diameter of the discharge hole.
  10.  前記第2凹部の第2直径は、前記第1凹部の第1直径と同一である請求項8に記載のロータリ圧縮機の製造方法。
     
    The method for manufacturing a rotary compressor according to claim 8, wherein the second diameter of the second recess is the same as the first diameter of the first recess.
PCT/JP2023/018689 2022-05-25 2023-05-19 Rotary compressor and method for manufacturing rotary compressor WO2023228874A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-085483 2022-05-25
JP2022085483A JP2023173317A (en) 2022-05-25 2022-05-25 Rotary compressor and manufacturing method of rotary compressor

Publications (1)

Publication Number Publication Date
WO2023228874A1 true WO2023228874A1 (en) 2023-11-30

Family

ID=88919200

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/018689 WO2023228874A1 (en) 2022-05-25 2023-05-19 Rotary compressor and method for manufacturing rotary compressor

Country Status (2)

Country Link
JP (1) JP2023173317A (en)
WO (1) WO2023228874A1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010019145A (en) * 2008-07-09 2010-01-28 Mitsubishi Electric Corp Hermetic rotary compressor

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010019145A (en) * 2008-07-09 2010-01-28 Mitsubishi Electric Corp Hermetic rotary compressor

Also Published As

Publication number Publication date
JP2023173317A (en) 2023-12-07

Similar Documents

Publication Publication Date Title
US7229261B2 (en) Scroll compressor having an annular recess located outside an annular seal portion and another recess communicating with suction port of fixed scroll
EP1967737A1 (en) Rotary compressor
EP2444672B1 (en) Rotary compressor
JPWO2013171957A1 (en) Electric compressor
KR20070025953A (en) Closed type electric compressor
EP3339644A1 (en) Scroll compressor and method for producing scroll compressor
WO2023228874A1 (en) Rotary compressor and method for manufacturing rotary compressor
JP6023973B2 (en) Electric compressor
JP6748874B2 (en) Hermetic compressor
EP3951181A1 (en) Rotary compressor
WO2023238725A1 (en) Rotary compressor
JP2016035204A (en) Scroll compressor
EP2253849A1 (en) Hermetic compressor
KR20050062995A (en) Discharge apparatus for rotary system twin compressor
WO2024111342A1 (en) Compressor
JP6582244B2 (en) Scroll compressor
JP5028243B2 (en) Rotary compressor and method for manufacturing the same
KR20090012848A (en) Rotary compressor
JP2024076709A (en) Compressor
WO2024111344A1 (en) Compressor, and air conditioning device provided with same
US20240052838A1 (en) A compressor
WO2023238709A1 (en) Compressor and design method for same
JP2010001816A (en) Scroll fluid machine
WO2023228862A1 (en) Rotary compressor
JP2024076710A (en) Compressor and air conditioner equipped with same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23811746

Country of ref document: EP

Kind code of ref document: A1