WO2023238426A1 - Battery impedance estimating device, and battery impedance estimating method - Google Patents

Battery impedance estimating device, and battery impedance estimating method Download PDF

Info

Publication number
WO2023238426A1
WO2023238426A1 PCT/JP2022/047141 JP2022047141W WO2023238426A1 WO 2023238426 A1 WO2023238426 A1 WO 2023238426A1 JP 2022047141 W JP2022047141 W JP 2022047141W WO 2023238426 A1 WO2023238426 A1 WO 2023238426A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
impedance
current
voltage
time
Prior art date
Application number
PCT/JP2022/047141
Other languages
French (fr)
Japanese (ja)
Inventor
和生 松川
功 石部
幸拓 朝長
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Priority to JP2024526228A priority Critical patent/JPWO2023238426A1/ja
Publication of WO2023238426A1 publication Critical patent/WO2023238426A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R27/00Arrangements for measuring resistance, reactance, impedance, or electric characteristics derived therefrom
    • G01R27/02Measuring real or complex resistance, reactance, impedance, or other two-pole characteristics derived therefrom, e.g. time constant
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/367Software therefor, e.g. for battery testing using modelling or look-up tables
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/389Measuring internal impedance, internal conductance or related variables
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries

Definitions

  • the present disclosure relates to an apparatus and method for estimating impedance of a secondary battery.
  • Patent No. 7041848 International Publication No. 2020/003841
  • the integral value calculating section calculates the first integral period after a predetermined time has elapsed from the time when the battery is energized.
  • the second integral value is obtained by integrating the voltage value within the second integral period which is the same length as the first integral period following the first integral period. Find the value.
  • the time constant calculation unit measures the voltage value Ve after a predetermined time has elapsed from the second integration period, and if the lengths of the first and second integration periods are a period Tint, the voltage value Ve is calculated from the first integration value.
  • the time constant ⁇ is determined from the ratio of the product of the voltage value Ve and the period Tint equal to the length of each integration period minus the product of the voltage value Ve and the period Tint from the second integral value.
  • the impedance estimating section measures the terminal voltage V0 and current I0 of the battery before the initial measuring section energizes the battery.
  • the extreme value measurement unit calculates the maximum value or minimum value Vm of the terminal voltage of the battery within a certain period from the time when the battery is energized, and measures the voltage of the battery that has flowed at the time when the terminal voltage of the battery shows the maximum value or the minimum value Vm. Measure the current Im.
  • the voltage measurement section 4, the current measurement section 11, and the current excitation section 16 are controlled by the overall control section 17.
  • the overall control section 17 includes a communication section 18, a calculation section 19, and a control section 20.
  • the communication section 18 is connected in a daisy chain with the communication sections 8 of the voltage measurement sections 4(1) and 4(2) and the communication section 15 of the current measurement section 11.
  • the control unit 20 outputs a current excitation command directly to the current excitation unit 16.
  • the above constitutes the battery impedance estimating device 21.
  • the step excitation current value (I0-I1) be a somewhat large value, such as 0.1 A to 100 A or more. Since the impedance of the battery is, for example, about 1 m ⁇ , if the step excitation current value is 100 A, the response voltage amplitude will be about 100 mV.
  • Step S6 and S7 the voltage V(t) is integrated with time t3 to t4 as a first integration period and time t4 to t5 as a second integration period, and a first integral value INT1 and a second integral value INT2 are obtained. .
  • the first integration period and the second integration period are set to the same length Tint.
  • Steps S6 and S7 correspond to an integral value calculation section. Note that the actual first integral value INT1 and second integral value INT2 are obtained by subtracting (V6 ⁇ Tint) from the integral result.
  • the voltage measurement control unit 7 measures the terminal voltage V0 and current I0 of the battery 1, and from the time when the energization is performed, the response due to the series resistance component or the inductive component is normally measured. Within a certain period of about 1 msec to 100 msec when the voltage ends, the maximum value V2 of the terminal voltage V(t) of the battery 1 is determined, and the current I2 of the battery that flows at the time when the maximum value V2 is shown is measured. . Then, measure the current I6 passed through the battery 1 when measuring the voltage value V6, find the resistive resistance component R0 of the battery impedance using equation (1), and find the capacitive resistance component R1 using equation (2). , the capacitance value C1 of the capacitive portion is determined by equation (9). In this way, the resistance components R0 and R1 of the battery impedance and the capacitance value C1 of the capacitive portion can be specifically determined.
  • a battery impedance estimating device 21A according to the second embodiment shown in FIG. 7 includes a current measuring section 11A and an overall control section 17A instead of the current measuring section 11 and the overall control section 17. What is different from the battery impedance estimating device 21 of the first embodiment is that, as shown in FIG. The waveform analysis instruction to the section 4 is performed by the current measurement control section 14A of the current measurement section 11A.
  • the seventh embodiment shown in FIG. 15 shows a case where the excitation current applied to the battery 1 is increased in a substantially stepwise manner from a current value I0 to a current value I1.
  • the apparent current waveform is equal to the waveform when charging of the battery 1 is started or when discharging is stopped.
  • each embodiment can be applied, but in the first embodiment, in step S5, the minimum value of the voltage is measured as the voltage V2 instead of the maximum value.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Secondary Cells (AREA)

Abstract

In a battery impedance estimating device 21, a current excitation unit 16 causes an excitation current to be conducted to a battery 1, and a voltage measuring unit 4 performs A/D conversion of a terminal voltage V(t) of the battery 1 to measure the same. When a control unit 20 of an overall control unit 17 sends an instruction to the current excitation unit 16 to energize the battery 1, and causes a voltage measuring unit 7 to start measuring the terminal voltage V(t), a voltage measurement control unit 7 calculates a time constant τ from voltage waveform data of a fixed segment from a time point at which excitation of the battery 1 was performed, until a prescribed length of time has elapsed, and estimates a capacitive component C1 of an impedance of the battery 1 from the time constant τ.

Description

電池インピーダンス推定装置及び電池インピーダンス推定方法Battery impedance estimation device and battery impedance estimation method 関連出願の相互参照Cross-reference of related applications
 本出願は、2022年6月8日に出願された日本出願番号2022-93011号に基づくもので、ここにその記載内容を援用する。 This application is based on Japanese Application No. 2022-93011 filed on June 8, 2022, and the contents thereof are incorporated herein.
 本開示は、二次電池のインピーダンスを推定する装置及び方法に関する。 The present disclosure relates to an apparatus and method for estimating impedance of a secondary battery.
 例えばリチウムイオン電池のような二次電池のインピーダンスを推定する方法については、従来様々な技術が提案されている。例えば特許文献1では、電池にステップ状の電流を印加した際に、測定された電圧応答波形データに対し、想定した電池モデルより立てられた時間応答式について、インピーダンスパラメータをスイープさせてカーブフィッティングを行うことでパラメータを推定している。また、特許文献2では、交流的な励起電流を発生させて、電池に流れる電流と電池の端子電圧とを測定し、演算によりインピーダンスを推定している。 For example, various techniques have been proposed for estimating the impedance of a secondary battery such as a lithium ion battery. For example, in Patent Document 1, when a step current is applied to a battery, curve fitting is performed by sweeping impedance parameters for a time response equation established from an assumed battery model for measured voltage response waveform data. The parameters are estimated by doing this. Further, in Patent Document 2, an alternating current excitation current is generated, the current flowing through the battery and the terminal voltage of the battery are measured, and the impedance is estimated by calculation.
特許第7041848号公報Patent No. 7041848 国際公開2020/003841号公報International Publication No. 2020/003841
 特許文献1の技術は、測定自体は容易に行えるが、測定データのサンプリングを高速で行う必要があり、扱うデータ量が膨大になってしまう。そして、カーブフィッティングについても試行錯誤を繰り返すため、膨大な演算能力が必要とされる。また、特許文献2の技術は、任意の周波数についてのインピーダンスを求められるが、パラメータを推定するには多数の周波数について測定する必要があり、測定に長い時間を要してしまう。また、励起電流を発生させる回路を、インピーダンスを求めるために追加する必要があり、コストもアップしてしまう。 Although the technique of Patent Document 1 can easily perform the measurement itself, it requires sampling of the measurement data at high speed, and the amount of data to be handled becomes enormous. Curve fitting also requires a huge amount of computing power because it involves repeated trial and error. Furthermore, although the technique disclosed in Patent Document 2 can obtain impedance at any frequency, it is necessary to measure a large number of frequencies in order to estimate the parameters, and the measurement takes a long time. Furthermore, it is necessary to add a circuit for generating an excitation current in order to obtain impedance, which increases costs.
 本開示は上記事情に鑑みてなされたものであり、その目的は、膨大な演算能力や専用の回路を必要とせずとも、電池のインピーダンスを推定できる電池インピーダンス推定装置及び方法を提供することにある。 The present disclosure has been made in view of the above circumstances, and its purpose is to provide a battery impedance estimating device and method that can estimate battery impedance without requiring enormous computing power or dedicated circuitry. .
 請求項1記載の電池インピーダンス推定装置によれば、電流励起部は、電池に励起電流を通電し、電圧測定部は、電池の端子電圧をA/D変換して測定する。インピーダンス推定部は、制御部が、電流励起部に指示を与えて前記電池に通電を行わせると共に、電圧測定部に端子電圧の測定を開始させると、電池に通電が行われた時点から、所定時間経過後の一定区間の電圧波形データより時定数を算出し、その時定数より電池のインピーダンスを推定する。 According to the battery impedance estimating device according to the first aspect, the current excitation section applies an excitation current to the battery, and the voltage measurement section measures the terminal voltage of the battery by A/D converting it. When the control unit instructs the current excitation unit to energize the battery and causes the voltage measurement unit to start measuring the terminal voltage, the impedance estimating unit calculates a predetermined value from the time when the battery is energized. A time constant is calculated from the voltage waveform data in a certain section after the elapse of time, and the impedance of the battery is estimated from the time constant.
 電池に通電が行われたことに応答して変化する端子電圧の波形には、電池のインピーダンスにおける抵抗性、誘導性、容量性の各成分が支配的となる時間領域が存在する。したがって、端子電圧の波形を解析し、容量性成分が支配的となる時間領域について演算を行うことで、時定数を求めることができる。そして、時定数を求めれば、インピーダンスの容量性成分が求められる。これにより、膨大な演算能力や専用の回路を必要とせずとも、電池のインピーダンスを推定できる。 In the waveform of the terminal voltage that changes in response to energization of the battery, there is a time region in which resistive, inductive, and capacitive components of the battery impedance are dominant. Therefore, the time constant can be determined by analyzing the waveform of the terminal voltage and performing calculations on the time domain in which the capacitive component is dominant. Then, by finding the time constant, the capacitive component of the impedance can be found. This makes it possible to estimate the impedance of a battery without requiring huge amounts of computing power or dedicated circuitry.
 具体的には、請求項4記載の電池インピーダンス推定装置のように、インピーダンス推定部では、積分値演算部が、電池に通電が行われた時点から、所定時間が経過した後の第1積分期間内の電圧値を積分して第1積分値を求めると、その第1積分期間に続く、当該第1積分期間と同じ長さである第2積分期間内の電圧値を積分して第2積分値を求める。時定数演算部は、第2積分期間より所定時間が経過した後の電圧値Veを測定し、第1及び第2積分期間の長さを期間Tintとすると、第1積分値より、電圧値Veと各積分期間の長さに等しい期間Tintとの積を減じたものと、第2積分値より、電圧値Veと期間Tintとの積を減じたものとの比から、時定数τを求める。 Specifically, as in the battery impedance estimating device according to claim 4, in the impedance estimating section, the integral value calculating section calculates the first integral period after a predetermined time has elapsed from the time when the battery is energized. When the first integral value is obtained by integrating the voltage value within the first integral period, the second integral value is obtained by integrating the voltage value within the second integral period which is the same length as the first integral period following the first integral period. Find the value. The time constant calculation unit measures the voltage value Ve after a predetermined time has elapsed from the second integration period, and if the lengths of the first and second integration periods are a period Tint, the voltage value Ve is calculated from the first integration value. The time constant τ is determined from the ratio of the product of the voltage value Ve and the period Tint equal to the length of each integration period minus the product of the voltage value Ve and the period Tint from the second integral value.
 また、請求項5記載の電池インピーダンス推定装置によれば、インピーダンス推定部は、初期測定部が、電池に通電を行なう前に、当該電池の端子電圧V0及び電流I0を測定する。極値測定部は、電池に通電が行われた時点から、一定期間内において、電池の端子電圧の極大値又は極小値Vmを求めると共に、極大値又は極小値Vmを示した時点に流れた電池の電流Imを測定する。 According to the battery impedance estimating device according to claim 5, the impedance estimating section measures the terminal voltage V0 and current I0 of the battery before the initial measuring section energizes the battery. The extreme value measurement unit calculates the maximum value or minimum value Vm of the terminal voltage of the battery within a certain period from the time when the battery is energized, and measures the voltage of the battery that has flowed at the time when the terminal voltage of the battery shows the maximum value or the minimum value Vm. Measure the current Im.
 インピーダンス演算部は、電圧値Veを測定する際に、その時点の電池の電流Ieを測定し、電池インピーダンスの抵抗性抵抗成分R0を次式で求め、
  R0=(Vm-V0)/(Im-I0)
 電池のインピーダンスの容量性抵抗成分R1を次式で求め、
  R1=(Ve-V0)/(Ie-I0)-R0
 電池のインピーダンスの容量性部分の容量値C1を次式
  C1=τ/R1
で求める。
When measuring the voltage value Ve, the impedance calculation unit measures the current Ie of the battery at that time, calculates the resistive resistance component R0 of the battery impedance using the following formula,
R0=(Vm-V0)/(Im-I0)
Find the capacitive resistance component R1 of the battery impedance using the following formula,
R1=(Ve-V0)/(Ie-I0)-R0
The capacitance value C1 of the capacitive part of the battery impedance is expressed as follows: C1=τ/R1
Find it with
 本開示についての上記目的およびその他の目的、特徴や利点は、添付の図面を参照しながら下記の詳細な記述により、より明確になる。その図面は、
図1は、第1実施形態において、電池インピーダンス推定装置の構成を示す機能ブロック図であり、 図2は、電池のインピーダンスモデルを示す図であり、 図3は、電池のコールコールプロットを示す図であり、 図4は、電池にステップ状の励起電流を印加した場合の応答電圧波形を示す図であり、 図5は、インピーダンス推定処理の内容を示すフローチャートであり、 図6は、図5に示す処理に対応したタイミングチャートであり、 図7は、第2実施形態において、電池インピーダンス推定装置の構成を示す機能ブロック図であり、 図8は、インピーダンス推定処理に対応したタイミングチャートであり、 図9は、第3実施形態において、電池インピーダンス推定装置の構成を示す機能ブロック図であり、 図10は、インピーダンス推定処理に対応したタイミングチャートであり、 図11は、第4実施形態において、電池インピーダンス推定装置の構成を示す機能ブロック図であり、 図12は、第5実施形態において、電池インピーダンス推定装置の構成を示す機能ブロック図であり、 図13は、インピーダンス推定処理の内容を示すフローチャートであり、 図14は、図5に示す処理に対応したタイミングチャートであり、 図15は、第6実施形態において、励起電流波形を示すタイミングチャートである。
The above objects and other objects, features and advantages of the present disclosure will become more apparent from the following detailed description with reference to the accompanying drawings. The drawing is
FIG. 1 is a functional block diagram showing the configuration of a battery impedance estimating device in a first embodiment, FIG. 2 is a diagram showing a battery impedance model, FIG. 3 is a diagram showing a Cole-Cole plot of a battery, FIG. 4 is a diagram showing the response voltage waveform when a step-like excitation current is applied to the battery. FIG. 5 is a flowchart showing the contents of the impedance estimation process, FIG. 6 is a timing chart corresponding to the process shown in FIG. FIG. 7 is a functional block diagram showing the configuration of a battery impedance estimating device in the second embodiment, FIG. 8 is a timing chart corresponding to impedance estimation processing, FIG. 9 is a functional block diagram showing the configuration of a battery impedance estimating device in the third embodiment, FIG. 10 is a timing chart corresponding to impedance estimation processing, FIG. 11 is a functional block diagram showing the configuration of a battery impedance estimating device in the fourth embodiment, FIG. 12 is a functional block diagram showing the configuration of a battery impedance estimating device in the fifth embodiment, FIG. 13 is a flowchart showing the contents of the impedance estimation process, FIG. 14 is a timing chart corresponding to the process shown in FIG. FIG. 15 is a timing chart showing excitation current waveforms in the sixth embodiment.
  (第1実施形態)
 図1に示すように、本実施形態の電池インピーダンス推定装置は、例えばリチウムイオン二次電圧である単位電池1を複数個直列に接続してなる組電池2に接続されている。各単位電池1の両端には、アナログフィルタ3が接続されている。そして、例えば8~40個程度の単位電池1の直列接続数毎に、1つの電圧測定部4が配置されている。電圧測定部4は、各アナログフィルタ3に対して、ΔΣ型A/Dコンバータ5及びデジタルフィルタ6が直列に接続されている。電圧測定部4は、電圧測定制御部7及び通信部8も備えている。各デジタルフィルタ6の出力端子は、電圧測定制御部7の入力端子にそれぞれ接続されている。インピーダンス推定部に相当する電圧測定制御部7は、電圧の応答波形データを解析して、電池1のインピーダンスを推定する。
(First embodiment)
As shown in FIG. 1, the battery impedance estimating device of this embodiment is connected to a battery pack 2 formed by connecting a plurality of unit batteries 1 in series, for example, lithium ion secondary voltage. Analog filters 3 are connected to both ends of each unit battery 1. One voltage measuring section 4 is arranged for each number of unit batteries 1 connected in series, for example, about 8 to 40. In the voltage measuring section 4, a ΔΣ type A/D converter 5 and a digital filter 6 are connected in series to each analog filter 3. The voltage measurement section 4 also includes a voltage measurement control section 7 and a communication section 8. The output terminal of each digital filter 6 is connected to the input terminal of the voltage measurement control section 7, respectively. The voltage measurement control unit 7, which corresponds to an impedance estimation unit, analyzes the voltage response waveform data and estimates the impedance of the battery 1.
 組電池2の最低電位側には、電流検出抵抗9が接続されている。電流検出抵抗9の両端にも、アナログフィルタ3が接続されている。そのアナログフィルタ3には、電流測定部11が接続されている。電流測定部11は、直列に接続されるΔΣ型A/Dコンバータ12、デジタルフィルタ13、電流測定制御部14及び通信部15を備えている。そして、組電池2及び電流検出抵抗9の直列回路には、電流励起部16が並列に接続されている。電流励起部16は、組電池2に対して充電電流を印加するか、組電池2より放電電流を流出させる。尚、インピーダンス推定を行うために組電池2に通電される電流を、「励起電流」と称する。 A current detection resistor 9 is connected to the lowest potential side of the assembled battery 2. Analog filter 3 is also connected to both ends of current detection resistor 9 . A current measuring section 11 is connected to the analog filter 3. The current measurement section 11 includes a ΔΣ type A/D converter 12, a digital filter 13, a current measurement control section 14, and a communication section 15 connected in series. A current excitation section 16 is connected in parallel to the series circuit of the assembled battery 2 and the current detection resistor 9. The current excitation unit 16 applies a charging current to the battery pack 2 or causes a discharge current to flow out from the battery pack 2 . Note that the current applied to the assembled battery 2 to perform impedance estimation is referred to as an "excitation current."
 電圧測定部4、電流測定部11及び電流励起部16は、全体制御部17によって制御される。全体制御部17は、通信部18、演算部19及び制御部20を備えている。通信部18は、電圧測定部4(1)及び4(2)の通信部8、並びに電流測定部11の通信部15とデイジーチェーン接続されている。制御部20は、電流励起部16に直接電流励起指令を出力する。以上が電池インピーダンス推定装置21を構成している。 The voltage measurement section 4, the current measurement section 11, and the current excitation section 16 are controlled by the overall control section 17. The overall control section 17 includes a communication section 18, a calculation section 19, and a control section 20. The communication section 18 is connected in a daisy chain with the communication sections 8 of the voltage measurement sections 4(1) and 4(2) and the communication section 15 of the current measurement section 11. The control unit 20 outputs a current excitation command directly to the current excitation unit 16. The above constitutes the battery impedance estimating device 21.
 図2は、一般的な二次電圧の内部インピーダンスの等価回路モデルであり、誘導性、抵抗性、容量性及び拡散性の各成分を、直列に接続したものとなる。また、図3は、電池インピ-ダンスの周波数による軌跡を複素平面にプロットした、コールコールプロットである。また、図4に示すように、電池に通電していた電流を略ステップ的に変化させた際に、外部より観測できる電池の端子電圧は、各インピ-ダンス成分に対応した内部電圧波形の総和として現れる。 FIG. 2 is an equivalent circuit model of the internal impedance of a general secondary voltage, in which inductive, resistive, capacitive, and diffusive components are connected in series. Further, FIG. 3 is a Cole-Cole plot in which the locus of battery impedance according to frequency is plotted on a complex plane. Furthermore, as shown in Figure 4, when the current flowing through the battery is changed approximately stepwise, the terminal voltage of the battery that can be observed from the outside is the sum of the internal voltage waveforms corresponding to each impedance component. Appears as.
 すなわち、電池に通電が行われたことに応答して変化する端子電圧の波形には、電池のインピーダンスにおける抵抗性、誘導性、容量性の各成分が支配的となる時間領域が存在する。したがって、端子電圧の波形を解析し、容量性成分が支配的となる時間領域について演算を行うことで、時定数τを求めることができる。 That is, in the waveform of the terminal voltage that changes in response to energization of the battery, there is a time region in which the resistive, inductive, and capacitive components of the battery impedance are dominant. Therefore, the time constant τ can be determined by analyzing the waveform of the terminal voltage and performing calculations on the time domain in which the capacitive component is dominant.
 次に、本実施形態の作用について説明する。尚、図4に示すケースと同様に、電池1に通電していた電流を略ステップ的に変化させた場合の応答電圧波形を解析する。図5及び図6に示すように、全体制御部17の制御部20は、電圧測定部4及び電流測定部11に対して波形解析指示を送信すると(S1)、電圧測定部4及び電流測定部11は、その時点の電池1の電圧V0及び電流I0を測定する(S2)。ステップS2は初期測定部に相当する。 Next, the operation of this embodiment will be explained. Note that, similarly to the case shown in FIG. 4, the response voltage waveform when the current flowing through the battery 1 is changed substantially stepwise will be analyzed. As shown in FIGS. 5 and 6, when the control unit 20 of the overall control unit 17 transmits a waveform analysis instruction to the voltage measurement unit 4 and the current measurement unit 11 (S1), the control unit 20 of the overall control unit 17 11 measures the voltage V0 and current I0 of the battery 1 at that time (S2). Step S2 corresponds to an initial measurement section.
 また、制御部20は、電流励起部16に対して指示を与え、組電池2に励起電流を印加させる(S3)。ここでの励起電流の印加は、図6に示すように、組電池2に流す電流をI0からI1に略ステップ状に変化させることを意味する。見かけ上の電流波形は、電池1の放電開始時、又は充電停止時の波形となる。 Further, the control unit 20 gives an instruction to the current excitation unit 16 to apply an excitation current to the assembled battery 2 (S3). Application of the excitation current here means changing the current flowing through the assembled battery 2 from I0 to I1 in a substantially stepwise manner, as shown in FIG. The apparent current waveform is the waveform when the battery 1 starts discharging or stops charging.
 電圧測定部4は、励起電流が印加された時点t0~t3の区間における電池1の端子電圧V(t)を測定する(S4)。ここで、時点t0~t1の区間は、誘導性インピーダンスが支配的な時間領域である。時点t2は、誘導性に対応した応答区間が終了して、抵抗性インピーダンスが支配的となって変化する点である。そして、時点t2~t6区間は、容量性インピーダンスが支配的な時間領域である。尚、拡散性インピーダンスに対応した応答は極めて遅いので、短時間で略0Vになると見做すことができる。 The voltage measuring unit 4 measures the terminal voltage V(t) of the battery 1 in the period from time t0 to t3 when the excitation current is applied (S4). Here, the period from time t0 to t1 is a time region in which inductive impedance is dominant. At time t2, the response period corresponding to inductive properties ends and resistive impedance becomes dominant and changes. The period from time t2 to t6 is a time domain in which capacitive impedance is dominant. Incidentally, since the response corresponding to the diffusive impedance is extremely slow, it can be assumed that the voltage reaches approximately 0V in a short period of time.
 また、測定には、応答電圧の振幅をある程度大きくすることが望ましい。したがって、ステップ励起電流値(I0-I1)を例えば0.1A~100A以上とするように、ある程度大きな値が望ましい。電池のインピーダンスは、例えば1mΩ程度であるから、ステップ励起電流値100Aとすれば、100mV程度の応答電圧振幅となる。 Additionally, for measurement, it is desirable to increase the amplitude of the response voltage to some extent. Therefore, it is desirable that the step excitation current value (I0-I1) be a somewhat large value, such as 0.1 A to 100 A or more. Since the impedance of the battery is, for example, about 1 mΩ, if the step excitation current value is 100 A, the response voltage amplitude will be about 100 mV.
 続くステップS5では、ステップS4での測定結果より電圧V(t)の極大値を求め、それをV2とし、電圧V2が測定された時点に測定された電流値をI2とする。そして、インピーダンスの抵抗性成分R0を、(1)式で算出する。ステップS5は極値測定部に相当する。尚、電圧V2は電圧Vmに相当し、電流I2は電流Imに相当する。
  R0=(V2-V0)/(I2-I0)  …(1)
In the subsequent step S5, the maximum value of the voltage V(t) is determined from the measurement result in step S4, and it is set as V2, and the current value measured at the time when the voltage V2 is measured is set as I2. Then, the resistive component R0 of the impedance is calculated using equation (1). Step S5 corresponds to an extreme value measuring section. Note that the voltage V2 corresponds to the voltage Vm, and the current I2 corresponds to the current Im.
R0=(V2-V0)/(I2-I0)...(1)
 続くステップS6、S7では、時点t3~t4を第1積分期間、時点t4~t5を第2積分期間として電圧V(t)をそれぞれ積分し、第1積分値INT1,第2積分値INT2を求める。尚、第1積分期間、第2積分期間は、等しい長さTintに設定する。ステップS6及びS7は積分値演算部に相当する。尚、実際の第1積分値INT1,第2積分値INT2は、積分結果より(V6×Tint)を減算したものとなる。 In subsequent steps S6 and S7, the voltage V(t) is integrated with time t3 to t4 as a first integration period and time t4 to t5 as a second integration period, and a first integral value INT1 and a second integral value INT2 are obtained. . Note that the first integration period and the second integration period are set to the same length Tint. Steps S6 and S7 correspond to an integral value calculation section. Note that the actual first integral value INT1 and second integral value INT2 are obtained by subtracting (V6×Tint) from the integral result.
 ステップS8では、電圧値の変化が収束したものと推定される時点t6の電圧V6を測定する。また、時点t6の電流値I6も測定する。そして、インピーダンスの容量性成分における並列抵抗成分R1を、(2)式で算出する(S9)。尚、電圧V6は電圧Veに相当し、電流I6は電流Ieに相当する。
  R1=(V6-V0)/(I6-I0)-R0  …(2)
In step S8, the voltage V6 at time t6, at which the change in voltage value is estimated to have converged, is measured. Furthermore, the current value I6 at time t6 is also measured. Then, the parallel resistance component R1 in the capacitive component of the impedance is calculated using equation (2) (S9). Note that the voltage V6 corresponds to the voltage Ve, and the current I6 corresponds to the current Ie.
R1=(V6-V0)/(I6-I0)-R0...(2)
 続くステップS10では、容量性成分の時定数τを、以下のように算出する。ステップS10は時定数演算部に相当する。尚、計算を簡略化するため、容量性の応答が終了した時点の電圧V6=0Vとし、容量性応答における変化電圧値をVc,
時定数τ=R1・C1とする。電池1の端子電圧の容量性成分による変化分であるV(t)は、
In the subsequent step S10, the time constant τ of the capacitive component is calculated as follows. Step S10 corresponds to a time constant calculation section. In order to simplify the calculation, the voltage V6 at the end of the capacitive response is assumed to be 0 V, and the changing voltage value in the capacitive response is Vc,
Let time constant τ=R1·C1. V(t), which is the change in the terminal voltage of battery 1 due to the capacitive component, is
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
その積分値は、 The integral value is
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
となる。積分値INT1,INT2は、 becomes. The integral values INT1 and INT2 are
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
積分値INT2をINT1で除すと、 When the integral value INT2 is divided by INT1,
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
(7)式両辺の対数をとると、 Taking the logarithm of both sides of equation (7), we get
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000005
したがって、時定数τは(9)となる。 Therefore, the time constant τ becomes (9).
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000006
 続くステップS11では、時定数τを、ステップS9で求めた並列抵抗成分R1で除すことにより、容量性成分C1を算出する。ここで、第1積分期間の開始時点t3は、演算精度の観点から、すなわち、積分値INT1とINT2との比を高精度に得るために早くするほうが良い。したがって、時点t2、t3を一致させることが望ましい。 In the following step S11, the capacitive component C1 is calculated by dividing the time constant τ by the parallel resistance component R1 obtained in step S9. Here, it is better to set the start time t3 of the first integration period early from the viewpoint of calculation accuracy, that is, to obtain the ratio between the integral values INT1 and INT2 with high precision. Therefore, it is desirable to match time points t2 and t3.
 以上のように本実施形態によれば、電池インピーダンス推定装置21において、電流励起部16は、電池1に励起電流を通電し、電圧測定部4は、電池1の端子電圧V(t)をA/D変換して測定する。電圧測定制御部7は、全体制御部17の制御部20が、電流励起部16に指示を与えて電池1に通電を行わせると共に、電圧測定部7に端子電圧V(t)の測定を開始させると、電池1に通電が行われた時点から、通常は直列抵抗成分や誘導成分による応答が終了する1m秒~100m秒程度である所定時間経過後の一定区間の電圧波形データより時定数τを算出し、その時定数τより電池1のインピーダンスの容量成分C1を推定する。これにより、膨大な演算能力や専用の回路を必要とせずとも、電池1のインピーダンスを推定できる。 As described above, according to the present embodiment, in the battery impedance estimating device 21, the current excitation unit 16 supplies an excitation current to the battery 1, and the voltage measurement unit 4 measures the terminal voltage V(t) of the battery 1 at A /D conversion and measurement. In the voltage measurement control unit 7, the control unit 20 of the overall control unit 17 instructs the current excitation unit 16 to energize the battery 1, and causes the voltage measurement unit 7 to start measuring the terminal voltage V(t). Then, the time constant τ is determined from the voltage waveform data in a certain period after a predetermined period of time, usually about 1 msec to 100 msec, when the response due to the series resistance component and the inductive component ends, from the time when the battery 1 is energized. is calculated, and the capacitance component C1 of the impedance of the battery 1 is estimated from the time constant τ. Thereby, the impedance of the battery 1 can be estimated without requiring enormous computing power or a dedicated circuit.
 より具体的には、電圧測定制御部7は、電池1に通電が行われた時点から、所定時間が経過した後の第1積分期間内の電圧値を積分して第1積分値INT1を求めると、その第1積分期間に続く第2積分期間内の電圧値を積分して第2積分値INT2を求める。そして、第2積分期間より所定時間が経過した後の電圧値V6を測定し、第1積分値INT1より、電圧値V6積分期間Tintとの積を減じたものと、第2積分値INT2より、上記の積を減じたものとの比から、時定数τを求める。 More specifically, the voltage measurement control unit 7 integrates the voltage value within a first integration period after a predetermined time has elapsed from the time when the battery 1 is energized to obtain the first integral value INT1. Then, the voltage value within a second integration period following the first integration period is integrated to obtain a second integral value INT2. Then, the voltage value V6 after a predetermined time has elapsed from the second integral period is measured, and from the first integral value INT1 minus the product of the voltage value V6 and the integral period Tint, and from the second integral value INT2, The time constant τ is calculated from the ratio of the above product minus the product.
 更に、電圧測定制御部7は、電池1に通電を行なう前に、当該電池1の端子電圧V0及び電流I0を測定し、通電が行われた時点から、通常は直列抵抗成分や誘導成分による応答が終了する1m秒~100m秒程度である一定期間内において、電池1の端子電圧V(t)の極大値V2を求めると共に、極大値V2を示した時点に流れた電池の電流I2を測定する。そして、電圧値V6を測定した際に電池1に通電された電流I6を測定し、電池インピーダンスの抵抗性抵抗成分R0を(1)式で求め、容量性抵抗成分R1を(2)式で求め、容量性部分の容量値C1を(9)式で求める。このようにして、電池インピーダンスの抵抗成分R0及びR1、並びに容量性部分の容量値C1を、具体的に求めることができる。 Furthermore, before energizing the battery 1, the voltage measurement control unit 7 measures the terminal voltage V0 and current I0 of the battery 1, and from the time when the energization is performed, the response due to the series resistance component or the inductive component is normally measured. Within a certain period of about 1 msec to 100 msec when the voltage ends, the maximum value V2 of the terminal voltage V(t) of the battery 1 is determined, and the current I2 of the battery that flows at the time when the maximum value V2 is shown is measured. . Then, measure the current I6 passed through the battery 1 when measuring the voltage value V6, find the resistive resistance component R0 of the battery impedance using equation (1), and find the capacitive resistance component R1 using equation (2). , the capacitance value C1 of the capacitive portion is determined by equation (9). In this way, the resistance components R0 and R1 of the battery impedance and the capacitance value C1 of the capacitive portion can be specifically determined.
  (第2実施形態)
 以下、第1実施形態と同一部分には同一符号を付して説明を省略し、異なる部分について説明する。図7に示す第2実施形態の電池インピ-ダンス推定装置21Aは、電流測定部11及び全体制御部17に替わる、電流測定部11A及び全体制御部17Aを備えている。第1実施形態の電池インピ-ダンス推定装置21と相違するのは、図8に示すように、全体制御部17Aの制御部20Aは、電流励起部16に対して励起指示のみを行い、電圧測定部4に対する波形解析指示は、電流測定部11Aの電流測定制御部14Aが行う点である。
(Second embodiment)
Hereinafter, parts that are the same as those in the first embodiment are given the same reference numerals and explanations will be omitted, and different parts will be explained. A battery impedance estimating device 21A according to the second embodiment shown in FIG. 7 includes a current measuring section 11A and an overall control section 17A instead of the current measuring section 11 and the overall control section 17. What is different from the battery impedance estimating device 21 of the first embodiment is that, as shown in FIG. The waveform analysis instruction to the section 4 is performed by the current measurement control section 14A of the current measurement section 11A.
 すなわち、電流測定制御部14Aは、電流励起部16がステップ状の励起電流を印加したことを、電流波形データを解析することで検出する。そして、励起電流の印加を検出すると、通信部15を介して波形解析指示を電圧測定部4に与える。 That is, the current measurement control unit 14A detects that the current excitation unit 16 has applied a step-like excitation current by analyzing the current waveform data. When the application of the excitation current is detected, a waveform analysis instruction is given to the voltage measurement section 4 via the communication section 15.
  (第3実施形態)
 図9に示す第3実施形態の電池インピ-ダンス推定装置21Bは、第2実施形態の電池インピ-ダンス推定装置21Aにおける電流励起部16を電流励起部16Bに替えると共に、全体制御部17Aを全体制御部17Bに替えたものである。第2実施形態の電池インピ-ダンス推定装置21Aと相違するのは、図10にも示すように、全体制御部17Bの制御部20Bは、電流励起部16Bに対する励起指示を行なわない。電流励起部16Bは、組電池2に対して自発的に励起電流を印加する。以降のプロセスは第2実施形態と同様である。
(Third embodiment)
A battery impedance estimating device 21B according to the third embodiment shown in FIG. This is a replacement for the control section 17B. The difference from the battery impedance estimating device 21A of the second embodiment is that, as shown in FIG. 10, the control section 20B of the overall control section 17B does not issue an excitation instruction to the current excitation section 16B. The current excitation unit 16B spontaneously applies an excitation current to the assembled battery 2. The subsequent process is similar to the second embodiment.
  (第4実施形態)
 図11に示す第4実施形態の電池インピ-ダンス推定装置22は、第3実施形態の電池インピ-ダンス推定装置21Bにおける電圧測定部4(1)及び4(2)を、電圧測定部23(1)及び23(2)に替えたものである。電圧測定部23は、マルチプレクサ24を備えており、各電池1に対応したアナログフィルタ3は、マルチプレクサ24に接続されている。そして、A/Dコンバータ5及びデジタルフィルタ6は、1つの組に統合されており、電圧測定制御部7Aは、1つのデジタルフィルタ6に接続されている。以上のように構成される第4実施形態によれば、A/Dコンバータ5及びデジタルフィルタ6数を削減して、電池インピ-ダンス推定装置22を小型に構成できる。
(Fourth embodiment)
The battery impedance estimating device 22 of the fourth embodiment shown in FIG. 1) and 23(2). The voltage measuring section 23 includes a multiplexer 24 , and the analog filter 3 corresponding to each battery 1 is connected to the multiplexer 24 . The A/D converter 5 and the digital filter 6 are integrated into one set, and the voltage measurement control section 7A is connected to the one digital filter 6. According to the fourth embodiment configured as described above, the number of A/D converters 5 and digital filters 6 can be reduced, and the battery impedance estimating device 22 can be configured to be compact.
  (第5実施形態)
 図12に示す第5実施形態の電池インピ-ダンス推定装置25は、第3実施形態の電池インピ-ダンス推定装置21Bにおける電圧測定部4及び電流測定部11Aに替えて、電圧電流測定部26を、n個の電池1にそれぞれ対応させて接続したものである。電圧電流測定部26は、電圧検出部27、電圧測定制御部7A、電流検出部28、電圧測定制御部14A及び通信部8を備えている。電圧検出部27は、アナログフィルタ3、A/Dコンバータ5及びデジタルフィルタ6を統合したものである。また、電流検出部28は、A/Dコンバータ12及びデジタルフィルタ13を統合したものである。
(Fifth embodiment)
A battery impedance estimating device 25 according to the fifth embodiment shown in FIG. 12 includes a voltage-current measuring section 26 in place of the voltage measuring section 4 and current measuring section 11A in the battery impedance estimating device 21B according to the third embodiment. , n batteries 1 are connected in correspondence with each other. The voltage and current measurement section 26 includes a voltage detection section 27, a voltage measurement control section 7A, a current detection section 28, a voltage measurement control section 14A, and a communication section 8. The voltage detection section 27 is a combination of an analog filter 3, an A/D converter 5, and a digital filter 6. Further, the current detection section 28 is a combination of the A/D converter 12 and the digital filter 13.
  (第6実施形態)
 第6実施形態は、図13に示すように、第1実施形態のフローチャートにおけるステップS1~S5を、ステップS12~S14に置換えたものとなる。ステップS1が無いことから、電池インピ-ダンス推定装置の構成は、第3実施形態以降のものに対応している。ステップS12では、電流測定制御部14Aが励起電流の印加を検出し、通信部15を介して波形解析指示を電圧測定部4に与える。すると、電圧測定部4は電圧値V0の測定を行う(S13)。
(Sixth embodiment)
In the sixth embodiment, as shown in FIG. 13, steps S1 to S5 in the flowchart of the first embodiment are replaced with steps S12 to S14. Since step S1 is not provided, the configuration of the battery impedance estimating device corresponds to that of the third embodiment and subsequent embodiments. In step S12, the current measurement control section 14A detects the application of the excitation current and gives a waveform analysis instruction to the voltage measurement section 4 via the communication section 15. Then, the voltage measurement unit 4 measures the voltage value V0 (S13).
 続くステップS14では、ステップS5のように電圧の極大値を求めることなく、図14にも示すように、時点t0から一定時間が経過した時点t2の電圧をV2として測定し、(1)式より電池インピーダンスの抵抗性抵抗成分R0をもとめる。すなわち、励起電流は、電流経路のインダクタンス成分等によってリンギングすることもあるが、電池1や配線の構造、形状等が定まれば、リンギングは既知の時間以内に収束する。従って、第6実施形態のように、時点t2を時点t0から一定時間経過後、として電圧V2測定しても、十分精度良く測定できる。 In the subsequent step S14, the voltage at time t2 after a certain period of time has passed from time t0 is measured as V2, as shown in FIG. Find the resistive resistance component R0 of the battery impedance. That is, the excitation current may ring due to the inductance component of the current path, but once the structure, shape, etc. of the battery 1 and wiring are determined, the ringing will converge within a known time. Therefore, as in the sixth embodiment, even if the voltage V2 is measured by setting the time t2 after a certain period of time has elapsed from the time t0, the measurement can be performed with sufficient accuracy.
  (第7実施形態)
 図15に示す第7実施形態は、電池1に印加する励起電流を、電流値I0から電流値I1に、略ステップ状に増加させた場合を示す。見かけ上の電流波形は、電池1の充電開始時、又は放電停止時の波形に等しい。基本的に、各実施形態が適用できるが、第1実施形態であれば、ステップS5では、電圧の極大値に替えて、極小値を電圧V2として測定することになる。
(Seventh embodiment)
The seventh embodiment shown in FIG. 15 shows a case where the excitation current applied to the battery 1 is increased in a substantially stepwise manner from a current value I0 to a current value I1. The apparent current waveform is equal to the waveform when charging of the battery 1 is started or when discharging is stopped. Basically, each embodiment can be applied, but in the first embodiment, in step S5, the minimum value of the voltage is measured as the voltage V2 instead of the maximum value.
  (その他の実施形態)
 インピーダンス推定部の機能は、必ずしも電圧測定部に持たせる必要はない。
 リチウムイオン電池以外の二次電池に適用しても良い。
 本開示は、実施例に準拠して記述されたが、本開示は当該実施例や構造に限定されるものではないと理解される。本開示は、様々な変形例や均等範囲内の変形をも包含する。加えて、様々な組み合わせや形態、さらには、それらに一要素のみ、それ以上、あるいはそれ以下、を含む他の組み合わせや形態をも、本開示の範疇や思想範囲に入るものである。
(Other embodiments)
The function of the impedance estimation section does not necessarily need to be provided in the voltage measurement section.
It may also be applied to secondary batteries other than lithium ion batteries.
Although the present disclosure has been described based on examples, it is understood that the present disclosure is not limited to the examples or structures. The present disclosure also includes various modifications and equivalent modifications. In addition, various combinations and configurations, as well as other combinations and configurations that include only one, more, or fewer elements, are within the scope and scope of the present disclosure.

Claims (11)

  1.  電池(1)に励起電流を流す電流励起部(16)と、
     前記電池の端子電圧をA/D変換して測定する電圧測定部(4、23、27)と、
     前記電流励起部及び前記電圧測定部を制御する制御部(20)と、
     前記制御部が、前記電流励起部に指示を与えて前記電池に通電を行わせると共に、前記電圧測定部に前記端子電圧の測定を開始させると、前記電池に通電が行われた時点から、所定時間経過後の一定区間の電圧波形データより時定数を算出し、その時定数より前記電池のインピーダンスを推定するインピーダンス推定部(7、7A)と、を備える電池インピーダンス推定装置。
    a current excitation unit (16) that causes an excitation current to flow through the battery (1);
    a voltage measuring unit (4, 23, 27) that measures the terminal voltage of the battery by A/D converting it;
    a control unit (20) that controls the current excitation unit and the voltage measurement unit;
    When the control unit instructs the current excitation unit to energize the battery and causes the voltage measurement unit to start measuring the terminal voltage, a predetermined amount of power starts from the time when the battery is energized. A battery impedance estimating device comprising: an impedance estimating unit (7, 7A) that calculates a time constant from voltage waveform data in a certain section after a lapse of time and estimates the impedance of the battery from the time constant.
  2.  電池に励起電流を流す電流励起部(16)と、
     前記電池の端子電圧をA/D変換して測定する電圧測定部(4、23、27)と、
     前記電池に通電された電流をA/D変換して測定した電流波形データを解析する電流測定部(11A)と、
     前記電流励起部を制御する制御部(20A)と、
     前記制御部が、前記電流励起部に指示を与えて前記電池に通電を行わせ、
     前記電流測定部により、前記電流波形データの解析結果より前記電池への通電が開始されたことが検出され、電圧波形データの解析指示が入力されると、
     前記電池に通電が行われた時点から、所定時間経過後の一定区間の電圧波形データより時定数を算出し、その時定数より前記電池のインピーダンスを推定するインピーダンス推定部(7、7A)と、を備える電池インピーダンス推定装置。
    a current excitation unit (16) that flows an excitation current to the battery;
    a voltage measuring unit (4, 23, 27) that measures the terminal voltage of the battery by A/D converting it;
    a current measurement unit (11A) that analyzes current waveform data measured by A/D converting the current applied to the battery;
    a control unit (20A) that controls the current excitation unit;
    The control unit instructs the current excitation unit to energize the battery,
    When the current measurement unit detects that energization of the battery has started based on the analysis result of the current waveform data and inputs an instruction to analyze the voltage waveform data,
    an impedance estimation unit (7, 7A) that calculates a time constant from voltage waveform data in a certain section after a predetermined period of time has elapsed from the time when the battery is energized, and estimates the impedance of the battery from the time constant; A battery impedance estimating device.
  3.  電池に励起電流を流す電流励起部(16B)と、
     前記電池の端子電圧をA/D変換して測定する電圧測定部(4、23、27)と、
     前記電池に通電された励起電流をA/D変換して測定した電流波形データを解析する電流測定部(11A)と、
     前記電流測定部により、前記電流波形データの解析結果より前記電池への通電が開始されたことが検出され、波形データの解析指示が入力されると、
     前記電池に通電が行われた時点から、所定時間経過後の一定区間の電圧波形データより時定数を算出し、その時定数より前記電池のインピーダンスを推定するインピーダンス推定部(7、7A)と、を備える電池インピーダンス推定装置。
    a current excitation unit (16B) that causes excitation current to flow through the battery;
    a voltage measuring unit (4, 23, 27) that measures the terminal voltage of the battery by A/D converting it;
    a current measurement unit (11A) that analyzes current waveform data measured by A/D converting the excitation current applied to the battery;
    When the current measurement unit detects that energization of the battery has started based on the analysis result of the current waveform data and inputs an instruction to analyze the waveform data,
    an impedance estimation unit (7, 7A) that calculates a time constant from voltage waveform data in a certain section after a predetermined period of time has elapsed from the time when the battery is energized, and estimates the impedance of the battery from the time constant; A battery impedance estimating device.
  4.  前記インピーダンス推定部は、
     前記電池に通電が行われた時点から、所定時間が経過した後の第1積分期間内の電圧値を積分して第1積分値を求めると、
     前記第1積分期間に続く、当該第1積分期間と同じ長さである第2積分期間内の電圧値を積分して第2積分値を求める積分値演算部と、
     前記第2積分期間より所定時間が経過した後の電圧値Veを測定し、
     前記第1及び第2積分期間の長さを期間Tintとすると、
     前記第1積分値より、前記電圧値Veと前記期間Tintとの積を減じたものと、
     前記第2積分値より、前記電圧値Veと前記期間Tintとの積を減じたものとの比から、時定数τを求める時定数演算部とを備える請求項1から3の何れか一項に記載の電池インピーダンス推定装置。
    The impedance estimator includes:
    When a first integral value is obtained by integrating the voltage value within a first integral period after a predetermined time has elapsed from the time when the battery was energized,
    an integral value calculation unit that calculates a second integral value by integrating a voltage value within a second integral period that is the same length as the first integral period following the first integral period;
    Measuring the voltage value Ve after a predetermined time has elapsed from the second integration period,
    Letting the length of the first and second integration periods be a period Tint,
    a value obtained by subtracting the product of the voltage value Ve and the period Tint from the first integral value;
    4 . The method according to claim 1 , further comprising a time constant calculation unit that calculates a time constant τ from a ratio of the second integral value minus the product of the voltage value Ve and the period Tint. The battery impedance estimation device described.
  5.  前記インピーダンス推定部は、
     前記電池に通電を行なう前に、当該電池の端子電圧V0及び電流I0を測定する初期測定部と、
     前記電池の端子電圧と共に、前記電池の電流を測定し、
     前記電池に通電が行われた時点から一定期間内において、前記電池の端子電圧の極大値又は極小値Vmを求めると共に、前記極大値又は極小値Vmを示した時点の前記電池の電流Imを測定する極値測定部と、
     前記電圧値Veを測定する際に、その時点の前記電池の電流Ieを測定し、
     前記電池のインピーダンスの抵抗性抵抗成分R0を次式で求め、
      R0=(Vm-V0)/(Im-I0)
     前記電池のインピーダンスの容量性抵抗成分R1を次式で求め、
      R1=(Ve-V0)/(Ie-I0)-R0
     前記電池のインピーダンスの容量性部分の容量値C1を次式
      C1=τ/R1
    で求めるインピーダンス演算部とを備える請求項4記載の電池インピーダンス推定装置。
    The impedance estimator includes:
    an initial measurement unit that measures the terminal voltage V0 and current I0 of the battery before energizing the battery;
    measuring the current of the battery along with the terminal voltage of the battery;
    Within a certain period of time from the time when the battery is energized, determine the maximum value or minimum value Vm of the terminal voltage of the battery, and measure the current Im of the battery at the time when the maximum value or minimum value Vm is shown. an extreme value measuring section,
    When measuring the voltage value Ve, measure the current Ie of the battery at that time,
    The resistive resistance component R0 of the impedance of the battery is determined by the following formula,
    R0=(Vm-V0)/(Im-I0)
    The capacitive resistance component R1 of the impedance of the battery is determined by the following formula,
    R1=(Ve-V0)/(Ie-I0)-R0
    The capacitance value C1 of the capacitive part of the impedance of the battery is expressed as follows: C1=τ/R1
    5. The battery impedance estimating device according to claim 4, further comprising an impedance calculating section that calculates the impedance by calculating the impedance.
  6.  前記一定期間は、1ミリ秒から100ミリ秒である請求項5記載の電池インピーダンス推定装置。 The battery impedance estimating device according to claim 5, wherein the certain period is from 1 millisecond to 100 milliseconds.
  7.  前記所定時間は、1ミリ秒から100ミリ秒である請求項1から6の何れか一項に記載の電池インピーダンス推定装置。 The battery impedance estimating device according to any one of claims 1 to 6, wherein the predetermined time is from 1 millisecond to 100 milliseconds.
  8.  電池に通電を行なうと共に、前記電池の端子電圧を測定し、
     前記電池に通電が行われた時点から、所定時間が経過した後の第1積分期間内の電圧値を積分して第1積分値を求め、
     前記第1積分期間に続く、当該第1積分期間と同じ長さである第2積分期間内の電圧値を積分して第2積分値を求め、
     前記第2積分期間より所定時間が経過した後の電圧値Veを測定し、
     前記第1及び第2積分期間の長さを期間Tintとすると、
     前記第1積分値より、前記電圧値Veと前記期間Tintとの積を減じたものと、
     前記第2積分値より、前記電圧値Veと前記期間Tintとの積を減じたものとの比から、時定数τを求める電池インピーダンス推定方法。
    energizing the battery and measuring the terminal voltage of the battery;
    Integrating the voltage value within a first integration period after a predetermined time has elapsed from the time when the battery was energized to obtain a first integral value;
    Integrating the voltage value within a second integration period that follows the first integration period and having the same length as the first integration period to obtain a second integral value;
    Measuring the voltage value Ve after a predetermined time has elapsed from the second integration period,
    Letting the length of the first and second integration periods be a period Tint,
    a value obtained by subtracting the product of the voltage value Ve and the period Tint from the first integral value;
    A battery impedance estimation method that calculates a time constant τ from a ratio of the second integral value minus the product of the voltage value Ve and the period Tint.
  9.  前記所定時間を、1ミリ秒から100ミリ秒とする請求項8記載の電池インピーダンス推定方法。 The battery impedance estimation method according to claim 8, wherein the predetermined time is from 1 millisecond to 100 milliseconds.
  10.  前記電池に通電を行なう前に、当該電池の端子電圧V0及び電流I0を測定し、
     前記電池の端子電圧と共に、前記電池の電流を測定し、
     前記電池に通電が行われた時点から一定期間内において、前記電池の端子電圧の極大値又は極小値Vmを求めると共に、前記極大値又は極小値Vmを示した時点の前記電池の電流Imを測定し、
     前記電圧値Veを測定する際に、その時点の前記電池の電流Ieを測定し、
     前記電池のインピーダンスの抵抗性抵抗成分R0を次式で求め、
      R0=(Vm-V0)/(Im-I0)
     前記電池のインピーダンスの容量性抵抗成分R1を次式で求め、
      R1=(Ve-V0)/(Ie-I0)-R0
     前記電池のインピーダンスの容量性部分の容量値C1を次式で求める
      C1=τ/R1
    請求項8又は9記載の電池インピーダンス推定方法。
    Before energizing the battery, measure the terminal voltage V0 and current I0 of the battery,
    measuring the current of the battery along with the terminal voltage of the battery;
    Within a certain period of time from the time when the battery is energized, determine the maximum value or minimum value Vm of the terminal voltage of the battery, and measure the current Im of the battery at the time when the maximum value or minimum value Vm is shown. death,
    When measuring the voltage value Ve, measure the current Ie of the battery at that time,
    The resistive resistance component R0 of the impedance of the battery is determined by the following formula,
    R0=(Vm-V0)/(Im-I0)
    The capacitive resistance component R1 of the impedance of the battery is determined by the following formula,
    R1=(Ve-V0)/(Ie-I0)-R0
    The capacitance value C1 of the capacitive part of the impedance of the battery is determined by the following formula: C1=τ/R1
    The battery impedance estimation method according to claim 8 or 9.
  11.  前記一定期間を、1ミリ秒から100ミリ秒とする請求項10記載の電池インピーダンス推定方法。 The battery impedance estimation method according to claim 10, wherein the certain period is from 1 millisecond to 100 milliseconds.
PCT/JP2022/047141 2022-06-08 2022-12-21 Battery impedance estimating device, and battery impedance estimating method WO2023238426A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2024526228A JPWO2023238426A1 (en) 2022-06-08 2022-12-21

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022093011 2022-06-08
JP2022-093011 2022-06-08

Publications (1)

Publication Number Publication Date
WO2023238426A1 true WO2023238426A1 (en) 2023-12-14

Family

ID=89117883

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/047141 WO2023238426A1 (en) 2022-06-08 2022-12-21 Battery impedance estimating device, and battery impedance estimating method

Country Status (2)

Country Link
JP (1) JPWO2023238426A1 (en)
WO (1) WO2023238426A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015206758A (en) * 2014-04-23 2015-11-19 株式会社デンソー Device for estimating parameter of equivalent circuit of secondary battery for vehicle
JP2015224919A (en) * 2014-05-27 2015-12-14 株式会社デンソー Device for estimating parameters of equivalent circuit for vehicle secondary battery
WO2016136788A1 (en) * 2015-02-24 2016-09-01 学校法人同志社 Cell deterioration diagnostic method and cell deterioration diagnostic device
WO2020003850A1 (en) * 2018-06-27 2020-01-02 パナソニックIpマネジメント株式会社 Integrated circuit, battery monitoring device, and battery monitoring system
US20200256923A1 (en) * 2017-08-02 2020-08-13 Li.Plus Gmbh Method, apparatus and computer program for determining an impedance of an electrically conducting device
JP2020125968A (en) * 2019-02-04 2020-08-20 富士通株式会社 Battery degradation diagnosing device, battery degradation analysis circuit, and battery degradation diagnosing program

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015206758A (en) * 2014-04-23 2015-11-19 株式会社デンソー Device for estimating parameter of equivalent circuit of secondary battery for vehicle
JP2015224919A (en) * 2014-05-27 2015-12-14 株式会社デンソー Device for estimating parameters of equivalent circuit for vehicle secondary battery
WO2016136788A1 (en) * 2015-02-24 2016-09-01 学校法人同志社 Cell deterioration diagnostic method and cell deterioration diagnostic device
US20200256923A1 (en) * 2017-08-02 2020-08-13 Li.Plus Gmbh Method, apparatus and computer program for determining an impedance of an electrically conducting device
WO2020003850A1 (en) * 2018-06-27 2020-01-02 パナソニックIpマネジメント株式会社 Integrated circuit, battery monitoring device, and battery monitoring system
JP2020125968A (en) * 2019-02-04 2020-08-20 富士通株式会社 Battery degradation diagnosing device, battery degradation analysis circuit, and battery degradation diagnosing program

Also Published As

Publication number Publication date
JPWO2023238426A1 (en) 2023-12-14

Similar Documents

Publication Publication Date Title
EP1972956B1 (en) Method and device for determining battery discharge capability, and power supply system
EP2848952B1 (en) Device for estimating state of charge of battery
US10295600B2 (en) Monitoring charge stored in a battery
JP4722857B2 (en) Calculation method of battery pack power capacity using advanced cell model prediction technology
JP5319854B1 (en) Parameter estimation device
JP4360621B2 (en) Secondary battery internal impedance measurement method, secondary battery internal impedance measurement device, secondary battery deterioration determination device, and power supply system
KR101615139B1 (en) Apparatus and method for real-time estimation of battery state-of-health
Waag et al. Application-specific parameterization of reduced order equivalent circuit battery models for improved accuracy at dynamic load
US10025296B2 (en) Servo control apparatus having function of obtaining frequency characteristics of machine on line
WO1999061929A1 (en) Means for estimating charged state of battery and method for estimating degraded state of battery
EP1777530B1 (en) Method and arrangement for measuring inverter output currents
CN103998923A (en) Method for monitoring a broadband Lamdba probe
WO2004023579A2 (en) Battery test outputs adjusted based upon battery temperature and the state of discharge of the battery
KR20130119871A (en) Cell direct-current resistance evaluation system
EP3896776A1 (en) Simulated battery construction method and simulated battery construction device
Juang et al. System identification-based lead-acid battery online monitoring system for electric vehicles
JP2006292492A (en) Full charge capacity estimation system for secondary battery
US11970079B2 (en) Method for determining an ageing condition of a battery, computer program, memory means, control device and vehicle
Sadeghi et al. A systematic overview of power electronics interfaced electrochemical impedance spectroscopy for energy storage systems
WO2023238426A1 (en) Battery impedance estimating device, and battery impedance estimating method
CN113466725A (en) Method and device for determining state of charge of battery, storage medium and electronic equipment
JPH09232005A (en) Judging method and device for deterioration of sealed lead-acid battery
CN114646889A (en) Method for determining parameters of a battery model, program product and battery management system
JP3782026B2 (en) Impedance parameter estimation method and apparatus
JP2012083142A (en) Calculation device for internal resistance of secondary battery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22945921

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2024526228

Country of ref document: JP

Kind code of ref document: A