WO2023238591A1 - Mat material, exhaust gas purification apparatus, and method for manufacturing exhaust gas purification apparatus - Google Patents

Mat material, exhaust gas purification apparatus, and method for manufacturing exhaust gas purification apparatus Download PDF

Info

Publication number
WO2023238591A1
WO2023238591A1 PCT/JP2023/017666 JP2023017666W WO2023238591A1 WO 2023238591 A1 WO2023238591 A1 WO 2023238591A1 JP 2023017666 W JP2023017666 W JP 2023017666W WO 2023238591 A1 WO2023238591 A1 WO 2023238591A1
Authority
WO
WIPO (PCT)
Prior art keywords
mat material
inorganic
binder
exhaust gas
mat
Prior art date
Application number
PCT/JP2023/017666
Other languages
French (fr)
Japanese (ja)
Inventor
眞太朗 宮崎
孝太朗 樽谷
Original Assignee
イビデン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by イビデン株式会社 filed Critical イビデン株式会社
Publication of WO2023238591A1 publication Critical patent/WO2023238591A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J33/00Protection of catalysts, e.g. by coating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • F01N3/28Construction of catalytic reactors

Definitions

  • the present invention relates to a mat material, an exhaust gas purification device, and a method for manufacturing an exhaust gas purification device.
  • Exhaust gas emitted from internal combustion engines such as diesel engines contains particulate matter (hereinafter also referred to as PM), and in recent years, it has become a problem that this PM is harmful to the environment and the human body. Moreover, since the exhaust gas also contains harmful gas components such as CO, HC, and NOx, there are concerns about the effects of these harmful gas components on the environment and the human body.
  • PM particulate matter
  • an exhaust gas treatment body made of porous ceramic such as silicon carbide or cordierite and an exhaust gas treatment body are housed.
  • Various exhaust gas purification devices have been proposed that include a casing and a mat material made of an inorganic fiber aggregate disposed between an exhaust gas treatment body and the casing. This type of mat material is used to prevent the exhaust gas treatment body from coming into contact with the casing that covers its outer periphery and damage it due to vibrations and shocks caused by driving, etc., and to prevent damage between the exhaust gas treatment body and the casing.
  • the main purpose is to prevent exhaust gas from leaking.
  • the mat material is made of inorganic fibers, and the basic shape of the mat material when viewed from above is a rectangular shape consisting of a long side extending in the longitudinal direction and a short side substantially perpendicular to the long side, and one short side of the rectangle A concave portion is formed on the other short side, and a convex portion having a shape similar to the shape cut by the concave portion is formed on the other short side, and the mat material is wrapped around the exhaust gas treatment body to remove the convex portion. By fitting into the recess, exhaust gas is prevented from leaking from the mat material.
  • the exhaust gas treatment body wrapped with the mat material is press-fitted into the casing and assembled into the exhaust gas purification device.
  • Patent Document 1 discloses that by using a sheet material (mat material) having an average unevenness difference h in the range of 0.4 mm ⁇ h ⁇ 9 mm on the first surface, the sheet material and another member can be separated. It is disclosed that by reducing the contact area of the sheet material, it becomes possible to easily install the sheet material in a predetermined position without using a surface lubricant.
  • Patent Document 1 does not mention anything about the detailed dimensions of the concave portion and the convex portion, and when the mat material was prepared and press-fitted, a portion of the mat material disposed on the most upstream side of the fitting portion was deformed. When the exhaust gas treatment body is fixed in a predetermined position, a part of the mat material may protrude from the casing.
  • the present invention was made to solve the above problems, and an object of the present invention is to provide a mat material that is less likely to protrude from a casing during press-fitting.
  • the mat material of the present invention is a mat material containing inorganic fibers and having a substantially rectangular shape in a plan view, and the mat material has a first main surface and a second main surface facing each other in the thickness direction, and a winding direction. a first end face and a second end face facing each other in the longitudinal direction, and a first side face and a second side face facing each other in the thickness direction and the width direction perpendicular to the longitudinal direction; In some cases, a convex portion that protrudes toward the second end surface and non-protruding portions that are arranged on both sides of the convex portion in the width direction and do not protrude toward the second end surface are formed.
  • the two end faces include a recess corresponding to the shape of the convex part of the first end face, and a recess that is arranged on both sides of the recess in the width direction and corresponds to the shape of the non-protruding part of the first end face.
  • a non-concave part is formed, and the ratio [D/C] of the length [D] of the non-concave part in the width direction to the length [C] of the non-concave part in the longitudinal direction is , 1.0 or more.
  • the shapes of the convex portion of the first end surface and the concave portion of the second end surface correspond to each other, and the shapes of the non-protruding portion of the first end surface and the non-concave portion of the second end surface correspond to each other.
  • the non-sinking portion is less likely to be deformed by shear force as it is closer to the mat material main body (portions other than the convex portions and non-sinking portions), and the farther from the mat material main body is, the more likely it is to be deformed due to shear force. That is, it can be said that the shorter the length of the non-sinking portion, the more difficult the non-sinking portion is to deform.
  • the width of the non-concave portion (distance equivalent to the length from the first side surface or the second side surface to the concave portion) increases, the area where the non-concave portion is fixed to the mat material body becomes longer, so that shearing It can be said that deformation due to this phenomenon is less likely to occur. That is, it is considered that the ease with which the non-sinking portion deforms can be improved by adjusting the length and width of the non-sinking portion. Further, even if there are a plurality of convex portions on the first end surface and a plurality of concave portions on the second end surface, the above-mentioned effects can be obtained.
  • the ratio [D/C] of the length [D] of the non-recessed portion in the width direction to the length [C] of the non-recessed portion in the longitudinal direction is 1.0 or more.
  • the length [C] of the non-sinking part in the longitudinal direction is relatively short, and the length [D] of the non-sinking part in the width direction is relatively long. It can be said that it has a good configuration. Therefore, when the shape of the mat material satisfies the above conditions, the non-concave portion becomes difficult to deform due to the shear force during press-fitting, and becomes difficult to protrude from the casing.
  • the mat material of the present invention is preferably a needle mat.
  • the mat material has a plurality of intertwined points formed by needling on at least one of the front surface or the back surface, and within a 25 mm x 25 mm area, there is a 4 mm x 4 mm area in which the above intertwined points are not present. It is preferable that at least one of the first region, which is the region, and the second region, which is the region of 3 mm x 8 mm where the intersecting point does not exist, is arranged. When the first region and/or the second region are arranged within a 25 mm x 25 mm area, the surface pressure of the mat material can be increased.
  • the average fiber length of the inorganic fibers is preferably 1 to 150 mm.
  • the mat material of the present invention is preferably a paper-made mat.
  • the average fiber length of the inorganic fibers is preferably 200 to 20,000 ⁇ m.
  • an inorganic binder is attached to the surface of the inorganic fibers.
  • an inorganic binder is attached to the surface of the inorganic fiber, the frictional resistance between the inorganic fibers increases due to the inorganic binder attached to the surface of the inorganic fiber, so that the holding force can be increased.
  • an organic binder is attached to the surface of the inorganic fiber.
  • an organic binder is attached to the surface of the inorganic fibers, it is possible to improve the adhesion between the inorganic fibers and prevent the inorganic fibers from scattering during handling of the mat material.
  • the mat material of the present invention preferably further contains a polymeric dispersant.
  • the organic binder and the inorganic binder can be easily attached to the surface of the inorganic fibers in a dispersed state.
  • the inorganic binder and the organic binder are attached to the surface of the inorganic fibers in a dispersed state.
  • the inorganic binder and the organic binder are attached to the surface of the inorganic fiber in a dispersed state, the inorganic binder becomes dispersed in the film formed by the organic binder. Since the coating in this state has excellent mechanical strength, it can prevent the inorganic fibers from slipping against each other and increase the holding power.
  • the coating layer is formed by a continuous scale-like mixture of the inorganic binder and the organic binder.
  • the coating layer is formed of the above-mentioned scale-like mixture, the surface roughness of the coating layer increases due to the scale-like mixture, so that the frictional resistance between the inorganic fibers can be further increased.
  • the coating layer preferably has a multi-stage shape.
  • the frictional resistance between the inorganic fibers can be further increased.
  • a particulate mixture of the inorganic binder and the organic binder adhere to the surface of the coating layer.
  • a particulate mixture of an inorganic binder and an organic binder is attached to the surface of the coating layer, the frictional resistance between the inorganic fibers can be further increased compared to the case where the coating layer is used alone.
  • the exhaust gas purification device of the present invention is an exhaust gas purification device having a casing, an exhaust gas treatment body, and a mat material disposed between the casing and the exhaust gas treatment body, wherein the mat material is the mat of the present invention. It is characterized by being made of wood.
  • the exhaust gas purification device of the present invention includes the mat material of the present invention, the mat material does not protrude during press-fitting, and the exhaust gas treatment body has excellent stability.
  • the method for manufacturing an exhaust gas purification device of the present invention includes a press-fitting step in which the mat material of the present invention is wound around an exhaust gas treatment body and then press-fitted into a casing by a hard stuffing method, a pre-calibration method, or a post-calibration method. It is characterized by comprising.
  • the hard stuffing method, pre-calibration method, and post-calibration method all require a step of press-fitting an exhaust gas treatment body wrapped with a mat material into a casing. Therefore, the mat material of the present invention can suppress displacement and deformation of the mat material during press-fitting, and is therefore particularly suitable for the above method.
  • FIG. 1 is a perspective view schematically showing an example of a mat material according to the present invention.
  • FIG. 2 is a perspective view schematically showing an example of the process of winding the mat material shown in FIG. 1 around an exhaust gas treatment body.
  • FIG. 3 is a perspective view schematically showing an example of a wound body prepared in the process shown in FIG. 2.
  • FIG. 4 is a schematic diagram showing an example of a press-fitting process of press-fitting the wound body shown in FIG. 3 into a casing.
  • FIG. 5 is a schematic diagram showing an example of the arrangement of intertwining points in the mat material of the present invention.
  • FIG. 6 is a schematic diagram showing an example of a mat material in which intertwining points are uniformly arranged.
  • FIG. 1 is a perspective view schematically showing an example of a mat material according to the present invention.
  • FIG. 2 is a perspective view schematically showing an example of the process of winding the mat material shown in FIG. 1 around an exhaust gas treatment body.
  • FIG. 7 is an example of an enlarged electron microscope image of the mat material of the present invention.
  • FIG. 8 is another example of an enlarged electron microscope image of the mat material of the present invention.
  • FIG. 9 is yet another example of an enlarged electron microscope image of the mat material of the present invention.
  • FIG. 10 is yet another example of an enlarged electron microscope image of the mat material of the present invention.
  • FIG. 11 is a conceptual diagram schematically showing a shear failure load test device.
  • FIG. 12 is a cross-sectional view schematically showing an example of the exhaust gas purification device of the present invention.
  • the mat material of the present invention is a substantially rectangular mat material in a plan view containing inorganic fibers, and the mat material has a first main surface and a second main surface facing each other in the thickness direction, and a longitudinal direction in the winding direction. It has a first end face and a second end face facing each other in the direction, and a first side face and a second side face facing each other in the width direction perpendicular to the thickness direction and the longitudinal direction, and the first end face has a side surface that faces the width direction perpendicular to the thickness direction and the longitudinal direction.
  • a convex portion that protrudes toward the second end surface, and non-protruding portions that are arranged on both sides of the convex portion in the width direction and do not protrude toward the second end surface are formed, and the second end surface
  • a recessed portion is formed, and a ratio [D/C] of the length [D] of the non-recessed portion in the width direction to the length [C] of the non-recessed portion in the longitudinal direction is 1. .0 or more.
  • FIG. 1 is a perspective view schematically showing an example of a mat material according to the present invention.
  • the mat material 10 has a first main surface 11 and a second main surface 12 that face each other in the thickness direction (the direction indicated by the double-headed arrow T in FIG. 1), and a longitudinal direction (the direction in which it is wrapped)
  • the first end surface 13 and the second end surface 14 face each other in the direction shown by double arrow A in FIG. 1), and the second end surface 14 faces each other in the width direction (direction shown by double arrow B in FIG. It has a substantially rectangular flat plate shape when viewed from above, and has a first side surface 15 and a second side surface 16.
  • the length of the mat material 10 is the length indicated by the double-headed arrow A in FIG.
  • the width of the mat material 10 is the length indicated by the double-headed arrow B in FIG.
  • the thickness of the mat material 10 is the length indicated by the double-headed arrow T in FIG.
  • the first end surface 13 includes a convex portion 13a that protrudes toward the second end surface 14 during winding, and non-protrusive portions 13b and 13c that do not protrude toward the second end surface 14, which are disposed on both sides of the convex portion 13a in the width direction. is formed.
  • the second end face 14 has a recess 14a corresponding to the shape of the convex part 13a of the first end face 13 during winding, and non-protruding parts 13b and 13c of the first end face 13 arranged on both sides of the recess 14a in the width direction.
  • Non-concave portions 14b and 14c corresponding to the shapes are formed.
  • the length of the convex portion 13a in the longitudinal direction (hereinafter also simply referred to as the length of the convex portion 13a) is the length indicated by the double arrow C.
  • the shape of the convex portion 13a corresponds to the shape of the concave portion 14a. Therefore, the length of the recess 14a in the longitudinal direction (hereinafter also simply referred to as the length of the recess 14a) is the length shown by the double arrow C.
  • the length of the recess 14a in the width direction (hereinafter also simply referred to as the width of the recess 14a) is the length shown by the double arrow E.
  • the shape of the concave portion 14a corresponds to the shape of the convex portion 13a. Therefore, the length of the protrusion 13a in the width direction (hereinafter also simply referred to as the width of the protrusion 13a) is the length indicated by the double arrow E. Further, the center of the convex portion 13a in the width direction coincides with the center of the concave portion 14a in the width direction.
  • the length of the non-sinking portions 14b, 14c in the longitudinal direction (hereinafter also simply referred to as the length of the non-sinking portions 14b, 14c) is the length indicated by the double-headed arrow C, the same as the length of the recess 14a in the longitudinal direction. . Further, the length of the non-sinking portions 14b, 14c in the width direction (hereinafter also simply referred to as the width of the non-sinking portions 14b, 14c) is the length indicated by the double-headed arrow D.
  • the length of the non-protruding parts 13b, 13c in the width direction (hereinafter also simply referred to as the width of the non-protruding parts 13b, 13c) is the same as the length of the non-recessed parts 14b, 14c in the width direction, as indicated by the double-headed arrow D. It is.
  • the portion of the mat material 10 excluding the convex portion 13a and the non-concave portions 14b and 14c is also referred to as the main body portion of the mat material.
  • the length [A] of the mat material in the longitudinal direction corresponds to the length from the first end surface to the second end surface in each cross section when the mat material is cut along a plane parallel to the longitudinal direction and the thickness direction. do.
  • the length of the recessed portion 14a in the longitudinal direction is the same as the length of the non-depressed portions 14b and 14c in the longitudinal direction. Further, the length of the recess 14a in the longitudinal direction is the same as the length of the protrusion 13a in the longitudinal direction. Further, the lengths of the non-concave portions 14b, 14c in the width direction are the same as the lengths of the non-protrusion portions 13b, 13c in the width direction.
  • the mat material according to the present invention has a ratio [D/C] of the length [D] of the non-concave part in the width direction to the length [C] of the non-concave part in the longitudinal direction of 1.0 or more.
  • a ratio [D/C] of the length [D] of the non-protruding portion in the width direction to the length [C] of the convex portion in the longitudinal direction is 1.0 or more.”
  • the ratio [D/C] of the length [D] of the non-depressed portion in the width direction to the length [C] of the non-depressed portion in the longitudinal direction is preferably 1.2 or more. It is preferably 1.6 or more, and more preferably 1.6 or more.
  • the center [E C ] of the recess in the width direction may or may not overlap the center [B C ] of the mat material in the width direction.
  • the width of the non-sinking portion 14c is the same as the width of the non-sinking portion 14b, which is the length indicated by the double-headed arrow D.
  • the width of the non-protruding portion 13c is the same as the width of the non-protruding portion 13b, which is the length indicated by the double-headed arrow D.
  • the widthwise center [E C ] of the concave portion does not overlap the widthwise center [B C ] of the mat material, the widths of the two non-concave portions do not match.
  • the width of one non-recessed portion is shorter than the width of the other non-recessed portion.
  • the mat material 10 is wound so that the first main surface 11 of the mat material 10 is in contact with the exhaust gas treatment body 230, but the second main surface 12 of the mat material 10 is in contact with the exhaust gas treatment body 230. It may be wrapped like this.
  • FIG. 4 is a schematic diagram showing an example of a press-fitting process of press-fitting the wound body shown in FIG. 3 into a casing.
  • FIG. 4 shows how the wrapped body 250 shown in FIG. 3 is press-fitted into the casing 220.
  • the direction in which the wrapped body 250 is press-fitted is from the top to the bottom of the paper. Therefore, of the two side surfaces (first side surface 15 and second side surface 16) of the mat material 10, the second side surface 16 is arranged on the downstream side in the press-fitting direction, and the first side surface 15 is arranged on the upstream side in the press-fitting direction. It can be said that
  • a large shearing force is applied to the mat material 10 due to the friction between the mat material 10 and the casing 220 and the friction between the mat material 10 and the exhaust gas treatment body 230. Specifically, a force is applied that pulls the surface of the mat material 10 constituting the wrapped body 250 toward the upstream side in the press-fitting direction.
  • the magnitude of deformation of the convex portions and non-concave portions due to shear force is determined by the order of arrangement in the press-fitting direction and the connection area (distance) with the portion that will become the main body of the mat material. That is, the more upstream in the press-fitting direction, the greater the deformation, and the shorter the connection area (distance) between the mat material and the main body, the greater the deformation.
  • the non-concave portion 14b of the mat material 10 is the most upstream portion in the press-fitting direction, and is a portion that is easily deformed by shear force.
  • the ratio [D/C] of the length [D] of the non-depressed portion in the width direction to the length [C] of the non-depressed portion in the longitudinal direction is 1.0 or more. Therefore, regardless of the orientation of the mat material, it is possible to suppress deformation of the non-concave portion disposed on the upstream side in the press-fitting direction.
  • the side surface of the mat material where the non-concave part with the short width direction is arranged will be on the downstream side in the press-fitting direction. It is preferable that the side surface of the mat material on which the non-concave portion having a long length in the width direction is disposed is disposed on the upstream side in the press-fitting direction.
  • the mat material will have two non-concave portions with different lengths.
  • the width of one non-depressed part is D 1 and the width of the other non-depressed part is D 2 and D 1 > D 2
  • the width of the non-depressed part with the shorter width that is, the width of the other non-depressed part is D 1 .
  • the ratio [D 2 /C] of the length [D 2 ] of the non-sinking portion in the width direction of D 2 to the length [C] of the non-sinking portion in the longitudinal direction is 1.0 or more, the present invention is applicable. Included in mat material.
  • the ratio [A/C] of the length [A] of the mat material in the longitudinal direction to the length [C] of the non-concave part in the longitudinal direction is not particularly limited, but it should be 10 or more. is preferred.
  • the ratio [A/C] of the length [A] of the mat material in the longitudinal direction to the length [C] of the non-sinking part in the longitudinal direction is 10 or more, the shape of the non-sinking part will be deformed during press-fitting. It becomes a difficult shape. Note that the ratio [A/C] in the mat material 10 shown in FIG. 1 is 10.1.
  • the length [C] of the non-concave portion in the longitudinal direction is the same as the length [C] of the concave portion and the length [C] of the convex portion in the longitudinal direction. Therefore, the feature of the mat material of the present invention is that "the ratio [A/C] of the length [A] of the mat material in the longitudinal direction to the length [C] of the non-concave part in the longitudinal direction is 10 or more.”"The ratio [A/C] of the length [A] of the mat material in the longitudinal direction to the length [C] of the convex part in the longitudinal direction is 10 or more" or "The length of the mat material in the longitudinal direction In other words, the ratio [A/C] of the length [A] to the length [C] of the recess in the longitudinal direction is 10 or more.
  • the number of protrusions formed on the first end surface and the number of recesses formed on the second end surface of the mat material may be two or more.
  • the length in the width direction of the non-sinking part is The ratio [D/C] between the length [D] and the length [C] in the length direction of the non-sinking portion is determined.
  • the above-mentioned ratio [D/C] in the non-concave part located at the position closest to the first side surface of the mat material and the above-mentioned ratio [D/C] at the non-concave part located at the position closest to the second side surface of the mat material C] of 1.0 or more corresponds to the mat material of the present invention.
  • the thickness of the mat material is not particularly limited, but is preferably 2 to 40 mm. If the thickness of the mat material exceeds 40 mm, the mat material loses its flexibility, making it difficult to handle when wrapping the mat material around an exhaust gas treatment body. In addition, the mat material tends to wrinkle and crack. If the thickness of the mat material is less than 2 mm, the holding power of the mat material will be insufficient and the exhaust gas treatment body will easily fall off. Further, when a volume change occurs in the exhaust gas treatment body, the mat material becomes difficult to absorb the volume change of the exhaust gas treatment body. Therefore, cracks and the like are likely to occur in the exhaust gas treatment body.
  • the mat is composed of inorganic fibers.
  • the inorganic fiber is not particularly limited, it is preferable that the inorganic fiber is composed of at least one selected from the group consisting of alumina fiber, silica fiber, alumina-silica fiber, mullite fiber, biosoluble fiber, and glass fiber.
  • the inorganic fiber is at least one of alumina fiber, silica fiber, alumina-silica fiber, and mullite fiber, it has excellent heat resistance, so that when the exhaust gas treatment body is exposed to a sufficiently high temperature, However, no deterioration or the like occurs, and the function as a mat material can be sufficiently maintained.
  • the inorganic fibers are biosoluble fibers, even if the scattered inorganic fibers are inhaled when making an exhaust gas purification device using the mat material, they will dissolve in the body, making it difficult for workers to use them. No harm to health.
  • the alumina fiber may contain additives such as calcia, magnesia, and zirconia.
  • the mat can be manufactured by a needling method or a papermaking method.
  • Mats produced by the needling method are also referred to as needle mats, and mats produced by the papermaking method are also referred to as papermaking mats.
  • the average fiber length of the inorganic fibers is preferably 1 to 150 mm, more preferably 10 to 80 mm. If the average fiber length of the inorganic fibers is less than 1 mm, the fiber length of the inorganic fibers will be too short, resulting in insufficient entanglement of the inorganic fibers, reducing the ability to wrap around the exhaust gas treatment body, and making the mat material more likely to crack. . Furthermore, when the average fiber length of the inorganic fibers exceeds 150 mm, the fiber length of the inorganic fibers is too long, so the number of fibers constituting the mat material decreases, and the denseness of the mat material decreases. As a result, the shear strength of the mat material decreases.
  • the average fiber length of the inorganic fibers is preferably 200 to 20,000 ⁇ m, more preferably 300 to 10,000 ⁇ m, and even more preferably 500 to 1,500 ⁇ m.
  • intertwined points are formed on the front or back surface of the mat material.
  • the density ⁇ of the intertwined points is preferably in the range of 0.5 pieces/cm 2 ⁇ 18 pieces/cm 2 .
  • the density ⁇ of the interlacing points is the interlacing points measured on the main surface of the front or back surface, whichever has a higher density of interlacing points.
  • the needling method within a 25 mm x 25 mm area on the front or back side of the mat material, there is a first area of 4 mm x 4 mm in which no intertwined points exist, and a 3 mm x 8 mm area in which no intertwined points exist. It is preferable that at least one of the second regions is arranged. By arranging at least one of the first region and the second region, high surface pressure is exerted. Note that the main surface of the mat material for determining whether the first region and/or the second region is arranged is the same main surface as the main surface for measuring the density of the intertwining points.
  • FIG. 5 is a schematic diagram showing an example of the arrangement of intertwining points in the mat material of the present invention.
  • the mat material 10 shown in FIG. 5 has dimensions of 25 mm x 25 mm in plan view.
  • a plurality of interlacing points 115 are arranged unevenly. Therefore, the first area 117 is a 4 mm x 4 mm area (the area indicated by the solid square in FIG. 5) where the interlacing point 115 does not exist, and the 3 mm x 8 mm area (indicated by the solid square in FIG. 5) where the intersecting point 115 does not exist. , a region indicated by a dashed rectangle) is arranged. Note that FIG. 5 does not illustrate all of the first region 117 and the second region 118.
  • FIG. 6 is a schematic diagram showing an example of a mat material in which intertwining points are uniformly arranged.
  • the mat material 10 shown in FIG. 6 has dimensions of 25 mm x 25 mm in plan view.
  • the interlacing points 115 are uniformly spaced at 2.8 mm intervals.
  • Both the 4 mm x 4 mm square and the 3 mm x 8 mm rectangle shown in FIG. 6 include one or more intertwining points.
  • a square of 4 mm x 4 mm that does not correspond to the first area and a rectangle of 3 mm x 8 mm that does not correspond to the second area are marked with an "x". Therefore, neither the first region nor the second region can be arranged on the mat material shown in FIG. 6 .
  • the method for counting the number of first areas and second areas within a 25 mm x 25 mm area is as follows. (1) Find a 4 mm x 4 mm area (first area) in which no intertwined points are formed. At this time, the plurality of first regions are selected so that they do not overlap with each other. (2) Find a 3 mm x 8 mm area (second area) in which no intertwined points are formed. At this time, the plurality of second regions are selected so that they do not overlap with each other. However, the second area may overlap the first area. When the second region and the first region overlap, the area where no intertwining points are present becomes larger, so that the surface pressure of the mat material can be increased.
  • a plurality of first regions and/or second regions are arranged in a 25 mm x 25 mm area.
  • the surface pressure of the mat material can be increased.
  • a plurality of first regions and/or second regions are arranged when the number of first regions and the number of second regions is two or more in total, and a plurality of first regions are arranged. This includes a case where a plurality of second regions are arranged, a case where a plurality of first regions and a plurality of second regions are arranged, and the like.
  • a third area which is a 4 mm x 4 mm area in which four or more interlacing points exist, is arranged within a 25 mm x 25 mm area on the front or back surface of the mat material.
  • the inorganic fibers are strongly intertwined with each other in this region, so that the shear strength of the mat material can be increased.
  • the method for counting the number of third regions within the 25 mm x 25 mm region is the same as the method for counting the number of first regions described above.
  • an inorganic binder also referred to as an inorganic binder
  • an inorganic binder is attached to the surface of the inorganic fiber.
  • the frictional resistance between the inorganic fibers increases due to the inorganic binder attached to the surface of the inorganic fiber, so that the holding force can be increased.
  • examples of the inorganic binder include alumina sol and silica sol.
  • an organic binder also referred to as an organic binder
  • an organic binder is attached to the surface of the inorganic fiber.
  • an organic binder is attached to the surface of the inorganic fibers, it is possible to improve the adhesion between the inorganic fibers and prevent the inorganic fibers from scattering during handling of the mat material.
  • organic binder examples include acrylic resin, acrylate latex, rubber latex, water-soluble organic polymers such as carboxymethyl cellulose or polyvinyl alcohol, thermoplastic resins such as styrene resin, and thermosetting resins such as epoxy resin.
  • an inorganic binder and an organic binder are attached to the surface of the inorganic fiber.
  • an inorganic binder is attached to the surface of the inorganic fiber
  • the frictional resistance between the inorganic fibers increases due to the inorganic binder attached to the surface of the inorganic fiber, so that the holding force can be increased.
  • an organic binder is attached to the surface of the inorganic fibers, the adhesion between the inorganic fibers can be improved, and it is possible to prevent the inorganic fibers from scattering during handling of the mat material.
  • the weight ratio of the inorganic binder to the mat material is preferably more than 0 wt% and 10 wt% or less. When the weight ratio of the inorganic binder to the mat material is within the above range, the holding force can be sufficiently increased.
  • the weight ratio of the organic binder to the mat material is preferably more than 0 wt% and 10 wt% or less. When the weight ratio of the organic binder to the mat material is within the above range, both the effect of preventing fiber scattering and the high holding power can be achieved.
  • the content of the organic binder and inorganic binder contained in the mat material can be measured, for example, by the following method. First, a fixed weight sample of the mat material whose content is to be measured is taken. Next, an organic solvent (for example, tetrahydrofuran) in which the organic binder contained in the sample is dissolved is selected, and the organic binder is dissolved in a Soxhlet extractor and separated from the sample. At this time, the inorganic binder contained in the dissolved organic binder is also separated from the sample, and the organic binder and the inorganic binder are recovered in the organic solvent. Next, an organic solvent consisting of the organic binder and the inorganic binder is placed in a crucible, and the organic solvent is evaporated off by heating.
  • an organic solvent for example, tetrahydrofuran
  • the residue remaining in the crucible is regarded as the total weight of the organic binder and the inorganic binder relative to the mat material, and the content (% by weight) relative to the weight of the mat material is calculated. Furthermore, the crucible is heat-treated at 600° C. for 1 hour to burn out the organic binder. Since the inorganic binder remains in the crucible, this is regarded as the content (% by weight) of the inorganic binder relative to the total of the organic binder and the inorganic binder, and the content is calculated. The remainder is the content (% by weight) of the organic binder.
  • the inorganic binder and the organic binder are each attached to the surface of the inorganic fibers in a dispersed state.
  • the inorganic binder and the organic binder are attached to the surface of the inorganic fiber in a dispersed state, the inorganic binder becomes dispersed in the film formed by the organic binder. Since the coating in this state has excellent mechanical strength, it can prevent the inorganic fibers from slipping against each other and increase the holding power.
  • the surface of the inorganic fibers be covered with a coating layer made of a mixture of an inorganic binder and an organic binder.
  • a coating layer made of a mixture of an inorganic binder and an organic binder has higher mechanical strength than a coating layer made only of an organic binder. Therefore, the coating layer is less likely to peel off, and the frictional resistance between the inorganic fibers can be increased.
  • the coating layer is preferably formed by a continuous scale-like mixture (a mixture of an inorganic binder and an organic binder).
  • a continuous scale-like mixture a mixture of an inorganic binder and an organic binder.
  • FIG. 7 is an example of an enlarged electron microscope image of the mat material of the present invention.
  • a part of the surface of the inorganic fiber 120 is covered with a coating layer 130 made of a mixture of an inorganic binder and an organic binder.
  • the covering layer 130 is formed by a continuous scale-like mixture of an inorganic binder and an organic binder.
  • a particulate mixture 140 of an inorganic binder and an organic binder is attached to the surface of the inorganic fiber 120 . Note that whether or not the coating layer or particles are made of a mixture of an inorganic binder and an organic binder can be confirmed by combined use of field observation using an electron microscope and elemental analysis.
  • FIG. 8 is another example of an enlarged electron microscope image of the mat material of the present invention.
  • a part of the surface of the inorganic fiber 120 is covered with a coating layer 130 made of a mixture of an inorganic binder and an organic binder.
  • the covering layer 130 is formed by a continuous scale-like mixture of an inorganic binder and an organic binder.
  • a particulate mixture 140 of an inorganic binder and an organic binder is attached to the surface of the inorganic fiber 120 .
  • the thickness of the coating layer may be uniform, but it does not need to be uniform.
  • the shape of the coating layer whose thickness is not constant is also called multistage.
  • the covering layer has a multi-stage shape, it can be said that the covering layer has irregularities on the surface, so that the frictional resistance between the inorganic fibers can be further increased.
  • the surface of the inorganic fiber is magnified 3000 times using a scanning electron microscope. This is determined by checking the presence or absence of irregularities on the surface.
  • FIG. 9 is yet another example of an enlarged electron microscope image of the mat material of the present invention.
  • a part of the surface of the inorganic fiber 120 is covered with a coating layer 130 made of a mixture of an inorganic binder and an organic binder.
  • the thickness of the covering layer 130 is not uniform, and is multi-stepped.
  • a particulate mixture 140 of an inorganic binder and an organic binder is attached to the surface of the inorganic fiber 120 .
  • particles made of a mixture of an inorganic binder and an organic binder are attached to the surface of the coating layer.
  • the frictional resistance between the inorganic fibers can be further increased compared to a case where the particles are not attached.
  • FIG. 10 is yet another example of an enlarged electron microscope image of the mat material of the present invention.
  • a part of the surface of the inorganic fiber 120 is covered with a coating layer 130 made of a mixture of an inorganic binder and an organic binder.
  • the covering layer 130 is formed by a continuous scale-like mixture of an inorganic binder and an organic binder.
  • the thickness of the covering layer 130 is not uniform, and is multi-stepped.
  • a particulate mixture 140 of an inorganic binder and an organic binder is attached to the surface of the coating layer 130 .
  • the mat material further contains a polymeric dispersant.
  • the organic binder and the inorganic binder can be easily attached to the surface of the inorganic fibers in a dispersed state.
  • the content of the polymeric dispersant is preferably 50 to 1000 ppm based on the weight of the inorganic fiber.
  • an aggregate made of an inorganic binder and an organic binder is attached to the surface of the inorganic fibers.
  • the aggregate made of the inorganic binder and the organic binder can form irregularities on the surface of the inorganic fibers, so that the friction between the inorganic fibers can be increased and the holding power can be improved.
  • the mat material may further contain an aggregating agent.
  • the organic binder and the inorganic binder can be easily attached to the surface of the inorganic fibers in an agglomerated state.
  • Whether the inorganic binder and organic binder attached to the surface of the inorganic fiber are dispersed or aggregated can be confirmed by observing the surface of the inorganic fiber using a SEM-EDX or the like.
  • the mat material of the present invention preferably has a shear coefficient of 0.20 or more.
  • shear coefficient is 0.20 or more, shearing is less likely to occur in the mat material when the exhaust gas treatment body is press-fitted into a casing using the mat material of the present invention.
  • the shear modulus is obtained by dividing the shear failure load by the relaxed surface pressure.
  • FIG. 11 is a conceptual diagram schematically showing a shear failure load test device.
  • test pieces 1a and 1b are arranged on both sides of a stainless steel plate 173, and the outside thereof is further sandwiched between a left jig 171 and a right jig 172.
  • a large number of protruding members 174 are provided on the surfaces of the left jig 171, the right jig 172, and the stainless steel plate 173 that contact the test piece.
  • test pieces 1a and 1b are fixed to the left jig 171, the right jig 172, and the stainless steel plate 173 by being pierced by the protruding member 174. In this state, the test piece is compressed until its bulk density (GBD) becomes 0.3 g/cm 3 .
  • GBD bulk density
  • the stainless steel plate 173 is moved in the direction shown by the arrow in FIG. It cannot be separated from the pieces 1a and 1b and come off. Therefore, when a shear force greater than the shear failure load of the test pieces is applied to the test pieces 1a and 1b, the test pieces 1a and 1b undergo shear failure. Determine the shear force applied to the stainless steel plate when the test piece undergoes shear failure.
  • the shear failure load (kPa) can be determined.
  • the shear failure load may be measured using a test piece obtained by cutting out a portion of the mat material.
  • Relaxed surface pressure can be measured using the following procedure. First, the mat material is compressed at room temperature until the bulk density becomes 0.3 g/cm 3 , and the load is measured after holding for 20 minutes.
  • the relaxed surface pressure (kPa) can be determined.
  • the above-mentioned relaxation surface pressure may be measured using a test piece obtained by cutting out a part of the mat material.
  • a plate for compressing the mat material is moved at a speed of 1 inch (25.4 mm)/min to compress the mat material until the bulk density becomes 0.3/cm 3 .
  • the bulk density becomes 0.27 g/cm 3 .
  • the mat material of the present invention can be obtained, for example, by performing a cutting step of cutting a mat containing inorganic fibers into a predetermined shape, or a molding step of molding it into a predetermined shape.
  • an inorganic fiber precursor is produced by spinning a spinning mixture containing at least an inorganic compound and an organic polymer.
  • a spinning mixture made of a basic aluminum chloride aqueous solution, silica sol, etc. as raw materials is spun by a blowing method to produce an inorganic fiber precursor having an average fiber diameter of 3 to 10 ⁇ m.
  • the needle arrangement density is preferably set to 0.5 needles/cm 2 or more and less than 18 needles/cm 2 .
  • the positions where the needles are placed in the needle punching process correspond to the interlacing points in the mat. Therefore, by setting the needle arrangement density to 0.5 needles/cm 2 or more and less than 18 needles/cm 2 , one needle punching process can reduce the density of intertwined points ⁇ to 0.5 needles/cm 2 ⁇ Mats in the range ⁇ 18 pieces/cm 2 can be obtained.
  • the needle arrangement density is not limited to the above range.
  • the needles may or may not penetrate the sheet-like material in the thickness direction.
  • the needle punched body is fired to obtain a mat made of inorganic fibers.
  • the temperature at which the needle punched body is fired is not particularly limited, but is preferably 1000°C to 1600°C. Through the above steps, a mat can be obtained.
  • the mat material of the present invention can be obtained by cutting the mat obtained through the above steps into a predetermined shape.
  • an attachment step may be performed in which an inorganic binder and/or an organic binder is attached to the surface of the mat or the inorganic fibers constituting the mat material.
  • examples of the inorganic binder include alumina sol and silica sol.
  • organic binder examples include acrylic resin, acrylate latex, rubber latex, water-soluble organic polymers such as carboxymethyl cellulose or polyvinyl alcohol, thermoplastic resins such as styrene resin, and thermosetting resins such as epoxy resin.
  • polymeric dispersants examples include polycarboxylic acid and/or its salt, naphthalene sulfonate formalin condensate and/or its salt, polyacrylic acid and/or its salt, polymethacrylic acid and/or its salt, polyvinyl sulfone Hydrophilic synthetic polymer substances such as anionic polymer dispersants such as acids and/or their salts, nonionic polymer dispersants such as polyvinyl alcohol, polyvinylpyrrolidone, and polyethylene glycol; gelatin, casein, water-soluble Natural hydrophilic polymeric substances such as starch; hydrophilic semi-synthetic polymeric substances such as carboxymethyl cellulose, and the like.
  • hydrophilic synthetic polymer substances are preferred, and anionic polymer dispersants are more preferred.
  • anionic polymer dispersants are more preferred.
  • only one type of these polymeric dispersants may be used, or a plurality of types may be used in combination.
  • it may be a polymeric dispersant having both a structure exhibiting properties as an anionic polymeric dispersant and a structure exhibiting properties as a nonionic polymeric dispersant.
  • the binder mixture may contain a flocculant. If the binder mixed liquid contains an aggregating agent, the binder will be in a coagulated state in the binder mixed liquid. By bringing the binder mixture in this state into contact with the mat, the binder can be attached to the surface of the inorganic fibers in an aggregated state.
  • the binder mixture may contain a polymeric dispersant. If the binder mixed liquid contains a polymeric dispersant, the binder will be in a dispersed state in the binder mixed liquid. That is, the binder mixed liquid becomes a dispersion liquid in which the binder is dispersed in a dispersion medium. By bringing the binder mixture (dispersion) in this state into contact with the mat, the binder can be attached to the surface of the inorganic fibers in a dispersed state.
  • classification treatment examples include classification treatment using a dry centrifugal classifier (also referred to as a dry cyclone), a wet centrifugal classifier (also referred to as a wet cyclone), and the like.
  • a dry centrifugal classifier also referred to as a dry cyclone
  • a wet centrifugal classifier also referred to as a wet cyclone
  • the exhaust gas discharged from the internal combustion engine and flowing into the exhaust gas purification device 200 (in FIG. 12, the exhaust gas is indicated by G and the flow of the exhaust gas is indicated by arrows) is transferred to an exhaust gas processing body (honeycomb filter) 230.
  • the exhaust gas flows into one cell 231 opened at the exhaust gas inflow side end face 230a of the exhaust gas, and passes through the cell wall 232 that separates the cells 231.
  • PM in the exhaust gas is collected by the cell wall 232, and the exhaust gas is purified.
  • the purified exhaust gas flows out from another cell 231 opened at the exhaust gas outflow side end face 230b and is discharged to the outside.
  • the method for manufacturing an exhaust gas purification device of the present invention includes a press-fitting step of wrapping the mat material of the present invention around an exhaust gas treatment body and then press-fitting it into a casing by a hard stuffing method, a pre-calibration method, or a post-calibration method. It is characterized by
  • the present disclosure (5) is the mat material according to the present disclosure (1), which is a paper-made mat.
  • the present disclosure (12) is the mat material according to the present disclosure (9), wherein an aggregate made of the inorganic binder and the organic binder is attached to the surface of the inorganic fiber.
  • the present disclosure (14) is the mat material according to the present disclosure (13), wherein the coating layer is formed by a continuous scale-like mixture of the inorganic binder and the organic binder.
  • the present disclosure is the mat material according to the present disclosure (13) or (14), wherein the coating layer has a multi-stage shape.
  • the density ⁇ of interlaced points is 9 pieces/cm 2 , and within the 25 mm x 25 mm area, there are 10 first regions of 4 mm x 4 mm where no intersected points exist, and 3 mm x 8 mm where no intersected points exist. There were four second areas arranged.
  • Binder mixture preparation step The organic binder obtained in the above (f-1) organic binder mixture preparation step is mixed with the inorganic binder mixture obtained in the above (f-2) Inorganic binder mixture preparation step.
  • the liquids were added at a weight ratio of 1:1 and thoroughly stirred, so that the organic binder had a solid content concentration of 1.0 wt%, the inorganic binder had a solid content concentration of 1.0 wt%, and the concentration of the polymeric dispersant was 1.0 wt%.
  • a binder mixture solution having a concentration of 500 ppm was prepared.
  • (f-4) Contact step The binder mixture obtained in the above (f-3) binder mixture preparation step was brought into contact with the mat obtained in the (e) cutting step by a curtain coating method.
  • (f-5) Dehydration step The mat obtained in the above (f-4) contact step and to which the binder mixture has been applied is dehydrated by suction using a dehydrator, so that the binder mixture is reduced to 100 parts by weight of inorganic fibers. It was prepared so that 100 parts by weight was added.
  • Example 2 to 6 and Comparative Examples 1 to 3 (e) Mat materials according to Examples 2 to 6 and Comparative Examples 1 to 3 were produced in the same manner as in Example 1, except that the shape to be cut in the cutting process was changed to meet the conditions in Table 1. .
  • [D 1 ] indicates the width of the non-sinking portion on the first side surface side
  • [D 2 ] indicates the width of the non-sinking portion on the second side surface side, respectively.
  • the mat materials according to Examples 4 to 6 and Comparative Example 3 were made by wrapping a wound body with a diameter of 141 mm around an exhaust gas treatment body with a diameter of 129 mm and a length of 105 mm, with a taper angle of 4.5° and an aperture diameter of 145.
  • the mat material was press-fitted into a stainless steel casing with an inner diameter of 145.4 mm at a speed of 500 mm/min so that the first side surface was on the upstream side and the second side surface was on the downstream side.
  • Deformation amount (shift amount) is 6 mm or less, and deformation of the mat material is particularly suppressed.
  • Test piece 10 Mat material 11 First main surface 12 Second main surface 13 First end surface 13a Convex portions 13b, 13c Non-protruding portion 14 Second end surface 14a Recessed portions 14b, 14c Non-concave portion 15 First side surface 16 Second Side surface 115 Intertwining point 117 First region 118 Second region 120 Inorganic fiber 130 Covering layer 140 Particulate mixture 170 Shear failure load test device 171 Left jig 172 Right jig 173 Stainless steel plate 174 Projection member 200 Exhaust gas purification device 220 Casing 230 Exhaust gas treatment body 230a Exhaust gas inflow end face 230b Exhaust gas outflow end face 231 Cell 232 Cell wall 233 Sealing material 250 Wrapping body

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Exhaust Gas After Treatment (AREA)

Abstract

A mat material that is substantially rectangular in plan view and includes inorganic fibers, the mat material characterized by having a first main surface and a second main surface that face away from each other in the thickness direction, a first end surface and a second end surface that face away from each other in the longitudinal direction serving as a wrapping direction, and a first side surface and a second side surface that face away from each other in the width direction orthogonal to both the thickness direction and the longitudinal direction, the mat material moreover being characterized in that: a projecting section that protrudes toward the second end surface during wrapping, and non-protruding sections that are disposed on both width-direction sides of the projecting section and do not protrude toward the second end surface, are formed on the first end surface; a recessed section that corresponds to the shape of the projecting section of the first end surface during wrapping, and non-sunken sections that are disposed on both width-direction sides of the recessed section and correspond to the shapes of the non-protruding sections of the first end surface, are formed on the second end surface; and the ratio (D/C) of the width-direction length (D) of the non-sunken sections to the longitudinal-direction length (C) of the non-sunken sections is 1.0 or greater.

Description

マット材、排ガス浄化装置及び排ガス浄化装置の製造方法Mat material, exhaust gas purification device, and method for manufacturing exhaust gas purification device
本発明は、マット材、排ガス浄化装置及び排ガス浄化装置の製造方法に関する。 The present invention relates to a mat material, an exhaust gas purification device, and a method for manufacturing an exhaust gas purification device.
ディーゼルエンジン等の内燃機関から排出される排ガス中には、パティキュレートマター(以下、PMともいう)が含まれており、近年、このPMが環境や人体に害を及ぼすことが問題となっている。また、排ガス中には、COやHC、NOx等の有害なガス成分も含まれていることから、この有害なガス成分が環境や人体に及ぼす影響についても懸念されている。 Exhaust gas emitted from internal combustion engines such as diesel engines contains particulate matter (hereinafter also referred to as PM), and in recent years, it has become a problem that this PM is harmful to the environment and the human body. . Moreover, since the exhaust gas also contains harmful gas components such as CO, HC, and NOx, there are concerns about the effects of these harmful gas components on the environment and the human body.
ここで、排ガス中のPMを捕集したり、有害なガス成分を浄化したりする排ガス浄化装置として、炭化ケイ素やコージェライトなどの多孔質セラミックからなる排ガス処理体と、排ガス処理体を収容するケーシングと、排ガス処理体とケーシングとの間に配設される無機繊維集合体からなるマット材とから構成される排ガス浄化装置が種々提案されている。この種のマット材は、自動車の走行等により生じる振動や衝撃により、排ガス処理体がその外周を覆うケーシングと接触して破損するのを防止すること、及び、排ガス処理体とケーシングとの間から排気ガスが漏れることを防止すること等を主な目的として配設されている。 Here, as an exhaust gas purification device that collects PM in exhaust gas and purifies harmful gas components, an exhaust gas treatment body made of porous ceramic such as silicon carbide or cordierite and an exhaust gas treatment body are housed. Various exhaust gas purification devices have been proposed that include a casing and a mat material made of an inorganic fiber aggregate disposed between an exhaust gas treatment body and the casing. This type of mat material is used to prevent the exhaust gas treatment body from coming into contact with the casing that covers its outer periphery and damage it due to vibrations and shocks caused by driving, etc., and to prevent damage between the exhaust gas treatment body and the casing. The main purpose is to prevent exhaust gas from leaking.
上記マット材は、無機繊維からなり、平面視した上記マット材の基本形状は、長手方向に延びる長辺とそれにほぼ直角な短辺とからなる矩形形状であり、上記矩形の一方の短辺側に凹部が形成されるとともに、他方の短辺側に上記凹部により切り取られた形状と同様の形状からなる凸部が形成されており、上記マット材を排ガス処理体に巻き付けて、上記凸部を上記凹部に嵌合させることにより、排ガスがマット材よりリークするのを防止している。
マット材が巻き付けられた排ガス処理体は、ケーシング内に圧入されて、排ガス浄化装置内に組み付けられる。
The mat material is made of inorganic fibers, and the basic shape of the mat material when viewed from above is a rectangular shape consisting of a long side extending in the longitudinal direction and a short side substantially perpendicular to the long side, and one short side of the rectangle A concave portion is formed on the other short side, and a convex portion having a shape similar to the shape cut by the concave portion is formed on the other short side, and the mat material is wrapped around the exhaust gas treatment body to remove the convex portion. By fitting into the recess, exhaust gas is prevented from leaking from the mat material.
The exhaust gas treatment body wrapped with the mat material is press-fitted into the casing and assembled into the exhaust gas purification device.
例えば、特許文献1には、第1の表面に、凹凸差の平均値hが0.4mm≦h≦9mmの範囲にあるシート材(マット材)を用いることで、シート材と別の部材との接触面積を小さくすることで、表面潤滑剤を使用せずに、所定の位置にシート材を容易に装着することが可能となることが開示されている。 For example, Patent Document 1 discloses that by using a sheet material (mat material) having an average unevenness difference h in the range of 0.4 mm≦h≦9 mm on the first surface, the sheet material and another member can be separated. It is disclosed that by reducing the contact area of the sheet material, it becomes possible to easily install the sheet material in a predetermined position without using a surface lubricant.
特開2011-241837号公報Japanese Patent Application Publication No. 2011-241837
特許文献1には、凹部と凸部の細かい寸法について何ら言及されておらず、マット材を作製して圧入したところ、嵌合部の最も上流側に配置されるマット材の一部に変形が生じてしまい、排ガス処理体を所定の位置に固定した場合に、マット材の一部がケーシングからはみ出してしまうことがあった。 Patent Document 1 does not mention anything about the detailed dimensions of the concave portion and the convex portion, and when the mat material was prepared and press-fitted, a portion of the mat material disposed on the most upstream side of the fitting portion was deformed. When the exhaust gas treatment body is fixed in a predetermined position, a part of the mat material may protrude from the casing.
本発明は、上記課題を解決するためになされた発明であり、本発明の目的は、圧入時にケーシングからのはみ出しが生じにくいマット材を提供することである。 The present invention was made to solve the above problems, and an object of the present invention is to provide a mat material that is less likely to protrude from a casing during press-fitting.
すなわち、本発明のマット材は、無機繊維を含む平面視略矩形のマット材であって、上記マット材は、厚さ方向に対向する第1主面及び第2主面と、巻きつけ方向となる長手方向に対向する第1端面及び第2端面と、上記厚さ方向及び上記長手方向に直交する幅方向に対向する第1側面及び第2側面を有し、上記第1端面には、巻き付け時に、上記第2端面に向かって突出する凸部と、上記凸部の上記幅方向の両側に配置されて上記第2端面に向かって突出しない非突出部と、が形成されており、上記第2端面には、巻き付け時に、上記第1端面の上記凸部の形状に対応する凹部と、上記凹部の上記幅方向の両側に配置されて、上記第1端面の上記非突出部の形状に対応する非陥没部と、が形成されており、上記幅方向における上記非陥没部の長さ[D]の、上記長手方向における上記非陥没部の長さ[C]に対する割合[D/C]が、1.0以上であることを特徴とする。 That is, the mat material of the present invention is a mat material containing inorganic fibers and having a substantially rectangular shape in a plan view, and the mat material has a first main surface and a second main surface facing each other in the thickness direction, and a winding direction. a first end face and a second end face facing each other in the longitudinal direction, and a first side face and a second side face facing each other in the thickness direction and the width direction perpendicular to the longitudinal direction; In some cases, a convex portion that protrudes toward the second end surface and non-protruding portions that are arranged on both sides of the convex portion in the width direction and do not protrude toward the second end surface are formed. The two end faces include a recess corresponding to the shape of the convex part of the first end face, and a recess that is arranged on both sides of the recess in the width direction and corresponds to the shape of the non-protruding part of the first end face. A non-concave part is formed, and the ratio [D/C] of the length [D] of the non-concave part in the width direction to the length [C] of the non-concave part in the longitudinal direction is , 1.0 or more.
特許文献1に記載されたような、対応する凸部及び凹部を有するマット材を排ガス処理体に巻き付けた場合、マット材の端面同士が嵌合する嵌合部では、第1端面の一部と第2の端面の一部とが互い違いに配置される。
第1端面の一部とは、第1端面に設けられる凸部であり、第2端面の一部とは、第2端面に設けられる非陥没部である。第2端面の非陥没部は2つあり、一方が第1側面側に配置され、他方が第2側面側に配置される。巻き付け時には、第1端面の凸部と第2端面の凹部の形状、及び、第1端面の非突出部と第2端面の非陥没部の形状、がそれぞれ対応する。
ケーシングへの圧入時には、排ガス処理体とケーシングとの間でせん断応力が生じるため、マット材は、圧入方向の上流側に引っ張られるような変形を生じやすい。この変形は、さらに上流側に変形を妨げる構成が存在しない非陥没部、すなわち、最も上流側に配置される非陥没部において特に生じやすい。
When a mat material having corresponding convex portions and concave portions as described in Patent Document 1 is wound around an exhaust gas treatment body, at the fitting portion where the end surfaces of the mat material fit together, part of the first end surface and A portion of the second end surface is alternately arranged.
A portion of the first end surface is a convex portion provided on the first end surface, and a portion of the second end surface is a non-concave portion provided on the second end surface. There are two non-concave portions on the second end surface, one of which is disposed on the first side and the other on the second side. At the time of winding, the shapes of the convex portion of the first end surface and the concave portion of the second end surface correspond to each other, and the shapes of the non-protruding portion of the first end surface and the non-concave portion of the second end surface correspond to each other.
When the mat material is press-fitted into the casing, shear stress is generated between the exhaust gas treatment body and the casing, so that the mat material tends to be deformed so as to be pulled upstream in the press-fitting direction. This deformation is particularly likely to occur in a non-concave portion where there is no configuration that prevents deformation further upstream, that is, in a non-concave portion located furthest upstream.
非陥没部は、マット材本体(凸部及び非陥没部以外の部分)に近い部分ほどせん断力による変形が生じにくく、マット材本体から遠くなるほどせん断力による変形を生じやすいと考えられる。すなわち、非陥没部の長さが短いほど、該非陥没部は変形しにくくなるといえる。
一方で、非陥没部の幅(第1側面又は第2側面から凹部までの長さに相当する距離)が長くなるほど、該非陥没部がマット材本体に固定されている領域が長くなるため、せん断による変形が生じにくくなるといえる。
すなわち、非陥没部の長さと幅を調整することにより、非陥没部の変形しやすさを改善できると考えられる。
また、第1端面の凸部と第2端面の凹部が複数存在する場合であっても前述の効果を奏する。
It is considered that the non-sinking portion is less likely to be deformed by shear force as it is closer to the mat material main body (portions other than the convex portions and non-sinking portions), and the farther from the mat material main body is, the more likely it is to be deformed due to shear force. That is, it can be said that the shorter the length of the non-sinking portion, the more difficult the non-sinking portion is to deform.
On the other hand, as the width of the non-concave portion (distance equivalent to the length from the first side surface or the second side surface to the concave portion) increases, the area where the non-concave portion is fixed to the mat material body becomes longer, so that shearing It can be said that deformation due to this phenomenon is less likely to occur.
That is, it is considered that the ease with which the non-sinking portion deforms can be improved by adjusting the length and width of the non-sinking portion.
Further, even if there are a plurality of convex portions on the first end surface and a plurality of concave portions on the second end surface, the above-mentioned effects can be obtained.
本発明のマット材では、幅方向における非陥没部の長さ[D]の、長手方向における非陥没部の長さ[C]に対する割合[D/C]が1.0以上となっている。
上記構成は、特許文献1の構成と比較して、長手方向における非陥没部の長さ[C]が相対的に短く、幅方向における非陥没部の長さ[D]が相対的に長くなった構成であるといえる。
そのため、マット材の形状が上記条件を満たすと、圧入時のせん断力によって非陥没部が変形し難くなり、ケーシングからはみ出しにくくなる。
In the mat material of the present invention, the ratio [D/C] of the length [D] of the non-recessed portion in the width direction to the length [C] of the non-recessed portion in the longitudinal direction is 1.0 or more.
In the above structure, compared to the structure of Patent Document 1, the length [C] of the non-sinking part in the longitudinal direction is relatively short, and the length [D] of the non-sinking part in the width direction is relatively long. It can be said that it has a good configuration.
Therefore, when the shape of the mat material satisfies the above conditions, the non-concave portion becomes difficult to deform due to the shear force during press-fitting, and becomes difficult to protrude from the casing.
本発明のマット材は、ニードルマットであることが好ましい。 The mat material of the present invention is preferably a needle mat.
本発明のマット材では、表面または裏面の少なくとも一方にニードリング処理によって形成された複数の交絡点を有するマット材であって、25mm×25mmの領域内に、上記交絡点が存在しない4mm×4mmの領域である第1の領域、及び、上記交絡点が存在しない3mm×8mmの領域である第2の領域の少なくとも一方が配置されていることが好ましい。
25mm×25mmの領域内に第1の領域及び/又は第2の領域が配置されていると、マット材の面圧を高くすることができる。
In the mat material of the present invention, the mat material has a plurality of intertwined points formed by needling on at least one of the front surface or the back surface, and within a 25 mm x 25 mm area, there is a 4 mm x 4 mm area in which the above intertwined points are not present. It is preferable that at least one of the first region, which is the region, and the second region, which is the region of 3 mm x 8 mm where the intersecting point does not exist, is arranged.
When the first region and/or the second region are arranged within a 25 mm x 25 mm area, the surface pressure of the mat material can be increased.
本発明のマット材では、上記無機繊維の平均繊維長は、1~150mmであることが好ましい。 In the mat material of the present invention, the average fiber length of the inorganic fibers is preferably 1 to 150 mm.
本発明のマット材は、抄造マットであることが好ましい。 The mat material of the present invention is preferably a paper-made mat.
本発明のマット材では、上記無機繊維の平均繊維長は、200~20000μmであることが好ましい。 In the mat material of the present invention, the average fiber length of the inorganic fibers is preferably 200 to 20,000 μm.
本発明のマット材では、上記無機繊維の表面に無機バインダが添着されていることが好ましい。
無機繊維の表面に無機バインダが添着されていると、無機繊維の表面に添着された無機バインダによって無機繊維同士の摩擦抵抗が増加するため、保持力を高めることができる。
In the mat material of the present invention, it is preferable that an inorganic binder is attached to the surface of the inorganic fibers.
When an inorganic binder is attached to the surface of the inorganic fiber, the frictional resistance between the inorganic fibers increases due to the inorganic binder attached to the surface of the inorganic fiber, so that the holding force can be increased.
本発明のマット材では、上記無機繊維の表面に有機バインダが添着されていることが好ましい。
無機繊維の表面に有機バインダが添着されていると、無機繊維同士の接着性を向上させ、マット材のハンドリング時に無機繊維が飛散することを防止することができる。
In the mat material of the present invention, it is preferable that an organic binder is attached to the surface of the inorganic fiber.
When an organic binder is attached to the surface of the inorganic fibers, it is possible to improve the adhesion between the inorganic fibers and prevent the inorganic fibers from scattering during handling of the mat material.
本発明のマット材では、上記無機繊維の表面に無機バインダ及び有機バインダが添着されていることが好ましい。
無機繊維の表面に無機バインダが添着されていると、無機繊維の表面に添着された無機バインダによって無機繊維同士の摩擦抵抗が増加するため、保持力を高めることができる。
また、無機繊維の表面に有機バインダが添着されていると、無機繊維同士の接着性を向上させ、マット材のハンドリング時に無機繊維が飛散することを防止することができる。
In the mat material of the present invention, it is preferable that an inorganic binder and an organic binder are attached to the surface of the inorganic fibers.
When an inorganic binder is attached to the surface of the inorganic fiber, the frictional resistance between the inorganic fibers increases due to the inorganic binder attached to the surface of the inorganic fiber, so that the holding force can be increased.
Further, when an organic binder is attached to the surface of the inorganic fibers, the adhesion between the inorganic fibers can be improved, and it is possible to prevent the inorganic fibers from scattering during handling of the mat material.
本発明のマット材は、さらに高分子系分散剤を含有していることが好ましい。
マット材がさらに高分子系分散剤を含有していると、有機バインダ及び無機バインダを分散した状態で無機繊維の表面に添着させやすくなる。
The mat material of the present invention preferably further contains a polymeric dispersant.
When the mat material further contains a polymeric dispersant, the organic binder and the inorganic binder can be easily attached to the surface of the inorganic fibers in a dispersed state.
本発明のマット材では、上記無機バインダ及び上記有機バインダが、それぞれ分散した状態で、上記無機繊維の表面に添着していることが好ましい。
無機バインダ及び有機バインダがそれぞれ分散した状態で無機繊維の表面に添着していると、有機バインダによって形成される被膜中に、無機バインダが分散した状態となる。このような状態の被膜は機械的強度に優れるため、無機繊維同士が滑ることを防止し、保持力を高めることができる。
In the mat material of the present invention, it is preferable that the inorganic binder and the organic binder are attached to the surface of the inorganic fibers in a dispersed state.
When the inorganic binder and the organic binder are attached to the surface of the inorganic fiber in a dispersed state, the inorganic binder becomes dispersed in the film formed by the organic binder. Since the coating in this state has excellent mechanical strength, it can prevent the inorganic fibers from slipping against each other and increase the holding power.
本発明のマット材では、上記無機バインダ及び上記有機バインダからなる凝集体が、上記無機繊維の表面に添着していることが好ましい。
無機バインダ及び有機バインダからなる凝集体が無機繊維の表面に添着すると、無機繊維同士の摩擦を高めて保持力を向上させることができる。
In the mat material of the present invention, it is preferable that an aggregate made of the inorganic binder and the organic binder is attached to the surface of the inorganic fiber.
When an aggregate consisting of an inorganic binder and an organic binder is attached to the surface of inorganic fibers, it is possible to increase the friction between the inorganic fibers and improve the holding power.
本発明のマット材では、上記無機繊維の表面の少なくとも一部を、上記無機バインダと上記有機バインダの混合物からなる被覆層が覆っていることが好ましい。
無機バインダと有機バインダの混合物からなる被覆層は、有機バインダのみで構成される被覆層と比較して機械的強度が高い。そのため、被覆層の剥がれが生じにくく、無機繊維同士の摩擦抵抗を高めることができる。
In the mat material of the present invention, it is preferable that at least a portion of the surface of the inorganic fibers be covered with a coating layer made of a mixture of the inorganic binder and the organic binder.
A coating layer made of a mixture of an inorganic binder and an organic binder has higher mechanical strength than a coating layer made only of an organic binder. Therefore, the coating layer is less likely to peel off, and the frictional resistance between the inorganic fibers can be increased.
本発明のマット材では、上記被覆層は、上記無機バインダと上記有機バインダの鱗片状の混合物が連続することにより形成されていることが好ましい。
被覆層が鱗片状の上記混合物で形成されていると、鱗片状の混合物に由来して被覆層の表面粗さが増加するため、無機繊維同士の摩擦抵抗をさらに高めることができる。
In the mat material of the present invention, it is preferable that the coating layer is formed by a continuous scale-like mixture of the inorganic binder and the organic binder.
When the coating layer is formed of the above-mentioned scale-like mixture, the surface roughness of the coating layer increases due to the scale-like mixture, so that the frictional resistance between the inorganic fibers can be further increased.
本発明のマット材では、上記被覆層の形状は多段状であることが好ましい。
被覆層の形状が多段状であると、無機繊維同士の摩擦抵抗をさらに高めることができる。
In the mat material of the present invention, the coating layer preferably has a multi-stage shape.
When the coating layer has a multi-stage shape, the frictional resistance between the inorganic fibers can be further increased.
本発明のマット材では、上記被覆層の表面には、上記無機バインダと上記有機バインダの粒子状の混合物が付着していることが好ましい。
被覆層の表面に無機バインダと有機バインダの粒子状の混合物が付着していると、被覆層単独の場合と比較して、無機繊維同士の摩擦抵抗をさらに高めることができる。
In the mat material of the present invention, it is preferable that a particulate mixture of the inorganic binder and the organic binder adhere to the surface of the coating layer.
When a particulate mixture of an inorganic binder and an organic binder is attached to the surface of the coating layer, the frictional resistance between the inorganic fibers can be further increased compared to the case where the coating layer is used alone.
本発明のマット材では、上記長手方向におけるマット材の長さ[A]の、上記長手方向における上記非陥没部の長さ[C]に対する割合[A/C]が、10以上であることが好ましい。
長手方向におけるマット材の長さ[A]の、長手方向における非陥没部の長さ[C]に対する割合[A/C]が上記範囲であると、非陥没部の形状が圧入時により変形しにくい形状となる。
In the mat material of the present invention, the ratio [A/C] of the length [A] of the mat material in the longitudinal direction to the length [C] of the non-concave portion in the longitudinal direction is 10 or more. preferable.
If the ratio [A/C] of the length [A] of the mat material in the longitudinal direction to the length [C] of the non-sinking part in the longitudinal direction is within the above range, the shape of the non-sinking part will be deformed during press-fitting. It becomes a difficult shape.
本発明の排ガス浄化装置は、ケーシングと、排ガス処理体と、上記ケーシングと上記排ガス処理体との間に配置されるマット材とを有する排ガス浄化装置であって、上記マット材が本発明のマット材であることを特徴とする。 The exhaust gas purification device of the present invention is an exhaust gas purification device having a casing, an exhaust gas treatment body, and a mat material disposed between the casing and the exhaust gas treatment body, wherein the mat material is the mat of the present invention. It is characterized by being made of wood.
本発明の排ガス浄化装置は本発明のマット材を備えているため、圧入時にマット材がはみ出すことがなく、排ガス処理体の安定性に優れる。 Since the exhaust gas purification device of the present invention includes the mat material of the present invention, the mat material does not protrude during press-fitting, and the exhaust gas treatment body has excellent stability.
本発明の排ガス浄化装置の製造方法は、本発明のマット材を、排ガス処理体に巻きつけた後、ハードスタッフィング法、プレキャリブレーション法、又は、ポストキャリブレーション法により、ケーシングに圧入する圧入工程を備える、ことを特徴とする。 The method for manufacturing an exhaust gas purification device of the present invention includes a press-fitting step in which the mat material of the present invention is wound around an exhaust gas treatment body and then press-fitted into a casing by a hard stuffing method, a pre-calibration method, or a post-calibration method. It is characterized by comprising.
ハードスタッフィング法、プレキャリブレーション法、及び、ポストキャリブレーション法はいずれも、マット材を巻き付けた排ガス処理体をケーシングに圧入する工程が必要となる。従って、本発明のマット材は圧入時のマット材のズレ及び変形を抑制することができるため、上記の方法に特に適している。 The hard stuffing method, pre-calibration method, and post-calibration method all require a step of press-fitting an exhaust gas treatment body wrapped with a mat material into a casing. Therefore, the mat material of the present invention can suppress displacement and deformation of the mat material during press-fitting, and is therefore particularly suitable for the above method.
図1は、本発明に係るマット材の一例を模式的に示す斜視図である。FIG. 1 is a perspective view schematically showing an example of a mat material according to the present invention. 図2は、図1に示すマット材を排ガス処理体に巻きつける工程の一例を模式的に示す斜視図である。FIG. 2 is a perspective view schematically showing an example of the process of winding the mat material shown in FIG. 1 around an exhaust gas treatment body. 図3は、図2に示す工程で準備される巻付体の一例を模式的に示す斜視図である。FIG. 3 is a perspective view schematically showing an example of a wound body prepared in the process shown in FIG. 2. 図4は、図3に示す巻付体をケーシングに圧入する圧入工程の一例を示す模式図である。FIG. 4 is a schematic diagram showing an example of a press-fitting process of press-fitting the wound body shown in FIG. 3 into a casing. 図5は、本発明のマット材における交絡点の配置の一例を示す模式図である。FIG. 5 is a schematic diagram showing an example of the arrangement of intertwining points in the mat material of the present invention. 図6は、交絡点を均一に配置したマット材の一例を示す模式図である。FIG. 6 is a schematic diagram showing an example of a mat material in which intertwining points are uniformly arranged. 図7は、本発明のマット材を拡大した電子顕微鏡画像の一例である。FIG. 7 is an example of an enlarged electron microscope image of the mat material of the present invention. 図8は、本発明のマット材を拡大した電子顕微鏡画像の別の一例である。FIG. 8 is another example of an enlarged electron microscope image of the mat material of the present invention. 図9は、本発明のマット材を拡大した電子顕微鏡画像のさらに別の一例である。FIG. 9 is yet another example of an enlarged electron microscope image of the mat material of the present invention. 図10は、本発明のマット材を拡大した電子顕微鏡画像のさらに別の一例である。FIG. 10 is yet another example of an enlarged electron microscope image of the mat material of the present invention. 図11は、せん断破壊荷重試験装置を模式的に示した概念図である。FIG. 11 is a conceptual diagram schematically showing a shear failure load test device. 図12は、本発明の排ガス浄化装置の一例を模式的に示す断面図である。FIG. 12 is a cross-sectional view schematically showing an example of the exhaust gas purification device of the present invention.
以下、本発明の実施形態について具体的に説明する。しかしながら、本発明は、以下の実施形態に限定されるものではなく、本発明の要旨を変更しない範囲において適宜変更して適用することができる。 Embodiments of the present invention will be specifically described below. However, the present invention is not limited to the following embodiments, and can be modified and applied as appropriate without changing the gist of the present invention.
[マット材]
本発明のマット材は、無機繊維を含む平面視略矩形のマット材であって、上記マット材は、厚さ方向に対向する第1主面及び第2主面と、巻きつけ方向となる長手方向に対向する第1端面及び第2端面と、上記厚さ方向及び上記長手方向に直交する幅方向に対向する第1側面及び第2側面を有し、上記第1端面には、巻き付け時に、上記第2端面に向かって突出する凸部と、上記凸部の上記幅方向の両側に配置されて上記第2端面に向かって突出しない非突出部と、が形成されており、上記第2端面には、巻き付け時に、上記第1端面の上記凸部の形状に対応する凹部と、上記凹部の上記幅方向の両側に配置されて、上記第1端面の上記非突出部の形状に対応する非陥没部と、が形成されており、上記幅方向における上記非陥没部の長さ[D]の、上記長手方向における上記非陥没部の長さ[C]に対する割合[D/C]が、1.0以上であることを特徴とする。
[Matt material]
The mat material of the present invention is a substantially rectangular mat material in a plan view containing inorganic fibers, and the mat material has a first main surface and a second main surface facing each other in the thickness direction, and a longitudinal direction in the winding direction. It has a first end face and a second end face facing each other in the direction, and a first side face and a second side face facing each other in the width direction perpendicular to the thickness direction and the longitudinal direction, and the first end face has a side surface that faces the width direction perpendicular to the thickness direction and the longitudinal direction. A convex portion that protrudes toward the second end surface, and non-protruding portions that are arranged on both sides of the convex portion in the width direction and do not protrude toward the second end surface are formed, and the second end surface At the time of winding, a recess corresponding to the shape of the convex part of the first end face, and a non-concave part arranged on both sides of the recess in the width direction and corresponding to the shape of the non-protruding part of the first end face. A recessed portion is formed, and a ratio [D/C] of the length [D] of the non-recessed portion in the width direction to the length [C] of the non-recessed portion in the longitudinal direction is 1. .0 or more.
図1は、本発明に係るマット材の一例を模式的に示す斜視図である。
図1に示すように、マット材10は、厚さ方向(図1中、両矢印Tで示す方向)に対向する第1主面11及び第2主面12と、巻き付け方向となる長手方向(図1中、両矢印Aで示す方向)に対向する第1端面13及び第2端面14と、厚さ方向及び長手方向に直交する幅方向(図1中、両矢印Bで示す方向)に対向する第1側面15及び第2側面16を有する平面視略矩形の平板状の形状を有している。
FIG. 1 is a perspective view schematically showing an example of a mat material according to the present invention.
As shown in FIG. 1, the mat material 10 has a first main surface 11 and a second main surface 12 that face each other in the thickness direction (the direction indicated by the double-headed arrow T in FIG. 1), and a longitudinal direction (the direction in which it is wrapped) The first end surface 13 and the second end surface 14 face each other in the direction shown by double arrow A in FIG. 1), and the second end surface 14 faces each other in the width direction (direction shown by double arrow B in FIG. It has a substantially rectangular flat plate shape when viewed from above, and has a first side surface 15 and a second side surface 16.
マット材10の長さは、図1中、両矢印Aで示される長さである。
マット材10の幅は、図1中、両矢印Bで示される長さである。
マット材10の厚さは、図1中、両矢印Tで示される長さである。
The length of the mat material 10 is the length indicated by the double-headed arrow A in FIG.
The width of the mat material 10 is the length indicated by the double-headed arrow B in FIG.
The thickness of the mat material 10 is the length indicated by the double-headed arrow T in FIG.
第1端面13には、巻き付け時に第2端面14に向かって突出する凸部13aと、凸部13aの幅方向の両側に配置された第2端面14に向かって突出しない非突出部13b、13cが形成されている。 The first end surface 13 includes a convex portion 13a that protrudes toward the second end surface 14 during winding, and non-protrusive portions 13b and 13c that do not protrude toward the second end surface 14, which are disposed on both sides of the convex portion 13a in the width direction. is formed.
第2端面14には、巻き付け時に第1端面13の凸部13aの形状に対応する凹部14aと、凹部14aの幅方向の両側に配置されて、第1端面13の非突出部13b、13cの形状にそれぞれ対応する非陥没部14b、14cとが形成されている。 The second end face 14 has a recess 14a corresponding to the shape of the convex part 13a of the first end face 13 during winding, and non-protruding parts 13b and 13c of the first end face 13 arranged on both sides of the recess 14a in the width direction. Non-concave portions 14b and 14c corresponding to the shapes are formed.
長手方向における凸部13aの長さ(以下、単に凸部13aの長さともいう)は、両矢印Cで示される長さである。
凸部13aの形状は、凹部14aの形状に対応している。従って、長手方向における凹部14aの長さ(以下、単に凹部14aの長さともいう)は、両矢印Cで示される長さである。
The length of the convex portion 13a in the longitudinal direction (hereinafter also simply referred to as the length of the convex portion 13a) is the length indicated by the double arrow C.
The shape of the convex portion 13a corresponds to the shape of the concave portion 14a. Therefore, the length of the recess 14a in the longitudinal direction (hereinafter also simply referred to as the length of the recess 14a) is the length shown by the double arrow C.
幅方向における凹部14aの長さ(以下、単に凹部14aの幅ともいう)は、両矢印Eで示される長さである。
凹部14aの形状は、凸部13aの形状に対応している。従って、幅方向における凸部13aの長さ(以下、単に凸部13aの幅ともいう)は、両矢印Eで示される長さである。
さらに、幅方向における凸部13aの中心は、幅方向における凹部14aの中心と一致する。
The length of the recess 14a in the width direction (hereinafter also simply referred to as the width of the recess 14a) is the length shown by the double arrow E.
The shape of the concave portion 14a corresponds to the shape of the convex portion 13a. Therefore, the length of the protrusion 13a in the width direction (hereinafter also simply referred to as the width of the protrusion 13a) is the length indicated by the double arrow E.
Further, the center of the convex portion 13a in the width direction coincides with the center of the concave portion 14a in the width direction.
長手方向における非陥没部14b、14cの長さ(以下、単に非陥没部14b、14cの長さともいう)は、長手方向における凹部14aの長さと同じく、両矢印Cで示される長さである。
また、幅方向における非陥没部14b、14cの長さ(以下、単に非陥没部14b、14cの幅ともいう)は、両矢印Dで示される長さである。
幅方向における非突出部13b、13cの長さ(以下、単に非突出部13b、13cの幅ともいう)は、幅方向における非陥没部14b、14cの長さと同じく、両矢印Dで示される長さである。
The length of the non-sinking portions 14b, 14c in the longitudinal direction (hereinafter also simply referred to as the length of the non-sinking portions 14b, 14c) is the length indicated by the double-headed arrow C, the same as the length of the recess 14a in the longitudinal direction. .
Further, the length of the non-sinking portions 14b, 14c in the width direction (hereinafter also simply referred to as the width of the non-sinking portions 14b, 14c) is the length indicated by the double-headed arrow D.
The length of the non-protruding parts 13b, 13c in the width direction (hereinafter also simply referred to as the width of the non-protruding parts 13b, 13c) is the same as the length of the non-recessed parts 14b, 14c in the width direction, as indicated by the double-headed arrow D. It is.
マット材10のうち、凸部13aと非陥没部14b、14cを除く部分をマット材の本体部分ともいう。 The portion of the mat material 10 excluding the convex portion 13a and the non-concave portions 14b and 14c is also referred to as the main body portion of the mat material.
長手方向におけるマット材の長さ[A]は、長手方向及び厚さ方向に平行な平面に沿ってマット材を切断した際の、各断面における第1端面から第2端面までの長さに相当する。 The length [A] of the mat material in the longitudinal direction corresponds to the length from the first end surface to the second end surface in each cross section when the mat material is cut along a plane parallel to the longitudinal direction and the thickness direction. do.
図1に示すマット材10では、長手方向における非陥没部14b、14cの長さを[D]、幅方向における非陥没部14b、14cの長さを[C]とした場合に、長手方向における非陥没部14b、14cの長さ[D]の、幅方向における非陥没部14b、14cの長さ[C]に対する割合[D/C]が、1.0以上となっている。
なお、図1に示すマット材10における上記割合[D/C]は、2.1である。
In the mat material 10 shown in FIG. 1, when the length of the non-sinking parts 14b, 14c in the longitudinal direction is [D], and the length of the non-sinking parts 14b, 14c in the width direction is [C], The ratio [D/C] of the length [D] of the non-concave portions 14b, 14c to the length [C] of the non-concave portions 14b, 14c in the width direction is 1.0 or more.
Note that the ratio [D/C] in the mat material 10 shown in FIG. 1 is 2.1.
上述したように、長手方向における凹部14aの長さと長手方向における非陥没部14b、14cの長さは同じである。
また、長手方向における凹部14aの長さは、長手方向における凸部13aの長さと同じである。さらに、幅方向における非陥没部14b、14cの長さは、幅方向における非突出部13b、13cの長さと同じである。
As described above, the length of the recessed portion 14a in the longitudinal direction is the same as the length of the non-depressed portions 14b and 14c in the longitudinal direction.
Further, the length of the recess 14a in the longitudinal direction is the same as the length of the protrusion 13a in the longitudinal direction. Further, the lengths of the non-concave portions 14b, 14c in the width direction are the same as the lengths of the non-protrusion portions 13b, 13c in the width direction.
以上より、本発明に係るマット材の「幅方向における非陥没部の長さ[D]の、長手方向における非陥没部の長さ[C]に対する割合[D/C]が、1.0以上」という特徴は、「幅方向における非突出部の長さ[D]の、長手方向における凸部の長さ[C]に対する割合[D/C]が、1.0以上」と言い換えることもできる。 From the above, the mat material according to the present invention has a ratio [D/C] of the length [D] of the non-concave part in the width direction to the length [C] of the non-concave part in the longitudinal direction of 1.0 or more. ” can also be rephrased as “the ratio [D/C] of the length [D] of the non-protruding portion in the width direction to the length [C] of the convex portion in the longitudinal direction is 1.0 or more.” .
本発明係るマット材において、幅方向における非陥没部の長さ[D]の、長手方向における非陥没部の長さ[C]に対する割合[D/C]は、1.2以上であることが好ましく、1.6以上であることがより好ましい。 In the mat material according to the present invention, the ratio [D/C] of the length [D] of the non-depressed portion in the width direction to the length [C] of the non-depressed portion in the longitudinal direction is preferably 1.2 or more. It is preferably 1.6 or more, and more preferably 1.6 or more.
本発明に係るマット材において、凹部の幅方向の中心[E]は、マット材の幅方向の中心[B]に重なっていてもよいし、重なっていなくてもよい。 In the mat material according to the present invention, the center [E C ] of the recess in the width direction may or may not overlap the center [B C ] of the mat material in the width direction.
図1に示すマット材10では、凹部14aの幅方向の中心[E]が、マット材10の幅方向の中心[B]と重なっている。
そのため、非陥没部14cの幅は、非陥没部14bの幅と同じく、両矢印Dで示される長さとなる。また、非突出部13cの幅は、非突出部13bの幅と同じく、両矢印Dで示される長さとなる。
In the mat material 10 shown in FIG. 1, the center [E C ] of the recess 14a in the width direction overlaps with the center [B C ] of the mat material 10 in the width direction.
Therefore, the width of the non-sinking portion 14c is the same as the width of the non-sinking portion 14b, which is the length indicated by the double-headed arrow D. Further, the width of the non-protruding portion 13c is the same as the width of the non-protruding portion 13b, which is the length indicated by the double-headed arrow D.
凹部の幅方向の中心[E]が、マット材の幅方向の中心[B]に重なっていない場合は、2つの非陥没部の幅が一致しない。一方の非陥没部の幅が、他方の非陥没部の幅よりも短くなる。
このとき、幅方向における非陥没部の長さ[D]の、長手方向における非陥没部の長さ[C]に対する割合[D/C]を算出する[D]としては、幅が短い方の非陥没部の長さを採用する。
If the widthwise center [E C ] of the concave portion does not overlap the widthwise center [B C ] of the mat material, the widths of the two non-concave portions do not match. The width of one non-recessed portion is shorter than the width of the other non-recessed portion.
At this time, the ratio [D/C] of the length [D] of the non-concave part in the width direction to the length [C] of the non-concave part in the longitudinal direction is calculated. Adopt the length of the non-sinking part.
図2は、図1に示すマット材を排ガス処理体に巻きつける工程の一例を模式的に示す斜視図である。図3は、図2に示す工程で準備される巻付体の一例を模式的に示す斜視図である。 FIG. 2 is a perspective view schematically showing an example of the process of winding the mat material shown in FIG. 1 around an exhaust gas treatment body. FIG. 3 is a perspective view schematically showing an example of a wound body prepared in the process shown in FIG. 2.
図2に示すように、マット材10を排ガス処理体230に巻きつけることにより、図3に示す巻付体250が得られる。 As shown in FIG. 2, by winding the mat material 10 around the exhaust gas treatment body 230, a wrapped body 250 shown in FIG. 3 is obtained.
なお、図2では、マット材10を、マット材10の第1主面11が排ガス処理体230に接するように巻き付けているが、マット材10の第2主面12が排ガス処理体230に接するように巻き付けられていてもよい。 In addition, in FIG. 2, the mat material 10 is wound so that the first main surface 11 of the mat material 10 is in contact with the exhaust gas treatment body 230, but the second main surface 12 of the mat material 10 is in contact with the exhaust gas treatment body 230. It may be wrapped like this.
図4は、図3に示す巻付体をケーシングに圧入する圧入工程の一例を示す模式図である。
図4では、図3に示す巻付体250をケーシング220に圧入する様子を示している。
巻付体250の圧入方向は、紙面上から下に向かう方向である。
従って、マット材10の2つの側面(第1側面15及び第2側面16)のうち、第2側面16が圧入方向の下流側に配置され、第1側面15が圧入方向の上流側に配置されているといえる。
FIG. 4 is a schematic diagram showing an example of a press-fitting process of press-fitting the wound body shown in FIG. 3 into a casing.
FIG. 4 shows how the wrapped body 250 shown in FIG. 3 is press-fitted into the casing 220.
The direction in which the wrapped body 250 is press-fitted is from the top to the bottom of the paper.
Therefore, of the two side surfaces (first side surface 15 and second side surface 16) of the mat material 10, the second side surface 16 is arranged on the downstream side in the press-fitting direction, and the first side surface 15 is arranged on the upstream side in the press-fitting direction. It can be said that
巻付体250をケーシング220に圧入する際には、マット材10とケーシング220との摩擦、及び、マット材10と排ガス処理体230との摩擦により、マット材10には大きなせん断力が加わる。
具体的には、巻付体250を構成するマット材10の表面が、圧入方向の上流側に向かって引っ張られるような力が加わる。
When the wrapped body 250 is press-fitted into the casing 220, a large shearing force is applied to the mat material 10 due to the friction between the mat material 10 and the casing 220 and the friction between the mat material 10 and the exhaust gas treatment body 230.
Specifically, a force is applied that pulls the surface of the mat material 10 constituting the wrapped body 250 toward the upstream side in the press-fitting direction.
凸部及び非陥没部のせん断力による変形の大きさは、圧入方向における配置の順番と、マット材の本体となる部分との接続面積(距離)で決まる。
すなわち、圧入方向の上流側ほど変形が大きくなり、マット材の本体となる部分との接続面積(距離)が短いほど変形が大きくなる。
The magnitude of deformation of the convex portions and non-concave portions due to shear force is determined by the order of arrangement in the press-fitting direction and the connection area (distance) with the portion that will become the main body of the mat material.
That is, the more upstream in the press-fitting direction, the greater the deformation, and the shorter the connection area (distance) between the mat material and the main body, the greater the deformation.
図4に示す巻付体250では、マット材10のうち非陥没部14bが、圧入方向における最も上流側の部分であり、せん断力による変形を受けやすい部分である。
しかし、本発明に係るマット材では、幅方向における非陥没部の長さ[D]の、長手方向における非陥没部の長さ[C]に対する割合[D/C]が1.0以上となっているので、マット材の向きに関係なく、圧入方向の上流側に配置された非陥没部の変形を抑制することができる。
In the wrapped body 250 shown in FIG. 4, the non-concave portion 14b of the mat material 10 is the most upstream portion in the press-fitting direction, and is a portion that is easily deformed by shear force.
However, in the mat material according to the present invention, the ratio [D/C] of the length [D] of the non-depressed portion in the width direction to the length [C] of the non-depressed portion in the longitudinal direction is 1.0 or more. Therefore, regardless of the orientation of the mat material, it is possible to suppress deformation of the non-concave portion disposed on the upstream side in the press-fitting direction.
本発明に係るマット材では、圧入工程におけるマット材の2つの側面の配置は特に限定されない。従って、図4に示すように、第2側面が圧入方向の下流側、第1側面が圧入方向の上流側に配置されていてもよいし、第1側面が圧入方向の下流側、第2側面が圧入方向の上流側に配置されていてもよい。
ただし、凹部の幅方向の中心が、マット材の幅方向の中心に重なっていない場合は、幅方向の長さが短い非陥没部が配置されるマット材の側面が、圧入方向の下流側、幅方向の長さが長い非陥没部が配置されるマット材の側面が、圧入方向の上流側に配置されることが好ましい。上記の向きでマット材を配置することにより、圧入方向の上流側に配置された非陥没部の変形をさらに抑制することができる。
In the mat material according to the present invention, the arrangement of the two side surfaces of the mat material in the press-fitting process is not particularly limited. Therefore, as shown in FIG. 4, the second side surface may be disposed on the downstream side in the press-fitting direction, and the first side surface may be disposed on the upstream side in the press-fitting direction, or the first side surface may be disposed on the downstream side in the press-fitting direction, and the second side surface may be disposed on the downstream side in the press-fitting direction. may be arranged on the upstream side in the press-fitting direction.
However, if the center of the recess in the width direction does not overlap the center of the mat material in the width direction, the side surface of the mat material where the non-concave part with the short width direction is arranged will be on the downstream side in the press-fitting direction. It is preferable that the side surface of the mat material on which the non-concave portion having a long length in the width direction is disposed is disposed on the upstream side in the press-fitting direction. By arranging the mat material in the above-mentioned direction, deformation of the non-concave portion located on the upstream side in the press-fitting direction can be further suppressed.
例えば、凹部の幅方向の中心が、マット材の幅方向の中心に重なっていない場合を仮定すると、マット材は、長さの異なる2つの非陥没部を有することとなる。
この場合に、一方の非陥没部の幅をD、他方の非陥没部の幅をDとし、D>Dであるとすると、幅が短い方の非陥没部、すなわち、幅がDの非陥没部の幅方向の長さ[D]の、長手方向における非陥没部の長さ[C]に対する割合[D/C]が1.0以上であれば、本発明のマット材に含まれる。これは、D>Dより、[D/C]が、1.0以上であれば、当然に、[D/C]も1.0以上となるためである。
幅がDの非陥没部を備えるマット材の側面が圧入方向の上流側に配置された場合、[D/C]が1.0以上という条件を満たすため、非陥没部の変形が抑制される。
幅がDの非陥没部を備えるマット材の側面が圧入方向の上流側に配置された場合、[D/C]は1.0以上、かつ、[D/C]よりも大きな値となるから、幅がDの非陥没部を備えるマット材の側面が圧入方向の上流側に配置された場合よりも、さらに非陥没部の変形が抑制される。
For example, assuming that the center of the recess in the width direction does not overlap the center of the mat material in the width direction, the mat material will have two non-concave portions with different lengths.
In this case, if the width of one non-depressed part is D 1 and the width of the other non-depressed part is D 2 and D 1 > D 2 , then the width of the non-depressed part with the shorter width, that is, the width of the other non-depressed part is D 1 . If the ratio [D 2 /C] of the length [D 2 ] of the non-sinking portion in the width direction of D 2 to the length [C] of the non-sinking portion in the longitudinal direction is 1.0 or more, the present invention is applicable. Included in mat material. This is because, since D 1 >D 2 , if [D 2 /C] is 1.0 or more, naturally [D 1 /C] will also be 1.0 or more.
When the side surface of the mat material with a non-sinking portion having a width of D 2 is placed on the upstream side in the press-fitting direction, the condition that [D 2 /C] is 1.0 or more is satisfied, so deformation of the non-sinking portion is suppressed. be done.
When the side surface of the mat material having a non-concave portion with a width of D 1 is placed on the upstream side in the press-fitting direction, [D 1 /C] is 1.0 or more and a value larger than [D 2 /C]. Therefore, the deformation of the non-sinking portion is further suppressed than when the side surface of the mat material including the non-sinking portion having a width of D2 is disposed on the upstream side in the press-fitting direction.
本発明のマット材において、長手方向におけるマット材の長さ[A]の、長手方向における非陥没部の長さ[C]に対する割合[A/C]は特に限定されないが、10以上であることが好ましい。 In the mat material of the present invention, the ratio [A/C] of the length [A] of the mat material in the longitudinal direction to the length [C] of the non-concave part in the longitudinal direction is not particularly limited, but it should be 10 or more. is preferred.
長手方向におけるマット材の長さ[A]の、長手方向における非陥没部の長さ[C]に対する割合[A/C]が10以上であると、非陥没部の形状が圧入時により変形しにくい形状となる。
なお、図1に示すマット材10における上記割合[A/C]は、10.1である。
If the ratio [A/C] of the length [A] of the mat material in the longitudinal direction to the length [C] of the non-sinking part in the longitudinal direction is 10 or more, the shape of the non-sinking part will be deformed during press-fitting. It becomes a difficult shape.
Note that the ratio [A/C] in the mat material 10 shown in FIG. 1 is 10.1.
上述したように、長手方向における非陥没部の長さ[C]は、長手方向における凹部の長さ[C]及び凸部の長さ[C]と同じである。
従って、本発明のマット材の「長手方向におけるマット材の長さ[A]の、長手方向における非陥没部の長さ[C]に対する割合[A/C]が、10以上である」という特徴は、「長手方向におけるマット材の長さ[A]の、長手方向における凸部の長さ[C]に対する割合[A/C]が、10以上である」又は「長手方向におけるマット材の長さ[A]の、長手方向における凹部の長さ[C]に対する割合[A/C]が、10以上である」と言い換えることもできる。
As described above, the length [C] of the non-concave portion in the longitudinal direction is the same as the length [C] of the concave portion and the length [C] of the convex portion in the longitudinal direction.
Therefore, the feature of the mat material of the present invention is that "the ratio [A/C] of the length [A] of the mat material in the longitudinal direction to the length [C] of the non-concave part in the longitudinal direction is 10 or more.""The ratio [A/C] of the length [A] of the mat material in the longitudinal direction to the length [C] of the convex part in the longitudinal direction is 10 or more" or "The length of the mat material in the longitudinal direction In other words, the ratio [A/C] of the length [A] to the length [C] of the recess in the longitudinal direction is 10 or more.
なお、図1~図4に示すマット材10では、第1端面13に1つの凸部13aが形成され、第2端面14に1つの凹部14aが形成されているが、本発明のマット材において、マット材の第1端面に形成される凸部の数、及び、第2端面に形成される凹部の数は、2つ以上であってもよい。
この場合、マット材の第1側面に最も近い位置に配置される非陥没部、及び、第2側面に最も近い位置に配置される非陥没部に着目し、当該非陥没部の幅方向における長さ[D]と、当該非陥没部の長さ方向における長さ[C]との割合[D/C]を求める。
マット材の第1側面に最も近い位置に配置される非陥没部における上記割合[D/C]及び、マット材の第2側面に最も近い位置に配置される非陥没部における上記割合[D/C]がいずれも1.0以上であれば、本発明のマット材に該当する。
Note that in the mat material 10 shown in FIGS. 1 to 4, one convex portion 13a is formed on the first end surface 13 and one concave portion 14a is formed on the second end surface 14, but in the mat material of the present invention, The number of protrusions formed on the first end surface and the number of recesses formed on the second end surface of the mat material may be two or more.
In this case, focusing on the non-sinking part located closest to the first side surface of the mat material and the non-sinking part located closest to the second side surface, the length in the width direction of the non-sinking part is The ratio [D/C] between the length [D] and the length [C] in the length direction of the non-sinking portion is determined.
The above-mentioned ratio [D/C] in the non-concave part located at the position closest to the first side surface of the mat material and the above-mentioned ratio [D/C] at the non-concave part located at the position closest to the second side surface of the mat material C] of 1.0 or more corresponds to the mat material of the present invention.
本発明に係るマット材において、マット材の厚さは特に限定されないが、2~40mmであることが好ましい。マット材の厚さが40mmを超えると、マット材の柔軟性が失われるので、マット材を排ガス処理体に巻き付ける際に扱いづらくなる。また、マット材に巻きじわや割れが生じやすくなる。
マット材の厚さが2mm未満であると、マット材の保持力が不足して、排ガス処理体が抜け落ちやすくなる。また、排ガス処理体に体積変化が生じた場合、マット材は排ガス処理体の体積変化を吸収しにくくなる。そのため、排ガス処理体にクラック等が発生しやすくなる。
In the mat material according to the present invention, the thickness of the mat material is not particularly limited, but is preferably 2 to 40 mm. If the thickness of the mat material exceeds 40 mm, the mat material loses its flexibility, making it difficult to handle when wrapping the mat material around an exhaust gas treatment body. In addition, the mat material tends to wrinkle and crack.
If the thickness of the mat material is less than 2 mm, the holding power of the mat material will be insufficient and the exhaust gas treatment body will easily fall off. Further, when a volume change occurs in the exhaust gas treatment body, the mat material becomes difficult to absorb the volume change of the exhaust gas treatment body. Therefore, cracks and the like are likely to occur in the exhaust gas treatment body.
マットは、無機繊維を含んで構成されている。 The mat is composed of inorganic fibers.
無機繊維としては、特に限定されないが、アルミナ繊維、シリカ繊維、アルミナシリカ繊維、ムライト繊維、生体溶解性繊維及びガラス繊維からなる群から選択される少なくとも1種から構成されていることが望ましい。
無機繊維が、アルミナ繊維、シリカ繊維、アルミナシリカ繊維、及び、ムライト繊維の少なくとも1種である場合には、耐熱性に優れているので、排ガス処理体が充分な高温に晒された場合であっても、変質等が発生することはなく、マット材としての機能を充分に維持することができる。また、無機繊維が生体溶解性繊維である場合には、マット材を用いて排ガス浄化装置を作製する際に、飛散した無機繊維を吸入等しても、生体内で溶解するため、作業員の健康に害を及ぼすことがない。
Although the inorganic fiber is not particularly limited, it is preferable that the inorganic fiber is composed of at least one selected from the group consisting of alumina fiber, silica fiber, alumina-silica fiber, mullite fiber, biosoluble fiber, and glass fiber.
When the inorganic fiber is at least one of alumina fiber, silica fiber, alumina-silica fiber, and mullite fiber, it has excellent heat resistance, so that when the exhaust gas treatment body is exposed to a sufficiently high temperature, However, no deterioration or the like occurs, and the function as a mat material can be sufficiently maintained. In addition, if the inorganic fibers are biosoluble fibers, even if the scattered inorganic fibers are inhaled when making an exhaust gas purification device using the mat material, they will dissolve in the body, making it difficult for workers to use them. No harm to health.
アルミナ繊維には、アルミナ以外に、例えば、カルシア、マグネシア、ジルコニア等の添加剤が含まれていてもよい。
アルミナシリカ繊維の組成比としては、重量比でAl:SiO=60:40~80:20であることが好ましく、Al:SiO=70:30~74:26であることがより好ましい。
In addition to alumina, the alumina fiber may contain additives such as calcia, magnesia, and zirconia.
The composition ratio of the alumina-silica fibers is preferably Al 2 O 3 :SiO 2 =60:40 to 80:20 in terms of weight ratio, and Al 2 O 3 :SiO 2 =70:30 to 74:26. It is more preferable.
マットはニードリング法又は抄造法により製造することができる。ニードリング法により製造されたマットをニードルマットともいい、抄造法により製造されたマットを抄造マットともいう。 The mat can be manufactured by a needling method or a papermaking method. Mats produced by the needling method are also referred to as needle mats, and mats produced by the papermaking method are also referred to as papermaking mats.
ニードリング法の場合、無機繊維の平均繊維長は、1~150mmであることが好ましく、10~80mmであることがより好ましい。
無機繊維の平均繊維長が1mm未満であると、無機繊維の繊維長が短すぎるため、無機繊維同士の交絡が不充分となり、排ガス処理体への巻き付け性が低下し、マット材が割れやすくなる。また、無機繊維の平均繊維長が150mmを超えると、無機繊維の繊維長が長すぎるため、マット材を構成する繊維本数が減少し、マット材の緻密性が低下する。その結果、マット材のせん断強度が低くなる。
In the case of the needling method, the average fiber length of the inorganic fibers is preferably 1 to 150 mm, more preferably 10 to 80 mm.
If the average fiber length of the inorganic fibers is less than 1 mm, the fiber length of the inorganic fibers will be too short, resulting in insufficient entanglement of the inorganic fibers, reducing the ability to wrap around the exhaust gas treatment body, and making the mat material more likely to crack. . Furthermore, when the average fiber length of the inorganic fibers exceeds 150 mm, the fiber length of the inorganic fibers is too long, so the number of fibers constituting the mat material decreases, and the denseness of the mat material decreases. As a result, the shear strength of the mat material decreases.
抄造法の場合、無機繊維の平均繊維長は、200~20000μmであることが好ましく、300~10000μmであることがより好ましく、500~1500μmであることがさらに好ましい。 In the case of the papermaking method, the average fiber length of the inorganic fibers is preferably 200 to 20,000 μm, more preferably 300 to 10,000 μm, and even more preferably 500 to 1,500 μm.
ニードリング法の場合、マット材の表面または裏面には、交絡点が形成されることとなる。
交絡点の密度ρは、0.5個/cm≦ρ<18個/cmの範囲にあることが好ましい。
なお、交絡点がマット材の表面及び裏面の両方に形成されている場合、上記交絡点の密度ρは、表面または裏面のうち、交絡点の密度が高い方の主面において測定される交絡点の密度とする。
In the case of the needling method, intertwined points are formed on the front or back surface of the mat material.
The density ρ of the intertwined points is preferably in the range of 0.5 pieces/cm 2 ≦ρ<18 pieces/cm 2 .
In addition, when interlacing points are formed on both the front and back surfaces of the mat material, the density ρ of the interlacing points is the interlacing points measured on the main surface of the front or back surface, whichever has a higher density of interlacing points. Let the density be
ニードリング法の場合、マット材の表面または裏面の25mm×25mmの領域内には、交絡点が存在しない4mm×4mmの領域である第1の領域、及び、交絡点が存在しない3mm×8mmの領域である第2の領域の少なくとも一方が配置されていることが好ましい。
第1の領域及び第2の領域の少なくとも一方が配置されていることにより、高い面圧を発揮する。
なお、第1の領域及び/又は第2の領域が配置されているかどうかを判定するマット材の主面は、上記交絡点の密度を測定する主面と同じ主面とする。
In the case of the needling method, within a 25 mm x 25 mm area on the front or back side of the mat material, there is a first area of 4 mm x 4 mm in which no intertwined points exist, and a 3 mm x 8 mm area in which no intertwined points exist. It is preferable that at least one of the second regions is arranged.
By arranging at least one of the first region and the second region, high surface pressure is exerted.
Note that the main surface of the mat material for determining whether the first region and/or the second region is arranged is the same main surface as the main surface for measuring the density of the intertwining points.
図5は、本発明のマット材における交絡点の配置の一例を示す模式図である。
図5に示すマット材10の平面視寸法は、25mm×25mmである。
図5では、複数の交絡点115が偏って配置されている。そのため、交絡点115が存在しない4mm×4mmの領域(図5中、実線の正方形で示す領域)である第1の領域117、及び、交絡点115が存在しない3mm×8mmの領域(図5中、破線の長方形で示す領域)である第2の領域118が配置されているといえる。
なお、図5には、第1の領域117及び第2の領域118のすべてを図示しているわけではない。
FIG. 5 is a schematic diagram showing an example of the arrangement of intertwining points in the mat material of the present invention.
The mat material 10 shown in FIG. 5 has dimensions of 25 mm x 25 mm in plan view.
In FIG. 5, a plurality of interlacing points 115 are arranged unevenly. Therefore, the first area 117 is a 4 mm x 4 mm area (the area indicated by the solid square in FIG. 5) where the interlacing point 115 does not exist, and the 3 mm x 8 mm area (indicated by the solid square in FIG. 5) where the intersecting point 115 does not exist. , a region indicated by a dashed rectangle) is arranged.
Note that FIG. 5 does not illustrate all of the first region 117 and the second region 118.
図6は、交絡点を均一に配置したマット材の一例を示す模式図である。
図6に示すマット材10の平面視寸法は、25mm×25mmである。
図6では、交絡点115は2.8mm間隔で均一に配置されている。
図6に示す4mm×4mmの正方形及び3mm×8mmの長方形は、いずれも、1つ以上の交絡点を含んでいる。第1の領域に相当しない4mm×4mmの正方形、及び、第2の領域に相当しない3mm×8mmの長方形に「×」を付している。
従って、図6に示すマット材には、第1の領域及び第2の領域のいずれも配置することができない。
FIG. 6 is a schematic diagram showing an example of a mat material in which intertwining points are uniformly arranged.
The mat material 10 shown in FIG. 6 has dimensions of 25 mm x 25 mm in plan view.
In FIG. 6, the interlacing points 115 are uniformly spaced at 2.8 mm intervals.
Both the 4 mm x 4 mm square and the 3 mm x 8 mm rectangle shown in FIG. 6 include one or more intertwining points. A square of 4 mm x 4 mm that does not correspond to the first area and a rectangle of 3 mm x 8 mm that does not correspond to the second area are marked with an "x".
Therefore, neither the first region nor the second region can be arranged on the mat material shown in FIG. 6 .
25mm×25mmの領域内における第1の領域及び第2の領域の数をカウントする方法は、以下の通りである。
(1)交絡点が形成されていない4mm×4mmの領域(第1の領域)を見つける。このとき、複数の第1の領域が互いに重ならないよう選択する。
(2)交絡点が形成されていない3mm×8mmの領域(第2の領域)を見つける。このとき、複数の第2の領域が互いに重ならないよう選択する。ただし、第2の領域は第1の領域と重なっていてもよい。第2の領域と第1の領域とが重なっていると、交絡点が存在しない面積がより大きくなるため、マット材の面圧を高めることができる。
(3)互いに重ならない第1の領域の数、及び、互いに重ならない第2の領域の数が最大となる25mm×25mmの領域を選択する。
上記操作を、10個のサンプルで行い、平均値を取る。
なお、上記操作は市販の画像処理ソフト等を用いて行ってもよい。
The method for counting the number of first areas and second areas within a 25 mm x 25 mm area is as follows.
(1) Find a 4 mm x 4 mm area (first area) in which no intertwined points are formed. At this time, the plurality of first regions are selected so that they do not overlap with each other.
(2) Find a 3 mm x 8 mm area (second area) in which no intertwined points are formed. At this time, the plurality of second regions are selected so that they do not overlap with each other. However, the second area may overlap the first area. When the second region and the first region overlap, the area where no intertwining points are present becomes larger, so that the surface pressure of the mat material can be increased.
(3) Select a region of 25 mm x 25 mm in which the number of first regions that do not overlap with each other and the number of second regions that do not overlap with each other are maximum.
The above operation is performed on 10 samples and the average value is taken.
Note that the above operation may be performed using commercially available image processing software.
25mm×25mmの領域において、第1の領域及び/又は第2の領域が複数配置されていることが好ましい。
25mm×25mmの領域内に、第1の領域及び/又は第2の領域が複数配置されていると、マット材の面圧を高くすることができる。
第1の領域及び/又は第2の領域が複数配置されているとは、第1の領域の数と第2の領域の数が合計で2以上の場合であり、複数の第1の領域が配置されている場合、複数の第2の領域が配置されている場合、及び、複数の第1の領域と複数の第2の領域が配置されている場合等を含む。
Preferably, a plurality of first regions and/or second regions are arranged in a 25 mm x 25 mm area.
When a plurality of first regions and/or second regions are arranged within a region of 25 mm x 25 mm, the surface pressure of the mat material can be increased.
A plurality of first regions and/or second regions are arranged when the number of first regions and the number of second regions is two or more in total, and a plurality of first regions are arranged. This includes a case where a plurality of second regions are arranged, a case where a plurality of first regions and a plurality of second regions are arranged, and the like.
マット材の表面または裏面の25mm×25mmの領域内には、交絡点が4個以上存在する4mm×4mmの領域である第3の領域が配置されていることが好ましい。
第3の領域が配置されていると、当該領域において無機繊維同士が強く絡み合うため、マット材のせん断強度を高めることができる。
なお、25mm×25mmの領域内における第3の領域の数をカウントする方法は、上述した第1の領域の数をカウントする方法と同様である。
It is preferable that a third area, which is a 4 mm x 4 mm area in which four or more interlacing points exist, is arranged within a 25 mm x 25 mm area on the front or back surface of the mat material.
When the third region is provided, the inorganic fibers are strongly intertwined with each other in this region, so that the shear strength of the mat material can be increased.
Note that the method for counting the number of third regions within the 25 mm x 25 mm region is the same as the method for counting the number of first regions described above.
無機繊維の表面には、無機バインダ(無機結合剤ともいう)が添着されていることが好ましい。
無機繊維の表面に無機バインダが添着されていると、無機繊維の表面に添着された無機バインダによって無機繊維同士の摩擦抵抗が増加するため、保持力を高めることができる。
It is preferable that an inorganic binder (also referred to as an inorganic binder) is attached to the surface of the inorganic fiber.
When an inorganic binder is attached to the surface of the inorganic fiber, the frictional resistance between the inorganic fibers increases due to the inorganic binder attached to the surface of the inorganic fiber, so that the holding force can be increased.
無機バインダとしては、アルミナゾル、シリカゾル等が挙げられる。 Examples of the inorganic binder include alumina sol and silica sol.
無機繊維の表面には、有機バインダ(有機結合剤ともいう)が添着されていることが好ましい。
無機繊維の表面に有機バインダが添着されていると、無機繊維同士の接着性を向上させ、マット材のハンドリング時に無機繊維が飛散することを防止することができる。
It is preferable that an organic binder (also referred to as an organic binder) is attached to the surface of the inorganic fiber.
When an organic binder is attached to the surface of the inorganic fibers, it is possible to improve the adhesion between the inorganic fibers and prevent the inorganic fibers from scattering during handling of the mat material.
有機バインダとしては、アクリル樹脂、アクリレート系ラテックス、ゴム系ラテックス、カルボキシメチルセルロース又はポリビニルアルコール等の水溶性有機重合体、スチレン樹脂等の熱可塑性樹脂、エポキシ樹脂等の熱硬化性樹脂等が挙げられる。 Examples of the organic binder include acrylic resin, acrylate latex, rubber latex, water-soluble organic polymers such as carboxymethyl cellulose or polyvinyl alcohol, thermoplastic resins such as styrene resin, and thermosetting resins such as epoxy resin.
無機繊維の表面には、無機バインダ及び有機バインダが添着されていることが好ましい。
無機繊維の表面に無機バインダが添着されていると、無機繊維の表面に添着された無機バインダによって無機繊維同士の摩擦抵抗が増加するため、保持力を高めることができる。
また、無機繊維の表面に有機バインダが添着されていると、無機繊維同士の接着性を向上させ、マット材のハンドリング時に無機繊維が飛散することを防止することができる。
Preferably, an inorganic binder and an organic binder are attached to the surface of the inorganic fiber.
When an inorganic binder is attached to the surface of the inorganic fiber, the frictional resistance between the inorganic fibers increases due to the inorganic binder attached to the surface of the inorganic fiber, so that the holding force can be increased.
Further, when an organic binder is attached to the surface of the inorganic fibers, the adhesion between the inorganic fibers can be improved, and it is possible to prevent the inorganic fibers from scattering during handling of the mat material.
マット材に対する無機バインダの重量割合(無機バインダの重量/マット材の重量)は、0wt%を超えて10wt%以下であることが好ましい。
マット材に対する無機バインダの重量割合が上記範囲であると、保持力を充分に高めることができる。
The weight ratio of the inorganic binder to the mat material (weight of inorganic binder/weight of mat material) is preferably more than 0 wt% and 10 wt% or less.
When the weight ratio of the inorganic binder to the mat material is within the above range, the holding force can be sufficiently increased.
マット材に対する有機バインダの重量割合(有機バインダの重量/マット材の重量)は、0wt%を超えて10wt%以下であることが好ましい。
マット材に対する有機バインダの重量割合が上記範囲であると、繊維飛散防止効果と高い保持力を両立させることができる。
The weight ratio of the organic binder to the mat material (weight of organic binder/weight of mat material) is preferably more than 0 wt% and 10 wt% or less.
When the weight ratio of the organic binder to the mat material is within the above range, both the effect of preventing fiber scattering and the high holding power can be achieved.
マット材に含まれる有機バインダ及び無機バインダの含有量は、例えば以下の方法により測定することができる。
まず、含有量を測定したいマット材を一定重量サンプルとして採取する。続いて、サンプル中に含まれる有機バインダが溶解する有機溶媒(例えばテトラヒドロフラン)を選び、ソックスレー抽出器にて上記有機バインダを溶解し、サンプルから分離する。この時、溶解した上記有機バインダに含まれる無機バインダもサンプルから分離され、有機溶媒中に上記有機バインダと上記無機バインダとが回収されることとなる。
次に、上記有機バインダと上記無機バインダからなる有機溶媒をるつぼに入れ、加熱により有機溶剤を蒸発除去する。るつぼに残った残渣を、マット材に対する上記有機バインダと上記無機バインダの合計重量とみなし、マット材の重量に対する含有量(重量%)を算出する。
さらに、るつぼを600℃で1時間加熱処理し、有機バインダを焼失させる。るつぼ中には、無機バインダが残留しているので、これを有機バインダと無機バインダの合計に対する無機バインダの含有量(重量%)とみなし、その含有量を算出する。残りが有機バインダの含有量(重量%)となる。
The content of the organic binder and inorganic binder contained in the mat material can be measured, for example, by the following method.
First, a fixed weight sample of the mat material whose content is to be measured is taken. Next, an organic solvent (for example, tetrahydrofuran) in which the organic binder contained in the sample is dissolved is selected, and the organic binder is dissolved in a Soxhlet extractor and separated from the sample. At this time, the inorganic binder contained in the dissolved organic binder is also separated from the sample, and the organic binder and the inorganic binder are recovered in the organic solvent.
Next, an organic solvent consisting of the organic binder and the inorganic binder is placed in a crucible, and the organic solvent is evaporated off by heating. The residue remaining in the crucible is regarded as the total weight of the organic binder and the inorganic binder relative to the mat material, and the content (% by weight) relative to the weight of the mat material is calculated.
Furthermore, the crucible is heat-treated at 600° C. for 1 hour to burn out the organic binder. Since the inorganic binder remains in the crucible, this is regarded as the content (% by weight) of the inorganic binder relative to the total of the organic binder and the inorganic binder, and the content is calculated. The remainder is the content (% by weight) of the organic binder.
マット材では、無機バインダ及び有機バインダが、それぞれ分散した状態で、無機繊維の表面に添着していることが好ましい。
無機バインダ及び有機バインダがそれぞれ分散した状態で無機繊維の表面に添着していると、有機バインダによって形成される被膜中に、無機バインダが分散した状態となる。このような状態の被膜は機械的強度に優れるため、無機繊維同士が滑ることを防止し、保持力を高めることができる。
In the mat material, it is preferable that the inorganic binder and the organic binder are each attached to the surface of the inorganic fibers in a dispersed state.
When the inorganic binder and the organic binder are attached to the surface of the inorganic fiber in a dispersed state, the inorganic binder becomes dispersed in the film formed by the organic binder. Since the coating in this state has excellent mechanical strength, it can prevent the inorganic fibers from slipping against each other and increase the holding power.
マット材では、無機繊維の表面の少なくとも一部を、無機バインダと有機バインダの混合物からなる被覆層が覆っていることが好ましい。
無機バインダと有機バインダの混合物からなる被覆層は、有機バインダのみで構成される被覆層と比較して機械的強度が高い。そのため、被覆層の剥がれが生じにくく、無機繊維同士の摩擦抵抗を高めることができる。
In the mat material, it is preferable that at least a portion of the surface of the inorganic fibers be covered with a coating layer made of a mixture of an inorganic binder and an organic binder.
A coating layer made of a mixture of an inorganic binder and an organic binder has higher mechanical strength than a coating layer made only of an organic binder. Therefore, the coating layer is less likely to peel off, and the frictional resistance between the inorganic fibers can be increased.
被覆層は、鱗片状の混合物(無機バインダと有機バインダの混合物)が連続することで形成されていることが好ましい。
被覆層が鱗片状の上記混合物で形成されていると、被覆層の表面に鱗片状の混合物に由来する凹凸が多数形成され、無機繊維同士の摩擦抵抗をさらに高めることができる。
The coating layer is preferably formed by a continuous scale-like mixture (a mixture of an inorganic binder and an organic binder).
When the coating layer is formed of the above-mentioned scale-like mixture, many irregularities derived from the scale-like mixture are formed on the surface of the coating layer, and the frictional resistance between the inorganic fibers can be further increased.
図7は、本発明のマット材を拡大した電子顕微鏡画像の一例である。
図7に示すように、無機繊維120の表面の一部を、無機バインダと有機バインダの混合物からなる被覆層130が覆っている。被覆層130は、無機バインダと有機バインダの鱗片状の混合物が連続することにより形成されている。無機繊維120の表面には、無機バインダと有機バインダの粒子状の混合物140が付着している。
なお、被覆層や粒子が無機バインダと有機バインダの混合物からなるかどうかは、電子顕微鏡による視野観察と元素分析を併用することにより確認することができる。
FIG. 7 is an example of an enlarged electron microscope image of the mat material of the present invention.
As shown in FIG. 7, a part of the surface of the inorganic fiber 120 is covered with a coating layer 130 made of a mixture of an inorganic binder and an organic binder. The covering layer 130 is formed by a continuous scale-like mixture of an inorganic binder and an organic binder. A particulate mixture 140 of an inorganic binder and an organic binder is attached to the surface of the inorganic fiber 120 .
Note that whether or not the coating layer or particles are made of a mixture of an inorganic binder and an organic binder can be confirmed by combined use of field observation using an electron microscope and elemental analysis.
図8は、本発明のマット材を拡大した電子顕微鏡画像の別の一例である。
図8に示すように、無機繊維120の表面の一部を、無機バインダと有機バインダの混合物からなる被覆層130が覆っている。被覆層130は、無機バインダと有機バインダの鱗片状の混合物が連続することにより形成されている。無機繊維120の表面には、無機バインダと有機バインダの粒子状の混合物140が付着している。
FIG. 8 is another example of an enlarged electron microscope image of the mat material of the present invention.
As shown in FIG. 8, a part of the surface of the inorganic fiber 120 is covered with a coating layer 130 made of a mixture of an inorganic binder and an organic binder. The covering layer 130 is formed by a continuous scale-like mixture of an inorganic binder and an organic binder. A particulate mixture 140 of an inorganic binder and an organic binder is attached to the surface of the inorganic fiber 120 .
被覆層の厚みは一様であってもよいが、一様でなくてもよい。
厚みが一定ではない被覆層の形状を、多段状ともいう。
被覆層の形状が多段状であると、被覆層が表面に凹凸を有しているといえるから、無機繊維同士の摩擦抵抗をさらに高めることができる。
被覆層が表面に凹凸を有しているかどうか、すなわち、被覆層の形状が多段状であるかどうかは、無機繊維の表面を、走査型電子顕微鏡を用いて3000倍に拡大して、被覆層の表面の凹凸の有無を確認することで判定する。
The thickness of the coating layer may be uniform, but it does not need to be uniform.
The shape of the coating layer whose thickness is not constant is also called multistage.
When the covering layer has a multi-stage shape, it can be said that the covering layer has irregularities on the surface, so that the frictional resistance between the inorganic fibers can be further increased.
To determine whether the coating layer has irregularities on the surface, that is, whether the coating layer has a multi-step shape, the surface of the inorganic fiber is magnified 3000 times using a scanning electron microscope. This is determined by checking the presence or absence of irregularities on the surface.
図9は、本発明のマット材を拡大した電子顕微鏡画像のさらに別の一例である。
図9に示すように、無機繊維120の表面の一部を、無機バインダと有機バインダの混合物からなる被覆層130が覆っている。被覆層130は、その厚みが一様ではなく、多段状となっている。
無機繊維120の表面には、無機バインダと有機バインダの粒子状の混合物140が付着している。
FIG. 9 is yet another example of an enlarged electron microscope image of the mat material of the present invention.
As shown in FIG. 9, a part of the surface of the inorganic fiber 120 is covered with a coating layer 130 made of a mixture of an inorganic binder and an organic binder. The thickness of the covering layer 130 is not uniform, and is multi-stepped.
A particulate mixture 140 of an inorganic binder and an organic binder is attached to the surface of the inorganic fiber 120 .
被覆層の表面には、無機バインダと有機バインダの混合物からなる粒子が付着していることが好ましい。
被覆層の表面に無機バインダと有機バインダの混合物からなる粒子が付着していると、該粒子が付着していない場合と比較して、無機繊維同士の摩擦抵抗をさらに高めることができる。
Preferably, particles made of a mixture of an inorganic binder and an organic binder are attached to the surface of the coating layer.
When particles made of a mixture of an inorganic binder and an organic binder are attached to the surface of the coating layer, the frictional resistance between the inorganic fibers can be further increased compared to a case where the particles are not attached.
図10は、本発明のマット材を拡大した電子顕微鏡画像のさらに別の一例である。
図10に示すように、無機繊維120の表面の一部を、無機バインダと有機バインダの混合物からなる被覆層130が覆っている。被覆層130は、無機バインダと有機バインダの鱗片状の混合物が連続することにより形成されている。被覆層130は、その厚みが一様ではなく、多段状となっている。被覆層130の表面には、無機バインダと有機バインダの粒子状の混合物140が付着している。
FIG. 10 is yet another example of an enlarged electron microscope image of the mat material of the present invention.
As shown in FIG. 10, a part of the surface of the inorganic fiber 120 is covered with a coating layer 130 made of a mixture of an inorganic binder and an organic binder. The covering layer 130 is formed by a continuous scale-like mixture of an inorganic binder and an organic binder. The thickness of the covering layer 130 is not uniform, and is multi-stepped. A particulate mixture 140 of an inorganic binder and an organic binder is attached to the surface of the coating layer 130 .
マット材は、さらに高分子系分散剤を含有していることが好ましい。
マット材がさらに高分子系分散剤を含有していると、有機バインダ及び無機バインダを分散した状態で無機繊維の表面に添着させやすくなる。
高分子系分散剤の含有量は、無機繊維の重量に対して、50~1000ppmであることが好ましい。
It is preferable that the mat material further contains a polymeric dispersant.
When the mat material further contains a polymeric dispersant, the organic binder and the inorganic binder can be easily attached to the surface of the inorganic fibers in a dispersed state.
The content of the polymeric dispersant is preferably 50 to 1000 ppm based on the weight of the inorganic fiber.
マット材は、無機バインダ及び有機バインダからなる凝集体が、無機繊維の表面に添着していることが好ましい。
無機バインダ及び有機バインダからなる凝集体は、無機繊維の表面に凹凸を形成することができるため、無機繊維同士の摩擦を高めて保持力を向上させることができる。
In the mat material, it is preferable that an aggregate made of an inorganic binder and an organic binder is attached to the surface of the inorganic fibers.
The aggregate made of the inorganic binder and the organic binder can form irregularities on the surface of the inorganic fibers, so that the friction between the inorganic fibers can be increased and the holding power can be improved.
マット材は、さらに凝集剤を含有していてもよい。
マット材がさらに凝集剤を含有していると、有機バインダ及び無機バインダを凝集させた状態で無機繊維の表面に添着させやすくなる。
The mat material may further contain an aggregating agent.
When the mat material further contains an aggregating agent, the organic binder and the inorganic binder can be easily attached to the surface of the inorganic fibers in an agglomerated state.
無機繊維の表面に添着された無機バインダ及び有機バインダが、分散しているかまたは凝集しているかは、無機繊維の表面をSEM-EDX等で観察することにより確認することができる。 Whether the inorganic binder and organic binder attached to the surface of the inorganic fiber are dispersed or aggregated can be confirmed by observing the surface of the inorganic fiber using a SEM-EDX or the like.
本発明のマット材は、せん断係数が0.20以上であることが好ましい。
せん断係数が0.20以上であると、本発明のマット材を用いて排ガス処理体をケーシングに圧入する際に、マット材にせん断が生じにくい。
せん断係数は、せん断破壊荷重を緩和面圧で除することにより求められる。
The mat material of the present invention preferably has a shear coefficient of 0.20 or more.
When the shear coefficient is 0.20 or more, shearing is less likely to occur in the mat material when the exhaust gas treatment body is press-fitted into a casing using the mat material of the present invention.
The shear modulus is obtained by dividing the shear failure load by the relaxed surface pressure.
せん断破壊荷重は、図11に示すせん断破壊荷重試験装置により測定することができる。
図11は、せん断破壊荷重試験装置を模式的に示した概念図である。
図11に示すせん断破壊荷重試験装置170は、ステンレス板173の両面に試験片1a、1bが配置され、さらにその外側が左側治具171及び右側治具172で挟まれている。左側治具171、右側治具172及びステンレス板173の表面で、試験片と接する面に突起部材174が多数設けられている。
試験片1a、1bは突起部材174に突き刺されることにより、左側治具171、右側治具172及びステンレス板173に固定される。
この状態で試験片の嵩密度(GBD)が0.3g/cmとなるまで圧縮する。
次に、ステンレス板173を図11中の矢印で示す向き(上方)に5mm/minの速度で移動させると、ステンレス板173は突起部材174で試験片1a及び1bと固定されているため、試験片1a及び1bと離れて抜けることができない。そのため、試験片1a及び1bに試験片のせん断破壊荷重以上のせん断力が加わった際に試験片1a及び1bがせん断破壊を生じる。
試験片がせん断破壊を生じた際のステンレス板に加わるせん断力を求める。
The shear failure load can be measured using a shear failure load testing device shown in FIG.
FIG. 11 is a conceptual diagram schematically showing a shear failure load test device.
In the shear fracture load testing device 170 shown in FIG. 11, test pieces 1a and 1b are arranged on both sides of a stainless steel plate 173, and the outside thereof is further sandwiched between a left jig 171 and a right jig 172. A large number of protruding members 174 are provided on the surfaces of the left jig 171, the right jig 172, and the stainless steel plate 173 that contact the test piece.
The test pieces 1a and 1b are fixed to the left jig 171, the right jig 172, and the stainless steel plate 173 by being pierced by the protruding member 174.
In this state, the test piece is compressed until its bulk density (GBD) becomes 0.3 g/cm 3 .
Next, when the stainless steel plate 173 is moved in the direction shown by the arrow in FIG. It cannot be separated from the pieces 1a and 1b and come off. Therefore, when a shear force greater than the shear failure load of the test pieces is applied to the test pieces 1a and 1b, the test pieces 1a and 1b undergo shear failure.
Determine the shear force applied to the stainless steel plate when the test piece undergoes shear failure.
得られたせん断力を試験片の面積で除算することにより、せん断破壊荷重(kPa)を求めることができる。なお、マット材の一部を切り出した試験片を用いて上記せん断破壊荷重を測定してもよい。 By dividing the obtained shear force by the area of the test piece, the shear failure load (kPa) can be determined. Note that the shear failure load may be measured using a test piece obtained by cutting out a portion of the mat material.
緩和面圧は以下の手順で測定することができる。
まず、室温状態で、マット材の嵩密度が0.3g/cmとなるまで圧縮し、20分間保持した後の荷重を測定する。
Relaxed surface pressure can be measured using the following procedure.
First, the mat material is compressed at room temperature until the bulk density becomes 0.3 g/cm 3 , and the load is measured after holding for 20 minutes.
得られた荷重を試験片の面積で除算することにより、緩和面圧(kPa)を求めることができる。なお、マット材の一部を切り出した試験片を用いて上記緩和面圧を測定してもよい。 By dividing the obtained load by the area of the test piece, the relaxed surface pressure (kPa) can be determined. Note that the above-mentioned relaxation surface pressure may be measured using a test piece obtained by cutting out a part of the mat material.
マット材の焼成後面圧は、50kPa以上であることが好ましい。
マット材の焼成後面圧は、試験片となるマット材を圧縮する板の部分に加熱ヒーターを備えた熱間面圧測定装置を用いて、以下の方法で測定することができる。
まず、室温において嵩密度が0.3g/cmとなるまで試験片(マット材)を圧縮した後、10分間保持する。その後、試験片を圧縮した状態で45℃の昇温速度で片面900℃、片面650℃まで昇温しながら、嵩密度が0.27g/cmとなるまで圧縮を開放し、5分間保持する。その後、マット材を圧縮する板を1inch(25.4mm)/minの速度で動かして、嵩密度が0.3/cmとなるまで圧縮する。嵩密度が0.27g/cmとなるまでの圧縮の開放と嵩密度が0.3g/cmとなるまでの圧縮を1000回繰り返した後の嵩密度0.27g/cm時の荷重を測定する。得られた荷重を試験片の面積で除算することにより、面圧(kPa)を求め、焼成後面圧とする。
The surface pressure of the mat material after firing is preferably 50 kPa or more.
The surface pressure of the mat material after firing can be measured by the following method using a hot surface pressure measuring device equipped with a heater in the part of the plate that compresses the mat material to become the test piece.
First, a test piece (mat material) is compressed at room temperature until the bulk density becomes 0.3 g/cm 3 and then held for 10 minutes. After that, while the test piece is compressed, the temperature is increased to 900°C on one side and 650°C on the other side at a heating rate of 45°C, and the compression is released until the bulk density reaches 0.27 g/ cm3 , and held for 5 minutes. . Thereafter, a plate for compressing the mat material is moved at a speed of 1 inch (25.4 mm)/min to compress the mat material until the bulk density becomes 0.3/cm 3 . After repeating 1000 times of releasing compression until the bulk density becomes 0.27 g/cm 3 and compressing until the bulk density becomes 0.3 g/cm 3 , the bulk density becomes 0.27 g/cm 3 . Measure. By dividing the obtained load by the area of the test piece, the surface pressure (kPa) is obtained and is taken as the surface pressure after firing.
[マット材の製造方法]
本発明のマット材は、例えば、無機繊維を含むマットを、所定の形状に切断する切断工程、又は、所定の形状に成形する成形工程を行うことにより得ることができる。
[Method for manufacturing mat material]
The mat material of the present invention can be obtained, for example, by performing a cutting step of cutting a mat containing inorganic fibers into a predetermined shape, or a molding step of molding it into a predetermined shape.
マットは、例えば、ニードリング法及び抄造法により得ることができる。 The mat can be obtained, for example, by a needling method and a papermaking method.
ニードリング法の場合、例えば、無機化合物と有機重合体とを少なくとも含む紡糸用混合物を紡糸して無機繊維前駆体を作製する紡糸工程と、上記無機繊維前駆体を圧縮してシート状物を作製する圧縮工程と、上記シート状物の少なくとも一方の表面にニードルパンチング処理を行ってニードルパンチング処理体を作製するニードルパンチング工程と、上記ニードルパンチング処理体を焼成する焼成工程とによって、マットを得ることができる。
以下、紡糸工程、圧縮工程、ニードルパンチング工程及び焼成工程の具体例を説明する。
In the case of the needling method, for example, there is a spinning process in which an inorganic fiber precursor is produced by spinning a spinning mixture containing at least an inorganic compound and an organic polymer, and a sheet-like product is produced by compressing the inorganic fiber precursor. a compression step of performing a needle punching process on at least one surface of the sheet-like material to produce a needle-punched body, and a firing process of firing the needle-punched body. I can do it.
Specific examples of the spinning process, compression process, needle punching process, and firing process will be described below.
[紡糸工程]
紡糸工程では、無機化合物と有機重合体とを少なくとも含む紡糸用混合物を紡糸して無機繊維前駆体を作製する。
紡糸工程では、例えば、塩基性塩化アルミニウム水溶液とシリカゾル等とを原料とする紡糸用混合物をブローイング法により紡糸して3~10μmの平均繊維径を有する無機繊維前駆体を作製する。
[Spinning process]
In the spinning step, an inorganic fiber precursor is produced by spinning a spinning mixture containing at least an inorganic compound and an organic polymer.
In the spinning step, for example, a spinning mixture made of a basic aluminum chloride aqueous solution, silica sol, etc. as raw materials is spun by a blowing method to produce an inorganic fiber precursor having an average fiber diameter of 3 to 10 μm.
[圧縮工程]
圧縮工程では、紡糸工程により得られた無機繊維前駆体を圧縮して所定の大きさの連続したシート状物を作製する。
[Compression process]
In the compression step, the inorganic fiber precursor obtained in the spinning step is compressed to produce a continuous sheet-like product of a predetermined size.
[ニードルパンチング工程]
ニードルパンチング工程では、圧縮工程により得られたシート状物の少なくとも一方の表面にニードルパンチング処理を行ってニードルパンチング処理体を作製する。
[Needle punching process]
In the needle punching process, a needle punching process is performed on at least one surface of the sheet-like material obtained in the compression process to produce a needle punched body.
ニードルパンチング工程では、ニードルの配置密度を0.5本/cm以上18本/cm未満に設定することが好ましい。
ニードルパンチング工程においてニードルが配置される位置は、マットにおける交絡点に対応する。従って、ニードルの配置密度を0.5本/cm以上18本/cm未満に設定することで、一度のニードルパンチング処理によって、交絡点の密度ρが、0.5個/cm≦ρ<18個/cmの範囲にあるマットを得ることができる。
ただし、同一のシート状物に対して複数回ニードルパンチング処理を行う場合には、ニードルの配置密度は上記範囲に限定されない。
In the needle punching step, the needle arrangement density is preferably set to 0.5 needles/cm 2 or more and less than 18 needles/cm 2 .
The positions where the needles are placed in the needle punching process correspond to the interlacing points in the mat. Therefore, by setting the needle arrangement density to 0.5 needles/cm 2 or more and less than 18 needles/cm 2 , one needle punching process can reduce the density of intertwined points ρ to 0.5 needles/cm 2 ≦ρ Mats in the range <18 pieces/cm 2 can be obtained.
However, when needle punching is performed multiple times on the same sheet-like material, the needle arrangement density is not limited to the above range.
また、ニードルパンチング工程において意図的にニードルの配置を偏らせることで、ニードルパンチング処理体に形成される交絡点の配置に粗密を生じさせて、交絡点の密度ρが、0.5個/cm≦ρ<18個/cmの範囲としながら、25mm×25mmの領域内に、交絡点が存在しない4mm×4mmの領域(第1の領域)及び/又は交絡点が存在しない3mm×8mmの領域(第2の領域)を形成することができる。 In addition, by intentionally biasing the arrangement of the needles in the needle punching process, the arrangement of the intertwined points formed on the needle punched body is unevenly arranged, and the density ρ of the intertwined points is 0.5 pieces/cm. 2 ≦ ρ < 18 pieces/cm 2 , within a 25 mm x 25 mm area, a 4 mm x 4 mm area (first area) where no intersecting points exist and/or a 3 mm x 8 mm area where no intersecting points exist. A region (second region) can be formed.
交絡点の配置を意図的に偏らせる方法としては、例えば、交絡点が均一に配置されるようにニードルパンチング処理を施した後に、追加で一部にニードリング処理を施す方法が挙げられる。また、無機繊維前駆体を移動させながら複数回ニードルパンチング処理を行う方法や、ニードルが等間隔に配置されていないニードルボードを用いてニードルパンチング処理を行う方法等も挙げられる。 An example of a method for intentionally biasing the arrangement of intertwined points is to perform needle punching so that the intertwined points are uniformly arranged, and then additionally perform needling in a portion. Other examples include a method in which needle punching is performed multiple times while moving the inorganic fiber precursor, and a method in which needle punching is performed using a needle board in which needles are not arranged at regular intervals.
ニードルパンチング工程において、ニードルはシート状物を厚さ方向に貫通してもよく、貫通しなくてもよい。 In the needle punching step, the needles may or may not penetrate the sheet-like material in the thickness direction.
[焼成工程]
焼成工程では、ニードルパンチング処理体を焼成して、無機繊維からなるマットを得る。
ニードルパンチング処理体を焼成する温度は特に限定されないが、1000℃~1600℃であることが好ましい。
以上の工程により、マットを得ることができる。
[Firing process]
In the firing step, the needle punched body is fired to obtain a mat made of inorganic fibers.
The temperature at which the needle punched body is fired is not particularly limited, but is preferably 1000°C to 1600°C.
Through the above steps, a mat can be obtained.
[切断工程]
上記工程により得られたマットを、所定の形状に切断することで、本発明のマット材を得ることができる。
[Cutting process]
The mat material of the present invention can be obtained by cutting the mat obtained through the above steps into a predetermined shape.
本発明のマット材を製造するにあたっては、マット又はマット材を構成する無機繊維の表面に、無機バインダ及び/又は有機バインダを添着させる添着工程を行ってもよい。 In manufacturing the mat material of the present invention, an attachment step may be performed in which an inorganic binder and/or an organic binder is attached to the surface of the mat or the inorganic fibers constituting the mat material.
[添着工程]
添着工程では、マットに無機バインダ及び/又は有機バインダを添着させる。
無機バインダ及び有機バインダを区別しない場合、単にバインダともいう。
[Attachment process]
In the attachment step, an inorganic binder and/or an organic binder is attached to the mat.
When an inorganic binder and an organic binder are not distinguished, they are also simply referred to as a binder.
無機バインダとしては、アルミナゾル、シリカゾル等が挙げられる。 Examples of the inorganic binder include alumina sol and silica sol.
有機バインダとしては、アクリル樹脂、アクリレート系ラテックス、ゴム系ラテックス、カルボキシメチルセルロース又はポリビニルアルコール等の水溶性有機重合体、スチレン樹脂等の熱可塑性樹脂、エポキシ樹脂等の熱硬化性樹脂等が挙げられる。 Examples of the organic binder include acrylic resin, acrylate latex, rubber latex, water-soluble organic polymers such as carboxymethyl cellulose or polyvinyl alcohol, thermoplastic resins such as styrene resin, and thermosetting resins such as epoxy resin.
マットにバインダを添着させる方法としては、例えば、溶媒とバインダとを混合させたバインダ混合液をマットに接触させたあと、乾燥させる方法が挙げられる。
バインダ混合液をマットに接触させる方法としては、例えば、マットをバインダ混合液中に浸漬させる方法や、カーテンコート法等の方法でバインダ混合液をマット上に落下させる方法等が挙げられる。
As a method for attaching the binder to the mat, for example, a method may be mentioned in which a binder liquid mixture in which a solvent and a binder are mixed is brought into contact with the mat, and then the mat is dried.
Examples of methods for bringing the binder mixture into contact with the mat include a method in which the mat is immersed in the binder mixture, and a method in which the binder mixture is dropped onto the mat using a method such as a curtain coating method.
バインダ混合液における無機バインダの含有量は、0.05wt%以上、5wt%以下であることが好ましい。
バインダ混合液における有機バインダの含有量は、0.05wt%以上、5wt%以下であることが好ましい。
すなわち、バインダ混合液は、バインダとして無機バインダだけを含むものであってもよく、有機バインダだけを含むものであってもよく、無機バインダ及び有機バインダの両方を含むものであってもよい。
The content of the inorganic binder in the binder mixture is preferably 0.05 wt% or more and 5 wt% or less.
The content of the organic binder in the binder mixture is preferably 0.05 wt% or more and 5 wt% or less.
That is, the binder mixture may contain only an inorganic binder, only an organic binder, or both an inorganic binder and an organic binder.
バインダ混合液には高分子系分散剤が含まれていてもよい。
バインダ混合液に高分子系分散剤が含まれていると、バインダ混合液中でバインダが分散した状態となる。この状態のバインダ混合液をマットに接触させることで、バインダを分散した状態で無機繊維の表面に添着させることができる。
The binder mixture may contain a polymeric dispersant.
If the binder mixed liquid contains a polymeric dispersant, the binder will be in a dispersed state in the binder mixed liquid. By bringing the binder mixture in this state into contact with the mat, the binder can be attached to the surface of the inorganic fibers in a dispersed state.
高分子系分散剤としては、ポリカルボン酸及び/又はその塩、ナフタレンスルホン酸塩ホルマリン縮合物及び/又はその塩、ポリアクリル酸及び/又はその塩、ポリメタクリル酸及び/又はその塩、ポリビニルスルホン酸及び/又はその塩、等のアニオン性高分子系分散剤、ポリビニルアルコール、ポリビニルピロリドン、ポリエチレングリコール等のノニオン性高分子系分散剤、などの親水性合成高分子物質;ゼラチン、カゼイン、水溶性でんぷん等の天然親水性高分子物質;カルボキシメチルセルロース等の親水性半合成高分子物質等が挙げられる。
これらの中では、親水性合成高分子物質が好ましく、アニオン性高分子系分散剤がより好ましい。
また、これらの高分子系分散剤は、1種類のみ用いられていてもよく、複数種類が併用されていてもよい。また、アニオン性高分子系分散剤としての性質を示す構造とノニオン性高分子系分散剤としての性質を示す構造を共に有する高分子系分散剤であってもよい。
Examples of polymeric dispersants include polycarboxylic acid and/or its salt, naphthalene sulfonate formalin condensate and/or its salt, polyacrylic acid and/or its salt, polymethacrylic acid and/or its salt, polyvinyl sulfone Hydrophilic synthetic polymer substances such as anionic polymer dispersants such as acids and/or their salts, nonionic polymer dispersants such as polyvinyl alcohol, polyvinylpyrrolidone, and polyethylene glycol; gelatin, casein, water-soluble Natural hydrophilic polymeric substances such as starch; hydrophilic semi-synthetic polymeric substances such as carboxymethyl cellulose, and the like.
Among these, hydrophilic synthetic polymer substances are preferred, and anionic polymer dispersants are more preferred.
Furthermore, only one type of these polymeric dispersants may be used, or a plurality of types may be used in combination. Further, it may be a polymeric dispersant having both a structure exhibiting properties as an anionic polymeric dispersant and a structure exhibiting properties as a nonionic polymeric dispersant.
バインダ混合液には凝集剤が含まれていてもよい。
バインダ混合液に凝集剤が含まれていると、バインダ混合液中でバインダが凝集した状態となる。この状態のバインダ混合液をマットに接触させることで、バインダを凝集した状態で無機繊維の表面に添着させることができる。
The binder mixture may contain a flocculant.
If the binder mixed liquid contains an aggregating agent, the binder will be in a coagulated state in the binder mixed liquid. By bringing the binder mixture in this state into contact with the mat, the binder can be attached to the surface of the inorganic fibers in an aggregated state.
バインダ混合液には高分子系分散剤が含まれていてもよい。
バインダ混合液に高分子系分散剤が含まれていると、バインダ混合液中でバインダが分散した状態となる。すなわち、バインダ混合液が、バインダが分散媒に分散してなる分散液となる。この状態のバインダ混合液(分散液)をマットに接触させることで、バインダを分散した状態で無機繊維の表面に添着させることができる。
The binder mixture may contain a polymeric dispersant.
If the binder mixed liquid contains a polymeric dispersant, the binder will be in a dispersed state in the binder mixed liquid. That is, the binder mixed liquid becomes a dispersion liquid in which the binder is dispersed in a dispersion medium. By bringing the binder mixture (dispersion) in this state into contact with the mat, the binder can be attached to the surface of the inorganic fibers in a dispersed state.
バインダ混合液には凝集剤が含まれていてもよい。
バインダ混合液に凝集剤が含まれていると、上記混合液中でバインダが凝集した状態となる。すなわち、バインダ混合液が、バインダが凝集してなる凝集体が分散媒中に分散してなる凝集分散液となる。この状態の混合液(凝集分散液)をマットに接触させることで、バインダを凝集した状態で無機繊維の表面に添着させることができる。
The binder mixture may contain a flocculant.
If the binder mixture contains an aggregating agent, the binder will be in an agglomerated state in the mixture. That is, the binder liquid mixture becomes an agglomerated dispersion liquid in which aggregates formed by aggregating the binder are dispersed in a dispersion medium. By bringing the mixed liquid (agglomerated dispersion liquid) in this state into contact with the mat, the binder can be attached to the surface of the inorganic fibers in an aggregated state.
添着工程では、無機バインダの添着と有機バインダの添着を、別々に行ってもよい。
無機バインダの添着と有機バインダの添着を別々に行う方法としては、例えば、無機バインダを含む無機バインダ混合液をマットに接触させて無機バインダを添着させたあと、さらに有機バインダを含む有機バインダ混合液に接触させて有機バインダを添着させる方法が挙げられる。無機バインダと有機バインダを添着させる順序は特に限定されず、無機バインダが先であってもよく、有機バインダが先であってもよい。
In the impregnation step, the inorganic binder and the organic binder may be applied separately.
As a method of impregnating an inorganic binder and impregnating an organic binder separately, for example, an inorganic binder mixture containing an inorganic binder is brought into contact with the mat to adhere the inorganic binder, and then an organic binder mixture containing an organic binder is applied. A method of attaching an organic binder by contacting with the organic binder can be mentioned. The order in which the inorganic binder and the organic binder are attached is not particularly limited, and the inorganic binder may come first or the organic binder may come first.
以上の工程により、無機繊維の表面に無機バインダ及び/又は有機バインダが添着された本発明のマット材を得ることができる。 Through the above steps, it is possible to obtain the mat material of the present invention in which an inorganic binder and/or an organic binder is attached to the surface of inorganic fibers.
続いて、抄造法を用いる場合について説明する。
抄造法の場合、例えば、無機繊維を開繊する開繊工程と、上記開繊された無機繊維を、溶媒、無機バインダ及び有機バインダと混合してスラリーを調製するスラリー調製工程と、上記スラリーを抄造して無機繊維集合体を得る抄造工程と、上記無機繊維集合体を乾燥する乾燥工程と、によりマットを得ることができる。
以下、開繊工程、スラリー調製工程、抄造工程及び乾燥工程の具体例を説明する。
Next, the case of using the papermaking method will be explained.
In the case of the papermaking method, for example, a fiber opening step of opening inorganic fibers, a slurry preparation step of mixing the opened inorganic fibers with a solvent, an inorganic binder, and an organic binder to prepare a slurry, and a step of preparing the slurry. A mat can be obtained by a paper-making process of obtaining an inorganic fiber aggregate by paper-making and a drying process of drying the inorganic fiber aggregate.
Specific examples of the opening process, slurry preparation process, papermaking process, and drying process will be described below.
[開繊工程]
開繊工程では、無機繊維をフェザーミル等の粉砕機やパルパー等の撹拌機等により短繊維化(開繊ともいう)し、所望の繊維長に調整する。
[Opening process]
In the opening process, the inorganic fibers are shortened (also referred to as opening) using a crusher such as a feather mill or an agitator such as a pulper, and adjusted to a desired fiber length.
短繊維化した無機繊維は、必要に応じて分級処理を行ってもよく、繊維長が200μm以下の無機繊維を一部又は全部除去するような分級処理を行うことが好ましい。 The shortened inorganic fibers may be subjected to a classification treatment if necessary, and it is preferable to perform a classification treatment to remove some or all of the inorganic fibers having a fiber length of 200 μm or less.
上記分級処理としては、例えば、乾式遠心式分級装置(乾式サイクロンともいう)や湿式遠心式分級装置(湿式サイクロンともいう)等による分級処理が挙げられる。 Examples of the above-mentioned classification treatment include classification treatment using a dry centrifugal classifier (also referred to as a dry cyclone), a wet centrifugal classifier (also referred to as a wet cyclone), and the like.
[スラリー調製工程]
スラリー調製工程では、開繊した無機繊維を、溶媒、無機バインダ及び有機バインダと混合してスラリーを調製する。
[Slurry preparation process]
In the slurry preparation step, the opened inorganic fibers are mixed with a solvent, an inorganic binder, and an organic binder to prepare a slurry.
無機バインダ及び有機バインダの混合順序は特に限定されないが、まず無機繊維と無機バインダとを混合し、しばらく静置した後に、有機バインダを添加することが好ましい。最初に無機繊維と無機バインダとを混合することによって、無機繊維の表面に無機バインダが確実に付着することとなるため、無機繊維同士の摩擦を高め、面圧を向上させることができる。さらに、上記スラリーに対して、有機バインダと無機バインダを凝集剤により凝集させた凝集体を添加してもよい。 Although the order of mixing the inorganic binder and the organic binder is not particularly limited, it is preferable to first mix the inorganic fibers and the inorganic binder, and then add the organic binder after allowing the mixture to stand for a while. By first mixing the inorganic fibers and the inorganic binder, the inorganic binder will reliably adhere to the surface of the inorganic fibers, thereby increasing the friction between the inorganic fibers and improving the surface pressure. Furthermore, an aggregate obtained by aggregating an organic binder and an inorganic binder with an aggregating agent may be added to the slurry.
[抄造工程(成形工程)]
抄造工程では、底面にろ過用のメッシュが形成された成形器にスラリーを流し込んだ後に、スラリー中の溶媒を脱溶媒処理することで、無機繊維集合体を得る。
このときの成形器の形状が、マットの形状となる。すなわち、抄造工程が成形工程を兼ねているともいえる。従って、成形器の形状を、得たいマット材の形状にしておくことが好ましい。
[Papermaking process (molding process)]
In the papermaking process, the slurry is poured into a molding machine with a mesh for filtration formed on the bottom, and then the solvent in the slurry is removed to obtain an inorganic fiber aggregate.
The shape of the molding machine at this time becomes the shape of a mat. In other words, it can be said that the papermaking process also serves as a forming process. Therefore, it is preferable to set the shape of the molding machine to the shape of the desired mat material.
脱溶媒処理としては、マットに含まれる溶媒を除去することができれば特に限定されないが、例えば、圧縮、回転、吸引、減圧等の手段により溶媒を除去することができる。 The solvent removal treatment is not particularly limited as long as it can remove the solvent contained in the mat, but for example, the solvent can be removed by means such as compression, rotation, suction, and reduced pressure.
[乾燥工程]
乾燥工程においては、プレス式乾燥機等を用いた熱板による圧縮乾燥等の方法を用いて無機繊維集合体を圧縮しながら乾燥させる。
以上の工程により、無機繊維の表面に無機バインダ及び/又は有機バインダが添着された本発明のマット材を得ることができる。
[Drying process]
In the drying step, the inorganic fiber aggregate is dried while being compressed using a method such as compression drying using a hot plate using a press dryer or the like.
Through the above steps, it is possible to obtain the mat material of the present invention in which an inorganic binder and/or an organic binder is attached to the surface of inorganic fibers.
[排ガス浄化装置]
本発明の排ガス浄化装置は、排ガス処理体と、上記排ガス処理体を収容するケーシングと、上記排ガス処理体と上記ケーシングとの間に配置され、上記排ガス処理体を保持するマット材とを備える排ガス浄化装置であって、上記マット材が本発明のマット材であることを特徴とする。
[Exhaust gas purification device]
The exhaust gas purification device of the present invention includes an exhaust gas treatment body, a casing that accommodates the exhaust gas treatment body, and a mat member that is disposed between the exhaust gas treatment body and the casing and holds the exhaust gas treatment body. The purification device is characterized in that the mat material is the mat material of the present invention.
本発明の排ガス浄化装置は、本発明のマット材が排ガス処理体とケーシングとの間に配置されているため、排ガス処理体を安定的に保持することができる。 In the exhaust gas purification device of the present invention, since the mat material of the present invention is disposed between the exhaust gas treatment body and the casing, the exhaust gas treatment body can be stably held.
図12は、本発明の排ガス浄化装置の一例を模式的に示す断面図である。
図12に示すように、排ガス浄化装置200は、ケーシング220と、ケーシング220に収容された排ガス処理体230と、排ガス処理体230及びケーシング220の間に配設されたマット材10とを備えている。マット材10は、本発明のマット材である。
排ガス処理体230は、多数のセル231がセル壁232を隔てて長手方向に並設された柱状のものである。なお、ケーシング220の端部には、必要に応じて、内燃機関から排出された排ガスを導入する導入管と、排ガス浄化装置を通過した排ガスが外部に排出される排出管とが接続されることになる。
なお、図12に示す排ガス浄化装置200では、排ガス処理体230として、各々のセルにおけるいずれか一方が封止材233によって目封じされた排ガスフィルタ(ハニカムフィルタ)を用いているが、いずれの端面にも封止材による目封じがなされていない触媒担体を用いてもよい。
FIG. 12 is a cross-sectional view schematically showing an example of the exhaust gas purification device of the present invention.
As shown in FIG. 12, the exhaust gas purification device 200 includes a casing 220, an exhaust gas treatment body 230 housed in the casing 220, and a mat material 10 disposed between the exhaust gas treatment body 230 and the casing 220. There is. The mat material 10 is the mat material of the present invention.
The exhaust gas treatment body 230 is columnar in which a large number of cells 231 are arranged in parallel in the longitudinal direction with cell walls 232 in between. Note that an inlet pipe for introducing exhaust gas discharged from the internal combustion engine and an exhaust pipe for exhausting the exhaust gas that has passed through the exhaust gas purification device to the outside may be connected to the end of the casing 220, as necessary. become.
In the exhaust gas purification device 200 shown in FIG. 12, an exhaust gas filter (honeycomb filter) in which one of each cell is sealed with a sealing material 233 is used as the exhaust gas treatment body 230. A catalyst carrier that is not plugged with a sealing material may also be used.
図12に示すように、内燃機関から排出され、排ガス浄化装置200に流入した排ガス(図12中、排ガスをGで示し、排ガスの流れを矢印で示す)は、排ガス処理体(ハニカムフィルタ)230の排ガス流入側端面230aに開口した一のセル231に流入し、セル231を隔てるセル壁232を通過する。この際、排ガス中のPMがセル壁232で捕集され、排ガスが浄化されることとなる。浄化された排ガスは、排ガス流出側端面230bに開口した他のセル231から流出し、外部に排出される。 As shown in FIG. 12, the exhaust gas discharged from the internal combustion engine and flowing into the exhaust gas purification device 200 (in FIG. 12, the exhaust gas is indicated by G and the flow of the exhaust gas is indicated by arrows) is transferred to an exhaust gas processing body (honeycomb filter) 230. The exhaust gas flows into one cell 231 opened at the exhaust gas inflow side end face 230a of the exhaust gas, and passes through the cell wall 232 that separates the cells 231. At this time, PM in the exhaust gas is collected by the cell wall 232, and the exhaust gas is purified. The purified exhaust gas flows out from another cell 231 opened at the exhaust gas outflow side end face 230b and is discharged to the outside.
なお、排ガス浄化装置に流入する排ガスの方向により決定される排ガス流入側端面230a及び排ガス流出側端面230bは、圧入時の方向とは無関係である。 Note that the exhaust gas inflow side end face 230a and the exhaust gas outflow side end face 230b, which are determined by the direction of the exhaust gas flowing into the exhaust gas purification device, are unrelated to the direction at the time of press-fitting.
[排ガス浄化装置の製造方法]
本発明の排ガス浄化装置の製造方法は、本発明のマット材を排ガス処理体に巻き付けた後、ハードスタッフィング法、プレキャリブレーション法、又は、ポストキャリブレーション法によりケーシングに圧入する圧入工程を備えることを特徴とする。
[Manufacturing method of exhaust gas purification device]
The method for manufacturing an exhaust gas purification device of the present invention includes a press-fitting step of wrapping the mat material of the present invention around an exhaust gas treatment body and then press-fitting it into a casing by a hard stuffing method, a pre-calibration method, or a post-calibration method. It is characterized by
ハードスタッフィング法、プレキャリブレーション法、及び、ポストキャリブレーション法はいずれも、マット材を巻き付けた排ガス処理体をケーシングに圧入する工程が必要となる。従って、本発明のマット材は圧入時のマット材のズレ及び変形を抑制することができるため、上記の方法に特に適している。 The hard stuffing method, pre-calibration method, and post-calibration method all require a step of press-fitting an exhaust gas treatment body wrapped with a mat material into a casing. Therefore, the mat material of the present invention can suppress displacement and deformation of the mat material during press-fitting, and is therefore particularly suitable for the above method.
ハードスタッフィング法とは、予め所定の内径を有する筒状のケーシングを準備し、このケーシングに対して、マット材を巻き付けた排ガス処理体を圧入する方法である。
プレキャリブレーション法とは、所定の内径を有する筒状のケーシングを一度縮径したあと、マット材を巻き付けた排ガス処理体を圧入する方法である。
ポストキャリブレーション法とは、所定の内径を有する筒状のケーシングに対して、マット材を巻き付けた排ガス処理体を圧入した後、排ガス処理体及びマット材ごと、ケーシングを縮径する方法である。
The hard stuffing method is a method in which a cylindrical casing having a predetermined inner diameter is prepared in advance, and an exhaust gas treatment body wrapped with a mat material is press-fitted into the casing.
The pre-calibration method is a method in which a cylindrical casing having a predetermined inner diameter is once reduced in diameter, and then an exhaust gas treatment body wrapped with a mat material is press-fitted into the casing.
The post-calibration method is a method in which an exhaust gas treatment body wrapped with a mat material is press-fitted into a cylindrical casing having a predetermined inner diameter, and then the diameter of the casing is reduced together with the exhaust gas treatment body and the mat material.
上記の方法はいずれも、圧入時にマット材に大きなせん断力が加わるため、マット材のズレ及び変形が生じやすい。
これに対して、本発明のマット材は、圧入時のマット材のズレ及び変形を抑制することができるから、これらの圧入工程を備える排ガス浄化装置の製造方法に特に適している。
In all of the above methods, a large shearing force is applied to the mat material during press-fitting, so that the mat material is likely to shift and deform.
On the other hand, since the mat material of the present invention can suppress displacement and deformation of the mat material during press-fitting, it is particularly suitable for a method of manufacturing an exhaust gas purification device that includes these press-fitting steps.
本発明の排ガス浄化装置の製造方法において、圧入工程では、マット材の第1側面を上流側、第2側面を下流側に配置してケーシングに圧入することが好ましい。
とくに、第1側面側に配置される非陥没部の幅方向の長さが、第2側面側に配置される非陥没部の幅方向の長さよりも長い場合に、マット材の第1側面を上流側、第2側面を下流側に配置してケーシングに圧入することが好ましい。
In the method for manufacturing an exhaust gas purification device of the present invention, in the press-fitting step, it is preferable that the mat material is press-fitted into the casing with the first side surface on the upstream side and the second side surface on the downstream side.
In particular, when the length in the width direction of the non-sinking portion disposed on the first side surface side is longer than the length in the width direction of the non-sinking portion disposed on the second side surface side, the first side surface of the mat material is It is preferable to arrange the second side surface on the upstream side and the downstream side and press fit into the casing.
本明細書には以下の事項が開示されている。 The following items are disclosed in this specification.
本開示(1)は、無機繊維を含む平面視略矩形のマット材であって、
前記マット材は、厚さ方向に対向する第1主面及び第2主面と、巻きつけ方向となる長手方向に対向する第1端面及び第2端面と、前記厚さ方向及び前記長手方向に直交する幅方向に対向する第1側面及び第2側面を有し、
前記第1端面には、巻き付け時に、前記第2端面に向かって突出する凸部と、前記凸部の前記幅方向の両側に配置されて前記第2端面に向かって突出しない非突出部と、が形成されており、
前記第2端面には、巻き付け時に、前記第1端面の前記凸部の形状に対応する凹部と、前記凹部の前記幅方向の両側に配置されて、前記第1端面の前記非突出部の形状に対応する非陥没部と、が形成されており、
前記幅方向における前記非陥没部の長さ[D]の、前記長手方向における前記非陥没部の長さ[C]に対する割合[D/C]が、1.0以上であることを特徴とするマット材である。
The present disclosure (1) is a mat material containing inorganic fibers and having a substantially rectangular shape in plan view,
The mat material has a first main surface and a second main surface facing each other in the thickness direction, a first end surface and a second end surface facing each other in the longitudinal direction, which is the winding direction, and It has a first side surface and a second side surface facing each other in the orthogonal width direction,
The first end surface includes a convex portion that protrudes toward the second end surface during winding, and non-protruding portions that are arranged on both sides of the convex portion in the width direction and do not protrude toward the second end surface. is formed,
The second end face includes a recess corresponding to the shape of the convex part of the first end face, and a shape of the non-protruding part of the first end face arranged on both sides of the recess in the width direction. A non-concave part corresponding to is formed,
A ratio [D/C] of the length [D] of the non-sinking portion in the width direction to the length [C] of the non-sinking portion in the longitudinal direction is 1.0 or more. It is a matte material.
本開示(2)は、ニードルマットである、本開示(1)に記載のマット材である。 The present disclosure (2) is the mat material according to the present disclosure (1), which is a needle mat.
本開示(3)は、表面または裏面の少なくとも一方にニードリング処理によって形成された複数の交絡点を有するマット材であって、25mm×25mmの領域内に、前記交絡点が存在しない4mm×4mmの領域である第1の領域、及び、前記交絡点が存在しない3mm×8mmの領域である第2の領域の少なくとも一方が配置されている、本開示(2)に記載のマット材である。 The present disclosure (3) is a mat material having a plurality of intertwined points formed by needling on at least one of the front surface or the back surface, wherein the mat material has a 4 mm x 4 mm area in which the intertwined points are not present within a 25 mm x 25 mm area. The mat material according to (2) of the present disclosure, in which at least one of a first region, which is a region, and a second region, which is a 3 mm x 8 mm region in which the intertwining point does not exist, is arranged.
本開示(4)は、前記無機繊維の平均繊維長は、1~150mmである、本開示(2)又は(3)に記載のマット材である。 The present disclosure (4) is the mat material according to the present disclosure (2) or (3), wherein the inorganic fibers have an average fiber length of 1 to 150 mm.
本開示(5)は、抄造マットである、本開示(1)に記載のマット材である。 The present disclosure (5) is the mat material according to the present disclosure (1), which is a paper-made mat.
本開示(6)は、前記無機繊維の平均繊維長は、200~20000μmである、本開示(5)に記載のマット材である。 The present disclosure (6) is the mat material according to the present disclosure (5), wherein the inorganic fibers have an average fiber length of 200 to 20,000 μm.
本開示(7)は、前記無機繊維の表面に無機バインダが添着されている、本開示(1)~(6)のいずれかとの任意の組合せのマット材である。 The present disclosure (7) is a mat material in any combination with any of the present disclosures (1) to (6), in which an inorganic binder is attached to the surface of the inorganic fibers.
本開示(8)は、前記無機繊維の表面に有機バインダが添着されている、本開示(1)~(6)のいずれかとの任意の組合せのマット材である。 The present disclosure (8) is a mat material in any combination with any of the present disclosures (1) to (6), in which an organic binder is attached to the surface of the inorganic fibers.
本開示(9)は、前記無機繊維の表面に無機バインダ及び有機バインダが添着されている、本開示(1)~(6)のいずれかとの任意の組合せのマット材である。 The present disclosure (9) is a mat material in any combination with any of the present disclosures (1) to (6), in which an inorganic binder and an organic binder are attached to the surface of the inorganic fibers.
本開示(10)は、さらに高分子系分散剤を含有している本開示(1)~(9)のいずれかとの任意の組合せのマット材である。 The present disclosure (10) is a mat material in any combination with any of the present disclosures (1) to (9), which further contains a polymeric dispersant.
本開示(11)は、前記無機バインダ及び前記有機バインダが、それぞれ分散した状態で、前記無機繊維の表面に添着している、本開示(9)に記載のマット材である。 The present disclosure (11) is the mat material according to the present disclosure (9), wherein the inorganic binder and the organic binder are each attached to the surface of the inorganic fiber in a dispersed state.
本開示(12)は、前記無機バインダ及び前記有機バインダからなる凝集体が、前記無機繊維の表面に添着している、本開示(9)に記載のマット材である。 The present disclosure (12) is the mat material according to the present disclosure (9), wherein an aggregate made of the inorganic binder and the organic binder is attached to the surface of the inorganic fiber.
本開示(13)は、前記無機繊維の表面の少なくとも一部を、前記無機バインダと前記有機バインダの混合物からなる被覆層が覆っている、本開示(12)に記載のマット材である。 The present disclosure (13) is the mat material according to the present disclosure (12), wherein at least a portion of the surface of the inorganic fiber is covered with a coating layer made of a mixture of the inorganic binder and the organic binder.
本開示(14)は、前記被覆層は、前記無機バインダと前記有機バインダの鱗片状の混合物が連続することにより形成されている、本開示(13)に記載のマット材である。 The present disclosure (14) is the mat material according to the present disclosure (13), wherein the coating layer is formed by a continuous scale-like mixture of the inorganic binder and the organic binder.
本開示(15)は、前記被覆層の形状は多段状である、本開示(13)又は(14)に記載のマット材である。 The present disclosure (15) is the mat material according to the present disclosure (13) or (14), wherein the coating layer has a multi-stage shape.
本開示(16)は、前記被覆層の表面には、前記無機バインダと前記有機バインダの粒子状の混合物が付着している、本開示(13)~(15)のいずれかとの任意の組合せのマット材である。 The present disclosure (16) provides any combination of any of the present disclosures (13) to (15), wherein a particulate mixture of the inorganic binder and the organic binder is attached to the surface of the coating layer. It is a matte material.
本開示(17)は、前記長手方向におけるマット材の長さ[A]の、前記長手方向における前記非陥没部の長さ[C]に対する割合[A/C]が、10以上である、本開示(1)~(16)のいずれかとの任意の組合せのマット材である。 The present disclosure (17) provides the present disclosure, wherein a ratio [A/C] of the length [A] of the mat material in the longitudinal direction to the length [C] of the non-concave portion in the longitudinal direction is 10 or more. A mat material in any combination with any one of disclosures (1) to (16).
本開示(18)は、ケーシングと、排ガス処理体と、前記ケーシングと前記排ガス処理体との間に配置されるマット材とを有する排ガス浄化装置であって、
前記マット材は、本開示(1)~(17)のいずれかとの任意の組合せのマット材であることを特徴とする排ガス浄化装置である。
The present disclosure (18) is an exhaust gas purification device including a casing, an exhaust gas treatment body, and a mat material disposed between the casing and the exhaust gas treatment body,
The exhaust gas purification device is characterized in that the mat material is a mat material in any combination with any one of (1) to (17) of the present disclosure.
本開示(19)は、本開示(1)~(17)のいずれかとの任意の組合せのマット材を、排ガス処理体に巻きつけた後、ハードスタッフィング法、プレキャリブレーション法、又は、ポストキャリブレーション法により、ケーシングに圧入する圧入工程を備える、ことを特徴とする排ガス浄化装置の製造方法である。 The present disclosure (19) provides a hard stuffing method, a pre-calibration method, or a post-calibration method after winding a mat material in any combination with any of the present disclosures (1) to (17) around an exhaust gas treatment body. This method of manufacturing an exhaust gas purification device is characterized by comprising a press-fitting step of press-fitting the exhaust gas purifying device into a casing by a compression method.
(実施例)
以下、本発明をより具体的に開示した実施例を示す。以下の実施例では、マットをニードリング法により製造しているが、本発明はこれらの実施例のみに限定されるものではない。
(Example)
Examples that more specifically disclose the present invention will be shown below. In the following examples, mats are manufactured by a needling method, but the present invention is not limited to these examples.
(実施例1)
(a)紡糸工程
Al含有量が70g/lであり、Al:Cl=1:1.8(原子比)となるように調製した塩基性塩化アルミニウム水溶液に対して、焼成後の無機繊維における組成比が、Al:SiO=72:28(重量比)となるようにシリカゾルを配合し、さらに、有機重合体(ポリビニルアルコール)を適量添加して混合液を調製した。
得られた混合液を濃縮して紡糸用混合物とし、この紡糸用混合物をブローイング法により紡糸して平均繊維径が5.1μmである無機繊維前駆体を作製した。
(Example 1)
(a) Spinning process The composition of the inorganic fiber after firing is calculated from a basic aluminum chloride aqueous solution prepared so that the Al content is 70 g/l and Al:Cl=1:1.8 (atomic ratio). Silica sol was blended so that the ratio of Al 2 O 3 :SiO 2 =72:28 (weight ratio), and an appropriate amount of an organic polymer (polyvinyl alcohol) was added to prepare a mixed solution.
The obtained mixture was concentrated to obtain a spinning mixture, and this spinning mixture was spun by a blowing method to produce an inorganic fiber precursor having an average fiber diameter of 5.1 μm.
(b)圧縮工程
上記(a)紡糸工程で得られた無機繊維前駆体を圧縮して、連続したシート状物を作製した。
(b) Compression step The inorganic fiber precursor obtained in the above (a) spinning step was compressed to produce a continuous sheet-like product.
(c)ニードルパンチング工程
上記(b)圧縮工程で得られたシート状物に対して、ニードルが所定の密度で設けられたニードルボードを用いて複数回ニードルパンチング処理を行ってニードルパンチング処理体を作製した。
まず、ニードルが所定の密度で取り付けられたニードルボードを準備した。次に、このニードルボードをシート状物の一方の表面の上方に配設し、ニードルボードをシート状物の厚さ方向に沿って一回上下させるニードルパンチング処理を、無機繊維前駆体を動かしながら複数回行い、ニードルパンチング処理体を作製した。この際、ニードルの先端部分に形成されたバーブがシート状物の反対側の表面に完全に貫出するまでニードルを貫通させた。
(c) Needle punching process The sheet-like material obtained in the above (b) compression process is subjected to needle punching process multiple times using a needle board on which needles are provided at a predetermined density to obtain a needle punched body. Created.
First, a needle board on which needles were attached at a predetermined density was prepared. Next, this needle board is placed above one surface of the sheet-like object, and a needle punching process is performed in which the needle board is moved up and down once along the thickness direction of the sheet-like object while moving the inorganic fiber precursor. This was repeated several times to produce a needle-punched body. At this time, the needle was penetrated until the barb formed at the tip of the needle completely penetrated the surface on the opposite side of the sheet-like material.
(d)焼成工程
上記(c)ニードルパンチング工程で得られたニードルパンチング処理体を最高温度1250℃で連続して焼成し、アルミナとシリカとを72重量部:28重量部で含む無機繊維からなる焼成シート状物を製造した。無機繊維の平均繊維径は、5.1μmであり、繊維径の最小値は、3.2μmであった。このようにして得られた焼成シート状物は、嵩密度が0.15g/cmであり、目付量が1400g/mであった。交絡点の密度ρは9個/cmであり、25mm×25mmの領域内に、交絡点が存在しない4mm×4mmの領域である第1の領域が10個、交絡点が存在しない3mm×8mmの領域である第2の領域が4個配置されていた。
(d) Firing process The needle punched body obtained in the above (c) needle punching process is continuously fired at a maximum temperature of 1250°C, and is made of inorganic fibers containing alumina and silica in a ratio of 72 parts by weight: 28 parts by weight. A fired sheet-like product was produced. The average fiber diameter of the inorganic fibers was 5.1 μm, and the minimum fiber diameter was 3.2 μm. The fired sheet material thus obtained had a bulk density of 0.15 g/cm 3 and a basis weight of 1400 g/m 2 . The density ρ of interlaced points is 9 pieces/cm 2 , and within the 25 mm x 25 mm area, there are 10 first regions of 4 mm x 4 mm where no intersected points exist, and 3 mm x 8 mm where no intersected points exist. There were four second areas arranged.
(e)切断工程
焼成されたニードルパンチング処理体を切断して、マットを作製した。
マットの寸法は、長手方向の長さ[A]が348.0mm、幅方向の長さ[B]が93.5mmの平面視略矩形であり、凸部の長さ[C]が20.0mm、非陥没部の幅[D及びD]が31mmであり、凸部の幅[E]が31.5mmであり、凹部の幅方向の中心[E]とマットの幅方向の中心[B]とが重なっていた。
(e) Cutting process The fired needle punched body was cut to produce a mat.
The dimensions of the mat are approximately rectangular in plan view, with a longitudinal length [A] of 348.0 mm, a width direction length [B] of 93.5 mm, and a convex length [C] of 20.0 mm. , the width of the non-concave portion [D 1 and D 2 ] is 31 mm, the width of the convex portion [E] is 31.5 mm, and the widthwise center of the concave portion [E C ] and the widthwise center of the mat [ B C ] overlapped.
(f)添着工程
(f-1)有機バインダ混合液調製工程
有機バインダであるアクリレート系ラテックスを水で希釈することにより、固形分濃度が2.0wt%の有機バインダ混合液を調製した。
(f) Impregnation Step (f-1) Organic Binder Mixture Preparation Step An organic binder mixture having a solid content concentration of 2.0 wt% was prepared by diluting acrylate latex as an organic binder with water.
(f-2)無機バインダ混合液調製工程
無機バインダであるアルミナを水で希釈し、高分子系分散剤を添加して充分攪拌することで、無機粒子の固形分濃度が2.0wt%であり、上記高分子系分散剤の濃度が1000ppmである無機バインダ混合液を調製した。
(f-2) Inorganic binder mixed liquid preparation process By diluting alumina, which is an inorganic binder, with water, adding a polymeric dispersant, and stirring thoroughly, the solid content concentration of inorganic particles is 2.0 wt%. An inorganic binder mixture containing the above-mentioned polymeric dispersant at a concentration of 1000 ppm was prepared.
(f-3)バインダ混合液調製工程
上記(f-2)無機バインダ混合液調製工程で得られた無機バインダ混合液に上記(f-1)有機バインダ混合液調製工程で得られた有機バインダ混合液を、1:1の重量比になるよう加えて充分攪拌し、有機バインダが固形分濃度で1.0wt%、無機バインダが固形分濃度で1.0wt%、上記高分子系分散剤の濃度が500ppmであるバインダ混合液を調製した。
(f-3) Binder mixture preparation step The organic binder obtained in the above (f-1) organic binder mixture preparation step is mixed with the inorganic binder mixture obtained in the above (f-2) Inorganic binder mixture preparation step. The liquids were added at a weight ratio of 1:1 and thoroughly stirred, so that the organic binder had a solid content concentration of 1.0 wt%, the inorganic binder had a solid content concentration of 1.0 wt%, and the concentration of the polymeric dispersant was 1.0 wt%. A binder mixture solution having a concentration of 500 ppm was prepared.
(f-4)接触工程
上記(f-3)バインダ混合液調製工程で得られたバインダ混合液を、カーテンコート法により(e)切断工程で得られたマットに接触させた。
(f-5)脱水工程
上記(f-4)接触工程で得られた、バインダ混合液が付与されたマットを脱水機で吸引脱水することにより、上記バインダ混合液が、無機繊維100重量部に対して100重量部付与された状態となるように調製した。
(f-4) Contact step The binder mixture obtained in the above (f-3) binder mixture preparation step was brought into contact with the mat obtained in the (e) cutting step by a curtain coating method.
(f-5) Dehydration step The mat obtained in the above (f-4) contact step and to which the binder mixture has been applied is dehydrated by suction using a dehydrator, so that the binder mixture is reduced to 100 parts by weight of inorganic fibers. It was prepared so that 100 parts by weight was added.
(f-6)乾燥工程
上記(f-5)脱水工程を終えたマットを乾燥機にて乾燥して、実施例1に係るマット材を作製した。
(f-6) Drying process The mat that had undergone the above (f-5) dehydration process was dried in a dryer to produce a mat material according to Example 1.
(実施例2~6及び比較例1~3)
(e)切断工程において切断する形状を表1の条件を満たすように変更したほかは、実施例1と同様の手順で、実施例2~6及び比較例1~3に係るマット材を作製した。
なお、[D]は第1側面側の非陥没部の幅を、[D]は第2側面側の非陥没部の幅を、それぞれ示している。
(Examples 2 to 6 and Comparative Examples 1 to 3)
(e) Mat materials according to Examples 2 to 6 and Comparative Examples 1 to 3 were produced in the same manner as in Example 1, except that the shape to be cut in the cutting process was changed to meet the conditions in Table 1. .
Note that [D 1 ] indicates the width of the non-sinking portion on the first side surface side, and [D 2 ] indicates the width of the non-sinking portion on the second side surface side, respectively.
(圧入試験)
実施例1~3及び比較例1~2に係るマット材を、直径103mm、長さ105mmの排ガス処理体に巻き付けた直径115mmの巻付体を、テーパー角4.5°、絞り径110.7mmの圧入治具を用いて、マット材の第1側面が上流側、第2側面が下流側となるように、内径110.8mmのステンレス製ケーシング内に500mm/minの速度で圧入した。
排ガス処理体にマット材を巻き付ける際には、排ガス処理体の上流側の端面からマット材の上流側の端面(第1側面)までの長さ[L]を記録しておき、圧入後に、再度、排ガス処理体の上流側の端面からマット材の上流側の端面(第1側面)までの長さ[L]を測定し、その差[ΔL]をマット材の変形量(ズレ量)とし、以下の基準で評価した。
なお、実施例4~6及び比較例3に係るマット材は、直径129mm、長さ105mmの排ガス処理体に巻きつけた直径141mmの巻付体を、テーパー角4.5°、絞り径145.3mmの圧入治具を用いて、マット材の第1側面が上流側、第2側面が下流側となるように、内径145.4mmのステンレス製ケーシング内に500mm/minの速度で圧入した。
[評価基準]
◎:変形量(ズレ量)6mm以下であり、マット材の変形が特に抑制されている。
〇:変形量(ズレ量)が6mmを超えて、8mm以下であり、マット材の変形が充分抑制されている。
×:変形量(ズレ量)が8mmを超えており、マット材の変形が充分に抑制されていない。
(Press-fit test)
The mat materials according to Examples 1 to 3 and Comparative Examples 1 to 2 were wound around an exhaust gas treatment body having a diameter of 103 mm and a length of 105 mm, and the wrapped body had a diameter of 115 mm and a taper angle of 4.5° and an aperture diameter of 110.7 mm. Using a press-fitting jig, the mat material was press-fitted into a stainless steel casing having an inner diameter of 110.8 mm at a speed of 500 mm/min so that the first side face was on the upstream side and the second side face was on the downstream side.
When wrapping the mat material around the exhaust gas treatment body, record the length [L 0 ] from the upstream end surface of the exhaust gas treatment body to the upstream end surface (first side surface) of the mat material, and after press-fitting, Again, measure the length [L 1 ] from the upstream end surface of the exhaust gas treatment body to the upstream end surface (first side surface) of the mat material, and calculate the difference [ΔL] as the amount of deformation (amount of deviation) of the mat material. It was evaluated using the following criteria.
Note that the mat materials according to Examples 4 to 6 and Comparative Example 3 were made by wrapping a wound body with a diameter of 141 mm around an exhaust gas treatment body with a diameter of 129 mm and a length of 105 mm, with a taper angle of 4.5° and an aperture diameter of 145. Using a 3 mm press-fit jig, the mat material was press-fitted into a stainless steel casing with an inner diameter of 145.4 mm at a speed of 500 mm/min so that the first side surface was on the upstream side and the second side surface was on the downstream side.
[Evaluation criteria]
◎: Deformation amount (shift amount) is 6 mm or less, and deformation of the mat material is particularly suppressed.
Good: The amount of deformation (amount of deviation) is more than 6 mm and less than 8 mm, and deformation of the mat material is sufficiently suppressed.
×: The amount of deformation (amount of deviation) exceeds 8 mm, and the deformation of the mat material is not sufficiently suppressed.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
表1に示すように、本発明に係るマット材は、いずれも、圧入時のマット材の変形及びズレを抑制することができることを確認した。さらに、実施例1~5と実施例6との対比より、長手方向におけるマット材の長さ[A]の、長手方向における非陥没部の長さ[C]に対する割合[A/C]を10以上とすることで、圧入時のマット材の変形及びズレを特に抑制できることがわかった。 As shown in Table 1, it was confirmed that all of the mat materials according to the present invention can suppress deformation and displacement of the mat materials during press-fitting. Furthermore, from a comparison between Examples 1 to 5 and Example 6, the ratio [A/C] of the length [A] of the mat material in the longitudinal direction to the length [C] of the non-concave part in the longitudinal direction was set to 10. It has been found that by doing so, deformation and displacement of the mat material during press-fitting can be particularly suppressed.
1a、1b 試験片
10 マット材
11 第1主面
12 第2主面
13 第1端面
13a 凸部
13b、13c 非突出部
14 第2端面
14a 凹部
14b、14c 非陥没部
15 第1側面
16 第2側面
115 交絡点
117 第1領域
118 第2領域
120 無機繊維
130 被覆層
140 粒子状の混合物
170 せん断破壊荷重試験装置
171 左側治具
172 右側治具
173 ステンレス板
174 突起部材
200 排ガス浄化装置
220 ケーシング
230 排ガス処理体
230a 排ガス流入側端面
230b 排ガス流出側端面
231 セル
232 セル壁
233 封止材
250 巻付体

 
1a, 1b Test piece 10 Mat material 11 First main surface 12 Second main surface 13 First end surface 13a Convex portions 13b, 13c Non-protruding portion 14 Second end surface 14a Recessed portions 14b, 14c Non-concave portion 15 First side surface 16 Second Side surface 115 Intertwining point 117 First region 118 Second region 120 Inorganic fiber 130 Covering layer 140 Particulate mixture 170 Shear failure load test device 171 Left jig 172 Right jig 173 Stainless steel plate 174 Projection member 200 Exhaust gas purification device 220 Casing 230 Exhaust gas treatment body 230a Exhaust gas inflow end face 230b Exhaust gas outflow end face 231 Cell 232 Cell wall 233 Sealing material 250 Wrapping body

Claims (19)

  1. 無機繊維を含む平面視略矩形のマット材であって、
    前記マット材は、厚さ方向に対向する第1主面及び第2主面と、巻きつけ方向となる長手方向に対向する第1端面及び第2端面と、前記厚さ方向及び前記長手方向に直交する幅方向に対向する第1側面及び第2側面を有し、
    前記第1端面には、巻き付け時に、前記第2端面に向かって突出する凸部と、前記凸部の前記幅方向の両側に配置されて前記第2端面に向かって突出しない非突出部と、が形成されており、
    前記第2端面には、巻き付け時に、前記第1端面の前記凸部の形状に対応する凹部と、前記凹部の前記幅方向の両側に配置されて、前記第1端面の前記非突出部の形状に対応する非陥没部と、が形成されており、
    前記幅方向における前記非陥没部の長さ[D]の、前記長手方向における前記非陥没部の長さ[C]に対する割合[D/C]が、1.0以上であることを特徴とするマット材。
    A mat material containing inorganic fibers and having a substantially rectangular shape in plan view,
    The mat material has a first main surface and a second main surface facing each other in the thickness direction, a first end surface and a second end surface facing each other in the longitudinal direction, which is the winding direction, and It has a first side surface and a second side surface facing each other in the orthogonal width direction,
    The first end surface includes a convex portion that protrudes toward the second end surface during winding, and non-protruding portions that are arranged on both sides of the convex portion in the width direction and do not protrude toward the second end surface. is formed,
    The second end face includes a recess corresponding to the shape of the convex part of the first end face, and a shape of the non-protruding part of the first end face arranged on both sides of the recess in the width direction. A non-concave part corresponding to is formed,
    A ratio [D/C] of the length [D] of the non-sinking portion in the width direction to the length [C] of the non-sinking portion in the longitudinal direction is 1.0 or more. mat material.
  2. ニードルマットである、請求項1に記載のマット材。 The mat material according to claim 1, which is a needle mat.
  3. 表面または裏面の少なくとも一方にニードリング処理によって形成された複数の交絡点を有するマット材であって、25mm×25mmの領域内に、前記交絡点が存在しない4mm×4mmの領域である第1の領域、及び、前記交絡点が存在しない3mm×8mmの領域である第2の領域の少なくとも一方が配置されている、請求項2に記載のマット材。 A mat material having a plurality of intertwined points formed by needling on at least one of the front surface or the back surface, the first mat material having a 4 mm x 4 mm area in which no intertwined points are present within a 25 mm x 25 mm area. The mat material according to claim 2, wherein at least one of the area and the second area, which is a 3 mm x 8 mm area where the intertwining point does not exist, is arranged.
  4. 前記無機繊維の平均繊維長は、1~150mmである、請求項2又は3に記載のマット材。 The mat material according to claim 2 or 3, wherein the inorganic fibers have an average fiber length of 1 to 150 mm.
  5. 抄造マットである、請求項1に記載のマット材。 The mat material according to claim 1, which is a paper-made mat.
  6. 前記無機繊維の平均繊維長は、200~20000μmである、請求項5に記載のマット材。 The mat material according to claim 5, wherein the inorganic fibers have an average fiber length of 200 to 20,000 μm.
  7. 前記無機繊維の表面に無機バインダが添着されている、請求項1~6のいずれかに記載のマット材。 The mat material according to any one of claims 1 to 6, wherein an inorganic binder is attached to the surface of the inorganic fiber.
  8. 前記無機繊維の表面に有機バインダが添着されている、請求項1~6のいずれかに記載のマット材。 The mat material according to any one of claims 1 to 6, wherein an organic binder is attached to the surface of the inorganic fiber.
  9. 前記無機繊維の表面に無機バインダ及び有機バインダが添着されている、請求項1~6のいずれかに記載のマット材。 The mat material according to any one of claims 1 to 6, wherein an inorganic binder and an organic binder are attached to the surface of the inorganic fiber.
  10. さらに高分子系分散剤を含有している請求項1~9のいずれかに記載のマット材。 The mat material according to any one of claims 1 to 9, further containing a polymeric dispersant.
  11. 前記無機バインダ及び前記有機バインダが、それぞれ分散した状態で、前記無機繊維の表面に添着している、請求項9に記載のマット材。 The mat material according to claim 9, wherein the inorganic binder and the organic binder are attached to the surface of the inorganic fibers in a dispersed state.
  12. 前記無機バインダ及び前記有機バインダからなる凝集体が、前記無機繊維の表面に添着している、請求項9に記載のマット材。 The mat material according to claim 9, wherein an aggregate made of the inorganic binder and the organic binder is attached to the surface of the inorganic fiber.
  13. 前記無機繊維の表面の少なくとも一部を、前記無機バインダと前記有機バインダの混合物からなる被覆層が覆っている、請求項12に記載のマット材。 The mat material according to claim 12, wherein at least a part of the surface of the inorganic fiber is covered with a coating layer made of a mixture of the inorganic binder and the organic binder.
  14. 前記被覆層は、前記無機バインダと前記有機バインダの鱗片状の混合物が連続することにより形成されている、請求項13に記載のマット材。 The mat material according to claim 13, wherein the coating layer is formed by a continuous scale-like mixture of the inorganic binder and the organic binder.
  15. 前記被覆層の形状は多段状である請求項13又は14に記載のマット材。 The mat material according to claim 13 or 14, wherein the covering layer has a multi-stage shape.
  16. 前記被覆層の表面には、前記無機バインダと前記有機バインダの粒子状の混合物が付着している、請求項13~15のいずれかに記載のマット材。 The mat material according to any one of claims 13 to 15, wherein a particulate mixture of the inorganic binder and the organic binder is attached to the surface of the coating layer.
  17. 前記長手方向におけるマット材の長さ[A]の、前記長手方向における前記非陥没部の長さ[C]に対する割合[A/C]が、10以上である請求項1~16のいずれかに記載のマット材。 Any one of claims 1 to 16, wherein the ratio [A/C] of the length [A] of the mat material in the longitudinal direction to the length [C] of the non-concave portion in the longitudinal direction is 10 or more. Mat material listed.
  18. ケーシングと、排ガス処理体と、前記ケーシングと前記排ガス処理体との間に配置されるマット材とを有する排ガス浄化装置であって、
    前記マット材は、請求項1~17のいずれかに記載のマット材であることを特徴とする排ガス浄化装置。
    An exhaust gas purification device comprising a casing, an exhaust gas treatment body, and a mat material disposed between the casing and the exhaust gas treatment body,
    An exhaust gas purification device characterized in that the mat material is the mat material according to any one of claims 1 to 17.
  19. 請求項1~17のいずれかに記載のマット材を、排ガス処理体に巻きつけた後、ハードスタッフィング法、プレキャリブレーション法、又は、ポストキャリブレーション法により、ケーシングに圧入する圧入工程を備える、ことを特徴とする排ガス浄化装置の製造方法。

     
    A press-fitting step of wrapping the mat material according to any one of claims 1 to 17 around an exhaust gas treatment body and then press-fitting it into a casing by a hard stuffing method, a pre-calibration method, or a post-calibration method, A method for manufacturing an exhaust gas purification device, characterized in that:

PCT/JP2023/017666 2022-06-09 2023-05-11 Mat material, exhaust gas purification apparatus, and method for manufacturing exhaust gas purification apparatus WO2023238591A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022093773 2022-06-09
JP2022-093773 2022-06-09

Publications (1)

Publication Number Publication Date
WO2023238591A1 true WO2023238591A1 (en) 2023-12-14

Family

ID=89118156

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/017666 WO2023238591A1 (en) 2022-06-09 2023-05-11 Mat material, exhaust gas purification apparatus, and method for manufacturing exhaust gas purification apparatus

Country Status (1)

Country Link
WO (1) WO2023238591A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009024615A (en) * 2007-07-20 2009-02-05 Nichias Corp Catalytic converter, holding material for catalytic converter and its manufacturing method
JP2015045338A (en) * 2008-08-29 2015-03-12 ユニフラックス ワン リミテッド ライアビリティ カンパニー Mounting mat with flexible edge protection and exhaust gas treatment device incorporating the mounting mat
JP2015063925A (en) * 2013-09-24 2015-04-09 イビデン株式会社 Holding seal material, manufacturing method of holding seal material, manufacturing method of exhaust gas purification device, and exhaust gas purification device
JP2016108987A (en) * 2014-12-03 2016-06-20 イビデン株式会社 Holding seal material, exhaust emission control device, and method of manufacturing holding seal material

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009024615A (en) * 2007-07-20 2009-02-05 Nichias Corp Catalytic converter, holding material for catalytic converter and its manufacturing method
JP2015045338A (en) * 2008-08-29 2015-03-12 ユニフラックス ワン リミテッド ライアビリティ カンパニー Mounting mat with flexible edge protection and exhaust gas treatment device incorporating the mounting mat
JP2015063925A (en) * 2013-09-24 2015-04-09 イビデン株式会社 Holding seal material, manufacturing method of holding seal material, manufacturing method of exhaust gas purification device, and exhaust gas purification device
JP2016108987A (en) * 2014-12-03 2016-06-20 イビデン株式会社 Holding seal material, exhaust emission control device, and method of manufacturing holding seal material

Similar Documents

Publication Publication Date Title
JP4863828B2 (en) Sheet material, method for manufacturing the same, and exhaust gas treatment apparatus
US8124023B2 (en) Holding sealing material, method for manufacturing holding sealing material and exhaust gas purifying apparatus
JP5990393B2 (en) Holding sealing material and exhaust gas purification device
EP2985435A1 (en) Holding seal member, method for producing holding seal member, and exhaust gas purification device
US9056440B2 (en) Holding seal material, exhaust gas purifying apparatus and method of manufacturing holding seal material
EP2730760A1 (en) Holding seal material, method of manufacturing holding seal material, and exhaust gas purifying device
EP3051187B1 (en) Holding seal material, production method for holding seal material, production method for exhaust gas purification device, and exhaust gas purification device
JP6419556B2 (en) Holding sealing material and exhaust gas purification device
US20150017072A1 (en) Inorganic fiber, method of producing inorganic fiber aggregate, holding sealing material, and exhaust gas purifying apparatus
CN116997704A (en) Mat, exhaust gas purifying device, and mat manufacturing method
JP5927064B2 (en) Manufacturing method of mat material
WO2023238591A1 (en) Mat material, exhaust gas purification apparatus, and method for manufacturing exhaust gas purification apparatus
WO2017104642A1 (en) Holding seal material and method for producing holding seal material
JP4673711B2 (en) Holding sealing material for exhaust gas treating body and exhaust gas purification device using the same
JP6218528B2 (en) Holding sealing material, manufacturing method of holding sealing material, press-fitting method of wound body, and exhaust gas purification device
WO2023163009A1 (en) Mat material, exhaust gas purification device, and method for producing mat material
KR20150081278A (en) Treatment of tough inorganic fibers and their use in a mounting mat for exhaust gas treatment device
JP6483408B2 (en) Holding sealing material
JP6294147B2 (en) Holding sealing material, manufacturing method of holding sealing material, and exhaust gas purification device
JP6294148B2 (en) Manufacturing method of holding sealing material
JP7488981B1 (en) Paper-made mat and method for producing same
JP2020097901A (en) Holding seal material and method for manufacturing holding seal material
JP2023074324A (en) Mat material, exhaust gas purification device and manufacturing method for mat material
JP2023048673A (en) Holding seal material, manufacturing method for holding seal material and exhaust gas purification device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23819575

Country of ref document: EP

Kind code of ref document: A1